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Abstract. This paper describes an approach to online simplification of
evolved programs in genetic programming (GP). Rather than manually
simplifying genetic programs after evolution for interpretation purposes
only, this approach automatically simplifies programs during evolution.
In this approach, algebraic simplification rules, algebraic equivalence and
prime techniques are used to simplify genetic programs. The simplifica-
tion based GP system is examined and compared to a standard GP
system on a regression problem and a classification problem. The re-
sults suggest that, at certain frequencies or proportions, this system can
not only achieve superior performance to the standard system on these
problems, but also significantly reduce the sizes of evolved programs.

1 Introduction

Since the late 1990s, genetic programming (GP) has already been applied to
many fields, including image analysis [1], object detection [2], regression prob-
lems [3] and even control programs for walking robots [4], and achieved quite a
reasonable level of success.

While showing promise, current GP techniques are limited, often require a
very long evolution time, and frequently do not give satisfactory results for diffi-
cult tasks. One problem is the redundancy of programs. Typically, the programs
are not simplified until the end of the evolutionary process to enable analysis.
However, the redundancies also affect the search process. They force the search
into exploring unnecessarily complex parts of the search space [5,2]. The re-
dundancies and complexities have the undesirable consequences that the search
process is very inefficient in execution, and the programs are very difficult to
understand and interpret. However, the redundant components of the evolving
programs can provide a wider variety of possible program fragments for con-
structing new programs.

The goal of this paper is to invent a method in GP that does online program
simplification during the evolutionary process. We will investigate the effect of
performing online simplification of the programs during the evolutionary process,
to discover whether the reduction in complexity outweighs the possible benefits
of redundancy. This approach will be examined and compared with the standard
GP without simplification on a regression problem and a classification problem.
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Table 1. Typical simplification rules

No. Precondition Effective Result No. Precondition Effective Result
(1) if<0(A, b, c) → b if A < 0, else c (2) if<0(a, b, b) → b
(3) A + B → C, C = A + B (4) A - B → C, C = A - B
(5) A × A → C, C = A × B (6) A ÷ B → C, C = A ÷ B
(7) A + (B + c) → C + c, C = A + B (8) A + (B - c) → C - c, C = A + B
(9) A - (B + c) → C - c, C = A - B (10) A - (B - c) → C + c, C = A - B
(11) A × (B × c) → C × c, C = A × B (12) A × (B ÷ c) → C ÷ c, C = A × B
(13) A ÷ (B ÷ c) → C × c, C = A ÷ B (14) A + (b + C) → B + b, B = A + C
(15) A + (b - C) → B + b, B = A - C (16) A - (b + C) → B - b, B = A - C
(17) A - (b - C) → B - b, B = A + C (18) A × (b × C) → B × b, B = A × C
(19) A × (b ÷ C) → C × b, B = A ÷ C (20) A ÷ (b ÷ C) → B ÷ b, B = A × C
(21) a ÷ 1 → a (22) a ÷ a → 1
(23) 0 ÷ a → 0 (24) 0 × a = a × 0 → 0
(25) a × 1 = 1 × a → a (26) a + 0 = 0 + a → a
(27) a - 0 → a (28) a - a → 0
(29) a × 1

b = 1
b × a → a

b (30) a × b
a = b

a × a → b

2 The Approach

In the tree-based GP, a genetic program looks like an algebraic expression. The
function set consists of the commonly used four arithmetic operators and a
conditional operator +, -, ×, ÷, if. The terminal set consists of a number
of feature terminals from the task and several constant terminals. The task
of the simplification method is to obtain a smaller program, by removing the
redundancy of a program, that yields the same output as the original program.
In this approach, we use this idea to construct simplification rules, apply these
rules using a postfix search to the genetic programs, and use hashing to estimate
the algebraic equivalence to simplify the genetic programs during evolution.

2.1 The Simplification Rules

As in algebraic expression simplification, we use multiple rules (ruleset) to sim-
plify a given genetic program, as shown in table 1. A specific rule might only be
suitable for removing/reducing a particular part of the genetic program. In this
table, constants are represented by upper-case letters (e.g. A, B), and variables
are represented by lower-case letters (e.g a, b).

