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Preface

This issue of the journal reports some selected contributions from the workshops
BioConcur 2004 chaired by Anna Ingolfsdottir and Hanne Riis Nielson and
BioConcur 2005 chaired by Bud Mishra and Corrado Priami.

There are three contributions from BioConcur 2004. The first one is by
Calder, Gilmore and Hillston on the modelling of signalling pathways using the
stochastic process algebra PEPA. The second contribution is by Kuttler and
Niehren on gene regulation in π-calculus. The last contribution is by Remy, Ruet,
Mendoza, Thieffry and Chsouiya on the relationships between logical regulator
graphs and Petri nets.

There are five contributions from BioConcur 2005. The first contribution is
by Eccher and Lecca on the automatic translation of SBML models to stochastic
π-calculus. The second paper is by Blinov, Yang, Faeder and Hlavacek on the
use of graph theory to model biological networks. The third contribution, by
Jha and Shyamasundar, introduces biochemical Kripke structures for distributed
model checking. The fourth paper is by Phillips, Cardelli and Castagna on a
graphical notation for stochastic π-calculus. The last paper is by Remy and
Ruet on differentiation and homeostatic behaviour of boolean dynamic systems.

The volume ends with a regular contribution by Margoninsky, Saffrey, Het-
herington, Finkelstein and Warner that describes a specification language and a
framework for the execution of composite models.

July 2006 Corrado Priami
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Modelling the Influence of RKIP on the ERK

Signalling Pathway Using the Stochastic Process
Algebra PEPA

Muffy Calder1, Stephen Gilmore2, and Jane Hillston2

1 Department of Computing Science, The University of Glasgow, Glasgow, Scotland
muffy@dcs.gla.ac.uk

2 Laboratory for Foundations of Computer Science, The University of Edinburgh,
Scotland

stg@inf.ed.ac.uk, jeh@inf.ed.ac.uk

Abstract. This paper examines the influence of the Raf Kinase In-
hibitor Protein (RKIP) on the Extracellular signal Regulated Kinase
(ERK) signalling pathway [5] through modelling in a Markovian process
algebra, PEPA [11]. Two models of the system are presented, a reagent-
centric view and a pathway-centric view. The models capture function-
ality at the level of subpathway, rather than at a molecular level. Each
model affords a different perspective of the pathway and analysis. We
demonstrate the two models to be formally equivalent using the timing-
aware bisimulation defined over PEPA models and discuss the biological
significance.

1 Introduction

In recent years several authors have investigated the use of Petri nets and process
algebras – techniques originating in theoretical computer science – for represent-
ing the biochemical pathways within and between cells [15,18,10]. Largely, the
previous work has focussed on capturing the appropriate functionality at the
molecular level and analysis is through simulation. In this paper we present a
preliminary exploration of an alternative approach in which a more abstract
approach is taken and the target mathematical representation is a continuous
time Markov chain. This involves the analytical application of a process alge-
bra to a biochemical pathway with feedback. Our goal is to develop more than
one representation, suitable for different forms of analysis. We prove the two
representations to be equivalent (i.e. bisimilar).

The process algebra which we use is Hillston’s PEPA [11], a Markovian process
algebra which incorporates stochastic durations and probabilistic choices. The
system which we consider is the Ras/Raf-1/MEK/ERK signalling pathway, as
presented in [5]. We believe that our modelling is novel because we are able to
combine performance and different modelling viewpoints. Moreover we demon-
strate the feasibility of using process algebra to model signalling pathways in a
more abstract style than previously.

C. Priami et al. (Eds.): Trans. on Comput. Syst. Biol. VII, LNBI 4230, pp. 1–23, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 M. Calder, S. Gilmore, and J. Hillston

We propose that process algebra models are appropriate in this domain for
several reasons. First, an algebraic formulation of the model makes clear the
interactions between the biochemical entities, or substrates. This is not always
apparent in the classical, ordinary differential equation (ODE) models. Second,
an algebraic approach permits comparison of high level descriptions. For ex-
ample, when one is first building up a picture of a pathway from experimental
evidence, it may be natural to describe the pathway in a fine-grained, distrib-
uted fashion, e.g. each substrate (in this case a protein) is described in terms
of its interactions. That is, each (collection of a) protein is a process and all
processes run in parallel, synchronising accordingly. But later, we may prefer a
higher level view of a pathway which describes how a pathway is composed of
(perhaps already well known) sub-pathways. Indeed we may wish to derive the
latter from the former, or vice-versa. Third, a stochastic process approach allows
reasoning about livelocks, deadlocks, and the performance of the behaviour of
the pathway in the long-run.

This paper is an extended version of the earlier paper [2]. As previously, we
concentrate primarily on alternative approaches to constructing a representa-
tion of a pathway. We show that two contrasting representations can indeed be
identified. Moreover they can be formally shown to be equivalent. The novelty
of this paper lies in the systematic transformation between the alternative rep-
resentations which are presented in algorithmic form. The analysis of the model
has also been somewhat extended.

In the next section we give a brief overview of cell signalling and the Ras/Raf-
1/MEK/ERK pathway. In section 3 we give two different PEPA formulations
of the pathway: the first is reagent-based (i.e. distributed) and the second is
pathway-based. In section 4 we compare the two models and show them to be
bisimilar. Section 5 contains some analysis of the underlying continuous time
Markov model. Transformation between the two styles of representation is pre-
sented in section 6. There follows a discussion of further analysis, related work
and our conclusions.

2 RKIP and the ERK Pathway

The most fundamental cellular processes are controlled by extracellular signalling
[7]. This signalling, or communication between cells, is based upon the release
of signalling molecules, which migrate to other cells and deliver stimuli to them
(e.g. protein phosphorylation). Cell signalling is of special interest to cancer re-
searchers because when cell signalling pathways operate abnormally, cells divide
uncontrollably.

The Ras/Raf-1/MEK/ERK pathway (also called Ras/Raf, or ERK pathway)
is a ubiquitous pathway that conveys mitogenic and differentiation signals from
the cell membrane to the nucleus. Briefly, Ras is activated by an external stim-
ulus, it then binds to and activates Raf-1 (to become Raf-1*, “activated” Raf)
which in turn activates MEK and then ERK. This “cascade” of protein inter-
action controls cell differentiation, the effect being dependent upon the activity
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of ERK. A current area of experimental scientific investigation is the role the
kinase inhibitor protein RKIP plays in the behaviour of this pathway: the hy-
pothesis is that it inhibits activation of Raf and thus can “dampen down” the
ERK pathway. Certainly there is much evidence that RKIP inhibits the malig-
nant transformation by Ras and Raf oncogenes in cell cultures and it is reduced
in tumours. Thus good models of these pathways are required to understand
the role of RKIP and develop new therapies. Moreover, an understanding of
the functioning and structure of this pathway may lead to more general results
applicable to other pathways.

Here, we consider how RKIP regulates the activity of the Raf-1/MEK/ERK
module of the ERK pathway, as presented in [5]. This paper [5] presents a number
of mathematical models in the form of nonlinear ODEs and difference equations
representing the (enzyme) kinetic reactions, based on a graphical representation
given in Figure 1. This figure is taken from [5], with some additions. Specifically,
we have added MEK and an associated complex, following discussions with the
authors1.

We take Figure 1 as our starting point, and explain informally, its meaning.
Each node is labelled by the protein (or substrate, we use the two interchange-
ably) it denotes. For example, Raf-1, RKIP and Raf-1*/RKIP are proteins, the
last being a complex built up from the first two. It is important to note that Raf-
1*/RKIP is simply a name, following biochemical convention; the / symbol is
not an operator (in this context). A suffix -P or -PP denotes a phosyphorylated
protein, for example MEK-PP and ERK-PP. Each protein has an associated
concentration, denoted by m1, m2 etc. Reactions define how proteins are built
up and broken down. We refer to the former as an association, or forward re-
action, and the latter as a disassociation, or backward reaction. Associations
are typically many to one, and disassociations one to many, relations. In the
figure, bi-directional arrows denote both forward and backward reactions; uni-
directional arrows denote disassociations. For example, Raf-1* and RKIP react
(forwards) to form Raf-1*/RKIP, and Raf-1/RKIP disassociates (a backward
reaction) into Raf-1* and RKIP. Reactions do not necessarily come in pairs; for
example, Raf-1*/RKIP/ERK-PP disassociates into Raf-1*, ERK and RKIP-P.
Each reaction has a rate denoted by the rate constants k1, k2, etc. These are
given in the rectangles, with kn/kn+1 denoting that kn is the forward rate and
kn + 1 the backward rate. So for example, Raf-1* and RKIP react (forwards)
with rate k1, and Raf-1/RKIP disassociates with rate k2.

Initially, all concentrations are unobservable, except for m1, m2, m7, m9, and
m10 [5].

Figure 1 gives only a static, abstract view of the pathway; the dynamic be-
haviour is quite complex, particularly because some substrates are involved in
more than one reaction. In the next section we develop two process algebraic
models which capture that dynamic behaviour.

1 Analysis of our original model(s) indicated a problem with MEK and prompted us
to contact an author of [5] who confirmed that there was an omission.
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Fig. 1. RKIP inhibited ERK pathway

3 Modelling the ERK Signalling Pathway in PEPA

In this section we present two stochastic process algebra models of the ERK
signalling pathway.

The two models presented here encode different views of the underlying bio-
chemistry. The first is a reagent-centric view, focussing on the variations in con-
centrations of the reagents, fluctuating with phosphorylation and product for-
mation, i.e. with association and disassociation reactions. This model provides
a fine-grained, distributed view of the system. The second is a pathway-centric
view, tracking the legitimate serialisations of activities. This model provides a
coarser grained, more abstract view of the same system.

For some purposes in biological study the former view provides the right
conceptual tools and powers the programme of analysis. For other purposes the
pathway-centric view brings to the fore the dynamics of greatest interest. A
major contribution of this paper is the unification of both views.

We express both models in the PEPA stochastic process algebra [11]. We as-
sume some familiarity with this process algebra; a brief introduction to PEPA
is contained in Appendix A. All activities in PEPA are timed. Specifically, their
durations are quantified using exponentially-distributed random variables. The
PEPA algebra supports multi-way cooperations between components: the result
of synchronising on an activity α is thus another α, available for further syn-
chronisation. The multi-way synchronisation of PEPA makes this process algebra
ideally suited to this domain.
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Each reaction in the pathway is represented by a multi-way synchronisa-
tion – on the reagents of the reaction2. We refer to reagents as producers and
consumers, depending upon their role within the reaction. Table 1 gives the pro-
ducers and consumers for reactions in the pathway. The first column names the
reaction using the following convention. Reactions which are forward and back-
ward are called react, with a prefix which is the associated rate constant. For ex-
ample, k1react is the name of the reaction between Raf-1* and RKIP, to produce
Raf-1*/RKIP. Thus k1react is a 3-way synchronisation. Reactions which are only
disassociations are called product (because they produce products); again, the
prefix denotes the associated rate constant. Table 1 gives only the forward re-
actions for the reactions which are both forward and backwards; to obtain the
associated backward descriptions, replace Producer by Consumer and vice-versa.

Table 1. Reactions in the pathway

Reaction Producer(s) Consumer(s)

k1react {Raf-1∗, RKIP } {Raf-1∗/RKIP }
k3react {ERK-PP, Raf-1∗/RKIP } {Raf-1∗/RKIP/ERK-PP }
k6react {MEK-PP, ERK-P } {MEK-PP/ERK }
k9react {RKIP-P, RP } {RKIP-P/RP }
k12react {MEK, Raf-1∗ } {MEK/Raf-1∗ }
k5product {Raf-1∗/RKIP/ERK-PP } {ERK-P, RKIP-P, Raf-1∗ }
k8product {MEK-PP/ERK } {MEK-PP, ERK-PP }
k11product {RKIP-P/RP } {RKIP, RP }
k14product {MEK/Raf-1∗ } {Raf-1∗, MEK-PP }
k15product {MEK-PP } {MEK }

3.1 Modelling Centred on Reagents

The reagent-centred model is presented in Figures 2 and 3. In this view, we rep-
resent concentrations by a discrete number of abstract values. Here, we consider
the coarsest possible discretisation: there are two values representing (contin-
uous) concentrations; we refer to the two values as high and low. The former
implies that a reagent can participate (as a producer) in a forward reaction; the
latter implies that a reagent can participate (as a consumer) in a product, or
(as a producer) in a backward reaction. Otherwise, the substrate is inert, with
respect to a reaction. We discuss the effect of a finer granularity of abstract
concentration on the model in Section 7.

We define the behaviour of each substrate in turn, for each concentration. Thus
there are 2n equations, where n is the number of proteins. We adopt the naming
convention that high concentrations have a H subscript and low concentrations
have a L subscript.

Most equations involve a choice between alternative behaviours (notated by
+). For example, even in one of the simplest cases, RKIP, where there is a simple
2 We agree with the authors of [15] – reactions are fundamentally synchronous.
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Raf-1∗
H

def
= (k1react , k1).Raf-1∗

L + (k12react , k12).Raf-1∗
L

Raf-1∗
L

def
= (k5product , k5).Raf-1∗

H + (k2react , k2).Raf-1∗
H

+ (k13react , k13).Raf-1∗
H + (k14product , k14).Raf-1∗

H

RKIPH
def
= (k1react , k1).RKIPL

RKIPL
def
= (k11product , k11).RKIPH + (k2react , k2).RKIPH

MEKH
def
= (k12react , k12).MEKL

MEKL
def
= (k13react , k13).MEKH + (k15product , k15).MEKH

MEK/Raf-1∗
H

def
= (k14product , k14).MEK/Raf-1∗

L + (k13react , k13).MEK/Raf-1∗
L

MEK/Raf-1∗
L

def
= (k12react , k12).MEK/Raf-1∗

H

MEK-PPH
def
= (k6react , k6).MEK-PPL + (k15product , k15).MEK-PPL

MEK-PPL
def
= (k8product , k8).MEK-PPH + (k7react , k7).MEK-PPH

+ (k14product , k14).MEK-PPH

ERK-PPH
def
= (k3react , k3).ERK-PPL

ERK-PPL
def
= (k8product , k8).ERK-PPH + (k4react , k4).ERK-PPH

ERK-PH
def
= (k6react , k6).ERK-PL

ERK-PL
def
= (k5product , k5).ERK-PH + (k7react , k7).ERK-PH

MEK-PP/ERKH
def
= (k8product , k8).MEK-PP/ERKL + (k7react , k7).MEK-PP/ERKL

MEK-PP/ERKL
def
= (k6react , k6).MEK-PP/ERKH

Raf-1∗/RKIPH
def
= (k3react , k3).Raf-1∗/RKIPL + (k2react , k2).Raf-1∗/RKIPL

Raf-1∗/RKIPL
def
= (k1react , k1).Raf-1∗/RKIPH + (k4react , k4).Raf-1∗/RKIPH

Raf-1∗/RKIP/ERK-PPH
def
= (k5product , k5).Raf-1∗/RKIP/ERK-PPL

+ (k4react , k4).Raf-1∗/RKIP/ERK-PPL

Raf-1∗/RKIP/ERK-PPL
def
= (k3react , k3).Raf-1∗/RKIP/ERK-PPH

RKIP-PH
def
= (k9react , k9).RKIP-PL

RKIP-PL
def
= (k5product , k5).RKIP-PH + (k10react , k10).RKIP-PH

RPH
def
= (k9react , k9).RPL

RPL
def
= (k11product , k11).RPH + (k10react , k10).RPH

RKIP-P/RPH
def
= (k11product , k11).RKIP-P/RPL + (k10react , k10).RKIP-P/RPL

RKIP-P/RPL
def
= (k9react , k9).RKIP-P/RPH

Fig. 2. PEPA model definitions for the reagent-centric model

cycle between high and low concentrations, there is still a choice of how to return
to a high concentration (by a backwards reaction, or through a product). Most
behaviours are more complex.

The equations define the possible reactions within the pathway. All of the
permissible interleavings of these reactions are obtained from the (synchro-
nised) parallel composition of these components. Figure 3 shows how these are
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(Raf-1∗
H

��
{k1react,k2react,k12react,k13react,k5product,k14product}

(RKIPH ��
{k1react,k2react,k11product}

(Raf-1∗/RKIPL ��
{k3react,k4react}

(Raf-1∗/RKIP/ERK-PPL) ��
{k3react,k4react,k5product}

(ERK-PL ��
{k5product,k6react,k7react}

(RKIP-PL ��
{k9react,k10react}

(RKIP-P/RPL ��
{k9react,k10react,k11product}

(RPH ‖
(MEKL ��

{k12react,k13react,k15product}
(MEK/Raf-1∗

L
��

{k14product}
(MEK-PPH ��

{k8product,k6react,k7react}
(MEK-PP/ERKL ��

{k8product}
(ERK-PPH))))))))))))

Fig. 3. PEPA model configuration for the reagent-centric model

composed in the PEPA algebra. The composition operator (��) is indexed by an
activity set (i.e. the events whose participants must be synchronised). The left
and right operands must cooperate on these activities, introducing a synchroni-
sation point. The degenerate case of this composition operator (where the set
is empty) provides the expected unrestricted parallel composition of the com-
ponents, allowing all possible interleavings without synchronisation. This case is
denoted by ‖ (there is one occurrence).

The initial state of the model has high concentrations of some reagents and
low concentrations of the others, as described in the previous section. Therefore,
in Figure 3, proteins with an initial concentration are initially high; all others
are low.

3.2 Modelling Centred on Pathways

A different view is afforded by the pathway-centric perspective. This
de-emphasises reagents and emphasises sub-pathways within the signalling path-
way. In this model, given in Figure 4, there are five (sub)pathways, one for
each substrate with an initial concentration. Thus Pathway10 corresponds to
the pathway from RP (m10), Pathway20 to RKIP (m2), Pathway30 to ERK-
PP (m9), Pathway40 to Raf-1* (m1), and Pathway50 to MEK-PP (m7). Each
(sub)pathway describes, in effect, how a substrate is consumed and then, even-
tually, replenished.

It is important to note that none of these (sub)pathways is closed, i.e. there are
reactions with edges which are directed to/from outside of the (sub)pathway. Fig-
ure 6 gives a diagrammatic representation of the simplest pathway, Pathway10.
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Pathway10

def
= (k9react , k9).Pathway11

Pathway11
def
= (k11product , k11).Pathway10 + (k10react , k10).Pathway10

Pathway20

def
= (k1react , k1).Pathway21

Pathway21

def
= (k3react , k3).Pathway22 + (k2react , k2).Pathway20

Pathway22

def
= (k5product , k5).Pathway23 + (k4react , k4).Pathway21

Pathway23

def
= (k9react , k9).Pathway24

Pathway24

def
= (k11product , k11).Pathway20 + (k10react , k10).Pathway23

Pathway30

def
= (k3react , k3).Pathway31

Pathway31

def
= (k5product , k5).Pathway32 + (k4react , k4).Pathway30

Pathway32

def
= (k6react , k6).Pathway33

Pathway33

def
= (k8product , k8).Pathway30 + (k7react , k7).Pathway32

Pathway40

def
= (k1react , k1).Pathway41 + (k12react , k12).Pathway43

Pathway41
def
= (k2react , k2).Pathway40 + (k3react , k3).Pathway42

Pathway42

def
= (k5product , k5).Pathway40 + (k4react , k4).Pathway41

Pathway43

def
= (k13react , k13).Pathway40 + (k14product , k14).Pathway40

Pathway50

def
= (k15product , k15).Pathway51 + (k6react , k6).Pathway53

Pathway51

def
= (k12react , k12).Pathway52

Pathway52

def
= (k13react , k13).Pathway51 + (k14product , k14).Pathway50

Pathway53

def
= (k8product , k8).Pathway50 + (k7react , k7).Pathway50

Fig. 4. PEPA model definitions for the pathway-centric model

In this case, the pathway is not closed because there are two missing edges
associated with k9react and k11product .

This presentation facilitates the direct verification of simple properties of the
model such as “the first observable activity is event X”. For example, an initial
syntactic inspection of this model would lead to the conclusion that the first
activity is one of k1react , k3react , k9react or k15product . Processing the model
with the PEPA Workbench [9] confirms that the initial model configuration
allows only k15product and k1react , the others are not permitted because some
necessary participants are not initially ready to engage in these reactions.

4 Comparison of Reagent and Pathway-Centric Models

The pathway-centric model captures longer chains of behaviour flow within the
system, leading to a smaller number of component definitions. Differentiating
fewer components in the pathways model leads to a simpler composition of
model components, presented in Figure 5. This is not only a matter of pre-
sentation. A larger state vector representation occupies more memory so the
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((((Pathway50
��

{k12react,k13react,k14product} Pathway40)

��
{k3react,k4react,k5product,k6react,k7react,k8product} Pathway30)

��
{k1react,k2react,k3react,k4react,k5product} Pathway20)

��
{k9react,k10react,k11product} Pathway10)

Fig. 5. PEPA model configuration for the pathway-centric model

m 10

m 11

RP

RKIP−P/RP

k11

k9/k10

Fig. 6. Pathway10

pathway-centric representation could potentially scale better to more detailed
models of the Ras/Raf-1/MEK/ERK signalling pathway than the reagent-centric
representation. But, the disadvantage of the pathway-centric representation is
that it is no longer possible to read off directly concentrations of components (i.e.
there is no explicit high or low concentrations). These now have to be inferred
from local observations of pathways. This is relatively easy for proteins which
have initial concentrations, otherwise, the inference is non-trivial.

Fortunately, the two models are observationally equivalent, that is, the two
models give rise to (timing aware) bisimilar—in fact isomorphic—labelled multi-
transition systems. We demonstrate this relationship by plotting the statespace
of the two systems, see Figure 7. There are 28 states, s1 to s28, thus it is not
possible in Figure 7 to give meaningful labels. In Table 2 we enumerate a few of
the states. We give the name from the reagent-centric model first, followed by
the name of the equivalent state from the pathway-centric model. In all cases,
the synchronisation operator �� is removed.

We believe that for any pathway, bisimilarity holds for any pair of reagent-
centric and pathway-centric models; a formal proof is beyond the scope of this
paper. We restrict our attention to this pathway and the consequence of the
bisimilarity result which is that the two models give rise to the same Markov
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s21 s22 s15 s17

s16s14s20s19

s7 s8 s10 s12

s9 s11 s13

s6

s18s25 s23 s1 s3

s4s2s24s26

s28 s27 s5

k5product

k5product

k6react k6react k6react k6reactk7react k7react k7react k7react

k11product

k11product

k11product

k11productk11product

k11product

k11product

k15productk15productk15productk15productk15productk15product

k8product k8product k8product k8product

k9react

k9react

k9react

k9react

k10react

k10react

k10react

k10react

k10react

k10react

k10react

k9react

k9react

k9react k1react

k2react

k3react

k4react

k3react

k4react

k1react

k2react

k1react

k2react

k1react

k2react

k1react

k2react

k15productk15productk15product

k12react k12react k12react k12react k12react k12react

k13react k13reactk13reactk13reactk13react
k14product k14productk14product k14productk14product k14product

Fig. 7. The state space of the reagent and the pathway model

Table 2. Some bisimilar states
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s1 (H, H, L, L, L, L, L, H, L, L, H, L, H) (Pwy50,Pwy40,Pwy30,Pwy20,Pwy10)

s2 (H, H, L, L, L, L, L, H, H, L, L, L, H) (Pwy51,Pwy40,Pwy30,Pwy20,Pwy10)

s3 (L, L, H, L, L, L, L, H, L, L, H, L, H) (Pwy50,Pwy41,Pwy30,Pwy21,Pwy10)

s4 (L, L, H, L, L, L, L, H, H, L, L, L, H) (Pwy51,Pwy41,Pwy30,Pwy21,Pwy10)

s5 (L, H, L, L, L, L, L, H, L, H, L, L, H) (Pwy52,Pwy43,Pwy30,Pwy20,Pwy10)

s6 (L, L, L, H, L, L, L, H, H, L, L, L, L) (Pwy51,Pwy42,Pwy31,Pwy22,Pwy10)

s7 (H, L, L, L, H, H, L, H, H, L, L, L, L) (Pwy51,Pwy40,Pwy32,Pwy23,Pwy10)

s8 (H, L, L, L, H, L, H, L, H, L, L, L, L) (Pwy51,Pwy40,Pwy32,Pwy24,Pwy11)

s9 (L, L, L, L, H, H, L, H, L, H, L, L, L) (Pwy52,Pwy43,Pwy32,Pwy23,Pwy10)

s10 (H, H, L, L, H, L, L, H, H, L, L, L, L) (Pwy51,Pwy40,Pwy32,Pwy20,Pwy10)
...

...
...

s28 (L, L, L, L, L, H, L, H, L, H, L, L, H) (Pwy52,Pwy43,Pwy30,Pwy23,Pwy10)

chain representations. The Markov chain can be analysed for transient behaviour,
or solved to find the steady-state (long-run) probability distribution. Here we
concentrate on the latter, since it is of more interest with respect to this pathway.
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In the following section we generate the steady state distribution and perform
some analysis.

5 Model Analysis

We used the PEPA Workbench [9] to analyse our models. The Workbench imple-
ments the operational semantics of PEPA to generate Continuous-Time Markov
Chain (CTMC) models of system descriptions, and it provides analysis tools.
First, we used the Workbench to test for deadlocks in our models. Initially,
there were several; this is how we discovered an incompleteness in the system
description of [5], with respect to with MEK. Second, when we had deadlock-free
models, we used the Workbench to generate the CTMC and analyse its long-run
probability distribution. This distribution varies as the rates associated with the
activities of the PEPA model are varied, so the solution of the model is relative
to a particular assignment of the rates.

The steady-state probability distribution can be obtained using a number of
routines from numerical linear algebra. In the case of the present model(s), we
solved this using the implementation of the preconditioned biconjugate gradient
method in the PEPA Workbench. This is an iterative procedure which solves
systems of linear equations of moderate size very quickly.

Numerical methods based on the computation of the steady-state probability
distribution for a Continuous-Time Markov Chain have wide application, but
are not routinely used in computational biology. Instead biological models are
often formulated as systems of first-order coupled ordinary differential equations
(ODEs) and computational analysis proceeds via reaction rate equations using
methods such as Runge-Kutta.

In another paper [3], we present an algorithmic procedure for generating a
system of ODEs from a PEPA model of high and low component concentration.
This provides a useful method of validating a process algebra model against an
existing system of ODEs. In the case of the ERK pathway we have been able to
recreate exactly the system of ODEs as used in [5].

Numerical integration of the ODEs gives rise to time series plots which show
how the concentration of components varies over time. These tend to a steady-
state equilibrium which we have found to be in good agreement with the steady-
state computed by Markovian methods.

Because of this different point of view it is appropriate to say a little here about
how computational analysis via CTMCs compares with analysis via ODEs.

There are two axes of comparison for numerical methods. One is numerical
stability (that is, under what conditions the methods converge to an accept-
able result) and the other is computational efficiency. To make both parts of
the comparison between CTMCs and ODEs we consider using the Chapman-
Kolmogorov differential equations to perform transient analysis of a Markov
chain.

Firstly, in the seminal work on numerical solution of Markov chains Stew-
art [19] discourages the use of ODEs to perform transient analysis of Markov
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chains, pointing to poor stability properties. Thus Markovian methods have this
advantage in practical application.

Secondly, although it is more informative, transient analysis has higher com-
putational cost than steady-state analysis. This indicates a saving in computa-
tional cost because here we are considering only steady-state solutions of the
reagent and pathway models.

Since the reagent and pathway models are isomorphic, the underlying steady-
state probability distributions are identical. However, it is possible to make dif-
ferent judgements about the two models using the PEPA state-finder which
allows one to search for symbolic descriptions of states. For example, in the
reagent-centric model, we used the PEPA state-finder to aggregate the proba-
bilities of all states when ERK-PP is high, or low, for a given set of rates. That
is, it aggregated the probabilities of states whose (symbolic) description has the
form ∗ �� ERK-PPH where ∗ is a wildcard standing for any expression. We
then repeated this with a different set of rates and compared results. In the

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Throughput of k14product

2 4 6 8 10
k1

Fig. 8. Plotting the effect of k1 on k14product

0.02

0.025

0.03

0.035

0.04

Throughput of k8product

2 4 6 8 10
k1

Fig. 9. Plotting the effect of k1 on k8product
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reagent-centric model, we observed that the probability of being in a state with
ERK-PPH decreases as the rate k1 is increased, and the converse for ERK-PPL

increases. For example, with k1 = 1 and k1 = 100, the probability of ERK-PPH

drops from .257 to .005. We can also plot throughput (rate × probability) against
rate. Figures 8 and 9 shows two sub-plots which detail the effect of increasing the
rate k1 on the k14product and k8product reactions – the production of (doubly)
phosphorylated MEK and (doubly) phosphorylated ERK, respectively. These
are obtained by solving the pathway model, taking each of the product and re-
action rates to be unity and scaling k1 (keeping all other rates to be unity).
The graphs show that increasing the rate of the binding of RKIP to Raf-1*
dampens down the k14product and k8product reactions, and they quantify this
information. The efficiency of the reduction is greater in the former case: the
graph falls away more steeply. In the latter case the reduction is more gradual
and the throughput of k8product peaks at k1 = 1. Note that since k5product
is on the same pathway as k8product, both ERK-PP and ERK-P are similarly
affected. Thus we conclude that the rate at which RKIP binds to Raf-1* (thus
suppressing phosphorylation of MEK) affects the ERK pathway, as predicted
(and observed); RKIP does indeed regulate the ERK pathway.

6 Transformation

In this section we present a set of transformations between the two styles of
representation, based on an intermediate matrix representation. Thus we define
an activity matrix Ma which captures the relationship between reagents and
reactions. The matrix has one row corresponding to each reagent in the system,
whilst each column corresponds to exactly one reaction. Within the matrix we
quantify the impact of each reaction on each reagent in a manner analogous to
the stoichiometry matrix of the chemical reaction3. This can be regarded as a
canonical representation in the sense that there is no redundancy within it. In
the example presented in this paper all reactions are deterministic and therefore
entries in the activity matrix will always be between −1, 0 or +1.

As we will show, both reagent-centric and pathway-centric PEPA models can
be readily and systematically translated into their activity matrix representation.
Moreover, we will also show that for a given activity matrix a corresponding
PEPA model of either form can be systematically generated. In the remainder
of this section we give the algorithms for each of these transformations — from
the process algebra models to the matrix, and from the matrix to each form of
process algebra model.

Definition 1 (Activity Matrix). For a system with R reactions and S reagents,
the activity matrix Ma is an S × R matrix, and the entries are defined as follows.

(si, rj) =

⎧⎨⎩
+1 if si is a consumer of rj

−1 if si is a producer of rj

0 otherwise.

3 However, we emphasise that our models do not represent individual molecules.
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The relationship between the activity matrix the reagent-centric model is fairly
straightforward but the relationship to the pathway model is somewhat more
involved. Therefore we start by explaining the mapping from the reagent-centric
model to the matrix.

Reagent-Centric Model to Activity Matrix. In the reagent centric model there are
a pair of PEPA definitions corresponding to each reagent. The set of reactions
that this reagent is involved in are those that appear in the definitions of these
components. The impact of a reaction can be seen according to whether the reac-
tion moves the reagent from high to low (decreasing, −1) or vice versa (increas-
ing, +1). The algorithm for generating the activity matrix from a reagent-centric
model is shown in Figure 10.

// Construct a matrix of the appropriate size

Form a matrix with one row for each pair (H,L) of components

and a column for each activity used in the process algebra definitions

// Populate the matrix

For each H component, on the appropriate row, make a -1 entry in the

column corresponding to each activity it enables

For each L component, on the appropriate row, make a +1 entry in the

column corresponding to each activity it enables

Fig. 10. Pseudo-code for transforming a reagent-centric model to an activity matrix

Activity matrix to reagent-centric model. When forming a reagent-centric PEPA
model from an activity matrix, we will generate two PEPA component definitions
for each reagent/row of the matrix – one corresponding to high concentration
and one corresponding to low concentrations. The reagent in high concentration
will enable all those reactions which have a negative entry in the column, whilst
the reagent in low concentration will enable all those reactions which have a
positive entry in the column.

The algorithm for generating a reagent-centric model from an activity matrix
is shown in Figure 11. There are two stages to the algorithm. First, a pair of
model components are formed corresponding to each row as outlined above. Sec-
ond, the components must be configured with appropriate interactions between
them. We exploit the knowledge that in this style of model each component
must cooperate on all its activities. Thus the model configuration is built iter-
atively — as each component is added it is specified to cooperate with the rest
of the model on all its activities. Whether each reagent exhibits its high or low
concentration form in the configuration depends on whether experimental data
suggests it starts with initial concentration or not.

Pathway-Centric Model to Activity Matrix. The algorithm for generating the
activity matrix from a pathway-centric model is shown in Figure 12. The con-
struction of the matrix to capture the involvement of pathway model components



Modelling the Influence of RKIP on the ERK Signalling Pathway 15

// Form the model components

For each row of the matrix assign a reactant name.

For each reactant

make a H subscripted component based on the reactant name

define this component to be a choice of activities as follows:

for each -1 in the corresponding row of the activity matrix

make an activity of the type of the appropriate column

which results in an L subscripted component of the same name

add this activity to the choice for the H component

make an L subscripted component based on the reactant name

define this component to be a choice of activities as follows:

for each +1 in the corresponding row of the activity matrix

make an activity of the type of the appropriate column

which results in an H subscripted component of the same name

add this activity to the choice for the L component

// Form the model configuration

For each reactant

if this reagent has high initial concentration

enter the H subscripted component

if this reagent has low initial concentration

enter the L subscripted component

// build the appropriate cooperation set K

for each non-zero entry of the corresponding row of the activity matrix

enter the corresponding reaction/activity to the set K

add a cooperation over the set K and "("

add one ")" for each row of the matrix

Fig. 11. Pseudo-code for transforming an activity matrix to a reagent-centric model

// Construct a matrix of the appropriate size

Form a matrix with one row for each of the components exhibited by

the

pathways and a column for each activity used in the process algebra

definitions

// Populate the matrix

For each component, on the appropriate row, make a -1 entry in the

column corresponding to each activity it enables and a +1 entry in

the same column of the resulting component.

//Reduce the matrix

Detect and remove identical rows

Fig. 12. Pseudo-code for transforming a pathway-centric model to an activity matrix
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// Colour assignment

Assign a unique colour to each reagent which has initial

concentration Identify the rows of the matrix corresponding to

these reagents Colour each row accordingly

// Find minimal pathways

For each colour C

while there are unpaired C entries in the matrix

for each -1(resp. +1) entry in row s and column r coloured C

find all entries in column r

if there are more than one +1(resp. -1) entry

if none are already coloured C

provisionally colour each corresponding entry

record them as a row set

if there is only one +1(resp. -1) entry, in row s’ say

if it is not already coloured C

colour row s’ with colour C

if s’ was previously provisionally coloured with C

remove the provisional colouring from all other

elements of the row set

// Form the model components

For each colour C

make an initial Pathway component

make a Pathway component for each other row with C coloured entries

for each C coloured Pathway component/row

define the pathway component with one activity corresponding

to each -1 column in the row whose resulting component will

be the C coloured +1 entry in the same column

// Form the model configuration

For each colour C

enter the corresponding initial Pathway component

for each reaction r which is coloured C and another colour C’

enter r into the cooperation set K

add a cooperation over the set K and "("

add one ")" for each colour

Fig. 13. Pseudo-code for transforming an activity matrix to a pathway-centric model

in the reactions of the system is straightforward. However, this construction will
result in some duplicate rows within the matrix because some compound reagents
can be seen to be intermediate states of two or more pathways (e.g. RKIP-P/RP
corresponds to both Pwy11 and Pwy12). Thus the duplicates must be removed.

Activity Matrix to Pathway-Centric Model. The algorithm for generating a
pathway-centric model from an activity matrix is shown in Figure 13. In the
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k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 p
a
th

w
ay

s

Raf-1∗ −1 +1 0 0 +1 0 0 0 0 0 0 −1 +1 +1 0 4

RKIP −1 +1 0 0 0 0 0 0 0 0 +1 0 0 0 0 2

Raf-1∗/RKIP +1 −1 −1 +1 0 0 0 0 0 0 0 0 0 0 0 2, 4

Raf-1∗/RKIP/ERK-PP 0 0 +1 −1 −1 0 0 0 0 0 0 0 0 0 0 2, 3, 4

ERK-P 0 0 0 0 +1 −1 +1 0 0 0 0 0 0 0 0 3

RKIP-P 0 0 0 0 +1 0 0 0 −1 +1 0 0 0 0 0 2

MEK-PP 0 0 0 0 0 −1 +1 +1 0 0 0 0 0 +1 −1 5

MEK-PP/ERK 0 0 0 0 0 +1 −1 −1 0 0 0 0 0 0 0 3, 5

ERK-PP 0 0 −1 +1 0 0 0 +1 0 0 0 0 0 0 0 3

RP 0 0 0 0 0 0 0 0 −1 +1 +1 0 0 0 0 1

RKIP-P/RP 0 0 0 0 0 0 0 0 +1 −1 −1 0 0 0 0 1, 2

MEK 0 0 0 0 0 0 0 0 0 0 0 −1 +1 0 +1 5

MEK/Raf-1∗ 0 0 0 0 0 0 0 0 0 0 0 +1 −1 −1 0 4, 5

Fig. 14. Activity matrix of the ERK pathway

activity matrix each row corresponds to a distinct reagent. In order to reconstruct
the sub-pathways, we need to take into account that fact that some reagents may
correspond to intermediate states in two or more pathways. Thus we introduce a
notion of colouring, in which one colour is associated with each sub-pathway. A
single row/reagent may have several colourings indicating which sub-pathways
it participates in.

The next goal is to identify the sub-pathways. We note that for all reagents
all the reactions that they participate in will be part of the same sub-pathway
although it is not true that each reagent that participates in a reaction will
belong to the same sub-pathway. Consequently either all the entries in a row
will be coloured with some colour C or none will. However, except for the rows
corresponding to initial concentrations, which are taken as the roots of our sub-
pathways, any row many have any number of colours associated with it.

In order to find the sub-pathways we need to find a consumer corresponding
to each producer, and vice versa, within each colour. Once such an association
is made we consider the coloured matrix entry to be paired. The pathway is
complete when all entries of that colour have been paired. In some cases there
may be several candidate matrix entries for forming a pair: the corresponding
rows are collected into a set of provisionally coloured rows until it becomes clear
which entry completes a minimal cycle. The other rows are then discarded.

When, for each colour, all matrix entries are paired, the sub-pathway model
components can be defined in a straightforward way. It remains to form the
model component. Those entries which have more than one colour must be
carried out in cooperation by the corresponding pathways. Thus, for a path-
way component with colour C, the cooperation set is formed as those reactions
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corresponding to a column in the matrix in which there is an entry which is
coloured C and some other colour.

As an illustration we present the activity matrix corresponding to the example
presented earlier in the paper in Figure 14. This can be derived from either the
reagent- or the pathway-centric model. In the far right hand column we give an
indication of the colouring of the matrix to derive the pathway model shown in
Figure 4 — the numbers indicate which pathway(s) each row corresponds to.

7 Further Analysis

The process algebraic approach has several tangible benefits. For example, in
addition to deadlock and quantitative analysis, the compositional nature of the
process algebra approach confines changes to the behaviour of a reagent to a
single system component, i.e. to one or two equations. In an ODE model, such
a change would be pervasive, i.e. numerous equations would have to be altered.
Nevertheless, ODE models offer analysis by a wide variety of solvers. In [3] we
show how an ODE model defining standard mass action kinetics can be de-
rived automatically from the process algebra reagent-centric or pathway-centric
models, via the activity matrix. A key observation is that the coarsest level of ab-
straction (i.e. high and low) provides sufficient information for deriving the ODE
representation. In other words, it is sufficient to know which reactions increase
concentration (i.e. low to high), and which ones decrease concentration (i.e. high
to low). The addition of further discrete values does not add further information.
Thus all the standard analysis tools available for ODEs are also available to the
modeller taking the process algebraic approach with the coarsest (and simplest)
discretisation of concentrations.

Further quantitative analysis is possible using probabilistic logics and proba-
bilistic model checking. For example, we have investigated the use of the logic
CSL [1] and the model checker PRISM [12]. Further analysis of a PRISM model
derived from the reagent-centric model given here is reported in [4]. Examples
of CSL properties (stated informally) are “What is the probability that a con-
centration of a species reaches a particular value and then remains at that value
thereafter?”, and “How does varying a reaction rate affect that probability?”. We
note that in this paradigm, the resulting probabilities depend on the granularity
of discrete concentration values.

8 Related Work

The work of Regev and her co-authors has been deeply influential [16,18,15,17].
Although the exact form of the process algebra which is used in these works
varies, there is some commonality in the languages and the analysis is always
based on stochastic simulation. At the basis is always the fundamental mapping
developed by Regev in her thesis. In this mapping a correspondence is made
between molecules in the biological system and processes or agents in the process
algebra.
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In this paper we propose a different mapping in which a correspondence is
made between a subpathway and a process in the process algebra. The most basic
form of subpathway is taken to be a single species and its fluctuations in con-
centrations. In the paper we have demonstrated this and a larger notion of sub-
pathway based on the notion of the possible biochemical flow of a single species.
The key point is that this mapping is onto an abstract concept in the biology
(the species or pathway) rather than a concrete one (the molecule). We believe
that this shift to the more abstract form offers an alternative view of systems
and better access to the analysis mechanisms associated with process algebras.

The work of Fisher et al. reported in [8] also proposes using two distinct views
of the same system. However, they envisage different roles for the two views, one
capturing the observations of a system which have been made experimentally
(scenario-based model) and the other making an hypothesis about the mecha-
nistic behaviour which might generate such observations (state-based model). In
their terminology, both our models are state-based, seeking to give a mechanis-
tic account for how observed behaviour may arise. It is an interesting area for
future work to consider how this might be formally reconciled with experimental
observations.

The pathway view of our network bears some resemblance to the extreme
pathways (and the related concept of elementary modes) in the work of Papin et
al. on metabolic pathways [14]. There the authors aim to identify and separate
subpathways using linear algebra techniques applied to the stoichiometry matrix
for a metabolic pathway. The exact relationship with our own work is an area
for further work.

In theoretical computer science it has previously been remarked that process
algebra models may be used to capture the same system in a variety of different
styles e.g. [20]. We view our work as continuing in that tradition, for example
our modelling styles loosely correspond to the constraint oriented style, although
in a different context and considering somewhat different styles of model. As we
continue to explore the relationship between our modelling styles we hope to be
able to benefit from this earlier research.

9 Conclusions

We have presented two alternative PEPA models of the Raf-1/MEK/ERK mod-
ule of the ERK signalling pathway and shown them to be equivalent. The
reagent-based model has explicit concentrations whilst in the pathway model
the concentrations are captured only implicitly via the possible activities of each
sub-pathway. The pathway-based model can thus be regarded as less directly
expressive, although it captures all the same behaviour. The congruence results
of PEPA with respect to strong bisimulation mean that the two representations
may be used interchangeably, for example within a large model. Thus we might
envisage a model in which the key pathway is modelled using the reagent-style
whilst peripheral pathways are modelled using the pathway-style. Or, we may
have one style of model and hypothesise the other. We believe this ability to have
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different views is novel in the field of modelling pathways; informal discussions
with biologists confirm their interest in it.

We found the multi-way synchronisation of PEPA, and the performance as-
pects, to be ideally suited to modelling pathway behaviour. In this example,
deadlock analysis very quickly revealed an incompleteness in the published
model. Once deadlock-free, one strength of models of the kind which we have
used here is that they give rise to compact Markov chain representations which
can be efficiently solved for different assignments to the rate variables in a series
of experiments. This delivers the benefit that a thorough series of experiments
can be conducted at modest computational cost.

Furthermore, we have presented transformations between the two alternative
styles of representation, via an intermediate, the activity matrix. This means that
automatic translation between representations is possible. The transformation
from an activity matrix to the pathway model has some similarities with finding
the minimal T-semiflows of a Petri net. Comparing our algorithm with the algo-
rithms for T-semiflows [6], or the more general mathematical programming prob-
lem of finding the extremal directions of a cone [13], are yet to be investigated.

Process algebra opens up a host of analysis possibilities, including, in addition
to Markov chain analysis, the use of ODE solvers and reasoning with probabilistic
logics using probabilistic model checking. With respect to the former, we have
found we require only to distinguish between high and low concentrations, further
granularity adds no analytic benefit. Rather we need only model the direction
of change (i.e. an increase or decrease of concentration). With respect to the
latter, we have conducted initial investigations with the logic CSL and indicated
further possibilities.

