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Preface

We are very delighted to present this LNCS volume, the proceedings of the Sixth
International Conference on Simulated Evolution And Learning (SEAL 2006).
SEAL is a prestigious international conference series in evolutionary computation
and learning. This biennial event was first held in Seoul, Korea, in 1996, and
then in Canberra, Australia (1998), Nagoya, Japan (2000), Singapore (2002),
and Busan, Korea (2004).

SEAL 2006 received a record 420 paper submissions this year. After an exten-
sive peer review process involving more than 1100 reviews, the best 117 papers
were selected by the programme committee to be presented at the conference
and included in this volume, resulting in an acceptance rate of less than 30%.

The papers included in this volume cover a wide range of topics in simulated
evolution and learning: from evolutionary learning to evolutionary optimisation,
from hybrid systems to adaptive systems, from theoretical issues to real-world
applications. They represent some of the latest and best research in simulated
evolution and learning in the world.

The conference featured four distinguished keynote speakers: Karl Sigmund,
Zbigniew Michalewicz, Han La Poutré and Gary Yen. Karl Sigmund’s talk was
on “The Evolution of Cooperation in Groups.” Zbigniew Michalewicz’s talk was
on “Adaptive Business Intelligence.” Han La Poutré’s talk was on “Learning
Agents in Socio-economic Games.” Gary G. Yen’s talk was on “Adaptive Critics
for Fault Tolerant Control”. We were very fortunate to have such distinguished
speakers giving talks at SEAL 2006 despite their busy schedules. Their presence
at the conference was yet another indicator of the importance of SEAL on the
international research map.

SEAL 2006 also included five tutorials, which were free to all conference par-
ticipants. The five tutorials covered some of the hottest topics in evolutionary
computation and its applications, i.e., Evolutionary Multiobjective Optimiza-
tion and its Applications (Gary Yen), Evolutionary Computation for Real-World
Problems (Zbigniew Michalewicz), Automatic Decomposition in Evolutionary
Computation for Optimization and Learning (Hussein Abbass), Particle Swarm
Optimization (Xiaodong Li) and Recent Advances in Real Parameter Optimiza-
tion (P.N. Suganthan). They provided an excellent start to the four-day event.

Furthermore, Jim Kennedy, a pioneer in particle swarm optimisation, also
gave a brilliant plenary speech at SEAL 2006.

The success of a conference depends on its authors, reviewers and organisers.
SEAL 2006 was no exception. We were very grateful to all the authors for their
paper submissions and to all the reviewers for their outstanding work in refer-
eeing the papers within a very tight schedule. We relied heavily upon a team of
volunteers to keep the SEAL 2006 wheel turning. They were true heros work-
ing behind the scene. In particular, Wenjian Luo from USTC in Hefei, China,
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played a crucial role in organising the conference. We are most grateful to all
the volunteers for their great efforts and contributions.

August 2006 Xin Yao
Tzai-Der Wang

Xiaodong Li
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Abstract. Evolutionary dynamics on graphs for the Moran process have been
previously examined within the context of fixation behaviour for introduced mu-
tants, where it was demonstrated that certain spatial structures act as amplifiers of
selection. This paper will revisit the assumptions for this spatial Moran process
and show that the assumption of proportional global fitness, introduced as part of
the Moran process, is necessary for the amplification of selection to occur. Under
the circumstances of local proportional fitness selection the amplification prop-
erty no longer holds, which supports the original results from population genetics
that spatial structure does not alter fixation probability for fixed population sizes
with constant migration.

1 Introduction

The probability of fixation of an introduced allele in a spatially-structured population
is a fundamental concept in population genetics, evolutionary biology and evolutionary
computation [1]. The question of how the organisation of subpopulations alters the fate
of alleles in terms of their probability of fixation and time to fixation has relevance in
understanding the dynamics of the evolutionary process.

The evolution of a population is characterised by two forces: genetic drift (the stochas-
tic effect of sampling) and selection. In addition, how these forces interact can be altered
by the spatial arrangement of the population, so that subpopulations, or demes, of local in-
teraction are formed. As would be expected, forming subpopulations which are distantly
connected to each other affect genetic drift by increasing the mean time to fixation (loss
of all variation) of the population [2,3,4,5]. Further work on structured populations in the
field of population genetics showed that, when migration is conservative (i.e. fixed local
population sizes) the probability of fixation of an introduced mutant was equal to that of
a well-mixed (panmictic) population [6,7]. This has lead to the assumption that the prob-
ability of fixation of an introduced beneficial alelle was invariant to the neighbourhood
structure of a population.

In the field of Evolutionary Computation the effect of spatially-structured popula-
tions on the dynamics of evolution have been mainly considered from the standpoint of
takeover times [8,9,10]. Although these approaches have shown that the takeover times
vary as a measure of selection pressure, the models use an elitist strategy so that nonex-
tinctive selection occurs. Hence the concept of probability of fixation is meaningless,
and therefore these approaches will not be considered in this paper.

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 1–8, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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More recently, the evolution of populations whose spatial structure is defined by
a graph have been considered [11]. This work described a generalised version of the
Moran process for spatial evolutionary dynamics, and showed that certain types of spa-
tial structure amplified the fixation probability of an introduced mutant, in contrast to
the previous results in population genetics [6,7].

This paper will consider in detail the definition of the spatial Moran process defined
by Lierberman et al. (2005), and question their model formulation. In particular, a redef-
inition of the model to a true spatially-structured process shows that the probability of
fixation for an introduced mutant is independent of geography, although the time to fix-
ation is affected by varying the subpopulation structure. The remainder of this paper is
structured as follows: §2 describes the previous spatial Moran process, and presents the
results for this geography; §3 redefines the Moran process to a local spatial model, and
examines the consequences of this change on probability of fixation; and §4 discusses
the implications of these results.

2 The Moran Process

The Moran process on a graph [11] is defined as follows: A population of individuals
Ii for a particular time step of the evolution are labelled i = 1, 2, . . . , N with relative
fitness ri. In general we are interested in the probability that an introduced mutant
allele at time t = 0 will become fixed in the population. The introduced mutant is
randomly placed at some location in the population, say Ij , with relative fitness rj .
All other individuals in the population have relative fitness r = 1. The individuals
are considered to occupy vertices of a graph, where the graph connectivity defines the
spatial arrangement. This connectivity matrix W = [wij ]N describes the probability
of an offspring resulting from the parent at vertex i being placed at location j. The
Moran process for graphs is described in Algorithm 1. The main points to note for

Algorithm 1. The global Moran process for a structured population

input : Population P0 at time zero, Connectivity Matrix W
output: Fixated Population Pt after t time steps

while Pt not fixed do1

t ← t + 1;2

fitness ← SumFitness(Pt);3

Ii ← SelectParent(fitness,Pt);4

j ← OffspringLoc(Ii,Wi);5

Ij ← Ii;6

end7

return Pt;8

this algorithm are: line 1 calculates the population fitness. For the original graph-based
Moran process this was defined as

∑n
i=1 ri, with the probability of any individual Ii

being selected as a parent being ri/fitness (line 1). Hence the probability of selecting
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any individual as a parent is proportional to their relative fitness compared with the
entire population, and therefore selection can be considered as a global process. The
location of the offspring, given parent Ii, is defined by the connectivity matrix Wi

(line 1). The probability of any location j being selected is given by wij , noting that
W is a stochastic matrix and therefore each row sums to one. In addition, the offspring
Ij �= Ii. Given this algorithm it has been shown that for all structured populations
where W is symmetric (i.e. wij = wji) that the fixation probability of a new introduced
mutant with relative fitness r, where the original residents had fitness of 1, is the same
as a panmictic population [11]:

ρ1 =
1 − 1/r

1 − 1/rN
(1)

In fact, Lieberman et al. (2005) show that this relationship is also true for all graphs
which are isothermal, which is the requirement that W is doubly stochastic. Hence, for
all regular spatial structures, such as a ring, square lattice, and irregular circulations
where W is doubly stochastic, Eqn. 1 is true. Empirical results for this property for a
ring population of size N = 100 are shown in Fig. 1, where the probability of fixa-
tion for a range of mutant relative fitness r, and the mean time to fixation, are shown.
The results for Fig. 1 are averaged over 10, 000 runs, and the mean time to fixation
is averaged over those runs where fixation of the mutant (not loss) occurred. The ring
structure in Fig. 1 is defined as a linear structure with connected endpoints, where the
neighbourhood size for any location is based on the parameter d. For d = 1 only the
nearest neighbours either side of an individual Ii are included in the individuals deme.
For d = 2 there are 5 individuals in each deme. Clearly, as d → N/2 the ring becomes
a panmictic structure. Even for a small population size the correspondence between the
simulation and that of Eqn. 1 for probability of fixation are excellent. Note from Fig. 1
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Fig. 1. The Moran process for a ring (N=100)

that although the probability of fixation is independent of ring deme size the time to
fixation is different for different deme sizes d. For all values of r the time to fixation
is greatest when the deme size is smallest. Hence, when the interaction between demes
is small the time to fixation increases because the diffusion of the mutant through the
entire population structure occurs in small steps.
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2.1 Selection Amplifiers

When W is not isothermal the fixation probability is no longer described by Eqn. 1.
Lieberman et al. (2005) showed that for a variety of spatial structures that selection was
amplified. This paper will examine just one of these structures, a star structure, which
was shown to have fixation probability, ρK , with an amplification of K = 2:

ρK =
1 − 1/rK

1 − 1/rKN
(2)

The star structure has a central node that is connected to all other vertices. For example,
a star with N = 5 has the form and stochastic matrix W shown in Fig. 2, assuming the
central vertex is individual I1. The original interpretation of an entry wij for the Moran
process was that it defined the probability of j being the location of the offspring from
parent Ii. Here we change the interpretation of W so that each row Wi defines the
deme (subpopulation) associated with Ii, and therefore each individual is part of its
own deme (∀iwii > 0). The Moran process does not allow the offspring to be placed at
the location of the parent and therefore this interpretation does not alter the behaviour
of the model. However, it will be found to be a more appropriate description when local
Moran processes are considered in §3. Empirical results for this property are shown in

Fig. 2. The star population (N=5) and associated W matrix

Fig. 3, where the probability of fixation for a range of mutant relative fitness r, and the
mean time to fixation for a star structure with N = 100 averaged over 10, 000 runs,
is shown.These results confirm Eqn. 2 for the star structure, and stand in contrast to
the population genetics results which imply spatial structure has no effect on fixation
probability. Note that although the probability of fixation is amplified, the mean time
to fixation has increased by two orders of magnitude over a panmictic neighbourhood
structure that satisfies ρ1. Hence although the balance between drift and selection has
tilted in favour of selection, the increase in time to fixation indicates that drift is inter-
acting to combat this selective advantage. When the mutant fitness r = 1 the only force
acting on fixation is drift. In this situation (Fig. 3) the star structure increases the time
to fixation from approximately 10, 000 for regular structures to 1, 000, 000 time steps.
Although the homogenising effect of drift is slowed for regular spatial structures [12],
for spatial structures such as a star drift acts to rapidly reduce the diversity in the popu-
lation [13]. Hence for a star structure, if fixation of the mutant is to occur the action of
drift needs to be overcome, and therefore the mean time to fixation increases.
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Fig. 3. The Moran process for a star population (N=100)

3 The Local Moran Process

The previous section has demonstrated that certain spatial structures act as amplifiers for
the Moran process. However, the Moran process described in Algorithm 1 used a global
fitness proportionate selection (step 1) to select the parent at each time step. A spatial
structure implies that subpopulations are only distantly connected to one another, the
use of a global selection scheme seems inappropriate. Since replacement acts locally,
the deme structures defined by W should also be used to select parents. A local spatial
version of the Moran process is shown as Algorithm 2. For this process, a deme is

Algorithm 2. The local Moran process for a structured population

input : Population P0 at time zero, Connectivity Matrix W
output: Fixated Population Pt after t time steps

while Pt not fixed do1

t ← t + 1;2

Ii = Random(I);3

fitness ← SumFitness(Wi);4

Ip ← SelectParent(fitness,Wi);5

j ← OffspringLoc(Ip,Wi);6

Ij ← Ip;7

end8

return Pt;9

selected (line 2) by randomly picking a location Ii. The sum of the fitness for the deme
associated with Ii is calculated (line 2), and a parent from the deme is then selected
with probability proportional to fitness of the individuals in the deme (line 2). The
offspring location is then determined from Wi as for Algorithm 1. Hence the local
Moran process differs from the global algorithm only in the mechanism for selecting
the parent: the probability of selection is proportional to the relative fitness of the deme,
rather than the relative fitness compared with the entire population. The results for the
local Moran process using the star structure with N = 100, averaged over 10, 000
runs, are shown in Fig. 4. The redefinition of the parent selection to a local deme has
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resulted in the probability and time to fixation returning to the original ρ1 behaviour
for a panmictic population. Hence, for the local Moran process, no amplification of
selection or adjustment in the time to fixation occurs, in agreement with the original
findings from population genetics [6,7].
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Fig. 4. The Local Moran process for a star population (N=100)

4 Discussion

What are the differences between the local and global Moran process on a star struc-
ture, and why do these change the probability of fixation? Selection of the parent for
the global Moran process is independent of spatial structure. Hence it is just the influ-
ence of drift on the selection of the offspring that varies with different neighbourhood
arrangements. Since the global selection of a parent is greater than the corresponding
probability of selecting a mutant parent under local selection (Fig. 5(a)), this allows the
global Moran process to propagate mutants more rapidly than the local Moran on a star.
Each time a non-central mutant parent is selected the central node of the star becomes a
mutant, and therefore this increases the chance of a mutant being moved to a new non-
central node. Since the star structure accelerates the homogenising effect of drift, the
global selection of the parent increases the probability of a mutant creation at the star’s
centre, which can then produce an offspring on the star edge. Although drift reduces
the variation in the population, global selection amplifies the relative fitness advantage
of the introduced mutant for the star structure. The local Moran process interacts with
the star structure in a different way. Since the probability of picking a parent depends
on the initial deme selection (which is random), there is a constant probability that, for
a particular deme, the parent will be a mutant. This is lower than the corresponding
global selection probability. However, it is the influence of the spatial structure that ul-
timately determines the fixation probability - spatial structures where a small number
of nodes are highly connected, and therefore act as hubs, become amplifiers for the
global Moran process. This is shown in Fig 5(b), where the probability of fixation for
spatial structures defined by a set of Kawachi-style networks [14] are shown. As the
Kawachi parameter increases towards one the network structure transitions from reg-
ular towards scale-free, with a subsequent increase in the dominance of a few highly
connected nodes. The probability of fixation increases for the global Moran process,
whereas the local process remains constant.
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Fig. 5. (a)Selection probability of the first mutant for the star network (N=100, r=2); (b) Proba-
bility of fixation for Kawachi networks (N=100,r=2)

Our local Moran process supports the original conjecture that the spatial structure of
populations does not affect the probability of fixation of an introduced allele. However,
it is clear from biological evolution that space does contribute to speciation and fixation.
There are a number of simplifications that do not make the model realistic: migration
between nodes in the graph, as defined by offspring placement and W , is fixed; there is
no variation in fitness due to the placement of the nodes (i.e. space is assumed to be ho-
mogeneous, and therefore no gradient or cline interacts with the evolutionary process);
population size is constant; there is no tradeoff between any individual, their fitness
and the local spatial environment, and the dynamics of local extinction and recoloni-
sation are not represented. When these factors are introduced to evolutionary models
the dynamics of fixation probability due to space are altered [1,15,16,17,18], and the
invariance of fixation probability with space no longer applies.

In conclusion, the results of Lieberman et al. (2005) rely on global fitness selection
to produce the amplification of fixation probability. Unless it can be justified that the
selection of an individual as a parent is influenced by the entire spatially distributed
population these results for the Moran process on a graph must be dismissed.
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Abstract. In this paper, embedded landscapes are extended to a non-binary dis-
crete domain. Generalized embedded landscapes (GEL) are a class of additive 
decomposable problems where the representation can be expressed as a simple 
sum of subfunctions over subsets of the representation domain. The paper pro-
poses a Generalized Embedding Theorem that reveals the close relationship  
between the underlying structure and the Walsh coefficients. Theoretical induc-
tions show that the Walsh coefficients of any GEL with bounded difficulty can 
be calculated with a polynomial number of function evaluations. A determinis-
tic algorithm is proposed to construct the decomposed representation of GEL. It 
offers an efficient way to detect the decomposable structure of the search space. 

1   Introduction 

Genetic algorithms have been found to be not very effective at solving optimization 
problems where there is a large amount of interactions between variables [1]. It has 
been realized that competent and scalable performance can only be obtained when the 
information of building block linkage is already in the problem coding or is identified 
before or during the search process of genetic algorithm [2]. Due to the above fact, 
during the last decade the technology of learning the linkage information has become 
an intensively studied research topic in the field of evolutionary computation. Various 
attempts have been made to learn the linkage information between variables. In GA 
literature, such technologies mainly include the messy GA [3], the gene expression 
messy GA [4], linkage learning GA [5], estimation of distribution algorithms [6,7] 
and linkage detection algorithms [8,9,10]. This paper will focus the discussion on 
linkage detection algorithms based on Walsh transformation. 

In GA field, embedded landscapes [8] (also named additively decomposed func-
tions [7]) are a class of typical optimization problems that have been widely studied to 
help design competent genetic algorithms. Embedded landscape is valid for any bi-
nary problem where the representation can be expressed as a sum of subfunctions 
over subsets of the representation domain [8]. It has been theoretically shown that 
                                                           
* Shude Zhou and Zengqi Sun are funded by the National Key Project for Basic Research of 

China (G2002cb312205). 
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there is a close relationship between Walsh coefficients of the function and the under-
lying decomposed structure. Efficient detection algorithms to compute the decom-
posed representation of embedded landscape have been proposed [8,9,10]. One of the 
shortcomings of the existent research is that the current research is limited to binary 
domain. In order to design efficient genetic algorithm for more general problems, 
detection of linkage information in non-binary domain is desirable. 

This paper studied generalized embedded landscapes (GEL) whose domain is a 
non-binary discretization. We adopt generalized Walsh transformation as mathemati-
cal tool to analyze the underlying structure of GEL. The relationship between the 
GEL underlying structure and the Walsh coefficients is revealed in the Generalized 
Embedding Theorem. Theoretical inductions will show that the Walsh coefficients of 
any GEL with bounded difficulty can be calculated with a polynomial number of 
function evaluations. A deterministic algorithm is constructed to obtain the decom-
posed representation of GEL. It offers an efficient way to detect the decomposed 
structure of the search space. 

2   Basic Notation and Definition 

This section introduces some basic notations and definitions related to generalized 
embedded landscapes. 

Rather than look at a simple alphabet of 0 and 1 we look at an alphabet from the set 
M ={ }0,1, , 1M − . The space LM is the space of L dimensional vectors with each 

component selected from M . When M ={0,1} then LM = LB . The size of M is M. 

x , where Lx M∈ denotes the number of positions with non-zero value. For ex-

ample, ( )0,2,3,0,1,2x =  and 4x = .  

The supplement of x is denoted by x , 1 , mod ( )k M kk L x M x∀ = = − .  

We define a template set as follows: let ( )S x be defined over Lx M∈ such that: 

{ }( ) & 0 if 0L
k kS x y y M y x= ∈ = = . 

For example, a 6-length string { }6
(0,2,3,0,0,1) 0, 3x = ∈ , then ( )S x =  

{ } { } { }{ }1 4 5 2 3 60, 0, ,3 , 0, ,3 , 0, ,3y y y y y y y= = = ∈ ∈ ∈ and 3( ) 4S x = . For any 

Lx M∈ , 0x ≠ , there are xM members in ( )S x ; if 0x = , then ( )S x φ= . 

[ ]M
b denotes the remainder when non-negative integer b is divided by M. 

For , Li j M∈ : i j⊆  iff ki∀ i ki j= if 0kj ≠ . 

A function ( , )pack x y is defined as pack: L L HM B M× , where H L≤ is the 
number of nonzero elements in y. ( , )pack x y is the vector composed of elements of x 
that are in the same positions as the elements of y that are nonzero. Order is pre-
served. For example, ( ) ( )(0,2,3,0,1,2),(0,1,0,1,1,0) 2,0,1pack = . 

Generalized embedded landscape (GEL) is defined as  
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( ) ( )
1

( , )
P

i i
i

f x g pack x m
=

=  (1) 

where P is the number of subfunctions, ( )( , )i ig pack x m is the i-th subfunction 

whose domain is imM , Lx M∈  and L
im B∈ . This is an extension of embedded 

landscapes which is usually restricted to binary domain in GA literature [8]. A GEL is 
defined of order-k, if

1
max i

i P
m k

≤ ≤
= . 

Example: 1 2 3 4 1 1 2 2 3 4( , , , ) ( , ) ( , )f x x x x g x x g x x= + , where { }4

1 2 3 4( , , , ) 0,1,2x x x x ∈ , 

1 (1,1,0,0)m = , 2 (0,0,1,1)m = . 

3   Generalized Walsh Transform 

Walsh transform is a useful mathematical tool to analyze the information of building 
block linkage in binary-coded genetic algorithms [8,9,10]. In order to study the char-
acters of generalized embedded landscapes, Walsh transform has to extend to more 
generalized non-binary discrete domain [11].  

The generalized Walsh function ψ can be defined as: 

( ) ( )2 1
( ) 1 x jM M
j L

x e
M

π

ψ
− ⋅

=  (2) 

where { }, 0,1, , 1
L

x j M∈ − . Andψ indicates the complex conjugate of ψ . There are 

total LM orthogonal Walsh basis functions. Any function : Lf M R  can be repre-

sented as the linear sum of the orthogonal Walsh basis functions: 

( ) ( )( )M
j j

j

f x xω ψ=  (3) 

where jω  is the Walsh coefficient corresponding to the j-th Walsh basis function.  

The Walsh transform creates an invertible linear transformation between an enu-

meration of the LM function values ordered by counting in LM space expressed as a 
vector and a vector of Walsh coefficients. The Walsh coefficients can be calculated by: 

( ) ( )( )M
j j

x

f x xω ψ=  (4) 

4   Generalized Embedding Theorem  

The important characteristic of GEL is its underlying decomposable structure. In this 
section, a generalized Walsh transform will be used to study the embedding feature of 
GEL. It will be proved that the decomposable structure (also named epistatic linkage 
[8]) has close relation with Walsh coefficients. 
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First of all, we show how embedding a single function in a higher dimensional 
space imposes a relation between the Walsh coefficients of the two functions. Let 

: Hg M R  and : Lf M R  with H L≤ . Function g is said to be embedded in f if 

there is a mask m , Lm B∈ and m H= such that ( ) ( ( , ))f x g pack x m= , Lx M∀ ∈ . The 

following theorem shows the Walsh coefficients of f  only depend on its embedding 

function g . Embedding a lower dimensional function in a higher dimensional space 
will not increase the number of nonzero Walsh coefficients.  

Theorem 1 (Generalized Embedding Theorem): Let ( )g x : HM R and ( )f x  

: LM R  and g is embedded in f , then Walsh coefficients can be calculated:  

( , )
( )  

0

L H g
f pack i m

i

if i S mM
otherwise

ωω
− ∈

=  (5) 

where gω and fω are Walsh coefficients for the g  and f  function, respectively, and 
Li M∈ , Lm B∈ and  m H= . 

Proof: 
1

( )

0

1
( )

0

1
( )

0 : ( , )

1
( )

0 : ( , )

1
( )

0 : ( , )

( ) ( )

( ( , )) ( )

( ( , )) ( )

( ) ( )

( ) ( )

L

L

H

H

H

M
f M

i x
x

M
M

x
x

M
M

x
j x pack x m j

M
M

x
j x pack x m j

M
M

x
j x pack x m j

f x i

g pack x m i

g pack x m i

g j i

g j i

ω ψ

ψ

ψ

ψ

ψ

−

=

−

=

−

= =

−

= =

−

= =

=

=

=

=

=

 

We consider ( )

: ( , )

( )M
x

x pack x m j

iψ
=

 in two cases: ( )i S m∉ and ( )i S m∈ .  

Case 1: Assume ( )i S m∉ : 

( )

1

2 1
( )

: ( , ) : ( , )

2 1

: ( , )

1
( )

1

( ), ( ), according to characters of Modular Algebraic:

0 

L

k k
k M

x iM M
x L

x pack x m j x pack x m j

x i
M

L
x pack x m j

i e
M

e
M

x S m i S m

π

π

ψ

=

− − ⋅

= =

− −

=

=

=

∈ ∉
=

 

So:  
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1
( )

0 : ( , )

1

0

( ) ( )

( )0

0

H

H

M
f M

i x
j x pack x m j

M

j

g j i

g j

ω ψ
−

= =

−

=

=

=

=

 

Case 2: Assume ( )i S m∈ : 

( )

1

1

2 1

( )

: ( , ) : ( , )

2 1
(( ( , ))

: ( , )

2 1
( , )

( )
( , )

1
( )

1

1 1

( ) 

L

k k
k

H

k k
k

x i
MM

x L
x pack x m j x pack x m j

pack i m j
M

L
x pack x m j

pack i m jL H M

L H H

L H M
pack i m

i e
M

e
M

M e
M M

M j

π

π

π

ψ

ψ

=

=

− −

= =

− −

=

− −−

−

−

=

=

=

=

 

So: 
1

( )

0 : ( , )

1
( )

( , )
0

( , )

( ) ( )

( ) ( ) 

H

H

M
f M

i x
j x pack x m j

M
L H M

pack i m
j

L H g
pack i m

g j i

g j M j

M

ω ψ

ψ

ω

−

= =

−
−

=

−

=

=

=

 

It is obvious that if ( )i S m∈ , the Walsh coefficient iω is equal to ( , )
L H g

pack i mM ω− , 

otherwise, the Walsh coefficient is zero.                                                                       

Generalized embedding theorem shows that the relation between f and g can be 

exhibited by the Walsh coefficients. If we restrict { }0,1M = , the theorem is reduced to 

embedding theorem proposed by R. B. Heckendorn [8, 10].  
Next, we extend GEL f to more general function formulation which comprises 

many subfunctions. Because the GEL is a sum of subfunctions and the Walsh trans-
form is a linear transformation, then by Generalized Embedding Theorem we have 
Theorem 2 that reveals the relationship between its underlying structure and the 
Walsh coefficients. Detailed proof is omitted due to the page limit. 

Theorem 2. ( ) ( )
1

( , )
P

i i
i

f x g pack x m
=

= is a generalized embedded landscape, then 

its Walsh coefficients can be calculated:  

{ }    1 , ( )
  

0
f i
j

if i P j S m

otherwise

α
ω

∃ ∈ ∈
= , (6) 
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where P is the number of subfunctions, ( )( , )i ig pack x m is the subfunction, Lx M∈  

and L
im B∈ ; f

jω  is the j-th Walsh coefficient, and α is a value depending on the 

Walsh coefficients of ( ( , ))i ig pack x m  where ( )ij S m∈ . 

The above theorems offer one way to detect the underlying structure of GEL by 
Walsh coefficients. The decomposable structure of GEL can be obtained from the 
nonzero Walsh coefficients. For an order-k GEL, 0iω = for all i such that i k . 

Given a GEL, we can obtain its decomposed representation by calculating all the 
Walsh coefficients; however, as we saw in Section 3, computation of a single Walsh 
coefficient requires information of all the LM domain members. Obviously, the expo-
nential computation complexity is not what we want. Next section will focus on how 
to efficiently obtain the Walsh coefficients so that the decomposed representation of 
GEL can be constructed. 

5   Construction of GEL Decomposed Representation 

In this section, we will discuss how to calculate the Walsh coefficients of order-k 
GEL. And then, a simple and deterministic algorithm to construct GEL decomposed 
representation will be introduced. 

In order to avoid the exponential computation for a single Walsh coefficient, we 
first prove Theorem 3 below.  

Theorem 3. Let : Lf M R , then we have  

( ) ( )( ) ( ) ( )

( ) ( )

( ) ( )M M M
i j j i

x S i j i x S i

f x x x xψ ω ψ ψ
∈ ⊆ ∈

= , (7) 

where , , Li j x M∈ , ( )S i is the template set of i , ( ) ( )M

i xψ is the i-th Walsh basis func-

tion and jω denotes the j-th Walsh coefficient. 

Proof:  
From the equation (3), we can write 

( ) ( )( ) ( ) ( )( ) ( )M M M
i j j i

j

f x x x xψ ω ψ ψ= . 

Then we have:  

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

M M M
i j j i

x S i j x S i

M M M M
j j i j j i

j i x S i j i x S i

f x x x x

x x x x

ψ ω ψ ψ

ω ψ ψ ω ψ ψ
∈ ∈

⊆ ∈ ∈

=

= +
 

,j j i∀ ,  

( )

1

2 1 2 1
( ) ( )( ) ( )

( ) ( )

2 1
( )

( )

1
( )

1
L

k k k
k

x i x jM M M M
j i L

x S i x S i

x j i
M

L
x S i

x x e e
M

e
M

π π

π

ψ ψ

=

− −−

∈ ∈

− −

∈

=

=
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[ ]

1

1

2 1
( )

( )

2 1
( )

( )

1

1

L

k k k
k M

L

k k k M
k M

x j i
M

L
x S i

x j i
M

L
x S i

e
M

e
M

π

π

=

=

− −

∈

− −

∈

=

=

 

According to the characters of modular algebraic [12] and complex numbers [13], 

we know that the complex values 
[ ]

1

2 1
( )

L

k k k M
k M

x j i
M

e

π

=

− −

, where ( )x S i∈ , are equally 

spaced around the unit circle. So, the sum 
[ ]

1

2 1
( )

( )

L

k k k M
k M

x j i
M

x S i

e

π

=

− −

∈

is equal to 0. Thus, 

we have equation: ( )( ) ( )

( )

( ) 0M M
j j i

j i x S i

x xω ψ ψ
∈

= . 

Equation (7) is proved.                                                                                              

Now, we consider the how to compute Walsh coefficients of order-k GEL in 3 cases: 

:i i kω , :i i kω = and :i i kω . 

Case 1: i k  

According to theorem 2, iω =0, where i k . 

Case 2: i k=  

From theorem 3, we have  

( ) ( )( ) ( ) ( )

( ) ( )

( ) ( )M M M
i j j i

x S i j i x S i

f x x x xψ ω ψ ψ
∈ ⊆ ∈

=  

,j j i∀ ⊆ , we have j k≥ . So, according to Case 1, 0jω = , where j i⊆ and 

j k . 

( ) ( )

( ) ( )

1

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 1
( )

( )

( )

( ) ( )

( ) ( )

1
0

1

( )

L

k k k
k

M M M
i j j i

x S i j i x S i

M M M M
i i i j j i

x S i j i j k x S i

x i i
M

i L
x S i

i L
x S i

i L

f x x x x

x x x x

e
M

M

S i

M

π

ψ ω ψ ψ

ω ψ ψ ω ψ ψ

ω

ω

ω

=

∈ ⊆ ∈

∈ ⊆ ∧ ∈

− −

∈

∈

=

= +

= +

=

=

 

Thus, the Walsh coefficient of i can be computed by 

( ) ( )

( )

( )
( )

L
M

i i
x S i

M
f x x

S i
ω ψ

∈

=  (8) 

Case 3: i k  
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First of all, we consider Walsh coefficient iω , where 1i k= − . According to 

Equation (7) in which ,j j i∀ ⊆ and 1j k≥ − , jω has been computed before, we can 

compute iω  by  

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( )

M M M
i j j i

x S i j i j i x S i

i M M
i i

x S i

f x x x x

x x

ψ ω ψ ψ
ω

ψ ψ
∈ ⊆ ∧ > ∈

⊆

−
= , (9) 

in which the values of ( )xf , ( )x S i∈  has been calculated in Case 2. Using the  

Equation (9), we can continue iteratively to calculate Walsh coefficients of 
( )2−k , ( ) ,,3−k 1-order partitions. 

It should be noted that, the computation of order-k GEL’s Walsh coefficients 

requires only k L
k

M  function evaluations that happens in Case 2. The bounded 

decomposition property can therefore be exploited using only a number of function 

evaluations k L
k

M  compared to the usual LM evaluations needed using regular 

approach. Based on the above analyses, a simple, deterministic algorithm to compute 
the Walsh coefficients of order-k GEL can be summarized in Fig. 1.  

 

Fig. 1. Deterministic algorithm to computer Walsh coefficients of order-k GEL 

Given an order-k GEL, where k is fixed independently of dimension L, this pro-
posed algorithm can find all the nonzero Walsh coefficients using only polynomial 

number of function evaluations k L
k

M . According to Generalized Embedding Theo-

rem, once the Walsh coefficients are calculated, the decomposed structure can be 
obtained by its decomposed Walsh representation. 

6   Conclusions 

This paper extends embedded landscapes to a non-binary discrete domain. Generalized 
embedded landscapes (GEL) are a class of additive decomposable problems where the 
representation can be expressed as a simple sum of subfunctions over subsets of the 
representation domain.  

Computing the WCs of order-k GEL 
Setp 1. Set k k′ = . 

Setp 2. Compute the Walsh coefficients iω , where i k ′= , using Equation (8). k L
k

M  

fitness evaluations are required. 
Setp 3. 1k k′ ′= − . Compute the Walsh coefficients iω , where i k ′= , using Equation 

(9). No fitness evaluation is needed. 
Setp 4. If 0k ′ = , then all the WCs have been computed; otherwise go to Setp 3. 
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There are mainly two contributions in theoretical aspect:  
First, the paper proposes Generalized Embedding Theorem that is the rigorous 

mathematical foundation for Walsh analyses of GEL. This theorem shows that the 
close relationship between the underlying decomposable structure of GEL and its 
Walsh coefficients. 

Second, theoretical inductions show that the Walsh coefficients of any GEL with 
bounded epistatic order can be calculated with a polynomial number of function 
evaluations. A deterministic algorithm is constructed to calculate the decomposed 
representation of GEL. It offers an efficient way to detect the decomposed structure of 
the search space. 

The paper is our first attempt to consider the decomposition algorithm of GEL 
based on generalized Walsh transform. Future work will include extending embedded 
landscapes to continuous domains and designing efficient decomposition algorithms. 
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Abstract. The performance of cooperative co-evolutionary genetic algorithms 
is highly affected by the representative selection strategy. But rational method 
is absent now. Oriented to the shortage, the representative selection strategy is 
studied based on the parallel implementation of cooperative co-evolutionary 
genetic algorithms in LAN. Firstly, the active cooperation ideology for 
representative selection and the dynamical determinate method on cooperation 
pool size are put forward. The methods for determining cooperation pool size, 
selecting cooperators and permuting cooperations are presented based on the 
evolutionary ability of sub-population and distributive performance of the 
individuals. Thirdly, the implementation steps are given. Lastly, the results of 
benchmark functions optimization show the validation of the method. 

1   Introduction 

In cooperative co-evolutionary genetic algorithms (CCGAs), the variable space is 
decomposed firstly, and then the decompositions are encoded to form sub-population. 
To perform the fitness evaluation, each sub-population submits representatives to 
form cooperators and these cooperators are applied to objective function to obtain 
fitness [1]. Because of its good parallelism and high efficiency in processing short 
coding chromosomes, it has been widely used in complicated function optimization 
[2], multi-objective function optimization [3], robots behavior study [4], neural net-
work optimization [5], agent control system learning [6] and so on. 

In CCGAs, the selection strategy for representatives is critical to the fitness evalua-
tion. Three main factors such as selection pressure, credit assignment and size of coop-
eration pool make great influence on the representatives selection [7]. Among the three 
factors, the size of cooperation pool makes severe impact on the performance of the 
algorithm. Increasing the size of cooperation pool can largely improve the optimization 
performance of CCGAs and of course the computational complexity is also obviously 
increased. In work [7], it only gave qualitative discussions on the affect of the factors 
but no practicable ones, especially about how to decide the size of cooperation pool. So 
it is very necessary and important to make study on representative selection. 

Oriented to the representative selection shortage, the performance of cooperative 
co-evolutionary genetic algorithms is highly impacted on by the representative selec-
tion strategy. But rational method is absent now. The representative selection strategy 
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is studied based on the parallel implementation of cooperative co-evolutionary genetic 
algorithms in LAN. Firstly, the active cooperation ideology for representative selec-
tion and cooperation pool size dynamical determination is presented. The methods for 
determining cooperation pool size, selecting cooperators and permuting cooperations 
are presented based on the evolutionary ability of sub-population and their individu-
als’ distributive performance.  

2   The Strategy for Representative Selection 

In traditional CCGAs, when fitness is evaluated, each sub-population is asked to pre-
sent representatives for other sub-population. That is to say each sub-population sub-
mits their representatives passively without consideration to its self-performance 
which here is called a passive cooperative method. In this paper the traditional man-
ner is broken and a positive cooperative method is presented. The main idea is that 
each sub-population submits their representatives to the database positively based on 
its self-evolutionary performance and the representatives are selected from the data-
base based on the self-evolutionary performance of the cooperative sub-population. In 
this case, the cooperators have much autonomy and diversity to improve the perform-
ance of CCGAs. 

The representative selection strategy given in this paper includes the determination 
of representatives’ number, the selection of representatives, the permutation of coop-
erator groups, and so on. The number of submitted representatives is very critical and 
the evolutionary competence [8] and the distribution performance of individuals in 
each sub-population are considered. 

2.1   The Evolutionary Competence of Sub-population   

Definition 1: For sub-population k, time t and τ−t , the fitness of the optimum indi-

vidual is )(tf b
k

, ( )b
kf t τ− , the evolutionary competence is defined as follows: 

( ) ( )
( )

b b
k k

k

f t f t
E tτ τ

τ
− −=  (1) 

If 0)( >tEk
τ  and it has a rising tendency, which indicates that the evolutionary 

competence of this sub-population is very high, it will submit more representatives to 
other sub-population to increase the cooperative competence. If ( )kE tτ  is a constant for 

a long time, it indicates that the evolutionary competence of this sub-population is 
weak and it is a premature population. It will submit fewer representatives to other 
sub-population to reduce the computational cost. 

2.2   Distribution Performance of Sub-population  

The standard variance of a sub-population is used to measure its distribution. The 

number of sub-population is M and the size of each sub-population is iS , the number 

of optimized variance is 
iV , i =1,2…M Generally, each sub-population is encoded 
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in real. For the i th sub-population which is denoted as 1 2( , )ivX = x x x , where 

1 2( , )
i

k k k k T
Sx x x=x .The boundary for each variance is [ , ] 1,2 , 1,2 M

k k

i i ia b k v i= = , 

where: 
1 12 2( , ), ( , )

v vi i

i i i i i i i ia a a b b bα β= =  

2

1 1

1
( )

1

i iS v
k k

i i i
i= k=i

std = x - x
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1

1 iS
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i i
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x x
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= , let 
1 12 2( , ), ( , )

v vi i

i i i i i i i ia a a b b bα β= = ,the boundary of vari-
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1
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i i i i i

k

D α β α β
=

= − = − . 

i
i

i

std
ra

D
=  (3) 

It’s obvious that0 1ira< ≤ , which describes the relationship between the distribu-

tive area of the individuals and the boundary of variable ix . The dispersion is better 

when ira is closed to 1, otherwise the dispersion is worse if ira  is closed to 0. So the 

value of ira  is applied to measure the diversity of sub-population. 

2.3   Method for the Determination of Cooperator Pool Size 

Firstly, the representative size of each sub-population submitted is decided based on 
the evolutionary competence and the distribution of individuals. If the two aspects are 
both prominent, more representatives are submitted to other sub-population. So the 
size of each sub-population submitted is given as follows: 

( )
max ( ) , 1

( )
i

i i ib
i

E t
Rp S ra

f t

τ τ=  (4) 

The total cooperator pool size is 
1

M

i
i

Cs Rp
=

=  changed with 
iRp .Where •  represents 

the adown integer of the expression to assure
i iRp S≤ . ( )

0 1
( )

i
b

i

E t

f t

τ τ≤ < , if its value is 

closed to 1, which means that the evolutionary competence of this population is 
strong, otherwise it stagnates. Because in CCGAs, each sub-population submits at 
least one representative, so equation (4) assures iRp =1 when the sub-population’s 

evolutionary competence is closed to 0. The possibility of optimal cooperators  
presented for other sub-population is increased and the performance of seeking for 
optimum is improved too. 

Besides the size of cooperation pool, the performance of CCGAs is also related to 
the selected representatives. Optimal and random method is used here. For the ith  
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sub-population, it should submit 
iRp  representatives. The optimal individual with the 

highest fitness and 1iRp −  random ones are selected. Based on the above method, the 

guidance of selected individuals is guaranteed and the variety of other sub-
populations is also guaranteed. So the ratio of losing good cooperators is reduced. 

2.4   Permutation Method for Cooperators  

For two sub-populations, even if more than one representatives for example is pR are 

supplied, the size of the cooperators will be no more than pR . When the number of 

sub-populations is more than two, if each sub-population supplies many representa-
tives, there will be many cooperators. For example, if there are M sub-populations and 
the number of representatives submitted by each sub-population is MiRpi 2,1, = . 

When sub-population j is evaluated, the total cooperators are ∏
≠
=

=
M

ji
i

iRpCo
1

. If each 

one is computed for the fitness, the computational complexity is very large. Then 
effective method for the permutation of representatives is very necessary. 

In this paper, the evolutionary performance difference between the evaluated sub-
population and the sub-population who submits representatives is considered. Based 
on the difference, the representatives that actually involved in are determined. The 
sub-population i under evaluated at time t is denoted as ( )iF t  and its evolutionary 

performance is ( )iE tτ . The size of the sub-population who submits representatives 

is ( )jF t  and its evolving performance is ( ), 1,2 ,jE t j M j iτ = ≠ . The set of representa-

tives that are stored in the server is 1 2( ) { , }
iset set setsRpset t Rp Rp Rp= , where 

1 2{ , }
iseti RpRp Rtin Rtin Rtin= . If the performance of ( )jF t  is better than that 

of ( )iF t , ( )iF t will select a number of better representatives from ( )jF t  to in-

crease its self-ability. Otherwise best but less individuals are selected to cooperate to 
increase its ability and to avoid perturbation to itself. If the performance of them is 
equal, some representatives are selected randomly. Based on the above principles, the 
selection regulations are defined as follows: 
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Where •  represents the upwards integer of the expression to assure 

1 jRp Rp≤ ≤ . rand  is an random distribution number whose range is[0,1]. In the 

presented regulations, the performance difference of each cooperative sub-population 
is considered adequately. It is a co-symbiotic selecting strategy of representatives 
with more autonomy and diversity, which will benefit for the construction of 
cooperators and reduce the ratio of missing good cooperators. 
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3   The Implementation Steps 

For pages limitation, the parallel implementation of CCGAs is abbreviated. Only the 
steps of CCGAs realized in parallel based on LAN are given as follows: 

Step1. Decomposing variables, determining the parameters such as population size, 
evolutionary generation, crossover probability and mutation probability for each  
sub-population. 

Step2. Based on the performance of each client, assigning the decomposed  
variables; 0=t , generating sub-populations randomly, and each client randomly 
submitting a representative to server. 

Step3. Server and each sub-population interacting to obtain the representatives  
information for fitness evaluation and genetic evolution continued. 

Step4. 1t t= + , each client computing the evolutionary performance and distribu-
tion of each sub-population. The number of representatives submitted is determined 
by expression (4) and the submitted representatives are determined. 

Step5. Each sub-population submitting its representatives to the server and the  
information that each sub-population submit is received by the server, including  
representatives. 

Step6. Each sub-population submitting the information of representatives’ require-
ments, the evolving process information of the representatives and the identifying 
code to the server. 

Step7. Each sub-population obtaining the synchronized representatives and imple-
menting genetic operators. 

Step8. If termination condition is satisfied, outputting the optimal cooperator in-
formation, otherwise turning back to step4. 

The genetic operators of each sub-population are as follows: real coding, tournament 
selection, arithmetic crossover and Guess mutation. 

4   Experiments 

The optimization of benchmark numerical functions is used to examine the rationality 
of the representative selection strategy. They are given as follows.                    

min  1
1

( ) 418.9829 sin( )
n

i i
i

f x n x x
=

= + [ ]500,500 , 10ix n∈ − =                 

min  
22 ,4

2 2 2
2

1,3

( ) 100( ) (1 ) , , [ 10,10]
j

j i i i j
i

f x x x x x x
=

=
= − + − ∈ −                     

f1 has a global minimal value 0 at ( 420.9687, 420.9687, )x = − − and many local 

optima, which are far away from the global one. The local optima are easy trapped 
into if normal algorithms are used. f2 represents a sort of incompletely decomposable 
function whose variables of (x1 , x2) are linked tightly and (x3, x4) linked tightly. The 
global minimal value 0 is acquired at x= (1, 1, 1…). The method of breaking linkage 
is adopted to examine the rationality of representative selection method given in this 
paper. 
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In order to illustrate the rationality of the method for selecting the representatives 
given in this paper, a comparison is made between this method and the method of an 
elitist individual taken as representative in CCGA. The algorithm of this paper is 
denoted as RCCGA and the traditional algorithm is denoted as CCGA. 