2.2 Algebraic Equivalence of Two Subtrees

In a simplification system, it is important to determine whether two subtrees have
the same role (or are equivalent). For two single nodes, this is fairly trivial; formulti-
node subtrees, this will be more difficult. Our goal is to allow for not only noticeably
similar expressions (e.g. (x + y + z) and (z + x + y)) to be identified as equivalent,
but also seemingly dissimilar expressions, for example, (/ (+ (- (* w x) (* x y))
(* (- w y) y)) (- (* x x) (* y y))) and (/ (- w y) (- x y)) as well, which is a hard
problem.

We use hashing techniques to address the equivalence of two subtrees [6,7] to
cope with all common terminals and functions in the evolved programs. In this
work, p is used to denote the hashing order for the hash function. It is important
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that the collection of hash values qualify as a finite field [8] and so p should be
a prime number as any finite field with p elements is isomorphic to Zp [8].

Feature Terminals. In GP, feature terminals represent inputs from the task
environment and always keep the same value for a particular fitness case for
all genetic programs during evolution. Accordingly, in this approach, we assign
the feature terminals certain random hash values at the beginning of a GP run,
which remain unchanged for the entire evolution.

Constant Terminals. In GP, constants are usually represented by floating
point numbers. We handle this by approximating the floating point with a ra-
tional number, thus converting it to a simple division of two integers.

Calculating accurate and irreducible rationals can be very time consuming,
so a quick approximation is used. The numerator is formed by multiplying the
floating point by a predefined precision constant (δ) and truncating the leftover
fractional part. Using the same precision constant as a denominator, a rational
representation can be very quickly found.

Hash(c) =
c × δ

δ
mod p = (c × δ) × 1

δ
mod p (1)

This approach, of course, requires modular division. Now, the division of two
numbers x

y is equivalent to the multiplication of the first number with the mul-
tiplicative inverse of the second number x× 1

y . So to perform division, one needs
only to calculate the multiplicative inverse of y and multiply by x. The key point
here is to find the integer equivalence of the inverse of δ mod p. In this approach,
this is done using the Extended Euclidean Algorithm [9,10].

The Arithmetic Operators. Because the hashing method takes place in a
finite field, hashing these arithmetic operators are handled using modulo arith-
metic within the field as follows, where the division hashing follows the rule of
the extended Euclidean algorithm mentioned earlier.

Hash(A + B) = (A + B) mod p (2)

Hash(A − B) = (A − B) mod p (3)

Hash(A × B) = (A × B) mod p (4)

Hash(A ÷ B) = (A ÷ B) mod p (5)

The if operator. The if conditional operator is a more difficult case, as it
is not an arithmetic function and so cannot simply be converted to a modulo
arithmetic equivalent. We use the following approach to handle this operator,
which uses division and addition to take into account the position of the three
parameters.

Hash(if(A, B,C)) = (
A

B
+ C) mod p (6)
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(a) (b)

Fig. 1. An example program. (a) The original program tree; (b)traversal order.

Operator Closure. All of the functions supported are closed, meaning that for
any of the functions � ∈ {+, −, ×, ÷, if < 0}, (Hash(A) � Hash(B)) mod p =
Hash(A � B) in Zp. Using this property, one does not need to recalculate the
hash values of subtrees each time a tree is to be hashed, as stored hash values
of subtrees can be combined to give correct hash values of the whole tree.

2.3 Simplification Process

To apply the ruleset to a genetic program for simplification, we use a kind of
“greedy” engine, which is a recursive algorithm. It recursively travels through
the program tree in a bottom-up fashion by the postfix order traversal mode.
For each node it processes, the algorithm checks each simplification rule in the
ruleset. If a rule matches, it is applied to the partial tree associated with the
node to make simplification. If none of the rules can be applied at a node, the
algorithm moves to the next (either neighbouring or parent) node. In this way,
the algorithm guarantees that each node in the program tree is visited once only.