Several challenges remain. For example, we wish to derive the reagent-centric
model from experimental data and model spatial aspects of pathways. We have
some preliminary ideas which are the topic of future research.
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A PEPA

This appendix provides a brief introduction to PEPA in order to make the pa-
per self-contained. It can safely be skipped by anyone who already knows the
PEPA language. For a full explanation which complements the brief description
presented here the reader is referred to [11].

Prefix: The basic mechanism for describing the behaviour of a system with a
PEPA model is to give a component a designated first action using the prefix
combinator, denoted by a full stop. For example, (α, r).S carries out activity
(α, r), which has action type α and an exponentially distributed duration with
parameter r, and it subsequently behaves as S.

Choice: The component P + Q represents a system which may behave either
as P or as Q. The activities of both P and Q are enabled. The first activity
to complete distinguishes one of them: the other is discarded. The system will
behave as the derivative resulting from the evolution of the chosen component.

Constant: It is convenient to be able to assign names to patterns of behaviour
associated with components. Constants are components whose meaning is given
by a defining equation. The notation for this is X

def= E. The name X is in scope
in the expression on the right hand side meaning that, for example, X

def= (α, r).X
performs α at rate r forever.

Hiding: The possibility to abstract away some aspects of a component’s behav-
iour is provided by the hiding operator, denoted P/L. Here, the set L identifies
those activities which are to be considered internal or private to the component
and which will appear as the unknown type τ .

Cooperation: We write P ��
L

Q to denote cooperation between P and Q over L.
The set which is used as the subscript to the cooperation symbol, the cooper-
ation set L, determines those activities on which the cooperands are forced to
synchronise. For action types not in L, the components proceed independently
and concurrently with their enabled activities. We write P ‖ Q as an abbrevia-
tion for P ��

L
Q when L is empty.

However, if a component enables an activity whose action type is in the co-
operation set it will not be able to proceed with that activity until the other
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component also enables an activity of that type. The two components then pro-
ceed together to complete the shared activity. The rate of the shared activity
may be altered to reflect the work carried out by both components to complete
the activity (for details see [11]).

In some cases, when an activity is known to be carried out in cooperation with
another component, a component may be passive with respect to that activity.
This means that the rate of the activity is left unspecified (denoted �) and is
determined upon cooperation, by the rate of the activity in the other component.
All passive actions must be synchronised in the final model.
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Abstract. We propose to model the dynamics of gene regulatory net-
works as concurrent processes in the stochastic pi calculus. As a first case
study, we show how to express the control of transcription initiation at
the lambda switch, a prototypical example where cooperative enhance-
ment is crucial. This requires concurrent programming techniques that
are new to systems biology, and necessitates stochastic parameters that
we derive from the literature. We test all components of our model by
exhaustive stochastic simulations. A comparison with previous results
reported in the literature, experimental and simulation based, confirms
the appropriateness of our modeling approach.

1 Introduction

In living cells, genes and proteins interact in networks of gene regulation. All cells
of a multicellular organism contain the same genetic material. Nevertheless, the
use made of it varies widely between different tissues. The current state of a
cell is determined by the proteins it contains; it changes when new proteins are
produced by decoding genetic information.

Understanding the dynamic behavior of gene regulatory systems is a challenge
to computational systems biology. The molecular actors within these networks
interact nondeterministically. Given a particular condition, one can never tell
with certainty which among several thinkable reactions will follow next. What
occurs strongly depends on the identities of various proteins in the cell, their
interaction capabilities, quantities – and random encounters. Such effects accu-
mulate, making it difficult to predict the behavior of a system as a whole, even
if its components are well characterized.

Informal descriptions of prototypical gene regulatory networks can be found
in biological textbooks [13,35]. These deal with qualitative aspects such as the
possible reactions between molecular actors. They also address quantitative as-
pects as frequencies of such reactions, but usually remain rather vague on these.
Precise quantitative parameters are more difficult to access. For well studied
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systems they have been determined in series of experiments, and reported in the
research literature.

Simulations can help understanding the dynamics of gene regulatory networks
[7,19]. This particularly holds for cases in which informal qualitative descrip-
tions exist as well as quantitative characterizations. The question that remains
is whether the available knowledge suffices to correctly predict the system’s be-
havior. This can be shown by building a mathematical model, executing it, and
comparing simulation and experimental results.

In this article, we propose to formally model gene regulatory networks as
communicating stochastic processes, to our knowledge, for the first time. We
draw inspiration from previous stochastic models of gene expression [2,12,21].
We follow Regev and Shapiro [38] in applying the stochastic π-calculus [33]
as modeling language for systems biology. This is Milner’s et. al. π-calculus
[29,28] – a fundamental model of concurrency – extended by stochastic control
(see also [18]). Nondeterminism is inherent to concurrent computation, of which
the π-calculus abstracts the essential features. Stochastic parameters control
communication or interaction frequencies, and thus the evolution of the numbers
of actors over time. Execution of stochastic π-calculus models yields stochastic
simulation based on Gillespie’s algorithm [14], using the BioSpi engine [34] or
similar systems [32].

We investigate a prototypical instance of gene regulation in a bacterium, for
which both qualitative and quantitative knowledge are available. As a first case
study, we show how to model and simulate the control of transcription initiation
at the lambda switch [35], a prototypical example where cooperativity is crucial.
To be concrete, we model the molecular interactions at bacteriophage λ’s right
operator region, including positive control of transcription initiation and coop-
erativity in protein binding. This requires concurrent programming techniques
that are new to systems biology:

1. we use handshake protocols in order to express many-to-many communication
on same channel;

2. we use alternative timer agents in order to alternate stochastic rates asso-
ciated to channels, this allows to express cooperative enhancement of the
channel’s activity.

We show how to compute the stochastic parameters from the literature, and
integrate these parameters into our formal π-calculus models. We validate our
models and parameters by running exhaustive simulation tests. One of the
strengths of our approach is that we can easily simulate idealized subsystems,
in order to observe distinguished phenomena independently from the system as
a whole. We design a sequence of sub-models of different degrees of complexity,
in order to simulate the many factors influencing transcription initiation at the
λ switch. The simulation results we obtain convincingly confirm the appropri-
ateness of our model1.
1 These simulation results are new compared to the presentation at the second in-

ternational workshop on concurrent models in molecular biology (BioConcur 2004).
They have permitted us to spot some flaws in the previous parameter sets.
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Fig. 1. Two pathways of λ infected E.coli bacterium: lysogeny and lytic growth

The general mechanisms of cooperativity we model can be observed in many
other places, ranging from the assembly of protein complexes, Dna looping to
regulatory mechanisms in eukaryotes. For a discussion see [36]. Note that more
aspects remain to be included in our stochastic π-calculus model of the λ switch
in other to reflect recent observations that lead to the revision of long established
assumptions [11,40]. The modeling techniques proposed in this paper, however,
should be sufficient there too.

Plan. We first describe the regulatory network at the λ switch informally (Sec. 2)
and then distill the stochastic parameters from the literature (Sec. 3). We recall
the stochastic π-calculus (Sec. 4) and apply it for modeling the network of the λ
switch (Sec. 5). Finally, we present simulations for different scenarios obtained
by implementation of our model in the BioSpi system (Sec. 6). We motivate the
different set-ups with experiments or other simulations, and try to relate both
to each other.

2 The λ Switch

Gene regulation at the lambda switch has remained a fruitful research area for
decades [10,31,35]. It has served as a benchmark for testing simulation methods
[15], and to reproduce or elucidate experimental knowledge [2,3].

2.1 Pathways

Bacteriophage λ is a virus which infects the bacterium Escherichia coli. Injecting
its genome into the bacterial cell, two developmental pathways as illustrated in
Fig. 1 are possible. Either, in lytic growth the viral genome uses the molecular
machinery of the bacterial cell to produce new viruses and eventually burst the
host. Alternatively, the viral genome gets integrated into the bacterial genome.
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Note the highlighted segment within the bacterial genome in Fig. 1. The only
viral protein expressed is then the λ repressor, which disables the expression of
all others through binding to dedicated segments of the viral genome. The host
cell is now immune against further infections. The viral genome is subsequently
transmitted to further bacterial generations in a passive way. This state called
lysogeny is extremely stable, and usually maintained for generations. Sponta-
neous transitions from lysogeny to the state of lytic growth would occur about
once every 5000 years for a single bacterial cell [10]. Considering that it takes the
bacterium no longer than hour to divide into two daughter cells, the lysogenic
state is extremely stable.

But surprisingly, upon an environmental signal the phage genome can ef-
ficiently become re-activated – this is called induction. Now, the bacterium
switches from lysogeny into the phase of lytic growth. The viral genome is ex-
tracted from the host’s, and uses the cell machinery to produce a fresh crop of
viruses. This unavoidably leads to the lysis, or destruction of the host cell. What
happens during induction, as well as the maintenance of lysogeny, crucially de-
pends on the control of transcription initiation within OR, the right operator
region of phage λ’s genome. OR is commonly referred to as the λ switch.

2.2 Network Controlling Transcription Initiation

The control of transcription initiation at the λ switch illustrates phenomena of
cooperativity, which are even more important for gene regulation in higher forms
of life [36]. Cooperative enhancement of a reaction between two molecular actors
means that its strength is enhanced by a third, otherwise independent actor.
We will see two instances of cooperative enhancement at the λ switch: positive
control and cooperative binding.

Genes and promoters: The λ switch controls two genes cI and cro, illustrated
Fig. 2. As for all other genes, transcription always starts at Dna segments called
promoters, here PRM and PR respectively. Transcription of a gene eventually
enables the production of the protein it encodes. RNA polymerase (Rnap) are
molecules which can bind at promoters. Once bound to promoter PRM a Rnap
may initiate transcription of the cI gene, which subsequently allows for the pro-
duction of new λ repressor proteins (Rep). An Rnap bound at PR may start to
transcribe the cro gene and thereby enables the production of Cro proteins2.

Cro and Rep proteins appear in two forms, as dimers and monomers which
can be distinguished in Fig. 3. When expressed they first appear as monomers.
Subsequently these associate pairwise, and only in this form they can bind to
Dna. Dimers are unstable, unless bound to DNA they soon dissociate back to
monomers. The higher the protein concentration in the cell, the higher is the
degree of dimerization.

In lysogeny, the state of the network is characterized by a high number of Rep
and negligible amount of Cro proteins; these frequencies are inverted during lytic
2 PRM stands for promoter for synthesis of repressor during maintenance of lysogeny.

PR simply stands for right promoter.
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gene promoter protein

cI PRM Rep
cro PR Cro

Fig. 2. A spatial view on the λ switch, a segment of phage lambda’s genome. The gene
cI is transcribed from the promoter PRM; it encodes the regulatory protein Rep. Its
antagonist protein Cro is transcribed from promoter PR. The operator regions OR1

and OR2 lie within PR, while PRM overlaps with OR3.

Fig. 3. Network states during lysogeny and lytic growth. In lysogeny, Rep attached to
either or both of the binding sites OR1 and OR2 blocks recognition of the promoter PR

by Rnap, and thus prevents transcription of the gene cro. At the same time, interactions
between Rep at OR2 and Rnap at PRM stimulate transcription of the gene cI, which
allows for the production of new Rep.

growth. The environmental signal upon induction leads to a massive destruction
of Rep proteins. PR then becomes activated automatically, while transcription
from PRM ceases. These are consequences of the network controlling transcrip-
tion initiation.

Repression of promoters by steric hindrance: The regulatory proteins Rep
and Cro can bind to three neighboring operator regions OR1, OR2, and OR3. By
doing so, they control Rnap access to the promoters. As Fig. 2 indicates OR1

and OR2 both overlap the promoter PR, while OR3 lies within PRM. A protein
bound within a promoter blocks recognition of the promoter by Rnap. This
principle is called steric hindrance. The typical constellations are sketched in
Fig. 3. Note that all bindings are reversible, i.e. the proteins dissociate from
the Dna strand after some time. Rnap frequently falls off a promoter without
initiating transcription.

The maintenance of lysogeny depends on the presence of a sufficient amount
of repressor, that is predominantly bound at OR1 and OR2. This impedes Rnap
binding to PR. As a consequence, Cro and all other viral genes are not expressed.

Cooperative enhancement of repressor binding at OR2 : The intrinsic
binding affinity of Rep for OR1 is tenfold higher than for OR2 and OR3. Thus,
Rep is likely to be found at OR1. Furthermore, Rep at OR1 significantly favors
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event rate name reference
dissociation of Rnap · PRM 0.788 Kd RNAP PRM [24]
dissociation Rnap · PR 0.155 Kd RNAP PR [16]
dissociation of Rep · OR1 0.155 Kd or1 rep [1]
dissociation of Rep · OR2 3.99 Kd or2 rep [1]
dissociation of Rep · OR2, coop. 0.155 Kd or2 rep coop [41]
dissociation of Rep · OR3 20.22 Kd or3 rep [22]
dissociation of Cro · OR1 2.45 Kd or1 cro [41]
dissociation of Cro · OR2 2.45 Kd or2 cro [41]
dissociation of Cro · OR3 0.29 Kd or3 cro [41]
association of protein to operators 0.098 Ka protein [6]
association of Rnap to promoters 0.098 Ka RNAP [47]
promoted transcription from PRM 0.086 Kf prm promoted [24]
transcription from PRM 0.005 Kf prm [24]
transcription from PR 0.05 Kf pr [16]
association of repressor monomers 0.048 ka repDimer [8]
dissociation of repressor dimers 0.5 kd repDimer [8]

Fig. 4. Stochastic parameters for molecular events at the λ switch

binding of another Rep to OR2 – this is what we call cooperative binding. One
could say that the λ repressor at OR1 recruits another to OR2 [36].

Positive control of transcription initiation is needed for virtually all genes
[36]. It refers to the fact that Rnap bound to a promoter needs the help of reg-
ulatory proteins in order to successfully initiate transcription. At PRM, Rnap’s
frequency increases due to a direct contact with Rep bound at OR2. This second
instance of cooperative enhancement, called positive control, is decisive for main-
taining the lysogenic state. Without it Rnap would rather fall off the inherently
weak promoter PRM than start to transcribe.

The production of Rep ceases once its level allows to fill not only OR1 and
OR2, but also the last site OR3. At this point Rep inhibits its own production
by steric hindrance of PRM in a negative feedback loop.

Upon induction, the number of repressors rapidly decreases due to an external
signal, so that OR1 and OR2 become more and more likely to remain vacant.
Now polymerases find frequent opportunities to bind to PR. As PR is inherently
a strong promoter, these bindings rapidly ensue transcription, followed by the
production of Cro proteins.

3 Stochastic Parametrization

The stochastic π-calculus assumes rates that determine the speed of reactions.
In this section, we discuss how to distill such rates from the literature. The
resulting parameters are summarized and given mnemonic names in Figure 4.

In our system reversible binding reactions are frequent, such as by λ repressor
to the operator OR1:

Rep + OR1 kd
�ka Rep · OR1 (1)
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This bidirectional reaction converges to an equilibrium, in which the number
of reactants on both sides remains constant. The association constant ka de-
termines the speed of the association reaction. It measures the number of Rep-
OR1-pairs that form complexes per mol and second. For the case of regulatory
proteins the association rate constant ka has been experimentally determined
[6,47,44]. It is given by the net rate with which a protein locates its target site
on Dna:

ka =
108

mol sec
(2)

We assume this value for all combinations of proteins and sites 3.
The dissociation constant kd specifies the speed of the de-complexation. It

measures the proportion of complexes that is resolved per second. As we will
see, for the case of Rep binding to OR1 we can assume it to be kd = 0.155

sec .
However, it is less obvious to infer such dissociation rates the literature. What

is determined experimentally for such reactions is mostly Gibbs free energy ΔG –
a notion from thermodynamics. The value of ΔG quantifies the effort necessary
for decomplexation. In the concrete example of OR1, Shea and Ackers [1] provide
ΔG = −12.5kcal

mol . This energy is negative, reflecting that binding requires an
effort by the environment, while unbinding happens voluntarily. Non cooperative
binding of Rep at the weaker binding site OR2 yields a value of ΔG = −10.5 kcal

mol ,
for OR3 we obtain ΔG = −9.5 kcal

mol . Note that a smaller value indicates stronger
binding, and that a difference of 1kcal ensues a tenfold difference in binding
strength.

Gibbs free energy correlates with the equilibrium constant Keq of the bind-
ing reaction, which expresses the quantities of unbound pairs Rep and OR1

compared to complexes Rep · OR1 in equilibrium. The relationship is expressed
through the equation:

Keq = exp(
−ΔG

R · T ) (3)

where R = 1.9872 cal
mol Kelvin is the universal gas constant and T = 310.15 Kelvin

is the absolute temperature at which the experiments were performed (it corre-
sponds to 37 Celsius).

The equilibrium constant Keq represents the ratio of association and dissoci-
ation rate constants as shows the following kinetic equation:

Keq =
ka

kd
mol (4)

3 This constant exceeds three dimensional diffusion by two orders of magnitude, and
subsumes a number of mechanisms of target site location by proteins. In its search
process a protein first diffuses three-dimensionally trhough the cytoplasm, hits the
Dna and subsequently slides along the Dna, rapidly scanning it for its specific site.
A model explaining this has been proposed in [43].



Gene Regulation in the Pi Calculus 31

ΔG kd binding strength

OR1 −12.5 0.155 strongest
OR2 (coop) −12.5 0.155
OR2 (isolated) −10.5 3.99
OR3 −9.5 20.22 weakest

Fig. 5. Parameters for binding of λ repressor to the three operator regions

The experimental data on Gibbs energy together with equations (2), (3),
and (4) are sufficient to compute the dissociation rate kd by straightforward
arithmetics4.

The rate constants ka and kd we have met so far are macroscopic – as in
chemical kinetics. They do not depend on the actual numbers of molecules, but
on concentrations. Gillespie’s algorithm, however, and thus the biochemical sto-
chastic π-calculus use mesoscopic rate constants as their stochastic rates. These
refer to actual numbers of molecules and are determined from their macroscopic
counterparts as follows:

kmeso
a = ka

A V , kmeso
d = kd,

where A = 6.023 · 1023 is Avogadro’s number – i.e. number of molecules per
mole – and V = 1.7 · 10−15l is the E. coli cell volume. We need to divide by
A · V for reactions involving two reactants, such as binding; for reactions that
transform a single reactant as unbinding, the macroscopic and mesoscopic rates
coincide. Note that we assume the cell volume to be constant while ignoring cell
growth. Evaluating our equation yields the following final rates for the considered
example reaction between OR1 and Rep:

kmeso
a = 0.098/ sec kmeso

d = 0.155/ sec

We can now quantify the effects of cooperative binding between repressors at
OR1 and OR2. Cooperativity adds a favorable term of −2 kcal

mol to the Gibbs
binding energy of Rep at OR2 [41] 5. Due to the exponential relation between
free energies and equilibrium constants this massively strengthens the binding:
the mesoscopic dissociation rate kd for OR2 decreases from 3.99 to 0.155, the
same value as for OR1. Figure 5 summarizes.

Finally, we need rates for transcription initiation, in which a complex of Rnap
and promoter P undergoes an irreversible transition from a closed state into an
4 The following set of equations determines the values of all rates for the example:

ΔG = −12.5 · 103cal/mol
R = 1.9872 cal/(mol Kelvin)
T = 310.15 Kelvin

Keq = exp−ΔG/(R T )

ka = 108/(mol sec)
kd = ka/Keq mol

5 Cooperativity also has a helping effect to binding at OR1, however we chose to neglect
this in our model as the effect at OR2 predominates.
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Processes P ::= 0 idle
| P1|P2 concurrent composition
| (new x(r)) P channel creation
| A(y) parametric process
| π1, P1 + . . . + πn, Pn choice
| if x=y then P1 else P2 conditional

Prefixes π ::= x!{y} polyadic output
| x?{z} polyadic input

Definitions D ::= A(y) ::= P.

Fig. 6. Syntax of the stochastic π-calculus, where y = y1, . . . , yn and z = y1, . . . , yn

open one, in which the two strands of Dna have locally been separated, and
after which transcription proceeds [25]:

Rnap + P �Keq (Rnap · P )closed →kf
(Rnap · P )open (5)

The kf rates for the promoter PR and PRM can be found in [16,24]. Positive
control of Rnap by repressor binding at OR2 increases the kf rate of PRM

roughly tenfold. Note that the dissociation rate of Rnap binding at PRM is
not affected, which distinguishes this mechanism from cooperative binding of
regulatory proteins.

Throughout this paper we assume a constant Rnap concentration of c =
30 · 10−9 mol according to [41]. This corresponds to a population of circa 30
Rnap molecules via the simple calculation #RNAP = c · V · A = 30.7, with A
and V as above.

Finally, we assume the rate at which repressor monomers associate to dimers
to be 0.025 sec−1(nM)−1 while setting the dissociation rate to 0.5/ sec follow-
ing [8].

4 Stochastic Pi Calculus

We now recall the variant of the stochastic π-calculus [33] that is the core lan-
guage underlying the BioSpi simulation engine [34].

Figure 6 lists the syntax of our stochastic π-calculus. The vocabulary consists
of an infinite set of channel names x, y, z, an infinite set of process names A, B, C
and stochastic rates r that are nonnegative floating point numbers. We write y
for finite, possibly empty sequences of channels.

Parallel compositions P1| . . . |Pn are processes with parallel subprocesses P1,
. . . , Pn. The composition operator is associative and commutative, so that the
ordering of composition is irrelevant. The empty parallel composition where n =
0 is the idle process 0, the neutral element of composition. Processes (new x(r))P
define a new channel x with scope P , similarly to an existential quantifier ∃x.P ;
this new channel x is associated with the stochastic rate r.
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A(z) → P [z/y] with respect to A(y) ::= P

. . . + x?{y}, P + . . . |

. . . + x!{z}, P ′ + . . .
→ P [z/y] | P ′ if z free for y in P

if x=y then P1 else P2 → P1 if x = y
P2 if x �= y

Fig. 7. Reduction rules, where y = y1, . . . , yn, z = y1, . . . , yn, and n ≥ 0

Definitions of parametric processes A(y)::=P associate the name A to a
process P with free channel names y, the parameters of A. Parametric defin-
itions are universally valid for all parameter choices. They may be recursive,
i.e. contain self applications. An application of a parametric process A(z) calls
the process named A with channels z. Formally, A(z) preceeds by unfolding the
definition of A while substituting z for y, according to the first reduction rule in
Fig. 7.

A conditional6 if x=y then P1 else P2 tests for equality between chan-
nels x and y; if equality holds it reduces to P1, otherwise to P2. As an exam-
ple, consider the definition: A(x, y) ::= if x=y then 0 else A(y, x) which is
valid for all channels x, y. With respect to this definition, we can reduce the
process A(z, z) → 0 for all z, while if z1 �= z2 we have infinite reduction chains
A(z1, z2) → A(z2, z1) → A(z1, z2) → . . ..

Choices π1, P1 + . . . + πn, Pn offer synchronous communication and
non-determinism. Two choices composed in parallel can communicate with each
other if one of them contains an output capacity x!{z}, P ′ and the other some
input capacity x?{y}, P for the same channel x. The result of this communica-
tion act will be P ′ | P [z/y] where z is substituted for y in P . Communication
over the channel x lets an output capacity for x send a tuple of channels {z} to
an input capacity for x, which waits for such data to replace its tuple of formal
parameters {y}.

A complete program consists of a set of public channel declarations, a set
of definitions, and an initial process P that is to reduced with respect to these
declarations and definitions.

Let us express chemical reactions for illustration. We consider two competing
reactions of type x1 and x2 with rates r1 and r2:

x1 : A + B →r1 C1

x2 : A + B →r2 C2

We encode the two rules types x1 and x2 as global channel with rates r1 and r2

and define A, B as parametric processes without parameter:

public (x1(r1), x2(r2)).
A ::= x1!{}, C1 + x2!{}, 0.
B ::= x1?{}, 0 + x2?{}, C2.

6 BioSpi supports conditionals as sums of match prefixes. For better readability we
adopt an alternative notation with keywords if then else.
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We now compose many molecules of types A and B in parallel. Each A-B-pair
can decide to react, either according to rule x1 which reduces in the following
manner:

A | A | B | B → C1 | A | 0 | B → . . .

If alternatively rule x2 happened to be applied, one could observe:

A | A | B | B → 0 | A | C2 | B → . . .

All channels are associated with a stochastic rate, that is either introduced by
public declaration or the new operator. Such rates define exponential distribu-
tions that characterise the communication activity of the channel (see [33,34]).
Communications over channels with infinite rate are executed instantaneously,
as are conditionals and channel creations. Channels with finite rates communi-
cate only afterwards. The scheduling of communication acts over these channels
is based on Gillespie’s algorithm [14].

public (pro(ka_protein), release(kd_OR_A)).

OR_vacant ::= pro ? {}, OR_bound.

OR_bound ::= release ! {}, OR_vacant.

A_unbound ::= pro ! {}, A_bound.

A_bound ::= release ? {}, A_unbound.

System ::= OR_vacant | A_unbound | A_unbound | A_unbound.

OR_
vacant

OR_
bound

A_
unbound

A_
bound

A (un)binds (un)binding
OR

Fig. 8. An operator region and three regulatory proteins: expressing many-to-one com-
munication over global channels. The topology of the system is shown on the left, and
the state transition diagrams of molecular actors of type A and OR are given on the
right.

5 Modeling the Network of Transcription Initiation

We formally model the network controlling transcription initiation at the λ
switch in the stochastic π-calculus. We start with three simpler subsystems, be-
fore turning to modeling the λ switch system as described in Section 2. Following
Regev and Shapiro’s guidelines [39], we represent members of the biomolecular
population as processes, and biomolecular events as communication.
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5.1 Modeling Techniques in System Components

We start with a case of many-to-one communication, which is the simplest sub-
system to model. We consider a network with a unique operator region on Dna
of whatever type OR and many proteins of the same type A that can attach to
it. The operator has two states vacant and bound; the possible states of the
proteins are bound and unbound.

We use the four possible combinations of molecule types with their states
as names of parametric processes: OR vacant, OR bound, A unbound, A bound.
We introduce two global channels, pro for reactions of protein binding to the
operator, and release for unbinding events. The rate of pro is the association
rate ka protein that is invariant for all types of operators and proteins. The
rate of release is the dissociation rate kd OR A, which depends on the specificity
between protein and operator. Figure 8 presents the definitions of all agents in
the system in the stochastic π-calculus, the topology and state transitions.

As simple as this example may seem, it is already sufficient for simulating
binding and unbinding of either Rep or Cro at isolated operator sites OR1, OR2,
or OR3 which are then distinguished by their dissociation rates.

OR_
vacant

OR_A OR_B

A (un)binds B (un)binds

Fig. 9. Left: Operator region with distinct states when binding different proteins, right:
two operator regions alongside with two proteins of different types

Many-to-many communication and handshakes: We next consider a case
of many-to-many communication, for which we introduce a less simple handshake
protocol. We study a system with two operators of the same type OR that can be
bound by proteins of two different types A and B. We wish to design our model
such that all knowledge about binding parameters is localized within operator
sites. With this all proteins can bind operators in the same generic manner, only
depending on their types. We thus define operators of type OR with three possible
states: vacant, A, and B. Fig. 9 illustrates their state transitions. The states of
proteins of types A and B remain as previously introduced: unbound and bound.

We obtain seven names for parametric processes, when building all possi-
ble pairs of molecular types with their states: A bound, A unbound, B bound,
B unbound, OR vacant, OR A, OR B. We again use a unique global channel pro
for protein binding. The stochastic rate of pro is the association rate ka protein
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public (pro(ka_protein), a, b).

OR_vacant ::= pro ? {type,init},

if type=a then (new release(kd_OR_A))

init ! {release}, OR_A(release)

else (new release(kd_OR_B))

init ! {release}, OR_B(release).

OR_A(release) ::= release ! {}, OR_vacant.

OR_B(release) ::= release ! {}, OR_vacant.

A_unbound ::= new(init(infinite))

pro ! {a,init}, init ? {release}, A_bound(release).

B_unbound ::= new(init(infinite))

pro ! {b,init}, init ? {release}, B_bound(release).

A_bound(release) ::= release ? {}, A_unbound.

B_bound(release) ::= release ? {}, B_unbound.

System ::= OR_vacant | OR_vacant | A_unbound | B_unbound.

Fig. 10. Modeling two operator regions with two proteins of different types

Fig. 11. Handshake protocol for protein binding to operator. Solid black arrows denote
the time flow; dotted grey arrows denote communication, the annotations indicate the
names of channel used and exchanged. Horizontal lines indicate the time point of state
changes of corresponding molecular actor.

that is invariant for all types of proteins and operators. In addition, we introduce
two channels a and b with arbitrary rates that encode the protein types.

Recall that dissociation rates are specific for each combination of proteins and
operators. In addition to that, the rate of a channel is fixed upon its creation.
Hence we need a dedicated release channel of appropriate rate per possible
combinations of protein and operator. Furthermore, these channels should be
introduced by the operators, where the knowledge on all interaction parameters
is localized. The biological motivation for this is that the specificity of bindings
depends on the operator’s sequence. The better a protein matches this, the
higher the specificity of binding. Fig. 10 presents the definitions of all agents in
the system.



Gene Regulation in the Pi Calculus 37

We deploy a handshake protocol illustrated in Fig. 11: binding is initiated by
the protein, which transmits to the operator its type and a freshly created private
channel of name init. The operator creates a new release channel upon each
binding, that bears the suitable stochastic rate depending on the protein type
- and hands it over to the protein using init. Subsequent dissociation occurs
with the specific rate.

This generic models needs only slight generalization to apply to the interac-
tions of multiple proteins Cro and Rep with different kinds of operator regions
OR1, OR2, and OR3. What it doesn’t reflect yet are cooperative interdependencies
between binding events, or mutual exclusion of binding at spatially overlapping
sites.

Fig. 12. State transition di-
agram for generic protein A
with dimerization and binding

A_
dimer

A_
monomer A_bound

(un)binding OR(un)dimerization

Timers: In our third case, we utilize timers as proposed by Regev [37]. Timers
serve for auxiliary purposes, they don’t have a biological equivalent. Their sole
purpose is to trigger an activity performed by a single molecular actor. Timers
wait until a partner is ready to communicate over some specific channel. Such
catalysts are needed for modeling first-order reactions in the π-calculus, where
all actions necessitate precisely two participants.

An example is to apply timers for dissociating complexes, here in the case of
dimers. We consider a system with modified protein A. The protein B and opera-
tor site OR remain as introduced previously. We distinguish between A monomers
and A dimers, and enable only dimers to bind to OR. Proteins of type A hence
have states monomer, dimer, and bound, Fig. 12 illustrates the transitions be-
tween these. Operator regions of type OR are either vacant or in bound states A
or B as previously. The definition of the system is given in Fig. 13.

For every type of protein A we use two global channels dimerize A and
undimerize A. Every A monomer has the choice to read or write on the channel
dimerize A. We have chosen somehow arbitrarily that the writer continues as a
dimer, while the reader dies. In order to undimerize, a dimer of type A interacts
with Timer(undimerize A), and dissociates back into two monomers of type A.

5.2 Modeling the λ Switch

The molecular population is summarized in Fig. 14. In a λ infected E. coli cell,
we assume precisely one copy of each PRM, PR, OR1, OR2, and OR3, disregarding
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public (pro(ka_protein),

dimerize_A(ka_A_Dimer), undimerize_A(kd_A_Dimer)).

A_monomer ::= dimerize_A ! {}, A_dimer

+ dimerize_A ? {}, 0.

A_dimer ::= (new init(infinite))

pro ! {a,init}, init ? {release}, A_bound(release)

+ undimerize_A ? {}, A_monomer | A_monomer.

A_bound(release) ::= release ? {}, A_dimer.

OR_vacant ::= pro ? ... # rules for OR_A, OR_B as before

Timer(c) ::= c ! {}, Timer(c).

System := Timer(undimerize_A) |

A_monomer | A_monomer | A_monomer | OR_vacant.

Fig. 13. Modified system with timer for dissociation of dimers into monomers

Fig. 14. The molecular population with its communications channels

public (rnap(Ka_RNAP), pro(Ka_protein),

up_or1_pr(infinite), up_or2_pr(infinite),

up_or2_prm(infinite), up_or3_prm(infinite),

up_or1_or2(infinite),

vacant, blocked, inhibited, cro, rep, polymerase).

Fig. 15. Public channels with their stochastic rates

replication. Alongside with these reside a large number of Rnap, and variable
numbers of the regulatory proteins Rep and Cro.

Molecular actors are connected by public channels in Fig. 14 that are declared
and assigned stochastic rates in Fig. 15. The channel rnap is used both for
Rnap docking to PRM and PR, and is assigned the rate Ka RNAP. Regulatory
proteins establish connections to operator regions over the channel pro with
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PRM PR OR1, OR3 OR2 Rep, Cro Rnap
vacant vacant vacant vacant unbound unbound
rnap high rnap cro cro bound bound
rnap low inhibited rep rep high monomer
inhibited blocked rep low

blocked

Fig. 16. States of molecular actors

association rate Ka protein. Since both interactions are of many-to-many type,
all establishment of bindings follow our handshake protocol.

The possible states of molecular actors are listed in Fig. 16. Particular chan-
nels are used to communicate state updates. We declare these update channels
up A B with rate infinite. They will be used to transmit state update messages,
whose names indicate the new state the sender is switching to: vacant, blocked,
and alike. These last are encoded by channels of arbitrary rates.

We use update channels for synchronization purposes, modeling cooperativity
for instance between OR1 and OR2, as well as for implementing mutual inhibi-
tion. Consider PR, where binding is mutually exclusive with OR2. The frequency
of transcription initiation at PRM depends on OR2’s state - Rep present there
exerts positive control on it. Binding of Rep to OR2 in turn can be cooperatively
strengthened, which depends on whether another Rep is bound to OR1.

Handshake and state updates at OR3: The model for the generic operator
region from Fig. 10 was sufficient for a first interaction with Rep and Cro. How-
ever, we need specializations in order to appropriately reflect any of the actual
operator regions at the λ switch.

Consider the operator site OR3. It can be either vacant, blocked by a Rnap
at PR, occupied by a Cro protein (state cro), or Rep. Figure 17 illustrates OR3’s
transitions. Note the introduction of a second category of annotations, not yet
present in former examples: transitions to and from inhibited are triggered by
events at PRM. Recall that bindings of Rnap to PRM and regulatory proteins
at OR3 mutually exclude each other. We thus keep the states of OR3 and PRM

consistent by instantaneous state updates, for which we reserve a dedicated
update channel up or3 prm.

The π-calculus implementation of OR3 is given in Fig. 18. Besides being one
of the possible counterparts for protein binding and implementing the handshake
protocol, the code comprises state updates: when OR3 releases a bound protein
and is about to depart from either of its states rep or cro, it notifies PRM (which
is currently in state inhibited) via up or3 prm, and only after this continues as
OR3 vacant. In analogy upon protein docking, OR3 vacant again updates PRM.
Alternatively, as soon as PRM gets docked by a polymerase and communicates
this up or3 prm, OR3 vacant switches to OR3 blocked.

Cooperative repressor binding at OR2 necessitates more sophisticated
control than seen so far. Recall that we assigned it to the operator the task to
determine the unbinding time point. In cases without cooperativity, the operator
simply associates the appropriate dissociation rate to the release channel upon
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Fig. 17. State transitions
of OR3. Transitions can be
caused locally, or follow as
side effects of events at other
molecular actors.

OR3_rep

OR3_cro
OR3_

blocked

OR3_vacant
RNAP 

(un)binds
 PRM

Rep (un)binds

Cro(un)binds

OR3_rep(release) ::= release ? {}, up_or3_prm ! {vacant}, OR3_vacant.

OR3_cro(release) ::= release ? {}, up_or3_prm ! {vacant}, OR3_vacant.

OR3_blocked ::= up_or3_prm ? {new_prm}, OR3_vacant.

OR3_vacant ::=

pro ? {type,init},

if type=rep then (new release(Kd_or3_rep))

init ! {release}, up_or3_prm ! {rep}, OR3_rep(release)

else (new release(Kd_or3_cro))

init ! {release}, up_or3_prm ! {cro}, OR3_cro(release)

+ up_or3_prm ? {new_prm},

if new_prm=polymerase then OR3_blocked else OR3_vacant.

Fig. 18. Specification of OR3 module

Fig. 19. State transitions of the OR2 model



Gene Regulation in the Pi Calculus 41

Fig. 20. OR2 with auxiliary
timers for the adjustment of
binding strength for repressor,
depending on OR1’s state as
notified over up or1 or2

creation. For the case of cooperative repressor binding to OR2, we delay the read-
ing offer on the release channel. This is performed by associating an infinite
rate to release. OR2 applies a delay determined differentially for cases with or
without cooperativity. For this, OR2 makes use of two alternative timer processes.
When repressor binding is cooperative and OR2 thus is in state rep high, dis-
sociation is triggered over channel or2 rep high. Otherwise, it is determined
by channel or2 rep low, both bear a distinct rates determined in Sec. 3. OR2
works by selecting appropriate states and switching between these as necessary.
Figure 19 shows OR2’s state transitions, Fig. 20 illustrates the topology, for the
full π-calculus specification see Fig. 21.

Positive control at PRM: switchable timers. We now come to modeling
cooperative enhancement of transcription initiation of Rnap bound to PRM

by repressors at OR2. The technique introduced at OR2 is useful again. This
time, we model variation of the rate of transcription initiation with the help
of switchable timers. We use two auxiliary timer processes communicating with
PRM over public channels prm high and prm low with rates from Figure 4.

public(prm_high(Kf_prm_promoted),prm_low(Kf_prm)).

Fig. 22 illustrates our idea. For the full specification of the PRM module see
Fig. 23. Let us highlight the last paragraph, which defines the PRM module as
the concurrent composition of four processes: two timers, the promoter and the
gene it controls.

Module ::=

Timer(prm_high) | Timer(prm_low) | Gene_cI | PRM_vacant(vacant).

Assume polymerase being docked to PRM in our model. Transcription is then
triggered over the instantaneous channel transcribe now. Depending on the
occupancy of OR2, PRM switches to one of two states representing the complex
with RNAP. In the first, PRM rnap low, there is no Rep at OR2 and PRM hence
works only at basal rate. This is indicated by waiting for the prm low timer to
shoot. Alternatively PRM is in state PRM rnap high and listens to prm high in
order to trigger transcription initiation. Switching between both timers follows
instantaneously upon update from OR2. In either case, the polymerase may also
unbind.

RNAP: To conclude we give our π-calculus model of Rnap in Fig.24. We in-
troduce only two states, bound and unbound. Note that the handshake protocol
deployed for Rnap binding to promoters slightly differs from that for regulatory
proteins. This is the case because RNAP needs a channel release for simple un-
binding, another transcribe now for transcription to be kicked off, and toGene
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public(or2_rep_high(Kd_or2_rep_coop),

or2_rep_low(Kd_or2_or2)).

OR2_vacant(or1) ::=

pro ? {id,init},

if id=cro

then up_or2_prm ! {cro}, up_or2_pr ! {cro},

(new release(Kd_or2_cro)) init ! {release},

OR2_cro(or1,release)

else up_or2_prm ! {rep}, up_or2_pr ! {rep},

(new release(infinite)), init ! {release},

if or1=rep

then OR2_rep_high(release)

else OR2_rep_low(or1,release)

+ up_or1_or2 ? {new_or1},

OR2_vacant(new_or1)

+ up_or2_pr ? {new_pr},

if new_pr=polymerase

then up_or2_prm ! {blocked}, OR2_blocked

else OR2_vacant(or1).

OR2_cro(or1,release) ::=

release ? {},

up_or2_prm ! {vacant},

up_or2_pr ! {vacant},

OR2_vacant(or1)

+ up_or1_or2 ? {new_or1},

OR2_cro(new_or1, release).

OR2_rep_high(release) ::=

or2_rep_high ? {},

release ? {},

up_or2_prm ! {vacant},

up_or2_pr ! {vacant},

OR2_vacant(rep)

+ up_or1_or2 ? {new_or1},

OR2_rep_low(new_or1, release).

OR2_rep_low(or1,release) ::=

or2_rep_low ? {},

release ? {},

up_or2_prm ! {vacant},

up_or2_pr ! {vacant},

OR2_vacant(or1)

+ up_or1_or2 ? {new_or1},

if new_or1=rep

then OR2_rep_high(release)

else OR2_rep_low(new_or1, release).

OR2_blocked ::= up_or2_pr ? {c}, OR2_vacant(vacant).

Module ::= Timer(or2_rep_low)

| Timer(or2_rep_high)

| OR2_vacant(vacant).

Fig. 21. Specification of the OR2 module
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Fig. 22. Module abstracting PRM with its two auxiliary timer processes. The frequency
of transcription initiation by RNAP is controlled by channel prm high for PRM rnap high;
or via prm low for state PRM rnap low. Transitions between these two states in turn
depend on changes of state of OR2, and are synchronized over up or2 prm.

to be pointed at the right gene to transcribe. The behavior of Rnap as sketched
here is simplified. For RNAP’s behavior beyond the initiation of transcription,
which is out of this present paper’s scope, the model needs to be extended (see
[23]). The same holds for the specification of the genes, e.g. the process Gene cI
within the PRM module needs to be replaced in order to obtain an appropriate
model of transcription.

6 Stochastic Simulation

We next validate our π-calculus model of the dynamics at the λ switch by ex-
haustive stochastic simulation. These are performed by execution with the BioSpi
system [34].

We use a sequence of models of distinguished subsystems in order to evaluate
the different components independently. Given its complexity, it does not make
sense to directly start with the complete system. From the software engineering
perspective, this is necessary for debugging reasons. From the biological stand-
point, it is a current practice to isolate subsystems in order to observe their
aspects as independently as possibly. The π-calculus programming approach is
advantageous in that perspective, in that it allows to freely design and compose
subsystems of interest.

6.1 Simulating Components

We thus perform simulations of subsystems that can be compared against exist-
ing knowledge, either experimental or from established other simulation studies.
Our strategy is incremental and bottom up. First we present simulations of
repressor dimerization. We then move over binding of Rep to Dna, and the
impact of dimerization on binding patterns to that of cooperative interaction
between Rep on Dna. Finally we investigate interactions between Rnap, Dna,
and Rep’s positive control thereof. The control of transcription initiation from
PRM is highly relevant; it has been subject to a number of theoretical and ex-
perimental studies [4,5,24,41].

Dimerization: The essential point to remind about repressor dimerization
was the concentration dependent equilibrium [35]; we can observe this in sim-
ulations. Figure 25 visualizes the dynamics of the dimerization process start-
ing with different numbers of monomers. As an example, for the case of three
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public(prm_high(Kf_prm_promoted),

prm_low (Kf_prm),

gene_cI(infinite).

PRM_vacant(or2) ::=

rnap ? {init},

if or2=rep

then (new transcribe_now(infinite), release(Kd_rnap_prm))

init ! {transcribe_now, release, gene_cI},

up_or3_prm ! {polymerase},

PRM_rnap_high(transcribe_now,release)

else (new transcribe_now(infinite), release(Kd_rnap_prm))

init ! {transcribe_now, release, gene_cI},

up_or3_prm ! {polymerase},

PRM_rnap_low(transcribe_now,release,or2)

+ up_or2_prm ? {new_or2},

PRM_vacant(new_or2)

+ up_or3_prm ? {new_or3},

PRM_inhibited(or2) .

PRM_rnap_low(transcribe_now,release,or2) ::=

prm_low ? {},

transcribe_now ! {},

up_or3_prm ! {vacant},

PRM_vacant(or2)

+ up_or2_prm ? {new_or2},

if new_or2=rep

then PRM_rnap_high(transcribe_now, release)

else PRM_rnap_low(transcribe_now, release, new_or2)

+ release ? {}, up_or3_prm ! {vacant}, PRM_vacant(or2).

PRM_rnap_high(transcribe_now,release) ::=

prm_high ? {},

transcribe_now ! {}, up_or3_prm ! {vacant},

PRM_vacant(rep)

+ up_or2_prm ? {new_or2},

PRM_rnap_low(transcribe_now, release, new_or2)

+ release ? {},

up_or3_prm ! {vacant},

PRM_vacant(rep).

PRM_inhibited(or2) ::=

up_or2_prm ? {new_or2}, PRM_inhibited(new_or2)

+ up_or3_prm ? {new_or3}, PRM_vacant(or2).

Gene_cI ::= gene_cI ? {},

mRNA_cI | Gene_cI.

Timer(c) ::= c ! {}, Timer(c).

Module ::= Timer(prm_high)

| Timer(prm_low)

| Gene_cI

| PRM_vacant(vacant).

Fig. 23. Specification of PRM module with cI gene



Gene Regulation in the Pi Calculus 45

RNAP_unbound ::=

(new init(infinite)) rnap ! {init},

init ? {transcribe_now, release, toGene},

RNAP_bound(transcribe_now, release, toGene).