Genetic algorithm is used for each sub-population evolution. The genetic operators 
used have also given in section 3.The values of the parameters are shown in Table 1. 
The evolutionary time T is used to compare the quality of solutions .The solution 
precision ε  is used to compare the evolutionary time of the two algorithms. 

Table 1. The values of parameters 

 Crossover 
Probability 

Mutation 
Probability 

Population 
Size 

Evolutionary 
Time T 

Precisionε  
of Solutions 

f1 0.98 0.2 600 120 0.02 
f2 0.95 0.3 500 120 0.01 

Two aspects of these two algorithms are compared. Firstly, the optimization time, 
namely the iterative times and the running time of software are compared and the 
results are given in table 2. 

Table 2. Results of RCCGA and CCGA based on LAN parallel implementation 

 
The optimal solu-
tion in the same 

evolutionary time 

The iterative 
times needed 

The running time 

 CCGA RCCGA CCGA RCCGA CCGA RCCGA 

f1 0. 12 0.021 23.4 9.3 6.13 10.25 

f2 0.42 0.031 50.2 19.4 23.13 22.36 

There is a contradiction between the optimal performance and the computational 
complexity of the algorithms. The computational complexity generally increases if the 
optimal performance increases. Also, the optimal performance of algorithms may be 
sacrificed if small computational complexity is pursued. The external computation 
time increases for the method of determining the size of cooperation pool intuitively, 
but it is seen from table 2 that the running time is not increased dramatically when the 
same optimal solution is found. The computational cost can be accepted completely. 
But the new method gains an obviously better solution than the traditional one. The 
main reason is that the rate of losing effective cooperative group is reduced so that 
there are more effective cooperators to be reserved and exploited. Chance of CCGA 
escaping from the ”Nash balance” is increased so that the algorithm have more 
chances to get a better solution, especially for function f2. That is to say the computa-
tional complexity of RCCGA is not increased severely. So the method of this paper is 
effective and feasible. It is a guidance for representative selection of CCGAs. 

In order to know the self-adaptable variation of the number of representatives 
directly, figure 1 gives the variation of representatives of a sub-population in the 
evolutionary process of function f1. The figure shows that sub-population evolve 10  
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generation. The number of the representatives is(1,35,1,14,1,27,11,11,1,1).The 
number of representatives for submitting of the first generation is 1 illustrates that  
the sub-population selects an individual as representative randomly .In the progress, 
the parameterτ  of the first five generations is 3 and of course the value of τ is 

subjective ,which should be selected technically. The pR  value is 1 twice when the 

generation is 9 and 10 which illustrates that the sub-population is convergent at this 

time. During the middle of evolution, the value of pR is 1 just illustrating that the 

optimal individual is not improved between the two generations, and not meaning  
the whole sub-population is convergent. 

 

Fig. 1. Figure of representatives’ number 

5   Conclusions 

The performance of cooperative co-evolutionary genetic algorithm is highly 
influenced by the strategy of representative selection. But effective method is absent. 
Aimed at the shortages, based on the parallel implementation of cooperative co-
evolutionary genetic algorithm in LAN, the representative selection strategy is 
studied. The main idea is that the representatives are submitted actively against 
passively by each sub-population and the size of cooperation pool is varied 
dynamically. Based on the evolutionary competence and the distribution performance 
of individuals in each population, the size of cooperation pool, the method for 
cooperators selection and cooperator permutation, and so on are presented. The 
rationality and validity of the representative selection strategy is validated by 
benchmark functions. The determination of the evolving competence valueτ and the 
other methods of selecting and cooperating are further research issues. 
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Abstract. A method for object recognition of Kernel matching pursuits (KMP) 
[1] based on Immune Clonal algorithm (ICA) [2] is presented. Using the im-
mune clonal select algorithm, which combines the global optimal searching 
ability and the locally quickly searching ability in search basic function data in 
function dictionary, this method can reduces computational complexity of basic 
matching pursuits algorithm. As compared with kernel matching pursuits the 
method has higher accurate recognition rate. 

1   Introduction 

S.Mallat[1] and S.Qian[3] presented respectively matching pursuit(MP) algorithm on 
the basis of projection pursuit [4,5] in the early of 1990s. MP was introduced in the 
signal-processing community as an algorithm “that decomposes any signal into a lin-
ear expansion of waveforms that are selected from a redundant dictionary of func-
tion”. It is a general, greedy sparse-approximation scheme. The MP algorithm is 
adaptive signal decomposing method, and any signal is decomposed step by step into 
a linear expansion of waveforms that are selected from a redundant dictionary of 
functions. These waveforms are chosen in order to best match the signal structure. So 
the MP algorithm can describe best inherent character of the signal and decompose 
best the signal. The KMP algorithm [1] is a matching pursuit method using kernel 
function sets to optimize. Its basic idea is reflection for feature of kernel function 
from low-dimension to high-dimension, which transforms low-dimension space 
non-linear into high-dimension linear problem. KMP is a relatively new learning 
algorithm utilizing Mercer kernels to produce non-linear version of conventional su-
pervised and unsupervised learning algorithm. Theoretically MP algorithm is an ex-
cellent method but its implement is a greedy algorithm. It is well known that it is 
NP-hard [6] to optimally approximate a function with a linear expansion over a re-
dundant dictionary of waveforms. The greedy MP algorithm and its orthogonal 
variant produce suboptimal function expansions by iteratively choosing dictionary 
waveforms that best match the function's structures. Then computing time can be in-
creased greatly with searching spaces increasing, which may be more serious when 
the dictionary has two or few function. 

However the essential parallelism of evolutionary computing algorithm make it can 
reduce the number of the solution sets and communicate information mutually, which 
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obtains the large and valid solution knowledge by smaller computing. Immunity 
Clonal Algorithm (ICA) [2], a new artificial intelligence method, is proposed by Du, 
H.F. and jiao, L.C. etc. On the basis of the evolutionary algorithms, the method in-
troduces avidity, clonal and immune genetic mechanism while adopts corresponding 
operator to make it convergence quickly to the global optimal value. So the MP based 
on evolutionary computing algorithm has been successfully applied in many areas 
such as video coding, pattern recognition and image processing. In the year of 2003, 
A.R.Silva implemented matching pursuit using genetic algorithm, named, atomic de-
composition with evolutionary pursuit, and he proposed a method for atomic decom-
posing of several dictionary [7]. Hence, an object recognition algorithm of Kernel 
matching pursuits based on Immune Clonal is given by us, which overcomes large 
computational number of the basic matching pursuit algorithm. The presented algo-
rithm is effective on the image recognition.  

The organization of this paper is as follows. In section 2, we briefly describe the 
basic principle of kernel matching pursuit algorithm and immune clonal algorithm. In 
section 3, operating steps of object recognition algorithm of Kernel matching pursuits 
based on Immune Clonal Algorithm is discussed. Simulation results and its analysis are 
given in section 4. Finally, a conclusion is drawn in section 5. 

2   Review of Matching Pursuit 

2.1   Basic Matching Pursuit Algorithm  

Given a objection function f∈ , l  noisy observations { }1,..., ly y  and a finite dic-

tionary D of functions in Hilbert space H , the aim of the algorithm to find sparse 

approximations of { }1,..., ly y  that is the expansion of the form 
=

= n

k kkn gf
1

~ α
 approximate f , where n means the maximum of the basis functions kg , kα is 

weight coefficient , ( nαα1 ) nR∈ , ( ) Dgg n ⊂,...,1 . It is a general rule 

)
~

min(
22

nn ffR −=  nR    to search the sets of ( nαα1

and )( 1 ngg .The above searching process is named matching pursuit process. 

Basic MP Algorithm is presented as follows: we first find out 1α and 1g  on the 

rule
2

min nR , obtain nα and ng  by iterative repetition, and then nf
~

 is gotten. 

Based on the equation (1) and minimize the equation (2) can get 1+nα , 1+ng . Three 

equations are as follows: 

111
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 . (1) 

2

11

2

1 +++ −= nnnn gRR α  . (2) 
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n

n n k k
g D IR k

g g g f
α

α α α+ +
∈ ∈ =

= + −  . (3) 

A preferable alternation of the matching pursuit is back-fitting matching pursuit. In 

basic algorithm, when appending 11 ++ ii gα in thi iterative, the expansion may not be 

optimal, so doing back-fitting is to recompute the optimal set of coefficients 

11 +nαα at each step instead of only the last 1+iα to approximate the objective 

function more accurately. While this can be quite time-consuming, one trade-off 
method is to do back-fitting algorithm in every few steps instead of every step [8, 9]. 

2.2   Kernel Matching Pursuit Algorithm 

Kernel matching pursuit (KMP) is simply the idea of applying the Matching Pursuit 
(MP) family of algorithms to problem in machine learning, using a kernel-based dic-
tionary [8,10]. KMP uses Mercer kernel to map the data in input space to a high di-
mensional feature space in which we can process a problem in linear form. Given a 
kernel function K, we construct the basis dictionary of MP by the kernel centered on the 

training data: { }lixxKdD ii 1),( === . Method of kernel is enlightened in 

great part to the success of the Support Vector Machine (SVM), and there exist a lot of 
commonly used Mercer kernels, such as polynomial kernel with the form 

of ( , ) [( , ) 1]d
i iK x x x x= +  and RBF kernel with the form of 

( , ) exp( 2 )i iK x x x x p= − − . Running matching pursuit algorithm to get the 

approximation functions in regression or the decision function in classification. 
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where { } { }lk xxNkx ,,1 1∈=  is support point. There is two ways to stop the 

algorithm. One is that the basis functions reach the maximum N, the other is that the 
error goes below a predefined given threshold. More details about KMP can be found 
in [8, 2].  

3   Immunity Clonal Algorithm 

In order to enhance the diversity of the population in GA and avoid prematurity, 
immunity clonal algorithm is proposed. The clonal operator is an antibody random 
map induced by the affinity. The state transfer of antibody population is denoted as 
follows: 
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 )(: kACMA
       clone  )(' kA    mutation      )('' kA       selection  )1( +kA  

According to the affinity function f(*), a point )()( kAkai ∈ in the solution space will 

be divided into qi different points )()( kAkai ′∈′ , by using clonal operator, a new anti-
body population is attained after performing clonal mutation and clonal selection. In 
fact, the process includes three operating steps: clone, clonal mutation, and clonal 
selection.  Here antibody, antigen, the avidity between antibody and antigen are simi-
lar to the definition of the objective function and restrictive condition, the possible 
solution, match between solution and the fitting function in Artificial Intelligent 
Computation respectively [11]. The clonal operation can be embodied as follows: 

Clonal: If the antibody lBa ∈ , and llB }1,0{= , the antibody population is 

},{ 21 naaaA = , the clonal operator is defined as: 

T
naaaA ])()()([)( 21 ΘΘΘ=Θ  . (6) 

Where niaIa iii 2,1)( =×=Θ , and Ii is qi dimension row vector. 
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Generally, qi is given by: 
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Let N>n be a given integer relating to the clonal size. After the clone step, the popula-
tion becomes: 

},,,,{ 21 nAAAAA ′′′=′  . (9) 

Where:  

},,,{ 121 −=′
iiqiii aaaA

,
 1,,2,1, −== iiij qjaa . (10) 

Clonal mutation Tm

c: In order to save the information of the aboriginal population, 
clonal mutation is not performed on original antibody population A, and we apply the 
Gaussian mutation to the cloned population, namely: 
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clonal selection Ts
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Then b replaces the antibody ai in the aboriginal population. So the antibody popula-
tion is updated, and the information exchanging among the antibody population is 
realized. 

4   Object Recognition Algorithm of KMP Based on ICA 

MP algorithm requires every step of searching process be global optimal searching in 
the redundant dictionary of function in order to select best matching signal structure, 
from which the large amounts of computing time has often not suffered. So the KMP 
of wide use is seriously held up. As an optimal method, immune clonal selection al-
gorithm solve problem by transforming low dimention space into high dimention 
space and the result is projected to low dimention space, which gets full-scale under-
standing of the problem. It can be realized that the essence of immune clone, which is 
that clonal operator can produce a variation population around the optimal of parents 
according to their affinity, and then the searching area is enlarged which is helpful for 
avoiding prematurity in the course of the evolution. The optimal process of the KMP 
based on ICS can reduce to the scale of the optimization problem. Then, object recog-
nition algorithm is as follows: 

Step1. Given the data sets of training classifier S={ }),(),...,,( 11 ll yxyx
RBF kernel Set a positive number

 Set a 
small positive number, , the number of iteration L , then compute each 

training data, ),()( ii xxKxg = , i=1...l and suppose generation t is 1

Step2. Based on the rule )(min xgy ii
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ω
ω
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)(ω , .j=1...popsize. Select the anterior minimal residue corre-

sponding vectors jx  and jω  from kernel function sets and get the initial ba-

sic function individual with the size of popsize. 
Step3. clonal weight coefficient: 
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where N is clonal scale. 
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Step7. Let −= yy tf  , if y>=ε  go to step2 and solve the next basic function and 

weight coefficient for each individual.  

Step8. Select the best individual with better affinity from population and get tf , 

namely training classifier, subsequently object is recognized by equation (5). 

5   Experiment Results and Analysis 

In this section we will describe a number of experiments that have been performed in 
order to assess the performance of the algorithms presented and to study their behav-
ior on various datasets.  

In the first case, we used datasets for UCI repository from the Web page 
http://www.ics.uci.edu/~mlearn/MLRepository.html. On the Pima and Cancer data-
sets we used the same kernel function parameters P setting as the one in [10] and the 
Waveform dataset we used to test the performance of the pretended algorithm for the 
large size dataset. 

We randomly select one third as training data and the rest as test data. In this ex-
periment, the parameters of the method presented are defined as follows, the size of 
initial population, 10, mutation probability, 0.1 and the clonal scale, 3. The termination 
condition is specified the recognition accuracy rate of training samples be 100%, or the 
residue R be 0.01. Simultaneity, the comparisons of the algorithm of KMP is drawn. 
The average error recognition results of 50 times are shown in Table 1, in which be-
tween parentheses is indicated the number of basis functions. 

Table 1. Comparison of error recognition results on 4 UCI datasets 

 KMP[10] KMP on ICA KMP on ICA 
Iris N/A 2.5% (6) 1.67% (7) 
Wisc.Cancer 3.40%(7) 2.13% (5) 2.13% (7) 
Pima Indians 23.9% (7) 24.53% (7) 23.23% (10) 
Waveform N/A 8.02%(6) 6.48% (7) 

Firstly, the results of table 1 are all based on limited iteration number of the KMP 
algorithm. From Table 1, it is obvious that the KMP based on ICA has much higher 
recognition accuracy rate than the KMP. Secondly, recognition accuracy rate of the 
algorithm may increase with the number of basic function but improve not remarkable 
while computing time is increased when the number of basic function is added a certain 
extent. So we must trade off time and accuracy rate in fact. 

The second set of tests was carried out on a number of datasets from Brodatz texture 
repository, in which Image collection is composed of 16 texture images, as shown in 
Fig.1. Each of the images is cropped into 25 non-overlap sub-images with size of 
128×128. Then the 400 images are decomposed into 2-level and 3 levels by brushlet 
transform [12], which gets 32-dimension feature vectors. 
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Fig. 1. 16 texture images from Brodatz texture library 

We select 10 training data and 15 test data from each class respectively, the kernel 
function parameter, P is 0.22. In addition, the comparisons of the algorithm of KMP 
based on GA is drawn, in which the size of population is 10, mutation probability 0.1, 
crossover probability 0.8, and terminative iteration number 100. Then the images col-
lection discrimination is conducted using the same method as experiment 1. The cor-
responding 50 times recognition results are shown in Table2. 

Table 2. Comparison of recognition results of texture images 

 KMP KMP on GA KMP on ICA 
training Time (s) 1.781 1.052 0.986 
number of basic function 6 7 7 
ARR of test sets (%) 97.1 97.51 98.75 

From Table 2, we can see that the proposed algorithm in this paper may recognize 
effectually image object and the related recognition accuracy rate is improved in 
comparative with experiment 1. This owes to the fact that the KMP is a good classifi-
cation method and 2-D brushlet decomposition can provide orientation information of 
image, which is very important to classify image object. In other words, the kernel 
matching pursuit algorithm depends on the data a certain extent. Secondly, as much the 
number of basic function, recognition accuracy rate of KMP based on GA is decreased 
slightly while KMP based on ICA is higher than the KMP. The reason is that GA has 
not always found out the global optimal solution, and ICA makes use of the global 
optimal search ability and the local and quick search ability to get the global optimal 
solution by finite repeat. 

6   Conclusions and Discussion 

In this paper, we have presented an approach to optimize searching process in KMP 
based on immune clonal algorithm, by which UCI database and texture image recog-
nition are implemented and then recognition result is satisfied. In addition, we argue 
that the existing KMP algorithm do not provide better multi-class recognition per-
formance. Further, convergence decision and selection of the parameters of the kernel 
function in KMP deserve more research.  
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Abstract. In this paper, a new approach is presented for the detection and 
classification of PQ disturbance in power system by Chirplet transforms(CT), 
which is the generalized forms of Fourier transform(FT), short-time Fourier 
transform(STFT) and wavelet transform(WT). WT and wavelet ridge are very 
useful tools to analyze PQ disturbance signals, but invalid for nonlinear time-
varying harmonic signals. CT can detect and identify voltage quality and 
frequency quality visually, i.e., according to the contour of CT matrix of PQ 
harmonic signals, the harmonics can be detect and identify to fixed, linear time-
varying and nonlinear time-varying visually. It is helpful to choose appropriate 
WT to analyze harmonics. Simulations show the contours of CT can effectively 
detect harmonic disturbance occurrence time and duration. Finally, it is validated 
that the harmonics of the stator current fault signal of the bar-broken electric 
machine is nonlinear time-varying, and tend to stable status in a short time. 

1   Introduction 

Power Qualities(PQ) have been studying for a long time, In the early development of 
electric power system, power loads consist of linear equipments, such as synchronous 
motors, inductive motors and illuminate apparatus. So the indices of PQ are very 
simple. From 80’s of 20th century,  non-linear power electrical apparatus and devices 
are used extensively in modern industry with power electric developing. Meanwhile, 
in order to solve the problems of electric power system himself, DC transmissions and 
FACTS are in used in engineering.  Speed-modulating motors in operation bring on 
waveform aberrance of voltage and current in power networks. In other ways, impul-
sion and fluctuate loads, such as arc furnaces, large rolling mills and electric trans, 
make a large numbers of harmonics, voltage fluctuate, flick and three-phase unbal-
ance. However, because of many kinds of complicated, precise, advanced monitoring 
advices used widely, high power qualities are demand in our life. They are why PQ 
are always interesting topic recently(see Ref.[1-6]). 

The chirplet transform(CT) is a time-frequency representation of a time series. It 
uniquely combines a frequency- dependent resolution that simultaneously localizes 
the real and imaginary spectra. The basis functions for the CT are linear frequency 
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modulation Gaussian. With the advantage of fast lossless invertibility from time, to 
time-frequency, and back to the time domain, the usage of the CT is very analogous to 
the FT. In the case of PQ disturbances, the CT visually illustrates voltage interruption, 
swell and detect harmonic types by the contours of CT matrix. It is helpful and neces-
sary to choose WT, wavelet ridge or other tools to detect PQ disturbances. It can 
avoid blindness, because WT and wavelet ridge are invalid to process nonlinear time-
varying harmonics. 

The paper is organized as follows. Section 2 presents Gaussian Chirplet transform 
theory and its algorithm. The detection and identification of voltage and disturbance 
signals are presented in Section 3 and 4. The conclusions are presented in Section 5. 

2   Gaussian Chirplet Transform 

In signal processing, for the sake of reducing signal energy letting out, a window-
added method is usually used to process signal transform. Gaussian function is most 
popular window showed as follow 
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In fact, Gaussian window function is a special case of the following function[5,6] 
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Function 2 is called to Gaussian wavelet packet ( )tg has better localization and 

high resolution feature. Where phase shift R∈φ is  a constant, ω  is modulated angle 

frequency fπω 2= , scale parameter σ  controls waveform width.  

Then we define non-orthogonal and abundant Gaussian chirplet packet  
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FT, STFT and WT are special cases of CT(see Ref.[9,10]). Imitating the expression 
of inner product, CT is naturally defined as follow(see Ref.[5-8]) 
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The scalar σ  controls the width of window function ( )σ,tg .we set f/1=σ . 

Formula (4) can be re-written as follow 
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Discrete Chirplet transforms of time series [ ]pTf can be calculated as 
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Integer indexes j , m , 1,,1,0 −= Nn . 

From formula (6), it is easy to calculate Chirplet transforms using convolution the-
ory and fast Fourier transforms(FFT).  

Chirplet transform is a matrix with dimension mn × , the rows represent frequen-
cies, the columns represent time. Each element represents “local spectrum”. 

3   Voltage Distortion Detection and Identification  

3.1   Voltage Interruption Signal 

Voltage interruption presents a phase or multi phase lost voltage amplitude(lower than 
10% rating voltage amplitude) in a short time. Let T to be a waveform period of volt-
age(T=1/50 second).When voltage normalized amplitude is lower than 0.8 in certain 
period, the momentary interruption is called broken voltage. According to duration 
time, it can be classified instantaneously broken voltage(0.5T 3s), transiently broken 
voltage 3s 60s , and continuously broken voltage more than 60s . Fig. 1 (a)  
 

 

Fig. 1. (a) a momentary interruption voltage signal, (b) 3-dimension plot of CT, (c) contours 
with parameter q=0.01, (d) contours with parameter q=0.05 
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shows simulating waveform of instantaneously voltage interruption. Interruption 
duration time is from 20ms to 60ms(sampling frequency is always 1000 in this paper, 
interruption occur from 20th to 60th sampling points). Interruption last 40ms(40 sam-
pling points). From 3-dimension figure of CT, we can observe the voltage signal 
change, where X-horizontal coordinate represents sampling points, Y-vertical coordi-
nate denotes column in formula (6), Z-coordinate shows the elements of matrix. Fig.1 
(c) and (d) illustrate the contours of the voltage interruption signal in Fig.1(a), they 
are visual figures. According to them, we can easily to find out the interruption occur-
rence time and duration time.  

3.2   Voltage Swell Signal 

Voltage swell means voltage amplitude exceeding 10 to 90 percent of rating voltage, 
which last 0.5T 1min. Fig.2 shows a voltage swell signal, 3-dimension plot and its 
contours with different parameter q. swell duration last from 0.5T to 1min (start at 
20ms, end at 40ms), normalized amplitude is 1.4. From Fig.2(c) and (d), we can find 
out start time and duration of swell visually.  

 

Fig. 2. (a) A swell voltage signal, (b) 3d plot of Chirplet transform, (c) contours with parameter 
q=0.01, (d) contours with parameter q=0.05 

4   Harmonic Detection 

4.1   Segment Fixed Time-Varying Harmonic 

Set time-varying harmonic simulating signal to be 
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Fig.3 shows waveform of the simulating signal and its contour of CT matrix. 
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Fig. 3. (a) a time varying ladder harmonic signal and (b) the contour of its CT matrix 

Watching Fig.3, we can get two results, firstly, the simulating time-varying har-
monic signal contains two disturbance harmonics. Secondly, 150Hz harmonic and 
350Hz harmonic occurrence time and duration time are nearly as seem as actual case. 
All these can be seen from contour of Fig. 3(b). 

4.2   Linear Time-Varying Harmonic Signal 

The linear time-varying harmonic simulating signal is 

( )
( ) ( )

( )( ) ( )
( ) ( )≤<×

≤<+×
≤≤×

=
stst

ststt

stst

ts

2.014.0502sin

14.006.05.0502sin

06.00502sin

π
π
π

 

 

Fig. 4. (a) a frequency linear time-varying harmonic signal and (b) the contour of its CT matrix 
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When t belongs to sts 14.006.0 ≤≤ , the signal contains linear frequency modula-
tion component, the frequencies are changing by linear time expression of 

tf 5.050 += . The waveform and contour of CT matrix are illustrated in Fig.4(a) and 

(b). From Fig.4(b), we can visually see the frequencies are changing linear about time 
t. Occurrence and end time of harmonic disturbances are almost identical with actual 
hypothesis. 

4.3   Stator Current Signal 

Figure 5(a) and (b) are a actual stator current signal waveform of two bar-broken 
electric machine and the contour of CT matrix. Figure 5(b) illustrates the stator cur-
rent signal contains three kinds of time-varying harmonics tending a stable status in a 
short time(1.2s). However, it is very difficult to know what the harmonics are. 

 

Fig. 5. (a) a fault current signal of the bar broken electric machine and (b) the contour of its CT 
matrix 

WTs have been using to analyze PQ disturbances(see Ref. [3-5,10,12-15]). How-
ever, WTs are not always effective. According to the contours of CT matrix, we can 
firstly detect and identify PQ harmonic types visually, then choosing WTs or wavelet 
ridges([16,17]). Generally, to process voltage interruption, sag, swell, fixed harmonic, 
WTs is very effective. Meanwhile, wavelet ridges are better than WTs to process 
linear time-varying harmonic signals,. However, both of them are feeble to detect 
non-linear time-varying harmonics. So before processing PQ harmonic disturbances, 
it is very important to know PQ harmonic disturbance types, CTs are an useful tool to 
process them previously. If the instantaneous harmonic is nonlinear time- varying, 
such as the stator current signal of bar-broken electric machine in figure 10, it needs 
do hard work to find out a new tool to process the disturbance signals. We will  
discuss this issue in another paper.  
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5   Conclusions 

Chirplet transforms has been proposed in this paper for detecting and classifying PQ 
disturbances. Fourier transform, short-time Fourier transform and wavelet transform 
are special cases of Chirplet transforms. Using contours of Chirplet transform matrix, 
we can detect and identify voltage interruption, voltage sag, voltage swell, momentary 
impulse, fixed harmonic, linear time-varying harmonic, nonlinear time-varying har-
monic and so on. We can visually identify voltage interruption, voltage sag, voltage 
swell and impulse and detect how many harmonics the PQ disturbance signal contains 
and what kind the harmonics are. It is very helpful to choose signal processing tool 
for analyzing PQ disturbance and avoid blindness. 
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Abstract. The aim of this paper is twofold, to improve the generaliza-
tion ability, and to improve the readability of learning classifier system.
Firstly, an ensemble architecture of LCS (LCSE) is described in order to
improve the generalization ability of the original LCS. Secondly, an al-
gorithm is presented for compacting the final classifier population set in
order to improve the readability of LCSE, which is an amendatory version
of CRA brought by Wilson. Some test experiments are conducted based
on the benchmark data sets of UCI repository. The experimental results
show that LCSE has better generalization ability than single LCS, deci-
sion tree, neural network and their bagging methods. Comparing with the
original population rulesets, compact rulesets have readily interpretable
knowledge like decision tree, whereas decrease the prediction precision
lightly.

1 Introduction

The learning classifier system (LCS) is brought by Holland et al. in 1989, which
consists of two important components[4]. One is genetic algorithm module, with
which LCS creates new classifier rules; another is reinforcement learning module,
with which LCS receives payoff from environment, distributes the message and
adjusts the classifier’s strength. Since 1994, Wilson made some pivotal changes
from original LCS and brought forward ZCS and XCS[5][6]. A lot of researches
show that the XCS can obtain the most optimal performance in many ideal
learning problems, such as BOOLEAN multiplex. However, when face the noise
data(incorrect measure value) and the missing data in the practical data, XCS
would over-fit these data and may not classify unseen data correctly. So, Gao
et al. presented the ensemble architecture of XCS in order to improve the gen-
eralization ability[3]. In former papers, LCSE is only applied in single data set
of UCI repository. So, we investigate the learning performance in multiply data
sets further in this paper.

Since the population set of LCSE consists of thousands of classifier rules, it is
not easy to determine which rules play the important role in classifying new cases.
Especially when need the explicit knowledge to help users to understand system in
practice, lacking of readability of the population set becomes a vital shortcoming.
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So we must face up to improving the readability of LCSE. Wilson and Dixon et
al. have already presented some compact ruleset algorithms, such as CRA, CRA2
and XCSQ, for reducing the size of evolved classifier populations[8][2]. But, be-
cause CRA must run off-line after learn the whole dataset and it has high time
complexity, we revise the compact ruleset algorithm in order to get the reducing
rulesets with the training stage to meet the requirement of readability.

The paper is organized as follows. In Section 2, a two-level learning classifier
system ensemble and its learning process are discussed. Then we design a com-
pact ruleset algorithm based on CRA to reduce the size of final population set and
improve the readability performance in Section 3. We conduct some test experi-
ments on three data sets and investigate performance of the respective approaches
in Section 4. Finally, we draw some conclusions and outline future works.

2 Ensemble Learning Classifier System

In 2005, Gao et al. firstly designed the architecture of learning classifier sys-
tem ensemble, which is abbreviated to LCSE[3]. LCSE bases on XCSR proposed
by Wilson, which is broadly applied into the problems in continuous-valued
environments[7]. LCSE combines multiple XCSRs with ensemble learning so
that improve the generality capability of whole system. Besides several single
sub-LCSs, the bootstrap module and voting module are added into LCSE. The
bootstrap module is used to distribute the input into different sub-LCSs. And
the voting module is used to combine all classification results of the respective
sub-LCS in order to generate the global system’s output. In Fig. 1, the architec-
ture of LCSE is described.
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Fig. 1. The Architecture of Learning Classifier System Ensemble

When initialize the system, all sub-LCSs generate their population sets respec-
tively. In each episode, the bootstrap module inputs the new coming instance to
every sub-LCSs randomly with the sampling probability λ, which is set as 0.632
in experiments. If the ith sub-LCS is activated and receives this input, then
constructs the match set [M ]i. Whereafter, using the wheel selecting algorithm
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to get the action set [A]i. Finally, the ith sub-LCS output its classification result
ai. The voting module ensembles all activated sub-LCSs’ outputs according to
the basic plurality voting method in order to get the final system’s classifica-
tion result aLCSE. It must be emphasized that each activated sub-LCSs receives
respective payoff ri from the outside according to itself output ai. Then, every
activated sub-LCS processes reinforcement learning of the rule’s strength and
rule’s discovery basic on itself payoff. In Fig. 1, if the ith sub-LCS is activated
then its running process are described using the solid line. Else, the dot line
means that the respective sub-LCS couldn’t be activated in current learning
episode. After finish learning current instance, all activated sub-LCSs are modi-
fied to be inactive. Essentially, the bootstrap module in LCSE aims at developing
multiple sub-LCSs with different classification performance by means of learning
different samples, initialing different population set, undertaking different rule’s
learning and discovery processes. So, the learning classifier system can achieve
stronger generality performance when combing multiple different sub-LCSs using
ensemble learning.

3 Compact Ruleset Algorithm

After learn from training data, the population set consists of thousands of clas-
sifier rules which include interesting patterns of dataset. However, the size of
population set is too large to determine which rules are most important dur-
ing the classification process. For example, in Tab.2 the population set’s size
of each sub-LCS is 800. In addition, when need the explicit knowledge to help
users to understand system in practice, lacking of readability of the population
set becomes a vital shortcoming of LCS. So, we need reduce the size of popu-
lation set and hope to generate some available, intelligible rules while maintain
performance on test sets.

Wilson’s compact ruleset algorithm, which is abbreviated to CRA, is the el-
ementary work for producing more understandable rules[8]. The algorithm has
three steps and run after finish all test tasks. Firstly, ordering the classifier based
on a selected rule’s parameter and form the smallest subset which has highest
performance. It is a heuristic knowledge that ’better’ rules should have greater
value of the selected parameter. Then, CRA algorithm removes the classifiers
which do not advance performance from the smallest subset. Finally, the algo-
rithm compares the marginal contribution of each rule with respect to data set.
And removing the classifiers which have weak relative importance. Using CRA,
the slightly smaller subset is produced and has same performance as the original
population set of LCS.

CRA has very high time complexity, O(r2a), where r is the final reduced
set size and a is the time to evaluate a single rule against whole data set[2]. In
addition, CRA must run off-line after completely learn on the dataset (number of
iteration is about millions) so that try to achieve 100% performance on the same
data set. In practice, it is almost unfeasible during on-line, incremental learning
process. So, we modify and simplify the compact ruleset algorithm as in Tab.1.
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Table 1. The process of amendatory compact ruleset algorithm

On-line part
1. remove the ith classifier from the population set which doesn’t
meet ei < e1 and pi < p1;
2. order the remaining classifier based on the predictive reward.
Off-line part
3. add the classifier rule with the highest marginal contribution to
final compacted ruleset{

3.1 compute the number of inputs matched with respect to the
train data set;
3.2 add the rule with the highest value to final compacted ruleset.
3.3 remove the matched instances from the train data set.
3.4 until the train data set is empty. }

In step 1 in Tab.1, p1 is a threshold of predictive reward and e1 is a threshold
of experience of a classifier. We simplify the step 1 and step 2 to select satisfied
useful rule in the amendatory compact ruleset algorithm, unlike finding the best
smallest subset that has 100% performance in Wilson’s compact ruleset algo-
rithm. The step 3 is similar with CRA which is used to measure their relative
importance. And the former two steps could be done on-line whereas the step 3
must run after the learning process. Obliviously, the amendatory compact rule-
set algorithm has a lower time complexity of O(ca), where c is the reduced set
size after step 2 and a is the time to evaluate a single rule against whole data set.

4 Experimental Results and Analysis

Firstly, LCSE, LCS and other learning methods are compared on three data sets
from the UCI machine learning repository[1]. Ten runs of 10-fold cross valida-
tion are performed on each data set, and the average results are reported. The
parameters of LCSE and their description are listed in Tab. 2 as below.

In Tab. 3, we compare the average fraction correct of LCSE which has mul-
tiple sub-LCSs with other learning methods. Among these methods, we use the
decision tree and neural network method of Weka toolbox designed by the uni-
versity of Waikato in New Zealand [1]. In this first experiment, the number of
total training steps is 2000. The experiment results are different from our former
reports after we optimal the program of LCSE[3]. In Tab. 3, the numbers pre-
vious ’±’ are the average predictive precision and the numbers following ’±’ are
the standard deviations. Known from Tab. 3, all LCSE have the better perfor-
mance than XCSR finally. And the LCSE with 9 sub-LCSs has the best average
predictive precision of all LCSE listed in Tab. 3 and has better performance than
C4.5, Neural Network and their bagging methods. It also can be seen from Tab.
3 that the average predictive precision become better when increasing in number
of sub-LCS of LCSE. But, we argue that the performance improving becomes
more difficult when continuing to increase the sub-LCS’s number. It’s because
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Table 2. The description and values of parameters in LCSE

of there are some missing data and inconsistent data in the data set so that
the predictive accuracy couldn’t reach at 100% regardless of using any learn-
ing method. However, the number of sub-LCSs should be justified by rigorous
theoretical analysis and far more experiments.

Table 3. Comparing LCSE with XCSR, Decision Tree, Neural Network and their
bagging learning methods

Learning Method Diabetes Live-disorders Wine
LCSE with 9 sub-LCSs 0.7969±0.02915 0.7261±0.07799 0.9983±0.00500
LCSE with 7 sub-LCSs 0.7891±0.02898 0.7229±0.08006 0.9961±0.00661
LCSE with 5 sub-LCSs 0.7865±0.02608 0.7249±0.06026 0.9899±0.00989
LCSE with 3 sub-LCSs 0.7852±0.02702 0.6874±0.06550 0.9758±0.01544

XCSR 0.7617±0.02025 0.6754±0.05242 0.9433±0.02281
C4.5 0.7155±0.01161 0.6116±0.03370 0.8989±0.02390

C4.5 bagging 0.7474±0.01082 0.6959±0.01601 0.9545±0.01079
Neural Network 0.7318±0.01443 0.6362±0.03346 0.9635±0.00628

Neural Network bagging 0.7647±0.00359 0.7099±0.00854 0.9753±0.00275

Known from the first experiment, we think that the LCSE is not enough
stable since their standard deviations are greater than XCSR. But, we think
that the reason might be the total training steps are not enough large, especially
in former two data sets. So, we conduct the second experiment in order to know
whether the number of training steps would influence the predictive precision
and standard deviation of LCSE. In second experiment, we increase the training
steps of LCSE and experimental results are reported in the table 4. But, we could
not get the expected results in this experiment. In Diabetes and Live disorders
data sets, the average predictive precision is obviously improved with increasing
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the training steps. However the standard deviation changes lightly and could not
exhibition any rules. So, we have doubts that the learning capacity of LCSE and
XCSR are instability since they depend on their populations.

Table 4. Comparing the predictive precisions and standard deviations of LCSE with
different training steps

Learning
Method

Diabetes Live-disorders

2000 5000 10000 20000 2000 5000 10000 20000
LCSE with 9
sub-LCSs

0.7969
±0.02915

0.8173
±0.02808

0.8379
±0.02357

0.8474
±0.02638

0.7261
±0.07799

0.7049
±0.10521

0.7681
±0.10518

0.7507
±0.07079

LCSE with 7
sub-LCSs

0.7891
±0.02898

0.8137
±0.03330

0.8374
±0.02571

0.8436
±0.02570

0.7229
±0.08006

0.6945
±0.10773

0.7568
±0.09936

0.7400
±0.07098

LCSE with 5
sub-LCSs

0.7865
±0.02608

0.8112
±0.03008

0.8340
±0.02678

0.8378
±0.02524

0.7249
±0.06026

0.7072
±0.10080

0.7754
±0.08480

0.7307
±0.07213

LCSE with 3
sub-LCSs

0.7852
±0.02702

0.8010
±0.02881

0.8151
±0.02574

0.8324
±0.02537

0.6874
±0.06550

0.6974
±0.07777

0.7591
±0.07241

0.7249
±0.07148

XCSR 0.7617
±0.02025

0.7855
±0.03087

0.8104
±0.02463

0.8107
±0.02281

0.6754
±0.05242

0.6704
±0.08947

0.7252
±0.08518

0.7107
±0.06677

The third experiment is conducted to investigate the performance of the
amendatory compact ruleset algorithm. This experiment only is test in the Pima
Indians Diabetes data set. We also use the stratified tenfold cross-validation
method in the LCSE with 7 sub-LCSs. Table 5 shows the results. The second
column refers to the size of final compacted ruleset and the predictive perfor-
mance is listed in the third column using the compacted ruleset. The predictive
performance of LCSE also be listed in the forth column. Known from the table
5, the mean prediction precision of compacted(about 73%) ruleset is less than
LCSE with 7 sub-LCSs(about 79%) whereas is almost equal to performance of
decision tree(about 73%). In our opinion, discarding some classifiers in step 1 of
table 1 is the reason for decreasing performance. In addition, it is also observed
that the size of compacted ruleset isn’t stationary and ranges from 24 to 40.

Table 6 shows some pieces of the final compacted ruleset. We can link the
value interval of all attributes in each row to construct a classifier rule. In order
to understand these rules well, we compare the classifier rules with the results of
decision tree algorithm. The results of decision tree are described in table 7 and
consist of 8 rules. Observed from table 6, some important thresholds of attributes
occur in the compacted ruleset of LCSE, such as 127 of attribute 2 and 30 of
attribute 6. It means that the compacted ruleset expresses readily, interpretable
and actual knowledge about the dataset. Of course, the compacted ruleset does
not produce same rules as decision tree algorithm because some information are
hidden in other pieces. So we will develop other merge technique to combine
these rules in order to generate more general rules in the future.

Table 5. The result of amendatory compact ruleset algorithm in Diabetes data set

Fold 1 2 3 4 5 6 7 8 9 10
Size of compacted ruleset 37 38 24 36 31 34 38 40 33 36
Prediction performance of
compacted ruleset

0.7368 0.7368 0.6812 0.7237 0.7368 0.7403 0.7403 0.7368 0.7237 0.7403

Average predictive precision
± standard deviation

0.7267 ± 0.01747
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Table 6. Some pieces of final classifier using amendatory compact ruleset algorithm

attr.1 attr.2 attr.3 attr.4 attr.5 attr.6 attr.7 attr.8 Action prediction fitness experience
[2, 17] [44, 127] [24, 78] [7, 95] [14, 478] [18, 29] [0, 2] [52, 67] 0 100 0.04 26
[0, 17] [44, 150] [24, 122] [16, 23] [14, 846] [18, 29] [0, 1] [49, 81] 0 100 0.05 13
[6, 17] [77, 106] [24, 122] [7, 53] [14, 837] [20, 30] [0, 1] [21, 81] 0 100 0.06 49
[0, 17] [44, 127] [24, 122] [7, 95] [14, 478] [18, 29] [0, 2] [52, 67] 0 100 0.04 24
[12, 13] [142, 199] [38, 69] [7, 99] [14, 846] [22, 49] [0, 2] [21, 63] 1 95 0.1 18

Table 7. The result of decision tree algorithm applied in Diabetes data set

rule 1. (a2 ≤ 127):0;
rule 2. (a2 > 164) and (a6 ≤ 29.9) and (a3 ≤ 78):1;
rule 3. (a2 > 164) and (a6 ≤ 29.9) and (a3 > 78):0;
rule 4. (127 < a2 < 164) and (a6 ≤ 29.9):0;
rule 5. (a2 > 127) and (a6 > 29.9) and (a3 ≤ 61):1;
rule 6. (a2 > 127) and (a6 > 29.9) and (a3 > 61) and (a2 >
157):1;
rule 7. (157 ≥ a2 > 127) and (a6 > 29.9) and (a3 > 61) and (a8
≤ 30):0;
rule 8. (157 ≥ a2 > 127) and (a6 > 29.9) and (a3 > 61) and (a8
> 30):1;

5 Conclusion and Future Work

The aim of this paper has twofold. Firstly, we demonstrated that LCSE, Learn-
ing Classifier System Ensemble, combine learning classifier system with ensemble
learning in order to improve the generality ability than single learning classifier
system. Known from the conducted experiments, the LCSE with much more sub-
LCSs has better generality ability than other LCSE with less sub-LCSs, LCS and
other supervised learning methods such as decision tree and neural network. In
addition, with increasing the total training steps, LCSE can improve the average
predictive precision further. Secondly, we brought forward an amendatory com-
pact rulesets algorithms in order to reduce the size of final population ruleset
and improve the readability. In the future, we will try to combine the rules in
compact rulesets into actual knowledge and make an effort to apply LCSE into
other data mining domains.
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Abstract. Evolutionary Learning Classifier Systems (LCSs) are rule
based systems that have been used effectively in concept learning. XCS is
a prominent LCS that uses genetic algorithms and reinforcement learn-
ing techniques. In traditional machine learning (ML), early stopping
has been investigated extensively to the extent that it is now a default
mechanism in many systems. However, there has been a belief that EC
methods are more resilient to overfitting. Therefore, this topic is under-
investigated in the evolutionary computation literature and has not been
investigated in LCS. In this paper, we show that it is necessary to stop
evolution in LCS using a stopping criteria other than a maximum num-
ber of generations and that evolution may suffer from overfitting similar
to other ML methods.

1 Introduction

XCS, a state of the art LCS, is a population based system, where the population
consists of if-then form of rules called classifiers. The early work with XCS
focused on reinforcement learning problems and used synthetic environments
like the binary multiplexer and maze problems as the test beds. Later on Wilson
extended XCS for continuous variables, called XCSR [8], which has expanded
the XCS’ applications domain from artificial problems to real world problems.
Several studies have been carried out since then to explore the use of XCS as a
generic data miner in concept learning tasks [4,6,1,2].

Offline intrusion detection (ID) is a typical concept learning task where a
training dataset with normal and attack traffic is presented to the learning sys-
tem which then has to classify correctly the unseen instances in the test set.
Training sets are normally generated from network traffic dumps and event logs
and are thus typically very large. The test set normally has many dissimilar or
completely unseen cases caused, for example, by the attacker’s activity to evade
firewalls and other computer security mechanisms. Thus, learning systems need
to generalize well in order to classify accurately attack patterns in the test set.
However, the generalization is achieved as the system learns over time going
through the training data multiple times. Given the large training sets for ID
and other similar domains it can become quite time consuming, especially for a

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 50–57, 2006.
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population based system like XCS. Over training can also lower the test accu-
racy if the learning algorithm is susceptible to overfitting. It is thus essential to
identify when to stop training in LCS.

Wilson used the performance criteria [10] to evaluate an XCS, which is the
fraction of correctly classified instances calculated over a window of n exploit
trials (usually 50). Other researchers have shown that performance might not
correctly represent the classifier’s ability to learn maximally general solutions,
they instead used the percentage of optimal population size (%[O]) as another
measure of generalization [7]. This measure however, has its own limitations and
can only be applied in domains where the size of the population size for optimal
solutions is known in advance. Nevertheless, the only stopping criterion used
for the algorithm to terminate, for either measures, is reaching the user defined
maximum number of exploit trails. The system is run for a pre-specified number
of exploit trials sufficient enough to reach the best performance. The number of
exploit trials are increased as the problem complexity increases e.g. 10000 trails
for a 6-multiplexer problem and 20000 trails for an 11-multiplexer problem.

