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Abstract. Chaotic neural networks have been proved to be strong tools to solve 
the optimization problems. In order to escape the local minima, a new chaotic 
neural network model called Shannon wavelet chaotic neural network was 
presented. The activation function of the new model is non-monotonous, which 
is composed of sigmoid and Shannon wavelet. First, the figures of the reversed 
bifurcation and the maximal Lyapunov exponents of single neural unit were 
given. Second, the new model is applied to solve several function optimizations. 
Finally, 10-city traveling salesman problem is given and the effects of the 
non-monotonous degree in the model on solving 10-city traveling salesman 
problem are discussed. The new model can solve the optimization problems more 
effectively because of the Shannon wavelet being a kind of basic function. Seen 
from the simulation results, the new model is powerful. 

1   Introduction 

Neural networks have been shown to be powerful tools for solving optimization 
problems. The Hopfield network, proposed by Hopfield and Tank [1, 2], has been 
extensively applied to many fields in the past years. The Hopfield neural network 
converges to a stable equilibrium point due to its gradient decent dynamics; however, 
it causes sever local-minimum problems whenever it is applied to optimization 
problems. Several chaotic neural networks with non-monotonous activation functions 
have been proved to be more powerful than Chen’s chaotic neural network in solving 
optimization problems, especially in searching global minima of continuous function 
and traveling salesman problems [3, 8~9]. The reference [4] has pointed out that the 
single neural unit can easily behave chaotic motion if its activation function is 
non-monotonous. And the reference [5] has presented that the effective activation 
function may adopt kinds of different forms, and should embody non-monotonous 
nature. In this paper, a new chaotic neural network model is presented to improve the 
ability to escape the local minima so that it can effectively solve optimization 
problems. The chaotic mechanism of this new model is introduced by the 
self-feedback connection weight. The activation function of the new chaotic neural 
network model is composed of Sigmoid and Shannon Wavelet, therefore the 
activation function is non-monotonous. And because Shannon wavelet function is a 
kind of basic function, the model can solve optimization problems more effectively. 
Finally, the new model is applied to solve both function optimizations and 
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combinational optimizations and the effects of the non-monotonous degree in the 
model on solving 10-city TSP are discussed. The simulation results in solving 10-city 
TSP show that the new model is valid in solving optimization problems. 

For any function )()( 2 RLxf ∈ and any wavelet Ψ which is a basic function, the 

known formula can be described as follows: 
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2   Shannon Wavelet Chaotic Neural Network (SWCNN) 

Shannon wavelet chaotic neural network is described as follows: 
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Where i is the index of neurons and n is the number of neurons, )(txi  the output of 

neuron i , )(tyi the internal state for neuron i , ijW the connection weight from neuron 

j  to neuron i , iI the input bias of neuron i , α the positive scaling parameter for 

inputs, k the damping factor of the nerve membrane ( 10 ≤≤ k ), )(tz i the 

self-feedback connection weight, 21,εε the steepness parameters of the activation 

function, β  the simulated annealing parameter of the self-feedback connection 

weight )(tz i , )(tiη  the other simulated annealing parameter of the activation, 0I  a 

positive parameter and coef the non-monotonous degree ( 10 ≤≤ coef ). 

In this model, the variable )(tz i  corresponds to the temperature in the usual 

stochastic annealing process and the equation (4) is an exponential cooling schedule for 
the annealing as well as the equation (5). The chaotic mechanism is introduced by the 
self-feedback connection weight as the value of )(tz i  becomes small step by step. The 
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chaotic behavior plays a global search role in the beginning. When the value of 
)(tz i decreases to a certain value, the network functions in a fashion similar to the 

Hopfield network which functions in gradient descent dynamic behavior. Finally, the 
neurons arrive at a stable equilibrium state. The reference [6] shows that both the 
parameter β governed the bifurcation speed of the transient chaos and the parameter α  

could affect the neuron dynamics; in other words, the influence of the energy function 
was too strong to generate transient chaos when α was too large, and the energy 
function could not be sufficiently reflected in the neuron dynamics whenα  was too 
small. So in order for the network to have rich dynamics initially, the simulated 
annealing parameter β must be set to a small value, and α  must be set to a suitable 

value, too. 
In this model, the parameter coef presents the non-monotonous degree of the 

activation function. Seen from the equation (6), it is concluded that the equation (6) is 
similar to the function of Sigmoid alone in form in the circumstance of the value of 
coef  being between 0 and 1 without consideration of the monotonous nature. So the 

parameter coef presents a local non-monotonous phenomenon of the activation 

function. In other words, if the parameter coef borders on 1, the non-monotonous 

phenomenon of the activation function is very apparent; otherwise, if the parameter 
coef borders on 0, the non-monotonous phenomenon of the activation function is very 

weak. 
In order to gain insight into the evolution progress of the single neural unit, the 

research was made as follows. 