RNAP_bound(transcribe_now, release, toGene) ::=

transcribe_now ? {}, toGene ! {}, RNAP_unbound

+ release ! {}, RNAP_unbound.

Fig. 24. Specification of RNAP

Fig. 25. Dynamics of formation and breakage of λ repressor dimers over 30 simulated
seconds. Initiation with 20 monomers (left) or 200 monomers (right).

monomers the starting point would be the parallel composition of three instances
of Rep monomer with a timer for dimer dissociation:

System ::= (new rep_undimerize(kd_repDimer),

rep_dimerize(ka_repDimer))

Timer(rep_undimerize) |

Rep_monomer | Rep_monomer | Rep_monomer.

When launched with 20 monomers, such a system tends towards a mean set-
ting in which around around half the total repressors can be found as monomers,
while the others are present as dimers. Note that in this case, one observes strong
fluctuations (see Fig.25 left). Only a rough quarter of initially 200 monomers are
present as such in average, while around 75% are dimer-bound - with less im-
portant fluctuations. The shift of the equilibrium towards dimers becomes more
obvious as we plot the average ratio of repressors present as monomers to that
of dimer-bound ones over a long time range for various levels of repressors, see
Fig. 26.

6.2 Repressor Binding to DNA

We now consider the binding of repressor dimers to operator sites on Dna. The
following set up allows to simulate site OR1 and three repressor dimers that can
reversibly attach to it, or dissociate back to monomers:
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Fig. 26. Shift of concentration depen-
dent equilibrium between monomers
and dimers

Fig. 27. Binding to isolated
operator sites, assuming 100
repressor monomers.

ΔG mean
sojourn

bound

OR1 −12.5 6.4 96 %
OR2 −10.5 0.25 46 %
OR3 −9.5 0.05 15 %

System ::= (new dimerize(ka_repDimer), rep_undimerize(kd_repDimer),

bind(Ka_protein), release(Kd_or1_rep))

OR | Timer(rep_undimerize) |

Rep_unbound | Rep_unbound | Rep_unbound .

By adjustment of the rate for channel release, we can simulate binding to
the isolated sites OR1, OR2 and OR3. Figure 27 summarizes corresponding
simulations, emphasizing the impact of different binding site site affinities. Recall
from Sec. 3 that a smaller value of the Gibbs free energy ΔG indicates a stronger
binding.

We make two corresponding observations. The complex of repressor and op-
erator site is most stable at OR1, where we observe an average sojourn time of
Rep of 6.4 seconds (this value is the mean of an exponential distribution not
shown here). This is consistent with [35], reporting that binding of repressor to
OR1 persists in the order of up to 10 seconds. For OR2 and OR3 less favorable
ΔGs lead to drastic drops of complex stability.

The efect is also visible when considering not individual binding events, but
average behaviour. For a given concentration and a long time scale, OR1 is
better saturated with repressor than any of the other sites. The last column in
Tab. 27 reports the fraction of time the respecitve sites are bound when 100 Rep
are included and dimerization activated.

Binding of repressor to the right operator OR: Figure 28 shows the
saturation of sites OR1, OR2 and OR3 as they arise in our simulations of the
λ switch when both repressor dimerization and cooperative repressor binding
between OR1 and OR2 are enabled. Each of the curves summarize a series of
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Fig. 28. Occupancy of sites OR1, OR2 and OR3 in the presence of dimerization and
cooperative binding. Each point represents the relative occupancy of a site over 5000
simulated seconds, for a given number of total repressors. In a lysogen, one can expect
100-200 total repressors.

experiments for varying Rep levels. Before discussing the full system, we will
investigate the underlying components and mechanisms one by one.

Dimerization sharpens response at OR1: Figure 29 (left) illustrates the
saturation of OR1 as a function of repressor level. Each of the two curves sum-
marizes a series of experiments. For the solid line dimerization is enabled, i.e.
only part of the total repressors are present as dimers and thus able to bind the
operator. The dashed line assumes that dimers are stable at all concentrations,
meaning that 100% of total repressors are found as dimers regardless of the con-
centration. The x axis indicates the number of total repressors on a logarithmic
scale, while the y axis gives the relative occupancy of OR1. Each data point
represents the relative occupancy of OR1 for an experiment simulating the full
dynamics of docking to DNA with or without dimerization over 5000 seconds.

Over this time scale, we can compare our results based on a stochastic discrete
event approach against other’s from deterministic continuous models, which com-
pute only averages: one sees both qualitative and quantitative agreement with
results from [35] reproduced in Fig. 29 (right). Dimerization has the effect to
change the shape of the binding curve, namely to give a sharper response in
terms of site occupancy as the amount of repressor increases.

Superimposing dimerization and cooperative binding at OR2: Figure
30 summarizes how the second operator site fills with Rep for three scenarios.
The dashed curve illustrates binding to OR2 in presence of OR1 and dimer-
ization. We contrast this with binding to the isolated OR2 with and without
dimerization. Note that the effect of dimerization is far less pronounced at an
isolated OR2 than it was OR1, where dimerization lead to a sharp increase of
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Fig. 29. Occupancy of operator region OR1 as a function of repressor concentra-
tion and dimerization. Our results (left), benchmark from Ptashne’s book [35] (right).
Dashed lines: all repressors are found as dimers regardless of concentration. Solid lines:
dimerization of repressors is included, hence the concentration-dependent equilibrium
affects the binding curve.

Fig. 30. Occupancy of site OR2, as a function of repressor level, dimerization and coop-
erativity. We consider isolated OR2 for the curves ’with’/’without’ dimerization, and
a system comprising both OR1 and OR2 for the curve ’OR2, coop and dimerization’.
Because at very low concentrations, binding occurs mainly at OR1, the cooperative
advantage only becomes visible at a certain level.

sensitivity in the lower concentration range. This can be explained because the
isolated weaker OR2 only fills notably at higher Rep concentrations, when the
equilibrium is heavily biased toward dimers. However, now the combined effect
of cooperativity and dimerization becomes prominent. Recall that binding at
OR2 is cooperatively strengthened as OR1 is placed next to it. As can be seen
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from the dashed curve in Fig. 30 the predominant cause of OR2’s saturation at
lysogenic repressor concentration levels is cooperative binding with OR1. This
cooperativity propagates OR1’s stronger sensitivity to OR2.

Negative auto-regulation of Rep at OR3: Our results on Rep binding to
the third operator OR3 are included in Fig. 28. The binding curve is again
based on the observation of the isolated operator, under variation of repressor
level while disregarding interfering traffic between Rnap and PRM. The most
striking effect when comparing the binding curve with the other operators’ is
that the site fills to a significantly lower degree. It reaches around 30% when
200 repressors are included in the simulation. Even with an amount of 1000
repressors the isolated OR3 remains unsaturated. As we will report later the
saturation further decreases to 4% as Rnap docking to PRM interferes.

These results agree with recent experimental findings. Dodd and co-workers
have demonstrated that an additional layer of cooperativity is needed for effective
repression of PRM [9] at lysogenic repressor concentrations. Revet and co-workers
first observed a long-range DNA loop between the right operator and another
distal region in λ’s genome [40]. As was subsequently understood, this loop is
stabilized by an assembly of eight repressor proteins, in which the two repressor
dimers cooperatively bound to OR1 and OR2 participate. They cooperatively
interact with another repressor tetramer bound to λ’s left operator region OL -
while looping the DNA between the two regions. The large assembly further
stabilizes all participants. More importantly, it juxtaposes OR3 with a third site
at the left operator, OL3. This allows for cooperative binding of repressor at OR3

and OL3.
This additional level of cooperativity is a recent finding and not, as yet, fully

characterized. However its importance is clearly seen [46]. It allows to repress
PRM and maintain a low level of Rep, that is not yet ensured by binding to OR3

alone. Thus in a bacterium hosting phage λ, the lysogenic repressor concentration
never surpasses a range allowing to return to the level in which OR1 and OR2

can be vacated. This is the key to induction back from lysogeny to the state of
lytic growth [11].

6.3 RNAP Binding and Transcription Initiation

We further increase the scope of the model, by adding PRM and Rnap to the
three operator sites and repressors simulated so far. We study this system over
20 minutes simulated time, comparable with the life span of an individual bac-
terium. This allows to observe the occupancy patterns of both PRM and the
operators, as well as the initiation of transcription for the cI gene. We first con-
sider the impact of varying repressor levels in a model including the essential
cooperative features - dimerization, cooperative repressor binding and positive
control of transcription initiation. Next we perturb our model and study the
consequences.

Figure 31 summarizes a series of simulations. For each set-up we indicate the
number of repressors included, and whether cooperative binding and positive
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coop pos.
control

repressors transcription
initiations
from PRM

Rnap at PRM

(sec)
PRM

repressed
(sec)

PRM

vacant
(sec)

Rep
at OR2

(sec)

58 873 46 280 1111
76 870 46 279 1120

100 71 873 46 279 1120
58 889 44 266 1110
74 903 43 253 1111
67 901 19 281 990

on on 50 69 921 14 265 985
70 899 18 283 972
46 917 5 278 728

25 52 929 5 266 730
51 922 5 273 727
19 927 < 1 272 305

10 26 932 < 1 267 323
28 922 < 1 277 300

38 886 41 273 570
off on 100 35 867 45 285 587

31 890 43 267 575

5 899 41 260 1108
on off 100 6 915 39 246 1118

4 898 44 258 1101

Fig. 31. Simulations over 1200 seconds: PRM activity (absolute number of transcrip-
tion initiations). Values are in units of simulated seconds for the following columns:
PRM repression, PRM vacancy, and occupancy of OR2 by Rep. First block: results for
varied repressor levels when both cooperative repressor binding and positive control
are enabled. Second and third block: simulation results under elimination of either of
the two mechanisms, for a level of 100 repressors.

control are enabled. Each line of the table summarizes one simulation run, for
which we report the following quantities:

– absolute number of transcription initiations from PRM observed. This should
be related to the theoretical upper bound of 103, estimated form PRM’s
maximal rate of 0.086 initiations per second and the simulated time of 1200
seconds.

– absolute time that Rnap is bound to PRM (in sec),
– absolute time PRM is repressed as a consequence of Rep binding to OR3 (in

sec),
– vacancy of PRM (in sec),
– occupancy of OR2 by repressor (in sec).

To begin with, we mimic the system’s behavior under lysogenic repressor
concentrations with 100 repressors. The first block in Tab. 31 summarizes five
executions of our model. For all runs PRM is bound by Rnap in approximately
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70 % of the time, PRM is inhibited via competing Rep binding to OR3 for 4
% of the time, and otherwise vacant. The second operator site OR2 is bound
by Rep around 92 % of the time for all five runs. The numbers of transcription
initiations range between 58 and 76. Note that the variability of this figure is
significantly higher than that of any other considered.

The actual number of transcript initiations from PRM in a single lysogenic
bacterium is difficult to determine experimentally. In the past, a precise level
was deemed necessary for the maintenance of lysogeny [20]. This was rectified
by recent experiments showing that repressor levels varies widely from cell to
cell [4]. This phenomenon is known as transcriptional noise. Our result are in
agreement with an estimated average number of transcripts per cell cycle of 70.

Reactions to partial and near-total Rep depletion: Our next step is
to preserve the system’s essential characteristics - dimerization, positive control
and cooperative binding - but to thin out the repressor pool. In the remainder
of Figure 31’s first block we report the outcomes of each three simulations with
50, 25 and 10 total repressors.

The primary effect is that saturation of OR2 drops nonlinearly. This has im-
portant secondary effects on transcription initiation from PRM. A first reduction
to 50 repressors de-represses PRM and seems to favor initiation, at least in these
runs. As a reaction to further depletion transcription visibly reduces, while the
actual PRM saturation by Rnap increases: in the presence of 10 repressors, ini-
tiations drop to around a third of those seen with 50 repressors. This should be
related to the increasing vacancy of OR2. It gives a first impression of how the
system of positive auto-regulation breaks down.

Examining this question in detail seems promising for two reasons. First, the λ
switch is known to be extremely robust. It needs to cope with transient fluctua-
tions of Rep level. Nevertheless, induction relies on the system’s ability to escape
from the lysogenic state when repressor falls below a critical threshold. Recall
that as both OR1 and OR2 are vacated, PRM’s antagonist PR becomes likely
to take over. A detailed investigation remains beyond the current paper’s scope.

The impact of cooperative repressor binding on PRM activity is another
point of interest. After we have observed its immediate impact at OR2, we move
on to a larger perspective. We perturb our π-calculus model by lowering the
cooperative dissociation rate of Rep at OR2 to the basal one. This lowers OR2’s
saturation to half the previous amount, see Figure 31 (second block, last column).
And it has consequences for Rnap at PRM. The binding itself is not lowered -
our simulations even indicate a slightly higher promoter saturation. Nevertheless,
the number of transcription initiations drops to half that of the wild type.

Impact of positive control: We last eliminated the positive control of tran-
scription initiation in our model. This is reached by lowering the parameter for
promoted transcription the basal one, i.e. by manipulating the stochastic para-
meters of the channels illustrated in Fig. 22. Our resulting in silico experiments
are summarized in the last block in Figure 31. The number of initiations in pres-
ence of 100 total repressors dramatically decreases from an average of 67 in the
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our prediction reference value

PRM activity,
(full system)

67 initiations
in 1200 sec

estimate: 70 per cell cycle [4]

PRM activity,
(pos. control off)

> 90% reduced observation: positive control can
be eliminated, but this needs to
be compensated by up-regulation
of basal rate in order to maintain
system functional

[27]

PR repressed
(> 45 Rep)

> 98.1 % 98.5 % [26]

OR1-OR2

cooperativity
(reproduced) necessary to repress PR efficiently [35]

PRM repression at
lysogenic Rep levels,
considering OR only

4% repression is ineffective; transcrip-
tion initiations lowered 5-20% as a
consequence of OR3 binding

[26,9]

Fig. 32. Overview of our predictions and results from other studies

initial system to an average of 5. All the while, immediate Rnap bindings as
well as all other features are not affected, when compared to the original setting.
This underlines the importance of positive control.

This simulation scenario was motivated by wet lab experiments with modified
λ repressors. These mutants bind cooperatively but fail to stimulate transcrip-
tion. As [17] reported the λ switch was no longer functional. Our simulation
outcomes seem in rough agreement with this, even though we can not directly
compare the results. Most recently Michalowski and Little [27] suggested that
positive auto-regulation may be a dispensable feature altogether. They exper-
imentally observed that the λ switch remains functional if positive control is
eliminated, but at the same time PRM’s intrinsic initiation rate kf increased.

7 Conclusion and Future Work

We have presented a detailed model for the mechanism of transcription initia-
tion control at the λ switch in the stochastic π-calculus. We have distilled the
stochastic parameters from the literature, implemented the model in the BioSpi
system, and obtained confirming simulation results. Figure 32 summarizes our
simulations.

In follow up work we have already extended our approach to modeling the
dynamics of transcript elongation itself [23]. Work on translation is under way,
again the most subtle aspects include appropriate parameter choices 7. This will
permit us to close the complex feedback loops at the λ switch.

7 The parameter set for cI translation in [2] and adopted by several others should be
revised in order to reflect newer findings [30,42].
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We aim to obtain a simulation of induction. Recent experiments suggest a
new ambiguity for Cro’s role. The common assumption that its presence at
intermediate repressor levels rapidly leads to induction has been falsified. Dna
looping between the right and left operator region seems to render the switch
insensitive to the presence of Cro [45]. Therefore, we also plan to refine our
approach in order to account for long-distance cooperativity in repressor binding.
The techniques developed in this paper should be helpful.

Finally, we plan to study more effects of parameter variation systematically.
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Abstract. Logical modelling and Petri nets constitute two complemen-
tary approaches for the dynamical modelling of biological regulatory net-
works. Leaning on a translation of logical models into standard Petri
nets, we propose a formalisation of the notion of circuit functionality in
the Petri net framework. This approach is illustrated with the modelling
and analysis of a molecular regulatory network involved in the control of
Th-lymphocyte differentiation.

Keywords: genetic regulatory graphs, Petri nets, feedback circuit, dis-
crete dynamics, qualitative analysis.

1 Introduction

Regulatory networks are found at the core of all biological functions, from bio-
chemical pathways, to gene regulation mechanisms, and intercellular communi-
cation processes. Their complexity often defies the intuition of the biologist and
calls for the development of proper mathematical methods to model their struc-
ture and simulate their dynamical behaviour. The modelling of biological regu-
latory networks has been addressed using a large variety of formal approaches,
from ordinary or partial differential systems, to sets of stochastic equations (for a
recent review, see [10]). However, as precise, quantitative information about the
shape of regulatory functions, or the values of involved parameters is generally
lacking, qualitative approaches are usually more easily deployed.

Our work relies on a qualitative approach which consists in modelling regula-
tory networks in terms of logical equations, using either Boolean or multi-level
variables (see [12], [33] and references therein). The development of logical mod-
els for various biological networks has already led to interesting insight into the
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relationships between the regulatory network structure (i.e., presence of regu-
latory feedback circuits) and the corresponding dynamical properties [33]. The
generalised logical approach of R. Thomas has been recently implemented in a
software tool, GINsim, which enables the biologist to specify a regulatory model
and check the qualitative evolution of the system for given initial states [9,19,38].
However, as the number of qualitative states grows exponentially with the num-
ber of elements involved in the regulatory network, there is a need for proper
mathematical methods to cope with the analysis of larger regulatory networks.

At this stage, it appears interesting to articulate the logical approach with
another qualitative approach, namely the Petri net modelling [22,28]. Indeed,
Petri nets (PN) offer a mathematical framework to model, analyse and simulate
the dynamical behaviour of large systems. As a first step in this direction, we
have recently proposed a translation of logical regulatory models into specific
regulatory Petri nets, focusing on the Boolean case [8]; this has been extended
to the multilevel case in [7]. This bridge between the two formalisms should help
us to simultaneously exploit the corresponding analytical and simulation tools.

Petri nets have been successfully applied to the modelling and the analysis of
metabolic networks [24,16,18,15]. As emphasised in [36], one can draw extensive
relationships between the traditional biochemical modelling and Petri net theory.
In particular, the stoichiometry matrix of a metabolic network corresponds to
the Petri net incidence matrix. One can identify clear correspondences between
qualitative properties of the dynamics of biological networks and classical PN
behavioural properties. For example, a dead marking represents a stable state
of the system, while transition invariants correspond to cyclical trajectories.

Although the kinetic parameters are generally not precisely accessible, most
of the works related to Petri net approaches for the modelling of biological net-
works concentrate on quantitative aspects. Leaning on simulations, these works
refer to several extensions of Petri nets, including hybrid PN, where places and
transitions are either discrete, or continuous [2,13,6,20,11].

In the case of genetic regulatory networks, the PN representation is not so nat-
ural because the semantics associated with the interactions between components
varies. Furthermore, regulators are usually not consumed during the regulatory
processes (while reactants are transformed into products by chemical reactions).
In this paper, regulatory interactions are considered at a qualitative abstraction
level, where the details of the regulation processes are not taken into account.

Amid the promising applications of Petri net theory to biological systems, we
have proposed a systematic rewriting of Boolean regulatory graphs into a Petri
net formalism in [8], and then extended this procedure to the multivalued case
in [7].

The paper is organised as follows. First, we define the Boolean Regulatory
Petri Nets (BRPN) which correspond to Boolean regulatory models. Then, after
recalling the properties of isolated regulatory circuits, we introduce a formal
definition of the notion of regulatory feedback circuit functionality. Next, these
definitions are applied to a regulatory network involved in the control of Th-
lymphocyte differentiation. Finally, conclusions and prospects are proposed.
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2 Boolean Regulatory Petri Nets

In this section, we recall the definition of the Petri net corresponding to a Boolean
regulatory graph, i.e., the PN whose dynamics simulates the dynamical behav-
iour of the underlying genetic regulatory network (for further detail, see [8]).

First, we briefly describe logical regulatory graphs in the Boolean case: a gene
can be on or off (for more details on the formalism in the multivalued case,
see [9]).

A regulatory graph is a directed graph representing interactions between genes
g1, . . . gn. Each interaction involves two genes (or other kinds of molecular com-
ponents), the source and the target. As one gene can be the target of several
interactions, we define, for each gene gi, the set I(i), called input of gi, which
contains the source genes of all interactions targeting gi. For each gene gi, a pa-
rameter Ki(X) is defined for each subset X of I(i). The value of this parameter
gives the level to which gi tends when X is the set of the sources of the incoming
interactions which are operating (we consider that an interaction is operating
when its source gene is on). In the Boolean case, these parameters take their
values in {0, 1}.

More formally, a regulatory graph is a triple (G, A, K) which consists in:

– a set of nodes G = {g1, . . . , gn},
– a set of arcs A, which leads to the specification of the sets I(i), defining the

sources of interactions towards gi, ∀i ∈ {1, . . . , n},
– a set of parameters K = {Ki(X), i = 1, . . . , n, X ⊆ I(i)}.
For a given regulatory graph of n genes, we can now address its dynami-

cal behaviour. A state of the system is defined as the n-dimensional vector of
the expression levels of the n genes. We further define a state transition graph
where nodes represent states and arcs represent transitions between states. For
a specific initial state, the corresponding state transition graph defines all the
possible trajectories of the system from the selected initial conditions. We can
also consider the whole state transition graph consisting of all the 2n states. We
thus face a classical combinatorial explosion problem: the size of the whole state
transition graph exponentially increases with the number of genes.

In the sequel, we briefly describe our translatation of Boolean regulatory
graphs into standard Petri nets.

Basic Definitions and Properties: Consider a Boolean regulatory graph
R = (G, A, K). We shall define the corresponding Petri net with the following
properties:

– To each gene correspond two places gi, gi, i ∈ {1, . . . , n}, such that the sum
of tokens in places gi and gi equals 1 (they are then complementary). The
position of the token in gi or gi indicates whether the gene is on or off. The
set of places P thus contains 2 n elements: P = G∪G, with G �

= {g1, . . . , gn}.
– To each parameter Ki(X), where i ∈ {1, . . . , n}, X ⊆ I(i), corresponds a

transition tiX . The transition tiX is enabled as soon as all places of the set X
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and all complementary places of the set I(i) \X , the complementary set of
X in I(i), are marked.

Definition 1. Given a Boolean regulatory graph, R = (G,A,K), the associated
Boolean regulatory Petri net (BRPN) N(R) = (P, T, Pre, Post) is defined as
follows:

– P = G ∪ G = {g1, g1, . . . , gn, gn} is the set of places.
– T = {tiX , i = 1, . . . , n, X ⊆ I(i)} is the set of transitions.
– Pre : P × T → {0, 1} is the mapping defining arcs between places and

transitions (Pre-conditions).
– Post : T × P → {0, 1} is the mapping defining arcs between transitions and

places (Post-conditions).

The functions Pre and Post are defined as follows:

1. Case gi �∈ I(i) (gi is not a self-regulator). For a given transition tiX , the only
terms to be defined (i.e., all other terms equal zero) are:

Pre(gi, t
i
X) = Post(tiX , gi) = 1 − Ki(X) , (1)

Pre(gi, t
i
X) = Post(tiX , gi) = Ki(X) , (2)

Pre(gj , t
i
X) = Post(tiX , gj) = 1 ∀gj ∈ X , (3)

Pre(gj , t
i
X) = Post(tiX , gj) = 1 ∀gj ∈ I(i) \ X . (4)

2. Case gi ∈ I(i) (gi is a self-regulator). For a given transition tiX ,
– if gi ∈ X, the only case to be considered is Ki(X) = 0 (cf Remark 1).

Therefore, the only terms to be defined are:

Pre(gi, t
i
X) = Post(tiX , gi) = 1 , (5)

Pre(gj , t
i
X) = Post(tiX , gj) = 1 ∀gj ∈ X , gj �= gi , (6)

Pre(gj , t
i
X) = Post(tiX , gj) = 1 ∀gj ∈ I(i) \ X . (7)

– if gi �∈ X, the only case to be considered is Ki(X) = 1. Therefore, the
only terms to be defined are:

Pre(gi, t
i
X) = Post(tiX , gi) = 1 , (8)

Pre(gj , t
i
X) = Post(tiX , gj) = 1 ∀gj ∈ X , (9)

Pre(gj , t
i
X) = Post(tiX , gj) = 1 ∀gj ∈ I(i) \ X , gj �= gi . (10)

Equations (1)-(2) state that if the parameter Ki(X) equals 1, gi is an input and
gi an output of the corresponding transition tiX . In other words, there can be a
decrease of the level of gi if it is already present. Symmetrically, if Ki(X) = 0,
then gi is an input and gi is an output of the corresponding transition tiX .
Equations (3)-(4), (6)-(7) and (9)-(10) state that the elements contributing to the
combination of interactions involved in Ki(X) (i.e., which are in X) constitute
“side conditions” of the corresponding transitions (represented by “test arcs”).
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K1(∅) = 0, K1(g2) = 1 K1(∅) = 1, K1(g2) = 0

g1 g2 g1 g2

g1

t12

g2

g1

t1

g2

g1

t12

g2

g1

t1

g2

Fig. 1. Modelling of the activation of g1 by g2 (left) and of the inhibition of g1 by
g2 (right). Top: regulatory graph representation and logical parameters (K’s) for each
type of regulation. K1(∅) represents the basal expression of gene g1, i.e., in the absence
of the regulatory product of gene g2, whereas K1(g2) represents the expression of g1 in
the presence of the regulatory product. Bottom: corresponding Petri net representation,
with two places for each gene. Transition t1 corresponds to parameter K1(∅), while t12
corresponds to K1(g2).

As an illustration, let us consider the simplest case where a gene g2 regulates
a gene g1. The two interesting situations occur when a change of the level of
g2 leads to a change of the level of g1; this interaction is called activation if the
presence of g2 implies the presence of g1 and conversely the absence of g2 implies
the absence of g1. The opposite situation corresponds to an inhibition.

Figure 1 illustrates the BRPNs corresponding to an activation (left) and to
an inhibition (right) between two genes, respectively (to simplify the notation,
we have denoted Ki({gj}) by Ki(gj) and ti{gj ,...,gk} by tij,...,k).

Given a regulatory graph involving n genes, the corresponding BRPN has ex-
actly 2n places and up to

∑
i=1,...n 2|I(i)] transitions. This number of transitions

can be lowered applying two kinds of reductions. Remark 1 deals with the first
reduction related to self-regulations, already considered in Definition 1, case 2.
The second class of reductions regards the possible simplication of the logical
formulæ associated to each gene (see Remark 2).

Remark 1. Let gi be a self-regulator; there should be one transition tiX for each
parameter Ki(X). But two cases do not lead to any change on gi: when gi �∈
X (i.e., gi is absent) and Ki(X) = 0, and when gi ∈ X (i.e., gi is present)
and Ki(X) = 1. The resulting transitions are never enabled and are therefore
omitted.

Remark 2. Each set X ⊆ I(i), i = 1, . . . , n defines a logical formula which is a
conjunction of literals [xj = 1] for all gj ∈ I(i) and ¬[xj = 1] for all gj /∈ I(i).
Now, for a given gene gi, consider all the logical parameters having the same
value x (0 or 1). They define a disjunction of conditions (the corresponding sets
X ∈ I(i)) under which gi should tend to its level x. This formula is a disjunctive
normal form (DNF, i.e., a disjunction of conjunctions of literals). Such DNF
can often be simplified, resulting in a reduction of the number of transitions
to consider in the corresponding Petri net. One approach to simplify DNF uses
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ordered binary decision diagrams as introduced in [5]. An illustration of this type
of reduction is provided in Section 4.

Although the graphical representation of a BRPN is more complex than the
corresponding regulatory graph (indeed the BRPN represents the regulatory
graph together with its parameterisation), several analytical tools available for
the standard PN framework should be usefull in our context.

Let us introduce the following notations for all i ∈ {1, . . . n}:

– K̂i(X)
�
= 2 Ki(X) − 1 ,;

– di the number of transitions for gi (di � 2#I(i)).
– Xj

i the jth subset of I(i) (for an arbitrary numbering).

Then, the incidence matrix C
�
= PostT −Pre is a 2n×

(∑
i=1,...,n di

)
matrix.

Its components take their values in {−1, 0, 1}, and C has the following structure:

C =

⎛⎜⎜⎜⎜⎜⎝
D1 0 . . . 0

0 D2 . . . 0
. . . . . . . . . . . .
. . . . . . . . . . . .

0 0 . . . Dn

⎞⎟⎟⎟⎟⎟⎠ with Di
�
=

(
K̂i(X1

i ) . . . K̂i(Xdi

i )
−K̂i(X1

i ) . . . −K̂i(Xdi

i )

)
.

Note that matrix C does not totally reflect the incidence relations of the BRPN
which is not pure (it contains a number of test arcs).

Definition 2. Given a regulatory Petri net N(R) = (P, T, Pre, Post), a valid
marking M : P → {0, 1} corresponds to a state of the Boolean regulatory graph
R which verifies: ∀gi ∈ G, M(gi) = 1 − M(gi).

In the sequel, we will only consider valid markings.
The Boolean state transition graph is isomorphic to the reachability graph of

the corresponding BRPN. Given a regulatory graph with n nodes, a state S
in the state transition graph is a n-dimensional vector giving the state of each
gene (expressed or not), while a valid marking in the corresponding BRPN is a
2n-dimensional vector.

There exists an edge from state S1 to state S2 in the whole state transition
graph related to a Boolean regulatory graph R = (G,A,K), iff there exists an
enabled transition t in the associated BRPN such that M1 verifies M1[t〉M2 (t is
enabled by M1 and its firing leads to the marking M2) with, for all i = 1, . . . n,

M1(gi) = S1(i) M1(gi) = 1 − S1(i) ,

M2(gi) = S2(i) M2(gi) = 1 − S2(i) .

Note that usually, in the PN formalism, the (reachability) marking graph is
defined for a specific initial marking. Here, we consider the whole marking graph
of a Petri net corresponding to the whole state transition graph associated to a
regulatory graph (containing all possible states).
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3 Dynamical Role of Regulatory Circuits

For complex regulatory networks, R. Thomas has enounced rules binding the dy-
namical behaviour to the presence of specific types of circuits. More precisely, he
has conjectured that a necessary condition for multistationarity is the presence
of a positive circuit (i.e., containing an even number of inhibitions), whereas a
necessary condition for homeostasis and/or sustained, stable oscillations is the
presence of a negative circuit (with an odd number of inhibitions) (cf. [33] and
references therein). These rules have already been formally stated and partly
demonstrated whithin different formalisms [32,14,30,3,31,26,27].

In what follows, we first derive a general Petri net formulation for these two
classes of isolated circuits and check that their dynamical properties depend on
their signs (section 3.1). Then, we focus on the notion of functionality of circuits
(section 3.2). Indeed, the presence of a circuit is not sufficient to give rise to the
corresponding dynamical property, it has to be moreover functional. We propose
here a formal definition of this notion (which has been introduced in [29] in the
multilevel degenerated case), and an algorithm to test if a circuit is functional
in specific regions of the Boolean state space.

3.1 Isolated Regulatory Circuits

In the case of isolated regulatory circuits, each gene gi is the target of a unique
interaction exerted by gi−1, and is the source of a unique interaction towards
gi+1 (here and in the sequel, indices are considered modulo n, the length of the
circuit, i.e., i + n = i).

Let C = (G,K) be a regulatory circuit, with G = {g1, . . . , gn} and K =
{Ki(∅), Ki(gi−1)}i=1,...,n, recalling that I(i) = {gi−1} (cf. [25] for more de-
tails). In this simpler context, when we consider the interaction from gi to gi+1,
the values of parameters for which the circuit is functional (see Section 3.2) are
Ki+1(∅) = 0 and Ki+1(gi) = 1 (we say that this interaction is an activation), or
Ki+1(∅) = 1 and Ki+1(gi) = 0 (the interaction is an inhibition).

The corresponding regulatory Petri nets N(C) have a well defined structure,
see Figure 2.

In [25], we have proved that an isolated functional positive circuit generates
two stable states, which are mirroring each other (a component is on in one state
iff it is off in the other state), and that an isolated functional negative circuit
leads to a dynamical graph where all states feed a specific dynamical circuit of
length twice the number of elements in the circuit. These results can be restated
in the Petri net formalism (see [8]):

Property 1. – Let N(R) be a regulatory Petri net corresponding to an isolated
(functional) positive regulatory circuit, then there are exactly two dead valid
markings M1

d and M2
d which are mirroring each other. Each of these two

markings is reachable from any other valid marking.
– Let N(R) be a regulatory Petri net corresponding to a (functional) negative

regulatory circuit and E be the set of all valid markings which enable exactly
one transition.
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Fig. 2. Three-element regulatory circuits and the corresponding Petri nets. Upper row:
positive circuit. Lower row: negative circuit. Note that transitions t1 and t13 are re-
peated, illustrating the ring structure of the net.

1. Any valid marking of the net is not dead.
2. E has 2n elements and is organised as a cycle (defining a livelock).
3. Each marking in E is reachable from any valid marking.

3.2 Functionality of Regulatory Circuits

Thomas’ conjectures only refer to necessary conditions. Indeed, in many cases,
although circuits do exist in the regulatory graph, we do not observe the expected
dynamical properties, or at least not everywhere in the phase space.

Consider the following example:
R = (G,A,K) with G = {x, y, z}, A = {(x, y), (y, x), (z, y)}, and

K = {Kx(∅) = 0, Kx(y) = 1, Ky(∅) = 0, Ky(x) = Ky(z) = Ky(x, z) = 1} .

The circuit x � y could be embedded in a larger graph, but, for the sake of
conciseness, we represent the external influence upon this circuit by the input
variable z, which acts here only on y (cf. Figure 3).

For the parameter values selected, when the variable z is set to 0, multista-
tionarity appears, but when z is set to 1, the dynamical behaviour is degenerated
(see Figure 3). Indeed, when z is present, the state of x (its presence or absence)
has no influence on y (Ky(z) = Ky(x, z)). We say that the interaction x → y
is not functional when z is present (and, a fortiori, the circuit x � y is not
functional).

In the sequel, we present a formal definition of the notion of functionality,
for one interaction and, more generally, for a circuit. This definition is local,
i.e., functionality is defined within a specific context, since the functionality of a
circuit embedded in a more complex regulatory network may depend on the effect
of some combination of incoming interactions. These definitions are proposed
here in the Petri net framework, but they easily translate into other discrete
modelling frameworks.
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Fig. 3. Top: Two-element regulatory circuit x � y submitted to an external influence
represented by node z. Bottom: Dynamical behaviour of the regulatory circuit depend-
ing on the value of the input z. When z is off (left), the system reaches two stable
states (boxes [00] and [11]); when z is on (right), the system exhibits a unique stable
state (box [11]).

Definition 3. Functionality of an interaction Let R = (G,A,K) be a
Boolean regulatory graph, and N(R) = (P, T, Pre, Post) its associated Boolean
regulatory Petri net. Let us consider an interaction A : gi −→ gj of the graph
R, and (X, X ′) a partition of I(j) \ {gi} into two sets, possibly empty, of gj

regulators. When
Post(tjX , gj) �= Post(tjX∪{gi}, gj) ,

we say that A is functional in the context (X, X ′). Then, its functionality
marking set is denoted SA ⊆ {M : P → {0, 1}}, and contains all the valid
markings for which A is functionnal:

SA =
⋃

(X,X′)
{M : P → {0, 1} | M(g) = 1 ∀g ∈ X , and M(g) = 0 ∀g ∈ X ′} ,

where the union is taken over all the partitions (X, X ′) of I(j) \ {gi}.
Therefore, an interaction is said to be functional within some context if the
modification of the level of expression of its source leads to a change of the level
of its target. The functionality of a circuit thus depends on the existence of a
context for which all the transitions of this circuit are functional.

Definition 4. Functionality of a circuit A marking M belongs to the func-
tionality marking set of a circuit C if it belongs to the intersection SC of the
functionality marking sets of all interactions of C.

If such a marking exists (SC �= ∅), then SC is the functionality marking set of
the circuit C.

Note that if SC = ∅, we say that the circuit is not functional.
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We propose hereafter an algorithm to determine the functionality marking set
of a given circuit C embedded in a Boolean regulatory graph R.

Let N(R) = (P, T, Pre, Post) be the BRPN associated to R. Assume that C
consists in p interactions Ii : gi → gi+1, for i = 1, . . . , p (notation modulo p). For
each i, apply the following procedure:

1. Determine Trans(gi+1), the set of all transitions ti+1
X , for all X ⊆ I(i + 1):

Trans(gi+1) = {t ∈ T, C(gi+1, t) = 1 or C(gi+1, t) = 1}, where C is the
incidence matrix of N(R).

2. Determine the pairs of transitions (t, t′) ∈ Trans(gi+1) such that: Pre(gi, t) �=
Pre(gi, t

′), and for all g different from gi and gi+1, Pre(g, t) = Pre(g, t′).
3. For each such pair (t, t′), test whether the interaction is functional, i.e.,

Post(t, gi+1) �= Post(t′, gi+1). In this case,
– The context of functionality (X, X ′) is given by:

X = {g ∈ I(i + 1) \ {gi} s.t. Pre(g, t) = Pre(g, t′) = 1}
X ′ = {g ∈ I(i + 1) \ {gi} s.t. Pre(g, t) = Pre(g, t′) = 0}.

– We define the set St,t′ of markings M such that for each g ∈ X , M(g) = 1
and for each g ∈ X ′, M(g) = 0.

4. Define Si to be the union of all the St,t′ .

Finally, the functionality marking set of C is the intersection of the functionality
marking sets Si, i = 1, . . . , p.

In conclusion, the functionality of a circuit has to be considered for all different
possible contexts. This relates to the notion of ”local graph” derived from the Ja-
cobian matrix in the case of ODE systems (see [31] and [26] for the Boolean case).

4 Application to the Modelling of Th-Lymphocyte
Differentiation

4.1 Introducing Th-Cell Differentiation

The vertebrate immune system contains diverse cell populations, like antigen pre-
senting cells, natural killer cells, and B and T lymphocytes. Among the latter,
CD4+ T helper lymphocytes (Th), upon receiving an appropriate antigenic stim-
ulus, can further differentiate into T-helper 1 (Th1) or Th2 cells, which enable cell
mediated immunity and humoral responses, respectively. Th1 and Th2 cells can be
distinguished according to their pattern of cytokine secretion. Immune responses
biased towards the Th1 phenotype may result in autoimmune diseases, while en-
hanced Th2 responses can lead to allergic reactions [1,23]. Various mathematical
models have been proposed for the differentiation, activation and proliferation of
Th-lymphocytes, but most of these models focus on interactions between immuno-
logical cell populations at a macroscopic level [4,35]. Other model analyses aim at
understanding the mechanism of the generation of antibody and T-cell receptors
diversity, as well as the dynamical properties of the large networks defined by the
interactions between cytokines [17] or between immunoglobulins (see e.g. [34]).

The Boolean model considered hereafter is a simplication of the multi-valued
logical model defined and analysed in [21], where the biological justification of
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STAT4

GATA3

IL−12

IL−12R

STAT1

IFN-γR IFN-γ

Fig. 4. Regulatory graph of the network controlling Th lymphocyte differentiation. The
nodes represent transcription regulatory factors (T-bet, GATA-3), signaling transduc-
tion factors (STAT1, STAT4, STAT6, SOCS-1), lymphokines (IFN-γ, IL-4, IL-12) and
receptors (IFN-γR, IL-4R, IL-12R), whereas the edges represent activations (arrows)
or inhibitions (blunt arrows) between these components.

the set of interactions is given, accompanied with an extensive list of references
to the immunological literature.

Here, we focus on the delineation of the multi-stability properties of the net-
work as a result of the functionality of specific positive regulatory circuits found
in the corresponding regulatory graph. Furthermore, we show that this type of
feedback circuit analysis can be processed directly in the context of the Petri
net formalism, relying on the sole analysis of the Pre and Post matrices.

Given the regulatory graph in Figure 4, and the set of parameters in Table 1,
we construct the associated BRPN (P, T, Pre, Post) with:

– the set of places P = {g1, g1, . . . g12, g12} (the numbering of the places is
defined in Table 1),

– the set of transitions T = {tiX , i = 1 . . . 12, X ⊂ I(i)} (where tiX denotes the
transition corresponding to parameter Ki(X)).

The complete definition of the BRPN corresponding to the regulatory graph
is defined through the matrices Pre (of size (24×39)) and Post (of size (39×24))
(not shown). Applying the reduction rules described in Remark 1 and Remark 2,
the number of transitions can be reduced to 31. To illustrate the simplication of
the resulting BRPN, let consider the case of IFN-γ, we have K1(9) = K1(11) =
K1(9, 11) = 1. These parameters lead to the definition of 3 transitions. In this
case, it is easy to simplify the Boolean function: IFN-γ is called to increase if one
of its activator is present, whatever the state of the other regulator; therefore,
2 transitions can account for this situation. Let now consider the case of T-bet,
which is a self-regulator and have 2 other regulators, namely STAT1 and GATA3.
As T-bet is subject to 3 interactions, 8 (= 23) parameters are to be defined,
5 of them are zero (see Table 1). First, applying Remark 1 for the non-zero
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Table 1. For each gene of the regulatory graph presented in Figure 4: the non-zero
parameters and the corresponding expression level in each stable state (S1, S2, S3). As
IL − 12 acts as an input, the only parameter to be defined is its base value (K12(∅)
which is set to 0).

Stable
Genes Non-zero parameters states

S1 S2 S3

IFN-γ (1) K1(9) K1(11) K1(9, 11) 0 0 1

IL-4 (2) K2(12) 0 1 0

IL-12 (3) 0 0 0

IFN-γR (4) K4(1) 0 0 0

IL-4R (5) K5(2) 0 1 0

IL-12R (6) K6(3) 0 0 0

STAT1 (7) K7(4) 0 0 0

STAT6 (8) K8(5) 0 1 0

STAT4 (9) K9(6) 0 0 0

SOCS1 (10) K10(7) K10(11) K10(7, 11) 0 0 1

T-bet (11) K11(7) K11(11) K11(7, 11) 0 0 1

GATA-3 (12) K12(8) 0 1 0

parameters, we can dismiss t1111 and t117,11. Then, for the situations conducing to a
decrease of the level of T-bet, again, we can dismiss all transitions corresponding
to conditions where T-bet is absent (Remark 1).

The regulatory graph of Figure 4 contains 18 regulatory circuits (15 positive,
three negative), involving from one to ten elements. Using the logical formalism,
it can be shown that nine of these circuits (seven positive, two negative) are
functional. Still in the context of the logical approach, three stable states are
found. In what follows, we show that these three stable states actually correspond
to “dead markings” in the corresponding BRPN, and we apply the procedure
described in Section 3.2 to one particular circuit.

4.2 Stable States and Their Biological Interpretation

Using the logical approach, it can be shown that the system encompasses the
three stable states included in Table 1. The first stable state (S1) corresponds
to the virgin Th cells, whereas the second and third stable states correspond to
Th2 and Th1 differentiated lymphocytes, respectively. We can easily check that
these stable states correspond to dead markings for the corresponding BRPN,
verifying that: ∀t ∈ T, ∃p ∈ P s.t. Pre(p, t) = 1 andM(p) = 0. We will only give
here some hint of the proof:

– For S1, where all genes are OFF (S1(gi) = 0, i = 1, . . . 12), it is clear
that no transition is enabled because of the matrix Pre which verifies:
∀t ∈ T, ∃g s.t. Pre(g, t) = 1.

– For S2, S2(g2) = S2(g4) = S2(g8) = S2(g12) = 1 whereas S2(gi) = 0 for the
other genes. S2(g2) = 1 could enable t2, t27, t27,12, t52 and t52,10, but:
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Pre(g12, t
2) = Pre(g12, t

2
7) = 1 and S2(g12) = 1 (⇔ S2(g12) = 0),

Pre(g7, t
2
7) = 1 and S2(g7) = 0,

Pre(g5, t
5
2) = 1 and S2(g5) = 0,

Pre(g10, t
5
2,10) = 1 and S2(g10) = 0.

Consequently, no transition is enabled under the marking S2.
– A similar reasoning can be developed for S3.

The logical approach is well suited to determine the set of stable states of a
regulatory network (generating the ”whole” state transitions graph when it is
feasible, or using a constraint-programming approach). In the PN framework,
we may be also able to determine the set of dead markings, independently of the
initial conditions, using model-checking or pure algebraic approaches.