In this paper we compare three stopping criteria for XCSR on a subset of
a benchmark ID dataset. We show that using an early stopping gives better
generalization than stopping at the end of a pre-determined fixed number of
generations. We also show the average overall (over 5 classes) XCSR performance
using 9 different population sizes on validation and training sets. The results
suggest that a smaller population size can be traded off for some loss of accuracy.

The rest of this paper is organized as follows. In section 2 we detail the XCSR
modifications, performed in order to address certain test situations. Section 3
gives a description of the datasets and the methodology used in this work. Sec-
tion 3.3 provides the detail of the stopping critera experiments followed by a
discussion of their results. We conclude in section 4 by summarizing our contri-
butions in this work and the future work.

2 System Modifications

The core algorithm remains the same in both XCS and XCSR. In XCSR, a
classifier’s condition consists of a conjunction of interval predicates represented
in the form of (li, ui) corresponding to upper and lower bounds of each interval,
and a predicted action. A classifier matches an input data instance if all of its
attribute values lies between the corresponding predicate intervals. GA operators
and covering mechanism are also modified to suit the real representation. Due to
space limitations, we only provide the modifications done in the XCSR system for
the current work. Interested readers can refer to [10][8] for a complete description
of XCS and XCSR.

In XCS1, if no classifier from the current population matches an input in-
stance, n covering classifiers are created, where n is usually the total number
of classes, and their parameters are initialized to their default values. During

1 We shall use XCS instead of XCSR when refereing to the main algorithm.
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training, one of these n classifiers is chosen randomly and its parameters are up-
dated based on the reward received from the environment. During testing, the
best action is chosen based on its fitness weighted prediction. However there can
be situations arising during testing when all classifiers in a matchset have the
same prediction values. This can happen for example during initial runs when
there are many classifiers with no experience and zero predictions or when the
matchset is empty and n new classifiers are created as a result with the same
initial prediction values. In these cases, a random decision on the class value may
not be the best choice. We introduced two methods to deal with this situation.
First, in case of an empty matchset during testing i.e. upon encountering a test
instance for which there is no matching classifier in the current population we
do not invoke covering, instead we either (i) choose a default class based on
the majority class in the training dataset or (ii) choose the nearest matching
classifier based on the shortest distance D from the input calculated as:

di = max {0, (li − xi), (xi − ui)}

D =
n∑

i=1

di

where n is the number of input attributes in the input vector, xi is the ith

attribute of the input instance, and ui and li are the upper and lower bounds
of the ith interval of a classifier respectively. If an input attribute value lies
between the upper and lower bound of the corresponding classifier interval, it
is considered a match. If a value falls outside the interval then the distance is
measured between this value and the closest bound of the interval.

Secondly, we deal with the tie situation during testing i.e. when the matchset
is not empty but there is more than one best actions available. In this case, we
choose the action with the least cost according to the given cost matrix for the
KDD dataset [3] i.e.

Cc = mini {Ci|iεT ie}
where Cc is the chosen class among the set of equally best actions represented
above as Tie.

3 Experimental Setup

3.1 Datasets

1999 KDD cup ID datasets [5] have been extensively used in ID research. The
datasets contain four categories of attacks among the normal traffic:

– Probe - e.g. IP sweep, Port scans
– Denial Of Service (DOS) - e.g. SYN flood, Smurf
– User to Root (U2R) - e.g. buffer overflow
– Remote to Local (R2L) - e.g. password guessing
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Table 1. Class distribution in FTP-only Dataset

Class Training Instances Test Instances
Normal 373 122
Probe 5 2
DOS 104 57
U2R 3 15
R2L 313 641
Total 798 837

We extracted a small subset consisting of all FTP control records (port 21
only) from the distinct training and test datasets. We call it FTP-only dataset.
Also some of the irrelevant features (features whose values remain constant over
FTP connection records) were excluded from this dataset which reduced the
feature space from 41 to 29 for the FTP-only dataset. All 29 features have
mixed values - symbolic, continuous and discrete. For this study we mapped all
the symbolic features including the class (attack) categories to integer values and
then all features are normalized between 0 and 1 to suit the real representation
of the XCSR. The class distribution of FTP-only dataset is presented in table 1.

3.2 Methodology

In these experiments we use a batch mode testing, i.e. the system first explores
complete training dataset and then the resulting population at the end of each
training pass is used to predict the test instances. The overall and individual class
accuracy is recorded at the end of each test pass and the cycle is repeated 100
times. The batch mode testing canperform better than the traditional online mode
testing, at least in the initial runs of the algorithm, as the system does not have to
classify any test cases until it has trained through the complete training dataset.

We used the same parameter settings as used by Wilson for XCSR [8] and
both GA and actionset subsumption techniques in these experiments.

3.3 Experiments

We investigated three different stopping criteria for XCSR in this work i.e. the
best overall test accuracy achieved using (i) best validation accuracy (ii) best
training accuracy and (iii) the last generation accuracy. Each stopping criterion is
tested for the two testing techniques i.e. using default class and distance metric.

For validation set experiments, FTP-only training set is divided into 10 subsets
in a stratified sample. A 10-fold cross validation is used with a 9:1 train/validation
proportion. The system is trained on each training set in batch mode and then
tested on validation set and subsequently on a stand alone FTP-only test set. Each
experiment was run 30 times with different seeds and folds. In case of no match,
random covering is used during the explore phase as well as on the validation set
during the exploit phase. For test set the two options discussed above, i.e. the
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default class and the distance metric techniques, are used. The corresponding test
accuracy for the best overall validation accuracy is recorded for each run and then
averaged over all 30 runs. All experiments are repeated for different population
sizes (100, 500, 1000, 1500, 2000, 3000, 5000, 8000, 10000).

For training set experiments, the same setup is used except that the training
set itself is used as the validation set and test performance is recorded cor-
responding to the best overall training accuracy. Each experiment is repeated
with 30 different seeds to make it equivalent to the validation runs.

3.4 Results

Table 2 presents the results of three different stopping criteria. The highest
accuracy achieved using a stopping criteria is given in bold face. The results
which show 95% significant (one tailed) improvement over the last generation
are italicized except where mentioned for 90% significance.

Table 2. The performance comparison of two early stopping criteria with the last
generation results on FTP-only test set

Method Max on Validation Max on Training Last Generation

Default Class

100 0.312(0.148) 0.261(0.166) 0.158(0.110)

500 0.313(0.080), 90% 0.308(0.099) 0.280(0.098)

1000 0.354(0.087) 0.348(0.111) 0.307(0.066)

1500 0.378(0.072) 0.335(0.085), 90% 0.314(0.078)

2000 0.358(0.099) 0.381(0.101) 0.339(0.090)

3000 0.342(0.072) 0.353(0.077) 0.329(0.082)

5000 0.365(0.067) 0.369(0.069) 0.350(0.077)

8000 0.383(0.087) 0.371(0.072) 0.331(0.075)

10000 0.394(0.095), 90% 0.393(0.080), 90% 0.362(0.086)

Distance Metric

100 0.335(0.142) 0.230(0.140) 0.170(0.084)

500 0.359(0.116) 0.305(0.064) 0.307(0.083)

1000 0.376(0.104) 0.366(0.104) 0.327(0.082)

1500 0.377(0.088) 0.349(0.086) 0.301(0.068)

2000 0.350(0.075), 90% 0.386(0.103) 0.320(0.100)

3000 0.382(0.123) 0.357(0.086) 0.334(0.081)

5000 0.398(0.079) 0.395(0.091), 90% 0.350(0.090)

8000 0.399(0.092) 0.376(0.078) 0.353(0.075)

10000 0.401(0.094), 90% 0.395(0.068), 90% 0.365(0.077)
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The results show that the two early stopping criteria using validation and train-
ing always outperform the last generation results. This also suggests that XCS,
like other traditional machine learning techniques, is susceptible to overfitting.
Also note that stopping on validation yields better generalization most of the
time than stopping on the training alone. Furthermore, a better overall accuracy
is achieved when using the distance metric technique for unmatched instances
during testing, which suggests its superiority over the default class technique.

Table 3. Best test accuracy for individual classes using distance metric based test-
ing and validation based stopping for different Population sizes. The number of test
instances for each class is given in the parenthesis in the header.

Pop. Size Normal(122) Probe(2) DOS(57) U2R(15) R2L(641) Overall(837)

100 0.655(0.10) 0.233(0.29) 0.295(0.25) 0.261(0.24) 0.280(0.19) 0.335(0.14)

500 0.921(0.02) 0.317(0.36) 0.930(0.08) 0.273(0.23) 0.204(0.15) 0.359(0.12)

1000 0.932(0.03) 0.467(0.37) 0.965(0.04) 0.341(0.28) 0.217(0.13) 0.376(0.10)

1500 0.942(0.02) 0.583(0.30) 0.962(0.04) 0.407(0.24) 0.217(0.12) 0.377(0.09)

2000 0.945(0.02) 0.650(0.37) 0.974(0.05) 0.479(0.26) 0.178(0.10) 0.350(0.07)

3000 0.948(0.02) 0.667(0.27) 0.978(0.04) 0.565(0.24) 0.215(0.16) 0.382(0.12)

5000 0.946(0.02) 0.783(0.28) 0.990(0.02) 0.500(0.23) 0.238(0.10) 0.398(0.08)

8000 0.946(0.02) 0.817(0.25) 0.987(0.03) 0.521(0.27) 0.238(0.12) 0.399(0.09)

10000 0.951(0.02) 0.867(0.26) 0.993(0.02) 0.517(0.26) 0.239(0.12) 0.401(0.09)

We can see that the overall accuracy on testing is not particularly high. This
is happening partly because of the different class distribution in the training
and test sets. By looking at the class distribution (table 1) in the FTP-only test
set, it can be seen that R2L class constitutes bulk of the test set, which is a
difficult class to predict [3], whereas Normal is the majority class in the train-
ing set. Table 3 shows the average individual class accuracies (along with their
standard deviations) using distance metric technique for unmatched instances
during testing and validation based early stopping. It can be seen that although
the overall accuracies are low, the individual class accuracies other than R2L
are quite high especially for the larger population sizes. Nevertheless, accuracy
improvement is not the focus of this paper.

Population Sizing. The maximum population size is an important factor in
determining the learning complexity of the LCSs. Difficult problems with high
dimensions and oblique classification boundaries need higher number of rules
to cover the input space. However, increasing the population size increases the
learning time exponentially and may still not result in a significant improvement
in accuracy. Figure 1 shows the average overall performance for various popula-
tion sizes over 100 training passes on validation and training sets using distance
metric based testing (refer to [9] for default class results).
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Fig. 1. Average overall performance with different population sizes using Distance
Metric

It can be seen that higher population sizes i.e. 2000 and above reach almost
100% accuracy on the training set and around 95% on the validation set. However
as the stopping criteria results show that better generalization is achieved on the
test set using validation stopping, a population size decision based on validation
stopping might be better than training alone. Also it can be seen that accuracy
achieved using a population size of 2000 and above remains within a few percents
of each other. This suggests that a tradeoff can be made between the optimal
population size and the computational cost without a significant amount of loss
in the accuracy.

4 Conclusions and Future work

This work investigated the effect of using an early stopping criterion in the XCSR
classifier system, anXCSwith real numbers representation, and showed that higher
generalization can be achieved using an early stopping. The results also show that
XCS, similar to other machine learning techniques, is susceptible to overfitting.We
also looked at the population sizing issue and showed that a smaller population size
and thus a much less computational cost can be traded off for a small amount of loss
in the accuracy. Both of these issues i.e. optimal generalization and speed are criti-
cal for the intrusion detection domain which is characterized by highly unbalanced
class distributions and very large training datasets.

In this work we have seen that increasing the population size does not neces-
sarily increase the accuracy significantly, whilst an exponential rise in the com-
putational cost. Currently, we are investigating other heuristics that can improve
the XCS accuracy for the intrusion detection domain with smaller population
sizes. We are also looking at mechanisms to reduce the computational time of
XCS so that it can be deployed in a real time networking environment.
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Abstract. In this paper, a new efficient method is proposed based on the radial 
basis function neural networks (RBFNs) architecture for human face recogni-
tion system using a soft computing approach. The performance of the present 
method has been evaluated using the BioID Face Database and compared with 
traditional radial basis function neural networks. The new approach produces 
successful results and shows significant recognition error reduction and learning 
efficiency relative to existing technique.  

1   Introduction 

Recently radial basis function neural networks (RBFNs) have been found to be very 
attractive for many real world problems. An important property of the RBFNs is that 
they form a unifying link among many different research fields such as function ap-
proximation, regularisation, noisy interpolation and pattern recognition [5]. In addi-
tion, RBFNs can provide a fast, linear algorithm capable of representing complex 
non-linear mappings [13] and can approximate any regular function [9]. 

As one of the most popular neural network models, RBFNs attracts lots of atten-
tions on the improvement of its approximate ability as well as the construction of its 
architecture [7,8]. A support vector machine (SVM) was used to calculate support 
vectors and then used these support vectors as radial basis function centres. Their 
experimental results showed that the support-vector-based RBF outperforms conven-
tional RBFNs [12]. The Expectation Maximization (EM) algorithm was introduced to 
optimise the cluster centres with two steps: obtaining initial centres by clustering and 
optimisation of the basis functions [2]. The extend model for mixture of experts to 
estimate basis functions, output neurons and the number of basis functions all together 
was later introduced [14]. A supervised fuzzy clustering for the RBFN training has 
been proposed in [10,11].  

The problem of RBFN learning remains rather complex for large practical applica-
tions, and finding global search training algorithms is the subject of interest. In this 
work, a new technique to improve the performances of RBFNs utilises the radial basis 
function (RBF) architecture is presented. The method is based on the soft computing 
[15], which is used in order to allocate the input data to different clusters stochastically.  
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The paper is organised as follows: Section 2 gives a brief description of the RBFN 
classifier. In Section 3, the improving RBFN is presented. The face recognition 
method and the design of experiment are described in Section 4. Experimental results 
are presented in Section 5 and the conclusions are attained in Section 6. 

2   Radial Basis Function Neural Networks 

In this section, the basic characteristics of the RBF neural network architecture are 
presented. An RBFN can be considered as a special three-layered network depicted in 
Figure 1.  

 

Fig. 1. An RBFN architecture 

The input nodes pass the input values to the internal nodes that formulate the hidden 
layer. The input units are fully connected to the hidden layer. Connections between 
the input and the hidden layer have unit weights and, as a result, do not have to be 
trained. In this structure the hidden units are referred to as the RBF units. The goal of 
the RBF units is to cluster the data and reduce its dimensionality with a nonlinear 
transformation and to map the input data to a new space. The RBF units are also fully 
connected to the output layer. The output layer implements a linear combination on 
this new space. 

In the pattern recognition’s point of view, the main idea is to divide the input space 
into subclasses, and to assign a prototype vector for every subclass in the centre of it. 
Then the membership of every input vector in each subclass will be measured by a 
function of its distance from the prototype, that is: 

)()( nn pxfxf −=  (1) 

This membership function should attend the maximum value in the centre (zero 
distance), and has considerable value in the close neighborhood of centre. The RBFN 
in Fig. 1 is capable of performing all the operations, and is called the RBF network. 
The neurons in the hidden layer of network have a Gaussian activity function and 
their input–output relationship is: 
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where pn is the prototype vector or the centre of the nth subclass  
      σn is the spread parameter 

After obtaining the membership values of input vector in the subclasses, the results 
should be combined to obtain the membership degrees in every class.  

3   Improving RBFN Network Using Soft Computing Approach 

Intelligent techniques such as neural computing, fuzzy reasoning, soft computing and 
evolutionary computing for data analysis and interpretation are an increasingly 
powerful tool for making breakthroughs in the science and engineering fields by 
transforming the data into information and information into knowledge [6]. Soft 
Computing is a recently coined term describing the symbiotic use of many emerging 
computing disciplines [16]. The guiding principle of soft computing is: Exploit the 
tolerance for imprecision, uncertainty, partial truth, and approximation to achieve 
tractability, robustness and low solution cost. In effect, the role model for soft 
computing is the human mind. 

In the improved RBF method, the calculation of the outcome of the RBF units is 
done by adding stochasticity into it. The improved RBF in Fig.2 on the right illustrates 
that each centre value of the RBF units is calculated using the sigmoid function, that is:  

)))*5.0(tanh(1(*5.0'
nn yy +=  (3) 

where '
ny  is the stochastic value of the n centre values of RBF units. 

(a) Traditional RBFN model (b) Improving RBFN  

Fig. 2. Improving RBFN by introducing a stochastic mean clustering algorithm for the output  
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Then, the new centre value of RBF units obtained by the sigmoid function is com-
pared to a random number between 0 and 1, and if larger, the new centre value of 
RBF units remains unchanged. Otherwise, the new centre value will be set to the 
original value of RBF units. In this way, values of centre variable less than the origi-
nal threshold can lead to correct classification, and value greater than then precise one 
can lead to negative classification. 

The reason for adding stochasticity to the RBF units is that it may be useful for the 
network to tentative produce better classification results. The stochasticity softens the 
strong outcome from the RBF units and allows the possibility of more correct 
classification.  

4   Experiments 

The human face recognition system has been used as a benchmark in this study. A 
complete conventional human face recognition system should include two stages. The 
first stage requires extraction of pertinent features from the facial images and the 
creation of the feature vectors. The second stage involves classification of facial im-
ages based on the derived feature vector obtained in the first stage. The designed 
RBFNN with the proposed learning algorithm has been used as a classifier in the 
second stage of the human face recognition system [3,4]. 

4.1   Datasets 

The human face database used in this study was obtained from the BioID face data-
base at http://www.bioid.com/downloads/facedb/index.php[1]. The BioID face dataset 
consists of 1,521 sets of eye positions (Rx, Ry, Lx, Ly) of 23 different persons. Note 
that the Rx and the Ry coordinate of the left eye and the Lx and the Ly coordinate of 
the right eye. Samples of eye position datasets are depicted in Fig.3. 

 

Fig. 3. Samples of eye positions data sets from BioID face database (http://www.bioid.com/ 
downloads/facedb/index.php) 
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5   Results and Discussion 

The experimental study conducted in this paper evaluates the effect of 2 different 
learning algorithms on the 2 different sets of data, training speed, sensitivity of the 
learning algorithms to the training and testing set and the overall recognition rate. 
Also, the effect of the irrelevant data on the overall recognition rate is studied. Finally 
the proposed human face recognition system with the soft computing approach is 
compared with the traditional RBFN networks presented in Table 1. The improving 
RBFN results were calculated from the average values of 6 times running. 

In the context of this paper, learning processes in the context of Soft Computing 
are only considered. Therefore, structural and parametric learning, which are the 
counterpart of system identification and parameter estimation in classical system 
theory are not discussed.  

Table 1. Recognition rates in % of RBFN and improving RBFN using soft computing approach  

Models 
No. of Data 
Train:Test 

Recognition 
Rate (%) 

Training 
Time(s) 

Testing 
Time(s) 

1217: 304 87.03 4.119 0.944 
RBF 

1369: 152 90.15 4.993 0.662 
1217: 304 87.28 1.372 0.746 RBF+Soft 

Computing 1369: 152 94.48 1.602 0.566 

From the results reported in Tables 1, one can observe that, the ratio of the size of 
the training and testing data are 1217:304, there is slightly improvement of the pro-
posed model in terms of recognition rate. However, surprisingly it spends less time in 
both training and testing processes. Another observation one can make is that the 
improving RBFN clearly increases the recognition rate when the ratio of the size of 
the training and testing data are 1369: 152. In addition, the times in both training and 
testing process of the improving RBFN are obviously less than the traditional RBFN. 
As Table 1 shows, human face data classification based on the proposed improving 
RBFN model performs overall better than the conventional RBFN in terms of recog-
nition rate and time in training and testing processes. 

6   Conclusion 

The conventional approach to constructing an RBFN network is to search for the 
optimal cluster centers among the training examples. In this paper the soft computing 
approach improves the performance of RBFN networks substantially on the given 
BioID face dataset, in terms of convergence speed and recognition rate. A strong 
advantage of the new improvement algorithm is its ability to gradually change and 
adapt radial basis functions within the learning procedure which includes alternative 
refinement of the radial basis functions. The successful results indicated that the pro-
posed method can be used as a reliable technique for developing artificial classifiers 
for human face recognition. 
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Abstract. This paper introduces a computational model simulating the dynamic 
process of human immune response for solving Traveling Salesman Problems 
(TSPs). The new model is a quaternion (G, I, R, Al), where G denotes exterior 
stimulus or antigen, I denotes the set of valid antibodies, R denotes the set of 
reaction rules describing the interactions between antibodies, and Al denotes the 
dynamic algorithm describing how the reaction rules are applied to antibody 
population. The set of immunodominance rules, the set of clonal selection rules, 
and a dynamic algorithm TSP-PAISA are designed. The immunodominance 
rules construct an immunodominance set based on the prior knowledge of the 
problem. The antibodies can gain the immunodominance from the set. The 
clonal selection rules strengthen these superior antibodies. The experiments 
indicate that TSP-PAISA is efficient in solving TSPs and outperforms a known 
TSP algorithm, the evolved integrated self-organizing map. 

1   Introduction 

The traveling salesman problem (TSP) is one of the typical and most widely-studied 
combinatorial optimization problems.[1] It can be stated as this: given a finite number 
of cities along with the cost of travel between each pair of them, find the cheapest 
way of visiting all the cities and returning to the starting point. TSPs raise important 
issues because various real-world problems can be formulated as TSPs.[2][3] 

The human immune system (HIS) is a highly evolved, parallel and distributed 
adaptive system. The information processing abilities of HIS provide important 
aspects in the field of computation. This emerging field is referring to as the 
Immunological Computation, Immunocomputing or Artificial Immune Systems 
(AIS).[4] In reference [5], we proposed a novel immune response computational 
model-the quaternion model of immune response, and analyzed its convergent 
conditions based on Lyapunov's Theorem. Then we applied it to solving optimal 
approximation of linear systems successfully.[6]    

In this study, we introduced the quaternion model of immune response to solve 
TSPs. The set of immunodominance rules, the set of clonal selection rules, and a 
dynamic algorithm, named TSP-PAISA, are designed. The rest of the paper is 
organized as follows: section 2 describes the quaternion model of immune response. 
Section 3 describes the set of immunodominance rules, the set of clonal selection 
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rules, and the dynamic algorithm TSP-PAISA. Section 4 describes the experimental 
studies on some benchmark TSPs. Finally, concluding remarks are presented in 
section 5.  

2   Quaternion Model of Immune Response 

The dynamic process of human immune response can be modeled as a quaternion 
( , )G I, R, Al [5][6], where G denotes exterior stimulus or antigen, I denotes the set of 

valid antibodies, R denotes the set of reaction rules describing the interactions 
between antibodies, Al denotes the dynamic algorithm describing how the reaction 
rules are applied to antibodies. Among the four elements of the model ( , )G I, R, Al , 

antibody space I and dynamic algorithm Al depend on the antigen G, and the practical 
design of reaction rules in set R depend on the antigen G and the representation 
method of antibodies. 

2.1   Antigen G 

In immunology, an antigen is any substance that causes immune system to produce 
antibodies against it. In ( , )G I, R, Al , antigens refer to the pending problems. Taking 

optimization problem (P) for example 

1 2minimize ( ) ( , ,... )

( ) subject to ( ) 0 1,2, ,

( ) 0 1, 2, ,

n

i

j

f f x x x

P g i p

h j p p q

=
< =
= = + +

x

x

x

 (1) 

where 1 2( , ,... )nx x x=x , antigen is the function of objective function ( )f x , i.e. 

( ) ( ( ))G g f=x x . 

2.2   Antibody Space I 

In ( , )G I, R, Al , B cells, T cells and antigen-specific lymphocytes are generally called 

antibodies. An antibody represents a search point in the space of potential solutions. 
The antibody 1 2 la a aa  is the coding of variable x, and x is called the decoding of 

antibody a. 
The space of potential solutions is called antibody space denoted by I, where 

∈a I . An antibody population 1 2( , , , )n=A a a a , , 1k k n∈ ≤ ≤a I , is an n-

dimensional group of antibody a, where the positive integer n is the size of antibody 
population A. 

2.3   The Set of Reaction Rules R 

The set R describes all the possible interactions between antibodies in antibody space 
I. For antibody population 1 2( , , , )n=A a a a , a rule R ∈ R  can be expressed as 
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( )1 2 1 2( ) n mR R ′ ′ ′= + + + = + + +A a a a a a a  (2) 

where n, m are positive integers, the value of m depends on the rule R, and the 
representation ' + '  is not the arithmetical operator, but only separates the antibodies 
on either side in Equation (2). Equation (2) shows that the n antibodies of A evolve 
into m antibodies on the right-hand side by the effect of reaction rule R.  

2.4   Dynamic Algorithm Al 

Al is the algorithm simulating the process of antibody evolution and dominating 
interactions among antibodies during artificial immune response, including the format 
of the set R acting on antibody space I, the computing of antibody-antigen affinity, 
the judgment of halt conditions in artificial immune response, and so on. 

3   Reaction Rules and Dynamic Algorithm for TSPs  

In order to solving TSPs, the reaction rules R and dynamic algorithm Al in the model 
( , )G I, R, Al  are designed as follows. 

3.1   Reaction Rules for TSPs 

In this paper, we design the set R composed of two subsets, i.e. the set of 
immunodominance rules RD and the set of clonal selection rules RCS.  

3.1.1   The Set of Immunodominance Rules RD 
By the theory of immunology[7], there are many epistasises on an antibody, but only 
one epistasis works when the immune response takes place. This phenomenon is 
called immunodominance.           

For TSPs, an antibody denotes a candidate tour: 

1 2, , , la a aa  (3) 

Where l is the number of cities, {1,2,3, , }ia l , and , {1,2,3, , }i j l i j , 

i ja a . So the antibody population A is 

{ }1 2, , , m=A a a a  (4) 

Where m is the size of antibody population.  
For TSPs, an immunodominance set ( )1 2,ido e e=id , where 1 ⊂e a , 2 ⊂e a , are 

the two subsets of a, and Φ=21 ee , ( )1 2,ido e e  satisfies the requirement 

( ) ( )( )
1 2

1 2 1 2 ,
{ , } , arg min ,

i j
i ja a

a a ido dis a a
∈ ∈

= =e e e e
e e  (5) 

where ( ),i jdis a a  denotes the distance between ai and aj.  
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For the antibody { }1 2, , , la a a= ∈a A , if the kth position is selected to be 

changed, { }1 1 2, , , ka a a=e , { }2 1 2, , ,k k la a a+ +=e . Then, the immunodominance 

rules RD are described as follows. 

 Begin 
{ 

while( 1 ≠ Φe )do 
{ 
  Get the immunodominance set 1 2{ , }a a= e eid ; 

  Insert 1ae  into 2e  behind 2ae • 

  Delete 1ae  from 1e • 
} 

} 

3.1.2   The Set of Clonal Selection Rules RCS 
The clonal selection theory[8] is used in immunology to describe the basic features of 
an immune response.[9] Biological clonal occurs to the degree that a B-cell's 
antibodies match antigen. A strong match causes a B-cell to be cloned many times, 
and a weak match results in few clones.[10] Inspired by the clonal selection theory, the 
set of clonal selection rules RCS include Clonal Proliferation Rule ( C

PR ), Affinity 

Maturation Rule ( A
MR ) and Clonal Selection Rule ( C

SR ) on the antibody population 

( )kA , where the antibody population at time k is represented by the time-dependent 

variable matrix 1 2 nk k k k=A a a a( ) { ( ), ( ), , ( )} . The evolution process can be 

described as: 
CC A
SP M

( ) ( ) ( ) ( ) ( 1)
RR R

k k k k k→ → → +A Y Z A A  (6) 

Clonal Proliferation Rule C
PR : Define 

C C C C T
P P 1 P 2 P( ) ( ( )) [ ( ( )), ( ( )), , ( ( ))]nk R k R k R k R k= =Y A a a a  (7) 

where C
P( ) ( ( )) ( ) , 1,2, ,i i i ik R k k i n= = × =Y a I a , iI  is a qi-dimensional unit 

column vector. c[1, ]iq n∈  is an self-adaptive parameter, or set as a constant, cn  is a 

given value related to the upper limit of clone scale.  
After Clonal Proliferation, the population becomes: 

1 2( ) { ( ), ( ), , ( )}nk k k k=Y Y Y Y  (8) 

where 

{ } { }1 2( ) ( ) ( ), ( ), , ( )  

and ( ) ( ), 1, 2, , 1, 2, ,
ii ij i i iq

ij i i

k k k k k

k k j q i n

= =

= = =

Y y y y y

y a
 (9) 
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Affinity Maturation Rule A
MR : The Affinity Maturation Operation A

MR  is diversified 

basically by hypermutation[11]. Random changes are introduced into the genes, i.e. 
mutation, such changes may lead to an increase in the affinity of the clonal antibody 
occasionally. 

After Affinity Maturation Operation, the population becomes: 

1 2( ) { ( ), ( ), , ( )}nk k k k=Z Z Z Z  (10) 

where 

{ } { }
( )

1 2

A
M

( ) ( ) ( ), ( ), , ( )  

and ( ) ( ) , 1,2, , 1, 2, ,

ii ij i i iq

ij ij i

k k k k k

k R k j q i n

= =

= = =

Z z z z z

z y
 (11) 

Clonal Selection Rule C
SR : Define  1,2i n∀ = , if ( ) ( )i ik k∈b Z  is the best 

antibody (the antibody with the highest antibody-antigen affinity) in ( )i kZ , then 

( )C
S

( ) if ( ) is better than ( )
( 1) ( ) ( )

( ) else                                  
i i i

i i i
i

k k k
k R k k

k
+ = =

b b a
a Z a

a
 (12) 

The newcome population is 

( )

( ) ( ) ( )
{ }

C
S

TC C C
S 1 1 S 2 2 S

1 2

( 1) ( ) ( )

( ) ( ) , ( ) ( ) , , ( ) ( )

( 1), ( 1), , ( 1)

n n

n

k R k k

R k k R k k R k k

k k k

+ =

=

= + + +

A Z A

Z a Z a Z a

a a a

 (13) 

where ( )C
S( 1) ( ) ( ) 1, 2i i ik R k k i n+ = =a Z a .  

3.2   Dynamic Algorithm Driving the Population Evolution 

Dynamic algorithm Al is the algorithm dominating the interactions between 
antibodies and driving the antibody population evolution, including the format of the 
set R acting on antibody populations, the affinity assessment, the judgment of halt 
conditions, and so on. ALGORITHM 1 describes the details of the population-based 
artificial immune system algorithm for TSPs (TSP-PAISA). 

ALGORITHM 1. Population-based AIS Algorithm for TSPs 
(TSP-PAISA) 
Step 1) Initialization: Give the termination criterion. 

Randomly generate the initial antibody population: 

{ }1 2(0) (0), (0), (0)n=A a a a . 

Calculate the antibody-antigen affinities of all 
antibodies of (0)A , k=0. 
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Step 2) Perform RD: Update ( )kA  by applying RD to ( )kA . 
Step 3) Perform RCS:  

Step 3.1) Clonal Proliferation: Get ( )kY  by 

applying C
PR  to ( )kA . 

Step 3.2) Affinity Maturation: Get ( )kZ  by applying 
A
MR  to ( )kY . 

Step 3.3) Evaluation: Calculate the antibody-
antigen affinities of all antibodies of ( )kZ . 

Step 3.4) Clonal Selection: Get ( 1)k +A  by applying 
C
SR  to ( )kZ  and ( )kA . 

Step 4) Termination test: If a stopping condition is 
satisfied, stop the algorithm. Otherwise, 1k k= + , 
go to Step 2). 

The antibody-antigen affinity is defined as the length of the corresponding tour for 
an antibody. The termination criterion of TSP-PAISA is a maximum number of 
generations being reached. 

4   Experimental Studies 

In this study, the problems in standard test set[12] will be tested by TSP-PAISA and the 
evolved integrated self-organizing map (eISOM)[1] for TSPs. The experiments are 
carried on a PC with PIV 3.2 GHz CPU and 2G RAM. All the problems are tested 
with programming language VC++6.0.  

In TSP-PAISA, the size of population size is 25, clonal scale is 4. The maximum 
number of generations is 1000. In eISOM, the population size is 100, the crossover 
and the mutation probabilities are 0.99 and 0.01, respectively. The maximum number 
of generations is 6000. Under this condition, the computational cost of TSP-PAISA is 
much less than that of eISOM.  

The experimental results of TSP-PAISA and eISOM over 30 independent runs are 
shown in Table 1, where l is the number of cities, 0S  denotes the known minimal tour 

length, σ  denotes the relative difference[1] which is defined as Equation (14). In 
Table 1, eISOM1 denotes the eISOM without local improvement heuristic, eISOM2 
denotes the eISOM improved by local improvement heuristic. The bold-faced text 
indicates the best solution among all the algorithms for a TSP. 

0
00 0

1

% ( ) /( ) 100
T

i
i

S S T Sσ
=

− × ×  (14) 

Where iS  denotes the minimal tour length obtained from the i-th run, T is the number 

of independent runs. 
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Table 1. Performance comparison between TSP-PAISA and eISOM 

σ  (%) 
TSPs l 0S  

eISOM1 eISOM2 TSP-PAISA
Eil51 51 429 2.56 1.97 0.78 

Eil101 101 629 3.59 2.92 1.06 
KroA150 150 26524 1.83 1.26 1.23 
KroA200 200 29368 1.64 1.21 1.09 

Lk318 318 42029 2.05 1.93 1.80 
Pcb442 442 50779 6.11 5.67 3.87 
Att532 532 87550 3.35 2.39 2.21 
Tk1002 1002 259045 4.82 4.01 3.63 
Tk2392 2392 378032 6.44 5.83 6.80 

Average 3.60 3.02 2.50 

The experimental studies indicate that TSP-PAISA is efficient in most of the 
selected TSPs and outperforms eISOM clearly, but we also find that its performance 
is not very good in some special problems, especially in the large scale TSP. We can 
enlarge the size of population to improve the performance of TSP-PAISA. However, 
it will take a very long time to getting a satisfying solution. 

5   Concluding Remarks 

In this paper, we introduced an immune inspired computational model (G, I, R, Al), 
where G denotes exterior stimulus or antigen, I denotes the set of valid antibodies, R 
denotes the set of reaction rules describing the interactions between antibodies, and Al 
denotes the dynamic algorithm describing how the reaction rules are applied to 
antibody population. A specific Al, TSP-PAISA, based on the set of clonal selection 
rules and the set of immunodominance rules was proposed for solving TSPs. TSP-
PAISA was tested on 32 benchmark TSPs with 16 to 2392 cities and compared with a 
known TSP algorithm eISOM. The experiments indicated that TSP-PAISA 
outperforms the eISOM clearly. The results indicated that TSP-PAISA can obtain 
high quality solutions for most selected TSPs.  
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Abstract. A novel strategy termed as mutation history learning strategy 
(MHLS) is proposed in this paper. In MHLS, a vector called mutation memory 
is introduced for each antibody and a new type of mutation operation based on 
mutation memory is also designed. The vector of mutation memory is learned 
from a certain antibody’s iteration history and used as guidance for its further 
evolution. The learning and usage of history information, which is absent from 
immune clonal selection algorithm (CSA), is shown to be an efficient measure 
to guide the direction of the evolution and accelerate algorithm’s converging 
speed. Experimental results show that MHLS improves the performance of 
CSA greatly in dealing with the function optimization problems. 

1   Introduction 

The famous antibody clonal selection theory was put forward by Burnet in 1958. It 
establishes the idea that the antibodies can selectively react to the antigens. The clonal 
selection is a dynamic process of the immune system that self-adapting antigen 
stimulation. The cells are selected when they recognize the antigens and then 
proliferate. These biological characteristics can be used in the artificial immune 
system. 

On the basis of the antibody clonal selection theory, De Castro pioneered the 
Clonal Selection Algorithm (CSA) [1] in 2000. He applied it to many problems, such 
as binary character recognition, multi-modal optimization and traveling salesman 
problem (TSP). With the aim of solving the network intrusion detection problem, Kim 
constructed Dynamic Clonal Selection Algorithm (DynamiCS) [2] in 2002. 
DynamiCS endeavors to reduce the number of parameters of the algorithm and adjust 
them adaptively, which makes the algorithm much more robust. Licheng Jiao and 
Haifeng Du proposed a polyclonal strategy [3] in 2003. In this strategy, the 
recombination operation which dramatically speeds up the algorithm’s convergence is 
introduced. In recent years, researchers have shown an increasing interest in using the 
immune system as a powerful metaphor for the development of novel computational 
intelligence paradigms. Artificial immune systems become a new research hot spot 
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after the neural network, fuzzy logic and evolutionary algorithm [4]. The concept 
clone has been extensively applied to many fields such as learning and optimization 

[5], computer programming [6,7], system control [8], and interactive parallel 
simulation [9] and so on. 

Of all these clonal selection algorithms mentioned above, there is a common 
drawback. Among all the clone offsprings of a certain antibody, only the best one will 
be kept in the next generation and replace the old one, while the others which also 
embody some useful information about the optimization destination are discarded. It 
is obviously a waste of computing resources. The main idea of this study is to explore 
a method which can obtain more information from antibodies’ clonal mutation 
offsprings and use it as guidance for their further evolution. So, the mutation history 
learning strategy (MHLS) is proposed. In order to see weather MHLS helps to 
reinforce CSA’s searching capability, the improve CSA based on MHLS 
(MHLS_CSA) is used to solve the function optimization problems.  

2   Descriptions of Clonal Selection Algorithm 

Clonal selection algorithm was straightforward by Leandro Nunes de Castro in 2000. 
The algorithm works as in Fig.1, after each six steps we have one cell generation:  [1]. 
 

 

Fig. 1. Block diagram of the clonal selection algorithm 

Step1: Generate a set (P) of candidate solutions, composed of the subset of 
memory cells (M) added to the remaining (Pr) population (P = Pr + M); 

Step2: Determine (Select) the n best individuals of the population (Pn), based on an 
affinity measure; 

Step3: Reproduce (Clone) these n best individuals of the population, giving rise to 
a temporary population of clones (C). The clone size is an increasing function of the 
affinity with the antigen; 

Step4: Submit the population of clones to a hypermutation scheme, where the 
hypermutation is proportional to the affinity of the antibody with the antigen. A 
maturated antibody population is generated (C*); 

Step5: Re-select the improved individuals from C* to compose the memory set M. 
Some members of P can be replaced by other improved members of C*; 

Step6: Replace d antibodies by novel ones (diversity introduction). The lower 
affinity cells have higher probabilities of being replaced. 
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3   MHLS Based CSA for Function Optimization 

The mathematical model of function optimization is: 

1 2minimize   ( ) , ( , ,..., )mf x x x S= ∈x x  

in which, ( )f x  is the object function. mR⊆S is the m-dimensional searching space 

with border , 1,2,...,i ii
x xx i m≤ ≤ = . And it can be described as following:  

( ) ( )1 2 1 2
, , ...,, , , , , ...,m m

x x xx x x x x= = =xS x . 

As the affinity of an antibody must be a positive value, we construct a negative real 
function ( )g x in our algorithm. ( )g x  is consistent with ( )f x , in other words, for any 

two variables 1 2, S∈X X , if 1 2( ) ( )g g>X X  then 1 2( ) ( )f f>X X . So the original 

optimization problem becomes { }1minimize ( ( ))  g e− ∈A A I . Note ( )1 2, ,..., mx x x=X  

as a variable of the new optimization problem, and the limited-length real number 
string [ ]1 2, ,..., , 0,1 1,2,...,m ig g g g i m= ∈ =A  is the antibody coding of the 

variable X . Then A can be described by ( )e= XA .We call X is the decoding of 

antibody A. And it can be described by 1 ( )e−=X A . Then we can get: 

( ) , 1, 2, ...,i i ii ix x x x g i m= + − × =  (1) 

The set of all antibodies I  is called antibody space. ( )affinity A  is a positive real 

function on the set I , and it is called the antibody-antigen affinity function, defined as 
following: 

1( ) ( ( ))affinity g e−−=A A  (2) 

The antibody space is: 

{ }n
1 2: ( , , , ), , 1n k k n= = ∈ ≤ ≤I A A A A A A I  (3) 

In which the positive integer n is the size of antibody population, and the antibody 

population },,,{ 21 nAAAA =  is a set of  n antibodies. 

3.1   Mutation Memory 

In order to make full use of information which is achieved during iterations, an m-
dimensional vector termed as mutation memory is introduced for each antibody to act 
as the carrier of history information. And the mutation memory updating operation is 
added in to CSA after the modified mutation operation to from the MHLS_CSA. 

Note ( )TA as any antibody in current antibody population that has been iterated 

for T generations. ( ) ( ) ( ) ( ){ }1 2, , ..., qT T T T=Q A A A  as q clones of ( )TA . Then submit 

the cloned antibody set ( )TQ to the following described mutation operation, and note 
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( ) ( ) ( ) ( ){ }1 2, , ..., qT T T T′ ′ ′ ′=Q A A A as the set of mutated offsprings. Evaluate antibodies 

in ( )T′Q , and compare them with ( )TA . Then reselect the improved and degenerate 

antibodies to compose two populations ( ) ( ) ( ) ( ){ }1 1 2, , ..., jT T T T′′ ′′ ′′=P A A A  

and ( ) ( ) ( ) ( ){ }2 1 2, , ..., kT T T T′′′ ′′′ ′′′=P A A A respectively. The sizes of the improved 

antibody population ( )1 TP   and the degenerated antibody population ( )2 TP  satisfy 

the following inequation j k q+ ≤ . 

Definition 1. The mutation memory ( )TM  for any antibody ( )TA  in the population 

can be described by Equation (4) (5) and (6).  

( ) ( )( )
1

j

i

i i T T
=

′′= −S A A  (4) 

( ) ( )( )
1

k

i

d i T T
=

′′′= −S A A  (5) 

( )
( ) ( ) ( )

0 0

1

1 1    1

i d

i d

T

T T

T Tα α

=

= − =

× − + − × − >

M S S

M S S

 (6) 

In Equation (6), 0 is an m-dimensional zero vector, the symbols “+”,” ” and”−” are 
linear operators on vectors. The parameter α  which is termed as inertia factor is a real 
number parameter between 0 and 1. It represents the degree of retaining or forgetting 
of mutation history information. The operation of updating mutation memory will be 
taken after the mutation operation in MHLS_CSA. 

Seen from Equation (6), a part of the old mutation history information is fade from 
the history memory vector and the new mutation information provide by the latest 
iteration is introduced. The mutation memory updating operation picks up useful 
information from both advantage and disadvantage mutations in each iteration.  

3.2   Mutation Operation Using Mutation Memory 

The second part of MHLS is the modification of the CSA’s mutation operation to 
make use of useful information provided by mutation memories. The mutation 
operation straightforward can be divided in to two steps: first apply random 
hypermutation on the target antibody, and then regulate the maturated antibody using 
the mutation memory information. 

Let ( )TA is any antibody in current antibody population. ( )TM  is corresponding 

mutation memory vector. ( ) ( ) ( ) ( ){ }1 2, , ..., qT T T T=Q A A A  is q clones of ( )TA . For 

each antibody ( )i TA  ( i = 1,2,…,q ) in ( )TQ , apply a random hypermutation on it, 

giving rise to a temporary antibody ( )i TA . Then ( )i TA will be regulated by the 
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following approach. Note ( )i T′A  as the regulated antibody, the regulation approach is 

defined as Equation (7) and (8): 

( ) ( )ii T T= −D A A  (7) 

( ) ( ) ( ) ( )1ii T T Tβ β′ = + × + − ×A A M D  (8) 

This regulation above may lead to some invalid antibodies. If a certain antibody’s 
gene goes beyond the upper limit 1, this gene will be coded as 1. On the contrary, if 
the coding of a gene is smaller than the lower limit 0, it will be replaced by 0. 

To see the efficiency of MHLS, MHLS_CSA keeps the main operations of CSA 
unchanged except the modification of mutation operation and the affiliating of the 
mutation memory updating operation after it. 

4   Simulation Experiments 

In order to validate our improved strategy, MHLS_CSA is executed to solve the 
following test functions.  

2

1 min
1

( ) , 100 100 0
N

i i
i

f x x x f
=

= − ≤ ≤ =

2 min
1 1

( ) , 10 10 0
NN

i i i
i i

f x x x x f
= =

= + − ≤ ≤ =∏
4

3 min
1

( ) [0,1), 1.28 1.28 0
N

i i
i

f x ix random x f
=

= + − ≤ ≤ =  

2

4 min
1

( ) ( 10cos(2 ) 10), 5.12 5.12 0
N

i i i
i

f x x x x fπ
=

= − + − ≤ ≤ =  

2

5 min
1 1

( ) cos( ) 1, 600 600 0
4000

NN
i i

i
i i

x x
f x x f

i= =

= − + − ≤ ≤ =∏  

2
min

1
6

1 1
( ) 20exp 0.2 exp cos(2 ) 20 , 30 30, 0i i

N N

i
i i

f x x x e
N n

x fπ
=

= − − − + + − ≤ ≤ =  

These six standard test functions contain diversity of types. 1 2f f are single-peak 

functions. 3f is a four times function with noise. 4 6f f are multi-peak functions and 

there local optimal values increase with the dimension of variables [10]. 