3   Research on Single Neural Unit 

In this section, we make an analysis of the neural unit of the Shannon Wavelet chaotic 
neural networks. 

The single neural unit can be described as (9) ~ (12) together with (6) ~ (8): 
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In order to make the neuron behave transient chaotic behavior, the parameters are set 
as follows: 

0.0041 =ε , 25.12 =ε , 283.0)1( =y , 1.0)1( =z , 1=k , 8.0)1( =η , 5.0=λ , 5.0=0I  

The state bifurcation figures and the time evolution figures of the maximal 
Lyapunov exponent are respectively shown as Fig.1~Fig.3 when 004.0=β  and  

=β  0.002. 
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Fig. 1. State bifurcation figure of the neuron when 004.0=β  

 

Fig. 2. Time evolution figure of the maximal Lyapunov exponent of the neuron when 
004.0=β   

 

Fig. 3. State bifurcation figure of the neuron when 002.0=β  
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Seen from the above state bifurcation figures, the neuron behaves a transient chaotic 
dynamic behavior. The single neural unit first behaves the global chaotic search, and 
with the decrease of the value of )0,0(z , the reversed bifurcation gradually converges to 

a stable equilibrium state. After the chaotic dynamic behavior disappears, the dynamic 
behavior of the single neural unit is controlled by the gradient descent dynamics. When 
the behavior of the single neural unit is similar to that of Hopfield, the network tends to 
converge to a stable equilibrium point. The simulated annealing parameter β affects the 

length of the reversed bifurcation, that is, the lager value of β prolongs the reversed 

bifurcation. 

4   Application to Continuous Function Optimization Problems 

In this section, we apply the Shannon wavelet chaotic neural network to search global 
minima of the following function. 

The function is described as follows [7]: 
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The minimum value of (13) is 0 and its responding point is (0.7, 0.5). 
The parameters are set as follows: 

0.051 =ε , 102 =ε , 80.0=α , 1=k , 5.0=0I , 4/1=coef , β =0.002, )0,0(z =[0.8, 

0.8], )0,0(y =[0.283, 0.283], )0,0(η =[0.8, 0.8], )0,0(λ =[0.01, 0.01].  

The time evolution figure of the energy function of SWCNN in solving the function is 
shown as Fig.4. 

 

Fig. 4. Time evolution figure of energy function 

The global minimum and its responding point of the simulation are respectively 
2.1448e-015 and (0.7, 0.5). 

This section indicates that SWCNN has a good performance to solve function 
optimization problems. In order to testify the performance of SWCNN, the new model 
is applied to solve 10-city traveling salesman problems. 
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5   Application to 10-City TSP 

A solution of TSP with N cities is represented by N×N-permutation matrix, where 
each entry corresponds to output of a neuron in a network with N×N lattice structure. 
Assume xiv  to be the neuron output which represents city x in visiting order i . A 

computational energy function which is to minimize the total tour length while 
simultaneously satisfying all constrains takes the follow form [1]: 
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Where ini xx =0 and 11, ini xx =+ . 1W and 2W are the coupling parameters corresponding 

to the constrains and the cost function of the tour length, respectively. xyd is the 

distance between city x and city y . 

This paper adopts the following 10-city unitary coordinates: 
(0.4, 0.4439),( 0.2439, 0.1463),( 0.1707, 0.2293),( 0.2293, 0.716),( 0.5171,0.9414), 

(0.8732,0.6536),(0.6878,0.5219),( 0.8488, 0.3609),( 0.6683, 0.2536),( 0.6195, 0.2634). 
The shortest distance of the 10-city is 2.6776. 