Once, the dead markings are determined, it is necessary to check their reach-
ability from specific initial conditions. We have performed such analyses with
INA (Integrated Net Analyzer [37] and obtained meaningful trajectories (see
[21]). From an initial marking corresponding to a virgin cell state (S1) but with
IL-4 present (simulating the effect of adding IL4 to the extracellular medium),
the resulting marking graph containts 14 markings including the two reachable
dead markings S1 and S3. Now, with an initial state corresponding to a vir-
gin cell state but with IFN-γ present, the marking graph contains 24 markings,
including the two reachable dead markings S1 and S2.

4.3 Regulatory Circuits: Dynamical Roles and Functionality
Constraints

To illustrate the procedure defined in Section 3.2, let us consider the following
positive circuit: C= [IL-4, IL-4R, STAT6, GATA-3]. In order to determine the
functionality marking set of this circuit, we perform the first step of the proce-
dure, on each of the four interactions defining C, successively. This leads to the
selection of the following submatrices of Pre (Table 2) and Post (Table 3).

Note that the set of genes to be considered encompasses not only the four
genes of C (IL-4, IL-4R, STAT6, GATA-3), but also the genes exerting inputs
on these genes (STAT1, SOCS1, T-bet).

Following the procedure, we now need to apply steps 1-4 to each interaction
of the circuit C (we denote Si the functionality marking set of the interaction
targeting the node i). We limit ourselves here to their applications to the interac-
tion from IL-4 (2) to IL-4R (5). Step 1 of the procedure leads to the definition of
the set Trans(IL − 4R) = {t5, t52, t510, t52,10}. Then, step 2 results in the selection
of the pairs (t5, t52) and (t510, t52,10). Proceeding with steps 3 and 4:

– For the pair (t5, t52), we have Post(t5, g5) �= Post(t52, g5), and the interaction
is thus functional in the context X = ∅ and X ′ = {g10}. The corresponding
functionality marking set is S2 = {M : P → {0, 1} s.t. M(g10) = 0}.

– For the second pair, we have Post(t510, g5) = Post(t52,10, g5). Consequently,
these transitions add no further marking to the current functionality marking
set.
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Table 2. Sub-matrix Pre for the circuit C =[IL-4, IL-4R, STAT6, GATA-3] and its
inputs

t2 t27 t212 t27,12 t5 t52 t510 t52,10 t8 t85 t12 t128 t1211 t128,11

IL-4 (2) 1 1 0 1 0 1 0 1 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 0 0 0 0 0

IL-4R (5) 0 0 0 0 1 0 1 1 0 1 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0

STAT1 (7) 0 1 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0

STAT6 (8) 0 0 0 0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 1 0 1 0

SOCS1 (10) 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0

T-bet (11) 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0

GATA-3 (12) 0 0 1 1 0 0 0 0 0 0 1 0 1 1
1 1 0 0 0 0 0 0 0 0 0 1 0 0

Table 3. Sub-matrix PostT for the circuit C =[IL-4, IL-4R, STAT6, GATA-3] and its
inputs

t2 t27 t212 t27,12 t5 t52 t510 t52,10 t8 t85 t12 t128 t1211 t128,11

IL-4 (2) 0 0 1 0 0 1 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 0 0 0 0 0 0 0

IL-4R (5) 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 1 0 1 1 1 0 0 0 0 0

STAT1 (7) 0 1 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0

STAT6 (8) 0 0 0 0 0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 0 0 1 0 1 0 1 0

SOCS1 (10) 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0

T-bet (11) 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0

GATA-3 (12) 0 0 1 1 0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 0 1 0 1 1

The same reasoning can be followed for the three other interactions of the
circuit C, leading to: S5 = {M : P → {0, 1}} (all possible valid markings), S8 =
{M : P → {0, 1} s.t. M(g11) = 0}, and S12 = {M : P → {0, 1} s.t. M(g7) = 0}.

Finally, the functionality marking set of the circuit C is the intersection
of the four resulting marking sets: SC = S2 ∩ S5 ∩ S8 ∩ S12 = {M : P →
{0, 1} s.t. M(g7) = M(g10) = M(g11) = 0}.

In conclusion, the positive circuit C is functional provided that the products
STAT1 (g7), SOCS1 (g10) and T-bet (g11) are absent. It is interesting to note
that, if we switch the value of the parameter K2{12} to zero, this positive circuit
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looses its functionality. This loss of functionality results in the loss of the stable
state Th2 (S2).

5 Conclusions and Prospects

In this paper, we have described a systematic way to translate Boolean models
of genetic regulatory networks into standard Petri nets (see also [8]). We have
particularly focused on the delineation of a procedure to determine the marking
sets insuring the functionality of the feedback circuits found in genetic regulatory
graphs. This procedure leads to interesting insights into the temporal behaviour
of the modelled system, as it is well established that regulatory circuits are
found at the origin of fundamental dynamical properties, such as multistability
or homeostasis. The functionality marking set of a circuit defines the sub-region
of the phase space where this circuit generates the corresponding dynamical
property (e.g. the presence of a separatrix in the positive circuit case).

To illustrate our approach, we have delineated the Petri net translation of a
Boolean model for the molecular regulatory network controlling Th-lymphocyte
differentiation [21]. On the basis of this translation, we have shown that all three
logical stable states correspond to dead markings in the Petri net model. These
states represent specific lymphocyte populations: the virgin Th population, and
the differentiated Th1 versus Th2 populations, corresponding respectively to
the enhancement of cellular versus humoral immune response. Focusing on one
functional positive circuit, we have further illustrated how our formal proce-
dure can be applied to the Th-lymphocyte network model in order to delineate
the corresponding functionality marking set. Moreover, we have shown that the
contradiction of the functionality constraints (e.g. by changing the value of a
logical parameter in the logical formalism, or the incidence matrix in the Petri
net model) leads to the loss of one of the stable states.

To cover the full expression power of the generalised logical formalism [33],
we have recently proposed a generalisation of our rewriting rules to encompass
multilevel logical models in [7]. However, the feedback circuit analysis presented
in Section 3. has still to be generalised to the resulting Multilevel Regulatory
Petri Nets (MRPN).

Along with theoretical studies, our aim is to provide an integrated software
suite which allows the biologist to specify regulatory networks, develop tentative
models, and obtain qualitative results. We have already developped a software
which implements our logical modelling approach (GINsim, [38]). We are cur-
rently developping a module to automate the translation of logical regulatory
networks into Petri nets, allowing the analysis of the reachability graph using ex-
isting tools such as INA (Integrated Net Analyzer, [37]). Furthermore, as many
of the crucial qualitative dynamical properties can be expressed in temporal logic
(e.g. CTL), we are looking forward the application of model-checking techniques
developped in the Petri nets framework.



From Logical Regulatory Graphs to Standard Petri Nets 71

Finally, we are considering the use of colored Petri nets to generate graphically
simpler and more readable nets. The BRPN would then constitute the reference
unfolding to perform different types of analysis.

Logical modelling and Petri nets constitute two complementary approaches
for the dynamical modelling of biological regulatory networks. Their combina-
tion opens new prospects for the analysis of complex regulatory networks. In
particular, our rewriting rules for genetic regulatory interactions should ease the
modelling and analysis of mixed metabolic-genetic networks. The PN translation
of logical regulatory models further constitutes a promising intermediate step for
the development of more quantitative models, e.g. using hybrid or stochastic ex-
tensions of PN framework.
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Abstract. This paper addresses the translation of Systems Biology
Mark-Up Language (SBML) Level 2 models of network of biochemi-
cal reactions into the Biochemical Stochastic π-calculus (SPI). SBML
is XML-based formalism for systems biology, while SPI can describe the
concurrency of the different interactions occurring in a network of bio-
chemical stochastic reactions. SPI models can be used for simulation
by available computer packages. We present the approach followed in
designing a software tool for working biologists that parses an SBML
model and performs the unsupervised translation into the process alge-
bra model. To test the correctness of the translation process we present
the results obtained by performing simulations of a translated simplified
circadian clock model, comparing our results with that obtained with
the original differential equation model.

1 Introduction

The essence of a biological system lies in its dynamics and it cannot be de-
scribed merely by enumerating its components. Systems biology is an emergent
field that has grown rapidly over the last few years [1]. It aims at system-level
understanding of biological systems. A promising research field is the appli-
cation of IT techniques to systems biology for understanding of structure of
systems and their dynamics, both quantitatively and qualitatively. Considerable
attention has been paid in the literature to the development of methods for
bio-pathway representation and simulation, with which it is possible to model
the dynamic causal interactions of complex biochemical entities [2],[3],[4],[5].
Exchange languages have been recently developed to promote the integration
of models and tools from various sources [6],[7]. The Systems Biology Mark-up
Language (SBML) is an XML-based model representation formalism for systems
biology [8],[9] oriented towards describing Ordinary Differential Equation (ODE)
models of biochemical reactions (metabolic networks, cell-signalling pathways,
biochemical reactions, gene regulation, etc.). SBML stemmed from the neces-
sity of the systems biology community for information standards in order to
allow sharing, evaluation, and cooperative development of large models. Several
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software utilities and tools have been developed for converting existing path-
way files from genome databases into the SBML representation. For instance,
KEGG2SBML is an available tool to convert pathways from Kyoto Encyclopedia
of Genes and Genomes [10] into SBML.

On the other hand, process calculi, traditionally used as theoretical frame-
works for the study of concurrent computation, are adapted for applications
in systems biology, where concurrent processes are the norm. In this applica-
tion domain, process calculi do not represent a paradigm, but tools for a direct
description of the system. In particular, the stochastic π-calculus [11] formal-
ism has been used for the specification of molecular mechanisms governing the
biochemistry of different biological systems and phenomena. Moreover, the avail-
ability of simulators for the stochastic π-calculus, such as BioSpi [12] and the
more recent SPIM [13], made it possible to obtain from the models’ specifica-
tions also quantitative simulation results. The recent literature reports examples
of π-calculus modeling and simulation of cell cycle control [14], gene regulation
expression [15], λ-phage switch [16], lymphocyte recruitment in inflamed brain
micro-vessels [17]. These results emphasize the advantages of the use of the new
formalism in comparison to the more traditional mathematical approaches, such
as the ordinary differential equations based models. Unlike the ODE approach,
the stochastic π-calculus has the property of compositionality, which is also the
main feature of a network of biochemical interactions. It means that complex
systems are composed of independent parts. This feature is quite hard to be
expressed by a set of interdependent differential equations.

However, the translation from SBML of large molecular networks and their
specification into process algebra requires a level of encoding detail that deters
biologists not trained in formal methods from performing this conversion. Thus
the motivation for the present work is the development of a tool for working
biologists allowing them to convert SBML models into the π-calculus formalism
for feeding available stochastic π-calculus simulators. Although SBML is sup-
ported by more than 80 software systems, to our knowledge no tool exists for
converting models into process calculi for subsequent simulation. Since biologists
hardly have the knowledge to intervene in intermediate steps of the translation,
this process has to be fully automatic.

In this paper we present an automatic translation tool and the methods fol-
lowed in developing it. The challenges we approached in this task were the defin-
ition of techniques for the unsupervised extraction of specifications into process
calculi from the possibly incomplete information in the SBML description. This
paper is structured as follows: the next section briefly recalls the basics of the
SBML formalism and of the biochemical stochastic π-calculus; Sections 3 and 4
contain the assumptions on which the translation is based and a description of
the algorithm and of the tool implemented. In Section 5 we show a case study
on which we tested the proposed translation method and the results obtained
by performing simulation with SPIM (Version 0.02) on the translated model.
Finally, in Section 6 we present some conclusions and final remarks.
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2 Background

2.1 Brief SBML Description

The Systems Biology Markup Language is a machine-readable model definition
language, based upon XML (the eXtensible Markup Language), for systems biol-
ogy, oriented toward describing systems of biochemical reactions: cell signalling
pathways, metabolic pathways, biochemical reactions, gene regulations, etc. The
current SBML release is Level 2. The following is an example of a simple network
of biochemical reactions that can be represented:

S1
k1→ S2

S3
k2→ S3 + S4

where Si are species and the ki are arbitrarily complex reaction rates, expressed
in mathML format, involving parameters and species concentrations. Reactions
in SBML are defined primarily in terms of the participating reactants and
products (and their corresponding stoichiometries), along with optional mod-
ifier species, an optional kinetic law describing the rate at which the reaction
takes place, and optional parameters entering into the kinetic law. The model
contains a number of components: reactant species, products species, reactions,
rate laws, and parameters in the rate laws. The SBML model consents to define
lists of Function definitions, Unit definitions, Compartments, Species, Parame-
ters, Rules, Reactions, and Events.

A Function definition is a named mathematical function that can be used in
rate equations and other formulas; a Unit definition is a name for a unit used
in expression of quantities; a Compartment is a container of finite volume for a
species; a Species is a substance or entity, located in a compartment, that takes
part in a reaction; a Parameter is a quantity with a symbolic name; a Rule is
a mathematical expression added to the equations constructed on the set of re-
actions, used to set parameter values, establishes constraints between variables,
etc.; a Reaction is the description of some transformation, transport or binding
process that can change the amount of some species, given in terms of reac-
tants, products, modifiers and a kinetic law; an Event is a statement describing
an instantaneous, discontinuous change in a set of variables when a triggering
condition is satisfied. Detailed information about the SBML components can be
found in the specifications available at [8].

The SBML formalism allows models of arbitrary complexity to be represented.
Each type of component in a model is described using a specific type of data
structure that organizes the relevant information. Figure 1 shows a fragment
of the SBML file of a minimal model for circadian oscillations available in the
SBML model database [18].

2.2 The Biochemical Stochastic π-Calculus

In this section we briefly recall the biochemical stochastic π-calculus [11], a sto-
chastic extension of the π-calculus [19][20] for modeling biological concurrent
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<listOfCompartments>

<compartment id="deterministicOscillator"/>

</listOfCompartments>

<listOfSpecies>

<species id="EmptySet" compartment= "deterministicOscillator"

initialAmount="0" boundaryCondition="true"/>

<species id="A" compartment="deterministicOscillator"

initialAmount="0"/>

<species id="C" compartment="deterministicOscillator"

initialAmount="0"/>

<species id="R" compartment="deterministicOscillator"

initialAmount="0"/>

...

</listOfSpecies>

<listOfReactions>

<reaction id="Reaction1" reversible="false">

<listOfReactants>

<speciesReference species="A"/>

<speciesReference species="R"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="C"/>

</listOfProducts>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci> A </ci>

<ci> R </ci>

<ci> gammaC </ci>

</apply>

</math>

<listOfParameters>

<parameter id="gammaC" value="2"/>

</listOfParameters>

</kineticLaw>

</reaction>

...

</listOfReactions>

Fig. 1. A fragment of the SBML file of the Vilar minimal circadian clock model

processes. The processes are selected according to a suitable probability distrib-
ution in order to quantitatively accommodate the rates and the times at which
the reactions occur. At the microscopic scale, biological processes are carried out
by networks of interacting molecules, each composed of several distinct indepen-
dent structural parts, called domains. The interaction between molecules causes
their biochemical modification. These modifications affect the potential of the
modified molecules to interact with other molecules. The biochemical stochastic
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π-calculus represents the molecules as computational processes and the network
of interacting molecules as a mobile concurrent system. This kind of systems are
composed of a community of co-existing computational processes that commu-
nicate with each other and change their interconnection structure at execution
time. Each computational process is defined by its potential communication ac-
tivity. The communication between processes, namely the abstraction of the
chemical interaction, occurs via channels, denoted by their names (ranged over
by x, y, . . . ). The basic communication primitives are input and output actions,
denoted respectively by x(y) and x〈z〉. Two concurrent processes can commu-
nicate only if they share a common channel name. Executing the input x(y)
means being ready to receive a name for y along the channel x, and executing
x〈z〉 stays for being able to send the name z along channel x. In what follows,
when the parameter of the communication is not relevant, we shortly denote an
output action and an input action on channel x by x and x, respectively.

Processes (ranged over by capital letters P, Q, . . . ) are given by the following
BNF-like syntax:

P ::= 0
∣∣ (π, r).P

∣∣ (νy)P
∣∣ P |P ∣∣ P + P

∣∣A(y1, . . . , yn).

where π ::= x(y) | x〈z〉.
The simplest process is the empty process 0 that can do nothing. A process P

may be prefixed by (π, r) where π is the first atomic action (either an input or
output action) that the process (π, r).P can perform and r is the single parameter
of an exponential distribution that characterizes the stochastic behavior of the
activity corresponding to the prefix π. If π is the input action x(y), then it is
a binder for the name y with scope P . The restriction operator (νy) in (νy)P
is another binder for y with scope P : it declares that y is a private resource
of P , as opposed to a global (or public) name. An occurrence of a name in
a process is free if it is not within the scope of a binder for that name. The
infix operator | denotes the parallel composition of the two processes, and + the
choice between the possible actions of the two operands. Finally, A(y1, .., yn) is
a constant definition. The dynamic behavior of a process is driven by a Gillespie
algorithm for the exact simulation of coupled chemical reactions [21]. Given a
mixture of N chemical species interacting through M reaction channels, the
algorithm proceeds iteratively by selecting at each iteration a reaction μ (μ =
1 . . . , M) at a time step τ , changing the number of the molecules to reflect
the execution of the selected reaction μ and advancing the time according to
the selected time step τ . The process is repeated until some threshold time
is reached. The algorithm makes time steps of variable length, based on the
reaction rate constants and population size of each chemical species. In each
iteration one random number is used to determine when the next reaction will
occur, and another random number determines which reaction it will be. The
random numbers are taken from the exponential distribution as this is the only
distribution which has the memoryless property. This means that the probability
of a reaction is independent of the elapsed time, given that the possible reactions
remain the same.
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2.3 The Stochastic Pi Machine

In the Stochastic Pi Machine (SPIM) [22] a given process P is encoded in a cor-
responding simulator term V , consisting of a list of summations with a number
of top-level private names:

νx1νx2 . . . νxN

(∑
1

::
∑

2
. . . ::

∑
M

:: []
)

The simulation of a summation list is performed in two steps: firstly an interaction
channel x and the corresponding interaction time τ are stochastically chosen by
using the Gillespie algorithm. Then the simulator randomly selects a summation
x(m).P +

∑
, containing an input on channel x and a second summation x〈n〉.Q+∑′ containing an output on x. The selected components synchronize on channel x

and the valuen is sent overx and substituted tom inprocessP (written asP{n/m}).
After the interaction, the unused choices

∑
and

∑′ are discarded and the processes
P{n/m} and Q are added to the rest of the list to be simulated.

3 Assumptions

Not all the components of a SBML Level 2 model can be translated into a
stochastic π-calculus model. In the following we give a brief list of the most im-
portant components for the description of network of reactions found in models,
along with their use in the translation process.

Species
Species in SBML Level 1 and 2 are treated as simple, indivisible biochemical en-
tities having only one possible state [9]. The possible different internal states of
a biological entity or its sub-components are represented as a separately-named
chemical species.

The consequence of representing each different state as a species is the loss of
compositionality, which, on the contrary, is the main feature of the π-calculus
formalism. The absence of compositionality in a biological model can lead in
many cases to hide or even to neglect relevant information. Let us consider, for
example, the series of events described by the following two reactions:

S1 + S2
k1→ S3

S3
k2→ S4

In SBML S1, S2, S3 and S4 have to be modeled as separately-named species and
it is not possible to formalize further knowledge about the internal structure of
S3 and S4: whether S3 is a physical binding of S1 and S2 or something else, or
whether S4 is also a complex or not. Although the π-calculus can express this kind
of biological information, the automatic translation can only reproduce the same
level of abstraction, and thus the same content of knowledge, of the original SBML
model. In fact, an automatic system cannot retrieve from the SBML model any
non-explicitly expressed information about both the internal structure of species
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and the chemical dynamics of the reaction. For this reasons we consider species as
monolithic entities and adopt a literal translation of the SBML model.

Reactions
A reaction is described in terms of reactants and products with their stoichiome-
tries, modifiers and an optional kinetic law. The SBML specification does not
impose any restriction on the number of reactants and products in a reaction. Re-
actions with more than two reactants should be factorized in binary interactions
that can be translated into pairwise communications of stochastic π-calculus.
However, the available information in the SBML model is not sufficient to allow
the application of this procedure. Various reasons motivate this assertion. In gen-
eral the dynamic of the intermediate binary interactions may be not known: the
lack of information can regard simply the values of the rates of each reaction step,
or the causality of the events. But there is a more serious reason. Even in the simple
case of a third order reaction, it appears fairly hard to represent the simultaneity
of the 3-body process into process algebra through an appropriate factorization.
Consider, for example, a third order reaction where each reactant is modeled as
a process. It could be factored in two second order steps. The first step consumes
two reactants to produce an intermediate process. In the second step the interme-
diate process reacts with the third reactant. However, if the third reactant process
is not available, the overall result is to consume two reactants for creating dead-
lock intermediate processes. For these reasons the current work is limited to the
translation of SBML models containing at most second order reactions.

The limitation of the translation to first and second order reactions also im-
poses constraints on the stoichiometry values that can be associated to reactants.
For first order reactions, the reactant stoichiometry can be at most two. For sec-
ond order reactions the stoichiometry of each reactant can be only one. On the
contrary, the stoichiometry of a product can be any integer.

The kinetic law associated to a reaction, expressed in MathML, can be an
arbitrarily complex mathematical expression, involving constants as well as con-
centrations of species. A species acting as catalyst or inhibitor of a reaction is
modeled as a modifier that is neither created or destroyed in that reaction, al-
though it can be the product of other reactions. The effect of the modifier is
taken into account by using its concentration in the expression of the kinetic
rate. The Gillespie’s theory of stochastic chemical kinetics does not deal with
complex rates depending on time or catalysts’ concentrations, and the transla-
tion of reaction with catalysts is still an open problem. Thus, at the moment, the
conversion process does not take in account the presence of modifiers. Moreover,
in SBML Level 1 and 2 there is no information that indicates whether the given
rates are the deterministic rates or the stochastic ones. For these reasons the
correct rates cannot be automatically read by the SBML model, but have to be
introduced in the translated model by the user.

Compartments
Compartments are defined as bounded spaces in which species are located. In
fact, the compartment is an attribute of the species, not of the reaction. This
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means that it is not necessary to use process algebra mechanisms (such as chan-
nel restrictions) for isolating a reaction in a given compartment. If the value of
the initial concentration of a species and the size attribute of its compartment
are both present, they can be used to set the initial instances’ number of the
process corresponding to the species.

Rules and events
Rules are mathematical expressions to set parameters, establish constraints be-
tween quantities, etc, whereas events are mathematical formulas evaluated at
specified moments in the time evolution of the system. It is not obvious how
to force the number of processes to depend on trigger events or on constraints
that cannot be expressed using reactions. Thus the current work is limited to
the translation of models in which these entities are not present.

4 Translation

The algorithm implemented allows the tool to automatically translate first and
second order reactions with an arbitrary number of products. For each reactant
species S we define a process P of the form:

P =
m∑

i=1

Pi

where m is the number of reactions in which S takes part as reactant. Each Pi is a
prefix process of the form (πi, ri).Qi, where πi is an input (output) globally fresh
name and ri is the channel communication rate. The form of Qi depends on the
occurrence of the reactant species only as reactant or as product as well. The form
of Qi is also determined by two boolean SBML species attributes that specify
possible constraints on the concentration of a given species: namely the constant
and boundaryCondition fields (see [8]). The combination of these fields’ values
indicates whether the species concentration has to remain constant, or can be
changed either by the set of reactions or by the rules. In the latter case, since
we do not consider models with rules, we treat the concentration as constant.

In the following we give the rules for determining the form of the concurrent
processes distinguishing between first and second order reactions.

4.1 First Order Reactions

The i-th member of the summation P determined by the reaction Ri : S
ki→∑

j njSj , where j = 1, . . . , l, l is the number of the product species, and nj is
the stoichiometry of the j-th product, is of the form:

Pi = (ai, ri).Qi (1)

where ai is an input channel and the stochastic communication rate ri is pro-
portional to the kinetic reaction rate. The algorithm distinguishes two cases:
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(i) the reaction changes the reactant concentration and (ii) the reaction cannot
change the reactant concentration. The latter case occurs when the concentration
value is constrained to remain constant by the values of the species attributes
constant and boundaryCondition.

If the reactant concentration does not change the process Qi is defined as:

Qi = P |
l′∏

j=1

Vj (2a)

where Vj is given by:

Vj =

nj−times︷ ︸︸ ︷
Wj | . . . |Wj (2b)

The set of the Wj indexed by {1, . . . , l′} contains each process corresponding to a
product species Sj (with stoichiometry nj) whose concentration can be changed
by the set of reactions, but does not contain the process P .

If the reaction can change the reactant concentration, the process Qi is given
by:

Qi =
∏
j

Vj (2c)

where Vj is as in (2b), but now the set of the Wj contains P if the reactant
appears as product as well. If the set of the Wj is empty the process Qi is set
to the null process.

Since communications in π-calculus are pairwise, a special process CLOCKi

is created for allowing the reaction to proceed. The process CLOCKi is given by:

CLOCKi = (ai, ri).CLOCK (3a)

where CLOCK is:

CLOCK =
q∑

k=1

CLOCKk (3b)

and q is the number of first order reactions in the network.

4.2 Second Order Reactions

Given a second order reaction Ri : S1 +S2
ki→ ∑

j njSj , j = 1, . . . , l, the reactant
species S1 and S2 are abstracted by the processes P1 =

∑
i P1i and P2 =

∑
i P2i

where:

P1i = (ai, ri).Q1i

P2i = (ai, ri).Q2i

If the concentration of the species S1 cannot be changed by the set of reactions,
the expression of Q1i is:

Q1i = P1|
l′∏

j=1

Vj (4a)
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where the set of the Vj is as in (2) and P1 /∈ {Wj}, otherwise:

Q1i =
∏
j

Vj (4b)

and P1 can be in {Wj}. If {Wj} is empty Q1i is set to the null process.
The process Q2i is defined by:

Q2i = P2|0 (5a)

if the concentration of the species S2 cannot be changed by the set of reactions,
otherwise:

Q2i = 0 (5b)

A special case is represented by first order reactions in which the reactant S
has a stoichiometry of two. In this case the reaction is a homodimerization and
is treated as a second order reaction where the two reactant processes are the
same component of the summation P with complementary channels.

4.3 An Example

Let us consider the translation of the reaction network composed by the following
four reactions:

R0: S0
k0→ S0 + S1

R1: S1 + S2
k1→ S3

R2: S3
k2→ S4

R3: S3 + S5
k3→ S6

R4: S4
k4→ S7 + S8

where no species concentration is constrained to remain constant by the respec-
tive attributes’ values. The set of species {S0, . . . , S8} is translated into the set
of processes {P0, . . . , P8}:

P0 = (chan R0, r0).(P0|P1) using (2c)
P1 = (chan R1, r1) .P3 using (4b)

P2 = (chan R1, r1).0 using (5b)
P3 = (chan R2, r2).P4 + (chan R3, r3) .P6 using (2c) and (4b)
P4 = (chan R4, r4).(P7|P8) using (2c)

P5 = (chan R3, r3).0 using (5b)

and, finally, using (3a) and (3b):

CLOCK = (chan R0, r0) .CLOCK + (chan R2, r2) .CLOCK +
+ (chan R4, r4).CLOCK
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4.4 The Implementation

The translation tool is implemented in Java. In this section we briefly describe
the main steps performed by the translator.

Step1: Parsing the SBML file and classifying the reactions
The program starts parsing the XML files chosen by the user for reading the
reactions, the species and their roles in each reaction and creates an internal
representation of these objects. The algorithm classifies the reactions as first or
second order reactions, according to the number of reactants. Also the algorithm
determines if the reaction changes the concentration of each participating species.
At this step the reaction network is graphically represented in the user interface
to give user a more friendly representation of the SBML model.

Step2: Solving the reaction network
At this step the tool solves each reaction of the network and creates the processes
associated to each species and the process CLOCK according to the rules given
above.

A particular case can occur when no reactants or products are specified in a
reaction (this description is permitted by the SBML specification). Biologically,
this specification corresponds to a creation and a degradation of one or more
species, respectively. The creation reaction is treated as a first order reaction,
in which a fictitious species with constant concentration is substituted to the
missing reactant. Degradation is treated similarly by creating a constant con-
centration product species abstracted by the null process.

Step3: Composing the system
At this step the whole system is composed according to the SPIM syntax to ob-
tain the process calculus model. The system definition starts with the definition
of the global channels, followed by the parallel composition of the concurrent
processes associated to the species, and by the set of instructions necessary to
set the initial amount of each process. The stochastic π-calculus model is dis-
played in the user interface. An input form allows user to insert in the model
the stochastic communication rates and the initial number of each process. Then
the model is saved on the disk for the subsequent simulation.

5 Case Study

To test the translation process some stochastic π models available in the SBML
repository were feed as input to the SPi-Machine. As a case study we show here
the results of the simulation obtained upon translation of a minimal model of ge-
nomically based oscillations originally described in [23] as a simplified circadian
clock model. The model, shown in Figure 2, involves two mutually interacting
genes, an activator A and a repressor R, which are transcribed into mRNA
and subsequently translated into protein. The activator A binds to the A and
R promoters increasing their transcription rates; the repressor R binds to A to
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Fig. 2. Biochemical network of the circadian oscillator model taken from [23]

Table 1. The set of the reactions and the respective stochastic rates represented in
the SBML model of the Vilar circadian clock. Reactions with the species ”EmptySet”
as product are degradations; this is expressed in the model by the value ”true” of the
attribute boundaryCondition, which does not allow the set of reactions to change the
EmptySet’s concentration (see Paragraph 4).

Name Reaction Rate constant

Reaction1 A + R → C γC = 2
Reaction2 A → EmptySet δA = 1
Reaction3 C → R δA = 1
Reaction4 R → EmptySet δR = 0.2
Reaction5 A + DA → DAp γA = 1
Reaction6 DAp → A + DA θA = 50
Reaction7 DA → DA + MA αA = 50
Reaction8 DAp → DAp + MA αAp = 500
Reaction9 MA → EmptySet δMA = 10
Reaction10 MA → A + MA βA = 50
Reaction11 A + DR → DRp γR = 1
Reaction12 DRp → A + DR θR = 100
Reaction13 DR → DR + MR αR = 0.01
Reaction14 DRp → DRp + MR αRp = 50
Reaction15 MR → EmptySet δMR = 0.5
Reaction16 MR → MR + R βR = 5

form the inactive complex C. Thus positive feedback is provided by the activator
protein A, while negative feedback is provided by the repressor protein R.
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The original model was generated in SBML by Shapiro using Cellerator, a
Mathematica package designed to facilitate biological modeling via automated
equation generation [24],[25]. The network of reactions represented in the SBML
model is shown in Table 1. A and R are the activator and repressor proteins;
DA is the activator gene; DAp denotes the activator gene bound to A; DR and
DRp refer similarly to the repressor promoter; MA and MR denote mRNA of A
and R, respectively; C is the inactivated complex formed by A and R.

The model in SPIM syntax (Version 0.02) generated by processing the SBML
file is shown in the following. The initial amount of each process is the num-
ber between angle brackets in the last set of channels (with the species names
prefixed by Init ). At the beginning of the simulation one single copy of the
activator gene and one of the repressor gene are present. The stochastic rates,
provided by the paper of Vilar, are those given in Table 1 and are inserted in
the directives new of the SPIM file.

Spim program listing of the Vilar circadian rhythm model

new chan_Reaction5:1.0:<> (*A, DA*)
new chan_Reaction11:1.0:<> (*A, DR*)
new chan_Reaction1:2.0:<> (*A, R*)
new chan_Reaction2:1.0:<> (*A, CLOCK*)
new chan_Reaction3:1.0:<> (*C, CLOCK*)
new chan_Reaction8:500.0:<> (*DAP, CLOCK*)
new chan_Reaction9:10.0:<> (*MA, CLOCK*)
new chan_Reaction6:50.0:<> (*DAP, CLOCK*)
new chan_Reaction7:50.0:<> (*DA, CLOCK*)
new chan_Reaction10:50.0:<> (*MA, CLOCK*)
new chan_Reaction14:50.0:<> (*DRP, CLOCK*)
new chan_Reaction12:100.0:<> (*DRP, CLOCK*)
new chan_Reaction13:0.01:<> (*DR, CLOCK*)
new chan_Reaction16:5.0:<> (*MR, CLOCK*)
new chan_Reaction4:0.2:<> (*R, CLOCK*)
new chan_Reaction15:0.5:<> (*MR, CLOCK*)
(*EOGAC*)
new Init_A:<int>
new A:<>
new Init_C:<int>
new C:<>
new Init_DA:<int>
new DA:<>
new Init_DAP:<int>
new DAP:<>
new Init_DR:<int>
new DR:<>
new Init_DRP:<int>
new DRP:<>
new Init_MA:<int>
new MA:<>
new Init_MR:<int>
new MR:<>
new Init_R:<int>
new R:<>
new Init_CLOCK:<int>
new CLOCK:<>

(
!A();(chan_Reaction5();DAP<> + chan_Reaction11();DRP<> + chan_Reaction1();C<> +

chan_Reaction2();())
| !C();chan_Reaction3();R<> | !DA();(chan_Reaction5<>;() + chan_Reaction7();(MA<> | DA<>))
| !DAP();(chan_Reaction8();(MA<> | DAP<>) + chan_Reaction6();(A<> | DA<>))
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| !DR();(chan_Reaction11<>;() + chan_Reaction13();(MR<> | DR<>))
| !DRP();(chan_Reaction14();(MR<> | DRP<>) + chan_Reaction12();(A<> | DR<>))
| !MA();(chan_Reaction10();(A<> | MA<>) + chan_Reaction9();())
| !MR();(chan_Reaction16();(R<> | MR<>) + chan_Reaction15();())
| !R();(chan_Reaction1<>;() + chan_Reaction4();())
| !CLOCK();(chan_Reaction8<>;CLOCK<> + chan_Reaction10<>;CLOCK<> +

chan_Reaction14<>;CLOCK<> + chan_Reaction12<>;CLOCK<> +
chan_Reaction13<>;CLOCK<> + chan_Reaction16<>;CLOCK<> +
chan_Reaction4<>;CLOCK<> + chan_Reaction15<>;CLOCK<> +
chan_Reaction2<>;CLOCK<> + chan_Reaction9<>;CLOCK<> +
chan_Reaction6<>;CLOCK<> + chan_Reaction7<>;CLOCK<> +
chan_Reaction3<>;CLOCK<>)

| !Init_A(n); if n>0 then (A<>|Init_A<n-1>)
| !Init_C(n); if n>0 then (C<>|Init_C<n-1>)
| !Init_DA(n); if n>0 then (DA<>|Init_DA<n-1>)
| !Init_DAP(n); if n>0 then (DAP<>|Init_DAP<n-1>)
| !Init_DR(n); if n>0 then (DR<>|Init_DR<n-1>)
| !Init_DRP(n); if n>0 then (DRP<>|Init_DRP<n-1>)
| !Init_MA(n); if n>0 then (MA<>|Init_MA<n-1>)
| !Init_MR(n); if n>0 then (MR<>|Init_MR<n-1>)
| !Init_R(n); if n>0 then (R<>|Init_R<n-1>)
| !Init_CLOCK(n); if n>0 then (CLOCK<>|Init_CLOCK<n-1>)
| Init_A<0>
| Init_C<0>
| Init_DA<1>
| Init_DAP<0>
| Init_DR<1>
| Init_DRP<0>
| Init_MA<0>
| Init_MR<0>
| Init_R<0>
| Init_CLOCK<1>

)

Fig. 3. The behavior of the activator A and repressor R proteins in terms of number
of processes versus time (in hours) resulting from the simulation performed on the
translated minimal circadian oscillator model
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The results of the simulation with SPIM of the Vilar model are shown in
Figure 3. The diagram reports the number of processes representing the activa-
tor A and the repressor R versus time in hours. As expected, activator A and
repressor R show the out-of-phase oscillatory behavior with a period of about 24
hours characteristic of the circadian rhythm. Our results are in excellent agree-
ment with that obtained in the original paper, both in the period of oscillations
and in the number of molecules of each species.

6 Discussion and Conclusions

The theoretical approach to the translation from SBML into the π-calculus and
the implemented algorithm yielded to develop a usable and valuable tool. The
simulation results of the stochastic π-calculus model generated by the tool are in
agreement with those showed in the original paper. Furthermore, the translation
is completely automatic hiding the complexity of both the formalisms from the
biologists. Since SBML is a standard widely supported by the systems biology
community, this tool can allow to perform simulation on a great number of
biological models available in the SBML repository.

A set of problems remains open and further investigation is needed. The prob-
lem related to the lack of structure and internal states of species can be addressed
when the SBML Level 3 extension, currently under development, will be avail-
able. As regards the role of modifiers, the translation procedure presented here
can also be applied to simple reactions with one modifier, one reactant and a
constant rate. In general, complex dynamic rates involving modifiers may be
accounted for by adding modifier processes producing (for catalysts that aug-
ment the reaction rate) or consuming (for catalysts slowing down the reaction)
reactant processes. However, the relation between the amount of the modifier
processes and the given kinetic law has to be deeply investigated.
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Abstract. We introduce a graph-theoretic formalism suitable for mod-
eling biochemical networks marked by combinatorial complexity, such as
signal-transduction systems, in which protein-protein interactions play a
prominent role. This development extends earlier work by allowing for
explicit representation of the connectivity of a protein complex. Within
the formalism, typed attributed graphs are used to represent proteins
and their functional components, complexes, conformations, and states
of post-translational covalent modification. Graph transformation rules
are used to represent protein-protein interactions and their effects. Each
rule defines a generalized reaction, i.e., a class of potential reactions that
are logically consistent with knowledge or assumptions about the rep-
resented biomolecular interaction. A model is specified by defining 1)
molecular-entity graphs, which delimit the molecular entities and mate-
rial components of a system and their possible states, 2) graph transfor-
mation rules, and 3) a seed set of graphs representing chemical species,
such as the initial species present before introduction of a signal. A re-
action network is generated iteratively through application of the graph
transformation rules. The rules are first applied to the seed graphs and
then to any and all new graphs that subsequently arise as a result of
graph transformation. This procedure continues until no new graphs are
generated or a specified termination condition is satisfied. The formal-
ism supports the generation of a list of reactions in a system, which can
be used to derive different types of physicochemical models, which can
be simulated and analyzed in different ways. The processes of generat-
ing and simulating the network may be combined so that species are
generated only as needed.

1 Introduction

A common feature of biochemical networks, especially those comprising protein-
protein interactions, is combinatorial complexity [15,7,29,26], which is present
whenever a relatively small number of biomolecular interactions have the poten-
tial to generate a much larger number of distinct chemical species and reactions.
For a system marked by combinatorial complexity, the conventional approach of
manually specifying each term of a mathematical model is often impossible if the
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model is intended to account comprehensively for the consequences of biomolec-
ular interactions. Thousands of reactions may arise from the interactions of only
a few proteins, as in cases we have studied [25,19,5]. A solution to this problem
is to specify a rule for each biomolecular interaction and its effects, and then use
the rules to automatically generate a logically consistent reaction network and
corresponding models, which may take diverse forms. This approach has been
used, typically ad hoc, to model a number of signal-transduction systems (for
examples, see [47,28,36]). These systems, in which combinatorial complexity is
ubiquitous, regulate cellular responses to environmental stimuli through protein-
protein interactions and play important roles in many diseases. The complexity
of models can be reduced in certain circumstances [8,18,6], but methods for
treating combinatorial complexity are still needed.

Recently, several frameworks and software tools have been developed for
modeling biochemical networks through formalized descriptions of biomolecu-
lar interactions. These frameworks include visualization tools and visual
languages [34,12,32,1], process algebras [43,10], and different types of rewrite
systems [9,48,20,4,17]. Software tools that allow specification of a kinetic model
via rules for biomolecular interactions include BioNetGen [4,17] and BIOCHAM
[20]. In both cases, rules are expressed in a rudimentary but general-purpose
language and interpreted through procedures of pattern matching and string
rewriting. Another tool that can be used to obtain a kinetic model, Moleculizer,
provides a set of modules for model specification [37]. Each module functions as
a reaction generator for a particular type of reaction. Related work is discussed
in more detail later.

Here, we provide a theoretical framework for extending the BioNetGen lan-
guage to include graph transformation rules [2]. This report formalizes the di-
agrammatic conventions proposed in [16] for representing proteins and protein
complexes as graphs and introduces new details about the graphical procedures
for model specification and generation. The motivation for this extension is a
desire to be able to explicitly track and account for the connectivity of a pro-
tein complex, which is important, for example, when the reactivity of a complex
depends on its configuration, which is common. The graph-theoretic formalism
is tailored to the problem of building physicochemical models of biochemical
networks, particularly protein-protein interaction networks. It allows for the ab-
straction of proteins, functional components of proteins, and protein complexes,
including multimeric proteins that function as a unit. Throughout the text, we
will illustrate concepts using cartoon diagrams of [16]. Most of these diagrams
pertain to the model of [19] for membrane-proximal events in FcεRI-mediated
signal transduction.

2 Model Specification

A model specification necessarily includes a definition of the material parts of a
system and all of the internal states of these parts to be considered. An example
of an internal state, which might be associated with a tyrosine residue (as a
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convenient abstraction), is phosphorylation status. The two possible states of
such a protein component might be labeled ‘phosphorylated’ and ‘not phospho-
rylated.’ Another example is the three-dimensional conformation of a protein.
If consideration of two conformations is adequate for modeling purposes, these
states might be labeled ‘open’ and ‘closed.’ A specification also includes a defini-
tion of the chemical transformations that can potentially take place in a system.
Some transformations may change the connectivity of molecular parts, as when
two proteins form a complex. Other transformations may change the internal
states of molecular parts, as when a protein tyrosine kinase (PTK) catalyzes a
phosphorylation reaction or when binding of a ligand induces a conformational
change of an allosteric enzyme. A reaction network is obtained by applying reac-
tion rules for chemical transformations to a seed set of chemical species. Ensem-
ble functions corresponding to readouts of interest, such as conserved quantities
or observables, can be used to specify model outputs. Graphs for elements of a
model specification are defined in detail below.

2.1 Molecular Entities, Components, and Complexes

Most molecular entities of interest, such as polypeptide chains, are structured
units of a biochemical network. Proteins involved in signal transduction, for ex-
ample, typically contain multiple functional components and interactions are
mediated by such components. Examples include sites of modification (amino
acid residues), protein motifs, catalytic subunits, and protein interaction do-
mains [41].

Definition 1. A Molecular-entity Graph is a triple M = (V, E, AM ), where V
is a set of labeled attributed vertices and E is a set of undirected edges. Ver-
tices represent components. Vertex labels need not be unique; multiple vertices
with the same label indicate components considered to be equivalent and may
give rise to structural symmetry. Edges represent intra- or intermolecular bonds
between components. A molecular-entity graph has a unique label and may have
an optional set of attributes AM .

Molecular-entity graphs for the four proteins considered in the FcεRI model
are shown in Fig. 1(a). Note that edges are not included, even though the
components of the molecules are physically connected. Consideration of these
connections would not affect the behavior of this particular model. Molecular-
entity graphs reflect the level of abstraction in a model and largely define the
model’s scope. Additional definition of the problem domain comes from typing
of the components and edges in molecular-entity graphs, which is discussed later.
Briefly, typing defines which attributes of a vertex are variable and which are
fixed. Typing also defines the possible values of the variable attributes. Fixed
attributes might include sequence, molecular weight, links to annotation sources,
etc. Molecular weight is one example of a fixed attribute that might affect re-
activity [37,17]. An example of a variable attribute is phosphorylation status,
which often affects binding activity.
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Fig. 1. Graphs of the FcεRI model. (a) Graph representations of molecular entities
in the model of [19] according to conventions proposed in [16], with minor deviations.
Vertices within the PTK Syk represent three components: tandem SH2 phosphotyrosine
binding domains, linker region (L) and activation loop (A). Components L and A
have a ‘state’ attribute that can take two values: Y and pY, corresponding to ‘not
phosphorylated’ and ‘phosphorylated’. The bivalent ligand is comprised of two identical
binding domains (Fc). The PTK Lyn includes a single component that lumps the
unique and SH2 domains of this protein. The multichain FcεRI receptor consists of
three components representing the α, β and dimeric γ chains of the receptor. The β
and γ components have phosphorylation state attributes like A and L above. (b) A
chemical species graph. (c) Component-level type graph (CTG) corresponding to this
model. (d) The chemical species in (b) typed over CTG by the typing mapping g. (e) A
pattern graph. (f) Members of an ensemble of chemical species matched by the pattern
graph.

In the future, it may be desirable to extend the concept of molecular entity to
embrace recursion, such that a molecular entity may be comprised of molecular
entities. In the meantime, we treat a complex of molecular entities as a special
case.

Definition 2. A Complex Graph MΣ is a connected set of molecular-entity
graphs. A complex graph may be associated with an alphanumeric label, if desired,
and an optional set of attributes.