4.1   Experimental Results 

The performances of CSA and MHLS_CSA in the task of function optimization are 
compared in the following figures. The average function evaluation curves in the 
following figures represent computing cost the algorithm spend to solve the function 
optimization problems.  
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For both CAS and MHLS_CSA, the population size is set as 20, the number of 
cloned antibodies n is set as 15, and the diversity introduction scale d is set as 3. For 
MHLS_CSA, there are two special parameters, the inertia factor α is set as 0.2 and 
the reviewing factor β  is set as 0.1.  

 

Fig. 2. Performance comparisons for f1                Fig. 3. Performance comparisons for f2 

 

Fig. 4. Performance comparisons for f3              Fig. 5. Performance comparisons for f4 

 

Fig. 6. Performance comparisons for f5                   Fig. 7. Performance comparisons for f6 

The algorithm will be finished when the generation time reaches its upper limit 
10000 or the precision demand 0.01ε =  has been satisfied. The experimental data in 
Fig.2 to Fig.7 are obtained from 50 times of independent running. 
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As shown in Fig.2 to Fig.7, MHLS_CSA solves function optimization problem 
with less function evaluation cost than CSA. On the basis of these experimental data, 
MHLS_CSA converges much faster than CSA. In addition, comparing with CSA, the 
average function evaluation curves of MHLS_CSA climb much slower as the variable 
dimension increases. The strategy of mutation history learning proposed in this study 
is shown to be effective for improving CSA’s searching performance.  

4.2   Parameter Selection  

There are two parameters special in MHLS: the inertia factor α and the reviewing 
factor β. The values of these two parameters are both real number between 0 and 1. 
Experiments have been done to investigate the performance for different parameters. 
Four typical test functions f1, f3, f4 and f6 are taken into account. 

Fig.8 to Fig.11 are the graphs of the variation of MHLS_CSA’s performance with 
the two parameters. Experimental data are obtained from 50 times of random running. 

        

Fig. 8. Affection of α  with dimension 100     Fig. 9. Affection of α  with dimension 1000 

     

Fig. 10. Affection of β  with dimension 100      Fig. 11. Affection of β  with dimension 1000 

As shown in Fig.8 and Fig.9, these curves obtain their minimum vales when the 
value of inertia factor α is between 0.05 and 0.3. Seen from these curves in Fig.10 and 
Fig.11, the algorithm is not sensitive to the setting of β.  
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5   Concluding Remarks 

In this paper, a strategy which is termed as mutation history learning strategy (MHLS) 
was proposed. Based on MHLS an improved CSA (MHLS_CSA) was also put 
forward. To validate the effectiveness of MHLS, the MHLS_CSA was executed to 
solve six standard test functions with different types. By comparing the performance 
of MHLS_CSA with that of standard CSA, we can find that MHLS is capable of 
making full use of the history information which is achieved from the assuming and 
testing iterations and accelerating CSA’s convergent speed. Finally, the selection of 
two special parameters of MHLS is investigated. Experiment results indicate that the 
proposed algorithm performs stably at a large range of parameter values, which 
proves the algorithm to be quite robust and easy to use. 

It is necessary to note that MHLS was designed for real number coding CSA. The 
development of suitable mutation history learning strategy for other coding modes 
suggests a natural direction for the future work. 
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Abstract. This paper proposes a new immune clonal algorithm, called a quan-
tum-inspired immune clonal algorithm (QICA), which is based on the concept 
and principles of quantum computing, such as a quantum bit and superposition 
of states. Like other evolutionary algorithms, QICA is also characterized by the 
representation of the antibody (individual), the evaluation function, and the 
population dynamics. However, in QICA, an antibody is proliferated and di-
vided into a subpopulation. Antibodies in a subpopulation are represented by 
multi-state gene quantum bits. For the novel representation, we put forward the 
quantum mutation operator which is used at the inner subpopulation to acceler-
ate the convergence. Finally, QICA is applied to a practical case, the multiuser 
detection in DS-CDMA systems, with a satisfactory result. 

1   Introduction 

Immune clonal algorithm (ICA) [1] is principally a stochastic search and optimization 
method based on the clonal selection principle in the artificial immune system (AIS). 
Compared to traditional optimization methods, such as calculus-based and enumera-
tive strategies, ICA are robust, global, and may be applied generally without recourse 
to domain-specific heuristics.  

In [2], quantum-inspired computing was proposed. Unlike other research areas, 
there has been relatively little work done in applying quantum computing to AIS. We 
firstly proposed a quantum-inspired immune clonal algorithm (QICA) for solving the 
high dimensional function optimization problems in [3]. It should be noted that al-
though QICA is based on the concept of quantum computing, QICA is not a quantum 
algorithm, but a novel optimization algorithm for a classical computer. In this paper, 
we apply QICA to the multiuser detection in asynchronous DS-CDMA systems. 

The paper is organized as follows. Section 2 describes QICA. Section 3 presents an 
application example with QICA, and summarizes the experimental results. Conclud-
ing remarks follow in Section 4. 

2   QICA 

2.1   Representation 

QICA use a new representation, called on a quantum bit or qubit, for the probabilistic 
representation that is based on the concept of qubits, and a qubit antibody as a string 
of qubits, which are defined below. 
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Definition 1. The probability amplitude of one qubit is defined with a pair of numbers 
( , )α β  as  

α
β

, (1) 

satisfying 
2 2

1α β+ = , (2) 

where 
2α  gives the probability that the qubit will be found in the ‘0’ state and 

2β gives the probability that the qubit will be found in the ‘1’ state. 

Definition 2. A qubit antibody as a string of m qubits is defined as: 

1 2

1 2

...

...
m

m

α α α
β β β , (3) 

where
2 2

1, ( 1,2,..., ).l l l mα β+ = =   

2.2   Immune Clonal Algorithm 

Clonal Selection Theory is put forward by Burnet [4]. It is used in the immune system 
to describe the basic features of an immune response to an antigenic stimulus. It 
establishes the idea that only those cells that recognize the antigens proliferate, thus 
being selected against those which do not. Based on the clonal selection theory, 
Immune Clonal Algorithm (ICA) is proposed. The ICA used in this paper is an 
antibody random map induced by the affinity including three steps [5]: clone operator, 
immune genetic operator and clonal selection operator. The state transfer of antibody 
population is denoted as follows: 

clo ne o perator im m une gen etic opera tor selection      op erator( ) '( ) ''( ) ( 1).A t A t A t A t⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯→ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯→ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯→ +
 

Here ( )A t  is antibody population based on classical bit at t-th generation. 
Antibody, antigen, affinity between antibody and antigen are similar to the definitions 
of the possible solution, the objective function (and restrictive condition), the fitness 
between solution and the objective function, respectively. It can be found out that ICA 
obtains good local searching ability at a cost of adding the scale of the population by 
clone operation. As a result, we adopt qubit representation which has powerful 
parallel and the corresponding immune genetic operator in order to speed up the 
convergence. We present the proposed QICA in the following section.

 

2.3   The Quantum-Inspired Immune Clonal Algorithm (QICA) 

In Fig 1, we describe its critical steps in detail. Where ( )Q t , ( )P t , D(*) and B(t) mean 
the antibody population based on qubit at the t-th generation, the antibody population 
based on classical bit at the t-th generation, the avidity function, and the best solutions 
in the t-th generation’s subpopulation, respectively. 
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Algorithm1. The quantum-inspired immune clonal algorithm 
Step1. Initialize ( )  and   ( )Q t B t , t=0. 

Step2. Generate )(' tQ from Q(t) by the clonal operator Θ . 

Step3. Update )(' tQ  by quantum mutation. 

Step4. Produce '( )P t by observing the updated )(' tQ . 

Step5. Evaluate the affinity of '( )P t , by clonal selection operator produce B(t) and 

record the corresponding qubit to generate next generation Q(t+1). 
Step6. Store the best solutions among B(t) to b and judge the termination condition, 
if it is satisfied, then output the best solution, and else go to step2. 

Fig. 1. The quantum-inspired immune clonal algorithm 

The major elements of QICA are presented as follows. 

 The Quantum Population  
QICA maintains a quantum population 

1 2( ) { , , }t t t
nQ t q q q=  at the t-th generation 

where n is the size of population, and m is the length of the qubit antibody t
iq which is 

defined as: 1 2

1 2

... , 1, 2,...,

...

t t t
t m

t t ti
m

q i nα α α
β β β= = . In step1 all t

lα and t
lβ  of t

iq  

( 1, 2,..., ;  0l m t= = ) are randomly generated between -1 and 1 and satisfying 
2 2

1, ( 1,2,..., ).t t
l l l mα β+ = =  

 Clonal Operator 
The clonal operator Θ  is defined as: 

1 2( ( )) [ ( ) ( ) ( )]T
nQ t q q qΘ = Θ Θ Θ , (4) 

where ( ) , 1,2i i iq I q i nΘ = × = , and iI is iC  dimension row vectors. Generally, iC is 

given by: 

( , ( )) 1,2i c iC g N D q i n= = , (5) 

which can be adjusted self-adaptively by the affinity D(*). Nc is a given value relating 
to the clone scale. After clone, the population becomes: 

1,'( ) { ( ), ' ' }nQ t Q t q q= , (6) 

where: 

1 2 1' ( ) { ( ), ( ), , ( )}, ( ) ( )
ii i i iC ij iq t q t q t q t q t q t−= = 1,2, , 1ij C= − . (7) 

 Immune Gene Operator 
In the following, we give a simple mutation method (namely quantum mutation) to 
evolve the qubit antibody. It deduces a probability distribution in terms of the current 
best antibody. It is also much simpler, whose process is: define a guide qubit antibody 
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from the current best antibody which is stored in B(t) and spread the mutated qubit 
subpopulation with this guide qubit antibody being the center. Quantum mutation can 
be written as: 

( ) ( ) (1 ) (1 ( ))guide currentbest currentbestQ t a B t a B t= × + − × − , (8) 

' *''( ) ( ) (0,1), ( 1,2,..., )i iguideq t Q t I b N i n= + × = , (9) 

Where ( )currentbestB t , guideQ  and (0,1)N are the current best antibody based on 

classical bit in subpopulation, the guide qubit antibody at the t-th generation and a 
random number, chosen from a normal distribution with mean zero, variance one and 
standard deviation one, respectively. ''( )iq t  is the mutated qubit subpopulation. a is 

the guide factor of guideQ and b is the spread variance. '
iI  is ( 1)iC −  dimension unit 

row vectors (see equation 5), namely the quantum mutation is unused to ( ) '( )Q t Q t∈ . 

For easy to comprehend, an example is given. Obviously, we only need to let ''q  = (0 

0 1 1 0) to get B = (1 1 0 0 1) with probability 1, i.e., ''q B= . If P is the optimum, the 

probability of getting the optimum becomes larger with a becoming smaller. When 
a=0, guide BQ = , one will get B with probability 1 after observing guideQ . Often we 

let [0.1,0.5]a ∈ , [0.05,0.15]b∈ . 

 Observing Operator 
In Step4, in the act of observing a quantum state, it collapses to a single state (namely 
classical representation). For binary coding problem, we observe the updated )(' tQ  

(namely ''( )Q t ) and produce binary stings population 1 2'( ) { , , , }t t t
nP t x x x=  and 

 ( 1,2,..., )t
ix i n=  is a numeric string of length m which derives from '' t

lα  or ''t
lβ  

(l=1,..,m). The process is: generate a random number p [0,1]∈ . If it is larger 

than
2'' t

lα , the corresponding bit in '( )P t  takes ‘1’, else takes ‘0’.  

 Clonal Selection Operator 
The operation as follows, if we will search maximal value of object function: 
for ni ,2,1=∀ , if there is the mutated and observed classical antibody 

ib and ( ) max{ ( ) | 2,3, }i ij iD b D x j C= = , namely: ( ) ( ' )i iD b D x> , then bi replaces 

the antibody 'ix  in the original population. And record the corresponding qubit of bi 

as the next generation population Q(t+1) at the same time. The antibody population is 
updated, and the information exchanging among the antibody population is realized. 

 The Termination Condition 
The termination condition is the given number of generation. 

We have proved that QICA is convergent with probability of 1 based on Markov 
Chain. [3] 
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3   Simulations 

In recent years, DS-CDMA systems have emerged as one of prime multiple-access 
solutions for 3G. In the DS-CDMA framework, multiple-access interference (MAI) 
existing at the received signal creates “near-far” effects. Multiuser detection (MUD) 
techniques can efficiently suppress MAI and substantially increase the capacity of 
CDMA systems, so it has gained significant research interest since the Optimal MUD 
(OMD) was proposed by Verdu [6].  

In this section, we apply QICA to solve MUD, and named by QICAD. We present 
some simulation results and comparisons that demonstrate the advantage of our algo-
rithm. The performance of the QICAD is evaluated via computer simulations and 
compared with that of Standard ICA (see section 2.2) (ICAD) and Optimal Multiuser 
Detector (OMUD) as well as with that of conventional Matched Filters Detector 
(MFD) in asynchronous DS-CDMA systems. 

3.1   Problem Statements 

Consider a base-band digital DS-CDMA network with K active users operating with a 
coherent BPSK modulation format. The signal received at the output of the sensor is: 

1

0 1

( ) ( ) ( ) ( ) ( , ) ( )
M K

k k k b
i k

r t A b i s t iT n t S t b n t
−

= =

= − + = + , (10) 

here ( )n t  is the additive white noise vector whose standard deviation is σ , bT  is the 

symbol interval, M is the packet length, kA  is the signal’s amplitude of the k-th user, 

( )kb m is the m-th coded modulated symbol of the k-th user and { }( ) 1kb m ∈ ± , ( )ks t  is 

the k-th user’s signature sequence. 
The matched filter output corresponding to the m-th bit of the k-th user is given by: 

( ) ( ) ( )k k b ky m r t s t mT dtτ
∞

−∞
= − − . (11) 

If set 1 2( ) [ ( ), ( ),..., ( )]T
Ky m y m y m y m= , 1 2( ) [ ( ), ( ),..., ( )]T

Kb m b m b m b m=  , 

1 2( ) diag ( , ,..., )KA m A A A= , 1 2( ) [ ( ), ( ),..., ( )]T
Kn m n m n m n m=  and ( ) ( ( ))kl K KR q qρ ×= , 

where ( ) ( ) ( )
k

k

T

kl k k l lq s t s t qT dt
τ

τ
ρ τ τ

+
= − + −  then  

y RAb n= + , (12) 

where [ ( ), ( 1),..., ( 1)]Ty y m y m y m M= + + − , [ ( ), ( 1),..., ( 1)]Tb b m b m b m M= + + −  , 

diag ( ( ), ( 1),..., ( 1))A A m A m A m M= + + − , [ ( ), ( 1),..., ( 1)]Tn n m n m n m M= + + − . 

The OMD produces an estimate for the information vector transmitted at the dis-
crete-time instant m. In the asynchronous systems it holds that 

{ }
{ }optimal

( ) 1
1 ,1

ˆ arg   max 2
k

T T

b m
k K m M

b b Ay b ARAb
∈ ±

≤ ≤ ≤ ≤

= − . (13) 
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3.2   QICA for Multiuser Detection 

Assume that K active users share the same channel and the packet length is M, then 
definition (13) can be described as a combination optimization problem as 

{ }max ( ) 2 ,T Tf b b Ay b ARAb b I= − ∈ , (14) 

where { } { }(1) (1) (1) ( ) ( ) ( ) ( )
1 2 1 2[ , ,..., ],...,[ , ,..., ] , 1

k

M M M m
K Kb b b b b b b b= ∈ ±  is the variants to be 

optimized, I denotes the antibody space. The value of affinity D(b) is equal to the  
value of the objective function f(b), and set In denotes the antibody population  
space as 

1 2{ : ( , ,..., ), ,1 }n
n kI B B b b b b I k n= = ∈ ≤ ≤ , (15) 

in which 1 2( , ,..., )nB b b b= is the antibody population, n is the size of the antibody 

population, and antibody { }(1) (1) (1) ( ) ( ) ( )
1 2 1 2[ , ,..., ],...,[ , ,..., ]M M M

i i i Ki i i Kib b b b b b b= . In this ex-

periment, the main operators of QICA are the same as those given in section 2.3, but 

the observing operator is: generate a random number p [0,1]∈ . If it is larger than
2t

lα , 

the corresponding bit in '( )P t  takes ‘1’, else takes ‘-1’. For Standard ICA, it does not 

apply qubit antibody design and quantum mutation operator. Gaussian mutation is 
used on the classical numeric representation. 

It is assumed that the number of users is K and the packet length is M, Gold se-
quences of length 31 are used as code sequences. The signal to noise ratio of the k-th 
user is 2 2SNR / 2*k kA σ=  where 1=σ . For QICAD and ICAD, we will terminate 

the search at the Y-th generation where 2Y K M= × × . In two algorithms above, the 
size of initial population is 5, the clonal sizes is 10, and pm=0.5. We take all the ex-
periments based on 10000 bits signals. Our performance metric is the average Bit 
Error Ratio (BER). 

A. In order to gain the results of the OMUD, we assumed that K=3, M=3 and 
SNR=10 dB. The first user is the desired user while other users are disturbing users 
and all users have the same power. The ratio of power between disturbing users and 
desired user denotes the ratio of ‘near-far’. The performances in ‘near-far’ resistance 
of mentioned receivers are shown in Fig. 2(a). 

B. It is assumed that K=10 and M=10. All users have the same power, changing the 
value of SNR from -2 dB to 10 dB. The performances in eliminating noise’s disturb-
ing of mentioned receivers are shown in Fig. 2(b). 

C. It is assumed that M=10 and SNR=10 dB, the number of users K is changed 
from 5 to 30, all users have the same power. The performances in accommodating 
users of mentioned receivers are shown in Fig. 2(c). 

D. It is assumed that SNR=10 dB, K=10, the packet length is changed from 5 to 30, 
all users have the same power. The performances in accommodating packet length of 
mentioned receivers are shown in Fig 2(d). 
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Fig. 2. The simulation results 

As we can see from Fig. 2(a), the conventional detector produces the receivable  
estimate only when powers of the users are close to each other. The QICAD and 
ICAD are better than conventional detector. But ICAD’s performance is unacceptable 
when powers of disturbing users are much larger than that of desired user. As we 
expect, QICAD exhibits the best performance and seldom fails to produce the correct 
estimate for the transmitted symbols, so its performance is almost the same good as 
the OMD. When the cumulative BER is evaluated versus the value of the SNR of all 
the users, from Fig. 2(b) we can see that QICAD receiver achieves acceptable per-
formance, whereas the performances of conventional detector and ICAD are very 
poor. When the number of users or the transmitted packet length is relatively large, 
the advantage of QICAD can be seen in Fig 2(c) and Fig 2(d). The simulations sug-
gest that, QICAD detector still performs quite well when K and M are relatively large. 
These results indicate that quantum representation design and quantum mutation  
operator can effectively improve the standard ICA. 

4   Conclusions 

This paper proposed a novel immune clonal algorithm-QICA, inspired by the concept 
of quantum computing. The qubit representation has a better characteristic of 
population diversity than other representations. Due to the novel representation, we 
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put forward the quantum mutation operator which is used at the inner subpopulation 
to accelerate the convergence. The application in the CDMA proves its superiority to 
its counterpart. The application of QICA to other problems such as the multiobjective 
optimization problem deserves our further research. 

References 

1. De Castro, L. N., Von Zuben, F. J.: Artificial Immune Systems: Part II—A Survey of 
Applications. FEEC/Univ. Campinas, Campinas, Brazil. [Online]. Available: http://www. 
dca.fee.unicamp.br/~lnunes/immune.html (2000) 

2. Moore, M., Narayanan, A.: Quantum-Inspired Computing. Dept. Comput. Sci., Univ. Exe-
ter, Exeter, U.K., (1995) 

3. Li, Y.Y., Jiao, L.C.: Quantum-Inspired Immune Clonal Algorithm. in Proceedings of the 4th 
International Conference on Artificial Immune Systems, Christian Jacob, Marcin L. Pilat, 
Peter J. Bentley, et al, Eds. Banff, Alberta, Canada, Aug (2005) 304 – 317  

4. Burnet, F. M.: Clonal Selection and After .In Theoretical Immunology, Bell, G. I., Perelson, 
A. S., pimbley Jr, g. H.( eds.) Marcel Dekker Inc., (1978) 63-85 

5. Du, H. F., Jiao, L.C., Wang, S.A.: Clonal Operator and Antibody Clone Algorithms. in Pro-
ceedings of the First International Conference on Machine Learning and Cybernetics. 
Shichao, Z., Qiang, Y. and Chengqi, Z., Eds. IEEE, Beijing, (2002) 506–510 

6. Sergio, V.: Optimum Multiuser Asymptotic Efficiency. IEEE Trans. Commun., Vol. 34, No. 
9, (1986) 890-897 



Innate and Adaptive Principles for an Artificial
Immune System

M. Middlemiss and P.A. Whigham

Information Science Department,
University of Otago,

Dunedin, N.Z.
MMiddlemiss@infoscience.otago.ac.nz

Abstract. This paper summarises the current literature on immune
system function and behaviour, including pattern recognition receptors,
danger theory, central and peripheral tolerance, and memory cells. An
artificial immune system framework is then presented based on the analo-
gies of these natural system components and a rule and feature-based
problem representation. A data set for intrusion detection is used to
highlight the principles of the framework.

1 Introduction

The vertebrate immune system provides a multilayered form of defence capa-
ble of identifying and responding to harmful stimulus. This paper presents a
framework for an artificial immune system (AIS) that incorporates innate and
adaptive concepts capable of recognising dangerous behaviour within an intru-
sion detection data set (KDD’99 Cup Data set [1]). The reader is referred to [2]
for a review of current AIS literature. The paper is structured as follows: §2
presents properties of the innate immune system; §3 presents the basic opera-
tions of the adaptive immune systems; §4 describes the analogies between the
immune system and the components of the AIS framework; and §5 outlines the
framework itself.

2 Innate Immune System

The innate immune system consists of germ-line encoded specialised cells that
are responsible for the initial immune response [3]. There are two theories for
how these cells determine the need to initiate an immune response. Accord-
ing to Janeway [4] the antigen presenting cells (APCs) of the innate immune
system (such as macrophages) have pattern recognition receptors (PRRs) on
their cell surface. These PRRs recognise pathogen associated molecular pat-
terns (PAMPs) which are found on the cell surface of invading pathogens and
never on the host (refer Figure 1.1.a). These molecular patterns have been con-
served through evolution and are common to many pathogens. For example, the
CD14 receptor binds to a particular molecule (lipopolysaccharide-LPS ) which is
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Fig. 1. Simplified model of immune system function

found only in the cell wall of Gram-negative bacteria, e.g. E-coli., Neisseria, and
Salmonella [5].

An alternative view is that of the danger theory proposed by Matzinger [6,7].
This theory proposes that APCs, in particular the dendritic cell (DC), have dan-
ger signal receptors (DSRs) which recognise alarm signals sent out by distressed
or damaged cells. It is these signals that inform the immune system to initiate
an immune response [7] (refer Figure 1.1.b). Evidence for these signals has been
found in the form of molecules such as heat shock proteins and mitochondrial
products which are released from necrotic cells and stimulate DCs.

Although the theories behind PRRs and DSRs are different, they do share
some commonalities. In particular they both share the idea that APCs require
a signal to initiate an immune response. The danger signals released by necrotic
cells during death are mitochondria and as such are essentially intracellular
bacteria. This means that the same mechanisms may be employed to detected
foreign pathogens as well as to detect the death of host cells [8].

3 Adaptive Immune System

When an adaptive immune response is required the APC internalises the pathogen
(antigen) and breaks it down into peptides which are presented on the surface in a
complex with a special self-MHC (Major Histocompatibility Complex) molecule
(refer Figure 1.2). MHC is a highly polymorphic molecule, with an estimated 1013

possible combinations [5]. Humans inherit genes for about six different MHC
molecules, promoting diversity within the population [3]. The specialised cells
responsible for this functionality are called lymphocytes, of which there are two
types: T and B cells1. Lymphocytes circulate through the blood and lymphatic
systems waiting to encounter antigens. Each antigen has a particular shape that
is recognised by the receptor present on the lymphocyte cell surface. The ability of
the immune system to recognise and respond to the millions of different antigens
that it encounters comes from the large lymphocyte receptor repertoire. Lympho-
cyte development produces the ability to control the response against harmful

1 For the purposes of the simplified immune model presented here, we only discuss the
involvement of T cells.
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pathogens while ignoring harmless pathogens and self-tissues. This ability is de-
veloped through the mechanisms of central and peripheral tolerance.

3.1 Central Tolerance

Central tolerance occurs in the thymus during the development of immature lym-
phocytes through the processes of negative and positive selection. For T cells to
perform effectively they must be able to bind to the MHC:peptide complex pre-
sented to them by an APC. According to the differential signalling hypothesis [4],
two different structures combine to form the T cell receptor: a germline encoded
structure (anti-R) which provides allele-specific recognition of the MHC-encoded
restricting element (R); and a somatically encoded structure (anti-P) which pro-
vides specific recognition of the peptide (P) bound to the MHC [9]. Through
positive selection, only T cells whose anti-R structure is able to recognise the
MHC restricting element (R) are retained. Additionally through negative selec-
tion, T cells whose anti-P structure binds with self peptides (self-P) are removed.
This central tolerance reduces the potential of T cells to enter the body and cause
an auto-immune reaction against harmless self cells.

While central tolerance removes self-reactive T cells, if it were highly restric-
tive the available repertoire of T cells would be limited and the immune systems
would be compromised [8]. For this reason, central tolerance deletes the most
self-reactive T cells and allows some T cells with limited self-reactivity to leave
the thymus.

3.2 Peripheral Tolerance

Peripheral tolerance is the process of controlling self-reactive T cells to min-
imise the potential of auto-immune responses [8]. When a T cell does bind to an
antigen, if it does not succumb to peripheral tolerance, it must have recognised
the MHC:peptide complex presented by the antigen presenting cell (refer Fig-
ure 1.3). This requires the anti-R structure of the T cell receptor to bind to the
self-MHC (R) of the antigen presenting cell, and the anti-P structure to bind to
the peptide (P) that is from the bacteria or pathogen causing harm. When these
bindings occur, an immune response is initiated.

3.3 Memory

When something harmful enters the body only a small number of cells have
receptors capable of initiating an immune response. This leads to clonal selection
where those lymphocytes that have been activated proliferate (generate clones
of the original lymphocyte) and differentiate (become either effector cells or
memory cells). As most lymphocyte clones eventually die and effector cells have
a short lifespan, the immune system uses memory cells to prevent the loss of
all lymphocytes which would leave the individual susceptible to infection and
disease [3]. Memory cells provide the immune system with a method of lasting
protection [4].
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4 Analogy Between HIS and AIS

The main aspects of the model presented are:

– The role of antigen presenting cells in the innate immune system and their
ability to recognise conserved PAMPs and danger signals with pattern recog-
nition receptors (PRRs) or danger signal receptors (DSRs);

– The role of antigen presenting cells in the adaptive immune system and their
ability to break down and present peptides to T cells in a MHC:peptide
complex;

– The development of T cells through the mechanisms of central tolerance;
– The control of auto-immune responses through peripheral tolerance;
– The initiation of immune responses by T cells that recognise the MHC:peptide

complex presented by antigen presenting cells; and
– Adaptation in the system provided by the development of memory cells.

Table 1 outlines the components of this model and proposes the component of
the artificial immune system model used in this framework.

Table 1. Comparison of components from real and artificial immune system models

Immune System Model Artificial Immune System Model

Antigen Presenting Cell Antigen Presenting Cell
-PRR / DSR -Rule extracted from background knowledge
-MHC -Feature mask from local MHC set

MHC Feature mask
T cell T cell

-Anti-P -Rule negatively selected
-Anti-R -Feature mask positively selected

Central Tolerance Negative and Positive selection of T cells during
development

Peripheral Tolerance Removal of T cells that respond to normal data
examples

Memory cells T cells formed through cloning and mutation after
immune response

In the immune system model an APC is a detector that uses its receptor to
recognise conserved patterns that are known to be foreign or dangerous. In our
AIS model background knowledge of computer attacks are used to extract rules
that can describe these attacks.

When an APC detects a foreign or dangerous pathogen it internalises and
breaks it down into smaller peptides which are presented by the MHC molecule
to a T cell. This process is analogous to the MHC performing a feature selection
where the peptide is presented with particular features, that the T cell can
recognise. For this reason, MHC is represented in our AIS model as a feature
mask.
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As described in §2, MHC promotes diversity of recognition and response
within a population of individuals. Previous work [10] has used random per-
mutation masks applied to T cells to model the concept of diversity that MHC
provides a population. Rather than using a random mask, in our model each
invidual has a local MHC set that is derived from background knowledge of
normal and dangerous behaviour. This data is used to develop a set of feature
masks that represent important features in the data. Within a population, each
individual may have a different set of background knowledge and thus a slightly
different set of MHC masks. This leads to an artificial APC which comprises a
rule and an associated feature mask. The feature mask is selected from the local
MHC set. For example, if the rule described a Denial of Service (DOS) attack,
the mask selected may describe features specific to Ping-of-Death.

During development, T cells are subjected to central tolerance. In our AIS
model a T cell is a randomly initialised rule which represents the anti-P part of
the T cell receptor, and an associated feature mask representing the anti-R part
of the T cell receptor. During central tolerance, artificial T cells are presented
with a subset of background knowledge of normal system behaviour and any
cells with a rule that match this data are removed. A threshold is used in this
matching, analogous to the immune system where negative selection removes
only those cells that bind the strongest and provide the biggest risk of initiating
auto-immune responses. The remaining artificial T cells are then presented with
the local MHC mask set and only cells that have a mask which matches (above
a threshold) of one or more of these MHC masks are retained.

Peripheral tolerance is modelled as follows: periodically during the system
operation known normal data examples are presented to the system. It is likely
that one or more artificial APC will match these data examples, in a similar
manner to how self-proteins are continuously being sampled by APCs and pre-
sented to T cells in the immune system. However, in this case if any artificial
T cells match the peptide presented by the artificial APC they are removed to
reduce the auto-immune, or false positive, responses of the system.

In the AIS memory cells are modelled as a special form of T cell. When a
response is given by the AIS the T cell or cells involved in that response are
cloned. Each clone is mutated in order to produce a T cell that would provide
a better match on subsequent presentations of the data example causing the
response.

5 AIS Framework

For this framework the assumption is made that data is classified as either
anomalous or normal. It is further assumed that anomalous data can then be
classified into one or more classes, with each class having one or more subclasses.
The KDD’99 Data Set fits these assumptions and is used to highlight principles
of the framework.



Innate and Adaptive Principles for an Artificial Immune System 93

5.1 Module 1: Initialisation

Initialisation involves offline generation of the local MHC set, APC set and initial
T cell set. The local MHC set is generated using background knowledge of both
normal and dangerous (not normal, or anomalous) data. For each subclass within
the anomalous data, a feature mask is extracted in the form of a binary string.
The method presented here uses an Information Gain (IG) ranking to select
features with an IG ratio above a set threshold. This leads to a set of masks
with varying numbers of features, which are highly specific to known types of
anomalous behaviour. This type of MHC representation differs slightly from
previous papers [11,10]. Our approach is similar to that of Hofmeyr, except that
their masks are randomly generated whereas ours represent features related to
anomalous data.

Generation of the APC set begins with extracting rules describing anomalous
data from the background knowledge. A set of rules is extracted for each class
within the anomalous data, and then each rule is paired with a mask from the
local MHC set. This pairing randomly matches a rule for a particular class of
anomalous data with a MHC mask relating to a specific attack within that class.
For example a rule describing the DOS class may be paired with a Ping-of-death
mask or with a SYNflood mask, both of which are specific types of DOS attacks.
This leads to a set of artificial APCs which are each represented by a rule and
a mask.

Finally, the initial T cell set, which will evolve over time, is generated. Each
T cell consists of a random feature mask (anti-R) and a random rule (anti-
P). For each T cell, positive selection is performed where the T cell mask is
compared with masks in the local MHC set. Only T cells that match above a
given threshold are retained to ensure they are able to recognise the MHC mask
of the artificial APCs.

T cells that survive positive selection are subjected to negative selection as a
model of central tolerance. The feature mask is applied to the T cell rule and this
masked rule is compared with a random sample of the background knowledge
of normal data. Negative selection has been widely researched in the area of
artificial immune systems [12]. Kim and Bentley [13] have shown that with an
increased definition of ‘self’, or normal, it becomes computationally inefficient
to find a set of detectors that adequately covers the “non-self”, or dangerous,
space while minimising the false negative error. However, by using a generalised
representation of background knowledge via rules these scaling problems are
largely overcome.

5.2 Module 2: Adaptation

Each T cell has a given life span which decreases with every example presented
to the system. When one cell reaches the end of its life span it is removed and
a new T cell is created. Whenever a T cell is involved in a response it is cloned
and mutated (proportional to strength of the match) in order to find a better
matching T cell. This new T cell is then added to the memory T cell set.
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5.3 Module 3: Evaluation

An example (refer Fig. 2) is presented to the system and the cells of the artificial
immune system work together to determine if a response should be produced.

Fig. 2. Flow chart of evaluation module

Initially the example is matched with any T cells in the memory T cell set.
Theses cells have been formed through the adaptation module. If there are no
memory T cells, or none that match the example, the data is passed to the
APC set. The example is evaluated by the antigen presenting cells which use
their knowledge of common patterns in anomalous data (their PRR/DSR rules)
to assess the example. A 100% match would indicate the example is likely to
be anomalous and, without signalling the adaptive immune system, an alert is
produced. If there are no APCs with a rule that match the example, it is assumed
to be normal or harmless and the evaluation of that data example is complete.

Alternatively, if the match is not exact, but is above a set threshold, the
APC signals the T cells by internalising the data example. This is achieved by
applying the feature mask to the data example so that features specific to the
class of data the APC has detected are presented. T cells are now signalled and
any which have a MHC mask that is similar to the APC, or are able to recognise
the self-MHC molecule in the MHC:peptide complex presented by the APC, are
selected. The T cells must also be able to recognise the peptide presented in the
complex. This evaluation is performed by masking the T cell rule with the T cell
mask and evaluating the data example with this rule. Note that it is possible that
multiple APCs can be activated by a data example, but not be co-stimulated by
a T cell. If a response is produced from the system by T cells interacting with
the APCs, the adaptation phase is initiated (§5.2).

6 Conclusion

This paper has described a simplified view of the immune system and charac-
terised some of the known properties of this system in terms of a rule and feature-
based model. The framework demonstrates how the immune system principles
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can be mapped to an innate and adaptive set of principles incorporating concepts
of MHC, positive and negative selection in a manner that has not previously been
considered.

References

1. The UCI KDD Archive: Kdd cup 1999 data, Last Modified: 28 Oct 1999,
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (1999)

2. Hart, E., Timmis, J.: Application areas of ais: The past, the present and the future.
In Jacob, C., Pilat, M., Bentley, P., Timmis, J., eds.: 4th International Conference
on Artificial Immune Systems (ICARIS 2005). Volume 3627. (2005) 126–138

3. Playfair, J., G., B.: Infection and immunity. 2nd edn. Oxford University Press,
Oxford; New York (2004)

4. Janeway, C., Travers, P.: Immunobiology : the immune system in health and
disease. 5th edn. Current Biology ; Garland Pub., London ; San Francisco New
York (2001)

5. Lydyard, P.M., Whelan, A., Fanger, M.W.: Immunology. 2nd edn. Instant Notes
Series. London: Bios Scientific (2004)

6. Matzinger, P.: Tolerance, danger, and the extended family. Annual Reviews of
Immunology 12 (1994) 991–1045

7. Matzinger, P.: The danger model: A renewed sense of self. Science 296 (2002) 301
8. Walker, L., Abbas, A.: The enemy within: keeping self-reactive t cells at bay in

the periphery. Nature Reviews Immunology 2 (2002) 11–19
9. Cohn, M.: An alternative to current thinking about positive selection, negative

selection and activation of t cells. Immunology 111 (2004) 375–380
10. Hofmeyr, S., Forrest, S.: Immunity by design: An artificial immune system. In

Banzhaf, W., et. al., eds.: Genetic and Evolutionary Computation Conference
(GECCO). (1999) 1289–1296

11. Kim, J., Ong, A., Overill, R.E.: Design of an artificial immune system as a novel
anomaly detector for combating financial fraud in the retail sector. In Sarker, R.,
et. al., eds.: Congress on Evolutionary Computation, Canberra, Australia, IEEE
Press (2003) 405–412

12. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination
in a computer. In: IEEE Symposium on Research in Security and Privacy, IEEE
Computer Society Press (1994) 202–212

13. Kim, J., Bentley, P.: Towards an artificial immune system for network intrusion
detection: An investigation of clonal selection with a negative selection operator.
In: Proceedings of the 2001 Congress on Evolutionary Computation CEC2001.
(2001) 1244–1252



T.-D. Wang et al. (Eds.): SEAL  2006, LNCS 4247, pp. 96 – 103, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Immune-Based Dynamic Intrusion Response Model 

SunJun Liu, Tao Li, Kui Zhao, Jin Yang, Xun Gong, and JianHua Zhang 

School of Computer Science, Sichuan Univ., Chengdu, 610065, China 
liusunjun@163.com, litao@scu.edu.cn 

Abstract. Inspired by the immunity theory, a new immune-based dynamic in-
trusion response model, referred to as IDIR, is presented. An intrusion detection 
mechanism based on self-tolerance, clone selection, and immune surveillance, 
is established. The method, which uses antibody concentration to quantitatively 
describe the degree of intrusion danger, is demonstrated. And quantitative cal-
culations of response cost and benefit are achieved. Then, the response  
decision-making mechanism of maximum response benefit is developed, and a 
dynamic intrusion response system which is self-adaptation is set up. The ex-
periment results show that the proposed model is a good solution to intrusion 
response in the network. 

1   Introduction 

Intrusion response system, referred to as IRS, can take an active defending measure, 
according to the secure affair report of an intrusion detection system (IDS). It could 
effectively prevent intrusions, reduce the system loss, and make up the limitations of 
passive defending in IDS. So it can guarantee the network security in deep degree. 

However, many intrusion response models have some limitations at present. Fisch 
[1] presented the concept of intrusion response classification for the first time, accord-
ing to the attacked targets and the time when intrusions are detected. But this method 
was so rough that it could not be used for response decision-making. Carver [2] cre-
ated a multidimensional events classification model to solve the problem of classify-
ing intrusion affairs, which lacked evaluations of the response cost. And Thomas Toth 
[3] constructed dependent relationship trees between the network entities to get the 
minimum loss, which is taken as the basis of decision-making. But this model didn’t 
consider about the response operation cost and validity. 

There are many similarities between computer network security and biological 
immune system (BIS). Both have to maintain stability in a changing environment. 
BIS can produce antibodies to resist pathogens through B cells distributing all over 
the human body. T cells can regulate the antibody concentration. In normal state, this 
concentration hardly changes except that pathogens are intruding. Therefore, the in-
trusion intensity of pathogens can be evaluated by variation of the antibody concen-
tration. The artificial immune system (AIS) [4-5] [7-10] based on the theory of BIS 
has been considered as an important direction in the research of network security. 

Inspired by the biological and human immune systems, an immune-based dynamic 
intrusion response model (IDIR) is presented. The definitions of self, nonself and 
antibody are developed. The intrusion detection procedure is achieved in this model, 
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which makes use of some immune mechanisms including self-tolerance [4], clone 
selection [5], and immune surveillance. Using a quantitative computation of the sys-
tem danger degree, it eliminates many redundant detected events and avoids a lot of 
unneeded reduplicate responses. Quantitative computation models of the response 
operation cost and response negative cost are established, which ameliorate the limita-
tions of the statically analyzing response cost and benefit presented by WenkeLess 
[6]. Then, the response decision-making mechanism of maximum response benefit is 
demonstrated, and a dynamic intrusion detection response mechanism, which is self-
adaptation, is established. The experiment results prove that this model is a good 
solution to intrusion response in the network. 

The rest of the paper is organized as follows. Section 2 introduce IDIR model. Sec-
tion 3 introduces the simulation experimental. Section 4 contains our conclusions. 

2   IDIR Model 

An immune-based dynamic intrusion response system consists of two parts, whose 
architecture is shown in Fig. 1. The IDoC is an intrusion detection cell, which is used 
to extract the antigens from IP packets. After the detection of IDS, it can quantita-
tively describe the intrusion danger degree of a system, according to the concentration 
changes and send it to the dynamic response cell (DRoC). When DRoC received the 
quantitative description, it will calculate the response benefit and cost, in order to 
make an optimal response strategy that producing maximum response benefit. Then 
the strategy will be executed and the detection of network attacks and the procedure 
of dynamic response are achieved. 
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         Fig. 1. Architecture of IDIR                          Fig. 2. Immune-based Intrusion Detection 

2.1   The Definitions of Immune Components 

Antigens (Ag) [9] [10]in our approach are binary strings extracted from the IP pack-
ets, including IP address, port number, protocol type, etc, which are given by: 

{ , | ( )}, {0,1}lAg a b a D b a l a APCs b D= < > ∈ ∧ ∈ ∧ = ∧ = =  (1) 

The self set (Self) are normal network transactions, nonself set (Nonself) represent 
attacks from network, Self Nonself Ag∪ = , Self Nonself φ∩ = . 
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Immunocytes },|,,,{ NcountageRpDdcountagepdB ∈∈∈><= , where d is an 

antibody, p is the antibody concentration, age represents the cell age, and count is the 
antigen number matched by antibody d. Immunocytes contains two subsets: mature 
immunocytes bT and memory immunocytes bM , bb TMB ∪=  and TM bb =∩ . 

When the amount of matched antigens arrives to a certain threshold, mature immuo-
cytes would be activated and evolve into memory ones, such 
that }..,|{ λβ <∧>∈= agexcountxBxxM b , where β is the active threshold, and λ  

is a lifecycle. Immature immunocyte set is },|,{ NageDdagedIb ∈∈><= , which 

will evolve into mature one bT  through the self-tolerance. 

Regulate cells },,|{ RsignalsignalsignalsignalsignalsignalT shsh ∈−== . And T 

cells are divided into help T cells hT [8] and restrained T cells sT [8], where 

sh TTT ∪=  and TT sh =∩ . hsignal  is the signal excreted by hT , which would 

stimulate antibody concentration to increase, and ssignal is the signal excreted by sT , 

which would restrain the increase of concentration. 
The affinity is used to evaluate the match degree between x and y. It is given by: 
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Where l is the length of x and y,
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threshold proportion . 

2.2   Immune-Based Intrusion Detection 

The immune-based intrusion detection consists of the evolution of immunocytes and 
antigens detection, both is concomitant. The immune evolution has mechanisms in-
cluding self-tolerance, clone, variation, etc, whose process is shown in Fig.2 with real 
lines, while the process of antigen detection is shown in it with dashed lines. 

The detection antigens process is fulfilled by memory immunocytes and mature 
immunocytes. The memory immunocytes will match the antigens to antibodies at first 
and eliminate nonself antigens. The left antigens will be submitted to mature immu-
nocytes for detection and those nonself antigens would be eliminated. After the above 
detections, the left would be added to the set of self on behalf of maintaining the dy-
namic updating. During detections, a single kind of antibodies always can distinguish 
the similar attacks because of the diversity of antibodies. And they will be considered 
as a same kind. Then, the problem of classifying attacks is solved. 

The process of self-tolerance can make the immature immunocytes evolve into ma-
ture ones, through the negative selection. And this process avoids taking self for non-
self. The self-tolerance process is defined by: 

}1),(|{)( =∧∈∃∧∈−= ydMatchSelfyIddIIf bbbtolerance  (3) 
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At the same time, the mature immunocytes that are not activated and that are much 
older will be killed. And the mature ones whose matching count arrives to the activa-
tion threshold β will be activated and evolve into the memory ones. 

The mechanism of clone and variation consists of clone selection and variation. 
When memory antibodies match to antigens, they will clone themselves and respond 
to those recognized antigens. Clone selection gives priority to the antibodies owning 
high affinity. The clone process is accompanied with the variation, which will se-
lect )),(( _ AgAbfl dishb − bits at random in antibody Ab of the identifying antigen Ag. 

The values of these bits can be randomly 0 or 1 bl  is the length of Ab. The cells that 

suffered from the variation will be taken as immature ones and start a new self-
tolerance. The clone variation not only make the antibodies can recognize the known 
attacks, but also resolve the problems that recognize the unknown attack type. 