Here, we use an example to show the simplification process for a given genetic
program. The example program (- (- -0.2 -0.5) (if<0 (% (+ f0 f1) (+
f1 f0)) 0.8 (- f0 f0))) can be represented in the tree shown in figure 1
(a). Assume that the hashing order is 17, f0 and f1 are “randomly” assigned
the values 3 and 5 respectively. The algorithm traverses the program tree in a
“bottom-up” fashion using a post-fix traversal. This means that the algorithm
processes the program nodes in the order depicted by integers in figure 1 (b).

The first node inspected by the algorithm is “-0.2”, followed by “-0.5”.
As no simplification rule exists in the ruleset that governs single nodes, these
nodes (and indeed the entire bottom layer of nodes) are left unchanged. Next,
the algorithm moves to the parent node of “-0.2” and “-0.5”, which is “-”.
The subtree formed by this node and its children (- -0.2 -0.5) matches the
precondition for rule (4) A−B. The system applies this rule, replacing the subtree
with the rule’s effective result: “0.3”.

Now, the subtrees (+ f0 f1) and (+ f1 f0) do not match the preconditions
for any of the rules, so are left unchanged. Note however, that they both have
the same algebraic equivalence hash value (shown in figure 2 (a)). Therefore,
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when node 10 (“%”) is inspected, the subtree (% (+ f0 f1) (+ f1 f0)) does
indeed match the precondition for rule (22) a÷a. The entire subtree is replaced
using the rule to a single node 1. Similarly, the subtree (- f0 f0) matches rule
(28) a−a and is replaced by the single node 0 when the algorithm processes “-”.
Figure 2 (b) shows the tree after processing nodes 1 through 14.

(a) (b) (c)

Fig. 2. Program simplification. (a)Hashing of two subtrees with same value; (b) Partial
simplification; (c) final program.

At this stage, the program is already reduced to 6 nodes in size, and there
are still two nodes left to be processed. Inspecting the if<0 node, the algorithm
matches it with rule (1) if<0(A b c), as the first parameter of the if<0 operator
is a constant. In this case, the constant is 1, which will obviously never be less
than 0. The system then, following the rule, replaces this subtree with its third
parameter, which is 0.

Lastly the root node is processed, which again matches rule (4) A−A. Applying
it yields the final result, a single numerical constant node “0.3” (figure 2 (c)).

3 Experimentation Setup

3.1 Data Sets

We used two data sets, a symbolic regression task and a object classification
tasks, to examine the simplification method. The regression task is a quite com-
plicated piecewise function. We used 200 data points in [-10, 10] as the fitness
cases and the task is to evolve a genetic program that conform the curve, as
shown in figure 3 (a).

The classification task uses a subset of the Yale Database B Face Dataset
[11]. It consists of face images of 5 subjects taken from a single position under 65
different lighting conditions. This creates a set of 325 instances. The backgrounds
of the faces are very complicated and different, making the classification problem
more difficult. Example images for the task are shown in figure 3 (b). Due to a
small number of data examples, 10-fold cross validation method is applied.

3.2 Terminal Set, Function Set and Fitness Function

The terminal set consists of a number of feature terminals as well as several ran-
domly generated constant terminals. For the symbolic regression task, the feature
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(a) (b)

Fig. 3. Two data sets. (a) regression; (b) classification.

terminal corresponds to the single independent variable. In the face data set, we
used 18 feature terminals representing the extracted pixel statistic features from
the various facial regions. We use the four basic arithmetic operators and a con-
ditional operator to form the function set {+, −, ×, ÷, if<0}. For the symbolic
regression task, the fitness of a program is governed by the mean squared error
of the desired output and the actual output of the program on all the fitness
cases. For the classification task, the fitness of a program is governed by the
classification accuracy in the training set.

3.3 Parameters

The population size is 500, the rates used for crossover, mutation and repro-
duction are 60%, 30% and 10%, respectively, and the maximum program depth
is 8. The evolution will run 50 generations unless an ideal solution program is
found, in which case the evolution was terminated early. The hash order p was
1000077157, the constant precision δ is 1000000. In addition, we used different
proportions, the percentage of programs in a population to be applied to simpli-
fication, and different frequencies, how often (in generations) the simplification
process is applied, to examine property of the simplification algorithm. The pro-
portions tested here are 0%, 5%, 10%, 20%, 50% and 100%. The frequency used
here are every 0, 1, 2, 4, and 6 generations. All single experiments were repeated
50 runs to get the means and standard deviations as results.