In the model of [19], 300 out of 354 potential chemical species contain a receptor
dimer, which can be represented as a complex graph. It is important to consider
complexes, because complexes can be observed experimentally and are often of
functional significance. An example is provided by the case of a receptor that
becomes phosphorylated only when it is complexed with a second receptor of the
same type. Complex graphs are connected at the level of molecular-entity graphs,
but because the vertices of a molecular-entity graph need not be connected, a
complex graph may be unconnected at the level of component vertices. Note
that if we restrict ourselves to consideration of binary interactions (the default
assumption), then each vertex of a complex graph is connected by at most one
edge. The label of a complex graph may be either assigned or derived from
stoichiometry and molecule labels.
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2.2 Chemical Species

The material building blocks of a biochemical network, defined above, are its
components, molecules, and complexes. Chemical species, one of the two kinds
of elements in a chemical reaction network, are particular configurations of these
building blocks in specific internal states.

Definition 3. A Chemical-species Graph C is a molecular-entity or complex
graph with any and all variable attributes taking specific values.

A chemical-species graph is illustrated in Fig. 1(b). Note that, consistent with
the layout conventions of [16], molecular-entity graphs comprising the chemical-
species graph are enclosed in boxes for clarity and some labels are suppressed to
avoid clutter.

2.3 Types of Components and Bonds

The molecular-entity graphs of a system, and all derivative graphs of a system,
are typed over a component-level type graph, which defines the types of vertices
and edges in the system.

Definition 4. A Component-level Type Graph (CTG) of a biochemical system
comprises a pair (CV, CE), where CV is a set of vertex (component) types, and
CE is a set of edge (bond) types. Each type is associated with a set of attributes,
which may be variable or fixed. Values of fixed attributes are defined, and the
allowable values of variable attributes are enumerated or otherwise indicated. Any
graph G of a system comprised of or derived from the system’s set of molecular-
entity graphs is typed over CTG via a mapping g : G → CTG.

As indicated in Fig. 1(c), we consider the components of molecules in the FcεRI
model to belong to one of two types. Each component is a site of binding and/or
a site of phosphorylation. A site of phosphorylation has a variable attribute,
which has two possible values, Y (not phosphorylated) or pY (phosphorylated).
Components α, β, γ, Fc, unique/SH2, and SH2 are sites of binding. Components
β, γ, L, and A are sites of phosphorylation. The type graph of Fig. 1(c) further
indicates that two types of bonds are considered. A bond is allowed between
two binding sites or between a binding site and a phosphorylation site. A typing
mapping is partially illustrated in Fig. 1(d).

2.4 Pattern Graphs and Ensembles of Chemical Species

Pattern graphs are derived from molecular-entity graphs. They appear in reac-
tion rules and function evaluation rules, defined later, and they can be consid-
ered subgraphs of chemical-species graphs. We refer to the set of chemical-species
graphs matching a pattern graph as an ensemble, because these graphs represent
chemical species that all have a common reactivity or all contribute to a common
quantity (the value of an output function).
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Definition 5. A Pattern Graph P = (VP , EP ) is a set of molecular-entity
and/or complex graphs. These graphs need not be connected. The components,
molecular entities, and complexes of P may each be associated with a set of
variable attributes. In addition, connectivity of the graphs of P to external com-
ponents is specified via an interface. The Interface of a Pattern Graph IP is a
partition of VP into three sets: VP = V 0

P

⊔
V 1

P

⊔
V 01

P , where V 0
P is a set of com-

ponents that cannot be bound to components external to the pattern graph, V 1
P

is a set of components that must be bound to components external to the pattern
graph, and V 01

P is a set of components that are free to be either bound or unbound
to components external to the pattern graph.

A pattern graph is illustrated in Fig. 1(e). According to the conventions of [16],
the interface of a pattern graph is specified by the symbol used for a node (open,
half-filled, or filled circle). An open circle represents a component v ∈ V 0

P . A
half-filled circle represents a component v ∈ V 01

P . A filled circle represents a
component v ∈ V 1

P . By convention, a half-filled circle is omitted in the diagram-
matic representation of a graph if values of variable attributes of this component
are unrestricted. As indicated earlier, a pattern graph is used to define an en-
semble of chemical-species graphs.

Definition 6. An Ensemble of Chemical-species Graphs ΩP is a set of
chemical-species graphs each matched by an identical pattern graph P .

A chemical species graph C = (V, E) is matched by a pattern graph P =
(VP , EP ) iff

1. there exists a subgraph C′ = (V ′, E′) ⊆ C isomorphic to P via an isomor-
phism f : P → C′;

2. f is consistent with the interface IP ; and
3. f preserves attributes of components, molecular entities, and complexes, e.g.,

for a vertex v ∈ VP attributes of f(v) ∈ V ′ fall within the set of attributes
defined for v ∈ VP .

Figure 1(f) shows an ensemble of chemical-species graphs, each of which is
matched by the pattern graph of Fig. 1(e). Note that chemical-species graphs
containing multiple subgraphs isomorphic to a pattern graph may be matched
multiple times. For example, the simple string pattern AB matches BAB twice.
In the future, it may be useful to associate ‘context’ attributes with vertices of
a pattern graph to restrict or otherwise control the number of matches, which
affects parameterization of reactions (see below).

The observables of an experiment typically correspond to properties of ensem-
bles. Thus, it is important to be able to determine such properties so that model
predictions can be tested. This capability is obtained by specifying a function
evaluation rule [4,17].

Definition 7. A Function Evaluation Rule is a pattern P and a function of
attributes of chemical-species graphs belonging to ΩP . This function is referred
to as an output function.
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A function evaluation rule is processed by first finding the chemical-species
graphs matched by the pattern graph of the rule and then calculating the value
of the rule’s output function. An example of an output function is a weighted
sum of concentrations. A rule associated with this type of function is useful, for
example, for determining the total concentration of a protein X in a particular
state of phosphorylation when the protein may be distributed among numerous
chemical species, as is usually the case. Concentrations of chemical species are
weighted by the number of X proteins in each species.

2.5 Chemical Reactions

We have now introduced definitions needed to consider one of the two kinds of
elements in a biochemical reaction network, a chemical species. The second kind
of element is a chemical reaction.

Definition 8. A Chemical Reaction ρ comprises a set of reactant chemical
species graphs Rρ, a set of product chemical species graphs Pρ, and a rate law
νρ. Product chemical species graphs are obtained from reactant chemical species
graphs via graph rewriting consistent with chemistry.

Graph rewriting consistent with chemistry in the case of a closed system means
that Pρ is obtained from Rρ via composition of the following operations:

– addition/removal of intra- or inter-molecular edge(s),
– change of values of variables attribute(s), and
– replacement of a molecular entity or set of molecular entities with another

molecular entity or set of molecular entities having the same components.

The first two classes of operations are found in the FcεRI model. The third class
of operations is allowed so that one may model assembly and disassembly of a
multimeric protein (Fig. 2(d)), covalent reactions between proteins, and prote-
olytic cleavage of a protein. Examples of the latter reactions occur in activation
of the complement system via the classical pathway. (The enzyme C1 assembles
on the surface of an antigen, which leads to cleavage of complement component
C3 to generate fragments C3a and C3b. C3b may then attach covalently to the
antigen.) Two additional operations are allowed for an open system: synthesis
and degradation of a set of molecular entities. Degradation of a molecule means
that its corresponding molecular-entity graph is removed (to a sink external to
the system being modeled) along with any and all bonds to which it is connected.
Synthesis of a molecule means that a new molecular entity appears (from a source
external to the system being modeled). Finally, we note that the second class of
operations includes transport between compartments if compartment location
is included as a variable attribute of molecular entities in a multicompartment
system.

Figure 2 illustrates chemical reactions involving representative rewriting op-
erations. The composition of the rewriting operations of a reaction implies a
mapping fρ between vertices of Rρ and Pρ. This mapping must preserve, add,
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and remove molecular-entity graphs as units. In other words, if any vertex of a
molecular entity in Rρ maps to ∅ then all other vertices of this molecular entity
must also map to ∅ (Fig. 2(e)). Vice versa, if some vertex v ∈ M ⊆ Pρ lacks a
preimage, then no other vertices of M may have preimages. Importantly, up to
synthesis/degradation of molecular entities, fρ preserves components, i.e., ver-
tices of chemical species in Rρ and Pρ are the same even if molecular entities are
replaced with other molecular entities (Fig. 2(d)).
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Fig. 2. Different types of reactions. (a) Addition of an intermolecular chemical bond.
(b) Breaking of an intermolecular chemical bond. Note that breaking a bond does not
necessarily lead to two separate chemical species, because molecular entities may be
connected by more than one bond and bonds may be intramolecular as well as inter-
molecular. (c) Change of a component’s attribute value. (d) Replacement of a molecular
entity with two molecular entities having the same components. (e) Degradation of a
molecular entity. Note that, as suggested by the layout of the diagrams in this figure,
if the chemical-species graphs in Rρ and Pρ are each replaced with a single node, then
a chemical reaction can be represented as a directed bipartite graph.

2.6 Reaction Rules

A reaction rule is a generalization of an individual reaction. It defines a class of
chemical transformations of reactants to products; the reactants have common
properties, as do the products.

Definition 9. A Reaction Rule is a graph transformation rule r : RP → PP ,
a rate law ν, an application condition α, and precedence index N , where

1. A disjoint union of m reactant pattern graphs RP is used to match and
select m reactant chemical species Cr.

2. The transformation rule r includes a component-level mapping function f :
RP → PP consistent with chemistry (see above). It maps RP to a set of
n product pattern graphs PP . A set of reactant chemical species Cr un-
dergoes transformation by replacing the image of RP in Cr with PP via f .
Dangling edges are removed. This process of graph rewriting corresponds to
the well-known single-pushout approach [13]. Note that, to avoid ambiguity
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while embedding PP in Cr, any vertex of RP in V 0
RP of the interface IRP

must remain in the same set in PP , i.e., f(V 0
RP ) ⊆ V 0

PP .
3. The rate law ν is a function of rate parameters, such as a single-site rate

constant, and properties of chemical species Cr, such as their concentrations.
4. The application condition α may include, for example, a pattern selecting

species that may not serve as reactants.
5. The precedence index N is the priority of reactions generated by the rule.

It is sometimes convenient to specify a rule that will generate reactions that
replace a subset of reactions generated by another rule [17].

A reaction rule is illustrated in Fig. 3(a). It should be noted that a negative
application condition can be specified by assigning a zero-valued rate law to a
rule. All reactions with lower precedence generated by other rules are overridden.
A practical application of this idea is the case in which an inhibitor of an enzyme
is introduced to a model. An old rule that generates reactions catalyzed by the
enzyme can be overridden by a new rule that additionally contains the inhibitor
in RP and generates with higher precedence a reaction with a zero-valued or
reduced rate.

3 Model Generation

3.1 Application of Reaction Rules

A biochemical reaction network can be generated through iterative application
of a set of reaction rules to a seed set of chemical species until no further change
is possible (exhaustive generation) or a specified termination condition is reached
(such as iteration until a given number of product species or reactions has been
generated).

The process of applying reaction rules to a set of distinct chemical species
graphs C0 consists of the following steps, generalizing the algorithm of [17]. For
each chemical species C matched by RP , a transformation replaces RP in C
with PP according to a procedure of graph rewriting, which as mentioned earlier
corresponds to the standard single-pushout approach [13].

1. For each reaction rule rm,n, RP1+ . . . RPm → PP1+ . . . PPn, identify all sets
of species graphs in C0 that qualify as reactants. Then, for each RPi, find
all matching species graphs Ci ∈ C0. If an application condition is specified,
exclude all sets of species graphs that do not satisfy the condition.

2. For each set of reactant species
⊔

Ci, define a chemical reaction (graph trans-
formation) by replacing the image of

⊔
RPi in

⊔
Ci with

⊔
PPj . In this

operation, attributes of vertices in
⊔

Ci that do not differ between the cor-
responding vertices of

⊔
RPi and

⊔
PPj are preserved. Incident edges of⊔

Ci not indicated in
⊔

RPi or
⊔

PPj are also preserved. Any edge (l, c)
between a vertex l ∈ ⊔

RPj and c ∈ C \ ⊔
RPi is either replaced with an

edge (f(l), c), if f(l) ∈ ⊔
PPj , or removed, if f(l) = ∅. Assign the precedence

index N of the reaction rule to each reaction.
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3. Applying all reaction rules to the set of seed species, generate a list of distinct
reactions R0. If the list R0 contains identical reactions with different prece-
dence indices, delete reactions with indices less than the maximum index.
All identical reactions of the same precedence remain in R0.

4. Identify chemical species that are products in the list R0 but that are not
isomorphic to any in the list C0 to obtain a list of new species graphs C1.
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Fig. 3. Reaction rule for ligand-receptor binding in the model of [19]. (a) The rule
consists of a reactant pattern graph RP , a product pattern graph PP , and a mapping
f . The interface of RP specifies that two Fc components and an α component of RP
should be unbound. The rule generates a reaction in which one Fc component is bound
to the α component; the other Fc component is unaffected. The remaining components
of species matched by the rule are also unchanged. (b) An example of a reaction that
may be generated by the rule.

After the initial steps listed above, we continue the network generation pro-
cedure by iteratively applying each of the reaction rules to the set of species in⋃k

i=0 Ci, where k is a counter that is updated after each round of rule applica-
tion. Note that reactions need only be generated when reactant species include
at least one reactant in the list Ck. After each round of exhaustive application of
the rules, we obtain a list of new reactions Rk and a list of new product species
Ck+1. Termination occurs when either no new species are found or a specified
termination condition is satisfied. Application of the reaction rule of Fig. 3(a)
is illustrated in Fig. 3(b). In general, finding subgraph and graph isomorphisms
can be computationally expensive (the subgraph isomorphism problem is NP-
complete [27]), but efficient methods are available for many problems of practical
concern [50,39]. Also, for two labeled attributed graphs, (sub)graph isomorphism
can be ruled out in many cases by a simple comparison of labels and attributes.
Issues of termination and computational complexity are discussed further below.

Termination. Figure 4 illustrates a set of rules for which the rule-evaluation
procedure described above is non-terminating [11,16]. The rules of Fig. 4 describe
interaction of a symmetric bivalent ligand with a symmetric bivalent cell-surface
receptor. Rules (a) and (b) and their reverse forms describe the formation and
break up of polymer chains of alternating ligands and receptors. Rule (c) and its
reverse form describe ring closure and opening. The potential size of the network
is limited physically by the numbers of ligands and receptors and binding pa-
rameters, but without regard to these quantities, the network is of infinite size.
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Rule evaluation can be terminated by specifying an arbitrary cutoff for chain
size, number of species, etc. or a maximum number of iterations of rule evalu-
ation. With such an approach, one must be careful to ensure that a generated
network is of sufficient size to encompass the species populated in a simulation.
Alternatively, as described below, rule evaluation can be embedded in network
simulation. With this approach, network elements (species and reactions) are
generated as needed and arbitrary termination of network generation is avoided.
The fact that a set of reaction rules can generate sets of species and reactions of
unbounded size demonstrates that membership of a given species in a reaction
network is semi-decidable, meaning that membership cannot generally be ruled
out in a finite number of steps. Also, in general, it cannot be determined if eval-
uation of a set of rules will eventually terminate in the absence of a specified
termination condition, such as a maximum number of iterations. For biochemi-
cal systems, it is difficult to imagine a situation in which non-terminating rule
evaluation could pose a major problem. The effective size of a network is always
limited for physical reasons (e.g., as when only a finite number of molecules is
available to populate the species of a network). An example of network size being
limited by protein copy number is discussed in [15].
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PP1PP1

(a)(a)
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PP2PP2
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RP3RP3

KK33(n)(n)
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KK33(4)(4)

(c)(c)
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Fig. 4. Reaction rules for interaction of a bivalent ligand with a bivalent cell-surface
receptor. Evaluation of these rules is non-terminating. (a) Rule for ligand capture rule
and an example of rule application. (b) Rule for receptor chain elongation and an
example of rule application. (c) Rule for receptor chain closure and an example of rule
application. Note that the rate law in this rule depends on ring size [11]. Also note that
pattern RP3 selects a single species, whereas the pattern RP2 above selects two species.

Computational Complexity. The procedure of rule evaluation may be com-
putationally expensive for several reasons. Two important issues are as follows.

1. A problem of subgraph isomorphism must be solved to map a pattern graph
onto a species graph. Each reactant pattern in a rule set must be tested for
isomorphism against all of the species arising in a network.
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2. A problem of graph isomorphism must be solved to determine the uniqueness
of a species graph appearing in a new reaction. Each product of a new re-
action must be checked for uniqueness against the other species arising in
a network, which can be accomplished by generating a canonical label (a
string) for each product of each reaction.

The need to solve these problems in the procedure of rule evaluation could
limit the applicability of our modeling approach to ‘small’ systems in some cir-
cumstances. However, we expect the procedure to be practical more often than
not. Two factors serve to mitigate the computational costs. First, the vertices of
graphs are labeled and attributed, and as a result, the computational cost of iso-
morphism scales as the number of identical vertices (those sharing the same label
and attributes). This number is small in most cases we have considered, for ex-
ample, as in two models we have reported for signal-transduction systems [19,5].
It should be noted that these models are among the largest ever considered for
such systems, comparable in size to models developed for other systems using
distinct rule-based methods [36,37]. Second, even in cases where the first prop-
erty does not hold, as in the model of Fig. 4, the maximum degree of vertices
is generally small, one to three, and thus low-complexity algorithms are applica-
ble [38,21]. An unoptimized prototype implementation of our algorithm in Perl
(available upon request) demonstrates the practicality of the algorithm, which we
have used to generate an array of biological networks ranging in size from scores
of species to more than 104 species (unpublished material). Compared with the
method of BioNetGen 1.1 [4,17], which is based on string matching and substitu-
tion, we find that graph-based network generation is currently about an order of
magnitude slower. However, the method is still feasible. For example, with a lap-
top computer, the model of [19], which includes 354 species, is generated in about
2 s using BioNetGen 1.1 [4,17], and it is generated using the prototype software
in about 45 s. An extension of this model that includes 2954 species (available at
http://cellsignaling.lanl.gov) is generated in about 40 s and 1400 s using the
two software tools. Again, the prototype software has not been optimized: the al-
gorithm for (sub)graph isomorphism implemented at this time is simply that of
Ullmann [50]. Substantial improvements in performance should be possible.

3.2 Assigning Reaction Parameters

Although the rate law is the same for all reactions generated by a rule, rate con-
stants assigned to individual reactions may be different [17,37]. For purposes of
discussion, we will now assume that rate laws in reaction rules are rate laws for ele-
mentary reactions (i.e., they have the form νr = κrΠ

m
i=1[Ci], where [Ci] denotes the

concentration of chemical species Ci) and that the rate constant of the rate law, κr,
is a single-site rate constant. For a given individual reaction, the rate constant κr

may need to be multiplied by any of a variety of factors to ensure consistency with
other reactions generated by the same rule r. A factor may arise for reasons related
to collision frequency. For example, the collision frequency of A + B reactions, in
the limit of large numbers, is twice that of A + A reactions, all other factors being



Graph Theory for Rule-Based Modeling of Biochemical Networks 101

equal. A statistical factor may arise if there is reaction path degeneracy (multiple
chemically indistinguishable reaction paths from reactants to products). A factor
may arise for reasons related to turnover frequency in the case of a catalytic reac-
tion. For example, if formation of a complex facilitates an enzymatic reaction by
co-localizing enzyme and substrate, then we must consider the number of enzymes
in the complex. A factor, which equals a volume ratio, may arise if reactions take
place in separate compartments of different volumes. Rate constants may also be
modified by the properties of the reactant chemical species (Fig. 4(c)).

Statistical factors are related to symmetries [17]. Factors greater than 1 arise
when a pattern RP is symmetric, meaning there exist non-trivial automorphisms
ψ : RP → RP , and the reaction rule breaks the symmetry of the pattern. A
transformation that completely breaks pattern symmetry is associated with a
statistical factor of |Aut(RP )|, where Aut(RP ) is the automorphism group of
RP . Consider, for example, the reaction rule A.A → A + A′ in which A is a
molecular entity graph, A′ is a form of A that differs with respect to attribute
values, RP ≡ A.A, ‘.’ represents an edge connecting molecular entities, and ‘+’
serves to indicate that PP ≡ A + A′ is disjoint union of the graphs A and A′

and that the molecularity of each reaction defined by the rule is 2. The reactant
pattern is symmetric, with |Aut(RP )| = 2, but the nontrivial autmorphism is
not preserved under the mapping onto the product patterns. This reaction rule,
applied to the chemical species B.A.A.B, has a statistical factor of 2, because
either of the two A molecules can be transformed into A′ and the reactions
B.A.A.B → B.A + A′.B and B.A.A.B → B.A′ + A.B are chemically indistin-
guishable. When an automorphism is preserved under the mapping onto product
patterns, it does not contribute to the statistical factor of a reaction. For exam-
ple, the rule A.A → A + A applied to the chemical species B.A.A.B generates
the reaction B.A.A.B → B.A + A.B with a statistical factor of one. In gen-
eral, the statistical factor arising from pattern symmetry is given by the ratio

|Aut(RP )|
|Aut(RP→PP )| , where the denominator indicates the size of the group of autmor-
phisms of RP that are preserved under the mapping of RP onto PP . Statistical
factors also arise when the reactant chemical species Cr contain symmetric in-
stances of RP . For example, the rule A → A′ applied to A.A would generate the
reaction A.A → A.A′ with a statistical factor of 2.

3.3 Embedding Rule Evaluation in Simulation

The method of network generation described above does not rely on the popu-
lations of species in the seed set or rate laws. Once a biochemical reaction net-
work has been generated, it can be used to formulate different types of models.
For example, one can generate a system of coupled ordinary differential equa-
tions (ODEs) or a stochastic simulation algorithm (SSA) [23,24], which is a Monte
Carlo procedure for simulating discrete-event reaction kinetics. However, there are
cases when all potential species of a reaction network cannot be exhaustively enu-
merated, as for interaction of a bivalent ligand with a bivalent receptor (Fig. 4).
For such a system, rule evaluation would proceed indefinitely unless an arbitrary
termination condition is specified. A solution to this problem is to embed rule
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evaluation in the simulation procedure, such that chemical species are generated
only as needed. Two methods for embedding rule evaluation in SSA-based simu-
lation of biochemical reaction kinetics have been proposed [37,17], and both are
now implemented in BioNetGen. With lazy rule evaluation [37], only reactions
and species connected to newly populated species are generated. With layered rule
evaluation [17], the network is extended when a species is populated for the first
time by applying the reaction rules for a specified number of iterations (the de-
fault is one round), as in the procedure described earlier, to all current species.
The relative efficiencies of the various simulation procedures have yet to be fully
evaluated, but preliminary (unpublished) results indicate that pregeneration of
a network followed by simulation and on-the-fly generation of a network during
simulation are complementary. Lazy and layered simulation-embedded evaluation
of rules are comparable for problems we have considered (unpublished material).
Embedding rule evaluation in ODE-based simulations is straightforward and may
provide better performance than analogous SSA-based simulations.

4 Discussion

The sheer size of some biochemical systems makes it difficult to formulate mod-
els for them and represent these models in comprehensible ways. Reaction rules
for biomolecular interactions help to solve these problems [29,26]. Rules serve
as generators of reactions, which can then be translated into mathematical or
computational models, in the way SBML [30] is translated into, say, a system of
coupled ordinary differential equations (ODEs). In our experience, the equations
of a rule-based model typically far outnumber the rules from which they are de-
rived [19,5]. The ability to generate models through automatic interpretation of
rules overcomes limitations of writing models manually, which may be impossi-
ble. In mathematics, many combinatorial problems that are intractable become
tractable when reformulated in terms of generating functions (rules). Here, we
have extended methods for rule-based modeling of biochemical systems by intro-
ducing a formalism for graphical reaction rules, which can expressively represent
biomolecular interactions and the consequences of these interactions.

Our main motivation for introducing graphical reaction rules is that such rules
allow the connectivity of proteins in a complex to be explicitly and systematically
represented. This ability is needed when connectivity affects the reactivity of a
complex. A simple example is provided by the case of a bivalent ligand interacting
with a bivalent cell-surface receptor. As illustrated in Fig. 4, such a ligand induces
the formation of rings and chains of receptors. However, only a chain, such as
the protein complex illustrated on the right side of panel (b), can associate with
additional ligand or receptor. A ring, such as the protein complex illustrated on
the right side of panel (c), can only break apart. Clearly, chains and rings, which
may have identical composition and differ only with respect to connectivity, must
be distinguished. The most straightforward way of solving this type of problem,
we believe, is through the introduction of graphs. The cost of introducing graphs
is computational complexity. This cost seems difficult to avoid if one wishes to
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track connectivity of complexes, which is important for mechanistic modeling of
many biological systems.

Graphical reaction rules have further representational advantages over other
means of summarizing and analyzing biological systems. They can be visualized
as cartoon-like diagrams and therefore used for the same purpose as diagram-
matic interaction maps [34,1], which are in common use. However, unlike most
interaction maps, rules have precise interpretations [16]. A set of well-posed rules
unambiguously specifies a reaction network, and a model for this network can be
generated through a computational procedure that interprets the rules. Because
the procedure is automatic, once rules are specified, very little mathematical or
computational expertise is required in principle to obtain a mathematical model.
Graphical reaction rules are also close in form to the type of biological knowledge
usually available about a system, which may consist mainly of a list of proteins,
their functional components, and their binding and catalytic activities, even for
a well-studied system. Thus, because graphical rules can be specified essentially
by drawing cartoon-like diagrams (an interface that provides this capability is
in development) and they provide a natural way to formalize biological knowl-
edge, graphical rules may, with maturation of software, allow more biologists to
contribute to the development of mathematical models, which are needed for
predictive understanding of biological systems, which are exceedingly complex.

Finally, rules for biomolecular interactions may be useful for high-throughput
modeling of large numbers of systems and for development of models that include
a large number of distinct interacting biomolecules. Rules are independent units
of a model specification and sets of rules are compositional, which allows models
to be built incrementally. In principle, crude models of a large size could be built
at present from information of pairwise protein-protein interactions currently cat-
alogued in electronic databases, such as the Human Protein Reference Database
[42]. However, large-scale modeling of higher quality will require cataloging the
functional domains involved in interactions and the conditions under which inter-
actions take place. Rules must be expressive enough to encode this information,
and graphical rules are a step forward. The independence of rules facilitates not
only incremental model building but also the consideration of alternative models
and mechanistic hypotheses. For example, to introduce a protein-protein interac-
tion in a system to investigate its effect, one can simply add an appropriate rule
instead of adding and modifying possibly large numbers of interrelated equations
or lines of code. If rules are stored in a machine-readable format in an electronic
database, they can be reused. Rules can be assembled in different ways to define
models for different systems, which may share some components, and models for
different parts of a larger system can be integrated by combining the correspond-
ing sets of rules. Community standards for storing and exchanging rule-based
models of biological systems are currently being discussed [31,22].

4.1 Related Work

We contribute a new application of ideas from formal systems, graph re-
writing, and (sub)graph isomorphism. Our formalism is expressive enough to
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represent protein-protein interactions. There is probably much room for algo-
rithmic improvement. A general framework for graph rewriting closely related to
the present work is that of AGG [49]. Graph rewriting has been used to model di-
verse biological systems [45] and other systems, such as chemical systems [3] and
self-assembling robotic systems [33]. This body of work provided inspiration. A
number of research groups have developed various methods for rule-based mod-
eling of signal-transduction systems. A few key references not already cited are
[40,44,14]. Software tools related to BioNetGen include STOCHSIM [35], Celler-
ator [46], Maude [14,48], BIOCHAM [20], and Moleculizer [37]. Others have also
suggested, like us, the use of graphs to represent proteins and protein-protein
interactions [9,10,48].
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Abstract. In this paper, we use some observations on the nature of biochemical
reactions to derive interesting properties of qualitative biochemical Kripke struc-
tures. We show that these characteristics make Kripke structures of biochemical
pathways suitable for assumption based distributed model checking. The number
of chemical species participating in a biochemical reaction is usually bounded
by a small constant. This observation is used to show that the Hamming dis-
tance between adjacent states of a qualitative biochemical Kripke structures is
bounded. We call such structures as Bounded Hamming Distance Kripke struc-
tures (BHDKS). We, then, argue the suitability of assumption based distributed
model checking for BHDKS by constructively deriving worst case upper bounds
on the size of the fragments of the state space that need to be stored at each
distributed node. We also show that the distributed state space can be mapped
naturally to a hypercube based distributed architecture. We support our results by
experimental evaluation over benchmarks and biochemical pathways from public
databases.

1 Introduction

Recently, there has been a lot of work in the application of formal methods for the
modeling and reasoning of biochemical pathways. A popular approach uses the formal
model of Kripke structure derived from boolean abstractions of biochemical reactions
[6,4]. Model checking of these Kripke structures is capable of deriving valuable in-
formation about the underlying biochemical pathways that cannot be understood from
classical simulation techniques. However, model checking techniques suffer from state
space explosion and there have been several investigations into the scalability of model
checking techniques [1,3,7].One such method is the technique of assumption based dis-
tributed model checking as envisaged in [2].

However, little effort has been made in the direction of exploiting properties specific
to biochemical Kripke structures for the design of scalable model checking approaches.
We take the assumption based distributed model checking paradigm [2], where the state
space of a system is partitioned into several distributed nodes, as the basis of our work.
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Biochemical Kripke structures have been well studied in BIOCHAM [6,4]. We develop
a framework for distributing the state space of a biochemical Kripke structure among
several distributed nodes for model checking, by using structural properties of Kripke
structures derived from biochemical systems. In this paper, we present the following
results:

– Two states in a Kripke structure derived from biochemical pathways are connected
by a transition only if the Hamming distance between their propositional labels
is bounded by a small constant derived from the stoichiometry of the underlying
biochemical reactions. We call such structures as k - Bounded Hamming Distance
Kripke structures (BHDKS) where k is a small constant obtained from the stoi-
chiometry of the reactions .

– Bounded Hamming Distance Kripke structures can be well partitioned into frag-
ments each having a size that can be made small enough to be only polynomial
in the number of propositions of the Kripke structure (N), and hence amenable to
extensive fragmentation 1 for assumption based distributed model checking. The
result shows that it is possible to split the exponential state space of the BHDKS
(O(2N )) into fragments each of which is only polynomial in the number of the
propositions involved (O(Np), where p is a small constant).

– When the number of distributed nodes across which the state space is to be dis-
tributed is not too large (smaller than 2N/k for a k - Bounded Hamming Distance
Kripke structure with N atomic propositions), we present a hypercube based frag-
mentation approach which forms smaller fragments and ensures that the neighbours
of all the states on a distributed node lie only on the adjacent distributed nodes in
the hypercube.

We also note that a k - BHDKS with n states can be partitioned into n1−1/k size
fragments along the nodes of a hypercube despite the fact that, in general, the corre-
sponding class of graphs do not have “good” vertex separators i.e., n1−ε separators for
any ε > 0.

We organize the rest of the paper as follows: Section 2 presents new insights into
Kripke structures formed from biological systems by showing that the Hamming dis-
tance between any two successive states in the Kripke structure is bounded by a small
constant. Such Kripke structure are referred to as bounded Hamming distance Kripke
structures (BHDKS). We use these structures to derive a bound on the edge density in
Section 3. Section 4 presents relevant background results and definitions related to
distributed model checking. In section 5, we use the existence of a small bound on
the Hamming distance between successive states in BHDKS to argue that biochemical
pathways are more amenable to distributed model checking techniques by presenting
the worst case bounds on the size of the fragments of the distributed Kripke structure.
The proof presented is constructive and suggests methods of partitioning BHDKS. We
discuss the results of our experimental evaluation on benchmarks and public databases
in Section 6. The paper concludes with section 7 identifying scopes for further work.

1 We will also illustrate that general Kripke structures need not have any reduction in size during
fragmentation.
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2 Bounded Hamming Distance of Biochemical Kripke Structures

In this section, we shall describe the modeling of biochemical pathways and demon-
strate as to how the characteristics of biochemical pathways lead to their representation
as BHDKS.

2.1 Background

In the abstract boolean Kripke structure model [4,5,6], a biochemical reaction takes the
system from a state with biochemical entities matching the lefthand side of the reaction
rule, into one of the other states in which the biochemical entities of the righthand side
have been added. The biochemical entities which appear only in the lefthand side of the
rule and not in the righthand side may be nondeterministically present or absent in the
target state. By using this boolean abstraction, such models are capable of reasoning
about all possible behaviors of the system with unknown concentration values and un-
known kinetic parameters[4]. This modeling is particularly useful for complex chemical
systems like biochemical pathways where even a boolean abstraction can generate valu-
able results. It is also now well appreciated that biological models, despite their hybrid
nature, indeed have many digital (boolean) controls. In the model checking algorithm,
each biochemical entity is associated with a proposition. If the biochemical entity is
present in a state, the associated boolean proposition is true; other wise, it is false.
Thus, the biochemical Kripke structure makes a transition from one state to another
by “executing” a biochemical reaction and the truth values of the boolean propositions
change to reflect the biochemical entities added or removed from the system.

The detailed methodology which takes a biochemical pathway as input and forms a
Kripke structure is presented in [5]. In the following, we shall illustrate the derivation
of Kripke structures for biochemical pathways through some examples.

Example 1. Simple modeling of a chemical reaction.
Here, the presence and absence of reactants is encoded in the state tuple of the Kripke
structure. This is an implicitly assumed reasonable assumption in biochemical pathway
representations. Let us try to capture a transition wherein A and B react to form C and
D. A typical one is denoted:

A + B + ¬C + ¬D → A + B + C + D

which is interpreted as follows: The transition is defined from all states where the propo-
sitions associated with A and B are true, and C and D are false to those states where
propositions associated with C and D are true as well as A and B are true. The reason-
able assumption is that the reaction does not consume all its reactants and hence, some
quantity of reactants A and B are still present after the reaction.

Example 2. Abstract Modeling.
Consider the scenario of A and B reacting to form C and D,

A + B → C + D
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and we want to nondeterministically capture all possible scenarios. This is captured by

A + B + ¬C + ¬D → ¬A + B + C + D
A + B + ¬C + ¬D → A + ¬B + C + D
A + B + ¬C + ¬D → ¬A + ¬B + C + D
A + B + ¬C + ¬D → A + B + C + D
A + B + C + ¬D → ¬A + B + C + D
A + B + C + ¬D → A + ¬B + C + D
A + B + C + ¬D → ¬A + ¬B + C + D
A + B + C + ¬D → A + B + C + D
A + B + ¬C + D → ¬A + B + C + D
A + B + ¬C + D → A + ¬B + C + D
A + B + ¬C + D → ¬A + ¬B + C + D
A + B + ¬C + D → A + B + C + D
A + B + C + D → ¬A + B + C + D
A + B + C + D → A + ¬B + C + D
A + B + C + D → ¬A + ¬B + C + D
A + B + C + D → A + B + C + D

In an abstract model, each chemical reaction is interpreted as a set of chemical reac-
tions where some of the reactants may be present even after the execution of the reaction
and the products may be present even before the execution.

Example 3. The E. Coli K-12 Pathway: leucine biosynthesis [9].
Using the following abbreviations: K — 2-keto-isovalerate, AC — Acetyl-CoA,
C— Coenzyme A, H— 3-carboxy-3-hydroxy-isocaproate, T — 2-D-threo-hydroxy-
3-carboxy-isocaproate, CN — CO2 NADH, N — NADH, M — 2-keto-4-methyl-
pentanoate, L — L-leucine, AG — α-ketoglutarate, G — L-glutamate, the biochemical
pathway is given by the following reactions:

K + AC → C + H
H → T
T + N → M + CN
M + G → L + AG
AG → K
The reactions can be easily extrapolated to their abstract interpretation.

It may be noted that a Kripke structure is an asynchronous formalism. In particular,
two reactions occurring “simultaneously” can be modeled as one occurring after an-
other because of the nondeterministic modeling with respect to the reactants and the
asynchronous interleaving semantics of Kripke structures.

2.2 Bound on the Number of Chemical Entities Involved in a Reaction

A study of pathways [9,11] shows that for biochemical pathways, the number of bio-
chemical entities reacting in a chemical reaction is fairly small. As illustrated in Fig. 1,
almost 60% of the reactions in each of these databases have no more than two reactants
or two products. Also, no reaction was found with more than six reactants or products
in these databases. The statistics gathered from the databases of these widely differing
organisms shows that there is a very low probability of the interaction of more than a
few entities at the atomic level. Hence, all biochemical reactions indeed involve interac-
tion of a fairly small number of chemical entities, and the number of chemical entities
produced as a result of biochemical reactions are also small. We may contrast this with
an arithmetic operation a := a× b, a system wide reset in a VLSI chip or the setting of
bits in a long flag register. Each of these can take the Kripke structure of these hardware
or software systems from one state to another such that the Hamming distance between
them is arbitrarily large.
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(a) HumanCyc (b) EcoCyc

(c) AnthraCyc (d) YeastCyc

Fig. 1. The HumanCyc, EcoCyc, AnthraCyc and YeastCyc Databases Reactions Summary: The
bar charts clearly show that most reactions have small number of reactants and products. There
is no reaction having more than 6 reactants or products among some 3000 biochemical reactions
in these databases.

2.3 Bounded Hamming Distance Kripke Structures

In order to separate the development of the partitioning algorithm from the details of
the biochemical Kripke structure [6], we consider the earlier introduced BHDKS model.
This abstract model is sufficient for the construction of our partitioning algorithm.

Definition 1. Let K = (S,R,AP,L,F) be a Kripke structure, where S is the set of states, R
is the transition relation, AP is the set of atomic propositions,L is the labeling of states
with atomic propositions, F is the set of final states, and H(x,y) denotes the Hamming
distance between x and y. Then, K is called a k - Bounded Hamming Distance Kripke
structure iff

∀s, s′ ∈ S, R(s, s′) =⇒ (H(L(s),L(s′)) ≤ k)

Intuitively, a k-BHDKS has a transition between two states in the Kripke structure only
if the Hamming distance between the propositional labels of these states is at most k.
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Theorem 1. A biochemical Kripke structure is a k-BHDKS for some small k.

Proof. Let K be a biochemical Kripke structure[6]. Consider two states s and s’ in K.
If there is no transition from s to s′, we are done.

If there is a transition from s to s′, then the system executes some reaction at state s.
From our earlier observation, the reaction has at most r reactants and at most p products,
where r and p are small. When the reaction is executed, the reactants can nondetermin-
istically be removed from the system, while the products are added to the system. Thus,
s′ can differ from s in at most k = r + p chemical entities, that is H(s, s′)2≤ k. Hence,
the biochemical Kripke structure is a k-BHDKS for some small k.

3 Density of Bounded Hamming Distance Kripke Structures

In this section, we shall establish certain properties of BHDKS and show that they are
“reasonably sparse” in nature. We use the bound on the Hamming distance of neigh-
bouring states in a BHDKS to derive a bound on the edge density of these Kripke struc-
tures. We show that the edge density is only polynomial in the number of propositions
of the state space.

Theorem 2. A state in the k - Bounded Hamming Distance Kripke structure with log n
number of propositions (where n > 1) has a degree of at most (log n)k.

Proof. Let s be any state such that s ∈ S, where S is the state space of the k - Bounded
Hamming Distance Kripke structure. Now, consider all possible neighbours N(s) of s.
From the definition of BHDKS, we know that s′ ∈ N(s) only if H(s, s′) ≤ k. Now,
we define a set of states Pi such that p ∈ Pi if and only if H(s, p) = i. Further, let us
define P =

⋃
i=0...k Pi. Clearly,

– |Pi| =
(
log(n)

i

)
– Pi ∩ Pj = φ

So, |P | = |⋃i=0...k Pi|
=

∑ |Pi| (∵ Pi ∩ Pj = φ)
=

∑k
i=0

(
log(n)

i

)
≤ (log(n))k

Also, N(s) ⊂ P . Hence, |N(s)| ≤ |P | ≤ (log(n))k

Thus, each state has no more than (log(n))k neighbours.

Thus, the number of transitions in a Bounded Hamming Distance Kripke structure are
no more than polynomially (in the number of propositions in the Kripke structure) larger
than the number of states.

4 Background on Assumption Based Distributed Model Checking

Distributed model checking as presented in [1,2] decomposes the Kripke structure into
fragments. Each distributed node in the distributed computing cluster stores only one of

2 Eventually, we will use the notation H(s,s’) to mean H(L(s),L(s′)) .
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Fig. 2. An example of a Kripke structure and the fragments formed by dividing into two parts. The
dotted boxes surround the subsets used for constructing the partition. The dashed lines show the
actual partitions themselves. Observe that the partition was able to reduce the size of the Kripke
structure rather well. Also, the undirected edges indicate transitions possible in both directions.

these fragments; hence, the size of the model checking problem which can be processed
by the distributed model checking algorithm is bounded by the size of the smallest
fragments we can construct.

Definition 2. A Kripke structure M ′ = (S′, R′) is a fragment of a Kripke structure
M = (S, R) iff

– S′ ⊆ S,
– R′ ⊆ R and
– ∀(s, s′) ∈ R if s ∈ S′, then either (s, s′) ∈ R′ or � ∃t ∈ S′ such that (s, t) ∈ R′.

Given a Kripke structure M , it is now pertinent to generate these fragments. Any subset
of the state space can be naturally extended to form a fragment by including those states
which are immediate neighbours of the states in this subset and the rest of the Kripke
structure, as shown in Fig 2. Formally,

(A bad instance) (A 5-clique)

Fig. 3. Bad instances for distributed model checking:In the left figure, the subsets are shown by
dotted boxes. For these subsets, each of the fragment will be as large as the original Kripke
structure and the purpose of the distributed algorithm will fail. In the right figure, a 5-clique is
shown. Irrespective of the choice of our subsets, each fragment will be as large as the whole
Kripke structure once again.
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Definition 3. Let M = (S, R) be a Kripke structure and T ⊆ S. The distributed
fragment of the Kripke structure FragmentM (T ) = (ST , RT ) is defined as

– ST = {s ∈ S|s ∈ T ∨ ∃s′ ∈ T such that (s′, s) ∈ R}
– RT = {(s1, s2) ∈ R|s1 ∈ T, s2 ∈ ST }

Thus, a distributed computation node i in the distributed model checking paradigm
contains all states from T (called core states) and their immediate predecessors
ST \ T (called border states).

The central idea of the distributed algorithm in [2] is presented in the following
algorithm:

proc Distributed Algorithm( input: total Kripke Structure M , ψ, f ;
output:Af(s0)(s0, ψ))

Split M into Ki;
for all i ∈ {1, . . . , n} do in parallel { for all Ki }
Take the initial assumption function;

repeat

repeat
Compute all you can;

Send relevant information to other nodes;
Receive relevant information from other nodes;

until all processes reach fixpoint;
Extrapolate additional information;

until all is computed;

Return result for the initial state s0;
od

end

In order to abstract the concerns of the assumption based distributed model checking
problem and allow a mathematical formulation of the fragmentation problem, we define
the notion of a separator of a set of states in a Kripke structure.

Definition 4. Given a set of states T ⊂ S of the Kripke structure K, the set V is said to
be a separator of T w.r.t S iff

– V ⊂ S
– There is no path from a state in S \ (T ∪ V ) to a state in T which does not pass

through some state in V .
That is, in the graph formed by removing V from S, KV = (S \ V, R \ RV ),
∀t ∈ T, ∀s ∈ S \ (V ∪ T ), there is no path from s to t in KV .
Clearly, RV = {(x, y) ∈ R|x ∈ V or y ∈ V }.

Intuitively, T is the core of the fragment and V is the set of border states. Thus, any set
of states along with its separator with respect to the rest of the Kripke structure contains
a fragment for assumption based distributed model checking.
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5 Fragmentation of BHDKS

Several efforts have been made to solve the problem of state space explosion in model
checking. The art and science of symbolic model checking [3] has made considerable
progress in increasing the size of the state space that can be model checked. Distributed
Model Checking is a technique which aims at exploiting the memory of a large number
of systems in a distributed environment. In the past, there has been work on developing
good distributed model checking algorithms for software by making use of the informa-
tion in control flow graphs [8]. However, to the best of our knowledge, there has been
no work on developing distributed algorithms for biochemical systems that establishes
worst case bounds on the size of each fragment by the use of structural properties of
biochemical Kripke structures. The background definitions related to assumption based
distributed model checking are presented in Sec. 4. We just recall the definition of a
fragment here.