2.3   Immune-Based Intrusion Danger Evaluation 

During the immune-based intrusion detection process, the antibody concentration can 
quantitatively describe the danger degrees. The intensity of the regulate signals sent 
by T cells is decided by the affinity. Suppose the immune system has m kinds of anti-
body miAbi 1, = at time t-1, whose concentrations are pAbi ⋅ . And suppose there 

are n kinds of antigen niAgi 1, = , whose concentrations are pAgi ⋅ .Then the sig-

nal of iAb at time t-1 is defined by: 

pAgpAbcpAbbpAgasignal ii
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1
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1  (4) 

Where 1κ  is the increase velocity of iAb stimulated by Ag, 2κ is the increase velocity 

of iAb  paratopes stimulated by other antibody’s epitopes, 3κ is the velocity of iAb  

epitopes restrained by other antibodiy’s paratopes. To simplify the calculation, all of 
these velocities are set to be same, whose values are all equal toκ . ija  is the affinity 

between iAb and jAb , ikb  represents the affinity between the paratope of iAb and the 

epitope of kAb , while ikc is the affinity between the epitope of iAb and the paratope 

of the antibody kAb , iσ  is the nature mortality. 

The first two items in the right of the formula (4) represent the stimulating signal 

hsignal sent by assistant T cells, which would increase the concentration. And the 

next two show the restrained ssignal  sent by restrained T cells, which would reduce 

the concentration. When antibody iAb receives the stimulating signal )1( −tsignal sent 

by T cells at time t-1, the concentration pAbi ⋅ at time t will change. And this calcula-

tion formula is as follow: 
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e

tpAbtpAb  (5) 
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Suppose )10( ≤≤ ii ϕϕ  is the danger coefficient of attack type i. )(tn j is the amount of 

antibodies on computer j at time t. And )(tcij is the amount of antibodies of attack 

type i which is detected on computer j in normal state. Then the intrusion danger 
coefficient of the computer j suffering from attack i is )(tdvij 1)(0 ≤≤ tdvij at time 

t, which is defined by: 

)1))(.(ln(1

1
1)(

+−⋅+
−=

ijiji
ij ctpAbn

tdv
ϕ

 (6) 

2.4   Response Cost and Benefit Based Response Decision-Making 

When the DRoC received the intrusion danger coefficient )(tdvij  from IDoC, the 

response decision-making mechanism will start and it will calculate the response cost 
and benefit for each strategy. Then it will choose the optimal strategy. 

Suppose )1),(0)(,( ≤≤ riri φφ  is the response benefit coefficient, which represents 

the degree that response strategy r eliminates the attack type i. Therefore, when the 
danger coefficient of the computer j that suffering from attack type i is )(tdvij at time 

t, the response gross benefit (RGB) of response strategy r is defined by: 

( , ) ( ) ( , )ij ij jRGB r t dv t i rφ ω= ⋅ ⋅  (7) 

Response cost includes response operation cost (ROC) and response negative cost 
(RNC). ROC is the system cost resulting from consuming the system resources when 
the response decision-making is running. RNC is the system cost when eliminating 
the damage of attacks. Both of these costs consume system resource, such as utiliza-
tion of CPU and memory, whose results are the same as that of DoS attack. So they 
can be transformed into calculating the system loss of DoS attack. ROC is related with 
the utilization of system resources. The more the utilization is, the higher the ROC is. 
Suppose there is a direct ration between ROC and the utilization of CPU, such 

that ( , ) ( ) ( )cpu rnc j dosRNC t r r t k r ω ϕ= ⋅ ⋅ ⋅ , where )(trcpu  is the CPU utilization, 

)(rk roc is ROC influencing coefficient, dosϕ  is the danger coefficient of DoS attack. 

RNC is related with strategies, such that ( , ) ( )roc dosROC t r k r ϕ= ⋅ , )(rk rnc is RNC 

influencing coefficient decided by the variation range of the strategy. 
The response net benefit (RNB) resulting from computer j which suffers from at-

tacking at time t can be defined by: 

( , ) ( , ) ( , ) ( , )ij ijRNB r t RGB r t ROC r t RNC r t= − −  (8) 

suppose the response system can support n kinds of response strategies nrrr ,,, 21 . 

The empty response that means that it cannot respond to any attack is also taken as a 
strategy, referred to as 0r . The system would select r̂ as the optimal response strategy 

and execute it, which satisfies the equation ˆ( , ) ( ( , ))i
r R

RNB r t Max RNB r t
∈

= .  
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3   Simulations and Analysis of Experiment Results 

The following experiments were carried out in the Laboratory and a total of 40 com-
puters were under surveillance. The importance coefficients of the services including 
www, ftp in server A were set to 0.4. The importance coefficient of server A is set to 
be 0.8. The network was attacked by many types of attacks, e.g., synflood, ssping, 
port_scan, etc. The corresponding danger coefficients were 0.3, 0.3, and 0.2, respec-
tively. Antigen was defined as a fixed length (l=172) binary string composed of the 
source/destination IP, port number, protocol type, etc. Suppose the amount of immuo-
cytes is not more than 200, the antibody increase velocity 1=κ . 

Table 1. Response Strategy Parameters 

 Null Alarm Block_sip Isolate_service Shutdown_host 
φ  0 0.1 1 1 1 

)(rkroc  0 0.005 0.2 0.1 0.2 

)(rkrnc  0 0 blockrate ×1.2 0.4 0.8 

 

Table 1 shows some corresponding response strategies and parameter for syn flood 
attack. )(rk rnc  is related with the meanings of the strategies. In the experiments, 

)(rkrnc of the strategy Block_sip should consider about the services and the ratio 

( blockrate ) of the amount of attacking source computers to that of whole computers 

under the surveillance. E.g., there are five computers that are isolated, and 
then 40/53.03)( ⋅⋅=rkrnc . Isolate_service considers about the influence on network 

when closing FTP. And Shutdown_host concern with the influence on networking 
while closing both ftp and www at the same time, at which 3.0=dosϕ . 

Table 2. Response Strategy Decision-making Examples 

 Null Alarm Block_sip Isolate_service Shutdown_host 

1t  0 0.004112 0.00224 -0.07984 -0.20176 

2t  0 0.026048 0.15752 0.13616 0.00752 RNB 

3t  0 0.06736 0.4576 0.5416 0.3976 

Table shows server A uses different strategy according to RNB. When the attack 
server A suffers attacks from only 4 computers at time t1, 0526.0=dv , %8=cpur , the 

strategy Alarm is used. When the attacks coming from 10 computers at t2, 331.0=dv , 
%36=cpur , it needs to adjust firewall to prevent the attack, so the strategy Block_sip 

is an optimal selection. When the amount rises to 20 at t3, 857.0=dv , %100=cpur , it 

needs to close ftp access. Therefore, it should give the priority to Isolate_service. 
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Fig. 3. The contrast of network traffic and the CPU utilization in three states 

Fig. 3 compares the network traffic and the CPU utilization on server A in three 
states: normal, no response when suffering from syn flood attacks, and respond using 
IDIR. It proves when IDIR isn’t used, with the increment of attack-intensity, the net-
work traffic sharply rises, the CPU utilization is nearly 100%, and system cannot run. 
when using IDIR the network traffic will descend, because response strategy is car-
ried out, such as locking attacking origin, closing FTP, etc. At this time, the normal 
packets to server A are also to be refused, which results in the amount of actual re-
ceived packets is lower than the case of normal state. Meanwhile, CPU utilization 
descend, which is more 10% than that of the normal state. The excess is occupied by 
IDIR. The reduction of network traffic to server A and the CPU utilization demon-
strates that IDIR is rational, efficient and real-time. 

In order to validate the capability of IDIR, Table 3 shows the synthetic comparison 
between IDIR model and some typical intrusion response models . 

Table 3. The synthetic comparison between IDIR and other intrusion response model 

 
Affairs  
classification 

Response
cost 

Self 
adaptation

Explanations of the intrusion 
response 

Fisch[1]    
The classification is rough, so it 
can’t calculate response cost. 

Carver[2]    
The events classification can’t  
be practiced in applications. 

Thomas 
Toth[3] 

   
It doesn’t consider the response 
operation cost and availability. 

IDIR    
It could adjust the response  
strategy according the response 
cost and benefit. 

 4   Conclusion 

The proposed immune-based dynamic intrusion response model IDIR, depending on 
the self-learning and diversity of a human immune system, can recognize unknown 
attacks and classify them. It eliminates the influence of redundant affairs and quantita-
tively describes the danger facing by the system with the antibody concentration. The 
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quantitative calculations of response cost and benefit are demonstrated. A dynamic 
response decision-making mechanism is also established, which can dynamically 
adjust the defending strategies according to the changing environment and use the 
minimum cost to guarantee the safe of a system. The experiment proves that this 
model has self-adaptation, rationality, quantitative calculation. This model provides a 
new method for the intrusion response system. 
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Abstract. Inspired by the immune theory and multi-agent systems, an immune 
multi-agent active defense model for network intrusion is established. The con-
cept of immune agent is introduced. While its logical structure and running 
mechanism are established. The method which uses antibody concentration to 
quantitatively describe the degree of intrusion danger is presented. The pro-
posed model implements a multi-layer and distributed active defense mecha-
nism for network intrusion, and it is a new way to the network security. 

1   Introduction 

With the rapid development of information technology and Internet, many network 
intrusion technologies have continuously changed, which result in more and more 
serious damages. The network security has been the focus of the public attention. But 
the present technologies, e.g. accessing controlling, certification authorization, fire-
wall, etc. can only provide a passive defense, which do little to the dynamically 
changed Internet. Intrusion Detection System, referred to as IDS, has been an indis-
pensable component of the network information security defense system. And it is the 
focus of the network security researches. 

However, these intrusion detection technologies [1], including statistics analysis, 
feature analysis, data mining, etc., have some limitations, lack self-adaptation and can 
only detect the known attacks. The system also lacks robustness, and each part of the 
system is isolated with each other, so that there is not an effective communication, 
and the early warning and response mechanism cannot be established. In this case, 
there is an urgent need to build an active defense system, which has the features of 
self-adaptation, early warning and robustness. 

An immune multi-agent active defense model for network intrusion is proposed 
here, referred to as IMAAD, which makes use of self-adaptation, diversity, memory 
ability in artificial algorithm [2-5], and combines the robustness and distribution in 
multi-agent system’s architecture [6]. The concept of immune agent (IMA) and its 
logical structure model are presented. The method, which uses antibody concentration 
to quantitatively describe the degree of intrusion danger, is developed. The concept of 
vaccine [7] in biological system is also introduced. It implements the multi-layer and 
distributed active defense mechanism for network intrusion.  

The rest of the paper is organized as follows. In section 2, we discuss the related 
work. In section 3, the model of IMAAD is provided, section 4 is the conclusions. 
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2   Related Work  

With many different types of lymphocytes distributing all over the body, the biologi-
cal immune system (BIS) [7] can identify and kill the intrusion antigens. It is seen as 
a distributed system. Artificial immune system (AIS) [3-5] [7-10] derives from BIS 
and has become an important research direction in the realm of network security. In 
1974, Jerne [7] presented the first mathematic model of the immune system. Farmer 
J.D. [11] demonstrated the mathematical description of immune system for the firs 
time in 1986. In 1994, the negative selection algorithm and the concept of computer 
immune system were proposed by Forrest [9]. In 2002, Castro and Timmis [12] 
brought the variation into the immune system. Kim and Bentley [3] proposed dy-
namic clone selection algorithm in the same year, which was used in the network 
intrusion detection.. 

Agent [6] is an entity that has the ability of consciousness, solving problems and 
communication. It can adjust by itself according to the internal reasoning mechanism. 
With the cooperation during the isolated agents in Multi-agent system (MAS) [10], 
the problems in the complex environment can be solved. 

3   The Theory of IMAAD  

On the whole, an immune system is an autonomous one which owns features of 
distribution and multi-agent. AIS have the abilities of self-learning and memory. 
Immunocytes are distributed and independent. In this case, a new concept of agent 
that is immune agent, referred to as IMA, is introduced here. Beside the common 
features inherited from the general agent, IMA [5] [8] has the desirable features of 
evolution, identification diversity, memory, tolerance, active, defense, etc.. The 
mapping relationship between BIS and active defense model is shown in Table 1. 

Table . The Mapping Relationship between the BIS and an active defense system 

Biological immune system The active defense system 
Organism The whole net work 

Organ The  network segment 
Cells hosts 

Vaccine The intrusion information 
Antigen Binary strings extracted from TCP/IP header 

B cell, T cell Antibodies expressed by binary strings 

3.1   The Architecture of Active Defense Model 

The IMAAD constructs a multi-layer intelligent network security model, using multi-
agent technologies and AIS. Its architecture is shown in Fig.1. IMA is the security 
state of computers surveilled. Local Monitor Agent (LMA) analyzes the state of the 
local area network. Central Monitor Agent (CMA) surveils the whole network.   
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Fig. 1. The Architecture of IMAAD 

IMA is the kernel of IMAAD, distributing in every node, identifying the intrusion 
affairs. It also quantitatively evaluates the risk state facing by the node and sends it to 
its own network segment’s LMA. Meanwhile, it sends the vaccine of the new attack 
to each node in the same network segment, improves the defense active ability. 

LMA takes charge of surveilling the network segment, mixing data from IMA in-
formation, evaluating the intrusion risk of network segment, and sending it to Central 
Monitor Agent (CMA). The segments without intrusion receive the vaccine from the 
intruded segment to implement the active defense of the whole network. 

CMA takes charge of computer interaction. It receives the risk of network segment 
and shows the secure status through client interface. According to this, administrator 
takes response measures to control and protect the whole network.  

3.2   Active Defending Mechanism of the IMA 

The architecture of IMA consists of self, immature antibodies, mature antibodies and 
memory antibodies, etc. The work flow includes two kinds of circulation: the circula-
tion of immune antibodies’ detecting intrusion antigen and the circulation of immune 
antibodies evolution. Both mutually affect and run at the same time.  
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Fig. 2. The Architecture and Work Flow of IMA 

3.2.1   The Definition of Immune Elements  
Antigens [2] [4] [8]in our approach are binary strings extracted from the IP packets, 
including IP address, port number, protocol type, etc. The network behavior can be 
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divided into self set (Self) that are the normal network behaviors and nonself set (Non-
self) that is the abnormal network behaviors. 

NonselfSelfAgNonselfSelf =∩=∪ ,  (1) 

Antibodies are binary strings having the similar features with antigens. Where s is 
the antibody binary strings, age is the cell age, count is the antigen number matched 
by antibody, ag is the antigen detected by the antibody, N is the set of natural number. 
There are three types of antibodies: memory, mature and immature. 

},,,,,,|{ NcountageUagsagcountagesAbAbB ∈∧∈>=<=  (2) 

The computation of affinity is shown in formula (3) and formula (4) use affinity to 
judge the match between antibody and antigens, where Agx ∈ , By ∈ , xi and yi are 

the corresponding chart of x and y, l is the length of string, θ  is the threshold value. 
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3.2.2   The Variation Process of Immature Antibodies  
Set I contains immature antibodies, the dynamic variation equation is: 
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It shows the change of AbI can be divided into two processes: inflow and outflow. 

In inflow process, new immature antibodies add to the Set I, newI  is the immature 

antibody’s producing velocity. In outflow process, immature antibodies are eliminated 
from Set I through two directions: Some evolve into mature antibodies after self-

tolerance, t
x

I

mature

mature Δ⋅
∂
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is the reduced immature ones’ number in Set I after a success-

ful tolerance and the immature antibodies in Set I suffer a failed self-tolerance are 
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∂
∂

. 

In order to prevent antibodies from matching to self, the new immature antibodies 
can match to antibodies only through the process of self-tolerance, where 1 means 
passing the self-tolerance and 0 means not, AbIab∈ : 
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3.2.3   The Variation Process of Mature Antibodies 
Set T contains mature antibodies, the dynamic variation equation is: 
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It shows the change of mature antibodies can divided into two processes: inflow 
and outflow. In inflow process, mature antibodies added to the Set T have two ways: 
Some are evolved from immature antibodies, the corresponsive increased number 
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reduced number. 
The set of mature antibodies that are activated into memory ones is shown in for-

mula (8), and the set of mature ones that suffer failing activation is shown in formula 
(9), where β  is the activated threshold, and λ is the lifecycle: 

}..|{: λβ ≤∧≥∧∈= agexcountxTxxT Abactive  (8) 

}..|{: λβ >∧<∧∈= agexcountxTxxT Abdead  (9) 

3.2.4   The Variation Process of Memory Antibodies 
Set M contains memory antibodies, the dynamic variation equation is: 
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Because of the infinite lifecycle in memory antibodies, the change of AbM  only has 

inflow process without outflow process. The inflow has two ways: Some are trans-

formed by the activated mature antibodies activeT , t
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are obtained from the antibody vaccine sent by other IMA. Once the memory one 
match to the antigen, it will clone itself, and has a rapid response to the antigens that 
have been identified before. This is the second response in BIS.  

3.2.5   Immune Surveillance 
The detection of IMA on network makes use of mature and memory cells to detect the 
antigens, and filters the mature ones which do well in identifying antigens to evolve  
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into memory ones. These would make them distinguish the nonself antigens from 
others more quickly and effectively. The detailed steps are as follow [13] [14]: 

(1)Antigen extraction: Extract the information from TCP/IP header and Construct a 
binary string as the antigen, including IP address, port number and protocols, etc.  

(2)Memory antibody detects: Use memory antibody to detect Ag, eliminate detected 
nonself. If memory antibody detects the self, it will be eliminated from Set M. 

(3)Mature antibody detects: Use mature antibody to detect antigens, eliminate de-
tected nonself. If the mature antibody detect enough antigens, it will be activated and 
evolve into memory one. Otherwise the mature antibody will go to death. 

(4) Self update: The left antigens after the above detection will be added to the self set 
in order to maintain updating self set. It will endure a self-tolerance process with 
immature set I to keep the dynamic circulation of antibodies evolution. 

3.2.6   The Risk Evaluation of IMA 
IMA simulates the cells in BIS to apperceive the surrounding. When the host isn’t 
under attack, the antibody amount keeps invariable. When it encounters attack, IMA 
proliferate antibody to resist the fierce attack. When the attack disappears, IMA  
restrain the antibody. The types and amount of antibody in IMA reflect the attack type 
and intensity suffered by host. Therefore, the risk of hosts can be quantitatively com-
puted according to the antibody amount change.           

Set )10( ≤≤ jj ϕϕ  is the danger of attack j, )(tnij is the antibody amount which 

detects attack j on hosts i, )(tcij is the antibody amount which detects attack j on host 

i in normal state. The risk on host i suffering attack j at time t is _ ( )node ijd t , 

1)(0 _ ≤≤ td ijnode  and the synthetical risk of host i is _ ( )node id t , 1)(0 _ ≤≤ td inode .  
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3.3   Active Defense Mechanism of Network Layers 

The LMA in the network takes charge of receiving the intrusion information sent by 
IMA, mixing data, evaluating risk of a network segment, and sending it to other 
LMA. Meanwhile, it takes charge of receiving early warning information from other 
local monitor agents, analyzing this information and simulating vaccination. It will 
update the antibody set of IMA using the new received antibodies and start the re-
sponse mechanism to prevent the potential attack in the network segment.  
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Set )10( ≤≤ ii αα is the importance of host i in the network. The risk of net-

work segment k suffering attack j at time t is _ ( )LAN kjd t , _0 ( ) 1LAN kjd t≤ ≤ . The 

synthetical risk of network segment k is _ ( )LAN kd t , _0 ( ) 1LAN kd t≤ ≤  
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3.4   Communication Mechanism of IMAAD 

The concept of vaccine is introduced in to the active defense model. And the message 
mechanism [6] makes the communication during the agent come true. The structure of 
the messages is defined as: 

>><><><><=< ContentValidTimeSendTimeceiverSenderMessage Re:  (15) 

Where Sender and Receiver can be a transverse communication during the agents in 
the same level and also can be the longitudinal communication during the agents in 
the different levels. Receiver judges whether to receive this message depending on 
Sendtime and Validtime. Content contains information about new antibodies and the 
risk evaluation. Distributing vaccines strengthens the contact during the agents. Shar-
ing the effective antibodies in each IMA improves the response ability of the nodes. 
And switching intrusion information during local monitor agents guarantees the early 
warning mechanism. Then the capability of resist attack is highly improve. 

4   Conclusion 

An immune multi-agent active defense model for network intrusion is proposed. The 
logical structure of immune agent is established and a multi-layer and distributed archi-
tecture is achieved. This model has the following advantages: (1) Self-learning. Mem-
ory antibody mechanism make the model can detect both the known and unknown 
attacks. (2) Multi-layer. The concept of vaccine is introduced, and the connection dur-
ing the network nodes and segments are strengthened. The active defense is achieved 
in different layers. (3) Real-time. This model can quantitatively evaluate the risk status 
facing by the network. (4) Robust. This model uses a distributed architecture, so that 
the attacks on a single node cannot influent the others, it avoids of invalidation of a 
single node. This model changes the isolated and passive status in the traditional net-
work security models. It is a good solution to establishing active defense for the  
network security. 
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Abstract. This paper proposes a novel immune mobile agent based grid intru-
sion detection (IMGID) model, and gives the concepts and formal definitions of 
self, nonself, antibody, antigen, agent and match algorithm in the grid security 
domain. Then, the mathematical models of mature MoA (monitoring agent) and 
dynamic memory MoA survival are improved. Besides, effects of the important 
parameter P in the models of dynamic memory MoA survival on system per-
formance are showed. Our theoretical analyses and the experiment results show 
the model that enhances detection efficiency and assures steady performance is 
a good solution to grid intrusion detection. 

1   Introduction 

Current research on grid intrusion detection is still in its infancy, and a few references 
can be used [1] [2]. According to the distinctive characteristics of grid environments 
[3], we propose a novel immune mobile agent based grid intrusion detection (IMGID) 
model, and apply mobile agent [4] [5] technology as support for intrusion detection. 
The model has the features of artificial immune system, such as dynamicity, self-
adaptation and diversity [6] - [10] that just meet the constraints derived from the char-
acteristics of the grid environment. 

The memory lymphocytes have an unlimited lifecycle except they match the newly 
added selfs, in the current immunity based intrusion detection systems [11]. Obvi-
ously, a considerable number of memory lymphocytes will be generated in the end. 
Lymphocytes consist of mature and memory cells. As the increasing of memory cells, 
the cells number will increase, at the same time, the intrusion detection time will in-
crease. When the number of cell reaches or exceeds a certain value, the intrusion de-
tection system will either become a bottleneck or ineffective as some packets are 
skipped. However, IMGID introduces a new idea of dynamic memory MoAs survival 
to overcome this problem: a given number of the least recently used memory MoAs 
that simulate memory lymphocytes will degrade into mature MoAs and be given a 
new age and affinity (the number of antigens matched by antibody), if the number of 
MoAs reaches a given maximum. The method assures the number of memory cells 
does not exceed a given value, so that the total number of cells does not exceed a 
given value. So it does not take too long time to detect intrusions. The set of degraded 
memory MoAs number is very important, which affects the system performances and 
diversity and is shown in Theorem 1. 
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2   The Proposed Grid Intrusion Detection Model (IMGID) 

IMGID has two sub-models. The first is the model of the generation of MoAs. The 
second is the intrusion detection model. 

As B-lymphocytes consist of mature lymphocytes and memory ones, MoAs are di-
vided into mature and memory MoAs that simulate, respectively, mature and memory 
cells. The generation of MoAs is as follows: The random generated immature MoAs 
evolve into mature MoAs, if they tolerate to selfs. The mature MoAs evolves into 
memory MoAs if they are tolerant to self and match enough antigens in their lifecy-
cle. Others will die. The least recently used memory MoAs degrade into mature ones 
if the number of memory MoAs reaches or exceeds a certain maximum. 

The intrusion detection model is as follows: We define three kinds of agents: moni-
toring agents (MoA), communicator agents (CoA) and beating off agents (BoA). MoAs 
simulate B-lymphocytes to monitoring four level parameters of grid nodes simultane-
ously and detect intrusions. CoAs are responsible for message transmission among 
agents. BoAs simulate T killer cells and deal with intrusive activities. Once MoAs 
detect intrusions, they will stimulate CoAs and present the features of intrusions to 
BoAs. CoAs will activate BoAs. BoAs will move to the suspected place to counterat-
tack intrusions. MoAs can clone themselves if the intrusion is detected. Some cloned 
MoAs are left here to detect more intrusions, and others are moved to other grid nodes 
to detect the similar intrusions. 

The correlative concepts and definitions are given as follows: 
We define antigens (Ag) to be the features of grid services and accesses: 

}{ DagagAg ∈= , 

.}1,0{},,,,|{ lDpaclevelprolevelsysleveluslevelddD =>=<=  

(1) 

uslevel, syslevel, prolevel and paclevel present the parameters, which are monitored 
by monitoring agents at user, system, process, and packet level respectively. They are 
also called, respectively, the field of an antigen. l is a natural number (constant). The 
length of string ag is l. For the convenience using the fields of a antigen x, a subscript 
operator “.” is used to extract a specified field of x, where 

xfieldnamefieldnamex  of   field of  valuethe  . = . (2) 

We define Self to be the set of normal grid services and accesses. Similarly, Non-
self is a set of abnormal services and accesses. Ag contains two subsets, Self and  
Nonself, where AgSelf ⊂ and AgNonself ⊂ such that 

NonselfSelfAgNonselfSelf =∩=∪      , . (3) 

All the agents form a set (Agent). Agent contains three elements, MoA, CoA and 
BoA. Monitoring agents, communicator agents and beating off agents form, respec-
tively, the sets MoA, CoA and BoA. A monitoring agent is used as a detector to recog-
nize nonself antigens (intrusions). Thus, we have: 
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d is the lymphocyte antibody that is used to match an antigen. Each monitoring 
agent carries several antibodies. age is the agent age, count (affinity) is the antigen 
number matched by antibody d, and N is the set of natural numbers. d, age and count 
are also called, respectively, field d, age and count of an agent.  

Mature and memory MoAs form, respectively, the set MAMoA and MEMoA. There-
fore, we have: 

MEMAMEMAMoA MoAMoAMoAMoA =∩∪= , ,

{ }).,.(   , countxMatchydxSelfyMoAxxMAMoA <∧>∉<∈∀∈= ,

{ }).,.(   , countxMatchydxSelfyMoAxxME MoA ≥∧>∉<∈∀∈= . 

(5) 

Match is a match relation in D defined by 
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fmatch(x, y) is based on the affinity between x and y: if the affinity greater than a 
specified threshold, then 1 is returned, otherwise, 0 is returned.  

In the following sections, the mathematical models of mature MoA and dynamic 
memory MoA survival are established. 

2.1   Mature MoAs Model 
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Equation (7) depicts the evolvement of mature cells. Equations (8) - (10) simu-
late the process that the mature cells evolve into the next generation ones, where the 
cells do not tolerate to those newly added self elements or have not match enough 
antigens in lifecycle , will be eliminated. Equation (12) depicts the generation of 
new mature MoAs. (>0) is the max number of mature MoAs in IMGID. Equation 
(11) is the set of the least recently used memory MoAs which degrade into mature 
MoAs and be given a new age  and count 1−β  ( 1≥β ). Once a mature MoA 

with count 1−β  matches an antigen in lifecycle , the count of it will be set to β  

and it will be activated again. Because the degraded memory MoA has better  
detection capability than mature MoAs, it is endowed with a priority in evolvement 
into memory MoAs. When the same antigens arrive again, they will be detected 
immediately by the re-evolved memory MoA. The method enhances detection  
efficiency. The value of  cannot be set too large or too small. If the value of  is 
too large, the survival time of the degraded memory MoAs will be short, and  
the degraded memory MoA will die soon because it cannot match enough anti- 
gens in lifecycle . Contrarily, if the value of  is too small, a few immature 
MoAs and even none of them will be generated. So the diversity of IMGID cannot 
be assured.  

2.2   Dynamic Memory MoAs Survival Model 
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Equation (14) simulates the evolvement of memory MoAs. Equations (15) - (17) 
depict the process that memory MoAs evolve into the next generation ones, where the 
memory MoAs that match the newly added selfs will die and those matched by an 
antigen will be activated immediately. Equation (18) is the set of new memory MoAs 
evolved from mature ones. Equation (19) is the set of memory MoAs that are not ac-
tivated by antigens lately and are selected randomly to degrade into mature MoAs 
when the number of memory MoAs reaches or exceeds a given maximum κ . P (>0) 
is the number of selected memory MoAs. Obviously, the number of memory MoAs 
does not exceed a certain maximum. 

Theorem 1. )1( +tMAnew  is in inverse proportion to P. The value of P cannot be set 

too large, otherwise too large value of P will affect the diversity of IMGID.  

Proof: According to equation (7), )(tMAMoA  is in direct proportion to )(tMAcycle . 

The number )1( +tInew  of new immature MoAs is in inverse proportion to |MAMoA(t)| 

and in inverse proportion to )(tMAcycle according to equation (13). )1( +tMAnew is in 

direct proportion to the number )1( +tInew  according to equation (12). So 

)1( +tMAnew  is in inverse proportion to )(tMAcycle . Obviously, )(tMAcycle  is equal 

to )(deg tME radation  according to equation (11) and )(deg tME radation  is in direct pro-

portion to P according to equation (19). So )1( +tMAnew  is in inverse proportion to P.  

So the value of P cannot be set too large. If the value of P is too large, the number 
of mature MoAs will be large. The larger the number )(tMAMoA  of mature MoAs is, 

the less new immature MoAs )1( +tInew  and even new mature MoAs )1( +tMAnew  

will be generated. When the number of mature MoAs reaches or exceeds the maxi-
mum , immature MoAs will not be generated. Therefore, too large value of P will 
affect the diversity of IMGID. 
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Theorem 2. Suppose the least recently used memory MoAs degrade into mature 
MoAs at the time point t1, t2, …, tn, …, respectively. To reach κ<)( nMoA tME  im-

mediately, we are sure to have κ−+−> )()1 nn tME(tME newMoA . 

Proof: Because P memory MoAs degrade into mature MoAs at the time point t1, to 
reach κ<)( nMoA tME , we have according to equations (14) – (19): 

.)()()() 1deg111 tMEtMEtME(tME radationnewretainMoA −+=  (20) 

.)()1) 111 tME(tME(tME newMoAMoA −+−≤  (21) 

.)()1 11 κ<−+− tME(tME newMoA  (22) 

So we have: 

.)()1 11 tME(tME newMoA −+<− κ  (23) 

.)()1 11 κ−+−> tME(tME newMoA  (24) 

Similarly, we have κ−+−> )()1 nn tME(tME newMoA . 

So the value of P cannot be set too small. If the set of P dose not satisfy Theorem 2, 
We can not reach κ<)( nMoA tME  immediately. Furthermore, If the value of P is too 

small, the memory MoAs will reach or exceed the maximum κ  again soon due to 
increasing memory MoAs.  

3   Simulations and Experiment Results 

We developed abundant experiments to prove the effect of parameter P on steady 
performance and diversity in IMGID. We developed a grid simulation toolkit based 
on GridSim [12] to satisfy our needs. The simulation environment simulated users 
with different behaviors, resources and agents. A total of 40 computers in a grid 
were under surveillance. The length of selfs was 1 K. The affinity threshold was 
0.7. Suppose all the mature MoAs, including the degraded memory MoAs had tol-
erated to those newly added selfs, and the degraded memory MoAs in evolvement 
into memory MoAs were prior to other mature MoAs. Every MoA carried an anti-
body. The mature MoAs maximum  was set to 256 and lifecycle  was set to 20. 
16 immature MoAs and 16 mature MoAs were evolved at a time. The initial number 
of memory MoAs was 192. The memory MoAs maximum κ  was set to 256.  
was set to 5. To simplify environments, we define a function )(tf generation  of the 

generation of new immature MoAs. If new immature MoAs are generated the value 
of )(tf generation  is 1, 2, 3, respectively, when P is 48, 80, and 96. Otherwise, the 

value of )(tf generation  remains 0. 
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The effects of P on the number of mature MoAs are shown in Fig.1. Given P = 48, 
48 memory MoAs degraded into mature ones when the number of memory MoAs 
reached the given maximum 256 at the fifth, eighth, eleventh, fourteenth, seventeenth, 
twentieth, twenty-third time point, respectively. Given P = 80, 80 memory MoAs de-
graded into mature ones at the fifth, tenth, fifteenth, twentieth time point, respectively. 
Given P = 96, 96 memory MoAs degraded into mature ones at the fifth, fourteenth, 
twenty-third time point.  

The generation of new immature MoAs is shown in Fig.2. Before the fifth time 
point, there had been new immature MoAs to be generated. Given P = 48, new imma-
ture MoAs were generated again at the eighth, eleventh, fourteenth, seventeenth, 
twentieth, twenty-third time point, respectively. Given P = 80, new immature MoAs 
were generated again at the tenth, fifteenth, twentieth time point, respectively. Given 
P = 96, new immature MoAs were generated again only at the fourteenth, twenty-
third time point, respectively.  

Obviously, the larger P was, the slower rate at which memory MoAs reached the 
maximum again. So the system performance was steadier. However, the larger P was, 
the less new generated immature MoAs were. Because larger P caused the mature 
MoAs to remain in a saturated condition longer, there was less probability of genera-
tion of the new immature MoAs. Therefore, too large P will affect the diversity of 
IMGID. 

Therefore, the experiments results show that the appropriate value of P assures 
steady performance and diversity in IMGID.  

f g
e n

er
at

io
n(

t)
 

P P
P

P
P

P

 

Fig. 1. Effect of P on the number of mem-
ory MoAs 

Fig. 2. Effect of P on the generation of new 
immature MoAs 

4   Conclusions 

We propose a novel immune mobile agent based grid intrusion detection (IMGID) 
model, and give the correlative concepts, formal definitions and mathematical models. 
Besides, we introduce a new idea of dynamic memory MoAs survival. Furthermore, 
the theoretical analyses and the experiment results are given to show that the proposed 
method assures steady performance and diversity. 
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5   Future Researches 

The effects of mature MoAs number and memory MoAs number on steady perform-
ance of the system are very important. The models of mature MoA and dynamic 
memory MoA survival can assure steady MoAs number. The steadiness of MoAs 
number should be proved theoretically. 
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Abstract. Multi-Agent model based on belief interaction is used to solve the 
function optimization problems in this paper. “Belief” is led into the Agent, being 
the parameter of learning machine to decide the searching direction and intensity 
of the Agent in the environment. It is also the interaction information between 
Agents. Agent has the ability to evaluate its path in the past. In this way, Agent 
can find optimization object rapidly and avoid partial extremum at the same time. 
Finally, several benchmark problems are considered to evaluate the performance 
of this model. The experimental results prove the efficiency of this model when 
solving optimization problems. 

Keywords: Multi-Agent model, Belief, Interaction, Optimization problem. 

1   Introduction 

The theory and technology of Agent develop fast as a research area of Distributed 
Artificial Intelligence since they appeared in 1970s [1]. Multi-Agent system has been a 
hotspot of research in recent years. Generally speaking, an autonomous agent is a 
system situated within and a part of an environment that senses that environment and 
acts on it, over time, in pursuit of its own agenda and so as to effect what it senses in the 
future [2]. Agent has the knowledge, target and abilities. Many scholars carried on 
research of Multi-Agent system and its applications, for example, in 1999, Han Jing, 
etc, put forward a Multi-Agent system model based on artificial beings to solve the 
N-Queen problem, showing that the Agent had a huge potential ability to solve actual 
problems [3]. Researchers also made some progress in solving multi-objective opti-
mization problems with Multi-Agent system [4]. 

In order to set up a valid way solving function optimization problems, Multi-Agent 
system is taken as the platform to organize reasonable system structure and Agent’s 
cognition ability of interaction in this paper. 

2   Multi-agent Model 

Agent is an individual that has intelligent behavior, and the individual is given tar- 
get dissimilarly based on different concrete problems. Agent will change its own  
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attribute according to its belief in the process of iteration to attain the purpose of 
tending target [5] [6]. 

What this paper resolve is the function optimization problem, so we choose the 
domain of definition of the function as the existence environment of the Agents, and 
choose the return value as the target of the Agent. Each Agent is given a belief ran-
domly in the beginning, in the period of each iteration of the system, all individuals 
decide the directions of moving on and the size of step according to its own belief by 
using the learning machine, then adjust the belief according to the changes of the return 
value after moving ahead. At last, Agents interact with others in the same scope. 

Belief is the attribute of Agent. It is produced to choose path to attain the target 
through Agent’s learning history. Agent decides the direction and size of next step 
according to its belief. Belief is basically stable to Agent, and is adjusted according to 
feedback of itself and other Agents. It contains two parts: one is direction, a direction 

vector naming ib ; the other is intensity, which will affect the size of the Agent in a 

specific way. 
Agent delivers its belief in the form of parameter to the learning machine, then the 

learning machine return the distance and direction of the ambulation that Agent will go 
forward this time. If this ambulation outran the boundary of the environment, a new 
random direction is given to the Agent in order to carry on new searching. 

The adjustment of belief makes Agent can have a simple evaluation of its path, so 
Agent can vary its belief at any time to make it tend the target soon. 

After walking over one step, Agent compare the function value before and after walk 
according to the target function, if what this step walks is closer to the best solution, 
strengthen the intensity of the belief. Otherwise, weaken it. If belief is small enough to 
arrive at a certain value, a new random direction and intensity will be given to make it 
continue to iterate [7]. 

Adjusting belief intensity makes the searching of Agent is similar to the process of 
local climbing, which can tend best solution quickly, and avoid the Agent to sink into 
local peak because of the variety of the intensity, either. 

Interaction is an important function of Agent, also an important part of Multi-Agent 
model. 

After a period of iteration, all Agents interact with other individuals in the sight of 
itself. What is affected after the interaction is the direction vector of Agent’s belief. 

Suppose Agent i is meeting with Agent j, the belief vector of Agent i is adjusted as 
follows

jii bbb )1( λλ −+=  (1) 

According to its own belief, the existence of the learning machine makes Agent able 
to choose a reasonable decision. It also has the randomicity of stochastic algorithm. 

Workflow of the learning machine is as follows: Take belief’s direction as the center 
and produce a random direction to go forward this time, and the probability of choosing 

each direction should satisfy Gauss distribution (
2
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of the step will be decided by the intensity of Agent’s belief, also by the deviation 
between moving direction and belief direction. If the angle is small enough, the step is 
set to be a little big, otherwise a little small. 

3   Algorithm Workflow and Interpretation 

3.1   Workflow 

The system constructs the environment in the beginning, and Agent constructs its belief 
randomly, then system starts iteration. In this process, Agent changes its belief and 
positions gradually, and records the best solution it finds out. Concrete workflow is as 
follows: 
• Step 1:  

m Agents each with a random belief are distributed randomly in the environment. 
• Step 2:  

(2.1) Agent delivers its belief in the form of parameter to the learning machine, get-
ting direction and size of the step of its movement 
(2.2) Record the current return value of the target function, move one more time 
according to the plan in 2.1. 

• Step 3:  
(3.1) Get current return value of target function, and compare it with the value before 
moving, if it is better than original value, strengthen the belief intensity. Otherwise 
weaken it. 
(3.2) If the belief intensity is small enough to arrive at a certain value, a new random 
belief is given to the Agent. 

• Step 4:  
(4.1)  Agent gets other individuals’ believes in the sight of itself 
(4.2) Agent adjusts its own belief according to believes of other individuals. Con-
crete angle adjustment formula has been given before. Here λ  is taken as 0.7. 

• Step 5:  
If arrive at designated times of iteration then stop. Otherwise, turn to step 2. 

3.2   Algorithm Interpretation 

We guaranteed the randomicity of the algorithm by following several aspects: begin-
ning position of the Agent; beginning attribute of the Agent; change of direction when 
Agent arrives at environment’s boundary; and the Gauss distribution which learning 
machine uses when deciding Agent’s direction also has randomicity. 

The individual has belief, and every movement of Agent is decided by learning 
machine reasonably. It is mainly that rule decides the action. It is based on the return 
value that Agent valuates position of itself. 

Agent can simply judge whether its path is good or not, change its own belief, as 
well as judge whether its position is good or not. 

When individual marching forward, it inclines to walk on in the direction which is 
stronger in its belief. Since the change of belief intensity is gradual, the algorithm is not 
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only a process of climbing, but also can avoid sinking into partial best solution because 
before Agent’s belief is weakened to a certain value it may have crossed the minimum 
already. 

In order to get a converging global best solution, two mechanisms are led to: First, 
the intelligence behavior of Agent can enlarge its step size gradually when its path is 
better and better; Secondly, the interaction between individuals is good for Agents to 
get global best solution quickly. 

4    Results of the Experiment 

In order to have an overall test of performance of the algorithm in this paper, we adopt 
three standard testing functions which are usually used in function optimization. The 
three functions and their attributes are given in Table1. 

Table 1. Three testing functions adopted in this experiment 

Testing function Search space Best solution in 

theory 

2 2
1 1 2f x x [ 5.12,5.12]ix

0

2 2
2 1 2100( ) (1 )2

1f x x x [ 2.048,2.048]ix
0

3 1 1 2 2sin(4 ) sin(4 ) 1f x x x x [ 1,1]ix
0.758

 

 

Fig. 1. After optimization, the distribution of 
each Agent’s solution in f1 

Fig. 2. Global best solution and iteration times 

The results of the test of the function can be showed in two ways: distribution of the 
Agents in the function’s domain of definition and the curves of whole Agent colony’s 
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solution with times of iteration changing. Here the curve is an average value of 50 times 
processes, from which we can see the comparison with the global best solutions. In the 
beginning, the number of Agents is 100, the time of iteration is 100, and the size of the 
district is 1000 ×1000. 

 

Fig. 3. After optimization, the distribution of 
each Agent’s solution in f2 

Fig. 4. Global best solution and iteration times 

 

 
 

Fig. 5. After optimization, the distribution of 
each Agent’s solution in f3 

Fig. 6. Global best solution and iteration times 

The results of the experiment show that Multi-Agent model based on belief inter-
action can solve typical function optimization problems very well because of leading 
into concept “belief” and mechanism of belief adjusting. Figure1 shows the optimizing 
result of Single-Peak Function; Figure3 shows the optimizing result of seriate 
Multi-Peak Function; Figure5 shows the optimizing result of Multi-Peak Function with 
many minimums; Figure2, Figure4 and Figure6 are average curves of colony’s best 
solution with iteration times changing. As long as system has settled time of iteration 
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and number of individuals, we can find out the global best solution quickly, thus prove 
the validity of the algorithm. 

Table 2. Optimizing results of the function 

Testing function 

Best

solution in 

theory 

Best

solution of 

running 

Percentage 

of the 

individuals 

which reach the 

best 

2 2
1 1 2f x x

0 0 44%

2 2
2 1 2100( ) (1 )2

1f x x x
0 0 69%

3 1 1 2 2sin(4 ) sin(4 ) 1f x x x x
0.758 0.758 55%

 

5   Conclusions 

In this paper, Multi-Agent model is taken to make use of Agent’s characteristics of 
autonomy, intelligence and interaction etc. Leading concept “belief” and a set of belief 
adjustment mechanisms to Agent take advantages of Multi-Agent model to solve 
problems. The efficiency of this model is proved by results of experiment. 

References 

1. Gerhard Weiss. Multi-agent systems, A modern approach to distributed artificial intelligence. 
Cam-bridge, The MIT Press. 1999, ISBN 0-262-23203-0 

2. Petrie, C.J. Agent-based engineering, the Web, and intelligence. Expert, IEEE [see also IEEE 
Intelligent Systems and Their Applications], Dec 1996, Vol11, Issue: 6, pages 24-29, ISSN: 
0885-9000 

3. Han Jing, Zhang Hong-jiang, Cai Qing-sheng. Prediction for Visiting Path on Web. Journal 
of Software, 2001, 1000-9825/2002/13(06)1040-10, Vol.13, No.6 

4. John D. Siirola, Steinar Hauan, Arthur W. Westerberg. Computing Pareto fronts using dis-
tributed agents. Computers and Chemical Engineering, Vol29 (2004), Pages 113–126. 

5. Rao A. S., Georgeff M. P. BDI Agents: From Theory to Practice. In the Proceedings of the 
First International Conference on Multi-Agent-System (ICMAS), San Francisco 1995.  

6. Rao A. S., Georgeff M. P. Modeling rational agents within a BDI-architecture. In Proceed-
ings of the 2rd International Conference on Principles of Knowledge Representation and 
Reasoning. San Mateo, CA: Morgan Kaufmann Publishers, Inc., 1991. 473~484. 

7. Malcolm J.A. Strens. Learning Multi-agent Search Strategies. Adaptive Agents and 
Multi-Agent Systems.  Vol11 (2005), Pages 245-259 



T.-D. Wang et al. (Eds.): SEAL  2006, LNCS 4247, pp. 126 – 133, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Continuous Function Optimization Using Hybrid Ant 
Colony Approach with Orthogonal Design Scheme* 

Jun Zhang1,** , Wei-neng Chen1, Jing-hui Zhong1, Xuan Tan1, and Yun Li2 

1 Department of Computer Science, Sun Yat-sen University, P.R. China 
junzhang@ieee.org 

2 Department of Electronics and Electrical Engineering , University of Glasgow, UK 

Abstract. A hybrid Orthogonal Scheme Ant Colony Optimization (OSACO) 
algorithm for continuous function optimization (CFO) is presented in this paper. 
The methodology integrates the advantages of Ant Colony Optimization (ACO) 
and Orthogonal Design Scheme (ODS). OSACO is based on the following 
principles: a) each independent variable space (IVS) of CFO is dispersed into a 
number of random and movable nodes; b) the carriers of pheromone of ACO 
are shifted to the nodes; c) solution path can be obtained by choosing one ap-
propriate node from each IVS by ant; d) with the ODS, the best solved path is 
further improved. The proposed algorithm has been successfully applied to 10 
benchmark test functions. The performance and a comparison with CACO and 
FEP have been studied. 