The reference [6] has presented that the effective activation function may adopt 
kinds of different forms, and should behave non-monotonous behavior. In this paper, 
coef that represents the non-monotonous degree is analyzed in order to simply 

ascertain the effect of the non-monotonous degree to SWCNN in solving 10-city TSP. 
Therefore, the models with different values of coef in solving 10-city TSP are 

analyzed as follows: 
The parameters of the network are set as follows:  

1W1 = , 8.0W2 = , 2.0)1( =iz , 5.0=α , 1k = , 8.0)1( =iη , 5.0=0I , 008.0=λ ,

0.0041 =ε , 2.52 =ε . 

2000 different initial conditions of ijy are generated randomly in the region [0, 1] for 

different β . The results are summarized in Table1, the column ‘NL’, ‘NG’, ‘LR’ and 

‘GR’ respectively represents the number of legal route, the number of global optimal 
route, the rate of legal route, the rate of global optimal route. 

The lager value of the simulated annealing parameter β is regarded stronger if the 

network can all converge to the global minimum in 2000 different random initial 
conditions. 

Seen from table 1, the follow observations can be drawn according to numerical 
simulation test: 

First, the model with smaller coef s such as 0, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9 and 10/1  in 

solving 10-city TSP can all converge to the global minimum. But, it is not true that the 
smaller the parameter coef is, the more powerful the ability to solve 10-city is. 

Because, for example, the parameter 10/1=coef  can all converge to the global 

minimum as 0005.0=β while the parameter 9/1=coef  can all converge to the global 

minimum as 0007.0=β . 
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Table 1. Results of 2000 different initial conditions for each valueβ on 10-city TSP 

coef β NL NG LR GR 

0.0003 2000 1923 100% 95.65% 
0.001 1998 1998 99.9% 99.9% 

0=coef

(common network) 0.0008 2000 2000 100% 100% 
0.003 1837 620 91.85% 31% 
0.001 1891 1146 94.55% 57.3% 1=coef

0.0008 1904 1075 95.2% 53.75% 
0.003 1962 1791 98.1% 89.55% 

0.0008 1925 1858 96.25% 92.9% 1/2=coef
0.0005 1842 1672 92.1% 83.6% 
0.003 1975 1811 98.75% 90.55% 

0.0008 2000 1997 100% 99.85% 4/1=coef
0.00046 2000 2000 100% 100% 
0.003 1979 1797 98.95% 89.85% 
0.001 2000 1999 100% 99.95% 5/1=coef

0.0009 2000 2000 100% 100% 
0.003 1987 1819 99.35 90.95% 6/1=coef
0.001 2000 2000 100% 100% 
0.003 1989 1806 99.45% 90.3% 
0.001 1999 1999 99.95% 99.95% 7/1=coef

0.0008 2000 2000 100% 100% 
0.003 1990 1713 99.5% 85.65% 

0.0008 1999 1999 99.95% 99.95% 8/1=coef
0.0006 2000 2000 100% 100% 
0.003 1993 1713 99.65% 85.65% 

0.0008 1999 1999 99.95% 99.95% 9/1=coef
0.0007 2000 2000 100% 100% 
0.003 1998 1799 99.9% 89.95% 

0.0008 1999 1998 99.95 99.9% 10/1=coef
0.0005 2000 2000 100% 100% 

 

Second, with the decrease of the value of coef , the value of ‘NL’ becomes large 

gradually from 1837 ( 1=coef ) to 2000 ( 0=coef ) as 003.0=β  .In other word, with 

the decrease of the value of coef , the ability to get legal route becomes strong.  

Third, when the parameter 1/5=coef and 1/6=coef , the ability to all converge to 
the global minimum is more powerful than that of 0=coef , that is, the 
non-monotonous degree of the activation function has a positive effect on the solution 
of 10-city TSP.  

However, as is analyzed in second, the ability in reaching ‘NL’ when the parameter 
1/5=coef and 1/6=coef  is weaker than that of 0=coef . So, which model is needed 

is connected with the concrete request. However, in order to get the tradeoff effect, the 
value of 6/1=coef  may be chose. As the test result is not based on the theoretical 
analysis, the relationship between coef and the performance need to be studied further. 
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6   Conclusion 

The presented chaotic neural network called SWCNN is proved to be effective in 
solving optimization problems, and in the section of application to 10-city TSP, the 
model with different coef is analyzed and made a comparison. As a result, the simple 
rule of the model is disclosed. However, there are a lot of points in the model needed to 
be studied. 
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