Definition 5. Let M = (S, R) be a Kripke structure and T ⊆ S. The distributed
fragment of the Kripke structure FragmentM (T ) = (ST , RT ) is defined as

– ST = {s ∈ S|s ∈ T ∨ ∃s′ ∈ T such that (s, s′) ∈ R}
– RT = {(s1, s2) ∈ R|s1 ∈ T, s2 ∈ ST }

Thus, a distributed computation node i in the distributed model checking paradigm
contains all states from some subset T of S(called core states) and their immediate pre-
decessors ST \ T (called border states). Thus, any set of states, along with its vertex
separator with respect to the rest of the Kripke structure, contains a fragment for as-
sumption based distributed model checking. A set of vertices V is said to be a vertex
separator of T with respect to S if all paths from S \ T to T pass through some vertex
in V . Now, we will present results on the size of separators for BHDKS.

5.1 Polynomial Separators for BHDKS

We will first show that the size of the separator of an arbitrary subset of the state space
of a BHDKS is at most polynomially (in the number of propositions in the Kripke
structure) larger than the subset itself.

Theorem 3. Given any set T ⊂ S of the state space of a k - Bounded Hamming Dis-
tance Kripke structure K = (S, R) with log(n) propositions, the size of the smallest
separator V of T with respect to S is no more than |T |.(log(n))k.

Proof. For each state t ∈ T , consider the neighbours of t. As shown earlier, N(t) ≤
(log(n))k. Clearly,

⋃
t∈T N(t) is a separator of T with respect to S. Hence, the size of

the smallest separator of T = |V |
≤ |⋃t∈T N(t)|
≤ ∑

t∈T |N(t)|
≤ |T |.(log(n))k.

Corollary 1. Given any set T ⊂ S of the state space of a k - Bounded Hamming
Distance Kripke structure K = (S, R) with log(n) propositions, the size of the fragment
associated with T is no more than |T |.(1 + (log(n))k).
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Proof. Any set of states with its separator with respect to the rest of the Kripke structure
contains a fragment.

This shows that the size of the state space which needs to be put at one node of the
distributed computation grows only polynomially in the number of propositions in the
Bounded Hamming Distance Kripke structure. It is noted that this distribution can com-
pute the separators for only the reachable set of states in T , which can be useful if the
reachable set is significantly small.

5.2 Hypercube Based Fragmentation

Now, we present another approach to distribute the state space which shows that
BHDKS are very suitable for distributed computation in a hypercube grid. We prove
the following results on the hypercube based partition in this section:

– A k - BHDKS with log n atomic propositions can be embedded in a l -hypercube
as long as l < log(n)/k.

– When embedded in a l-dimensional hypercube of distributed nodes, the size of the
separator for the core set of states, mapped to each node in the distributed system,
is no more than l

2l .n.
– The separator for the set of core states associated with any node then lie only on the

adjacent nodes of the hypercube. Also, there exist several states in the core which
do not have any transitions connecting them to states outside this node.

– Thus, the size of the state space of the fragment (core and border) associated with
each distributed node is given by l+1

2l .n. Thus, the ratio of the border states to the
core states is only l < log n as opposed to a ratio of (log n)k in the polynomial
fragmentation case.

– The partition ensures that only neighboring nodes in the hypercube grid need to
interchange any information during the operation of the distributed model checking
algorithm.

Construction of the Partitioning. We select d = 2l centers which are symmetrically
placed d points, P1, P2 . . . Pd, using the Hamming distance as a metric. It is easy to
verify that these d points exist whenever d = 2l for any l < log(n), where log(n) is the
number of propositions.

– 000 . . .000 : 0
– 000 . . .001 : 1
– 000 . . .010 : 2
– 000 . . .011 : 3
– . . . . . . . . .
– . . . . . . . . .
– 111 . . .111 : 2l − 1

Using this list of binary numbers of length l, we generate the points Pi by replacing
each 0 by the string made of (log(n)/l) zeroes and similarly each 1 is replaced by the
string made of (log(n)/l) ones. The case of l = 2 is shown in Fig. 4.
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P0
Partition around 00

P1
Partition around 01

P2

Partition around 10

P3
Partition around 11

Fig. 4. The figure shows the distribution of states among 4 subsets - a 2-hypercube. The center of
each subset is a Pi with the binary representation corresponding to 00,01,10 or 11 respectively in
our list. For log(n) = 6, these may be 000000, 000111, 111000 and 111111.

It can be observed that these 2l centers satisfy the following:

– ∀i∃j such that H(Pi, Pj) = log(n)/l
– ∀i � ∃j �= i such that H(Pi, Pj) < log(n)/l.

Given a state s in the Kripke structure, L(s) associates a binary label with s. We de-
fine the partition PHamming = {Sh

0 , Sh
1 , . . . Sh

d } such that s ∈ Sh
i iff ∀j �= i, H(s, Pi)

< H(s, Pj), or ∃j �= iH(s, Pi) = H(s, Pj) and generate fair partition(i, j) = i. gen-
erate fair partition returns i or j with equal probability.These conditions ensure that the
sets in the partition are disjoint as well as balanced. The generate fair partition ensures
the points equidistant from more than one Pi to be distributed in a balanced manner
among the nodes. Each Sh

i is associated with the ith node of the distributed system
as its core set of states. We will later add the separator of this core set of states with
respect to the rest of the Kripke structure as the set of border states. We illustrate such
a partition by a small example.

An Example of Hypercube Fragmentation. Consider Fig. 5 which corresponds to the
case with l = 2. The sets S1, S2, S3 and S4 are formed as before by dividing the state
space into 4 parts around 4 equidistant centers 02p, 0p1p, 12p and 1p0p respectively as

S1

S4
S3

S2

Fig. 5. For each subset around a point, it is connected only to two other sets and not to the
diagonally opposite points
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before. These form the core states of the fragment. We now motivate our next result by
showing that for sufficiently large Kripke structures, if we take these Pis as the corners
of a 2-D hypercube (square), then there can be no transitions between the distributed
nodes along the diagonals.

Theorem 4. For a BHDKS Kripke structure split uniformly around four centers
02p, 0p1p, 12p and 1p0p, there can be no transition along the diagonal as long as p > k.

Proof. Suppose the contrary; without loss of generality, assume that there is a transition
from the set around 02p to the set around 12p say from x to y. Then, H(x, y) ≤ k.
Also, by construction, H(x, 02p) ≤ p/2 and H(y, 12p) ≤ p/2. By triangle inequality,
H(y, 02p) + H(y, 12p ≥ H(02p, 12p i.e., H(y, 02p) ≥ 2p− p/2.

Again, by triangle inequality, H(x, y) + H(x, 02p) ≥ H(y, 02p)
i.e., H(x, y) ≥ H(y, 02p) − H(x, 02p)
i.e., H(x, y) ≥ 2p − p/2 − p/2
i.e., H(x, y) ≥ p

Thus, as long as p > k, there can be no transition along the diagonal. So the size of
each fragment is at most 3 times the size of the core set at each node i.e., (2 + 1)/22 of
the whole Kripke structure.

Bound on the Size of Fragment Associated with Each Distributed Node. Now con-
sider a state space split into 2l parts in a l-dimensional hypercube. Recall that we map
each Sh

i to the node i of the hypercube, formed naturally by the binary encoding of i .
We show that there can be no transition along any of the diagonals of this hypercube.
The case of a 3-D cube is illustrated in Fig. 6

S2

Fig. 6. A 3-D cube. There can be no transitions along any of the diagonals.

Theorem 5. For a k-BHDKS Kripke structure with (log(n)) propositions split uni-
formly around 2l centers 0lp, 0(l−1)p1p, . . . . . . 0p1(l−1)p, 1lp (where p = (log(n)/l) )
and p > k, there can be no transition along any of the diagonals of this l-dimensional
hypercube.

Proof. Suppose the contrary; without loss of generality, assume that there is a transition
from the set around θ to the set around δ say from x to y. Then, H(x, y) ≤ k Also,
δ, θ are along some diagonal and not adjacent. So, H(θ, δ) ≥ 2p. By construction,
H(x, θ) ≤ p/2. and H(y, δ) ≤ p/2. By triangle inequality H(y, θ) + H(y, δ) ≥
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H(θ, δ) i.e., H(y, θ) ≥ 2p − p/2 (assuming the worst case that δ and θ are as close as
possible without being neighbors in the l-dimensional hypercube) .

By triangle inequality, H(x, y) + H(x, θ) ≥ H(y, θ) i.e., H(x, y) ≥ H(y, θ) −
H(x, θ)

i.e., H(x, y) ≥ 2p − p/2 − p/2
i.e., H(x, y) ≥ p

Thus, as long as p > k, there can be no transition along the diagonal. Hence, there
cannot be a transition along any diagonal of the l-dimensional cube.

Corollary 2. The size of the separator of the set associated with each distributed node
in the l-Dimensional hypercube is at most l times the size of the largest possible core
set at each node i.e., l

2l .n.

Proof. Each node in the l-dimensional hypercube has transitions only to the neighbour-
ing nodes in the hypercube. In an l-dimensional hypercube, there are l neighbours. By
construction, each neighbour has no more than 1

2l .n core states. Hence, the size of the
separator of a node ≤ sum of the size of the core sets associated with all the neighbour-
ing nodes in the hypercube (since the border states of a node do not have any transitions
to any other node)≤ l

2l .n

Corollary 3. The size of the fragment associated with each node in the l-Dimensional
hypercube is at most (l + 1) times the size of the largest possible core set at each node
i.e., (l+1)

2l .n.

Proof. A set and its separator form a fragment corresponding to that set.

Corollary 4. The fragment associated with each node in the distributed system can be
made as small as (2.log(n)

k ).n1−1/k in the size of the k-BHDKS

Proof. We know that the size of a fragment is bounded by (l+1)
2l .n, as long as l <

log(n)/k. Let us choose: l = (log(n)/k)− 1. Then the size of the fragment is bounded
by (l+1)

2l .n = (2.log(n)
k ).nl−1/k.

At first sight one might feel that the hypercube based approach produces fragments
larger than the simple subset construction presented earlier. However, the hypercube
based approach trades off the size of the fragment for both a structure in the resulting
partition and the greater ratio of core to fragment states in each node, which implies
that less of the state space has to be copied across multiple nodes. Also, because of the
small value of k and the large values of n the result is practically significant for model
checking; e.g., for a 220 state Kripke structure, one could partition it into 24 nodes each
of size 216 for k = 4. We remark here that the hypercube based partitioning not only
provides a bound on the size of the fragment but also ensures that the communication
among the nodes of the distributed computation having these fragments occurs only
along the edges of the hypercube and not along its diagonals. As such, it also suggests
the architecture of the distributed system and bounds the cost of the links required to
connect these distributed nodes.
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An important point to note is that the traditional way of recursively finding vertex
separators [10] of the underlying graph to break it into smaller graphs is not feasible
for the case of BHDKS. It is a well known result that the existence of O(n1−ε) ver-
tex separator for a class of graphs implies that the class of graphs has no more than
constant degree for each vertex. However, we know that the BHDKS vertex degree
polylogarithmic in the number of vertices ((log n)k). As such, BHDKS do not have
good vertex separators. Our hypercube based fragmentation approach avoids the con-
struction of vertex separators and actually creates fragments O(n1−ε) in size, where
ε = 1/k, by exploiting the difference between “good” fragments and “good” vertex
separators.

6 Experimental Results

We used the Cyc public database [9,11] and the CMBSLib benchmark [12] to study the
performance of the hypercube based partitioning method. We took all of the thousand
biochemical reactions for the Humancyc and the Ecocyc reaction pathway databases
and computed an upper bound on the size of the fragment in the hypercube based frag-
mentation of the Kripke structure for these reaction pathways. We counted the number
of edges into the core state (around the center 1111...11) using on-the-fly traversal of
the state space and then used the number of edges as an upper bound on the number of
border states. The upper bound on the size of the fragment clearly shows that the size of
the fragment obtained using our worst case analysis is slightly larger than that obtained
in experimental results (though of the same order).

We also took the boolean biochemical benchmark systems in CMBSLib benchmark
[12] and calculated the exact size of the fragment using hypercube based partitioning
method. These results indicate that the size of the fragment built using hypercube based
partitioning method is of the same order as the size of the core around which it is built.

Table 1. HumanCyc 1120 atoms and EcoCyc 1313 atoms: the ratios are approximate

Sl
No

Database Radius
of the
Frag-
ment

Number of States in
the core

Maximum number of
states in the fragment

Ratio of fragment
to the core

1 HumanCyc 8 60321482688944611644 58218118459069712450424 965
2 HumanCyc 9 7459853563127158123804 7198881888172413564515156 965
3 HumanCyc 10 829547867699812679324780 800431570432559915098596984 964
4 HumanCyc 11 83785702021492624364150540 80835123199556021465682097364 964
5 HumanCyc 12 7750316948401178304236797860 7476468464640846435077137076096 964
6 EcoCyc 8 215766787047246662253 286658426283477266973032 1328
7 Ecocyc 9 31310453270114925645193 41591878653908316107275044 1328
8 Ecocyc 10 4086057570662140265020569 5427030699859074477210284960 1328
9 Ecocyc 11 484389284294462960011031017 643265834966726583668110535208 1327
10 Ecocyc 12 52597289383826851902453164625 69838841881773224220828914800104 1327
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Table 2. Fragmentation results for the CMBSLib Benchmark: http://contraintes.inria.fr/
CMBSlib/

Sl
No

Benchmark Hamming
Diameter

Size of
core

Size of border Fraction of core to
fragment size

1 Circadian oscillations 2 10 59 0.1449
2 Circadian oscillations 3 51 127 0.2865
3 Circadian Oscillations 4 140 149 0.48445
4 Circadian Oscillations 5 251 102 0.7110
5 Circadian Oscillations 6 333 41 0.8904

6 Cell Division Cycle 2 7 25 0.2187
7 Cell Division Cycle 3 29 48 0.3766
8 Cell Division Cycle 4 71 63 0.5299
9 Cell Division Cycle 5 126 59 0.6811
10 Cell Division Cycle 6 179 41 0.8136

It shows that the hypercube based approach performs better than our worst case bounds
on real benchmarks. 3

7 Conclusion and Future Work

In this paper, the focus has been on showing that the biochemical Kripke structures are
BHDKS and are very amenable to fragmentation. In particular, it is shown that such
Kripke structures can be divided into fragments as small as polynomial in the number
of atomic propositions present in the Kripke structure. The hypercube algorithm tends
to distribute the exponential state space in a uniform manner, and one may raise the
question as to the benefit of this exercise when the reachable state space is small. A
simple heuristic of merging those nodes, which can be merged into one without violat-
ing the bound on the size of the core set (n/2l), helps to handle this scenario when the
distribution of the reachable state space in the hypercube is not uniform.

In particular, our explicit distributed construction of the state space partitioning as-
sumes that there is a number close to log n which has factors that can be used as l –
the dimension of the embedding hypercube. A naive recursive bi-partitioning approach
which splits the entire state space around two maximally separated points in the Ham-
ming distance space can overcome this difficulty. However, an explicit centralized con-
struction of the state space for partitioning would defeat the purpose of the distributed
model checker. Future directions of research include the development of distributed al-
gorithms to distribute the reachable state space onto a hypercube. Also, the choice of
the hypercube in which the system is embedded and the assignment of different embed-
dings onto the same hypercube (by changing the order of propositions in the state space)
needs to studied. In short, BHDKS are very suitable for bounded model checking. Ham-
ming Distance Kripke structures are also very suitable for Bounded Model Checking.

3 The result of the benchmark differs from that of the public databases because we abstract
all the reactions in the public databases for nondeterministic vanishing of reactants after the
reactions to illustrate a worst case scenario.
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Abstract. This paper presents a graphical representation for the
stochastic π-calculus, which is formalised by defining a corresponding
graphical calculus. The graphical calculus is shown to be reduction equiv-
alent to stochastic π, ensuring that the two calculi have the same ex-
pressive power. The graphical representation is used to model a couple
of example biological systems, namely a bistable gene network and a
mapk signalling cascade. One of the benefits of the representation is its
ability to highlight the existence of cycles, which are a key feature of
biological systems. Another benefit is its ability to animate interactions
between system components, in order to visualise system dynamics. The
graphical representation can also be used as a front end to a simulator
for the stochastic π-calculus, to help make modelling and simulation of
biological systems more accessible to non computer scientists.

1 Introduction

The stochastic π-calculus has been used to model and simulate a range of bio-
logical systems [9,18,20]. One of the main benefits of the calculus is its ability
to model large systems incrementally, by composing simpler models of subsys-
tems in an intuitive way [2]. Various stochastic simulators have been developed
for the calculus [20,15], in order to perform virtual experiments on biological
system models. Such in silico experiments can be used to formulate testable
hypotheses on the behaviour of biological systems, as a guide to future experi-
mentation in vivo. The calculus also facilitates mathematical analysis of systems
using a range of techniques, including types, behavioural equivalences and model
checking. In future, such analysis could help provide insight into some of the fun-
damental properties of biological systems. In spite of these benefits, the mathe-
matical nature of the stochastic π-calculus can sometimes limit its accessibility
to a wider audience. In such cases, it can be useful to present an alternative
graphical representation for the calculus, to complement its textual notation.
From our experience, such a representation would be particularly welcomed by
experimental systems biologists.

This paper presents a graphical representation for the stochastic π-calculus,
which is formalised by defining a corresponding graphical calculus. The paper

C. Priami et al. (Eds.): Trans. on Comput. Syst. Biol. VII, LNBI 4230, pp. 123–152, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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is structured as follows. Section 2 presents a variant of the stochastic π-calculus
that supports internal transitions and recursive definitions, based on [19]. Sec-
tion 3 presents a graphical representation for the stochastic π-calculus, and ex-
plains why additional syntax constraints are needed to define a corresponding
graphical execution model. Section 4 presents the graphical stochastic π-calculus,
which formalises the syntax constraints identified in Sec. 3. The graphical cal-
culus is shown to be reduction equivalent to the stochastic π-calculus of Sec. 2,
ensuring that the two calculi have the same expressive power. Section 5 uses the
graphical stochastic π-calculus to model a couple of example biological systems,
namely a bistable gene network [4] and a mapk signalling cascade [8]. Finally,
Section 6 shows how the graphical representation can be used as a front end to
a simulator for the stochastic π-calculus.

2 The Stochastic π-Calculus

This section presents a variant of the stochastic π-calculus that supports internal
transitions and recursive definitions, based on [19]. Recursive definitions have
been argued in [20] to be a more practical programming abstraction for biological
systems than the basic replication semantics of the π-calculus. This paper also
shows how internal transitions labelled with a stochastic delay can provide a
useful programming abstraction.

The syntax of the stochastic π-calculus (Sπ) used in this paper is summarised
in Definition 1. A system E � P of the calculus consists of a process P together
with a constant environment E. Each definition X(m)= P in the environment
maps a given identifier X to a corresponding process P , parameterised by m.
Since the definitions themselves do not change over time, the environment E
remains constant during execution. Stochastic behaviour is incorporated into
the calculus by associating each channel x with a corresponding interaction rate
given by rate(x), and by associating each internal transition τ with a rate r.
Each rate characterises an exponential distribution, such that the probability of
an interaction with rate r occurring within time t is given by F (t) = 1 − e−rt.
The average duration of the interaction is given by the mean of this distribution,
which is 1/r. In this paper, it is assumed that all recursive calls to definitions
are guarded inside an action prefix π. This prevents undesirable definitions such
as X = X , or X = Y, Y = (X | X). More precisely, it is assumed that for
every infinite unfolding of definitions there are infinitely many occurrences of
actions.

The execution rules for the calculus are summarised in Definition 3. In the
general case, each rule is of the form E � P

α−→ E � P ′, which states that
a system E � P can reduce to a system E � P ′ by doing an interaction α.
The definition of interaction labels is summarised in Definition 2. Since the
environment E remains constant over time, the rules can be abbreviated to the
form P

α−→ P ′. Where necessary, additional predicates are used to denote the
presence of specific definitions in the environment.
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P, Q ::= νx P Restriction

| P | Q Parallel

| M Choice

| X(n) Instance

M ::= π.P + M Action

| 0 Null

E ::= X(m)=P Definition, fn(P ) ⊆ m

| E1, E2 Union

| ∅ Empty

π ::= ?x(m) Input

| !x(n) Output

| τr Delay

Definition 1. Syntax of Sπ, with processes P, Q, actions π, channels x, y and tuples

m, n. In a biological setting, each process typically describes the behaviour of a mole-

cule, such as a gene or protein, and each action describes what a given molecule can

do. A delay action τr describes a change in the internal structure of a molecule, such

as a radioactive decay or a change in shape. Each delay is associated with a rate r

that characterises an exponential distribution. In the case of radioactive decay, the

rate determines the half-life of the reaction. Two molecules can interact by performing

a complementary input ?x(m) and output !x(n) on a common channel x. This can rep-

resent two proteins with complementary shapes, or two chemicals with complementary

electronic configurations. In practice, reactions between more than two molecules are

extremely rare, since the probability of three or more molecules interacting simulta-

neously is very low. Thus, the binary interaction model of the stochastic π-calculus

fits well with the biological reality. Values m,n can also be sent and received during a

reaction, e.g. to represent the transfer of an electron or a phosphate from one molecule

to another. A choice of actions π1.P1 + . . .+πN .PN represents the ability of a molecule

to react in N different ways, while a parallel composition P1 | . . . | PM represents the

existence of M molecules in parallel. A definition of the form X(m) = P represents a

particular type of molecule X, parameterised by m. The parameters are assumed to

contain all of the free names of P , written fn(P ) ⊆ m. The definitions are recorded

in a constant environment E, which is assumed to contain a single definition for each

instance X(n). A process P together with its constant environment E denotes a sys-

tem in the calculus, written E � P . Finally, a restriction νx P is used to represent the

formation of complexes between molecules, where a complex of two processes P and

Q is modelled as νx (P | Q). The restriction denotes a private channel x on which the

two molecules can synchronise to split the complex.

The probability of performing an interaction is determined by basic princi-
ples of chemical kinetics, and is proportional to the apparent rate of the interac-
tion [6]. The apparent rate of a delay τr is simply the rate r of the delay, while
the apparent rate of an interaction on a given channel x is equal to the number
of possible combinations of inputs and outputs on x, multiplied by the rate of
x [16]. The function R(x, P ) calculates the apparent rate of channel x in process
P and is defined by:



126 A. Phillips, L. Cardelli, and G. Castagna

α Description fn(α) bn(α)

?x(n) Receive a value n on channel x {x, n} ∅
!x(n) Send a value n on channel x {x, n} ∅
!x(νy) Send a private channel y on channel x {x} {y}

x Interact on channel x {x} ∅
r Perform an action with apparent rate r ∅ ∅

Definition 2. Interaction labels in Sπ, where fn(α) and bn(α) denote the set of free
and bound names in α, respectively. Each label α denotes an interaction that a given
process can perform. The labels for receive ?x(n), send !x(n) and private send !x(νy)
are defined as in [19]. The label x denotes an interaction on channel x, where the rate
of interaction depends on the number of inputs and outputs on the channel. The label
keeps track of the channel name so that the rate can be re-calculated whenever new
inputs or outputs are added in parallel. Finally, the label r denotes an interaction with
constant apparent rate r, such as a stochastic delay or an interaction on a private
channel.

!x(n).P + M
!x(n)−→ P (1)

?x(m).P + M
?x(n)−→ P{n/m} (2)

τr.P + M
r−→ P (3)

P
!x(n)−→ P ′ Q

?x(n)−→ Q′ ⇒ P | Q
x−→ P ′ | Q′ (4)

n /∈ fn(Q) P
!x(νn)−→ P ′ Q

?x(n)−→ Q′ ⇒ P | Q
x−→ νn (P ′ | Q′) (5)

P
x−→ P ′ ⇒ νx P

R(x,P )−→ νx P ′ (6)

x �= y P
!x(y)−→ P ′ ⇒ νy P

!x(νy)−→ P ′ (7)

x /∈ fn(α) ∪ bn(α) P
α−→ P ′ ⇒ νx P

α−→ νx P ′ (8)

M
α−→ P ′ ⇒ π.P + M

α−→ P ′ (9)

bn(α) ∩ fn(Q) = ∅ P
α−→ P ′ ⇒ P | Q

α−→ P ′ | Q (10)

X(m)=P P{n/m}
α−→ P ′ ⇒ X(n)

α−→ P ′ (11)

Definition 3. Reduction in Sπ. An output !x(n).P can send the value n on channel x

and then execute process P (1). An input ?x(m).P can receive a value n on channel x

and then execute process P , in which the received value is assigned to m (2). A delay

τr.P can perform an internal action with apparent rate r and then execute the process

P (3). If a process P can send a value n on channel x and a process Q can receive a

value n on channel x then P and Q can interact on x (4). If n is private then the scope

of n is extended over the resulting processes, where νn (P ′ | Q′) denotes the formation

of a complex between P ′ and Q′ (5). If two processes interact on a private channel

x then the apparent rate of the interaction is constant, and is given by R(x,P ) (6).

Rule (7) allows a private channel to be sent. Finally, rules (8), (9), (10) and (11) allow

an action to be performed inside a restriction, a choice, a parallel composition and a

definition, respectively. For each of the rules (4), (5) and (10) there exists a symmetric

rule (not shown) in which P | Q and P ′ | Q′ are commuted.
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R(x, P ) = rate(x) × (Inx(P ) × Outx(P ) − Mixx(P )) (12)

where Inx(P ) and Outx(P ) are the number of unguarded inputs and outputs on
channel x in P , respectively, and Mixx(P ) is the sum of Inx(Mi)×Outx(Mi) for
each choice Mi in P . The definition takes into account the fact that an input
and an output in the same choice cannot interact, by subtracting Mixx(P ) from
the product of the number of inputs and outputs on x.

3 Graphical Representation

This section presents a graphical representation for the stochastic π-calculus,
and explains why additional syntax constraints are needed to define a corre-
sponding graphical execution model. The principle of the graphical representa-
tion is to display each process P as a node in a graph and to draw an edge
from the node to each nested process in P . This allows the syntax tree of
a given process to be represented as a tree of nodes. In addition, each defi-
nition in the environment assigns a unique identifier to a node. The identi-
fiers are used to define additional edges between nodes, as in standard graph
notations.

The graphical representation of the stochastic π-calculus is defined in Fig. 1
and Fig. 2, and is based on an abbreviated syntax for the calculus, presented
in Definition 4. The abbreviated syntax is equivalent to the syntax of the sto-
chastic π-calculus presented in Definition 1, but uses a more compact notation
for restriction, parallel composition, choice and union. As an example, Figure 3
uses the graphical representation to visualise a stochastic π-calculus model of a
gene with inhibitory control, as presented in [2].

The graphical representation described so far is essentially a static way of
visualising systems of the stochastic π-calculus. The next stage is to define a
dynamic representation, in order to visualise system execution. The principle
of the dynamic representation is to add a token to each node in the graph
that corresponds to a currently executing process. For example, in Fig. 3 a
token is added to the Gene node to represent the execution of a single gene,
and a new token is added to the Protein node each time a new protein is
created. Similarly, a token needs to be added to the corresponding node when-
ever the gene becomes blocked after doing an input on a. However, in order
for a token to be added, the node needs to be associated with a suitable iden-
tifier. This can be achieved by augmenting the model in Fig. 3 with the de-
finition Blocked(a, b) = τu.Gene(a, b) and by replacing ?a.τu.Gene(a, b) with
?a.Blocked(a, b). In the general case, each choice needs to be defined separately
in the environment, so that a token can be added to the appropriate node dur-
ing execution. It turns out that this simple constraint is sufficient to derive a
graphical execution model for the stochastic π-calculus, as shown in the next
section.
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P ::= νz N
i=1 πi.Pi Choice

| νz M
i=1 Pi Parallel

| νz X(n) Instance

E ::= X(m)=P Definitiom

| N
i=1 Ei Union

Definition 4. Abbreviated Syntax of Sπ, where N ≥ 0 and M ≥ 2. A sequence of
zero or more restricted names is abbreviated to a tuple z, which may be empty. A
choice between zero or more actions π1.P1 + . . . + πN .PN + 0 is abbreviated to a sum

N
i=1 πi.Pi. The choice can also be written π1.P1 + . . . + πN .PN if N ≥ 1. A parallel

composition of two or more processes P1 | . . . | PM is abbreviated to a product M
i=1 Pi.

Finally, a union of zero or more environments E1, . . . , EN is abbreviated to N
i=1 Ei.

The abbreviated syntax is used as the basis for the graphical representation.

Definition Union
E X(m)=P E1, . . . , EN

Fig. 1. Graphical representation of environments in Sπ. Each process in the environ-
ment represents a node in a graph, and each definition assigns an identifier to a given
node. The identifiers are used to define edges between nodes, as in standard graph
notations. A definition X(m)=P is displayed as the process P , where the name X is
used as an identifier for P . By convention, any edges leading to X are connected to
the node of P . A union of environments E1, . . . , EN is displayed by drawing the en-
vironments E1, . . . , EN next to each other. Edges between nodes in the environments
are determined by the node identifiers.

Choice Parallel Instance
P νz (π1.P1 + . . . + πN .PN ) νz (P1 | . . . | PM ) X(m)=P � νz X(n)

Fig. 2. Graphical representation of processes in Sπ. A choice π1.P1 + . . . + πN .PN

with restricted names z is displayed as an elliptical node with label z and with edges
to processes P1, . . . , PN . Each edge to a process Pi is labelled with an action πi and
denotes an alternative execution path in the system. The node can also be annotated
with an optional name X. A parallel composition P1 | . . . | PM with restricted names z
is displayed as a rectangular node with label z and with edges to processes P1, . . . , PM .
Each edge to a process Pi denotes a concurrent execution path in the system. An
instance X(n) with restricted names z is displayed as a rectangular node with label z
and with an edge to the process identified by X. If X(m) = P and m �= n then the
tip of the edge is labelled with the substitution {n/m}. This represents the passing of
parameters from one process to another. If z is empty then edges from a choice or
parallel composition can be connected directly to node X by omitting the rectangle.
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Gene(a, b) = τt.(Gene(a, b) | Protein(b))
+ ?a.τu.Gene(a, b)

Protein(b) = !b.P rotein(b) + τd

Fig. 3. A stochastic π-calculus model of a gene with inhibitory control, as presented
in [2]. The gene can transcribe a protein by first doing a stochastic delay at rate t
and then executing a new protein in parallel with the gene. Alternatively, it can block
by doing an input on its promoter region a and then unblock by doing a stochastic
delay at rate u. The transcribed protein can repeatedly do an output on the promoter
region b, or it can decay at rate d. The gene is parameterised by its promoter region
a, together with the promoter region b that is recognised by its transcribed proteins.
The functional behaviour of the gene can be visualised using a corresponding high-level
representation (right), which abstracts away from the internal dynamics. According to
the reduction rules of the calculus, the output !b of the transcribed protein can interact
with the input ?b of a corresponding Gene(b, c), which becomes blocked as a result.
This simple model of a gene can be used to build arbitrarily complex networks, as
described in [2]. An example of one such network is presented in Sec. 4.

4 Graphical Calculus

This section presents the graphical stochastic π-calculus, which formalises the
syntax constraints identified in Sec. 3. The graphical calculus is shown to be
reduction equivalent to the stochastic π-calculus of Sec. 2, ensuring that the two
calculi have the same expressive power. The syntax of the graphical stochastic
π-calculus (GSπ) is presented in Definition 5, and a corresponding abbreviated
syntax is presented in Definition 6. The graphical calculus GSπ is a subset of the
calculus Sπ, with the additional constraint that each choice is defined separately
in the environment. Similarly, the graphical representation of GSπ is a subset of
the graphical representation of Sπ, as shown in Fig. 4 and Fig. 5.

The graphical calculus can also be used as the basis for a graphical execution
model. In this setting, a system E � P is displayed in two parts, a static envi-
ronment E which remains constant over time, and a dynamic process P which
is updated after each execution step. The environment E is displayed using the
static representation of environments and processes defined in Fig. 4 and Fig. 5,
whereas the process P is displayed using a dynamic representation, defined in
Fig. 6. The principle of the dynamic representation is to display each instance
X(n) of a definition X(m) = P by attaching a substitution token {n/m} to the
node identified by X . In addition, a dotted edge is drawn from each restricted
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P, Q ::= νx P Restriction

| P | Q Parallel

| 0 Null

| X(n) Instance

M ::= π.P + M Action

| 0 Null

E ::= X(m)=D Definition, fn(P ) ⊆ m

| E1, E2 Union

| ∅ Empty

D ::= P Process

| M Choice

| νx D Restriction

Definition 5. Syntax of GSπ. This is a subset of the syntax of Sπ, with the additional
constraint that processes in GSπ can only contain empty choices, and definitions in GSπ
can only contain a choice at the top-level. The constraints ensure that each choice is
defined separately in the environment.

P ::= νz 0 Null

| νz M
i=1 Pi Parallel

| νz X(n) Instance

E ::= X(m)=νz N
i=1 πi.Pi Choice

| X(m)=P Process

| N
i=1 Ei Union

Definition 6. Abbreviated syntax of GSπ, where N ≥ 0 and M ≥ 2. This is a subset of
the abbreviated syntax of Sπ, and is used as the basis for the graphical representation.

Choice Process Union
E X(m)=νz (π1.P1 + . . . + πN .PN ) X(m)=P E1 | . . . | EN

Fig. 4. Graphical representation of environments in GSπ, which is a subset of the
graphical representation of environments in Sπ. For a definition of a choice, the node can
also be annotated with the name X of the definition, or with the name and parameters
X(m). Note that all node annotations are optional.

Null Parallel Instance
P νz 0 νz (P1 | . . . | PM ) X(m)=P � νz X(n)

Fig. 5. Graphical representation of processes in GSπ, which is a subset of the graphical
representation of processes in Sπ
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Null Parallel Instance
P νz 0 νz (P1 | . . . | PM ) X(m)=P � νz X(n)

Fig. 6. Dynamic graphical representation of processes in GSπ. A null process 0 with
restricted names z is not displayed. An instance X(n) of a definition X(m) = P is
displayed by placing a substitution token {n/m} next to the node identified by X. For
clarity, the node is highlighted when at least one token is present, and any restricted
names z are connected to the token by a dotted edge. A collection of parallel processes
P1 | . . . | PM with restricted names z is displayed by drawing a dotted edge from z to
each of the processes P1, . . . , PM . This represents the formation of a complex between
the processes, where the names z can be used to split the complex. If Pi is an instance
X(n) then the dotted edge is connected to the corresponding substitution token.

name to all of the tokens that share this name, in order to represent the formation
of complexes. For example, a process νx (X1(n1) | X2(n2) ) where X1(m1)=P1

and X2(m2)=P2 is displayed by placing tokens {n1/m1} and {n2/m2} next to the
nodes identified by X1 and X2, respectively. A dotted edge is drawn from the
name x to both tokens, in order to represent the formation of a complex between
X1 and X2. The resulting graph is displayed as: X1 {n1/m1} · · ·x · · ·{n2/m2} X2.

Additional syntactic sugar can be defined for the dynamic representation, in
order to improve the display of processes. For example, if N identical substitution
tokens are attached to the same node, they can be replaced by a single token
preceded by the number N . Furthermore, if the substitution token is empty it
can be omitted, leaving just the number N . Similarly, if there are N copies
of a restriction νxP they can be replaced by a single copy of the restriction,
where the name x is preceded by the number N . The scope of a restricted
channel can be further clarified by only drawing a dotted edge to a token if
it contains a free occurrence of the channel name. For example, a restriction
νx1 νx2 (P1 | P2 | P3) where x1 �∈ fn(P3) and x2 �∈ fn(P1) can be displayed
as: P1 · · ·x1 · · ·P2 · · ·x2 · · ·P3. The graphical representation is more informative
than the corresponding textual syntax, since it clearly shows that P1 and P3

do not share any restricted names. In contrast, to verify this property for the
textual syntax one needs to check which names occur inside which processes,
and whether any of the names are shared. The extra clarity is not a particular
property of the calculus, but simply a consequence of the fact that the graphical
representation uses two dimensions, whereas the textual syntax uses just one.

More generally, if multiple substitution tokens of different values are attached
to the same node X , a separate copy of the graph connected to X can be spawned
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r−→ (3)

x−→ (4)

x−→ (5)

Fig. 7. Example graphical reductions in GSπ, where P1, . . . , PN and Q1, . . . , QM are
assumed to represent choices. A given process is executed graphically by first applying
one of the calculus reduction rules and then displaying the resulting process.

for each token of a given value. This can be used to visualise the execution of
different types of components in the system, where a token of a given value
corresponds to a particular type of component. At the finest level of granularity,
a separate graph can be spawned for each individual token, in order to visualise
the execution of individual components in the system. In this setting, only a
single token is present in the graph at a given instant. This allows successive
nodes in the graph to be highlighted after each reduction step, in the style of
state machines.

Since the graphical calculus GSπ is a subset of the calculus Sπ, reduction in
GSπ can be defined using the rules for Sπ presented in Definition 3. The only
required change is to replace P with D in rule (11), since definitions in GSπ are
of the form X(m) = D . A graphical execution model is obtained by applying
these rules to a given process in GSπ, and then displaying the resulting process
after each reduction step. Figure 7 illustrates a number of example graphical
reductions, based on the reduction rules of Definition 3. Figures 8 and 9 illustrate
the execution of a single gene and a network of genes, respectively, based on
the model in Fig. 3. During execution, it is also useful to expand instances of
definitions that are not choices, so that tokens are only attached to nodes that are
waiting to execute. This can be achieved by defining an additional normalisation
rule, such that if X(m)=P then the process X(n) is expanded to P{n/m}, where
P does not contain a choice of actions.

So far, the graphical stochastic π-calculus has been used for both the static
and dynamic visualisation of calculus processes. The next stage is to prove its
equivalence with respect to the stochastic π-calculus, in order to ensure that the
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1 2 3

Gene(a, b) Gene(a, b) | Protein(b) Blocked(a, b) | Protein(b)

Gene(a, b) = τt.(Gene(a, b) | Protein(b)) + ?a.Blocked(a, b)
Blocked(a, b) = τu.Gene(a, b)

Protein(b) = !b.P rotein(b) + τd

Fig. 8. Execution trace for a gene with inhibitory control, based on Fig. 3, where each
choice is defined separately in the environment. The sequence of transitions is given

by 1
t−→ 2

?a−→ 3
u−→ 2. All substitution tokens in the graphs are empty, since the

arguments of each instance are equal to the formal parameters. Parallel execution is
represented by highlighting two different nodes on the same graph at the same time.

(a) (b)

Gene(c, a) | Gene(a, b) | Gene(b, c) (c)

Fig. 9. Constructing a simple network using the gene of Fig. 8. The network consists of
three genes that mutually repress each other, and was previously genetically engineered
in living bacteria [3]. The network has been dubbed the repressilator, since the mutual
repression of the three genes gives rise to alternate oscillations in the expression levels
of the corresponding proteins. The network is displayed by adding substitution tokens

{c,a/a,b}, {a,b/a,b} and {b,c/a,b} to the node identified by Gene, as shown in (a). By
default, the parameters are not shown explicitly on the node label but can be optionally
included, as stated in Fig. 4. For clarity, a separate graph can be generated for each
token (b), where the names of the parameters are used to distinguish between the
different genes. A high-level graphical representation of the network is also given (c).
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E � P � E , E′ � P ′ (13)

where E′ � P ′ = P

νz 0 � ∅ � νz 0 (14)

νz M � X(n)=νz M � X(n) (15)

where X fresh M �= 0 n = fn(νz M)

νz M
i=1Pi � M

i=1Ei � νz M
i=1P

′
i (16)

where Ei � P ′
i = Pi

νz X(n) � ∅ � νz X(n) (17)

X(m)=νz N
i=1πi.Pi � N

i=1Ei, X(m)=νz N
i=1πi.P

′
i (18)

where Ei � P ′
i = Pi

X(m)=P � E, X(m)=P ′ (19)

where E � P ′ = P P �= νz M
N
i=1Ei � N

i=1 Ei (20)

Definition 7. Encoding Sπ to GSπ. The function E � P encodes a given system
E � P in Sπ to a corresponding system in GSπ (13). The encoding relies on a function
P , which encodes a process P in Sπ to a process and environment in GSπ as follows.

An empty choice νz 0 is unchanged. A fresh definition is created for each non-empty
choice νz M , and the choice is replaced by an instance of this definition (15). Each
process Pi in a parallel composition νz M

i=1Pi is replaced by its encoding, and any
new definitions are added to the environment (16). An instance νz X(n) is unchanged.
The encoding also relies on a function E , which encodes an environment E in Sπ to
an environment in GSπ as follows. Each process Pi in a choice νz i πi.Pi is replaced
by its encoding, and any new definitions are added to the environment (18). A process
P that is not a choice is replaced by its encoding, and any new definitions are added
to the environment. (19). Finally, each environment Ei in a union N

i=1Ei is replaced
by its encoding (20).

E � P � E � P (21)

Definition 8. Decoding GSπ to Sπ. Since the graphical calculus GSπ is a subset of

the calculus Sπ, the decoding is simply the identity function.

two calculi can be used interchangeably. This can be achieved by defining an
encoding from the calculus Sπ to the graphical calculus GSπ, as presented in
Definition 7, where the function E � P encodes a given system E � P in Sπ
to a corresponding system in GSπ.

Lemma 1 ensures that the encoding is well-defined. The lemma states that if a
system E � P is in the calculus Sπ then its encoding E � P is in the graphical
calculus GSπ.
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Lemma 1. ∀E, P ∈ Sπ. E � P ∈ GSπ

Proof. By straightforward induction on the definition of encoding in Sπ. ��
Lemma 2 ensures that the graphical calculus GSπ is a subset of the calculus Sπ.
The lemma states that if a system E � P is in the graphical calculus GSπ, then
it is also in the calculus Sπ. This allows reduction in GSπ to use the same rules
as reduction in Sπ.

Lemma 2. ∀E, P ∈ GSπ.E � P ∈ Sπ

Proof. By straightforward induction on the syntax of GSπ. By definition, the
calculus GSπ requires each choice to be defined separately in the environment,
which is nothing more than a syntactic constraint on the calculus Sπ. ��
Theorem 1 ensures that the syntax of the graphical calculus is preserved by
reduction. The theorem states that if a system E � P in GSπ can reduce to
E � P ′ then the resulting system is also in GSπ. This ensures that a given
process can be graphically displayed after each reduction step.

Theorem 1. ∀E, P ∈ GSπ.E � P
α−→ E � P ′ ⇒ E � P ′ ∈ GSπ

Proof. By straightforward induction on the definition of reduction in GSπ. It
is clear that if each choice is defined separately in the environment then this
property will also hold after a reduction, since the reduction rules do not expand
definitions of choices. This is the only additional constraint that needs to be
preserved with respect to reduction in Sπ. ��
Finally, Theorem 2 and Theorem 3 ensure that the graphical calculus GSπ and
the calculus Sπ are reduction equivalent. This ensures that the two calculi have
the same expressive power, and can therefore be used interchangeably.

Theorem 2. ∀E, P ∈ GSπ.E � P
α−→ E � P ′ ⇒ E � P

α−→ E � P ′

Proof. The proof is immediate, since the graphical calculus GSπ is a subset of
the calculus Sπ, where the decoding E � P is given in Definition 8 as the
identity function. ��
Theorem 3. ∀E, P ∈ Sπ.E � P

α−→ E � P ′ ⇒ E � P
α−→ E � P ′

Proof. The proof is by straightforward induction on the definition of reduction
in Sπ. The encoding E � P merely creates a separate definition X(n)= νz M
in the environment E for each choice νz M in the system. Moreover, rule (11)
ensures that if a given process can perform a reduction, then the same reduction
can be performed if the process is defined separately in the environment. There-
fore, any reductions that are possible in the system E � P will also be possible
in the corresponding encoding. Note that the definitions created in the encoding
E � P can have different names to those created in E � P ′ . Furthermore,

the encoding E � P ′ can have less definitions than the encoding E � P , e.g.
if some of the choices in E � P are reduced. Therefore, in order to ensure that
E � P

α−→ E � P ′ the proof assumes that systems E � P of the graphical
calculus are equal up to renaming of definitions and up to garbage-collection of
unused definitions. ��
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5 Biological Examples

This section uses the graphical stochastic π-calculus to model a couple of example
biological systems, namely a bistable gene network [4] and a mapk signalling
cascade [8]. A visual comparison between the stochastic π-calculus models and
their corresponding reaction equations is provided in Appendix B.

5.1 Bistable Gene Network

In [4], a number of gene networks were evolved in silico to perform specific
functions. At each stage in the evolution, various criteria were used to select
the networks that best matched the desired behaviour. One of the networks
was evolved to perform the function of a bistable switch, as summarised in
Fig. 10. The evolved network was shown to be considerably more stable than
the simpler, more intuitive network in which two genes mutually repress each
other.