1   Introduction 

Ant Colony Optimization (ACO) was first proposed by Marco Dorigo in the early 
1990s in the light of how ants manage to establish the shortest path from their nest to 
food sources [1]. By now, the idea of ACO has been used in a large number of intrac-
table combinatorial problems and become one of the best approaches to TSP [2], 
quadratic assignment problem [3], data mining [4], and network routing [5]. 

In spite of its great success in the field of discrete space problems, the uses of ACO 
in continuous problems are not significant. Bilchev et al [6] first introduced an ACO 
metaphor for continuous problems in 1995 but the mechanism of ACO was only used 
in the local search procedure. Later, Wodrich et al [7] introduced an effective bi-level 
search procedure using the idea of ants. This algorithm, which was referred to as 
CACO, also employed some ideas of GA. The algorithm was further extended by 
Mathur et al. [8] and the performances were significantly improved. Based on some 
other behaviors of ants, two algorithms called API [9] and CIAC [10] were proposed, 
but they did not follow the framework of ACO strictly, and poor performances are 
observed in high-dimension problems. Overall, the use of ACO in continuous space 
optimization problems is not significant. 
                                                           
 * This work was supported in part by NSF of China Project No.60573066 and NSF of Guangdong 

Project No. 5003346. 
** Corresponding author. 
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This paper proposed a hybrid ant colony algorithm with orthogonal scheme 
(OSACO) for continuous function optimization problems. The methodology inte-
grates the advantages of Ant Colony Optimization (ACO) and Orthogonal Design 
Scheme (ODS). The proposed algorithm has been successfully applied to 10 bench-
mark test functions. The performance and a comparison with CACO and FEP have 
been studied. 

2   Background 

2.1   ACO 

The idea underlying ACO is to simulate the autocatalytic and positive feedback proc-
ess of the forging behavior of real ants. Once an ant finds a path successfully, phero-
mone is deposited to the path. By sensing the pheromone ants can follow the path 
discovered by other ants. This collective pheromone-laying and pheromone-following 
behavior of ants has become the inspiring source of ACO. 

2.2   Orthogonal Experimental Design 

The goal of orthogonal design is to perform a minimum number of tests but acquire 
the most valuable information of the considered problem [11][12]. It performs by 
judiciously selecting a subset of level combinations using a particular type of array 
called the orthogonal array (OA). As a result, well-balanced subsets of level combina-
tions will be chosen. 

3   The Orthogonal Search ACO Algorithm (OSACO) 

The characteristics of OSACO are mainly in the following aspects: a) each independ-
ent variable space (IVS) of CFO is dispersed into a number of random nodes; b) the 
carriers of pheromone of ACO are shifted to the nodes; c) SP can be obtained by 
choosing one appropriate node from each IVS by ant; d) with the ODS, the best SP is 
further improved. 

Informally, its procedural steps are summarized as follows. Step 1) Initialization: 
nodes and the pheromone values of nodes are initialized; Step 2) Solution Construc-
tion: Ants follow the mechanism of ACO to select nodes separately using pheromone 
values and form new SPs; Step 3) Sorting and Orthogonal Search: SPs in this itera-
tion are sorted and the orthogonal search procedure is applied to the global best SP; 
Step 4) Pheromone Updating: Pheromone values on all nodes of all SPs are updated 
using the pheromone depositing rule and the pheromone evaporating rule;  Step 5) SP 
Reconstruction: A number of the worst SPs are regenerated; Step 6) Termination Test: 
If the test is passed, stop; otherwise go to step 2). 

To facilitate understanding and explanation of the proposed algorithm, we take the 
optimization work as minimizing a D-dimension function f(X), X=(x1,x2,…,xD). The 
lower and upper bounds of variable xi are lowBoundi and upBoundi. Nevertheless, 
without loss of generality, this scheme can also be applied to other continuous space 
optimization problems. 
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3.1   Definition of Data Structure 

We first define the structure of a Solution Path (SP): 

structure SP
begin

real node [D]; % the nodes of the SP;
real r [D] % the search radiuses for each node of the SP;
real t [D] % the pheromone values for each node of the SP;
real value; % the function value of the SP;

end  

Fig. 1. The structure of a “SP” 

In the above definition, each SP includes four attributes: the nodes of the SP in all 
IVS, the search radiuses for each node which are used during the orthogonal search 
procedure, the pheromone values for each node which are used in the solution con-
struction procedure, and the function value of the SP. 

Assume that the number of SPs (ants) in the algorithm is SPNUM. In the following 
text, we denote the four attributes of the spk (1 k SPNUM) as SPk.NODE(SPk.node1, 
SPk.node2,…,SPk.nodeD), SPk.R(SPk.r1, SPk.r2,…, SPk.rD), SPk.T(SPk. 1, SPk. 2,…, 
SPk. D) and SPk.value. 

3.2   Initialization 

In the beginning, SPNUM nodes are created randomly in each IVS and form SPNUM 
SPs. Pheromone values of all nodes are set to initial. ( initial is also the unitage of 
pheromone values and we set initial =1 for computational convenience purpose.)  
Function values of all SPs are calculated and sorted in ascending order. Pheromone 
values are updated using the following formula: 

. . ( ) ,  if 0
i j i j i initial i

SP SP GOODNUM rank GOODNUM rankτ τ α τ← + ⋅ − ⋅ − >  (1) 

SPi. j is the pheromone value of the jth node of SPi. GOODNUM and  are two pa-
rameters. GOODNUM (1 GOODNUM SPNUM) represents the number of SPs that 
can obtain additional pheromone and ∈[0,1] determines the amount of pheromone 
deposited to the SPs. ranki represents the rank of SPi. Search radiuses of all nodes are 
set to (upBoundi-lowBoundi)/SPNUM. Moreover, the best SP will be preserved addi-
tionally and is denoted as SPSPNUM+1. 

3.3   Solution Construction 

All ants build their SPs to the problem incrementally in this phase. The new SPs cre-
ated in this phase are denoted as antSP. The procedure for ant k (1 k SPNUM) to 
build its solution antSPk is as follows: 

{ ,  if 0                                                    
,   1 ;

 is created using pheromone information,  otherwise
k k

k

antSP SP q q
k SPNUM

antSP
← > ≤ ≤  (2) 
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At first, a random number q∈(0,1) is created and is compared with a parameter q0 
(0 q0 1). If q>q0, the solution created by ant k is the same as SPk. All attributes of 
SPk are reserved by antSPk. Otherwise, a new solution is built by ant k in terms of the 
pheromone information using the roulette wheel scheme given by equation (3). The 
node in each IVS has to be selected separately based on the pheromone values of all 
nodes in that IVS. The probability of selecting SPj.nodei (1 j SPNUM+1) as the ith 
node of SP constructed by ant k is in direct proportion to the pheromone value of the 
ith node in SPj. It is important to note that the attributes of the best SP SPSPNUM+1 can 
also be selected by ants. 

1

1

.
( . . ) ,   

.

                                  (1 1,1 ,1 )

j i

k i j i SPNUM

l il

SP
p antSP node SP node

SP

j SPNUM k SPNUM i D

τ

τ+

=

= =

≤ ≤ + ≤ ≤ ≤ ≤

 (3) 

Suppose SPj.nodei is selected to be the ith node of the SP constructed by ant k, the 
pheromone value of the ith node on SPj will also be inherited to antSPk, that is, 
antSPk. i= SPj. i. After all nodes have been selected by ant k, the complete SP is 
evaluated, that is, antSPk.value=f(antSPk.NODE). Search radiuses of all nodes on 
antSPk will also be regenerated, that is, antSPk.ri=(upBoundi-lowBoundi)/SPNUM 
(1 i D). 

3.4   Sorting and Orthogonal Search 

All new SPs created by ants (antSPk (1 k SPNUM)) are sorted in ascending order 
based on their function values. If the function value of the best SP created by ants is 
smaller than SPSPNUM+1.value, the best SP is preserved in the place of antSPSPNUM+1, 
otherwise antSPSPNUM+1=SPSPNUM+1. Then, the orthogonal search procedure will be 
implemented to the global best SP antSPSPNUM+1. 

1) Orthogonal Search 
In order to introduce the orthogonal design technique to this case, we assume that 
each IVS corresponds to a single factor of the experiment. Also, we divide the search 
range in each IVS of a SP into l-1 segments to obtain l dividing values. These l divid-
ing values are accordingly considered as the l levels of the experiment. Hence, if we 
are optimizing an D-dimension object function f(x1,x2,…xD), we can simply take the n 
variables (x1,x2,…xD) as the D factors. When acquiring the l dividing values of the ith 
IVS from a SP S located at S.NODE(S.node1, S.node2,…, S.nodeD), we first compute 
the search range of each IVS ri=S.ri ran, where S.ri is the search radius in the ith IVS 
of that SP and ran is a random number distributed in [0,1]. Then we could get S.nodei-
ri as the lower bound of this IVS and 2ri as its search diameter. Thus, S.nodei-
ri+2jri/(l-1), (0 j l-1) are just the l dividing values we need. With that, the SP search 
problem is formulated as a D-factor experiment with all factors having l levels and an 
OA can be applied to search the SP. We call the combinations of factor levels gener-
ated by OA as the orthogonal points. In a 3-dimension SP, we obtain two levels of 
each IVS simply by using the two ends of each edge. Then the OA L4(2

3) is applied 
and the four points are finally selected. 
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2) SP Moving 
Soon after all orthogonal points have been selected, they are evaluated in the function 
f(x1,x2,…xD). Once the old SP is worse than the best one of all these orthogonal points, 
it will be replaced by the best one. That is, all nodes of the old SP are replaced by the 
nodes of the best orthogonal point. 

3) Radius Adapting 
The characteristic of a SP is adaptive, that is, the radiuses of all nodes (S.r1, S.r2,…, 
S.rD) would adjust themselves during the algorithm by applying (4), where 
(0 1) is a parameter. 

. / ,  if SP  is replaced by a new one
.

. * ,   otherwise                                 
i

i
i

S r S
S r

S r

θ
θ

←  (4) 

This can effectively help us to improve the SP by deciding whether to move it 
faster or to let it shrink. If the SP is not substituted, it is probably that the best solution 
area is inside the search range of the SP so that we decrease its radius to obtain a 
solution in higher precision. Otherwise, the best solution of the test function may not 
lie in the search range of this SP. In this case, we enlarge the search range of the SP to 
make it move faster to a better area.  

3.5   Pheromone Updating 

GOODNUM (0 GOODNUM SPNUM) is a parameter which represents the number 
of SPs that can obtain additional pheromone, that is, pheromone will only be depos-
ited to the best GOODNUM SPs. Additionally, pheromone on all nodes of all SPs will 
be evaporated. The pheromone updating procedure is executed as follows: 

{ ( )

(1 ,1 )

. . , if 
,

. . ,  otherwise                                                                         
k i k i k initial k

k i k i

GOODNUM rank

k SPNUM i D

antSP antSP rank GOODNUM

antSP antSP

α ττ ρ τ
τ ρ τ

⋅ − ⋅

≤ ≤ ≤ ≤

← ⋅ + <
← ⋅  (5) 

∈(0,1) and ∈ (0,1) are two parameters.  determines the amount of pheromone 
that is deposited to the SPs.  determines the evaporating rate of the pheromone. ranki 
represents the rank of antSPi. 

3.6   SP Reconstruction 

At the end of each iteration, a number of the worst SPs will be forgotten by ants and 
will be regenerated randomly. (The number of the deserted SPs is denoted as DUMP-
NUM, which is a parameter (0 DUMPNUM SPNUM).) Then, all old SPs are re-
placed by new generation of SPs constructed by ants, that is, SPk=antSPk 
(1 k SPNUM+1). 

4   Computational Results and Discussing 

To demonstrate the effectiveness of the proposed algorithm, 10 test functions in Table 
1 are selected from [13] where we can obtain more information about these functions. 
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f1-f5 are unimodal functions used to test the convergence rate of an algorithm and to 
evaluate how much precise an algorithm can obtain. f6-f10 are multimodal functions 
with local optima. Moreover, f1-f9 are 30-dimension functions. A good performance 
on such functions is always taken as a proof of an algorithm’s effectiveness. 

Table 1. List of 10 Test Functions 

Test functions Search 
Domain
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We first set the parameters of the proposed algorithm. Parameters are configured 
carefully and the ones we use are given below. It is important to note that different 
test functions may result in different good parameter settings, but the settings we use 
here are able to balance the performances in all test functions. 

Table 2. Comparison of optimization results and computational effort between OSACO, 
CACO, and FEP (All results are averaged over 100 runs) 

OSACO CACO FEP  
Computational 

Effort 
Mean best 
(Variance) 

Computational 
Effort 

Mean best 
(Variance) 

Computational 
Effort 

Mean best 
(Variance) 

1
f  

150000 1.669e-34 
1.553e-33 

150000 3.30e-21 
1.21e-20 

150000 5.7e-4 
1.3e-4 

2
f  

500000 1.31e-71 
5.21e-71 

500000 0.1173 
0.0819 

500000 0.016 
0.014 

3
f  

500000 1.30e-37 
3.89e-37 

500000 0.365 
0.702 

500000 0.30 
0.50 

4
f  

2000000 0.3596 
1.0443 

2000000 38.003 
25.715 

2000000 5.06 
5.87 

5
f  

50000 0 
0 

50000 0 
0 

150000 0 
0 

6
f  

500000 -12569.49 
1.28e-11 

900000 -12446.71 
133.928 

900000 -12554.5 
52.6 

7
f  

500000 7.71e-10 
7.71e-9 

500000 2.577 
1.715 

500000 0.046 
0.012 

8
f  

200000 0.01078 
0.01136 

200000 0.00826 
0.01391 

200000 0.016 
0.022 

9
f  

800000 1.570e-32 
2.751e-47 

1000000 0.00311 
0.01778 

150000 9.2e-6 
3.6e-6 

10
f  

400000 4.294e-4 
3.460e-4 

400000 5.873e-4 
1.150e-4 

400000 5.0e-4 
3.2e-4 
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Parameters are set as follows: the number of SPs or ants SPNUM=20, pheromone 
depositing rate =0.9, pheromone evaporating rate =0.8, the probability of selecting 
a new SP q0=0.9, the changing rate of the radiuses =0.8, the number of SPs that 
receive additional pheromone GOODNUM=SPNUM×0.1=2, and the number of de-
serted SPs DUMPNUM=SPNUM×0.05=1. Also, we use the OA L81(3

40) to satisfy the 
need of optimizing 30-dimension functions in f1-f9, and use L9(3

4) in f10, which is only 
a 4-dimension test function. 

The proposed algorithm is compared with two other algorithms – CACO [8] and 
FEP [13]. CACO is by now one of the top algorithms that use the idea of ACO for 
continuous optimization problems. FEP is one of the state-of-the-art approaches to 
continuous function optimization problems. Parameters of these two algorithms are 
set in terms of paper [8] and [13] respectively. 

The computational results are shown in Table 2. Obviously, OSACO performs bet-
ter than CACO and FEP in most cases. In unimodal functions, OSCAO obtains higher 
precision than CACO and FEP in f1-f4, and gets the global best solutions of f5 much 
faster than FEP. These prove that the use of the orthogonal search scheme can signifi-
cantly improve the search precision of the algorithm. In multimodal functions, 
OSACO obtains the best final results of f6, f7, f9, and f10, and the result of f8 obtained 
by OSACO is only slightly worse than CACO, but better than FEP. In f9, though 
OSACO seems slower than FEP, but manages to get much higher precision than FEP. 
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Fig. 2. Convergent speed of OSACO and 
CACO in f1 

Fig. 3. Accumulative times of errors smaller 
than 1.0 in f6 

Additionally, Fig. 2 illustrates the comparison of the convergent speed between 
OSACO and CACO in unimodal function f1. It is apparent that OSACO is able to 
obtain higher precision with fewer computational efforts. Fig. 3 reveals the accumula-
tive times of errors smaller than 1.0 in multimodal function f6 within 100 runs. 
OSACO successes in all times with at most 100,000 times of function evaluations, 
while CACO only successes for 35 times after 1,000,000 times of function evalua-
tions. These demonstrated the effectiveness of OSACO. 

5   Conclusion 

The hybrid orthogonal scheme ant colony optimization (OSACO) algorithm has been 
proposed. The general idea underlying this algorithm is to use the orthogonal design 
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scheme to improve the performance of ACO in the filed of continuous space optimi-
zation problems. Experiments on 10 diverse test functions presented the effectiveness 
of the algorithm compared with CACO and FEP. 
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Abstract. Adapting a niching algorithm for dynamic environments is described. 
The Vector-Based Particle Swarm Optimizer locates multiple optima by identi-
fying niches and optimizing them in parallel. To track optima effectively, in-
formation from previous results should be utilized in order to find optima after 
an environment change, with less effort than complete re-optimization would 
entail. The Vector-Based PSO was adapted for this purpose. Several scenarios 
were set up using a test problem generator, in order to assess the behaviour of 
the algorithm in various environments. Results showed that the algorithm could 
track multiple optima with a varying success rate and that results were to a large 
extent problem-dependent. 

1   Introduction 

Currently Particle Swarm Optimization can be considered to be a well-established 
population-based optimization technique. Since its inception by Kennedy and Eberhart 
[1], various developments resulted in an algorithm that proved effective, especially in 
the case of complex optimization problems. The initial purpose of the strategy was to 
find the overall best value of a function in a search space, the algorithm being de-
signed in such a way that the population of particles would be discouraged from set-
tling on a suboptimal solution. A balance had to be struck between exploration and 
exploitation of the search space, an issue addressed elegantly by incorporating both a 
personal and a social component when updating particle positions. 

The kind of difficult and complex optimization problems for which PSO proved to 
be effective, often contains many suboptimal solutions. In some cases it can be advan-
tageous to find the positions of all the optima in the search space. It might be neces-
sary to know the ‘second best’ solution, or a parameter not included in the objective 
function might necessitate a choice between several good solutions. Research has 
therefore also been directed towards developing PSO algorithms to locate multiple 
optima. Such algorithms are also called niching algorithms. Various approaches have 
been followed and promising results were reported [2],[3],[4],[5],[6],[7],[8],[9]. 

Although PSO has been successfully applied to static problems, most real-world 
optimization has to be carried out in a dynamic environment, that is, the objective 
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function changes over time. Locations and values of optima may change while some 
optimal solutions disappear altogether and others appear in new positions. To locate 
an optimum in PSO, particles have to converge on a single point. Keeping track of 
dynamically changing optima therefore requires frequent re-optimization. The best 
results would be obtained if a good solution has been found before the next objective 
function change. This implies that particles have already converged on the optimal 
solution and diversity should therefore have to be increased in order to find the opti-
mum that has moved away. For optimal results a balance must be found between 
exploitation and exploration. PSO in dynamic environments proved to be very effec-
tive when locating and tracking a single optimal value [10],[11]. In a highly multimo-
dal environment, however, temporal changes may result in a suboptimal solution 
taking on the best overall value. In such circumstances it would be advantageous if an 
algorithm would locate and track multiple optima in parallel.  

In this paper an initial and explorative study of the ability of a niching PSO method 
to track multiple dynamically changing optima is undertaken. The vector-based PSO 
[7],[8],[9] is adapted to locate and track those optima in a changing environment. A 
limited number of functions is set up and used to test this approach. 

The paper is organized as follows: section 2 describes PSO techniques to locate 
multiple optima in a static environment, while research on PSO models to locate a 
single optimum in a dynamic environment is explored in section 3. Section 4 ad-
dresses attempts to locate and track multiple dynamic optima. The experimental setup 
is described and results reported in section 5 while section 6 contains the conclusion. 

2   Niching Algorithms for Multimodal Optimization 

Several niching algorithms have been developed to find multiple optima in a static 
environment. Examples are Kennedy’s PSO using k-means clustering [2], the 
“stretching” technique of Parsopoulos and Vrahatis to transform a function once an 
optimum has been found in order to set the stage for locating subsequent optima se-
quentially [3],[4], as well as the NichePSO of Brits et al [5]. In all these approaches 
the initial identification of candidate solutions proved to be a difficult and problematic 
issue. In his species-based PSO (SPSO) Li devised an ingenious strategy to overcome 
this challenge [6]. Initial neighbourhood best values – the so-called species seeds – 
were determined by first sorting all particles in decreasing order of fitness. Particles 
are checked in turn from best to least-fit against species seeds found so far and as-
signed to the seed if it falls within a pre-specified radius. The particle becomes a new 
seed if it does not fall within the radius of any of the seeds identified so far. Particles 
are now adjusted over a number of iterations to converge on the best position in each 
particle’s neighbourhood. The optimization process therefore takes place in parallel. 

While some of these algorithms yielded very good results, it remained a challenge 
to devise a strategy where multiple optima could be located and optimized with no 
prior knowledge of the objective function landscape, the number of optima to be 
found in a designated search area and the niche radii. 

Another objective was to find a solution that would be simple, but powerful and 
where the principles driving PSO would be utilized to its fullest extent.  Concepts like 
the tendency to move towards personal best as well as global best are implemented 
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using vectors, as well as the concept of a velocity associated with a particle. These 
vectors are manipulated to find a new position. If these vectors could also be manipu-
lated to facilitate niching, the result would be an elegant as well as a powerful solu-
tion.  Schoeman and Engelbrecht developed sequential and parallel vector-based  
particle swarm optimizers implementing these principles [7],[8],[9]. 

In the original PSO, the velocity vector associated with a particle is updated during 
each iteration. If the position vector towards a particle’s personal best position points 
roughly in the same direction as the position vector towards the best position found so 
far in the entire neighbourhood, it means that the particle’s position will be adjusted 
towards the swarm’s best position, and unless some other obstacle in the function’s 
landscape is encountered, the particle is probably moving towards an optimal solution.  
If the two vectors are pointing roughly in opposite directions, it is an indication that, 
without the influence of the current neighbourhood best position, the particle would be 
adjusted towards another optimal solution.  Thus, when identifying niches, this knowl-
edge can be used to identify particles that are not in the niche surrounding the current 
neighbourhood best position.  Not all particles where both vectors point in the same 
direction would of course be moving towards the current best position, as there may be 
other optimal solutions between those particles and the current neigh-bourhood best. 

Vector addition is used extensively in the original PSO paradigm. In the vector-
based PSO, another vector operation is used, namely the dot product.  In general the 
dot product of two vectors will be positive when they move in the same direction and 
negative when moving in opposite directions. Although the stochastic nature of the 
PSO algorithm is such that the above conjecture will not always hold, it can be used 
to identify the niche to which a particle belongs. Niches are identified sequentially by 
first finding the particle with the overall best fitness – the neighbourhood best value -
of the first niche and calculating the dot product of all particles. A niche radius is then 
assigned to that niche by calculating the distance between the neighbourhood best 
particle and the nearest particle with a negative dot product, that is, a particle which 
will probably converge on a neighbouring niche. A niche identification number start-
ing at one is also assigned to each particle where the dot product is positive and the 
distance between the particle and its neighbourhood best is smaller than the niche 
radius. The process is then repeated for particles where niche identification numbers 
have not yet been assigned, until all particles have been identified. This strategy will 
yield a number of niches, each with its own neighbourhood best and unique niche 
radius. Each particle will also be numbered to show to which niche it belongs. Unlike 
most other niching algorithms developed so far, the niche radius need not be specified 
in advance. This approach also facilitates niching in functions with irregular land-
scapes as niche radii are calculated individually and differ from one another. Addi-
tional niches may be identified as the landscape is not necessarily symmetrical.  

Once all niches have been identified, the particles belonging to each niche are 
treated as subswarms to be optimized. Optimization takes place in parallel. During 
this process niches can be merged if they are observed to be converging on the same 
optimum. A parameter indicating the distance between optima that will trigger merg-
ing, is set in advance. This parameter, a small value, is known as the granularity. The 
same value is used to find an initial personal best value when spawning new particles. 
One of the advantages of this PSO model is therefore that very few parameters have 
to be set in advance. 
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3   Particle Swarm Models for Tracking a Single Optimum in a 
Dynamic Environment 

One of the first investigations into the modification of the Particle Swarm Optimizer 
to locate changing extrema, was by Carlisle and Dozier [10]. The use of a sentry par-
ticle was proposed to detect any change in the environment. To prevent a return to 
outdated positions after an environment change, resetting of the personal best posi-
tions to the current position of each particle, was proposed. It should, however, only 
be reset if the current position is better than the previous personal best position. It 
must be noted that such a strategy would only be effective when the swarm has not 
yet converged to a solution. If it has converged, the velocity updates would also be 
very small. Therefore partial re-initialization of the swarm could be combined with 
the resetting of personal best positions to increase diversity. 

Eberhart and Shi experimented with tracking and optimizing a single optimum in 
a dynamic system [11]. Successful tracking of a 10-dimensional parabolic function 
with a severity of up to 1.0 was demonstrated. PSO seemed to be naturally suited to 
such problems and was perceived to perform better than genetic algorithms on simi-
lar problems. Dynamic environments can, however, vary considerably. It was rea-
soned that searching from the current position works well for small environmental 
changes, or when the swarm has not yet reached an equilibrium state. For severe 
environmental changes, reinitialization of the entire swarm could be more effective 
as previous optimal positions would contribute very little or nothing at all to the 
effort. A combination of these two approaches, namely retaining the global best 
position and reinitializing a percentage of the particle positions, was suggested in 
order to retain potentially good positions as well as increase diversity.  

Blackwell and Branke [12] developed a new variant of PSO that would work well 
in dynamic environments. They constructed interacting multi-swarms by extending 
the single population PSO as well as the charged particle swarm optimization method. 
In charged particle swarm optimization a roaming swarm of  “charged”  particles, that 
is, particles that are repelled by a subswarm converging on a peak, is maintained to 
detect new peaks in the search space. Although the purpose of the multiswarms that 
had to be maintained on different peaks, was to track changing optima, the creation of 
subswarms per se is relevant to multimodal optimization. Two forms of swarm inter-
action were proposed: exclusion and anti-convergence. Exclusion prevents swarms 
from settling on the same peak, by re-initializing the lesser swarm if two swarms 
move too close to one another. Anti-conversion re-initializes the worst swarm in order 
to track down any new peak that may appear. The latter is of course more relevant in 
a dynamic environment.  

4   Particle Swarm Models for Multiple Dynamic Optima 

Most techniques using PSO to track moving optima have been developed for single 
optimum functions. The SPSO described in section 2 has, however, been modified for 
operation in dynamic environments [13]. The fact that multiple optima are found in 
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parallel provides a natural mechanism for extending the algorithm. To track optima, 
each particle’s personal best fitness value is re-evaluated before being compared with 
its current fitness. A strategy for preventing crowding at known optima entails intro-
ducing a maximum species population parameter. Only the best candidate members 
are allocated as members of a species. Redundant particles are reinitialized at random 
positions in the solution space.  

The SPSO was extensively tested on functions generated by Morrison and De 
Jong’s dynamic test function generator [14]. Results indicated that the algorithm can 
successfully track optima in a dynamic two-dimensional environment. The testing, 
however, focused mainly on the effect of different values of the population maximum 
and the species radius on the performance of the algorithm. 

The proposed dynamic vector-based PSO uses the parallel vector-based PSO to 
find initial multiple optima. For a strategy to be effective, all optima should be 
found after each change with less effort than re-optimization would entail. The only 
data that would be useful after the objective function has been modified, would be 
the position where the previous optima were located, and only if the changes were 
not too severe. For severe changes it could be argued that no benefit can be derived 
from previous optimal positions and that complete re-optimization would be prefer-
able. The proposed algorithm was designed to retain only those values and then 
spawn a few particles in the immediate vicinity. Only those particles are then opti-
mized. During this process, niches may be merged if they converge on the same 
position. New optima, may, however, appear when the objective function changes. 
To locate them will not be so simple, as the initial strategy to find niches must basi-
cally be repeated to find new candidate solutions. The algorithm does, however, 
deactivate particles falling within the niche radii of the existing optima by marking 
them not to be updated. The remaining particles are then grouped around candidate 
solutions and optimized. Some of these niches will form around existing niches and 
be absorbed during the optimization process. Some will, however, converge on  
new optima.  

The vector-based PSO algorithm for multiple dynamic optima can now be presented: 

1. Find niches and optimize by using the parallel vector-based PSO. See section 2. 
2. Repeat: 

If  function has been modified, then 
Stage 1: 
1. Retain particle with the best value in each niche. 
2. Create a small number of new particles in vicinity of previous best particles. 

3 additional particles at random positions within 80% of the niche radius 
from the neighbourhood best particle in each niche, works well. 

3. Optimize to find new best value in each niche. 
4. Merge niches as described in section 2. 

    Stage 2: 
5. Clear vector of particles but retain best particles 
6. Create additional particles over entire search space 
7. Consolidate particles in existing niches as follows (see section 2): 

       - Find niche radii 
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       - Set identification numbers of particles inside each niche radius. 
       8.     Optimize remaining particles if any 
       - Repeat until all particles have been included in a niche (see section 2): 
  - Find best value (neighbourhood best for that niche) 
  - Set neighbourhood best of particles to best value 
  - Set particles with positive dot product to next niche 
  - Optimize niches in parallel and merge if necessary 

5   Experimental Setup and Results 

To test the above algorithm exhaustively for all possible moving optima is a major 
undertaking. For this study Morrison and De Jong’s test problem generator was used 
[14]. The test problem generator was devised to be used in the study of EA perform-
ance in changing environments. An environment in two dimensions consisting of a 
number of cone shapes is generated by the following equation: 

( )22
,1 )()(.max),( iiiiNi YYXXRHYXf −+−−= =  . (1) 

where the height of each cone is given by H, the slope by R and the position by (Xi, 
Yi). The number of optima, their positions, shapes and heights can be specified. An 
environment with three cones is illustrated in Figure 1. When the environment 
changes, optima may be obscured and appear again at a later stage.  

 

Fig. 1. An environment with three peaks, generated by Morrison and De Jong’s test problem 
generator 

Six separate scenarios were implemented; in each case 30 runs were performed in a 
two-dimensional environment with range [-1.0, 1.0].  The initial number of particles 
was set to 30 to find the optima for stage 1 of the algorithm. For stage 2 it was in-
creased to 60. The granularity parameter was set to 0.05 for all the experiments. When 
updating, parameter w of the equation given in [1], is set to 0.8, while c1 and c2 are 
both set to 1.  Vmax was not used in this case [7],[8],[9].    

Settings for the six experiments that have been carried out, as well as the results 
obtained, are summarized in Table 1. 
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Table 1. Experimental setup and results 

Initial environment Modification Result 
Three peaks Temporal changes over six 

steps 
All three solutions found 
after each step 

Five peaks Temporal changes over six 
steps 

All five solutions found after 
each step 

Three peaks Spatial changes over six steps All three solutions found 
after each step 

Five peaks Spatial changes over six steps All three solutions found 
after each step 

Three peaks Spatial changes over six steps. 
One peak is obscured after 
three steps 

All three solutions found 
after three steps and two 
solutions after next three 
steps 

Three peaks Spatial changes over eight 
steps. One peak is obscured 
after three steps and appears 
again after another three steps 

All three solutions found 
after three steps and two 
solutions after next three 
steps. In 23 of 30 experi-
ments three optima were 
located in last two steps, in 5 
experiments two optima and 
in 2 experiments only one. 
All optima were located in 
73% of experiments 

6   Conclusion 

In this paper it was demonstrated that the parallel vector-based particle swarm opti-
mizer could be modified to track multiple moving optima in a few selected dynamic 
environments. Good results were found when existing optima were tracked and the 
spatial severity was low. Results are, however, highly problem-dependent, and locat-
ing new peaks is not always successful. It is also computationally more expensive to 
search the entire problem space for these peaks, and in some cases re-optimization of 
the search space might have to be considered.  

Future research holds many challenges.  More complicated test functions will have 
to be devised to facilitate thorough testing in a variety of environments. The technique 
should also be refined in order to obtain more conclusive results. 
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Abstract. This paper proposes a Binary Ant System (BAS), a new
Ant Colony Optimization applied to multidimensional knapsack prob-
lem (MKP). In BAS, artificial ants construct the solutions by selecting
either 0 or 1 at every bit stochastically biased by the pheromone level.
For ease of implementation, the pheromone is designed specially to di-
rectly represent the probability of selection. Experimental results show
the advantage of BAS over other ACO based algorithms. The ability of
BAS in finding the optimal solutions of various benchmarks indicates its
potential in dealing with large size MKP instances.

Keywords: Ant Colony Optimization, Binary Ant System, Combinato-
rial Optimization, Multidimensional Knapsack Problem.

1 Introduction

The multidimensional knapsack problem (MKP) is a well-known NP-hard com-
binatorial optimization problem, which can be formulated as:

maximize f(x) =
∑n

j=1
pjxj (1)

subject to
∑n

j=1
rijxj ≤ bi, i = 1, ..., m, (2)

xj ∈ {0, 1}, j = 1, ..., n. (3)

Each of the m constraints described in condition (2) is called a knapsack
constraint, so the MKP is also called the m-dimensional knapsack problem. Let
I = {1, 2, ..., m} and J = {1, 2, ..., n}, with bi > 0 for all i ∈ I and rij ≥ 0 for
all i ∈ I, j ∈ J , a well-stated MKP assumes that pj > 0 and rij ≤ bi <

∑n
j=1 rij

for all i ∈ I, j ∈ J .
MKP can be regarded as a resource allocation problem, where we have m

resources and n objects. Each resource i ∈ I has a burget bi, each object j ∈ J
has a profit pj and consumes rij of resource i. The problem is to maximize the
profit within a limited budget.

Ant Colony Optimization (ACO) is a recently developed, population-based
meta-heuristic[3,7], which has been successfully applied to several NP-hard com-
binatorial optimization problems, such as traveling salesman problem[5,6], vehi-
cle routing problem[9], and quadratic assignment problem[10,12].

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 142–149, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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This paper presents a Binary Ant System (BAS), an extension of the hyper-
cube frame for Ant Colony Optimization[2] to the constrained combinatorial
optimization problem: the MKP. The main idea of BAS is similar to those ACO
algorithms dealing with assignment problems. Instead of assigning objects or
items to variables, BAS assigns 0 or 1 to every bit of the binary solution string.
Furthermore, to reduce the computational complexity and make BAS easy to
use, we do not use a fully connected weighed graph as the ACO algorithms
usually do, instead, we use a simple graph in which every bit is independently
connected to node 0 and node 1. Pheromone are associated to the selection of
0 and 1 for every bit, and its value can be directly regarded as the probability
of selection. Because of the independence of the selection of each bit, artificial
ants in BAS can construct solutions in a kind of parallel method, rather than
the normal sequential solution construction method in ACO. The experimental
results over various benchmark problems show the potential of BAS for solving
MKP of different characteristics.

The paper is organized as follows. In the next section, we present the descrip-
tion of BAS applied to MKP, together with a short discussion about its difference
from other ACO based algorithms available for the MKP. Computational results
in section 3 show the performance of BAS in comparison with other ACO based
algorithms. Finally, we end with some concluding remarks and discussions in
Section 4.

2 Application of BAS to MKP

2.1 Solution Representation and Construction

BAS is designed specially for the problems with binary solution structure, as for
MKP, a bit string x = {x1, · · · , xn} ∈ {0, 1}n represents a potential solution in
BAS. In which, xj = 0 means that the object j is not selected, while xj = 1
means that the object j is selected. By this solution representation, we can see
that a solution might not be feasible. An infeasible solution is one for which at
least one of the knapsack constraints is violated, i.e.,

∑n
j=1 rijxj > bi for some

i ∈ I.
In a solution construction cycle, every ant walks through all the object nodes

to construct the solution. At every object node j, an ant selects node 0 or node 1
to go stochastically guided by the pheromone distributed on the selection j → 0
and j → 1:

pk
js(t) =

τjs(t)∑
l∈{0,1} τjl(t)

, s ∈ {0, 1} (4)

Since all the bits are independent with each other, every ant can construct its
solution by making selections for all the bits simultaneously, thus can make the
algorithm run in a kind of parallel way to cut down the computing time.

After all the ants have completed their tours, all the solutions generated dur-
ing the current iteration are checked to see whether they are feasible. Infeasible
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solutions are repaired by the repair operator, then they are evaluated and com-
pared by the objective function f(x) as described in (1).

BAS incorporates different pheromone update strategy depending on the con-
vergence status of the algorithm. The convergence status of the algorithm is
monitored through a convergence factor, which is defined as:

cf =

∑n
j=1 |τj0 − τj1|

n
(5)

According to the definition of cf , at the beginning of the algorithm, all the
pheromone have the value of τ0 = 0.5, such that cf = 0; as the algorithm goes
on, the difference between τj0 and τj1 becomes larger and larger, and to be close
to 1 when the algorithm falls into a local optima, such that cf → 1. So, the
convergence procedure of BAS to a local optima is equivalent to the procedure
of cf changes from 0 to 1.

Pheromone update procedure in BAS consists of two parts: the first is the
pheromone evaporation procedure, in which pheromone on all the paths evapo-
rate according to the following equation:

τjs(t + 1) ← (1 − ρ)τjs(t), j = 1, · · · , n, s ∈ {0, 1} (6)

where ρ is the evaporation parameter, and the second part is the pheromone
intensification procedure:

τjs(t + 1) ← ρ
∑

x∈Supd|js∈x

wx, j = 1, · · · , n, s ∈ {0, 1} (7)

where Supd is the set of solutions to be intensified in the pheromone update
procedure, wx ∈ (0, 1) is the intensification weight for each solution x, which
satisfies

∑
x∈Supd wx = 1, and js ∈ x means that path js is selected by solution

x during the solution construction procedure.
Supd consists of three components, which are:

– the global best solution Sgb: the best solution generated since the start of
the algorithm.

– the iteration best solution Sib: the best solution generated in the current
iteration by all the ants.

– the restart best solution Srb: the best solution generated since the last re-
initialization of the pheromone.

Depending on the value of cf , BASuses different combinations of the pheromone
intensification weight wx, and decides whether a pheromone re-initialization pro-
cedure should be performed. The details of the pheromone intensification strategy
is described in Table 1, in which five different pheromone update strategy are used
in different status of cf . wib, wrb, and wgb are intensification weights for solution
Sib, Srb, and Sgb respectively. cfi(i = 1, · · · , 5) are the threshold parameters for
the division of the five stages.

When cf ≥ cf5, BAS performs the pheromone re-initialization procedure, in
which all the pheromone are set to the initial value τ0, and followed directly by
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Table 1. Pheromone Intensification Strategy for BAS. According to the value of cf ,
BAS uses different combination of Sib, Srb and Sgb to intensify the pheromone belong-
ing to the solutions. While cf ≥ cf5, the pheromone re-initialization is performed.

cf < cf1 cf ∈ [cf1, cf2) cf ∈ [cf2, cf3) cf ∈ [cf3, cf4) cf ∈ [cf4, cf5)
wib 1 2/3 1/3 0 0
wrb 0 1/3 2/3 1 0
wgb 0 0 0 0 1

a pheromone update procedure using Sgb as the only intensification solution in
order to make the algorithm keep search around the most promising areas in the
following iterations.

2.2 The Pseudo Utility

At the initialization step, BAS sorts and renumbers variables according to the de-
creasing order of their pseudo utility, uj, which were introduced by the surrogate
duality approach of Pirkul [14]. The general idea of this approach is described
very briefly as follows.

The surrogate relaxation problem of the MKP can be defined as:

maximize
∑n

j=1
pjxj (8)

subject to
∑n

j=1
(
∑m

i=1
ωirij)xj ≤

∑m

i=1
ωibi (9)

xj ∈ {0, 1}, j = 1, 2, ..., n (10)

where ω = {ω1, ..., ωm} is a set of surrogate multipliers (or weights) of some
positive real numbers. We obtain these weights by a simple method suggested
by Pirkul [14], in which we solve the LP relaxation of the original MKP and use
the values of the dual variables as the weights. The weight ωi can be seen as the
shadow price of the ith constraint in the LP relaxation of the MKP.

The pseudo-utility ratio for each variable, based on the surrogate constraint
coefficient, is defined as:

uj =
pj∑m

i=1 ωirij
(11)

2.3 The Repair Operator

In BAS, a repair operator is incorporated into SolutionRepair to guarantee fea-
sible solutions generated by ants at SolutionConstruction step. The idea comes
from Chu and Beasley [4]. The repair operator consists of two phases. The first
phase (called DROP) examines each bit of the solution string in increasing order
of uj and changes the bit from one to zero if feasibility is violated. The second
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phase (called ADD) reverses the process by examining each bit in decreasing
order of uj and changes the bit from zero to one as long as feasibility is not
violated.

2.4 Local Search

Local search has been verified effective by most of the previous studies[3,7]. In
BAS MKP, we design a simple random 4-flip method as the local search, that
is, randomly select 4 variables from the solution, flip their values from 1 to 0
or 0 to 1, repair the new solution if necessary. If the new generated solution is
better, it replace the original solution; otherwise, the original solution is kept
for the following flips. The local search method is performed 1000 times at every
iteration for the iteration best solution Sib and the global best solution Sgb.

2.5 The Difference to Other ACO Based Algorithms

There are several ACO algorithms available to solve MKP problems [1,8,11]. The
main differences between BAS and these algorithms are summarized as follows:

– BAS uses a different way of pheromone laying, which is much simple and
more general for the binary solution structure {0, 1}n.

– Contrary to the dynamic heuristic value calculation used in other ACO al-
gorithms, BAS does not use the complicated local heuristic value, but utilize
the problem specific information in the repair operator.

– Infeasible solutions during the solution construction step are allowed in BAS.
Instead of calculating constraint information to guide the ant tour during
the iteration, BAS repair the infeasible solutions at the end of every cycle.

Since BAS bypasses the time-consuming calculation of the dynamic heuristic
value and the constraint violation consideration during the tour construction
iteration, it is much faster comparing to other ACO based algorithms in each
cycle.

3 Comparison Results with Other ACO Approaches

BAS has been tested on benchmarks of MKP from OR-Library. The tested
instances are 5.100 with 100 objects and 5 constraints, and 10.100 with 100
objects and 10 constraints. The general parameter settings for all the tests are:
m = 100, τ0 = 0.5, Δτ = 1, ρ = 0.3 and cf = [0.3, 0.5, 0.7, 0.9, 0.95].

We compare the results of BAS MKP with other three previous ACO algo-
rithms applied to MKP, they are from Leguizamon and Michalewicz [11], Fi-
danova [8], and Alaya et.al. [1].

Table 2 displays the comparison results of 5.100 from OR library. On these
instances, BAS MKP outperforms all the other three algorithms in the results
of the average solution found. Actually, BAS MKP finds 29 best solutions out
of the 30 instances tested.
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Table 2. The results of BAS MKP on 5.100 instances. For each instance, the table
reports the best known solutions from OR-library, the best and average solutions found
by Leguizamon and Michalewicz[11], the best solution found by Fidanova [8], the best
and average solutions found by Alaya et.al. [1], and the results from BAS MKP, in-
cluding the best and average solutions over 30 runs for each instance.

N◦ Best Known
L.&M. FidanovaAlaya et.al. BAS MKP
Best Avg. Best Best Avg. Best Avg.

00 24381 24381 24331 23984 24381 24342 24381 24380.7
01 24274 24274 24245 24145 24274 24247 24274 24270.7
02 23551 23551 23527 23523 23551 23529 23551 23539.7
03 23534 23527 23463 22874 23534 23462 23534 23524.1
04 23991 23991 23949 23751 23991 23946 23991 23978.5
05 24613 24613 24563 24601 24613 24587 24613 24613
06 25591 25591 25504 25293 25591 25512 25591 25591
07 23410 23410 23361 23204 23410 23371 23410 23410
08 24216 24204 24173 23762 24216 24172 24216 24205.4
09 24411 24411 24326 24255 24411 24356 24411 24405.5
10 42757 42705 42757 42704 42757 42736.2
11 42545 42445 42510 42456 42545 42498.9
12 41968 41581 41967 41934 41968 41966.5
13 45090 44911 45071 45056 45090 42074.8
14 42218 42025 42218 42194 42198 42198
15 42927 42671 42927 42911 42927 42927
16 42009 41776 42009 41977 42009 42009
17 45020 44671 45010 44971 45020 45016.5
18 43441 43122 43441 43356 43441 43408.8
19 44554 44471 44554 44506 44554 44554
20 59822 59798 59822 59821 59822 59822
21 62081 61821 62081 62010 62081 62010.4
22 59802 59694 59802 59759 59802 59772.7
23 60479 60479 60479 60428 60479 60471.8
24 61091 60954 61091 61072 61091 61074.2
25 58959 58695 58959 58945 58959 58959
26 61538 61406 61538 61514 61538 61522.5
27 61520 61520 61520 61492 61520 61505.2
28 59453 59121 59453 59436 59453 59453
29 59965 59864 59965 59958 59965 59961.7

Table 3 displays the results for 30 instances of 10.100. On these instances,
BAS MKP also obtains overall better results comparing to other two ACO al-
gorithms. BAS MKP outperforms all the other algorithms in average solutions
found, and finds 28 best solutions out of 30 instances. The instances we did not
find the best solutions are 10.100.13 and 10.100.27, in which we found the best
value as 45598 and 59366 instead of the best-known value 45624 and 59391.
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Table 3. The results of BAS MKP on 10.100 instances. For each instance, the table
reports the best known solutions from OR-library, the best and average solutions found
by Leguizamon and Michalewicz[11], the best and average solutions found by Alaya
et.al. [1], and the results from BAS MKP, including the best and average solutions over
30 runs for each instance.