4 Results and Discussion

4.1 Overall Results

Table 2 shows the typical best results of the two GP approaches on the two data
sets in terms of the effectiveness (best fitness—mean squared error for regression
and classification accuracy for classification), training efficiency (training time),
and average size of all the programs in the systems in number of nodes.
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Table 2. Average best results for the two tasks

Task FrequencyProportion Best Fitness Time(s) Avg. Prog Size

Regression
Without Without 83.774 ± 75.2835.141 ± 1.019 104.436 ± 22.171
Every 1 20% 60.354 ± 44.3654.743 ± 1.383 77.392 ± 24.393
Every 2 100% 67.346 ± 59.3154.270 ± 0.759 74.841 ± 13.886

Classification
Without Without 85.5% ± 11.7% 2.646 ± 0.578 37.861 ± 8.755
Every 1 20% 87.3% ± 7.2% 2.445 ± 0.484 29.436 ± 5.855
Every 2 100% 86.7% ± 11.7% 2.367 ± 0.460 29.364 ± 5.966

Efficiency. As expected, it is always possible to find certain proportions and/or
frequencies at which the GP approach with the simplification spent shorter time
to evolve good programs than the standard GP without simplification. This is
mainly because the simplification process removes the redundancy, makes the
genetic programs shorter, and accordingly reduces the search space.

Effectiveness. According to table 2, it is always possible to find certain propor-
tions or frequencies at which the GP approach with the proposed simplification
achieved superior fitness, either in mean square error or accuracy, on these data
sets than the basic GP approach without simplification.

We hypothesised that the simplification process during evolution might de-
stroy the existing good building blocks of the genetic programs, which might
result in worse performance. However, these results are clearly different from
the original hypothesis. After checking the evolutionary process, we identify the
following reasons. At the beginning of evolution, although the simplification al-
gorithm might destroy some potentially good building blocks, this effect was
very much offset by the powerful crossover operator, which can preserve good,
even form larger, building blocks. At the later stage, when the programs are
getting larger, the crossover operator starts to destroy good existing building
blocks. The simplification algorithm, however, can generate new genetic materi-
als which might contain good building blocks by reorganising the entire genetic
programs.

Program Size. According to our experiments, the average size of the programs
is significantly reduced for the GP system with simplification at all frequencies
and all proportions over the basic GP without simplification. The small size pro-
grams have a big advantage in that the actual computation time of the solution
program will be short. This is particularly useful in the situations that has a
strict time requirement such as in some industrial control and security systems.

4.2 Simplification Frequency/Proportion Analysis

According to our experiments, applying simplification to all programs at every
generation (the last line of table 2) led to a slight loss in fitness and/or a slightly
higher computational cost in most cases. This suggests that, if we apply the sim-
plification too often, the programs will not have sufficient chances for evolution
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and the simplification overhead will be increased. If the evolution chances are re-
duced to some extent or the overhead outweighs the time saved from processing
smaller simplified programs, the performances will deteriorate.

5 Conclusions

This paper aimed to develop an online program simplification approach in GP
during the evolutionary process. This goal was successfully achieved by defining
a set of algebraic simplification rules, traversing the program tree in a bottom-up
fashion by a postfix order, and applying the simplification rules along with an
algebraic equivalence component to non-terminal nodes in the evolved programs.

The GP system with the simplification algorithm was examined and compared
with the basic GP approach without simplification on a regression problem and a
classification problem. The results suggest that, at certain proportions or certain
frequencies, the new simplification approach always outperformed the basic GP
approach in terms of system effectiveness, efficiency and program size on these
data sets.

The results also suggest that performing simplification of all programs in the
population at every generation is not recommended. While the approach seems
to be able to reduce the search space, it is not clear whether and/or how it
destroys good building blocks in the early stage of evolution, which needs to be
further investigated.
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