Fig. 10. A bistable gene network obtained by evolution in silico, as presented in [4]. The
genes a and b can transcribe proteins A and B respectively, at constitutive transcription
rates. Proteins A and B can bind irreversibly to produce the complex AB, which
eventually degrades. Protein A can also bind reversibly to gene b, in order to inhibit
the transcription of B. Initially, if A binds to b then production of A stabilises at a
high level, since B is produced at a much lower rate. Alternatively, if A binds to B then
production of B stabilises at a high level, since each subsequent A that is produced
immediately binds to B and is degraded.

A graphical stochastic π-calculus model of this system is presented in Fig. 11,
and the corresponding code for the model is presented in Fig. 22 of Appen-
dix A. The model is directly executable, in contrast with the informal diagram
of Fig. 10. Example execution traces for the model are shown in Fig. 12, which
help to clarify the overall system function. Stochastic simulation results for the
model are shown in Fig. 13, which match those presented in [4]. The results
indicate that the system does indeed behave as a bistable switch.
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z= inhibit, bind
a(z)=τtA.(A(z) | a(z))
A(z)=νu

(τdA

+!bind(u).A B(u)
+!inhibit(u).A b(u, inhibit, bind))

A b(u, inhibit, bind)=?u.A(z)
A B(u)=τdAB

b(z)=τtB.(B(z) | b(z))
+?inhibit(u).b A(u)

b A(u)=τtB′ .(B(z) | b A(u))
+!u.b(z)

B(z)=τdB

+?bind(u).B A(u)
B A(u)=0

a(z) | b(z)

Fig. 11. A graphical stochastic π-calculus model of the bistable gene network presented
in [4]. The corresponding textual representation of the network is also given. Each gene
a and b is modelled as a separate process with parameters z. Gene a can transcribe a
protein A by doing a stochastic delay at rate tA and then executing a new process A
in parallel with the gene. Protein A can either degrade by doing a stochastic delay at
rate dA, or bind to gene b by doing an output on channel inhibit, or bind irreversibly
to protein B by doing an output on channel bind. When protein A binds to gene b it
sends a private channel u and then executes the process A b, which can unbind from
the gene by doing an input on u. When protein A binds irreversibly to protein B it
executes the process A B, which can degrade by doing a stochastic delay at rate dAB.
Thus, protein A is neutralised by protein B. Conversely, gene b can either transcribe
a protein B by doing a stochastic delay at rate tB, or bind to protein A by doing an
input on channel inhibit. When gene b binds to protein A it receives a private channel
u and then executes the process b A, which can either unbind from the protein by
doing an output on u, or transcribe a protein B at a much slower rate tB′. Thus, gene
b is inhibited by protein A. Protein B can either degrade by doing a stochastic delay
at rate dB, or bind irreversibly to protein A by doing an input on channel bind.

5.2 Mapk Cascade

In [8], a model of the mitogen-activated protein kinase (mapk) cascade
was presented, and the cascade was shown to perform the function of an
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1 1b

2a 2b

3a 3b

Fig. 12. Execution traces for the bistable gene network of Fig. 11. Initially there are
two genes a and b that can transcribe proteins A and B at rates tA and tB, respectively
(1). The transcription rate tB is only slightly faster than tA, giving a similar probability
for transcribing either protein A or B. If protein A is transcribed first (2a) it can bind
to gene b and inhibit the production of protein B (3a). Since protein B is transcribed
at a much slower rate tB′, a higher proportion of protein A is produced. Alternatively,
if protein B is transcribed first (1b), any subsequently transcribed protein A (2b) can
bind irreversibly to protein B and be degraded (3b). Since protein B is transcribed
faster than protein A, a higher proportion of protein B is produced.
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(a) (b)

(c)

Fig. 13. Simulation results for the bistable gene network of Fig. 11, which show the
evolution of the number of proteins over time. The results were obtained by executing
the code from Fig. 22 of Appendix A using the SPiM simulator, assuming that the
rates are in s−1. Initially, there is a single copy of each gene a and b, with a similar
probability of transcribing either protein A or protein B. Depending on the initial
transcriptions, the system will either transcribe a high proportion of protein A (a)
or a high proportion of protein B (b). When a high proportion of a given protein is
transcribed, it suppresses the other protein and the system remains in a stable state.
It is possible to toggle between two stable states by injecting a large amount of protein
into the system after a given time interval. For example, a system that has a stable
production of protein B can be “switched” by artificially injecting a large amount of
protein A at time t  2500, and then “switched” again by injecting a large amount of
protein B at time t  5000 (c).

ultrasensitive switch. The cascade was studied using a set of reaction equa-
tions, which were converted to ordinary differential equations. The equations
were solved numerically, and the response curves for the cascade were shown
to be steeply sigmoidal. The basic function of the cascade is summarised in
Fig. 14.

A graphical stochastic π-calculus model of this system is presented in Fig. 17,
and the corresponding code for the model is presented in Fig. 23 of Appendix A.
The model represents the reaction between an enzyme E and a substrate K
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Fig. 14. A model of the mitogen-activated protein kinase (mapk) cascade, as presented
in [4]. Initially the cascade contains a large reservoir of substrates KKK, KK and K.
When a single enzyme E1 is added, it drives the transformation of KKK to KKK*,
which in turn drives the transformation of KK to KK-P to KK-PP, which in turn
drives the transformation of K to K-P to K-PP. The effect of these transformations is
to produce a rapid increase in the output level of K-PP when an input E1 is added.
The transformations can also be driven in the reverse direction by the enzymes E2,
KK-Pase and K-Pase, respectively. This allows the output level of K-PP to revert back
to zero when the input E1 is removed, so that the cascade can be re-used.

in two stages, as shown in Fig. 15. First, the enzyme binds to the substrate,
after which it can either unbind or transform the substrate into a product. An
execution trace of a reaction between an enzyme and a substrate is shown in
Fig. 16. Stochastic simulation results for the mapk cascade are shown in Fig. 18.
The results highlight the increase in signal response as the cascade is traversed
from KKK, to KK to K, in accordance with the predictions of [8]. Further simu-
lations across a range of values indicate that the overall function of the system is
robust to changes in reactions rates. Even when all of the rates were set to a
nominal value of 1.0, the system still behaves as an ultrasensitive switch. Such
robustness in system behaviour is perhaps not a coincidence, given that the
cascade is used to trigger important processes such as cell division in living
organisms.

In previous work, the stochastic π-calculus was used to construct a high-level
library of genes, which was used to build networks of varying size and complexity
[2]. In principle, a similar approach can also be applied to signalling pathways,
such as the mapk cascade in Fig. 17. The cascade is a fairly regular system that
consists of proteins with only two types of behaviour, namely enzyme and sub-
strate. The complexity of the system lies in the way multiple combinations of
behaviours can be defined for the same protein. The ability to combine behav-
iours in this way can be modelled more directly by defining a high-level library
of enzymes and substrates, as shown in Fig. 19. The library uses simple syn-
tactic sugar, which enables a stochastic π-calculus model for the mapk cascade
to be constructed by a combination of calls to the library, as shown in Fig. 20.
Taking things a step further, one can also envisage a high-level graphical repre-
sentation for the library, as illustrated in Fig. 20. In general, one can envision
multiple high-level (graphical) libraries for different types of systems, such as
gene networks and signalling cascades, all defined in terms of a single underlying
(graphical) programming language.
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E(a)=νdνk !a(d, k).EK(a, d, k)
EK(a, d, k)=?d.E(a) + ?k.E(a)

K(a)=?a(d, k).KE(a, d, k)
KE(a, d, k)=!d.K(a) + !k.P ()

E(a) | K(a)

Fig. 15. A stochastic π-calculus model of enzymes and substrates. The reaction be-
tween an enzyme E and a substrate K takes place in two stages. First, the enzyme
binds to the substrate with a given rate a, after which the enzyme can either unbind
with rate d, or transform the substrate to a product P with rate k. This is represented
by the reaction equation E + K d �a E : K →k E + P . A reaction of this form is
modelled in the stochastic π-calculus by defining separate processes E(a) and K(a) for
the enzyme and substrate, respectively. The enzyme E can bind to the substrate by
sending private channels d and k on channel a. The bound enzyme can either unbind
by doing an input on d, or react by doing an input on k. Similarly, the substrate K
can bind to an enzyme by receiving private channels d and k on channel a. The bound
substrate can either unbind by doing an output on d, or react by doing an output on
k to produce a product P .

1 2 3

Fig. 16. Execution trace for the enzyme and substrate of Fig. 15. Initially, there is an
enzyme E and a substrate K that can interact on channel a (1). The enzyme binds
to the substrate by sending private channels d and k on channel a (2). The bound
enzyme and substrate can unbind by doing a complementary input and output on
channel d, and return to their original state (1). Alternatively, they can react by doing
a complementary input and output on channel k. The enzyme returns to its original
state, while the substrate is transformed into a product P (3).
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Fig. 17. A graphical stochastic π-calculus model of the mapk cascade presented in [8].
The cascade consists of proteins that can act as enzymes or substrates, as defined in
Fig. 15. The process E1 can act as an enzyme on a1, and the process KKK can act as
a substrate on a1 to produce a product KKKst . Conversely, the process KKKst can act
as a substrate on a2 to produce a product KKK . It can also act as an enzyme on both
a3 and a5. The remaining enzymes and substrates are defined in a similar fashion.

(a) (b)

Fig. 18. Simulation results for the mapk cascade of Fig. 17. The results were ob-
tained by executing the code from Fig. 23 of Appendix A, using the SPiM simula-
tor. Simulation (a) was obtained using rates and quantities derived from [8], with
rate(ai) = 1.0s−1, rate(di) = rate(ki) = 150.0s−1, starting with one of E1, E2 and
KKPase, 120 of KPase , 3 of KKK and 1200 of KK and K. Simulation (b) was obtained
by setting all the rates to a nominal value of 1.0, starting with the quantities in Fig. 17.
Both simulations exhibit an increase in signal response as the cascade is traversed from
KKK to KK and K. Functionally similar response profiles were observed for the output
KPP in both simulations, in spite of the differences in simulation conditions.
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Enz(E,a)=νdνk !a(d, k).ES(E, a, d, k)
ES(E,a, d, k)=?d.E() + ?k.E()

Sub(S, P, a)=?a(d, k).SE(S, P, a, d, k)
SE(S, P, a, d, k)=!d.S() + !k.P ()

Fig. 19. A library of enzymes and substrates, based on the definitions in Fig. 15. The
library uses a higher-order variant of the stochastic π-calculus, in which process names
can be passed as parameters. The definition of an enzyme Enz is parameterised by
the name of the enzyme E, while the definition of a substrate Sub is parameterised
by the names of the substrate S and the product P . This allows multiple enzyme and
substrate behaviours to be defined for a given protein, by simple combinations of calls
to the library. For example, X()=Sub(X, P, a2) + Enz(X, a3) + Enz(X, a5) defines a
protein X that can act as a substrate on a2 to produce a product P , as an enzyme
on a3, or as an enzyme on a5. The definition relies on additional syntactic sugar for
placing an instance inside a choice, where νz′ (X(n) + N) is short for νzz′ (M + N),
assuming X(n)=νz M and z ∩ z′ = ∅.

E1() = Enz(E1, a1)
E2() = Enz(E2, a2)

KKPase() = Enz(KKPase, a4)
+ Enz(KKPase, a6)

KPase() = Enz(KPase, a8)
+ Enz(KPase, a10)

KKK() = Sub(KKK, KKKst, a1)
KKKst() = Sub(KKKst, KKK, a2)

+ Enz(KKKst, a3)
+ Enz(KKKst, a5)

KK() = Sub(KK, KKP, a3)
KKP () = Sub(KKP, KK, a4)

+ Sub(KKP, KKPP, a5)
KKPP () = Sub(KKPP, KKP, a6)

+ Enz(KKPP, a7)
+ Enz(KKPP, a9)

K() = Sub(K, KP, a7)
KP () = Sub(KP, K, a8)

+ Sub(KP, KPP, a9)
KPP () = Sub(KPP, KP, a10)

Fig. 20. High-level program code for the mapk cascade of Fig. 17. The code is con-
structed by calls to the library of enzymes and substrates defined in Fig. 19. The
structure of the code gives a clear indication of the function of each protein in the
cascade. A corresponding high-level graphical representation for the code is also given.
The representation is similar to the biological diagram of Fig. 14, but also contains ex-
plicit channel names to denote possible interactions. If the stochastic π-calculus model
is closed by restricting channels a1, . . . , a10 then the set of possible interactions is fixed,
and we obtain exactly the diagram of Fig. 14.
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6 Implementation

The variant of the stochastic π-calculus described in this paper has been used to
implement the current version of the SPiM programming language, which is used
to simulate models of biological systems [15]. The language extends the syntax of
the calculus by allowing mutually recursive processes to be defined at arbitrary
levels of nesting. This gives rise to a more scalable syntax, which facilitates
programming of large systems. A collection of mutually recursive processes is of
the form:

let X1(m1) = P1 and . . . and XN (mN ) = PN in Q

This is encoded into the calculus by expanding the scope of each definition
Xi(mi) = Pi to the top level, adding parameters to each top-level definition to
ensure that fn(Pi) ⊆ mi, and renaming process definitions where necessary to
ensure that all top-level definitions are distinct. The transformations are based
on standard encodings presented in [22,11,21]. A core syntax of the SPiM pro-
gramming language is presented in Appendix A.

The implementation can display a process of the graphical stochastic π-
calculus by exporting to an open graph syntax such as DOT [5]. DOT is a
textual syntax for representing directed graphs, which can be rendered using the
Graphviz DOT layout engine. A symbolic core syntax for DOT graphs is de-
scribed in Definition 9. An encoding {|E � P |} for generating a DOT graph from
a system E � P in GSπ is presented in Definition 10. The encoding maps each
definition of X to a corresponding node with identifier X . This allows mutually
recursive definitions to be encoded compositionally, since the DOT layout engine
can link edges to nodes based on their identifiers.

Theorem 4. ∀E, P ∈ GSπ.{|E � P |} ∈ DOT

Proof. By straightforward induction on the definition of encoding in DOT. ��
The way in which nodes, edges and labels are displayed can be customised for
a given DOT graph. A node X that corresponds to a choice is displayed as an
ellipse with label X , whereas a node that corresponds to a parallel composition
is displayed as a solid rectangle. A node X with toplabel z is displayed with
label z near the top left of the node. An edge X

π−→σ Y from a node X to a
node Y is displayed as a directed edge from X to Y , with the label π at the
midpoint of the edge and the label σ at the head of the edge. A subgraph z{G}
is displayed by creating a new text node with name z and drawing a dotted edge
to each of the nodes in G. If the number of nodes in G is sufficiently large then
an alternative representation can be used, in which the nodes are enclosed in a
dotted rectangle with label z.

The encoding has been used to implement a graph generating tool, which
produces a DOT graph from a given source file written in the SPiM language.
First, the SPiM program is encoded to a process of the graphical calculus by
adding new definitions according to Definition 7. The resulting process is then
encoded to a corresponding DOT graph, according to Definition 10. The graphs
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G ::= X
π−→σ Y Edge from node X to Y with label π and headlabel σ

| X −→σ Y Edge from node X to Y with headlabel σ

| zX Node X with toplabel z

| Xσ Node X with bottomlabel σ

| z{G} Subgraph G with label z

| N
i=1 Gi Union of graph declarations G1; . . . ; GN where N ≥ 0

Definition 9. Symbolic Syntax of DOT Graphs.

{|E � P |} � {|E|}E ; {|P |}E (22)

{|νz M
i=1Pi|}E � z{ M

i=1{|Pi|}E} (23)

{|νz 0|}E � ∅ (24)

{|νz X(n)|}E � z{X{n/m}} (25)

where X(m)=D ∈ E

{| N
i=1Ei|}E � N

i=1{|Ei|}E (26)

{|X(m)=νz N
i=1πi.Pi|}E � zX; N

i=1X
πi−→ �Pi�E (27)

{|X(m)=νz M
i=1Pi|}E � zX; M

i=1X −→ �Pi�E (28)

{|X(m)=νz Y (n)|}E � zX; X −→ �Y (n)�E (29)

�X(n)�E � {n/m}X (30)

where X(m)=D ∈ E

�P �E � Y ; {|Y (m)=P |}E (31)

where P �= X(n) Y fresh m = fn(P )

Definition 10. Encoding from GSπ to DOT. The function {|E � P |} generates a DOT

graph from a given system E � P in GSπ. The encoding relies on a function {|E′|}E

and a function {|P |}E , which generate a DOT graph from an environment E′ and a

process P , respectively. Both functions take the initial environment E as a parameter,

which is needed for looking up definitions. The encoding also relies on a function �P �E,

which ensures that each process P has a corresponding process identifier when drawing

an edge to P . This is because the DOT syntax requires each node in the graph to have

a unique identifier. If P is of the form X(n) then the identifier X is used. Otherwise, a

fresh definition is generated, and the definition name is used as the identifier for P .

in this paper were generated using this tool, and further examples of generated
graphs are available from [15]. In practice, some of the elements in the high-level
DOT syntax of Definition 9 need to be fine-tuned to improve layout, but the
additional modifications are mostly straightforward.

Finally, an abstract machine has been defined for the variant of the stochastic
π-calculus presented in this paper, based on the abstract machine presented
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in [16]. The abstract machine has been used to implement a simulator for the
calculus, based on the current implementation available from [15]. In a future
version of the simulator, we plan to adapt the encoding of Definition 10 to
generate a DOT graph from a machine term after each execution step, in order
to render a graphical debugger for visualising the current state of a simulation.

7 Related Work

Pioneering work on Statecharts [7] highlighted the need for a scalable, self-
contained graphical representation of concurrent systems. More recent work
proposed a synchronous variant to Statecharts, in which concurrent processes
can synchronise on shared labels [1]. Our graphical representation uses a sim-
ilar principle, in contrast with foundational work on graphical representations
for the π-calculus [10], which uses more elaborate rules for graph re-writing. In
general, graphical representations for process calculi are still an active area of
research. For example, [12] describes an automata-based representation for the
π-calculus, in which each state of the system is represented as a node in the
graph of an automaton. In this paper we adopt a less ambitious but perhaps
more scalable approach, which allows new copies of a graph to be generated on
demand. From a biological perspective, each new copy represents a new molecule
or component, whose internal behaviour is described by a separate graph. Mole-
cules can interact by synchronising on common channels and can also degrade,
after which the corresponding graph is deleted. The use of substitution tokens
in the graphical calculus is also reminiscent of Petri Nets [14], where each token
represents a separate entity in the system.

Preliminary informal ideas on a graphical representation for the stochastic
π-calculus were previously presented in [16]. This paper formalises and extends
these ideas to produce a novel representation, in which different node types
are used to distinguish between stochastic choice and parallel composition. An
extended abstract for this paper is presented in [17].

The reduction semantics of [16] relies on a notion of structural congruence for
the re-ordering of processes. Although this gives rise to a simplified definition of
reduction, it cannot be used in the context of the graphical calculus, since it does
not preserve the syntax of processes. In particular, the following structural con-
gruence rule allows X(n) to be instantiated with D, which may contain a choice:

X(n)=D ⇒ X(n) ≡ D{n/m}

This violates the syntax of the graphical calculus, since a choice should only
occur inside a definition of the environment. In contrast, the transition system
of Definition 3 does not violate the syntax of the graphical calculus, since the
corresponding rule (11) allows a reduction to occur without instantiating X(n):

X(m)=D D{n/m}
α−→ P ′ ⇒ X(n) α−→ P ′

8 Conclusion

This paper presented a graphical representation for the stochastic π-calculus,
which was used to model a bistable gene network and a mapk signalling cascade.
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One of the benefits of the representation is its ability to highlight the existence of
cycles, which are a key feature of biological systems. Another benefit is its ability
to animate interactions between system components, in order to visualise system
dynamics. Such graphical animations are particularly valuable when debugging
complex system models.

There are various areas for future work. One issue is to investigate how high-
level libraries for different types of biological systems could be built on top of
the stochastic π-calculus, as discussed in Sec. 5. It would be interesting to define
high-level graphical representations for these libraries, inspired by diagrams such
as [13] that are currently being used by biologists.

Another area for future work is to explore ways of minimising the occur-
rence of substitution labels in the graphical representation of a given process.
Such labels are needed whenever a definition is instantiated with arguments that
are different from the formal parameters. Interestingly, for the examples consid-
ered in this paper, it was always possible to rename the formal parameters in
a collection of mutually recursive definitions so that they were same as the ap-
plied arguments. For example, in the gene network of Fig. 8 the arguments for
Gene(a, b), Protein(b) and Blocked(a, b) were such that the substitution labels
in the corresponding graphical representation were all empty. It would be inter-
esting to define algorithms for parameter renaming in the general case, in order
to minimise the occurrence of substitution labels.

A somewhat unexpected property of the graphical calculus is that it can
potentially be used as the basis for an efficient execution algorithm for the sto-
chastic π-calculus. In particular, the requirement to define each choice separately
in the environment is a way of partially mapping out the state space of the sys-
tem. Thus, instead of generating a new copy of a given process, one can simply
keep track of the number of identical copies being executed. In this setting, two
processes are considered identical if they instantiate the same process definition
with the same parameters. This optimisation would be particularly useful when
executing large numbers of identical processes, and could be formally described
in terms of the graphical calculus presented in this paper.

In the short term, we plan to use our graph generation tool to implement a
graphical debugger for the SPiM simulator. In the longer term, it would be inter-
esting to develop a tool for drawing graphical models, which could automatically
generate the corresponding π-calculus code. One can also envisage an interactive
visualisation environment, in which disjoint graphs can be displayed separately
or collapsed to a single node by clicking on the graph. Such features are crucial for
the scalability of a graphical representation, since they allow a user to visualise
parts of the system in a modular fashion, rather than trying to visualise the entire
system at once. This ongoing research on graphical interfaces can be used to com-
plement the existing textual interface to the simulator, to help make modelling
and simulation of biological systems more accessible to non computer scientists.
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A Program Code

Dec ::= new x{@r} : t Channel Declaration
| type n = t Type Declaration
| val m = v Value Declaration
| run P Process Declaration
| let D1 and . . . and DN Definitions, N ≥ 1

D ::= X(m1, . . . ,mN) = P Definition, N ≥ 0

P ::= () Null Process
| (P1 | . . . | PM) Parallel, M ≥ 2
| X(v1, . . . ,vN) Instantiation, N ≥ 0
| π{; P} Action
| do π1{; P1} or . . . or πM{; PM} Choice, M ≥ 2
| (Dec1 . . . DecN P) Declarations, N ≥ 0

π ::= !x {(v1, . . . ,vN)} Output, N ≥ 0
| ?x {(m1, . . . ,mN)} Input, N ≥ 0
| delay@r Delay

Fig. 21. The core SPiM language, where optional elements are enclosed in braces {}

val tA = 0.20 val dA = 0.002

val tB = 0.37 val dB = 0.002

val tB’ = 0.027 val dAB = 0.53

new bind@0.72:chan new inhibit@0.19:chan(chan)

let a() = delay@tA; ( A() | a() )

and A() = (

new u@0.42:chan

do delay@dA

or !bind; A B()

or !inhibit(u); A b(u)

)

and A b(u:chan) = ?u; A()

and A B() = delay@dAB

let b() =

do delay@tB; ( B() | b() )

or ?inhibit(u); b A(u)

and b A(u:chan) =

do !u; b()

or delay@tB’; B(); b A(u)

and B() = do delay@dB or ?bind

run (a() | b())

Fig. 22. Program code for the bistable gene network of Fig. 11
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let E1() = (

new k1@rk1:chan new d1@rd1:chan

!a1(d1,k1); do ?d1; E1() or ?k1; E1()

)

let E2() = (

new k2@rk2:chan new d2@rd2:chan

!a2(d2,k2); do ?d2; E2() or ?k2; E2()

)

let KKK() = ?a1(d,k); (do !d; KKK() or !k; KKKst())

and KKKst() = (

new d3@rd3:chan new k3@rk3:chan

new d5@rd5:chan new k5@rk5:chan

do ?a2(d,k); (do !d; KKKst() or !k; KKK())

or !a3(d3,k3); (do ?d3; KKKst() or ?k3; KKKst())

or !a5(d5,k5); (do ?d5; KKKst() or ?k5; KKKst())

)

let KK() = ?a3(d,k); (do !d; KK() or !k; KKP())

and KKP() =

do ?a4(d,k); (do !d; KKP() or !k; KK())

or ?a5(d,k); (do !d; KKP() or !k; KKPP())

and KKPP() = (

new d7@rd7:chan new k7@rk7:chan

new d9@rd9:chan new k9@rk9:chan

do ?a6(d,k); (do !d; KKPP() or !k; KKP())

or !a7(d7,k7); (do ?d7; KKPP() or ?k7; KKPP())

or !a9(d9,k9); (do ?d9; KKPP() or ?k9; KKPP())

)

let K() = ?a7(d,k); (do !d; K() or !k; KP())

and KP() =

do ?a8(d,k); (do !d; KP() or !k; K())

or ?a9(d,k); (do !d; KP() or !k; KPP())

and KPP() = ?a10(d,k); (do !d; KPP() or !k; KP())

let KKPase() = (

new d4@rd4:chan new k4@rk4:chan

new d6@rd6:chan new k6@rk6:chan

do !a4(d4,k4); (do ?d4; KKPase() or ?k4; KKPase())

or !a6(d6,k6); (do ?d6; KKPase() or ?k6; KKPase())

)

let KPase() = (

new d8@rd8:chan new k8@rk8:chan

new d10@rd10:chan new k10@rk10:chan

do !a8(d8,k8); (do ?d8; KPase() or ?k8; KPase())

or !a10(d10,k10); (do ?d10; KPase() or ?k10; KPase())

)

run (10 of KKK() | 100 of KK() | 100 of K())

run ( 1 of E2() | 1 of KKPase() | 1 of KPase() | E1())

Fig. 23. Program code for the mapk cascade of Fig. 17
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B The Stochastic π-Calculus vs. Reaction Equations

This appendix gives a visual comparison between the stochastic π-calculus and
reaction equations, using the example biological systems described in the main
text. The stochastic π-calculus allows the description of a biological system to
be decomposed into distinct components, where each component is described
by a separate connected graph. Each node in the graph represents a state of
the component, and each labelled edge represents a potential interaction with
another component. The interactions between components are determined by the
complementarity of actions on the edges, and do not need to be given explicitly.
This allows new components to be added directly, without modifying the existing
system. As a result, large and complex systems can be defined incrementally,
by direct composition of simpler components. In contrast, reaction equations
require the interactions between components to be defined explicitly, resulting
in a highly connected graph. If a new component is added to the system, each
interaction with an existing component needs to be defined by an additional edge
to the component. If each new component can interact with multiple existing
components, this leads to a combinatorial explosion in the number of edges.

Fig. 24. Visual comparison between stochastic π-calculus processes (left) and reaction
equations (right) for the bistable gene network of Fig. 11



152 A. Phillips, L. Cardelli, and G. Castagna

Fig. 25. Visual comparison between stochastic π-calculus processes (top) and reaction
equations (bottom) for the mapk cascade of Fig. 17
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Abstract. We study rules proposed by the biologist R. Thomas relating
the structure of a concurrent system of interacting genes (represented by
a signed directed graph called a regulatory graph) with its dynamical
properties. We prove that the results in [10] are stable under projection,
and this enables us to relax the assumptions under which they are valid.
More precisely, we relate here the presence of a positive (resp. negative)
circuit in a regulatory graph to a more general form of biological differ-
entiation (resp. of homeostasis).

1 Introduction

The activity of a biological cell is to a large extent controlled by genetic reg-
ulation, which is an interacting process involving proteins and DNA (genes).
We are interested here in genetic regulatory networks which abstract from the
detailed genome-protein interaction by focussing on the genome and by consid-
ering interactions between genes. Such a simplification is somehow justified by
the importance of DNA as a program which is present in all the cells of an or-
ganism (whereas the concentrations in proteins and in RNA transcripted from
DNA vary according to the cell and the time). Genetic regulatory networks have
the structure of a signed directed graph, where vertices represent genes and di-
rected edges come equipped with a sign (+1 or −1) and represent activatory or
inhibitory effect.

This paper deals with properties relating the structure of such a concurrent
system of interacting genes with its dynamics. We shall consider here discretised
Boolean dynamics,1 where the activity of a gene in a specific cell is measured
by the concentration of the RNA transcripted from DNA, a quantity called the
expression level of the gene and assumed to be either 1 (gene expressed) or 0
(gene not expressed). Hence the state of a system of n genes is modelled by an
n-tuple x ∈ {0, 1}n. The concurrent nature of these biological objects is clearly

1 Discrete approaches are increasingly used in biology because of the qualitative nature
of most experimental data, together with a wide occurrence of non-linear regulatory
relationships (e.g., combinatorial arrangements of molecular bindings, existence of
cooperative or antagonist regulatory effects).
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demonstrated for instance by a mapping to standard Petri nets [2,9], of which
genetic regulatory graphs can be considered as a subsystem.

The starting point of this work consists in two simple rules stated by the
biologist R. Thomas and relating the structure of regulatory graphs to their
asymptotic dynamical properties [17]:

1. a necessary condition for multistability (i.e., the existence of several stable
fixed points in the dynamics) is the existence of a positive circuit in the
regulatory graph (the sign of a circuit being the product of the signs of its
edges): this corresponds to cell differentiation processes;

2. a necessary condition for the existence of an attractive cycle in the dynam-
ics is the existence of a negative circuit: this corresponds to homeostasis
(sustained oscillatory behaviours, e.g., cell cycle or circadian rhythms).

These rules have given rise to mathematical statements and proofs mostly in a
differential dynamical formalism [8,14,4,15], and more recently in the discrete
Boolean formalism [1,10]. By proving in this paper that these properties are sta-
ble under projection (in a sense that we make precise in Lemma 1), we generalise
the results in [10] by showing that the existence of positive and negative circuits
actually follows from weaker assumptions (Theorems 3 and 4). In the case of
positive circuits for instance, the condition corresponds to a more general form
of differentiation than in [10].

We do not make explicit in this introduction how regulatory graphs and dy-
namics are defined in terms of each other. This is done in Section 2. Let us
simply observe here that instead of starting from processes which are graphs
and studying their dynamics (which is typically graph rewriting, see [3] in the
case of protein-protein interaction), we start here with a given dynamics and
derive a regulatory graph at each point of the phase space (via a discrete form
of Jacobian matrix). In particular, our approach can be used to infer circuits in
regulatory networks. It is also possible to consider a fixed global “topology” of
interacting genes, e.g., by taking the union of the graphs over points in the phase
space, and to view our local graphs as annotations of the global one (where an
interaction is “active” in a certain region of the phase space). Observe however
that these more global graphs need not immediately correspond to the usual
interaction graphs considered by biologists: for instance, as noticed in [16], the
positive circuits occurring in [5,7] are not regulatory feedback circuits, and the
regulatory graphs defined in [6] are the same as ours only up to self-regulations.

We believe that the kind of properties at hand in this paper should serve as a
basis to study more refined models, which could in particular take into account
stochastic phenomena and metabolic pathways.

2 Thomas’ Rules and Stability Under Projection

2.1 Preliminaries

We start by recalling here the definitions which enable to associate regulatory
graphs to a dynamics. The paper is self-contained, though more details can be
found in [10].
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Let n be a positive integer. The integers 1, . . . , n denote genes. A state of the
system is an x = (x1, . . . , xn) ∈ {0, 1}n, where xi is the (discretised) expression
level of gene i: xi = 1 when gene i is expressed, 0 otherwise. For β ∈ {0, 1}, we
define β by 0 = 1 and 1 = 0. For x ∈ {0, 1}n and I ⊆ {1, . . . , n}, xI ∈ {0, 1}n

is defined by (xI)i = xi for i �∈ I and (xI)i = xi for i ∈ I. When I = {i} is a
singleton, x{i} is denoted by xi.

Dynamics. We are interested in the dynamics of the system consisting in the n
interacting genes. Consider a map f : {0, 1}n→{0, 1}n, f(x)=(f1(x), . . . , fn(x)).
For each x ∈ {0, 1}n and i = 1, . . . , n, fi(x) denotes the value to which xi, the
expression level of gene i, tends when the system is in state x. We assume that
the system evolves according to the (non-deterministic) asynchronous dynamics
{(x, xi) s.t. x ∈ {0, 1}n, xi �= fi(x)}, i.e., the expression level of only one gene is
updated at each step. Other dynamics can be considered, like the (deterministic)
synchronous dynamics {(x, f(x)) s.t. x ∈ {0, 1}n} where all the expression levels
xi are simultaneously updated to fi(x) in one step. But as argued in [10], the
asynchronous one is more realistic, and Theorem 2 for instance does not hold for
the synchronous one. Observe that kinetic parameters are not taken into account
in the discrete approach considered in this paper; however the model could be
enriched by temporal delays: this would enable to recover kinetic informations.

A cycle (for f) is a sequence of states (x1, . . . , xr) such that for each i =
1, . . . , r, the pair (xi, xi+1) belongs to the (asynchronous) dynamics. Indices are
taken here modulo r, i.e., r + 1 = 1. A cycle (x1, . . . , xr) is completely described
by one of its points, say x1, and its strategy, which is the map ϕ : {1, . . . , r} →
{1, . . . , n} such that

xi+1 = xi
ϕ(i)

.

A cycle (x1, . . . , xr) with strategy ϕ is said to be a trap cycle when, once in the
cycle, one cannot escape any more, i.e., for all i = 1, . . . , r:

f(xi) = xi
ϕ(i)

.

Regulatory Graphs. A regulatory graph is a signed directed graph with vertex
set {1, . . . , n}, i.e., a directed graph with a sign, +1 or −1, attached to each
edge. To f : {0, 1}n → {0, 1}n and x ∈ {0, 1}n, we associate a regulatory graph
G(f)(x) with an edge from j to i when

fi(xj) �= fi(x),

with positive sign when
xj = fi(x),

and negative sign otherwise. The intuition for the first condition is straightfor-
ward, and actually the graph underlying G(f)(x) (obtained by forgetting the
signs) has adjacency matrix the discrete Jacobian matrix of f at x defined in
[11,12] and recently used in [13] for proving a discrete version of Jacobian con-
jecture. The intuition for the second condition is that the edge is positive when
the values xj and fi(x) either both increase or both decrease.
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If I ⊆ {1, . . . , n}, an I-circuit is a circuit (n1, . . . , nk) such that n1, . . . , nk ∈ I.
If J ⊆ I, a J-circuit is clearly an I-circuit. The sign of a circuit is the product
of the signs of its edges.

If G is a regulatory graph and I ⊆ {1, . . . , n}, the restriction of G to I is the
regulatory graph obtained from G by removing any vertex not in I and any edge
whose source or target is not in I.

Thomas’ Rules. The following results have been proved in [10].

Theorem 1. Let f : {0, 1}n → {0, 1}n. If f has at least two fixed points, then
there is an x ∈ {0, 1}n such that G(f)(x) has a positive circuit. More precisely,
if f has two fixed points a and b, and if I is such that b = aI , then there is an
x ∈ {0, 1}n such that G(f)(x) has a positive I-circuit.

Theorem 2. If f :{0, 1}n→{0, 1}n has a trap cycle (x1, . . . , xr) with strategy ϕ,
then G(f)(x1)∪· · ·∪G(f)(xr) has a negative I-circuit with I ={ϕ(1), . . . , ϕ(r)}.
Examples of biological situations illustrating these two kinds of dynamical prop-
erties have been studied for instance in [2]: drosophila cell cycle for an example
of homeostasis and negative circuit, flowering of arabidopsis for an example of
differentiation and positive circuit.

2.2 Stability Under Projection

We show that the regulatory graphs defined in Section 2.1 are stable under
projection in the following sense.

Given I ⊆ {1, . . . , n}, let m be the cardinality of I, m � n, and let πI :
{0, 1}n → {0, 1}m be the projection on {0, 1}m. If f : {0, 1}n → {0, 1}n and
s : {0, 1}m → {0, 1}n is a section of πI (i.e., πI ◦ s is the identity), let

fI,s = πI ◦ f ◦ s : {0, 1}m → {0, 1}m.

Let us say that I is compatible with f when for all x, y ∈ {0, 1}n, πI(x) = πI(y)
implies πI(f(x)) = πI(f(y)). In that case, all the maps fI,s, for s a section of
πI , are equal, and we may let fI : {0, 1}m → {0, 1}m be their common value: fI

is then also given by
fI(z) = πI(f(x))

for x ∈ {0, 1}n any point over z, i.e., such that πI(x) = z.

Lemma 1. Let f : {0, 1}n → {0, 1}n, I ⊆ {1, . . . , n} and z ∈ {0, 1}m. If s is a
section of πI , then G(fI,s)(z) coincides with the restriction of G(f)(s(z)) to I.
In particular, when I is compatible with f , G(fI)(z) is the restriction of G(f)(x)
to I for x ∈ {0, 1}n any point over z.

Proof — Let i, j ∈ I. The regulatory graph G(fI,s)(z) contains an edge from j
to i if, and only if,

(fI,s)i(zj) �= (fI,s)i(z).
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But (fI,s)i(z) = fi(s(z)) because

πi ◦ πI = πi

for i ∈ I, and (fI,s)i(zj) = fi

(
s(z)

j
)

because

s(zj) = s(z)
j

for j ∈ I. Hence G(fI,s)(z) has an edge from j to i if, and only if, G(f)(s(z))
has. The edge in G(fI,s)(z) is positive if, and only if,

zj = (fI,s)i(z),

and the edge in G(f)(s(z)) is positive if, and only if,

s(z)j = fi(s(z)).

These conditions are equivalent for i, j ∈ I. �

This Lemma asserts a sort of commutation property: the regulatory graph asso-
ciated to the projected dynamics is the restriction of the initial regulatory graph.
Observe however that the projection does not commute with the dynamics. In-
deed, let us define the asynchronous dynamics of fs,I : a pair (z, z′) ∈ {0, 1}m ×
{0, 1}m with z �= z′ is in the dynamics when there exists x′ ∈ {0, 1}n such that
z′ = πI(x′) and (s(z), x′) belongs to the asynchronous dynamics of f . The point
is that a pair (x, x′) in the dynamics of f may satisfy πI(x) = πI(x′) (when
x′ = xi with i �∈ I) and hence not be mapped to a pair in the dynamics of fs,I .

x = s(z) x′

z z′

s πI

Remark that when I is compatible with f , the equivalence relation ∼ induced
by the projection πI between states (x ∼ y if, and only if, πI(x) = πI(y)) is a
bisimulation for the asynchronous dynamics: indeed, it can be checked that if
x ∼ y and (x, x′) is in the dynamics of f , then there exists y′ such that x′ ∼ y′

and (y, y′) is in the dynamics of f .
Lemma 1 enables us to relax the conditions of validity of Theorems 1 and 2,

as we shall see in the following sections.

3 Disjoint Stable Subspaces and Positive Circuits

The process of biological differentiation does not necessarily correspond to multi-
stationarity. Consider for instance the process which controls the lysis-lysogeny
decision in the bacteriophage lambda. The dynamics has a single fixed point



158 É. Remy and P. Ruet

(lysogeny) and a trap cycle (lysis): these two stable subspaces can be viewed
as a differentiation phenomenon, and we would like this to imply the existence
of a positive circuit (which exists indeed in the regulatory graph associated to
our example, between genes C1 and Cro). In this Section we show that holds in
general for Boolean dynamics.

(0, 1) (1, 1)

(0, 0) (1, 0)

1 2

− +

Fig. 1. On the left, a dynamics for n = 2 with no fixed point is pictured on a framed
square, and a bold arrow from state x to state xi means that xi �= fi(x). The x-axis
carries the expression level of gene 1 and the y-axis the expression level of gene 2. On
the right, a positive loop on gene 2 in the (constant) regulatory graph, in accordance
with Theorem 3.

(0, 1, 1) (1, 1, 1)

(0, 0, 1) (1, 0, 1)

(0, 1, 0) (1, 1, 0)

(0, 0, 0) (1, 0, 0)

1

2 3

+

+

−

+

Fig. 2. On the left, a dynamics with a single fixed point (0, 0, 1); dotted lines are only
supposed to ease visualising the 3-cube. On the right, the regulatory graph associated
to the state (1, 1, 1) has a positive loop on 1, in accordance with Theorem 3.

Theorem 3. Let f : {0, 1}n → {0, 1}n, I ⊆ {1, . . . , n} and s a section of πI . If
fI,s has at least two fixed points, then there is an x ∈ {0, 1}n such that G(f)(x)
has a positive circuit. More precisely, if fI,s has two fixed points a and b, and if
J ⊆ I is such that b = aJ , then there is an x ∈ {0, 1}n such that G(f)(x) has a
positive J-circuit.

Proof — By Theorem 1, there is a z ∈ {0, 1}m such that G(fI,s)(z) has a
positive J-circuit, and Lemma 1 suffices to conclude. �

The following obvious Lemma states that multistationarity of fI corresponds
to the existence of disjoint subspaces which are stable under f , clearly a more
general form of biological differentiation than multistationarity.
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Lemma 2. Let f : {0, 1}n → {0, 1}n, I ⊆ {1, . . . , n} and z ∈ {0, 1}m. When I
is compatible with f , z is a fixed point for fI if, and only if, the subspace π−1

I (z)
is stable under f .

For instance, the dynamics given in Figures 1 and 2 do not have multistability,
but projecting the dynamics on the y-coordinate (I = {2} ⊆ {1, 2}) in the first
case and on the x-coordinate (I = {1} ⊆ {1, 2, 3}) in the second case, gives rise
to multistability and this explains in both cases the existence of a positive circuit
in the regulatory graph associated to some state.

A possible generalisation of Theorem 3 would be that positive circuits are
necessary for the genuine coexistence of disjoint attractors (in our framework:
disjoint sets of states which are stable under the dynamics), a conjecture which
still remains to be demonstrated.

It is worth observing that this stability under projection is independent from
the framework. For instance, it may be applied to the differential framework in
[15]. Indeed, let Ω ⊆ R

n be a product of open intervals in R and f : Ω → R
n.

The projection pI : R
n → R

m, where m is the cardinality of I, is given by

(pI(x))i =

{
xi if i ∈ I,

0 otherwise,

and compatibility of I ⊆ {1, . . . , n} with f is defined in the same way as in the
Boolean case: for all x, y ∈ Ω, pI(x) = pI(y) implies pI(f(x)) = pI(f(y)). In that
case, we may let fI : R

m → R
m be defined by fI(z) = pI(f(x)) for x ∈ Ω any

point over z. When f is continuously differentiable, C. Soulé associates to any
x ∈ Ω a regulatory graph G(f)(x) as follows: there is a positive (resp. negative)
edge from j to i when the (i, j) entry J(f)(x)i,j of the Jacobian matrix is positive
(resp. negative).

Now, when I is compatible with f , we have
(
∂(fI)i/∂xj

)
(z) =

(
∂fi/∂xj

)
(x)

for x any point over z, hence the Jacobian matrix J(fI)(z) is a submatrix of
J(f)(x) and we get the following analogous of Lemma 1: if x ∈ Ω is any point
over z, then G(fI)(z) is the restriction of G(f)(x) to I. This implies the following
slight generalisation of Theorem 1 in [15]: if I ⊆ {1, . . . , n} is compatible with
f and fI has at least two nondegenerate zeros (points a such that fI(a) = 0
and detJ(fI)(a) �= 0), then there exists x ∈ Ω such that G(f)(x) has a positive
circuit.

4 Dynamic Cycles and Negative Circuits

Theorem 4. Let f : {0, 1}n → {0, 1}n, I ⊆ {1, . . . , n} and s a section of πI . If
fI,s has a trap cycle (z1, . . . , zr) with strategy ϕ, then

G(f)(s(z1)) ∪ · · · ∪ G(f)(s(zr))

has a negative J-circuit with J = {ϕ(1), . . . , ϕ(r)}.
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(0, 1, 1) (1, 1, 1)

(0, 0, 1) (1, 0, 1)

(0, 1, 0) (1, 1, 0)

(0, 0, 0) (1, 0, 0)

3

1 2

−
−

+

Fig. 3. On the left, a dynamics with no trap cycle. On the right, the regulatory graph
associated to state (0, 0, 0) has a negative circuit, in accordance with Theorem 4.

(0, 1, 1) (1, 1, 1)

(0, 0, 1) (1, 0, 1)

(0, 1, 0) (1, 1, 0)

(0, 0, 0) (1, 0, 0)

3

1 2

+

+

−

+

Fig. 4. On the left, a dynamics with no cycle at all. On the right, the regulatory graph
associated to state (1, 0, 0) has a negative circuit, in accordance with Theorem 4.