N◦ Best Known
L.&M. Alaya et.al. BAS MKP
Best Avg. Best Avg. Best Avg.

00 23064 23057 22996 23064 23016 23064 23058.87
01 22801 22801 22672 22801 22714 22801 22776.33
02 22131 22131 21980 22131 22034 22131 22116.17
03 22772 22772 22631 22717 22634 22772 22766.6
04 22751 22654 22578 22654 22547 22751 22707.8
05 22777 22652 22565 22716 22602 22777 22733.53
06 21875 21875 21758 21875 21777 21875 21861.93
07 22635 22551 22519 22551 22453 22635 22635
08 22511 22418 22292 22511 22351 22511 22433.83
09 22702 22702 22588 22702 22591 22702 22702
10 41395 41395 41329 41395 41387.33
11 42344 42344 42214 42344 42282.83
12 42401 42401 42300 42401 42367
13 45624 45624 45461 45598 45561.73
14 41884 41884 41739 41884 41846.5
15 42995 42995 42909 42995 42991.4
16 43559 43553 43464 43559 43535.8
17 42970 42970 42903 42970 42962.8
18 42212 42212 42146 42212 42212
19 41207 41207 41067 41207 41172
20 57375 57375 57318 57375 57361.43
21 58978 58978 58889 58978 58970.67
22 58391 58391 58333 58391 58382.37
23 61966 61966 61885 61966 61905.67
24 60803 60803 60798 60803 60803
25 61437 61437 61293 61437 61377.2
26 56377 56377 56324 56377 56352
27 59391 59391 59339 59366 59366
28 60205 60205 60146 60205 60171.5
29 60633 60633 60605 60633 60633

4 Conclusions

In this paper we have presented BAS, a HCF based ACO heuristic algorithm
for solving the multidimensional knapsack problem. Our approach differs from
previous ACO based algorithms in that the way for pheromone laying is specially
designed for binary solution structure, in which pheromone can be directly repre-
sented as the probability of selection during the solution construction procedure.
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We omit the local heuristic information to cut down the time complexity of each
iteration, but use a problem-specific repair operator to guarantee the feasibility
of solutions. The computational results show that the BAS outperforms other
previous ACO algorithms in solution quality, indicating the potential of BAS in
dealing with large size MKP problems of different characteristics.

The solution structure and pheromone laying method incorporated by BAS
implies that BAS can be a general algorithm for 0-1 integer-programming prob-
lems and function optimization problems with binary solution coding. Further
works will be on these fields with special focus on how to apply the problem-
specific information.
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15. T.Stützle and H.Hoos(2000) MAX-MIN Ant System. Future Generation Computer
Systems Journal. 16(8):889–914, 2000.



T.-D. Wang et al. (Eds.): SEAL  2006, LNCS 4247, pp. 150 – 157, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Numerical Optimization Using Organizational Particle 
Swarm Algorithm* 

Lin Cong, Yuheng Sha, and Licheng Jiao 

Institute of Intelligent Information Processing, Xidian University, Xi’an 710071, China 
{conglinsyh, shayuheng}@163.com  

lchjiao@mail.xidian.edu.cn 

Abstract. The classical particle swarm optimization (PSO) has its own disad-
vantages, such as low convergence speed and prematurity. All of these make 
solutions have probability to convergence to local optimizations. In order to 
overcome the disadvantages of PSO, an organizational particle swarm algo-
rithm (OPSA) is presented in this paper. In OPSA, the initial organization is a 
set of particles. By competition and cooperation between organizations in every 
generation, particles can adapt the environment better, and the algorithm can 
converge to global optimizations. In experiments, OPSA is tested on 6 uncon-
strained benchmark problems, and the experiment results are compared with 
PSO_TVIW, MPSO_TVAC, HPSO_TVAC and FEP. The results indicate that 
OPSA performs much better than other algorithms both in quality of solutions 
and in computational complexity. Finally, the relationship between parameters 
and success ratio are analyzed. 

1   Introduction 

Particle Swarm Optimization (PSO) is an algorithm proposed by James Kennedy and 
R. C. Eberhart in 1995[1] motivated by social behavior of organisms such as bird 
flocking and fish schooling. According to the initial definition of PSO, Shi yuhui and 
R. C. Eberhart [2] introduced the concept of inertia weights in PSO to control the 
relationship between exploration and exploitation. At the same time, combining PSO 
with other methods also brings people’s interests. A fuzzy adaptive particle swarm 
optimization method is proposed [3] to adjust the inertia weights. Angeline [4] pro-
posed a particle swarm algorithm using the concept of selection. 

In this paper, an organizational particle swarm algorithm (OPSA) is presented. 
Based on reference [5], the initial organization is a set of particles. By competition and 
cooperation between organizations in every generation, particles can adapt the envi-
ronment better, and the algorithm can converge to global optimizations. In order to 
study the performance of OPSO well, we tested 6 unconstrained benchmark problems, 
and compared with PSO_TVIW, MPSO_TVAC, HPSO_TVAC [6], and FEP [7]. 
Finally, the effect of parameters to the algorithm performance is analyzed. The results 
and analysis demonstrate OPSO has stable performance and high success ration. 
                                                           
* This work was supported by the National Natural Science Foundation of China under Grant 

60133010 and 60372045, the “863” Project under Grant 2002AA135080, and “973” Project 
under Grant 2001CB309403. 
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2   Particle Swarm Algorithm 

In particle swarm algorithm, the trajectory of each individual in search space is adjusted 
by dynamically altering velocity of each particle, according to its own flying experience. 
The position vector and the velocity vector of the ith particle in the d-dimensional 
search space can be represented as Xi=(xi,1,xi,2,…,xi,n) and Vi= (vi,1,vi,2 ,…,vi,n). According 
to users defined fitness function, let us say the best position of each particle 
is ,1 ,2 ,( ) ( , , , )i i i i ny t y y y= , and the fittest particle found so far at time t 

is ,1 ,2 ,ˆ ˆ ˆ ˆ( ) ( ( ), ( ), , ( ))i i i i ny t y t y t y t= . Then the new velocities and the positions of particles 

for the next generation are calculated using the following equations: 

, , 1 1, , , 2 2, ,

, , ,

ˆ( 1) ( ) ( )( ( ) ( )) ( )( ( ) ( ))

( 1) ( ) ( 1)
i j i j j i j i j j j i j

i j i j i j

v t v t c r t y t x t c r t y t x t

x t x t v t

+ = + × − + × −

+ = + +
 (1) 

where c1 and c2 are constants known as acceleration coefficients, and r1,j and r2,j are 
generated uniformly distributed random numbers in range [0,1], separately. 

3   Organizational Particle Swarm Algorithm 

The model of organization learning was first introduced to GA-based classifier by 
Wilcox in [8]. And its emphasis puts on making uses of the interaction between  
organizations. In OEA [5], the conception of the organization defined as a set of indi-
viduals. After forming organizations, they will compete and cooperate with each other 
to enlarge their size and reinforce their strength. In this paper an organizational particle 
swarm algorithm (OPSA) is presented. Here some definition of organization is given. 

An organization, org, is a set of individuals, x=(x1,x2,…,xn),  and the individuals be-
longing to org are called members. The member with best fitness in every organiza-
tion is called Leader. And the fitness of the ith organization, Fitness(orgi), is equal to 
the ith organizational leader’s fitness value, viz. Fitness(leaderi). Here we consider 
global minimum numerical optimization as following objective function. 

1 2min ( ), ( , , , ) , , 1,2, ,n i i if x x x x x S x x x i n= ∈ ≤ ≤ =  (2) 

where nS R⊆  defines the search space of an n-dimensional bounded by parametric 
constraints.  

3.1   Operators of Organizational Particle Swarm Algorithm 

Given two parent organizations, orgi1={x1,x2,…,xm1} and orgi2={y1,y2,…,ym2} with 

Fitness(orgi1) ≤ Fitness(orgi2), then the new organization org is generated. Here the 
operators are defined as follows. 

Cooperative Combination Operator. Let the new organization is Q. 

1 2 1 2 1 1 1 1 1 1 1 2{ , , , } { , , , , , , , , , , , , , }m m p p p m q q q mQ q q q x x x x x y y y y y+ − + − += =  (3) 
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Here xp and yq are the leaders of orgi1 and orgi2, respectively. In order to promote 
the intercommunion between orgi1 and orgi2, we use leaders to cooperate with each 
other. If U(0,1)<CS, two new individuals '

px and '
qy are generated by formula (4) in 

cooperative strategy1 and by formula (5) in cooperative strategy 2, where CS∈(0,1) 
is a predefined parameter. 

'
, , ,

'
, , ,

(1 )
          1,2, ,

(1 )

p k k p k k q k

q k k p k k q k

x x y
k n

y x y

β β

β β

= × + − ×
=

= − × + ×
 (4) 

'
, ,1 ,2 , 1 1 , 1 , 1 1 , 2 , 2 1 , 2 2 ,

'
, ,1 ,2 , 1 1 , 1 , 1 1 , 2 , 2 1 , 2 2 ,

( , , , , , , , , , , , )

( , , , , , , , , , , , )

p k p p p i q i q i q i p i p i p n

q k q q q i p i p i p i q i q i q n
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− + + +

− + + +

=

=
 (5) 

where 
kβ =Uk(0,1), 1<i1<n, 1<i2<n, and i1<i2. 

' '               ( ) ( )

               
p p p

p

p

x Fitness x Fitness x
x

x otherwise

≤
=  (6) 

' '               ( ) ( )

               

q q q

q

q

y Fitness y Fitness y
y

y otherwise

≤
=  (7) 

Finally, the organization Q is generated, orgi1 and orgi2 are deleted from current 
generation and orgc is added to the next generation. 

Self-study Operator. Self-study operator makes full uses of information of leaders 
and can find better solutions around the organization. Using self-study operator on Q, 
then the new organization 1 2 1 2{ , , , }m mZ z z z +=  is generated. 

As qp and qm1+q are the individuals obtained from cooperation of leaders orgi1 and 
orgi2, we keep them in organization Z for preserving the cooperative information 
between leaders. In organization Z, if Uj(0,1)<AS, then zj, j= 1,2,…,m1+m2 
j p≠ and 1j m q≠ + , is determined by formula (8) in self-study strategy 1, otherwise 

it is determined by formula (9) in self-study strategy 2, where zp=qp and zm1+q=qm1+q, 
and the subscript in Uj(0,1) indicates that the random number is generated anew for 
each value of j, AS∈(0,1) is a predefined parameter.  

,

, ,

,

           

                       1, 2, ,

         

k j k k

j k k j k k

j k

x r x

z x r x k n

r otherwize

<

= > =
 

(8) 

where rj,k=xp,k+Uk(0,1)×(xp,k-qj,k), j p≠ and 1j m q≠ + . 

,
,

U(0,1) ( )     (0,1) 1/
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j k
p k

x x x U n
z k n
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+ × − <
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where xk and kx  are the lower and upper bounds of the search space. After zj is calcu-

lated, Z is determined by formula (10). 

           ( ) ( )

           ( ) ( )  { (0,1) exp( ( ) ( ))}   

          

j j j

j j j j j j j

j

z Fitness z Fitness q

z z Fitness z Fitness q and U Fitness z Fitness q

q otherwize

≥

= < < −  (10) 

As can be seen, if zj is better than qj, zj gets into orgc, otherwise, zj gets into orgc 
with probability. The more zj close to qj, the greater the probability is.  

Splitting Operator. Splitting condition is given by (11): 

| | osorg Max>  (11) 

Where |org| stands for the number of individuals in organization org, Maxos (<N) is the 
maximum number of organizations, N denotes the individual number of all organiza-
tions. If a parent organization, orgi, satisfies formula (11), it will be split into two child 
organizations, orgc1 and orgc2, as follows: randomly select |orgi|/3~2|orgi|/3 members 
from orgi to create orgc1, and the rest members of orgi form orgc2. Finally, orgi is de-
leted from current generation and orgc1 and orgc2 are added to next generation.  

Swarm Velocity Updating Operator. Most of previous empirical developments of 
PSO are based on different weight factor method. However, Shi and Eberhart [9] 
suggest that for complex multimodal functions, the control of diversity of population 
with a linearly varying inertia weight may lead particles to converge to a local 
optimum prematurely. 

Here we keep the previous velocity term at zero. Then the new velocities and the 
positions of particles for the next generation are calculated using the following equa-
tions (12). 

, 1 1, , , 2 2, ,

, , ,

ˆ( 1) ( )( ( ) ( )) ( )( ( ) ( ))

( 1) ( ) ( 1)

i j j i j i j j i i j

i j i j i j

v t c r t y t x t c r t y t x t

x t x t v t

+ = × − + × −

+ = + +
 (12) 

Here ,1 ,2 ,( ) ( , , , )i i i i ny t y y y=  is the leader of each organization, and 

,1 ,2 ,ˆ ˆ ˆ ˆ( ) ( ( ), ( ), , ( ))i i i i ny t y t y t y t=  is the fittest leader found so far at that time t among 

organizations.  

3.2   The Procedure of Organizational Particle Swarm Algorithm 

The procedure is as follows. 
Step1: Initialize population Pt with N organizations, and each organization with 

orgN member, t ← 0. 
Step2: Reaching termination criteria, output results and stop; otherwise go to  

Step 3. 
Step3: Updating velocity and position of individual in every organization according 

to formula (12). 
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Step4: Randomly select two organizations, orgi1 and orgi2 from Pt, then perform 
cooperating combination operator on them to create organization Q. 

Step5: To organization Q, perform self-study operator on it to cerate organization Z. 
Step6: To Z, if satisfying splitting conditions, formula (11), the splitting operator is 

performed on it. 
Step7: If the number of organizations in Pt is greater than 1, go to Step4, otherwise 

go to Step8. 
Step8: If only one organization left in Pt, judging splitting condition and perform-

ing splitting operator on organization, otherwise go to step9. 
Step9: Move the organization left in Pt to Pt+1, t ← t+1, go to step2. 

4   Experimental Studies on Global Numerical Optimization 

In order to test the validity of OPSA, 6 benchmark functions are adopted, and the 
results are compared with PSO_TVIW, MPSO_TVAC, HPSO_TVAC and FEP. 

4.1   Unconstrained Multidimensional Functions 
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4.2   The Experiment Results 

The experiment tests the performance of OPSA on functions with 30 dimensions. 
The termination criterion of OPSA is one of the objectives, |fbest-fmin|< ε , is 
achieved, where fbest and fmin represent the best solution found until the current gen-
eration and the global optimum, respectively. To consistent, 410ε −=  and the 
maximum generation being 3000 are used for all functions. In the following ex-
periments, the parameter settings are: N 10, orgN=10, c1=c2=2, Maxos=30, AS=0.8, 
CS=0.6. The results are compared with PSO_TVIW, MPSO_TVAC, HPSO_TVAC, 
and FEP.  
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Table 1. Comparisons of PSO_TVIW, MPSO_TVAC, HPSO_TVAC, FEP and OPSA 

Mean value / standard deviation / mean function valuesf fmin PSO_TVIW MPSO_TVAC HPSO_TVAC FEP OPSA

f01 0
9.114×10 5

(7.811×10-6)
(232 208) 

9.343×10-5

(5.304×10-6)
(125 004) 

5.108×10-4

(3.0×10-3)
(51 274) 

5.7×10-4

(1.3×10-4)
(150 000) 

8.729×10-5

(1.602×10-5)
(24 817) 

f02 0
9.383×10-5

(5.195×10-6)
(233 746) 

9.276×10-5

(1.167×10-5)
(136 845) 

1.440
(2.242)

(290 844) 

8.1×10-3

(7.7×10-4)
(200 000) 

8.285×10-5

(1.911×10-5)
(33 030) 

f03 0
299.0044

(218.5204)
(300 000) 

2.6×10-3

(4.6×10-3)
(295 140) 

720.726
(342.040)
(300 000) 

1.6×10-2

(1.4×10-2)
(500 000) 

9.781×10-5

(1.681×10-6)
(125 090) 

f04 0
42.3739

(35.3131)
(300 000) 

40.499
(30.902)

(303 000) 

47.429
(42.062)
(300 000) 

5.06
(5.87)

(2 000 000)

1.288×10-4

(1.518×10-4)
(427 724) 

f05 0
32.4158
(7.0615)

(300 000) 

56.454
(13.962)

(303 000) 

23.387
(10.355)
(300 000) 

4.6×10-2

(1.2×10-2)
(500 000) 

8.648×10-5

(3.601×10-5)
(44 231) 

f06 0
3.73×10-2

(1.064×10-1)
(272 926) 

1.265×10-1

(2.298×10-1)
(201 219) 

6.2×10 3

(2.49×10 2)
(140 088) 

9.2×10-6

(3.6×10-6)
(150 000) 

8.283×10-7

(2.030×10-7)
(26 850) 

 

As can be seen from table 1, PSO_TVIW MPSO_TVAC and HPSO_TVAC can 
only find satisfied solution to several functions. So the algorithms have no robust. And 
FEP needs more computational cost than OPSO. To sum up, OPSO has better perform-
ance on numerical optimization problems. It can not only obtain the better solution but 
also need less mean number of function values with little standard deviation. 

5   Analyses of OPSA with Different Parameters 

In this subsection, the impact of different parameters, viz. Maxos, AS and OS, on the 
performance of OPSA is analyzed. With the restricted length of paper, we only tested 
on function 6 and the condition of the experiment is the same to above. 

5.1   The Analysis of OPSA with Different Maxos 

Parameter Maxos is used in splitting operator. In order to analysis the effect of pa-
rameter Maxos to the algorithm performance, it is sampled from [5,100] in step 5, so 
20 parameter values are obtained for function 6. 50 trials are carried out at each  
parameter value. Here we use average success ratio to depict the effect of Maxos to 
the algorithm.  

The definition of average succession ratio, labeled as Ras is given in definition 1: 

Definition 1. If a trial satisfies (13), and then the trial is called success, otherwise 
failure: 

If     * 0f ≠  then * *
bestf f fε− < , else bestf ε<  (13) 
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Where bestf  stands for the best solution found by trial, and *f  is the global optimum 

of the function. Suppose Ms out of M trials succeed, then average success ratio is 
given as Ras=Ms/M. 

Experimental result is shown in figure 1. It illuminate that OPSA have good per-
formance with different Maxos. On the whole, although the best value of Maxos is 
different for varied functions, OPSA can achieve high average success ratio and per-
form stably at a large range of parameter values. 

            

Fig. 1. Relationship between Maxos and Ras         Fig. 2. Relationship between AS, CS and Ras 

5.2   Analysis of OPSA with Different AS and CS 

Parameters AS and CS control the probabilities of using self-study and cooperative 
combination operators. In experiment, AS and CS are sampled from [0, 1] in step of 
0.1, so 11×11 121 groups of parameter values are obtained for each function. 50 
trials are carried out at every group of parameters, and the relationship between AS, 
CS and Ras is depicted in Fig.2.  

From the result we can see that the effects of varied AS to the success ration is lar-
ger than CS. OPSA performs better of combining two strategies together. On the 
whole, although the best values of AS and CS are different for different functions, 
OPSA can achieve to a high average success ratio and perform stably at a large range 
of parameter values. 

6   Conclusion 

OPSA is proposed to solve numerical optimization problems in this paper. By compe-
tition and cooperation of organizations in every generation, particles can adapt the 
environment better, and the algorithm can converge to global optimizations. In ex-
periments, OPSA is tested on 6 unconstrained benchmark problems, and the results 
are compared with PSO_TVIW, MPSO_TVAC, HPSO_TVAC and FEP. The ex-
perimental results show that OPSA can stably find optimal or satisfied solutions. 
Finally, the affection of random parameters to the algorithm performance is analyzed. 
The results indicate that the proposed method not only has high stability and fast 
convergence rate but also is not sensitive to parameters.  
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Abstract. A hybrid discrete particle swarm algorithm is presented in
this paper to solve open-shop problems. The operations are redefined in
the discrete particle swarm algorithm. To improve the performance the
simulated annealing algorithm is combined with discrete particle swarm.
We use SA to enhance the results of local best positions instead of current
positions. The experimental results show that our hybrid discrete particle
swarm algorithm is effective and efficient to solve open-shop problems.

1 Introduction

Particle Swarm Optimization (PSO) is inspired by the behavior of bird flocking
and fish schooling, which is a stochastic search technique based on the simulation
of social behavior metaphor. PSO exploits a population of potential solutions
to probe the search space. It initializes the population with random candidate
solutions, called particles. Each particle is assigned a randomized velocity and
is iteratively moved through the search space. It benefits from the experience of
its own and that of the other members of the population.

Since its developed by Kennedy and Eberhart[1], PSO is widely used as opti-
mizer for continuous nonlinear functions. Many experimental results denote that
PSO is a excellent stochastic search method on continuous numeric optimization
problems. Recently PSO is used to solve scheduling problems[2],[3],[4],[5],[6], [7]
and is proved its efficiency.

The classical open shop problem (OSP) is a well-known scheduling problem.
It involves a collection of n jobs J1, J2, . . . , Jn and m machines M1, M2, . . . , Mm.
Each job Ji comprises of a collection of m operations (sometimes called tasks)
Oi1, Oi2, . . . , Oim where Oij has a proceeding time of pij > 0 and has to be
processed on machine Mj . Furthermore the operations may not be interrupted,

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 158–165, 2006.
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i.e. preemption is not allowed in their processing time. Each machine can process
at most one operation at a time and each job can be processed by at most one
machine at any given time. The operations of a job can be processed in any
order. The objective of OSP is to obtain a feasible combination of the machine
and job orders, i.e. a schedule with the minimum makespan. OSP is NP-hard
for m ≥ 3[8]. Some branch and bound methods as well as some hybrid branch
and bound methods are published to solve that problem[9],[10],[11]. Incomplete
algorithms are also developed to solve OSPs[12],[13],[14],[15].

In this paper, a discrete particle swarm algorithm combining with simulated
annealing algorithm has been proposed for solving a set of benchmark OSPs. The
remainder of this paper is organized as follows:Section 2 provides the definition
of operators in discrete particle swarm algorithm and the brief overview of simu-
lated annealing algorithm. Then the hybrid algorithm is presented. Experimental
results are given in Section 3. Section 4 is the conclusion.

2 Hybrid Discrete Particle Swarm for Open-Shop
Problem

Particle swarm is a general heuristic exploration technique which maintains a
swarm of candidate solutions, referred to as particle. Particle swarm performs ef-
fective exploration through memory and feedback. Particles flow through hyper-
dimensional search space, attracting towards the best position found by the
neighborhood particle and the best historic position by themselves.PSO was fist
applied to optimize continuous nonlinear function. Many applications are pub-
lished in recent years. Later, PSO has been adapted to solve discrete optimization
problems[16]. A permutation discrete PSO has been proposed by Clerc[17] and
its applications are reported[7],[18].

2.1 Discrete Particle Swarm

Supposing that the search space is N-dimensional, then the i-th particle in the
swarm could be presented with a N-dimensional vector, Xi = (xi1, xi2, . . . , xiN ).
The velocity of this particle can be presented as Vi = (vi1, vi2, . . . , viN ). The
best historic position visited by the i-th particle (i.e. local best position) can
be denoted as Pi = (pi1, pi2, . . . , piN ). g is defined as the index of the best
neighborhood. For the popular PSO, the main manipulation according to the
following two equations:

vt+1
ij = ωvt

ij + c1r1j(pij − xt
ij) + c2r2j(pgj − xt

ij) (1)

xt+1
ij = xt

ij + vt+1
ij (2)

where i = 1, 2, . . . , S, and S is the size of the swarm; j = 1, 2, . . . , N; t = 1, 2, . . . , is
the number of iteration; ω is the inertia weight; c1 and c2 are acceleration coeffi-
cients; r1j , r2j ∼ U(0, 1).
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New velocity of a particle at time (t + 1) is determined by three components:
current velocity vt

i ; the historic position pi and the global best position pg. After
the update of velocity, the position at time (t+1) is modified with equation (2).
In continuous PSO, current velocity vt

i is a real value vector but in the discrete
particle swarm algorithm we use transpositions as a substitute for a real value
vector. Just as described in [17].

vi = {(xij → x′
ij)}; j = 1, . . . , L (3)

where xij and x′
ij are operations of OSP position values, and L represents the

length of the list or the maximum number of possible permutation which is
randomly generated between 1 and dimension size N .

Here vi refers to exchange of operation positions (x1 → x′
1), then (x2 →

x′
2), etc. In discrete particle swarm algorithm, vi prefers to generate randomly

instead of reserved in last iteration. After generating the velocity index vi, we
can compute the velocity at time (t + 1) with formulation (1). The operators
presented in equation (1) are redefined below:

Subtraction (position - position) operator: the subtraction of two positions
produces a velocity. Suppose x1 and x2 are positions, then x1 − x2 yields a
velocity v = {(x1 → x2)}. The arrow represents the exchange of position, i.e.
when v is applied to a particle. We exchange the same values in x2 and in this
particle position with the corresponding value in x1.

Addition (velocity + velocity) operator: the addition of two velocity vectors
results in a new velocity. Suppose v1 = {(x1 → x′

1)} and v2 = {(x2 → x′
2)}, then

the addition of v1 and v2 we get v = v1 + v2 = {(x1 → x′
1), (x2 → x′

2)}.
Addition (position + velocity) operator: the addition of a position with a

velocity results in a position. Let x be the position and v = {(x1 → x2)} be the
velocity. New position x′ is produced by applying the permutation of v to x, i.e.
values in x who equal to x2 are replaced by x1.

Multiplication (coefficient × velocity) operator: the multiplication results in
a velocity. In our algorithm the acceleration coefficient are set to 1, and inertia
weight is set to 1 too. And the r1, r2 are still sampled from U(0, 1), but now we
do not time them with velocity directly, we treat them as probabilistic selection.
At the update of velocity we select (pi − xt

i) with probability r1, and (pg − xt
i)

with probability r2 respectively.

2.2 Combining Simulated Annealing with DPS

Simulated annealing is an advanced local search method which, introduced by
Kirkpatrick, Gelatt and Vecchi[19], inspires the physical annealing process stud-
ied in statistical mechanics. Simulated annealing has been applied to many com-
binatorial optimization problems successfully. It can be viewed as an iterative
improvement approach to combinatorial optimization problems. A SA approach
repeats iterative small local alterations that look for better solutions while offer-
ing the possibility of accepting in a controlled manner worse solutions to escape
from local optima.
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At each iteration, starting from an initial solution s, a new solution s′ in the
neighborhood of s is generated randomly. Then a decision is taken to decide
whether s′ will replace s based on the calculation of 
 = f(s′) − f(s). For a
minimization problem, if 
 ≤ 0, we move from s to s′, otherwise, we move to
s′ with the probability e−

�
t , where t is a control parameter called the tempera-

ture (higher temperatures lead to higher accepting probabilities and vice versa).
Usually SA algorithm starts from a high temperature and decreases gradually.
The algorithm will stop until the termination criterion is reached.

In SA the temperature is controlled by a cooling schedule specifying how the
temperature should be gradually decreased. The cooling schedule is specified
by several parameters generally, namely the initial temperature T0, the epoch
length L, the rule of reducing the temperature, and the termination criterion. T0
should be high enough so that all possible configurations have the equal chance to
be visited. To prevent too long from running, the temperature should be reduced
in a certain way.The method specifies the temperature with tk = b×tk−1, during
the kth epoch (k = 1, 2, . . .), where b is a parameter called decreasing rate, with
a value less than 1. The termination condition in our algorithm is near zero, in
which a termination temperature tend is set. When current temperature tk < tend

the algorithm will be terminated.
The performance of the SA depends on the choice of the neighborhood mainly.

Variable neighborhood search (VNS) method presented in [20] is used in our
algorithm, which employs two neighborhood structures: remove the operations
at the uth dimension and insert it in the vth dimension (insert); exchange two
operations between the uth and vth dimension (exchange or interchange). The
interchange method is the same as the exchange in DPS algorithm and we can
apply the exchange method to SA directly. In our algorithm, SA is used to
search the particles’ historic positions (local best positions) instead of the current
positions.
The pseudocode of the entire hybrid algorithm is as follows:

sa(Particle p) {
/*T0 is the initial temperature, tend is the end condition
temperature, b is the decreasing rate*/
t = T0
kcount=0
max_method=2
while(t > tend) {
for i = 0 to N {
kcount =0
while (kcount < max_method) {

u = rand() % N
v=rand()%N
if(kcount == 0) {
p’ = insert(p, u, v)

}
if(kcount == 1) {
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p’ = interchange(p, u, v)
}
if(fitness(p’) <= fitness(p)) {
p moves to p’
kcount=0

}
else {
with probability of exp(-(fitness(p’)-fitness(p))/t)
p moves to p’ and kcount=0

else kcount++
}

}
}
t = b * t

}
}

main procedure
initialize positions with inequality each other
while(unsatisfy termination criterion) {
compute the makespan of each particle
determine gbest and pbest
for i=0 to popSize {
sa(particle i’s pbest position)

}
update velocity
update position

}

3 Experimental Results

We test the algorithm on a large set of benchmark problem instances have been
generated by Taillard[21]1. All the test instances are quadratic of size n jobs and
n machines, with n ranging from 4 to 20.

In our study the parameters of hybrid DPS are as follows: the population size
is set to 30, the probability selection of vi is set to 3/N , In our test the algorithm
stops when it has found a solution or when it has performed 105 evaluations in
each case. 105 evaluations are considered no more solution can be found and
are excluded from experimental results. 50 runs are performed for each instance.
The parameter setting for SA including: the initial temperature T 0 = 2, the
terminating criterion temperature tend = 0.02, the epoch length L is set to N
(where N is the number of operations), and decreasing rate b = 0.95.

1 http://ina2.eivd.ch/Collaborateurs/etd/problemes.dir/ordonnancement.dir/ordonn
ancement.html
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Table 1. Partial test results for Taillard benchmark problems

Name
Problem Instances Hybrid DPS
Size Current best Lower Bound Best Max

tai4 41 4 × 4 193 186 193 193
tai4 42 4 × 4 236 229 236 236
tai4 43 4 × 4 271 262 271 271
tai4 44 4 × 4 250 245 250 250
tai4 45 4 × 4 295 287 295 295
tai5 51 5 × 5 300 295 300 300
tai5 52 5 × 5 262 255 262 262
tai5 53 5 × 5 328 321 323 328
tai5 54 5 × 5 310 306 310 310
tai5 55 5 × 5 329 321 326 329
tai7 71 7 × 7 438 435 435 438
tai7 72 7 × 7 449 443 446 449
tai7 73 7 × 7 479 468 473 479
tai7 74 7 × 7 467 463 463 467
tai7 75 7 × 7 419 416 416 419
tai10 101 10 × 10 652 637 649 652
tai10 102 10 × 10 596 588 594 596
tai10 103 10 × 10 617 598 614 617
tai10 104 10 × 10 581 577 578 581
tai10 105 10 × 10 657 640 652 657
tai15 151 15 × 15 956 937 952 956
tai15 152 15 × 15 957 918 953 957
tai15 153 15 × 15 899 871 897 899
tai15 154 15 × 15 946 934 942 946
tai15 155 15 × 15 992 946 989 992
tai20 201 20 × 20 1215 1155 1211 1215
tai20 202 20 × 20 1332 1241 1329 1332
tai20 203 20 × 20 1294 1257 1292 1294
tai20 204 20 × 20 1310 1248 1307 1310
tai20 205 20 × 20 1301 1256 1299 1301

Table 1 reports the partial results of the hybrid DPS algorithm on Taillard
benchmarks. As can be seen in Table 1, our hybrid DPS algorithm obtained the
current best solutions for all Taillard benchmarks problems (the Max column
in Table 1 denotes the maximal makespan of each instance). The Best column
in Table 1 presents the minimal makespan found by our hybrid DPS algorithm.
Only for all 4 × 4 benchmark problems and three 5 × 5 benchmark problems the
Best solutions are equal to the Current best solutions, and for the left benchmark
problems the Best solutions found by our hybrid DPS algorithm are superior to
the Current best solutions.
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4 Conclusion

The results presented in this paper are very encouraging and promising for the
application of the hybrid DPS algorithm to Open-shop scheduling problems.
Our new hybrid algorithm is very effective and efficient. It can find optima for
most test instances, and has less running time. Computational experiments on
some famous test sets of benchmark problem instances taken from literature
demonstrate the efficiency of this approach. It may be an attractive alternative
for solving Open-shop scheduling problems and other optimization problems.
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Abstract. In this paper, a Particle Swarms Cooperative Optimization
is proposed to solve Coalition Generation Problem in parallel manner
with each Agent taking part in several different coalitions and each
coalition turning its hand to several different tasks. With a novel two-
dimensional binary encoding approach, the algorithm performs well on
coalition parallel generation. An adaptive disturbance factor is adopted
to force swarms getting out of local optimums quickly. Introduced an
active-feedback based on island models, the algorithm has a good coop-
erative searching characteristic. The effectiveness of the proposed algo-
rithm is proved by experiments.

1 Introduction

Coalition is an aggregation in which Agents with certain ability are interde-
pendent and cooperative to accomplish tasks. Forming a coalition, Agents can
enhance their ability to solve problems and obtain more income. Accordingly,
Coalition is an important manner of Agents coordination and cooperation [1].

Coalition generation, especially multi-task coalition parallel generation, is a
hard topic in Multi-Agent System (MAS). It mainly researches how to generate
several optimal task-oriented coalitions in dynamic and parallel manner. In order
to find the optimal coalition for each task, we must think of all or the mass of
possible coalitions. Obviously, it is a very complicated combinatorial optimiza-
tion problem. To solve the problem, researchers have already put forward a lot
of relevant algorithms, such as [2], [3] and [4]. But the condition that each Agent
can only take part in a coalition and each coalition can only turn its hand to a
task is restricted in existing researches above, which have produced a big waste
of resource and ability in MAS. In this paper, a Particle Swarms Cooperative
Optimization applied to solving Coalition Generation Problem in parallel man-
ner with each Agent taking part in several different coalitions and each coalition
turning its hand to several different tasks is presented. Using the remnant abil-
ity of Agents, the proposed algorithm gains more income and partly reduces
the waste phenomena. The effectiveness of the proposed algorithm is proved by
experiments.
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The rest of the paper is organized as follows: The details of the Coalition
Generation Problem are described in section 2. In section 3, the basic Discrete
Particle Swarm Optimization and its variants are reviewed. A Particle Swarms
Cooperative Optimization is proposed for solving coalition parallel generation in
section 4. Experiments are made to illustrate the performance of the proposed
algorithm in section 5. And a conclusion is drawn in section 6.

2 Coalition Generation Problem

The Coalition Generation Problem can be described in formalization as follows:
The MAS contains n Agents (A1...An). Each Agent has certain ability which

can be expressed as an ability vector. For example, the ability vector of Ai is
Bi

A=[bi
1...b

i
r], which shows its r kinds of ability. At the same time, the task tj has

the ability demanded vector Dj
t =[dj

1...d
j
r]. A group of Agents in MAS can form a

coalition Ck={Ai
k...Aj

k} through necessary negotiation to finish tasks together.
The coalition’s ability vector is the sum of the ability vectors of all its members,
that is Bk

C=
∑

Ai∈Ck
Bi

A=[bk
1 ...b

k
r ]. The essential condition for the coalition Ck to

finish the task tj is dj
i≤ bk

i (1≤ i≤ r). After finishing the task collectively, the
coalition members obtain their income:

νk = μ(tk) − τ(Ck) − ε(Ck) (1)

Where μ(tk) is the guerdon paid for finishing the task tk, τ(Ck) is the cost of all
members’ ability, ε(Ck) is the communication spending.

To realize coalition parallel generation, m coalitions must be searched parallel
according to m tasks with the purpose of maximizing the income of the whole
system, that is νMAS=max

∑m
k=1 νk. The number of the possible coalitions in

MAS which contains n Agents is 2n. It is very hard to search the whole space
to get each optimal coalition. Therefore, we propose a Particle Swarm Cooper-
ative Optimization which can form some task-oriented coalitions parallel with
the maximal or approximately maximal income under the restriction conditions
above and finishing within an acceptable time.

3 Discrete Particle Swarm Optimization

TheDiscreteParticle SwarmOptimization (DPSO)was first proposedbyKennedy
andEberhart in1997 [5]basedonthe standardParticleSwarmOptimization(PSO)
[6] [7], which is a novel nature-inspired evolutionary computing algorithm. In the
description ofDPSO, the swarm ismadeupof a certain number of particles.At each
iteration, all the particles move in the problem space to find the global optima. The
velocity and position of each particle is adjusted by the following formulas:

vt+1
id = w · vt

id + c1 · r1 · (Pid − xt
id) + c2 · r2 · (Pgd − xt

id) (2)

xt+1
id =

{
1, if ρt+1

id < s(vt+1
id ),

0, otherwise. (3)
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Where variable i denotes the i-th particle in the swarm, t represents the current
iteration number, d is the d -th dimensional value of the vector, vi is the velocity
vector of the i-th particle, xi is the position vector of the i-th particle, and Pi is
the local best position that the i-th particle had reached, Pg is the global best
position that all the particles had reached, w is called the inertia weight, c1 and
c2 are two constant numbers, which are often called the cognitive confidence
coefficients, r1 and r2 are two random numbers between 0 and 1, ρi is a quasi-
random number selected from a uniform distribution in [0.0, 1.0], s(v) is a sigmoid
limiting transformation function (s(v)=1/(1+e−v)).

Generally, vmax is retained, that is |vt+1
id | < vmax, which simply limits the

ultimate probability that bit xt+1
id will take on a binary value. A smaller vmax

will allow a higher mutation rate.

4 Particle Swarms Cooperative Optimization

Memory is an important characteristic in the DPSO, which has a different mech-
anism of sharing information contrast to the Genetic Algorithm (GA). In the GA,
chromosomes share information with each other so that the whole swarm can move
to the optimal area symmetrically.But in the DPSO, it is only the global best parti-
cle that canbroadcast information to the otherparticles.Quickly the other particles
converge at local minimum area in the course of following the global best particle,
so it is easy to get the local least value. To improve the global searching ability,
we propose a modified DPSO called ”Particle Swarms Cooperative Optimization”
(PSCO) based on island models. The PSCO contains S (S ≥ 2) unaided swarms
with each swarm containing M particles.

4.1 Two-Dimensional Binary Encoding

In this paper we design a novel two-dimensional binary encoding approach ap-
plied to the PSCO. For example, if there are m tasks and n Agents, the dimension
of each particle is m×n. Each row represents a task and each column represents
an Agent. Fig.1 shows a matrix representation of a particle xi in the swarm. If
aij = 1, the Agent Aj will take part in the coalition Ci with responsibility for
the task ti.

Here an Agent can take part in several different coalitions, so it is possible
that

∑m−1
i=0 aij > 1 and ”lawless particles” which are unfeasible combinations

come into being in the course of particles moving continuously, that is an Agent
Aj with its narrow ability may not support several coalitions synchronously with
responsibility for the corresponding tasks. Then those ”lawless particles” must
be adjusted as follows:

– if apj = 1 and aqj = 1, then Bp
rest=Dp

t -
∑k �=j

apk=1 Bk
A, Bq

rest=Dq
t -
∑k �=j

aqk=1 Bk
A,

– if Bp
rest ≤ 0 and Bq

rest ≤ 0, then apj = 0 and aqj = 0,
– if Bp

rest + Bq
rest ≤ Bj

A, then do nothing,
– if Bp

rest > Bq
rest, then apj = 1 and aqj = 0,

– if Bq
rest > Bp

rest, then aqj = 1 and apj = 0,
– if Bq

rest = Bp
rest, then one selected optionally is 1 and another is 0.
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Fig. 1. Particle xi

4.2 Cooperative Searching Based on Active-Feedback

Enlightened by the Ant Colony Optimization (ACO), we introduce an active-
feedback in the PSCO in order to improve the cooperative searching character-
istic of the PSCO. Each swarm searches separately for the optimal position and
modifies its particles with the best position Pg that it had reached. Then the
global best position P ∗

g can be fined in the S swarms and be used to replace
the worst position in each swarm. But the Pg each swarm itself had reached will
not be modified by the P ∗

g . Using the P ∗
g after each iteration to have an im-

pact on each swarms evolution, but not changing blindly the moving direction
of particles, the PSCO can urge particles to approach to the global optimal area
gradually.

4.3 Adaptive Disturbance Factor

Suitable selection of inertia weight w in equation (2) provides a balance between
global and local exploration and exploitation, and on average results in less
iterations required to find a sufficiently optimal solution. As originally developed,
w often decreases linearly from about 0.9 to 0.4 during a run. In general, the
inertia weight w is set according to the following equation [4]:

w = wmax − t · wmax − wmin

tmax
(4)

Here tmax is the maximum iteration number. To avoid the algorithm getting in
the local minimum area easily, an adaptive disturbance factor ”g” is added to
force swarms getting out of local optimums quickly. It acts as follows:

w = wmax − t · (1 − g

2gmax
)g · wmax − wmin

tmax
(5)
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Here ”g” is adjusted according to the current optimal solution at each iteration
(see equation (6)), gmaxis a constant number.

xt+1
k,i,j =

⎧⎨
⎩

0, if Pg is still evolving,
g + 1, if Pg has’t improved for N iterations and (g + 1) ≤ gmax,
gmax, otherwise.

(6)

Obviously, in the initial stage of the algorithm running, the solution gained
by the algorithm is still evolving, so the w decreases linearly according to the
equation (4). When the solution hasn’t improved for N iterations and the local
minimum may occur, the disturbance factor ”g” will act. It will remarkably
reduce the importance of t in the equation (5) and accordingly improve the
importance of wmax, thereby, particles will explore new wider space, and the
new solutions will likely be detected. If the solution hasn’t improved yet, the
”g” will act much more, increase the disturbing effect and make the solution
jump out of the local minimum area more easily. At the same time, in order
to ensure the constringency speed of the algorithm, the constant number gmaxis
introduced to control the intensity of the disturbance. Once the solution jumps
out of the local minimum area, and the solution begins to evolve again, g=0,
the disturbance factor will not work again and come into ”latent period”.

4.4 PSCO for Multi-task Coalition Parallel Generation

The fitness function is mainly used to provide a measure of how the particles
perform in the problem domain. Therefore, in the PSCO, we define the fitness
function shown in equation (1), where νk is the function of particle xi. Using the
PSCO to solve the multi-task coalition parallel generation in Coalition Genera-
tion Problem, the main steps are described as follows:

– Step1. Generate randomly a population of dissimilar and feasible particles
for S swarms. Set g=0.

– Step2. Calculate each particle’s fitness value, and compare each particle’s
fitness value with its Pj . The particle who owns the best fitness value among
Pj is set to be Pg.

– Step3. Modify each particle’s velocity according to equation (7), which is a
three-dimension mathematical equation:

vt+1
k,i,j = w · vt

k,i,j + c1 · r1 · (Pk,i,j − xt
k,i,j) + c2 · r2 · (Pg,i,j − xt

k,i,j) (7)

– Step4. If vt+1
k,i,j ≥ vmax, then vt+1

k,i,j = vmax, if vt+1
k,i,j < −vmax, then vt+1

k,i,j =
−vmax.

– Step5. Modify each particle’s position according to equation (8):

xt+1
k,i,j =

{
1, if ρt+1

k,i,j < s(vt+1
k,i,j),

0, otherwise.
(8)
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– Step6. Test whether every new particle is a feasible combination. If it is a
”lawless particle”, adjust it according to the approach presented in section
4.1. If its new fitness value of last particle is better than the previous Pj ,
then the current particle is set to be the new Pj . Subsequently, if the best
Pj is better than Pg, the new Pj is set to be the new Pg.

– Step7. Compare swarms’ Pg with each other and find the global best particle
P ∗

g in the S swarms. Use P ∗
g to replace the worst particle in each swarm.

Adjust g according to equation (6).
– Step8. If the maximum iteration number is reached, then output the maximal

income and each optimal coalition with responsibility for each task and end
the whole program. Otherwise, go to Step3.

5 Experimental Results

The proposed algorithm is experiment on 20 Agents and 4 tasks contrast to the
basic DPSO and GA. In the PSCO algorithm, the number swarms are 4 with 20
particles in each swarm, c1 and c2 are 1.8, gmax is 10, tmax is 500.