Proof — By Theorem 2, G(fI,s)(z1) ∪ · · · ∪ G(fI,s)(zr) has a negative circuit
with vertices ϕ(1), . . . , ϕ(r). Since ϕ(1), . . . , ϕ(r) ∈ I, by Lemma 1, this negative
circuit is also in G(f)(s(z1)) ∪ · · · ∪ G(f)(s(zr)). �

Figure 3 gives an example of dynamics with many dynamical cycles, none of
which is a trap, hence Theorem 2 cannot be applied to infer some negative circuit.
We observe that I = {1, 2} ⊆ {1, 2, 3} is compatible with f : the two horizontal
cycles are in parallel planes. Then by projecting on I, we get a trap cycle, and this
explains the negative circuit involving genes 1 and 2. In the present case, the neg-
ative circuit occurs in the regulatory graph G(0, 0, 0) associated to a single state.

Figure 4 gives the more radical example of a dynamics with no cycle. Take
I = {1, 2} ⊆ {1, 2, 3} (which is not compatible with f in this case) and let s be
defined by:

s(1, 0) = (1, 0, 0)
s(0, 0) = (0, 0, 0)
s(0, 1) = (0, 1, 1)
s(1, 1) = (1, 1, 1).
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Then fI,s has a trap cycle, which is obtained by gathering the dynamics on the
two horizontal planes. We get a negative circuit, which occurs actually in the
regulatory graph G(1, 0, 0) associated to a single state.

(0, 1, 1) (1, 1, 1)

(0, 0, 1) (1, 0, 1)

(0, 1, 0) (1, 1, 0)

(0, 0, 0) (1, 0, 0)

1

2 3

+

+

−

+

+ −

Fig. 5. On the left, a dynamics with both differentiation and homeostasis in different
projections. On the right, the regulatory graph associated to state (0, 0, 0).

A non trivial example of a dynamics with differentiation (multistationarity
when projected on {1}, whence a positive self-loop on {1}) and homeostasis
(trap cycle when projected on {3}, whence a negative self-loop on {3}) is given
in Figure 5.

Acknowledgements. We thank Christophe Soulé and Denis Thieffry for helpful
discussions.
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Abstract. When modelling complex biological systems it is often de-
sirable to combine a number of distinct sub-models to form a larger
composite model. We describe an XML based language that can be used
to specify composite models and a lightweight computational framework
that executes these models. The language supports specification of struc-
ture and implementation details for composite models, along with the
interfaces provided by each sub-model. The framework executes each
sub-model in its native environment, allowing extensive reuse of ex-
isting models. It uses mathematical and computational connectors and
translators to unify the models computationally. Unlike other suggested
approaches for model integration, our approach does not impose one
modeling scheme, composition algorithm or underlying middleware frame-
work. We demonstrate our approach by constructing a composite model
describing part of the glucose homeostasis system.

1 Introduction

Recent years have seen the proliferation of mathematical models used to describe
biological phenomena. Among others, models have been proposed for describ-
ing metabolic processes, signalling pathways, transport processes and various
electro-physiological systems. While many detailed models describing various
biological aspects have been suggested, very few models describe a complete
physiological system, organism or organ, across scales. Such large scale models
can, theoretically, be created by integrating together existing detailed models
describing sub-aspects of the desired system[12], but the lack of suitable tools
for model integration in Systems Biology has made this task, so far, nearly im-
possible. This paper describes such a tool. In presenting this tool, we use the
structured view of models and modelling activity of the meta-model suggested
by Finkelstein et. al. in [1].

Models exist in a great variety of schemes and formats including differential
equations, stochastic and process algebra models, each of which have their at-
tendant facilities and tool support. However, it is possible to view each model
� We thank the DTI for supporting this research through the UCL Beacon Project.
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as a specification for possible computations. Each model can be executed by a
software tool, or an engine. Using the model and a set of inputs, or context the
engine provides a set of outputs, or an interpretation. By mapping the outputs
of one model into the inputs of another, we can construct a composite model.
Repeatedly composing such models together can produce composite models that
are arbitrarily large and complex. The basic building blocks of such models,
which can not be further decomposed are known as elementary models. Elemen-
tary models are constructed in a modelling environment such as Mathematica
or XPPAUT.

1.1 The Composite Model Description Language

We have developed an XML based language, the Composite Model Description
Language (CMDL), that allows the description of composite and elementary
models, so that they can be used within our framework. CMDL also enables the
specification of composite models themselves.

For all models, A CMDL file can be used to describe the functionality and
the interfaces provided by the model. CMDL allows each sub-model to have
multiple interfaces to capture models that have more than one functionality,
for example: an ODE model can be solved to plot its dynamical variables versus
time, or analyzed to find its bifurcation points. CMDL also can be used to provide
attribution annotation and to link the behaviour of a model to the biological
phenomena, or aspects it represents, to allow for more convenient collation and
reuse. Thus, CMDL is MIRIAM[25] compliant. As suggested in the MIRIAM
proposal, we use existing ontologies to minimise ambiguity.

For composite models, A CMDL description also specifies the model archi-
tecture and implementation details: What sub-models are used, how they are
connected together, and in what order they should be executed.

CMDL has been designed to provide biological, mathematical and computa-
tional information about a model and to make that information easily accessible
to all parties.

1.2 The Computational Framework

We have also developed a lightweight computational framework that enables
the execution of composite models specified in CMDL. Individual models are
executed on their native tools and are integrated by the framework. Usually
they need not be modified in order to be used by the framework. The frame-
work utalizes translators to take account of inevitable differences in input and
output formats, including differences in timescale. It uses smart connectors to
resolve any feedback present in the composite model structure. Each part of
the framework is generic and based on well defined interfaces, so it can easily
be replaced by user-defined algorithms and translations. Our framework uti-
lizes existing middleware infrastructure, such as dynamic link libraries or Web
Services[37] for communicating between the different components. We do not
presume the existence of any specific infrastructure, and the framework can po-
tentially run on many different middleware infrastructures. At the moment we
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support only the integration of ODE models, but the framework can be easily
extended to support the integration of models developed in other schemes by
the development of appropriate connectors.

This paper proceeds as follows. Firstly, we review the current state of the art
in model integration in Systems Biology. We then describe the Composite Model
Description Language and the model integration framework in more detail. We
conclude by describing a composite model of glucose homeostasis that we have
specified and executed using the framework.

2 Related Work

2.1 Approaches Originating in Systems Biology

At the moment, there exists no component middleware specifically designed for
the integration of models in Systems Biology. While our proposal shares some
concepts with Cell-ML[9],[23], SBML[28],[29] and the Systems Biology Work-
bench (SBW)[31], it also differs from them in several crucial aspects.

CellML[9],[23] was designed with the view of enabling modellers in Systems Bi-
ology to specify composite models composed of a number of sub-models. CellML
requires the definition of input and output variables for each model; model com-
position is achieved by connecting inputs and outputs from separate models.
CellML, however, does not allow specification of how the composed model should
be executed, detailed descriptions of the model interfaces, or the integration of
models which are not ODE models, or which are specified in a format other then
CellML. Thus, while CellML may be quite adequate for the conceptual repre-
sentation of a composite model, composed of several ODE based sub-models, it
does not, currently, fulfil our need for a composite model description language,
which is more generic, on the one hand, and implementation oriented, on the
other hand.

The other currently prominent modelling language for Systems Biology is
SBML - The Systems Biology Markup Language[28],[29]. It attempts to stan-
dardize the expression of ODE based models of cellular systems, concentrating
on chemical reactions. SBML is a rich language in this environment and has
good take up within the community. However SBML currently does not allow
for modularization, has no support for interface specification, and does not sup-
port linkage with models created in other tools and languages. Thus, SBML can
not be used to integrate existing, heterogeneous models. We view our proposal
as complementary to SBML. We use the SBML annotation scheme, and exist-
ing SBML models can be easily wrapped with a CMDL description in order to
facilitate their integration with other models.

SBW[31] is a generic middleware for the integration of software tools, used
in Systems Biology. It was not designed specifically to facilitate the integration
of models, and is actually a quite generic middleware architecture, similar to
CORBA[10].

Several tools exist to support model construction and simulation specifically
in Systems Biology. E-Cell[17],[34],[33] is a whole-cell and multi-cell simulation
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tool based on an object oriented approach . While it enables the creation of
models using a few different schemes, such as reaction-diffusion, S-System and
flux distribution analysis schemes, it does not support the integration of models
created in other tools. Also, currently only one connecting algorithm, which is
embedded in the software itself, is supported.

The XS-system[2] enables the construction of models of cellular networks from
a set of building blocks representing syntheses, degradations, reversible reactions
and enzymatic reactions. The resulting model is represented as a set of ODEs,
specifying the rate equations for the various substances involved. Representa-
tion using SDEs (stochastic Differential Equations), timed automata or hybrid
automata is also supported, but in a rather limited manner. The XS-system is
designed to support the construction of models from a pre-existing set of ex-
isting, elementary, building blocks rather than allowing the user to integrate
models created in different tools.

BioSpice[5], [6] is a collaborative project of American universities and research
centres. It aims to build a comprehensive software environment that integrates a
suite of analytical, simulation and visualisation tools related to cellular systems
biology. At the moment, the tool suite focuses on individual model construction
and analysis and does not address model integration.

2.2 Approaches Originating in Software Engineering

There are a number of frameworks aimed at integrating heterogeneous compo-
nents for simulation. The High Level Architecture (HLA) [21] is a general purpose
architecture for simulation reuse and interoperability, developed for the Defense
Modeling and Simulation Office (DMSO). HLA uses a central service to coordi-
nate a number of models via a standard time-step interface. However, there is no
explicit language to describe model connections and only the time-step interface
is supported.

Generic component frameworks, such as CORBA[10], COM[11], Java
Beans[18], and more recently, Web Services[37] include an Interface Definition
Language (IDL), such as IDL for CORBA and COM, and WSDL[38] for Web
Services, used to specify the functional interfaces exposed by the components.
Process execution languages, such as BPEL-WS[4] , enable a multiple compo-
nent execution to be specified. These frameworks do not, however, allow detailed
annotation of the nature of each component necessary both for heterogeneous
model integration and understanding of biological models. They also have poor
support for specifying the architecture of the overall model.

The concept of interconnecting components exist in many Architectural De-
scription Languages (ADLs), for example Darwin[13], [14], [15] and Wright[39],
including the possibility of a rich set of component connectors. However, these
languages can not be used for specifying the biological aspects the models rep-
resent, or how the models should be executed.

The Unified Modelling Language [35],[36] is a very comprehensive model de-
scription language, designed mainly for modelling software systems. The main
focus is on modelling in detail the code itself and not the aspects, or phenomenon,
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that the code relates to. It is also difficult, in UML, to present an overall view of
the different functionalities a certain model has, as opposed to a detailed repre-
sentation of its interfaces. UML is also not well suited for representing the overall
component architecture of a system — ADLs are better suited for this purpose.

We focus on the integration of currently existing approaches and techniques in
Systems Biology, such as ontologies and model description languages, with Soft-
ware Engineering tools and techniques such as ADLs, IDLs, process execution lan-
guages and component frameworks.Through this integrationwebuild a framework
for the representation and execution of composite models in Systems Biology.

2.3 Approaches Originating in Other Scientific Fields

The General Coupling Framework, GCF[19] enables the creation of composite
models out of individual model components, developed in a variety of program-
ming languages. Like CMDL, GCF supports the description of the interfaces
of the individual components, as well as the architecture of the overall model.
Unlike CMDL, GCF focuses on the integration of software modules written in
programming languages such as C, Fortran or Java, and requires ’put’ and ’get’
calls to be placed into the individual modules source code before they can be
used within the framework. Currently GCF uses a time-stepping algorithm, em-
bedded within the architecture, in order to perform the simulation.

The Cape-Open standard[8] is a specification for a collection of middleware
interfaces, aimed at enabling the integration of models and modelling tools in
the chemical industry. The interfaces enable the integration of different Unit
Operations Modules, modelling the activity of a unit operation within a chemical
plant, and numerical solvers, within the same simulation environment, called
the Simulator Executive. There is no proposed standard for the specification of
composite models, and it is assumed each Simulator Executive would use its own
proprietary methods for that.

3 The Composite Model Description Language

The Composite Model Description Language (CMDL) is an XML schema for
model description files. For all models, the CMDL file contains a section describ-
ing the biological phenomenon described by the model, a section describing the
functionalities and interfaces provided by the model, and a section describing
some relevant meta-data. For composite models, the model description file also
includes a specification of how the model should be implemented: What sub-
models are included, how they should be connected together, what connectors
should be used, and in what order should they be executed.

3.1 The Model Interface Description

The top level element in any CMDL file is the model element, which has an id
attribute. A model contains meta-data, phenomenon and functionality elements
as it’s immediate sub-nodes. A composite model would also contain sub-models
elements, which are used to specify the submodels used in the model.
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Meta-Data. The Meta-Data section contains the attribution annotation, as
required by the MIRIAM[25] standard proposal. It includes a citation of the ref-
erence description or scientific paper with which the model is associated, details
of the model creators, date and time of creation and a statement about the terms
of distribution. These details are specified using RDF, in the same manner as in
SBML[9],[23] models.

Phenomenon. The phenomena element links the model with the biology it rep-
resents. It is used to precisely specify what biological phenomena are described
by the model, in accordance with the MIRIAM[25] proposal. It is composed of a
list of phenomenon elements describing the biological processes depicted by the
model. Each phenomenon element contains a textual description, and possibly
one or more references to terms from the same or different ontologies, which to-
gether serve to define the phenomenon. We use the SBML annotation element[30]
to refer to these terms. For example, a model describing Insulin stimulus of he-
patocytes and the resulting signalling cascade will include the phenomena ”De-
tection of hormone stimulus” (GO term 9720), and ”Insulin receptor signalling
pathway” (GO term 8286).

A phenomenon element also contains compartment and aspect elements. They
are used to specify where within the organism the mentioned phenomenon, or
process, occurs and the concrete measurables that the model describes. These
measurables are the main modelling results, to be compared to the results ob-
tained in experiments or by executing other models for validation purposes. They
usually correspond to the main variables imported and exported by the model.
Aspects specified by the sub-models, which may be of less interest for the overall
model, need not be listed.

While our concept of compartments is similar to that of SBML, and the
SBML species element can be viewed as a subtype of our aspect element, we
use compartment and aspect elements only for annotation and not for the ac-
tual specification of the model itself. Compartments and aspects may again be
specified by making references to terms in various relevant ontologies. For exam-
ple, the cytoplasm of a hepatocyte can be specified by the combination of terms
hepatocyte(CELL:OBO term 182), and cytoplasm (GO term 5737) .

Functionalities. The functionalities section serves to describe the interfaces
provided by the model. It describes, given what inputs, what outputs are pro-
vided by the model. The same model may be interpreted in many different ways,
using the same or different sets of inputs and engines, to give different predictions
or results. For example, an ODE model can be run in a simulation, when pro-
vided with all the required parameter values, or analyzed for its null clines and
bifurcation points. Thus, a model may provide several different functionalities.
These functionalities may be specified at different levels of detail: At the highest
level, the broad functionality level specifies what predictions a model can make
(output aspects) based on what data (input aspects). This level of specification
provides a basic summary of model behaviour that may be useful to biologists
in particular.
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The next level is the mathematical functionality level, which is used mainly to
specify the mathematical format of the model’s inputs and outputs. This is done
by assigning at least one variable to each aspect. A variable in CMDL is used
to provide, usually quantitative, information regarding an aspect. For example,
a variable may serve to describe the concentration of Calcium over time or the
frequency of Calcium oscillations. A variable can be of many different types - It
can be, for example, a scalar, a vector, tensor, a matrix, a probability distribution
or a time track - describing how the value of a dynamical variable is changing
with time. By assigning a variable of a certain type to an aspect, we specify
exactly how this aspect is described, mathematically, by the model. MathML
may be used to describe the precise format of a variable. For example, We can
use MathML to specify that Ca = F (t), where t0 < t < t1. A variable should
have units, unless the dimension it describes is ’dimensionless’ such as, ’the
number of particles’ .

The mathematical functionality also includes a list of required parameters.
The difference between parameters and variables is that usually the value of
parameters remains fixed during the course of an interpretation of a model,
while the values of variables may change. Currently we use the SBML syntax
for specifying parameters. However, the parameter value may be specified in
a separate, auxiliary, parameter values file. The enables the framework to run
multiple instances, or copies, of the same model with different parameters.

A mathematical functionality may also specify the mathematical scheme in
which the model is implemented: For example, chemical reactions can be math-
ematically described either deterministically as a set of ODE’s or stochastically
using Gillepsi’s algorithm.

The mathematical functionality description level is useful both to biologists
and mathematicians using the model.

The most detailed level is the computational interface description. The com-
putational interface specifies the type of interface supported - for example Web
Services, DLL libraries or a simple output file, the name of the interface sup-
ported, and a reference to a file containing the actual interface specification. This
would be a WSDL file for Web Services, or a C/C++ header file in the case of
a DLL library. These files specify the precise data structures of the variables
involved. In the case of Web Services, the WSDL file also specifies the location
of the sub models to be used by using the WSDL ’binding’ element.

The interface referenced should be one which is currently supported by the
orchestrator and at least some existing connectors, in order for the model to be
used within our framework. Information at this level is for use by the computer
scientists responsible for implementing a composite model using this model as
one of its components.

A broad functionality may contain several different mathematical functional-
ities and each mathematical functionality may in turn contain several different
computational interfaces. Thus, the different functionalities for each model form
a tree hierarchy.
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3.2 Specifying Composite Models

In order to execute a composite model we need to specify what model instances,
translators and connectors should be used. We then need to map out the con-
nections between these elements, specifying how the inputs required by each
model instance are satisfied. Finally, we need to specify in what order the model
instances and the connections should be invoked, and which specific computa-
tional interfaces should be called. Thus, in a manner similar to BPEL[4] we
provide a process description notation with many features reminiscent of an ex-
ecutable language. Like an executable programming language a CMDL model
is unambiguous, provided that all of the internal models it is composed of are
unambiguous. In other words, a CMDL model will always yield the same results
for a specific set of inputs, provided that the elementary models it is composed of
behave in this manner. The key difference between languages such as CMDL or
BPEL and programming languages used to describe executable internal processes
is that a CMDL or BPEL file also calls for the execution of internal processes, or
in our case elementary models, without specifying how these internal processes
or elementary models actually handle the data - this is assumed to be specified
by the modelling language in which the elementary model is specified.

While the CMDL specification is detailed enough to support execution of the
composite model by our framework, it is also designed to enable mathematicians
and biologists to gain a broad understanding of how the model is put together.

Specifying the Model Architecture. The first thing to be specified is the
model components to be used. A model component is an instance of a sub-
model executing on an engine, similar to the instance of an object in object
oriented programming. Many instances can be created from the same submodel,
perhaps using different parameters for each, each forming its own component.
For example, in order to model a liver cell plate, comprised of many hepatocyte
cells, one model component can be used to model each cell. All of these model
components can be created from the same hepatocyte cell model, using the same
or different sets of parameters. Different parameters may be used, for example,
to reflect biological differences between periportal and periveneous cells.

Connections specify the topology of the network of models. Horizontal connec-
tions specify the connections between the sub-models - which output variables
of which models are used as inputs for other models. Vertical connections map
the variables of the overall model into the variables of the different components
it is composed of. For each variable mapping, we may specify a translation. This
can be a simple scaling of the variable, or a more complex transformation. For
horizontal connections which form a feedback loop, we also specify which smart
connector should be used to resolve the feedback.

3.3 Specifying the Algorithm Used to Solve the Model

The algorithm for executing a composite model is specified using a ‘sequence’
construct, similar to that found in BPELWS[4]. The sequence element contains
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a list of invocation elements. Each invocation element specifies either the invo-
cation of a specific mathematical functionality on one of the pre-declared model
components, or the invocation of a smart connector, used to solve several model
components which are interdependent on one another. Currently, the only flow
of control supported is a simple linear one. In the future we plan to support
additional flow control elements already supported by BPELWS, such as those
used to implement loops and branches.

4 Example of a Model Specification File

The appendix contains an example composite model specification file. The model
described is of the generation of calcium oscillations in liver hepatocytes as
a result of hormonal stimulation. The model depicted forms part of a more
comprehensive model of this process, which will be described later.

The model file first defines the phenomena depicted by the model - the
glucagon stimulated signalling cascade. The phenomena is defined both through
a textual definition and through references to terms in the relevant ontologies.
We also specify the compartments in which the phenomena of interest occurs -
the hepatocyte membrane and cytoplasm. The last part of the phenomena ele-
ment lists the actual aspects, or measurables, depicted by the model. In this case
these are the activation level of G-Protein and the concentration of intracellular
calcium.

The model is a composite model composed of two sub-models, listed within
the ’submodels’ tag. The first model describes the hormone binding to the G-
Protein receptor, resulting in the release of PhosphoLipase into the cell, and the
second model describes how PhosphoLipase causes Calcium oscillations.

The model has one functionality, predicting G-Protein activation levels and
cytoplasmic concentration of Calcium, as a function of the concentration of
Glucagon in the blood, over time. This functionality is specified in precise mathe-
matical terms in the ’mathematical functionality’ section: It provides timetracks
of Calcium concentration and G-Protein activation level, and requires a time-
track of Glucagon levels. The units of the variables involved are also specified.

As we can see in the ’implementation’ section, to implement this functional-
ity, we create one instance of each sub-model, and then link together the two
instances, feeding the PhosphoLipase concentration from the G-protein receptor
model into the Calcium model, and feeding back the Calcium concentrations
from the Calcium model into the G-protein model. The model instances are
linked together using a waveform relaxation connector. The sequence of execu-
tion steps for this functionality contains only one step - the execution of the
connector.

5 The Model Integration Framework

Models specified in the CMDL language are executed by the orchestrator. The
orchestrator serves mainly as a workflow co-ordination service. It executes the
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composite model by launching and executing the elementary sub-models on
their respective engines, such as Xppaut and Mathematica, and passing data
between them as required. The orchestrator communicates with the various en-
gines through engine wrappers - pieces of software that expose the functionality
of the different engines in a standard manner. The orchestrator uses connectors to
solve together models which are interdependent on one another, and translators
to carry out necessary data transformations between the models. The orchestra-
tor is used in conjunction with a set of supporting information services, used to
store data required for model runs, such as parameter values, as well as results
obtained from model execution and, in the future, the CMDL files themselves.
A separate paper about these information services is in preparation.

5.1 The Core Computational Elements

The Engine Wrappers. Individual instances of elementary models are exe-
cuted by the software tools, or engines, in which they were originally developed.
Accommodation of specific modelling tools within our framework is done through
wrappers. Wrappers expose the functionality of the modelling tool in a standard
way to the rest of the framework. Wrappers expose interfaces used to launch
new model components and enable access to and the execution of computa-
tional interfaces of components already launched. Internally, the wrappers use
the proprietary command set of the modelling tool in question to provide these
operations. We currently have available wrappers for Mathematica[24], Xppaut
[40], and for a C++ library used to numerically integrate differential equations
using the numerical recipes[27] library.

The Orchestrator. At the core of the framework is an orchestrator, which
is used for executing composite models. The orchestrator serves mainly as a
coordinator or process execution service. It reads the details of the composite
model from the composite model specification file and then launches the sub-
models and executes them according to the instructions provided in the file. The
orchestrator maintains the global (composite) model variables, and passes them
as inputs to the sub-models as required.

The composite model file may also specify the use of connectors and transla-
tors. These are called by the orchestrator in order to link together models, where
the outputs of one model can not be linked to the inputs of the other model in
a straightforward manner.

Connectors. A connector serves to numerically integrate two models where
such an integration is not trivial. For example, integrating two or more ODE
models which are interdependent and which were implemented on different tools,
as in our case studies. Several different connectors can be used to achieve the
same task. For example, for integrating ODE models, one can use either a connec-
tor implementing a wave form relaxation algorithm[22] or a step wise integrator
as described by [34].

The wave form relaxation algorithm uses a ‘seed’ function to guess the solution
to one model and then iterates between solving each model, refining the overall
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solution to convergence. A step wise integrator runs all the models at once,
performing the numerical integration using a method such as Euler’s method or
RangKutta. Each of these algorithms requires a different mathematical interface
(see section 3.1).

The different connectors are best suited for use in different scenarios: A wave-
form connector typically executes at most a few dozen calls on each model, but
each call is computationally intensive, as a complete simulation is performed, and
requires the transfer of substantial amounts of data. A stepwise integration algo-
rithm may make millions of calls on each model, but each call is computationally
quick and requires the transfer of only a few values. Given these characteristics,
a waveform connector may be more suitable for connecting together models re-
siding on different, remote machines, while a stepwise integrator may prove to
be more efficient when all models reside on the same machine.

Connectors may also be used in order to integrate together models developed
in different schemes. For example, a connector can be built in order to connect
together a Discrete Event (DEVS) model with an ODE model. Such a connector
may generate events for the DEVS model when certain variables in the ODE
model cross certain thresholds. It may also modify the values of certain parame-
ters in the ODE equations when certain events occur. Such a connector may be
used to link a DEVS model of an intracellular signalling system with an ODE
model depicting gap-junctions and the flow of different chemical species through
it. Similarly, connectors can be devised for stochastic models, based on suitable
mathematical algorithms.

In addition to connectors, translators are used to take account of inevitable
differences in input and output formats, such as differences in the units used by
different models for the same variable, differences in timescale, or differences in
the data structures used by the different model implementations.

The aim of this free-form approach is to allow each model component to be
based on the most natural and appropriate scheme, rather than forcing each
model into a unified system such as ODEs or discrete events.

To conclude, our framework is modular not only in the deconstruction of
models, but in the components of the framework itself. Users of the framework
are free to select from an existing range of connectors and translators or build
their own, in order to achieve greater efficiency or the ability to integrate new
types of models.

Underlying Infrastructure. Our computational framework does not presume
any specific underlying middleware infrastructure. Currently, the engine wrap-
pers we have built expose their interfaces either through dll library calls, or
through web services[37]. Thus an orchestrator, or a connector, can both com-
municate efficiently with modelling tools residing on the local machine, and with
modelling tools residing on other machines, perhaps in remote locations. Future
engine wrappers may expose their functionality through other component mid-
dleware infrastructures, such as COM, CORBA[10] or SBW[31] .
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5.2 Supporting Services

The computational framework is supported by a number of information services
that provide information about each model used during the integration and then
collect the results during a model run. Parameters required for the interpreta-
tion of a model are obtained from the context service, which serves as a central
repository for parameter values to be used in biological modeling. The results,
or interpretations, of the models are stored by the interpretation service. We en-
vision a central model repository, such as ’BioModels.net’[7] being used to store
existing models. One should be able to systematically search the repository in
order to find desired sub-models required for the creation of a new composite
model. We have implemented prototype versions of the context and interpreta-
tion services. Their functionality is exposed both via web services, to support
communication with the rest of the framework, and through a web based user in-
terface, which enables users to manually query the services for parameter values,
or the results of previous model runs. The context and interpretation services
will be described in greater detail in a future publication.

5.3 Example

Figure 1 shows a view of our model integration framework, which is used to execute
composite models, specified in CMDL. In the figure we can see the two sub-models
of the model depicted in section 4, executing on their respective tools, Xppaut and
Mathemtatica. Since the two models are interdependent, they are integrated by

Interpretation
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OrchestratorContext
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XPPAUT

Engine
Wrapper

Mathematica

Engine
Wrapper

C++

Engine
Wrapper
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Fig. 1. Model Integration Framework
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means of a connector. The orchestrator is responsible for launching the models and
the connector, for passing to them the necessary input values and model parame-
ters, and for collecting the results and storing them on the interpretation service.

6 Using CMDL to Model Glucose Homeostasis

We are part of a research project at University College London whose aim is to
produce a physiological model of the liver which is integrated across scales[41]. As
part of the project, we have recently used CMDL, along with our model execution
framework, in order to specify and execute a composite model describing glucose
homeostasis[42]. Glucose is the readily available fuel, or source of energy, which is
being supplied by the blood to all cells in the body. Glucose is stored in the liver,
in the form of glycogen. Glycogen buildup and release in the liver is controlled
by two hormones, Insulin and Glucagon, secreted by the Pancreas.

Our model is able to predict glucose levels in the blood, as a function of
the dietary regime, and various other parameters, such as the affinity of liver
cells receptors to Insulin. We have used new and existing models to create our
composite model of glucose homeostasis. Currently our model includes basic
models of hormone secretion by the Pancreas and glucose transport in the blood
stream, along with a quite detailed model of glucose release or intake by the liver,
as a function of current glucose and hormone levels in the blood. This detailed
model is in turn composed of 5 sub-models, describing the membrane receptors,
the second messengers responses within the cell, and the actual build-up and
breakdown of glycogen. The model and the sub-models it is composed of will be
described in detail in a subsequent publication.

As these models are interdependent on each other and form a feedback loop,
we have used a waveform relaxation connector in order to solve them together.
The models also use different units and different time scales. We have thus
used two simple scaling translators when connecting the models. One is used for
adjusting the time scales between the different models, and the other is used to
scale the other, time dependent variables.

By replacing some of the model components with simpler or more elaborate
models, we try to determine how sensitive is glucose homeostasis to details in the
description of the different sub-systems involved, specifically the receptor mecha-
nisms and second messenger cascades in liver hepatocytes. We are trying to ascer-
tainwhether a good approximation of glucose homeostasis canbe achievedbyusing
relatively simple models of those sub-systems, or whether a detailed, mechanistic
model of them is required.By removing or changing some of themodel components,
we try to ascertain what is the role of the different control mechanisms, such as hor-
monal control and direct glucose control, in maintaining glucose homeostasis.

7 Conclusions

We have presented CMDL, an XML Composite Model Description Language.
CMDL integrates elements from ontologies, mathematical description languages
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such as MathML, interface description languages such as WSDL[38], Architec-
ture Description languages and process execution languages, in order to provide
a full description and specification of composite models in Systems Biology, mov-
ing from a broad description of the phenomenon depicted by the model and the
functionalities provided by it, through an architectural description of the imple-
mentation, down to the precise details required for model execution. While we
have borrowed heavily from well known techniques used to describe these dif-
ferent levels, we are currently unaware of any other attempt to integrate them
together in a similar manner.

We have also presented a lightweight computational framework that is able
to execute composite models specified in CMDL. It enables the integration of
models, executing on a variety of different tools, and potentially executing on
different machines in different locations. Unlike some other currently existing
frameworks, our framework does not assume a specific model integration algo-
rithm. Different connectors and translators can be used to connect the models
together, and model composers can select the connector or translator which is
most suitable to the task at hand and to the available facilities and model execut-
ing tools. The same overall composite model architecture can be implemented in
radically different ways - the sub-models can be integrated using a C++ frame-
work, with all models running on the same machine, or be integrated using Web
Services, with different models running on distributed machines.

We have used our framework to implement a composite model of glucose home-
ostasis, composed of several existing models. These models run on a variety of dif-
ferent time scales, use different units for the variables involved, and are interdepen-
dent on one another. To tackle those issues, we have used a variety of connectors
and translators. This model is now being actively used for scientific exploration.

One of our principal aims was to build a model integration framework which
is easy to use. Unlike other suggested frameworks, such as SBW[31] or GCF[19],
our framework does not require the writing of any program code on behalf of the
modellers. We are currently building graphical user interface tools that can be
used to specify and display the composite model specification files. Even without
these tools, only about two days of work were required to write the CMDL files
for the composite glucose homeostasis model, and launch the integrated model,
by a person who was not familiar before-hand with XML or CMDL.

While up until now we have used our framework mainly to integrate ODE mod-
els, with the provision of suitable connectors and translators, our framework can
be used to integrate discrete event, and perhaps process algebra models, as well.
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Appendix - The Hepatocyte Glucagon G-Protein Calcium
Model Encoded in CMDL

<?xml version="1.0" encoding="UTF-8"?>

<model id="Glucagon_GProtein_Calcium"
xmlns="http://www.cs.ucl.ac.uk/biobeacon/CMSL1.0#">

<rdf:RDF xmlns:bqs="http://www.cellml.org/bqs/1.0#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#">
<!-- Meta Data goes here - Format is the same as in SBML/BIOMODELS models -->
<!-- ... -->

</rdf:RDF>
<phenomenon xmlns:sbml="http://www.sbml.org/sbml/level2">

<phenomena id="Glucagon_Stimulated_Sig_Cascade" metaid="ph1">
<!-- The main phenomena describe by the model -->
<description>

GLucagon hormonal stimulation of hepatocytes, and the
resulting internal signaling cascade

</description>
<annotation>
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<!-- Link the phenomena to detection of Hormone Stimulus as listed in the Gene
Ontology -->

<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="#ph1">

<dc:isVersionOf>
<rdf:Bag>

<!-- Detection of Hormone Stimulus -->
<rdf:li

rdf:resource="http://www.geneontology.org/#GO009720" />
</rdf:Bag>

</dc:isVersionOf>
</rdf:Description>

</rdf:RDF>
</annotation>
<!-- Now list the compartments in which the above mentioned phenomena, described

by the model, occurs-->
<!-- First the Hepatocyte membrane, which we link to the Open Biomedical Ontologies term

hepatocyte and to the Gene Ontology term membrane -->
<sbml:compartment id="Hepatocyte_Membrane"

metaid="Hepatocyte_Membrane">
<annotation>

<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description

rdf:about="#Hepatocyte_Membrane">
<dc:isPartOf>

<rdf:Bag>
<!-- hepatocyte -->
<rdf:li

rdf:resource="http://obo.sourceforge.net/#OBO:0000182" />
</rdf:Bag>

</dc:isPartOf>
<dc:isVersionOf>

<rdf:Bag>
<!-- membrane -->
<rdf:li

rdf:resource="http://www.geneontology.org/#GO:0005886" />
</rdf:Bag>

</dc:isVersionOf>
</rdf:Description>

</rdf:RDF>
</annotation>

</sbml:compartment>
<!-- Next the hepatocyte cytoplasm, linked to the Open Biomedical Ontolgies term hepatocyte and
to the Gene Ontology cytoplasm -->
<sbml:compartment id="Hepatocyte_Cytoplasm"

metaid="Hepatocyte_Cytoplasm">
<annotation>

<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description

rdf:about="#Hepatocyte_Cytoplasm">
<dc:isPartOf>

<rdf:Bag>
<!-- hepatocyte -->
<rdf:li

rdf:resource="http://obo.sourceforge.net/#OBO:0000182" />
</rdf:Bag>

</dc:isPartOf>
<dc:isVersionOf>

<rdf:Bag>
<!-- cytoplasm -->
<rdf:li

rdf:resource="http://www.geneontology.org/#GO:0005737" />
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</rdf:Bag>
</dc:isVersionOf>

</rdf:Description>
</rdf:RDF>

</annotation>
</sbml:compartment>
<!-- Now we list the aspects, the concrete measurables depicted by the model and which are
part of the depicted phenomena -->
<!-- First is G-Protein activation level, again linked to the corresponding term in the
Gene Ontology -->
<aspect id="G_Protein_Activation_Level"

metaid="G_Protein_Activation_Level">
<aspect_id>9234675</aspect_id>
<annotation>

<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description

rdf:about="#G_Protein_Activation_Level">
<dc:isVersionOf>

<rdf:Bag>
<!-- G-Protein Activation -->
<rdf:li

rdf:resource="http://www.geneontology.org/#GO:0004930" />
</rdf:Bag>

</dc:isVersionOf>
<dc:isVersionOf>

<rdf:Bag>
<!-- Activation level -->
<rdf:li

rdf:resource="http://www.measurableproperties.org/#Activation_Level" />
</rdf:Bag>

</dc:isVersionOf>
</rdf:Description>

</rdf:RDF>
</annotation>
<text_definition>

Activation level of hepatocyte G Protein
</text_definition>
<description>

The activation level of a G Protein activated by external hormone stimuli.
</description>

</aspect>
<!-- Another aspect described by the model is the concentration of

intracellular calcium. This time we define the term through a
reference to the term ’Calcium’ in the CHEBI ontology. -->

<sbml:specie id="Intracellular_Calcium"
name="Intracellular Calcium Concentration"
metaid="Instracellular_Calcium"
compartment="Hepatocyte_Cytoplasm">
<aspect_id>9234675</aspect_id>
<annotation>

<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description

rdf:about="#Instracellular_Calcium">
<dc:isVersionOf>

<rdf:Bag>
<!-- Calcium -->
<rdf:li

rdf:resource="http://www.ebi.ac.uk/#CHEBI:22984" />
</rdf:Bag>

</dc:isVersionOf>
<dc:relation>

<rdf:Bag>
<!-- Concentration -->
<rdf:li
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rdf:resource="http://www.measurableproperties.org/#Concentration" />
</rdf:Bag>

</dc:relation>
</rdf:Description>

</rdf:RDF>
</annotation>
<text_definition>

The concentration of intracellular Calcium in Hepatocytes
</text_definition>
<description>

Calcium acts as an important second messenger.
Changes in concentration and specifically
oscillations occur as a result of hormonal stimulus, and
in turn affect enzymatic activity within the cell

</description>
</sbml:specie>

</phenomena>
</phenomenon>

<!-- The list of submodels of which this model is composed -->
<submodels>

<submodel description_file="./G_Protein.xml"
name="GProtein_activation" />

<submodel description_file="./Calcium_cAMP.xml"
name="PieceWise_Linear_Model_of_Calcium_Oscillations" />

</submodels>

<!-- This model has only one functionality, or possible usage. It can be used to
predict G-Protein activation levels and intracellular Calcium concentrations as a
function of blood Glucagon levels -->
<functionality

name="G_Protein activation and Calcium levels as a function of hormone stimulus">
<UsingAspects>

<!-- One may refer here to aspects already defined in the phenomenon section, and
also define additional aspects. Aspects can be defined simply by referring to the

aspect id in the parameter and aspect repository. -->
<aspect id="Blood_Glucagon_Levels">

<aspect_id>875446</aspect_id>
</aspect>

</UsingAspects>
<ProvidingAspects>

<aspect_ref id="Intracellular_Calcium_Level" />
<aspect_ref id="G_Protein" />

</ProvidingAspects>

<!-- Here we list the functionalities of the submodels this model uses in order to implement
its own functionality -->

<using>
<functionality

functionality="G_Protein activation level as a function of Hormone Stimuli and Calcium"
model="G_Protein" />

<functionality
functionality="Calcium concentration as a function of G_Protein activation level"
model="PieceWise_Linear_Model_of_Calcium_Oscillations" />

</using>

<!-- The mathematical functionality term defines the functionality in precise mathematical terms.
We specify that the output of the model contains timetrack (Function depicting how a
variable changes through time) of G-Protein activation levels and of Calcium concentrations.
The input is a timetrack of blood hormone levels -->
<mathematical_functionality

name="G_Protein activation level and Calcium level vs. time as a function of
hormone stimulation">

<!-- We may specify the scheme that the model is implemented in - in this case,
Ordinary Differential Equations -->

<scheme composite="yes" type="differential_equations" />
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<!-- Here we define units that will be used later on. The specification
is similar to that of CellML -->

<units name="milli_mole_per_liter">
<unit prefix="milli" units="mole" />
<unit exponent="-1" units="litre" />

</units>

<!-- The variable type that appears here applies to all variables within
this mathematical functionality, unless a variable

is explicitely declared to be of another type. Thus
we specify here that all the variables are of type
timetrack -->

<variable>
<type name="timetrack" />

</variable>

<!-- List of output and input variables. Note that each variable
is linked to the aspect it describes. -->

<outputVars>
<variable initial_value="0.0" id="G_Protein_Level"

units="pure_number">
<aspect_ref id="G_Protein" />

</variable>
<variable initial_value="0.0" id="Calcium_Level"

units="milli_mole_per_liter">
<aspect_ref id="Intracellular_Calcium_Level" />

</variable>
</outputVars>
<inputVars>

<variable initial_value="0.0" id="Hormone_Level"
units="milli_mole_per_liter" />

</inputVars>

<!-- Parameters are similar to input variables, the main difference being
that their value remains fixed through out the course of the simulation -->
<parameters>

<parameter units="milli_mole_per_liter" id="IP3_ER"
name="IP3 concentration threshhold in Endoplasmic Reticulum">
<aspect_id>9865543</aspect_id>
<type name="scalar" />

</parameter>
<parameter units="milli_mole_per_liter"

id="Resting_GProtein"
name="Resting concentration of inactive G-protein">
<aspect_id>8754433</aspect_id>
<type name="range" />

</parameter>
</parameters>

<!-- Here the description of the interface provided by the
mathematical functionality ends, and we proceed to
describe how this functionality is actually implemented.
The orchestrator reads the ’implementation’ section
and executes it in order to execute the model -->
<implementation>

<!-- The model instances/components participating in the computation -->
<!-- In this simple example we have one component per model,
but one may specify mulitple components launched for the same model.
For example, one may specify a composite multi-cellular model using
multiple instances of the same cellular model -->
<component model="GProtein_activation"

id="G_Protein_Component" />
<component

model="PieceWise_Linear_Model_of_Calcium_Oscillations"
id="Calcium_Component" />
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<!-- Next we map out the connections between the models. We first specify
which components are connected to each other, and which functionalities
and interfaces of each component are being used. Then
we actually map output variables into input variables -->
<!-- This connection is a ’horizontal’ connection, it links
sub-models on the same level -->

<CMSL_connection id="GProtein_Calcium_Coupling"
type="horizontal">
<map_components>

<mapped_component
functionality="G_Protein and PLC activation level as a function of Calcium"
mathematical_functionality="G_Protein and PLC activation levels vs. time
as a function of Calcium"
component="G_Protein_Component" id="G_Protein" />

<mapped_component
functionality="Calcium levels as a function of PLC activity levels"
mathematical_functionality="Calcium levels as a function of PLC activity levels vs. time"
component="Calcium_Component" id="Calcium" />

<map_variable>
<source mapped_component="G_Protein"

variable="PhosphoLipase" />
<dest mapped_component="Calcium"

variable="PhosphoLipase" />
</map_variable>
<map_variable>

<source mapped_component="Calcium"
variable="Calcium_Concentration" />

<dest mapped_component="G_Protein"
variable="Calcium_Level" />

<translator>
<scaling default_value="100.0"

name="Glucose_scaling" />
</translator>

</map_variable>
</map_components>

</CMSL_connection>
<!-- This is a ’vertical’ connections, wiring of the submodels variables to
the ’global’ model variables -->
<CMSL_connection type="vertical">

<map_components>
<mapped_component

functionality="G_Protein activation level as a function of Calcium"
component="G_Protein_Component" id="G_Protein" />

<mapped_component id="Self" />
<map_variable>

<source mapped_component="G_Protein"
variable="G_Protein" />

<dest mapped_component="Self"
variable="G_Protein" />

</map_variable>
</map_components>

</CMSL_connection>
<CMSL_connection type="vertical">

<map_components>
<mapped_component

functionality="Calcium_Level as a function of GProtein activation"
id="Calcium" component="Calcium_Component" />

<mapped_component id="Self" />
<map_variable>

<source mapped_component="Calcium"
variable="Calcium_Concentration" />

<dest mapped_component="Self"
variable="Calcium_Level" />

</map_variable>
</map_components>

</CMSL_connection>
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<!-- Now we specify what connector we use to actually implement the connection
between the two models. In this case we use a waveform relaxation connector -->

<CMSL_connector id="GProtein_Calcium_Coupling">
<integration_method name="Waveform_relaxation" />
<implement_connection

connection="GProtein_Calcium_Coupling" />
</CMSL_connector>

<!-- This is the specification of the algorithm the orchestrator has to follow in order
to execute this functionality. -->

<sequence>
<invoke name="step1">

<CMSL_connector
connector="GProtein_Calcium_Coupling" />

</invoke>
</sequence>

</implementation>

<!-- The last section in the mathematical functionality definition is the computational interface
section. It describes the precise data format of the model’s inputs and outputs -->
<computational_interfaces>

<implementation id="imp1">
<engine name="C++_Orchestrator" version="0.1" />
<!-- Here we specify additional data that the orchestrator may require in order

to execute the invocations, such as the computational interfaces to be used by the
connector -->

<engine name="C++_Orchestrator" version="0.1" />
<invoke step="step1">

<CMSL_connector
name="GProtein_Calcium_Coupling">
<use_interface mapped_component="G_Protein"

id="G_Protein_Interface" />
<use_interface mapped_component="Calcium"

id="Calcium_cAMP_Interface" />
</CMSL_connector>

</invoke>

</implementation>

<!-- Here we define the computational interface for the (top level) model. In this case it is
simply an output file -->

<computational_interface id="G_Protein_Calcium_LZ"
type="output_file">
<subtype id="TimeTrack_Interface" implemention="imp1"/>

</computational_interface>

</computational_interfaces>
</mathematical_functionality>

</functionality>
</model>
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