Fig. 2. Coalitions generated by the PSCO

As can be seen, the income of the whole system obtained using the PSCO is
superior to the basic DPSO and GA (see Table 1). Using the residual abilities
of Agents, the PSCO gains more income and partly reduces the waste phenom-
ena(see Fig.2): Agent A5 takes part in coalitions C1 and C2, Agent A15 takes
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Table 1. The performance comparison of three algorithms

Algorithm ν1 ν2 ν3 ν4 νMAS

GA 124 75 56 72 327
DPSO 96 59 47 54 256
PSCO 131 94 85 112 422

part in coalitions C2 and C3, Agent A17 takes part in coalitions C3 and C4.
Simultaneously, the PSCO gets out of local optimums more quickly and easily
than the standard DPSO (see Fig.3), thus verifying that the PSCO has better
quality of solution and convergence characteristic.

Fig. 3. The optimal solution evolving curve

6 Conclusions and Future Works

This paper has proposed a PSCO based on the DPSO for multi-task coalition
parallel generation in Coalition Generation Problem with each Agent taking
part in several different coalitions and each coalition turning its hand to several
different tasks. Firstly, a novel two-dimensional binary encoding approach is
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adopted to represent the position and velocity of the particles in DPSO and
the operators in the original DPSO formulas are redefined. Then an adaptive
disturbance factor and an active-feedback based on island models are used to
modify the algorithm. The experimental results demonstrate that the algorithm
performs well on Coalition Generation Problem due to its robustness.

In future works, we need to select a better improved method in our PSCO to
reduce the computational time.
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Abstract. A new approach is presented to handle constrained optimiza-
tion by using PSO algorithm. It neither uses any penalty function in the
proposed PSO algorithms. The new technique treats constrained opti-
mization as a two-objective optimization, one objective is original objec-
tive function, and the other is the degree violation of constraints. As we
prefer the second objective, a new crossover operator is designed based
on the three-parent crossover operator, which will lead the degree vi-
olation of constraints to zero. Then, in order to keep the diversity of
the swarm and escape from the local optimum easily, we design a dy-
namically changing inertia weight. The simulation results indicate the
proposed algorithm is effective.

1 Introduction

Particle swarm optimization (PSO) originally developed by Kennedy and Eber-
hart ([1], [2]) is a population based algorithm. PSO is initialized with a popu-
lation of candidate solution, each candidate solution in PSO is called particle
and moves through the search space by two velocity vectors, one of which is
associated with its best solution and the other is associated with the best solu-
tion of all particles . The PSO has been found to be fast in solving nonlinear,
non-differentiable multimodal optimization problems.

Lately, significant effort has been reported in the literature as researchers
figure out ways to enhance the PSO algorithm with a constraint handling mech-
anism. Coath and Halgamuge[3] proposed the feasible solutions method (FSA)
and the penalty function method (PFA) to handle constraint in PSO. But, both
of these methods have great disadvantages. FSA requires all particles initialized
must be inside the feasible region, and PFA requires careful fine tuning of the
penalty function parameters.

Recently, some researchers have suggested the use of multi-objective optimiza-
tion concepts to handle constraints (e.g., [4] [5] [6]). The main idea is to transform

� This work was supported by the National Natural Science Foundations of China
(60374063).
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each constraint as an objective function, and transform the constrained optimiza-
tion problem as a multi-objective optimization problems with (m+1) objectives,
where m is the number of constraints. Then pareto dominance is used as a selection
criterion, or pareto ranking is used to assign fitness in such a way that nondomi-
nated individuals are assigned the highest fitness value. This means all objectives
are seen of the same importance. However, there is a serious drawback if all ob-
jectives are seen of the same importance. For example, for an infeasible solution
which is far away from the feasible region and has a very small objective value
for the constrained problem. This solution will have a great fitness and be seen as
a good solution according to pareto dominance or pareto ranking. However it is
actually a bad solution, and should not survive in the following generations.

In this paper, we proposed a new constraint handling approach that trans-
forms constrained optimization problem of any number of constraints into a two
objective optimization problem. In order to overcome the drawbacks mentioned
above, a three-parent crossover operator is designed, and in order to escape from
the local optimum easily, a dynamically changing inertia weight is designed. The
simulation results show the efficiency of the proposed algorithm.

2 Transformation of Constrained Optimization Problem

We consider the following constrained optimization problem{
min f(x)

s. t. gi(x) ≤ 0, i = 1, · · · , m
(1)

If a point satisfies all constraints of 1, then it is called a feasible solution. Define
functions

f1(x) = f(x),

f2(x) = max{0, gi(x), i = 1, 2, · · · , m}.

We have f2(x) ≥ 0, andf2(x) = 0, only if x satisfies all constraints. Therefore,
problem 1 can be transformed into the following two objective optimization
problems.

min{f1(x), f2(x)} (2)

3 A Novel Multi-objective PSO Algorithm for
Constrained Optimization Problems

3.1 PSO Algorithm

PSO initialized the flock of birds randomly over the search space, every birds is
called a particle. At each generation, each particle adjusts its velocity, based on



176 J. Wei and Y. Wang

its best solution pt
best and the best solution of its neighbors gt

best. The original
PSO formulae are:

V t+1 = ωV t + c1r1(pt
best − pt

present) + c2r2(gt
best − pt

present) (3)

pt+1
present = pt

present + V t+1 (4)

Where V is the velocity vector, pt
present is the location vector in the t generation,

ω is the inertia weight in the range [0.1, 0.9], r1 and r2 are the random numbers
in [0, 1], c1 and c2 are positive constants.

3.2 Selection Strategy

The selection in the proposed algorithm doesn’t use the pareto ranking or the
concept of pareto dominance. We use the following selection scheme for any two
particles.
1. If the second objective values of two particles are equal to zero, we prefer to
select the one with the smaller first objective value.
2. If the second objective values of two particles are both nonzero, we prefer to
select the one with the smaller second objective value.
3. If the second objective value of one particle is zero, and that of the other is
nonzero, we prefer to choose the one with the zero second objective value.

3.3 Three-Parent Crossover Operator

In order to make the produced solutions move toward the feasible region, we
design a three-parent crossover operator. This crossover operator is more flexible
than the traditional two-parent crossover operator. The detail is as follows:
1. For three particles x1, x2, x3 chosen to undergo the crossover find the center
C of the three particles, C = x1+x2+x3

3 .
2. For every points xi(i = 1, 2, 3) find its reflecting points, oi = (xi − C) × (1 +
ε)(i = 1, 2, 3) , where ε > 0 is called the expand rate.
3. Generate the offspring:
o = k1 × o1 + k2 × o2 + k3 × o3 where k1, k2, k3 are random numbers in (0, 1),
and k1 + k2 + k3 = 1.

The most important advantage of three-parent crossover operator is that the
offspring will have greater probability locating near the feasible region and the
constraint violation will be smaller than its parents.

3.4 Improved Inertia Weight

From formula 3, we know that when ω is big, the PSO algorithm is of the ability
of global exploration and when ω is small, the PSO algorithm is of the ability of
local exploitation. The inertia weight is a very important parameters to balance
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the global and local search. To evaluate the diversity of the swarm, a measure is
defined by

s =
1

NL
·

N∑
i=1

√√√√ n∑
d=1

(pid − p̄d)2 (5)

where N is the swarm size, n is the number of variables, L is the maximum
length between the points in the search space, pid is the dth coordinate of the
i-th particle, p̄id is the average value of all particles in the coordinate. The bigger
the value of s, the better the diversity of the swarm.The smaller the value of s,
the more crowded the swarm is. When the swarm is crowded, it becomes difficult
for the algorithm to jump out from the local optimum.

Based on these, inertia weight ω can be defined by

ω = 1 − sωs (6)

where ωs ∈ (0.1, 0.2) is a randomly generated number. It can be seen from the
definition of ω that when particles are crowded, namely s is small, ω will be big
in order to increase the ability of global exploration.

4 Proposed Algorithm

Algorithm 1. (A novel multi-objective PSO algorithm for constrained opti-
mization problems)

1. (Initialization) Given swarm size N . Generate initial swarm P (t) randomly,
set t = 0.

2. (Evolution)For each particle, find its personal best position and the global
best position in the generation t, according to the selection strategy in 3.2.
Then update each particle’s velocity and position according to the formulae
3 to 6. The new swarm is defined as P (t + 1).

3. (Crossover)Find the gt+1
best in P (t + 1) and then calculate the crossover prob-

ability Pc = 1
1+eαθ , where θ =‖ gt+1

best − gt
best ‖, α > 0 is a constant. Let

x1 = gt+1
best, x2 = gt

best , and randomly choose x3 from P (t+1), then generate
an offspring o by crossover operator. If o is better than gt+1

best , let gt+1
best = o,

set t = t + 1.

4. (Stop criterion) If stop criterion is satisfied, then stop, gt
best is seen as the

global optimum; otherwise, go to step2.

5 Simulation Results

Five widely used test functions are chosen from ([7], [8]) and listed below.
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F1 [7]:

min : f(x) = (x1 − 10)2 + x4
3 + 3(x4 − 11)2 + 10x6

5 + 7x2
6 + x4

7 − 4x6x7 − 10x6

−8x7

s. t. : g1(x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0

g2(x) = −282 + 7x1 + 3x2 + x3 + 10x2
3 + x4 − x5 ≤ 0

g3(x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0
g4(x) = 4x2

1 + x2
2 − 3x1x2 + 2x2

3 + 5x6 − 11x7 ≤ 0
−10 ≤ xi ≤ 10(i = 1, · · · , 7)

The known global optimum is x∗ = (2.330499, 1.951372, −0.4775414, 4.365726,
− 0.6244870, 1.038131, 1.594227) and the corresponding value is 680.6300573.
The best solution obtained by the proposed algorithm is x=(2.330489, 1.951392,
− 0.4775384, 4.365731, −0.6244830, 1.038101, 1.594228), and the corresponding
value is 680.6281, the constraint violation is 0.0018.

F2 [8]:

min : f(x) = 100(x2 − x2
1)

2 + (1 − x1)2

s. t. : g1(x) = −x1 − x2
2 ≤ 0

g2(x) = −x2
1 − x2 ≤ 0

−0.5 ≤ x1 ≤ 0.5, x2 ≤ 1.0

The known global optimum is x∗ = (0.5, 0.25), and the corresponding value is
0.25. The best solution obtained by the proposed algorithm is x = (0.5, 0.2503),
the corresponding value is 0.25, and the constraint violation is 0.

F3 [8]:

min : f(x) = −x1 − x2

s. t. : g1(x) = x2 − 2x4
1 + 8x3

1 − 8x2
1 − 2 ≤ 0

g2(x) = x2 − 4x4
1 + 32x3

1 − 88x2
1 + 96x1 − 36 ≤ 0

0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4

The known global optimum is x∗ = (2.3295, 3.1783) , and the corresponding
function value is −5.5079. The best solution obtained by the proposed algorithm
is x = (2.3295, 3.1785), the corresponding function value is −5.5080, and the
constraint violation is 10−4.
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F4 [8]:

min : f(x) = 0.01x2
1 + x2

s. t. : g1(x) = −x1x2 + 25 ≤ 0
g2(x) = −x2

1 − x2
2 + 25 ≤ 0

2 ≤ x1 ≤ 50, 0 ≤ x2 ≤ 50

The known global optimum is x∗ = (
√

250,
√

2.5), and the corresponding func-
tion value is 5.0. The best solution obtained by the proposed algorithm is
x = (11.3637, 2.9825), the corresponding function value is 4.2738, and the con-
straint violation is 0.

For all test functions, we take the following parameters: N = 100, α = 1, ε ∈
(0.4, 0.6), c1 = c2 = 2. In simulation, the maximum generation number is taken
to 3000 when n > 5, and 60 when n < 5. We execute the proposed algorithm
(MO-PSO) 10 independent runs for each problem and record the following data:
Best objective value (Best), Mean best objective value (Mean) and the worst
objective value (worst) on 10 runs. If the constraint violation is no more than
10−3, we said the solution is a feasible solution. We compare our results with
the existing ones obtained in [7][8][9]in table 1.

Table 1. Comparison of best, mean, and worst solutions among MO-PSO and other
algorithms in [7][8][9]. “NA” represents the corresponding result is not available.

Problem Optimal Methods Best Mean Worst

MO-PSO 680.628 680.6508 680.9644
RY [7] 680.630 680.671 680.772

F1 680.630 JH [9] 680.632 680.648 680.761
Algorithm1[8] NA NA NA
Algorithm3[8] NA NA NA

MO-PSO 0.25 0.2503 0.2507
RY [7] NA NA NA

F2 0.25 JH [9] NA NA NA
Algorithm1[8] 0.25 0.25 0.25
Algorithm3[8] 0.25 0.25 0.25

MO-PSO -5.5080 -5.5080 -5.5080
RY [7] NA NA NA

F3 -5.5079 JH [9] NA NA NA
Algorithm1[8] -5.5080 -5.5074 -5.50679
Algorithm3[8] -5.5080 -5.50679 -4.41998

MO-PSO 4.2738 4.5616 4.8579
RY [7] NA NA NA

F4 5 JH [9] NA NA NA
Algorithm1[8] 5.0000 5.00003 5.00048
Algorithm3[8] 5.0000 5.00002 5.00005
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It can be seen from table 1 that, for F1, F3 and F4, the best solutions found
are better than the optimal one, but they violate the constraints a little bit,
and the constraint violation of them is less than 10−3. Moreover, for F3 and F4,
the solutions found in each run by MO-PSO are better than or equal to these
found by algorithm1[8] and algorithm3[8]. For F2, the performance of MO-PSO
is almost the same as algorithm1. These results indicate MO-PSO is effective.

6 Conclusions

A novel multi-objective PSO for constrained optimization problem is proposed
in this paper. The main ideas are as follows: Firstly, in order to decrease the
constraint violation of gbest , a new crossover operator is designed. Secondly, in
order to keep the diversity of swarm and make it easy to go away from the local
optimum, a new scheme for inertia weight is proposed. The simulation results
indicate that the proposed algorithm is superior to other compared algorithms.
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Abstract. This paper presents ahybrid discrete particle swarmoptimiza-
tion (HDPSO) for solving the traveling salesman problem (TSP). The
HDPSOcombinesanewdiscreteparticle swarmoptimization (DPSO)with
a local search. DPSO is an approach designed for the TSP based on the bi-
nary version of particle swarm optimization. Unlike in general versions of
particle swarm optimization, DPSO redefines the particle’s position and
velocity, and then updates its state by using a tour construction. The em-
bedded local search is implemented to improve the solutions generated by
DPSO. The experimental results on some instances are reported and indi-
cate HDPSO can be used to solve TSPs.

1 Introduction

The Traveling Salesman Problem (TSP) is a classical combinatorial optimization
problem. It plays an important role in the combinatorial optimization and has
become an early proving ground for many approaches designed for combinatorial
optimization. It has proved to be NP-hard and attracted many researchers from
different fields. Now TSP has been studied intensively and many algorithms have
been developed. These algorithms include construction heuristics, iteratively im-
provement algorithms, and exact methods such branch & bound or branch &
cut, and many metaheuristics. The metaheuristic mainly consists of SA, tabu
search, guide local search, evolutionary algorithm, and ACO algorithms etc.

Particle Swarm Optimization (PSO) is a population-based swarm intelligence
algorithm. It was originally proposed by Kennedy and Eberhart as a simula-
tion of the social behavior of social organisms such as bird flocking and fish
schooling[1]. Because of its easy implementation and inexpensive computation,
the PSO has proved to be an effective and competitive algorithm for the op-
timization problem in continuous space. But most applications of PSO have
concentrated on the optimization in continuous space. Recently, some work has
been done to the discrete optimization problem, including flowshop scheduling
problem[2]. The published work related to the application of PSO to the travel-
ing salesman problem is relatively few. Clerc[3] first proposed a discrete particle
swarm optimization for solving the TSP. In this algorithm, he first redefined the
particle’s position and velocity, where the position is defined as city sequence

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 181–188, 2006.
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and the velocity is defined as city exchange. The velocity applied to the position
can produced a new position. Clerc then defined some operators, i.e. ”opposite
of velocity ”, ”position plus velocity”, ”position minus position”, ”velocity plus
velocity”, and ”coefficient times velocity”. For detailed depiction, the reader can
refer to[3]. But the results in[3] show the proposed algorithm is certainly not
as powerful as some specific algorithms. We also applied Clerc’s algorithm to
solve the Multiple TSP(MTSP)[4]. Although the computation result shows that
Clerc’s PSO can solve the problems, the computation burden is very expensive.
But such an idea of Clerc’s discrete PSO have been modified and applied for
many discrete or combinatorial problems such as flowshop scheduling.

In this paper, we extend the application of PSO to TSP and propose a hybrid
discrete PSO inspired from[2]. In the proposed algorithm, the particle’s position
is redefined by a relation matrix, which denotes the relative position of cities
in TSPs tour. The velocity is redefined as the particle’s predisposition choosing
one city as the predecessor of another city. Unlike the implementation in other
versions of PSO, the updating of the particle’s position is achieved by a tour
construction. The local search method coupled with two speed-up techniques is
incorporated with the proposed algorithm to improve the solutions. Finally, the
performance of the proposed algorithm is investigated on some testing problems.

2 Brief Overview of Particle Swarm Optimization

PSO belongs to the class of swarm intelligence algorithms, which are inspired by
social dynamics and emergent behavior in socially organized colonies. Since its in-
troduction, PSO has gained rapid popularity and proved to be a competitive and
effective optimization algorithm in comparison with other metaheuristics such
as GA and SA. The position of each individual (called particle) is represented by
a n-dimensional vector in problem space xi = (xi1, xi2, . . . , xin), i = 1, 2, . . . , N
(N is the population size), and its performance is evaluated on the predefined
fitness function. The velocity of the i-th particle vi = (vi1, vi2, . . . , vin) is defined
as the change of its position. The flying direction of each particle is the dynami-
cal interaction of individual and social flying experience. In the pioneering work
of Kennedy and Eberhart[1], the particle swarm is manipulated as follows:

vi(t + 1) = vi(t) + c1 · rand1 · (pi − xi(t)) + c2 · rand2 · (pg − xi(t)) (1)

xi(t + 1) = xi(t) + vi(t + 1) (2)

where, pi = (pi1, . . . , pin) is the best position encountered by i-th particle so far;
pg represents the best position found by any member in the neighborhood of i-th
particle; t is iteration counter; c1 and c2 are acceleration coefficients; rand1 and
rand2 are two random numbers in [0, 1].

The basic PSO and its variants have successfully operated for continuous
optimization functions. In order to extending the application to discrete space,
Kennedy and Eberhart proposed a discrete binary version of PSO[5] where the
particles’ trajectories are defined as the changes in the probability and vi is a
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measure of individual’s current probability of taking 1. If the velocity is higher, it
is more likely to choose 1,and lower values favor choosing 0. A sigmoid function
is applied to transform the velocity from real number space to probability space:

s(vid) =
1

1 + exp(−vid)
(3)

In the binary version of PSO, the velocities and positions of particles are
updated as the following formulas[5]:

vid(t + 1) = vid(t) + c1 · rand1 · (pid − xid(t)) + c2 · rand2 · (pgd − xid(t)) (4)

xid(t + 1) =
{

1 if rand3 < s(vid),
0 if rand3 ≥ s(vid) (5)

where xid is the valued of the d-th dimension of particle xi, and xid ∈ {0, 1}; vid

is the corresponding velocity; s(vid) is calculated according to the equation (3).
rand3 is a random number distributed in [0, 1]. As in basic PSO, a parameter
Vmax is incorporated to limit the vid so that s(vid) does not approach too closely
0 or 1[6]. Such implementation can ensure that the bit can transfer between 1
and 0 with a positive probability. In practice, Vmax is often set at ±4[6].

3 Proposed Particle Swarm Optimization for the TSP

3.1 Discrete Particle Swarm Optimization (DPSO) for the TSP

(1)Particle Representation
One of the key issues in designing a successful PSO for TSP is to find a suitable
mapping between TSP solutions and particles in PSO. Many different representa-
tion have been proposed by solving TSP by Genetic Algorithm, i.e. binary repre-
sentation, path representation, adjacency representation, ordinal representation
and matrix representation. To extend binary PSO to solve TSP, the positions
and velocities of the particle are redefined. We uses a 0-1 relation matrix to repre-
sent the positions of a particle in discrete space of TSP. Suppose that considered
TSP contains n cities. The position of particle i can be represented by a n × n
matrix xi = (xi

jk)n×n, xi
jk ∈ {0, 1}, and xi

jk �= xi
kj ,(j = 1, . . . , n; k = 1, . . . , n).

The element xi
jk indicates the relative positions of cities j and k in TSP solution.

If city k is immediately visited after city j, xi
jk is equal to 1, otherwise 0. The

relation matrix xi defines the visiting sequence of n cities in the TSP tour. For

xi =

⎛
⎜⎜⎝

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎠

This implies that a legal position of the particle is represented by a matrix of
which each row and each column contains precisely one 1. In the proposed algo-
rithm, the velocity of particles i is also denoted by a n×n matrix vi = (vi

jk)n×n,
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(j = 1, . . . , n; k = 1, . . . , n). vi
jk ∈ R. As in binary version of PSO, here the

velocity vi
jk ∈ R also means the probabilistic, namely the probability of particle

choosing to go from city j to city k. A high value indicates that it is more likely
to choose city k as the immediate successor of city j in TSP tour.

(2)Updating Equations of Particles
The velocity of particle i is updated according to equation (6)

vi(t + 1) = w · vi(t) + c1 · rand1 · (pi − xi(t)) + c2 · rand2 · (pg − xi(t)) (6)

Unlike the updating equations in binary version of PSO[5], the proposed al-
gorithm is established based on standard PSO, namely basic PSO with inertia
weight developed by Shi and Eberhart in[7]. w is inertia weight. The inertia
weight controls the impact of previous histories of velocities on current velocity,
which is often used as a parameter to control the trade-off between exploration
and exploitation. The particle adjusts its trajectory based on information about
its previous best performance and the best performance of its neighbors. In
the binary version of PSO, the trajectories of particles, velocities, etc., are de-
fined in terms of the changes of probabilities. So in the proposed discrete PSO,
the velocity also need to be transformed from real number space to probability
space, namely the interval [0, 1]. It is accomplished by a logistic transformation
function:

s(vi
jk) =

1
1 + exp(−vi

jk)
(7)

where, s(vi
jk) represents the probability of xjk taking the value 1. In the context

of TSP, it means that the salesman, currently located at city j, chooses to go
to city k with probability s(vi

jk). Inspired by the concept of pheromone trail
in ant colony optimization, here, we define s(vi

jk) as probability trail and the
corresponding matrix of (s(vi

jk))n×n as probability trail matrix. As in basic PSO,
the velocity of the proposed algorithm is also constrained, that is, |vi

jk| ≤ vmax.
In binary version of PSO, the value of each dimension of particle takes the

value 1 or 0 according to equation(5). In the proposed PSO, the position of each
particle is updated based on probability trail, namely, each particle’s position
is updated by tour construction defined on probability trail. The position of
particle i is updated as follows: the position xi = (xi

jk)n×n is initialized to a zero
matrix, i.e. the corresponding TSP tour is a null sequence. A random city j is
first selected as the first city in TSP tour. The proposed PSO then uses a so-
called pseudorandom proportional rule to construct the tour of each particle(the
rule is inspired by the one in ACO) and update the position. Next city k to visit
is chosen according the following equation:

k =
{

arg maxl∈Nj s(vi
jl), if q ≤ q0

J, if q > q0
(8)

where, s(vi
jk) is probability trail of particle i; Nj is the feasible set of unvisited

cities, and the corresponding probability trail used to construct tour is the ele-
ments of the j-th row of matrix (s(vi

jk))n×n. q is a random variable in [0, 1]; q0
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is a control parameter and 0 ≤ q0 ≤ 1; J is a randomly selected city according
to the probability distribution as follows:

pi
jk =

s(vi
jk)

Σl∈Njs(vi
jl)

, if k ∈ Nj (9)

By the probability defined in Equation(9), J is selected by the roulette. With
the above-mentioned rule, next city k is chosen and the corresponding element
in position of particle i is set to 1, that is, xi

jk = 1. Then, city k is chosen
as current city and particle i determines next city according to equation (8)
and set the corresponding element of its position xi to 1. Such a construction
is repeated until all n cities have been inserted into TSP tour. By such a tour
construction, the positions of all the particles are updated based at probability
trail. In the proposed discrete PSO, we use the candidate list Nj , when updating
the positions of particles by equation(8). The candidate list contains for each city
i those cities j that are at a small distance. At each iteration, each particle update
its position and construct TSP tour by choosing next city among the candidate
list of current city. Only when all the members of the candidate list of current
city have been visited, another remaining city out of Nj is chosen.

As an additional technique to prevent the algorithm being trapped in local
area, we reset the algorithm occasionally. When the best found solution is not
improved for a consecutive iterations, e.g. 80, the velocity and position of the
particle are re-initialized randomly.

3.2 Hybrid Discrete Particle Swarm Optimization (HDPSO)

The hybrid discrete particle swarm optimization (HDPSO) is the DPSO plus
local search. The literature on metaheuristics indicates that a hybrid algorithm
coupling metaheuristic with local search can get high-quality solution. In this
section, we also consider local search embedded in DPSO. Among the simple
local search algorithms for TSP, the most widely known algorithms are 2-Opt
and 3-Opt, which are widely studied in the literature and have been shown
empirically to yield good solution. The 2-Opt and 3-Opt delete two or three
edges, thus breaking the tour into two or three paths, and then reconnect those
paths in other possible ways. These methods proceed by systematically testing
whether the current tour can be improved by replacing two or at most three
arcs,respectively. In DPSO, we incorporate 3-Opt.

For 3-Opt, the straightforward implementation would examine O(n3) poten-
tial exchanges. But it is certainly infeasible when trying to apply it to all particles
during all the iterations, or deal with larger TSPs in reasonable time. Here two
speedup techniques are used to reduce the computation cost. One is the use of
nearest-neighbor lists of fixed length k, typically k = 20[8]. That is to restrict
the examination of exchanges of each city in its k nearest-neighbors. The im-
plementation of fixed k nearest-neighbor for 3-Opt can reduce the computation
time for finding an improving move from O(n3) to O(n).

The computation cost may be still relatively expensive when we applying lo-
cal search to all particles during all iterations. Another speed-up is to perform
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Table 1. Computational results of DPSO over 10 trials

Problem n Opt
DPSO

Best Worst Average Std. Time
att48.tsp 48 10628 11038 11038 11038 0.00 36.12
eil51.tsp 51 426 447 448 447.20 0.45 48.15
st70.tsp 70 675 700 700 700 0.00 129.34
eil76.tsp 76 538 552 577 557.0 11.18 84.53
gr96.tsp 96 55209 60982 63009 61486.2 877.74 138.42
kroA100.tsp 100 21282 23075 23075 23075.0 0.0 300.23
ftv38.atsp 39 1530 1591 1595 1591.80 1.79 29.58
p43.atsp 43 5620 5639 5646 5641.4 2.63 50.95
ftv44.atsp 45 1613 1679 1679 1679 0 39.35
ftv64.atsp 65 1839 1969 1969 1969 0 88.77

3-Opt for limited particles. Here, we gradually increase the number of particles
applying local search, to obtain a tradeoff between solution quality and compu-
tation cost. During the implementation, the proposed algorithm first allows only
the iteration-best particle to apply local search. Then the number m of parti-
cles applying local search is increased by one every num iter iterations. When
triggering local search, the particles are first ranked in terms of their fitness,
and then only m best-ranked particles can be allowed to apply local search.
Additionally local search is trigger every constant iterations.

4 Experiments and Computational Results

In this section we investigate the performance of HDPSO on some TSP instances
in TSPLIB (available at http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/
TSPLIB95/TSPLIB.html). All the experiments were implemented on a Pen-
tium IV 2.8G/256MB PC and the program was coded in C language.

HDPSO need a set of parameters to be tuned in order to provide best possi-
ble solutions. By preliminary experiments, we set the parameters as: swarm size
N = 25; acceleration coefficients were set to c1 = 2, and c2 = 2; Inertia weight
was set to w = 1. The size of nearest-neighbor list of 3-Opt was set to 15. In
equation (8), the size of candidate list is set to n

6 if n < 70, and n
10 if n ≥ 70.

The preliminary experiments showed that the value of num iter = 150, can give
a reasonable tradeoff between the solution quality and computation time.

We first investigated the performance of DPSO for some considered symmetric
TSPs(x.tsp) and asymmetric TSPs(x.atsp). The stopping criterion is the maxi-
mum allowed number of tour construction, 2500 · n (n is the number of cities).
The reported statistical values are: Opt: the know optimal solution in TSPLIB;
Best: best-found solution; Average: average solution quality over 10 runs. Worst:
the worst generated solution. Std.: standard deviation of the optima over 10 runs.
Time: average time used to find best solutions. Table 1 summarizes the compu-
tational results of DPSO. The computational results show that the DPSO is
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Table 2. Summary of results of HDPSO

Problem n Opt
HDPSO

Best Worst Average Std. Time
att48.tsp 48 10628 10842 11070 10926 11.15 34.36
eil51.tsp 51 426 442 442 442.0 0.00 44.51
st70.tsp 70 675 694 704 696.0 4.47 130.71
eil76.tsp 76 538 550 568 555.60 8.17 85.30
gr96.tsp 96 55209 60263 63087 61323.20 1171.22 164.39
kroA100.tsp 100 21282 22829 23867 23036.6 464.21 251.52
ftv38.atsp 39 1530 1571 1571 1571.0 0.0 29.88
p43.atsp 43 5620 5636 5650 5644 4.06 59.04
ftv44.atsp 45 1613 1613 1708 1648.2 42.56 35.29
ftv64.atsp 65 1839 1951 1951 1951 0 88.78

Table 3. Comparison results of HDPSO and other algorithms

Problem Opt MMAS1ACS2 ASrank
1 AS 1 ASe

1 HDPSO
eil51.tsp 426 427.6 428.1 434.5 428.3 437.3 435.6
kroA100.tsp 21282 21320.3 21420 21746 21522.8 22471.4 22523.1
d198.tsp 15780 15972.5 16054 16199.1 16205 16702.1 16200.1
ry48p.atsp 14422 14553.2 14565.4 14511.4 14685.2 15296.4 14675.3
ft70.atsp 38673 39040.2 39099 39410.1 39261.8 39596.3 39173.4
kro124p.atsp 36230 36773.5 36857 36973.5 37510.2 38733.1 37513.2
ftv170.atsp 2755 2828.8 2826.5 2854.2 2952.4 3154.5 2959.4

1 MMAS: the MAX -MIN Ant System. AS: the ant system. ASe: the ant system with elitist
strategy. ASrank: the rank-based version of Ant System. The results of MMAS, AS, ASe, and
ASrank are taken from[9].

2 ACS: Ant Colony System[10].

able to find very high-quality solutions for all instances. Compared to the best-
known results in the literatures, the proposed algorithm achieves a good average
solutions quality on most TSP instances. Additionally, the values of standard
deviation are very small for most instances, which show that the HDPSO is an
approach with high robustness.

We now attempt to incorporate local search in DPSO and observe the perfor-
mance of hybrid algorithm, HDPSO. Table 2 shows the computation results un-
der 10 trials. The results indicate that HDPSO outperformed DPSO. By adding
local search, HDPSO found enhanced solutions.

Table 3 compare solutions of HDPSO and the ones found by some ant algo-
rithms. To be fair, the comparison is done based on the same allowed number of
tour constructions for all considered algorithms. As in[9], this number is chosen as
k · n · 10000, where k = 1 for symmetric TSPs and k = 2 for asymmetric TSPs.
HDPSO was implemented for 10 runs. For each instance the average solution
qualities are reported for all algorithms. Since only one instance (gr17.tsp) was
implemented in Clerc’s PSO[3], we didn’t compared the performance between
HDPSO and Clerc’s PSO. The comparison showed that HDPSO also produced
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good solutions compared to ant algorithms, which now is a more competitive
method for TSPs in the literatures.

5 Conclusions and Future Work

This paper proposes a hybrid PSO (HDPSO) to solve TSPs. By redefinition the
positions and velocities of particles, we first develop a discrete PSO(DPSO). Un-
like general implementation, DPSO updates the position of each particle by using
TSP tour construction based on probability trail. Local search is then embedded
to improve solution quality. The experimental results indicate HDPSO is a viable
approach for TSPs. As we know that many algorithms have been established to
solve TSPs, here, we do not claim that our algorithm can provide competitive re-
sults compared with some specialized TSP algorithms. Nevertheless, the results
indicate the proposed PSO can be used to solve TSPs. Moreover, the perfor-
mance of HDPSO can be improved further by integrating other more powerful
local search algorithms like tabu search, and Lin-Kernighan algorithm[8] etc.

Future work would concentrate on the improvement of computation speed,
especially on the application of HDPSO to large scale TSPs.
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Abstract. We propose methods for incrementally constructing a knowl-
edge model for a dynamically changing database, using a swarm of special
agents (ie an ant colony) and imitating their natural cluster-forming be-
havior. We use information-theoretic metrics to overcome some inherent
problems of ant-based clustering, obtaining faster and more accurate re-
sults. Entropy governs the pick-up and drop behaviors, while movement
is guided by pheromones. The primary benefits are fast clustering, and a
reduced parameter set. We compared the method both with static clus-
tering (repeatedly applied), and with the previous dynamic approaches
of other authors. It generated clusters of similar quality to the static
method, at significantly reduced computational cost, so that it can be
used in dynamic situations where the static method is infeasible. It gave
better results than previous dynamic approaches, with a much-reduced
tuning parameter set. It is simple to use, and applicable to continuously-
and batch-updated databases.

1 Introduction

Ant Colony Optimization (ACO) is a relatively new and expanding branch of
intelligent systems, specifically a form of swarm intelligence [1]. One of its most
successful applications has been to clustering. Ants, and the algorithms based on
them, have the ability to create clusters of objects without any initial partition-
ing, and without knowing ahead of time how many clusters will be necessary.
One of the first studies of ant-based clustering is found in [2], where a population
of ant-like agents randomly moving on a 2D grid are allowed to pick up and drop
objects in such a way as to cluster them. Lumer and Faieta [3] developed the
basic model and applied it in exploratory data analysis.

To the best of our knowledge, of the rich body of research which has emerged
in ant mining, only Ramos et al have tackled the problem of dynamic data, in [4].
One common approach to learning from changing data is to repeatedly apply a
traditional learner to the most recent examples. However the computational cost
of re-applying a learner may be prohibitive. To meet these challenges, Ramos et al

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 189–196, 2006.
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presented an online classifier using swarm intelligence, which allowed incremental
clustering, avoiding any type of re-training. It was based on the observation that
an ant colony can collectively respond to a perturbation, through individuals
exhibiting a single simple behavior. Our method is also based on ants’ natural
behaviors, but uses new measures to guide the agents in moving, and picking up
or dropping an item.In this paper, dynamic data means data which changes, in
this context, through insertions into and deletions from a database (an update
can be viewed as an insertion followed by a deletion).

2 Incremental Ant-Based Clustering

In our dynamic system, the cluster generator consists of a group of agents.
Each agent computes the information entropy or pheromone concentration of
the area surrounding it, and clusters objects by picking them up, dropping them,
and by moving. The incremental clustering algorithm incorporates the following
modules: cluster initialization, dynamic cluster modification, and cluster model
maintenance (in a changing grid).

2.1 Cluster Intialization

In the initial state (t = t0), the algorithm selects N0 objects from the current
database, and distributes the N0 objects uniformly randomly on the Z ×Z grid.
It initializes all agents to be unladen.

A subspace with clustered data has lower entropy than a subspace with un-
clustered data [5]. Inspired by this, we introduce information entropy into the
clustering algorithm, to incorporate information about the local level of cluster-
ing. Each agent lies in an s×s region. Assuming independence of attributes, the
entropy of the s×s area covering a set of objects is defined by equation 1, where
p(x) is defined by equation 2, numobj is the total number of objects in region
s × s; and numx is the number of objects whose attribute Xi has value x.

E(s2) = −
n∑

i=1

∑
xinXi

p(x)logp(x) (1)

p(x) =
numx

numobj
(2)

Both distance-based and density-based clustering metrics suffer some disad-
vantages. Distance-based methods are intrinsically biased toward hyper-elliptical
cluster shapes, while density-based methods require the setting of an arbitrary
density threshold parameter. Entropy-based metrics avoid both these disadvan-
tages, requiring no thresholds, and being unbiased regarding cluster shape.

Taking entropy as the criterion for an agent to pick up or drop items, we
propose the initial clustering algorithm shown in table 1.

In the algorithm, when all agents stop moving, it indicates that the initial
clusters have been formed. For the next incremental clustering, for each pixel
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Table 1. Swarm Cluster Algorithm

Initialize parameters: Z, s, tmax, Na

For every object oi do
place oi randomly on the Z × Z plane

For n=1 to Na do //Na is the number of agents
place agent at randomly selected site in the Z × Z plane

For t=1 to tmax do //tmax is maximal times that an agent moves
For n=1 to Na do

If ((agent unladen) and (site occupied by object oi )) then
Compute entropy E1, E2

If (E1 > E2) then pick up oi //picking up rule
Else If ((agent carrying object oi) and (site empty)) then

Compute entropy E1, E2

If (E1 > E2) then drop oi //dropping rule
End if
Move to randomly selected neighboring site not occupied by an agent

End For
End For
For each site (x, y) in the Z × Z plane do

Compute entropy of the surrounding area s × s area
Compute pheromone τ (x, y)

End For

where E1 and E2 are the entropies before and after performing the relevant action.

(x, y) in the Z × Z plane, we compute the entropy of the surrounding s × s area
according to equation 1. If the s×s area is empty, we set the entropy of the area
to the maximum value. We then compute the pheromone concentration τ(x, y)
of the surrounding s × s area according to equation 3.

τ(x, y) =
numobj

1 + (s × s)
(3)

where numobj is the number of objects in the surrounding s × s area.

2.2 Dynamic Cluster Modification

After the initial clusters form, the cluster model needs to be updated periodically
as the database changes through insertions. Suppose a monitor transfers new
data periodically, placing the inserted data objects randomly at empty sites in
the Z × Z plane. The plane maintains a record of the entropy and pheromone,
and this information can guide newly-laden agents to move toward the previously
generated clusters. Although the basic behavior for incremental clustering is the
same as in the initial clustering, an agent moves according to the algorithm in
table 2 instead of moving randomly.

In the movement algorithm, φ is a random number. For an agent carrying a
new object, the greater τ(x, y) is, the higher the probability that τ(x, y) > φ, or
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Table 2. Agent Movement Algorithm

If (agent carrying a new object)
If τ (x, y) > φ

Move to the pixel (x, y), is an empty site within the s × s area
Else

Move to a randomly selected site not occupied by another agent
If (agent unladen)

If τ (x, y) < φ
Move to the site of the nearest new object

Else
Move to a randomly selected site not occupied by another agent

in other words, the more likely it is to move to one of the clusters. Conversely,
for an unladen agent, the smaller τ(x, y) is, the higher the probability that
τ(x, y) < φ, or in other words, the more likely it is to move to the nearest new
object, pick up a new object, and move it to one of the existing clusters.

After all agents stop moving, at each pixel (x, y) in the Z ×Z plane, the algo-
rithm modifies the entropy of the surrounding s×s area according to equation 1,
and modifies the pheromone τ(x, y) of the surrounding s × s area according to
equation 4

τ(x, y) =
(1 − λ)numobj + Δnumobj

1 + (s × s)
(4)

where

– numobj is the number of previous objects in s × s
– Δnumobj is the number of new objects in s × s
– λ is the pheromone evaporation rate

2.3 Cluster Model Maintenance

The clustering model changes with the arrival of dynamically inserted or deleted
data. A database is used to save the position of each pixel on the Z ×Z plane. In
the initial state, each pixel on the Z ×Z plane is set to a null value. The schema
of the database is (x, y, t, entropy, pheromone), where (x, y) is the coordinate
of each pixel on the Z × Z plane, t is the arrival time of the occupying object,
entropy is the value E(s2) of the pixel, and the pheromone is the τ(x, y) value.

3 Features of the Clustering Algorithm

By comparison with non-ant-based incremental methods, our method avoids the
need to pre-specify the number of clusters, and can find clusters of arbitrary
shape, without requiring a predefined bias. In addition, it has some other im-
portant features:
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1. The factor influencing an agent’s picking up or dropping action is entropy.
Each action of picking up or dropping by an agent can reduce the entropy
of the previous patch, and thus speed up clustering. Compared with the
similarity measure or response thresholds used in [3] and [6], the experiments
in section 4 show that entropy is a more effective measure.

2. The number of parameters we need to specify for constructing a clustering
model is small. In similar work, more are required. In the LF algorithm [3],
seven parameters are required (k1, k2, α, Z, s, tmax, Na), and in the ACLUS-
TER algorithm [6], eleven are needed (k1, k2, k, η, α, β, γ, Z, s, tmax, Na). Our
method requires only five (Z, s, tmax, Na, λ).

3. After initial or incremental clustering, we compute and save the entropy and
pheromone for each pixel in the Z×Z plane for subsequent clustering . When
each batch of data arrives, agent movements are guided by the pheromone
to locate new objects. We use a simple pheromone update method.

4. The time complexity for locating objects in the initial clustering is O(tmax ×
Na), and for computing the entropy and pheromone is O(Z × Z). Both are
independent of the number of objects. This is one important reason why
swarm intelligence is especially applicable to dynamic environments.

4 Experiments

Our first experiments compared incremental and non-incremental clustering. We
conducted experiments on two data sets from the UCI repository [7]: Tic-tac-toe
endgame, and Balance Scale. We used the settings Z ×Z = 50×50, s×s = 5×5,
Na = 50, λ = 0.1. For static clustering, we set tmax = 25000, and for incremental
clustering tmax = 15000.

The Tic-tac-toe endgame database contains 958 instances with two classes.
The Balance Scale database contains 625 instances with three classes. To convert
these static problems into dynamic problems, the instances in each database were
divided into six groups. For the Tic-tac-toe endgame database, the first group G0
consisted of 358 objects for the initial clustering; the rest of the data were divided
into five subsets, G1 to G5, each with 120 objects, for the subsequent incremental
clustering. For the Balance Scale database, the first group G0 consisted of 225
objects, the rest being divided into five subsets, G1 to G5, each with 80 objects,
for subsequent incremental clustering.

The scenario consisted of an initial dataset G0, then five rounds of insertion,
with G1 to G5 being in turn added to the dataset. We can more formally describe
the datasets Si by S0 = G0; S1 = (S0 ∪ G1); S2 = (S1 ∪ G2); and so on. We
replicated our experiments 10 times, with independent sampling of G0 . . . G5.

To evaluate the quality of the clusters, we used Ramos’ [6] metric (equation 6)
For a given location x containing an object of class A,

ex =

∑
y∈s×s δ(x, y)

s2 − 1
(5)
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where
δ(x, y) = 0 if location y also contains an element of class A
δ(x, y) = 1 otherwise

EA =
∑

x∈A ex

| A | (6)

For comparison purposes, we also conducted experiments using the different
incremental approaches, and obtained the following results and conclusions.

5 Results

5.1 Incremental Vs Non-incremental Approaches

The first experiment compared our incremental approach with a non-incremental
approach using the initial clustering algorithm (a typical ant clustering algo-
rithm) over the whole database. The purpose of this comparison was to confirm
that there actually was a benefit form incremental clustering – that is, that by
using the previous clustering as a starting point, incremental clustering could
achieve similar quality clusterings to those given by static clustering, but with a
reduced computational cost. In our experiments, we provided almost twice the
computational time resources to the static clustering as we did to the incre-
mental clustering (tmax). The average quality of the clusters produced by the
two methods (incremental vs non-incremental) are shown in table 3. The table
records the mean and standard deviation (over the ten trials) for each statistic,
together with the p value from Student’s two-tailed heteroscedastic T-test. De-
spite the increased resources provided to the static method, the quality of the two
clusterings are statistically indistinguishable. This is not surprising. Population-
based methods frequently offer good performance, even for static problems, but
at relatively high computational cost; for dynamic problems, where the popula-
tion can assist in effectively maintaining solution state, the computational cost
disadvantages are dramatically reduced.

Table 3. Cluster Quality (Incremental vs Static)

System Tic-Tac-Toe End-Game Balance Scale
Static 0.722 ± 0.032 1.485 ± 0.047
Dynamic 0.739 ± 0.024 1.461 ± 0.038
T-test p value 0.22 0.22

5.2 Entropy vs Non-entropy Approaches

The primary purpose of this paper is to introduce our entropy-based approach,
and compare its performance with previously-studied dynamic ant-based clus-
tering algorithms. Hence we compared our method with Lumer and Faieta’s
response function LF [3], and with Ramos and Abraham’s RA [6]. The results
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are shown in table 4. This table records the mean and standard deviation of
the final clustering (ie after five rounds of data update), together with T-test
p values, for each of the treatments. The clustering performance over time (ie
after each of the epochs of updating) are shown in figure 1.

Table 4. Cluster Quality (Different Incremental Methods)

System Tic-Tac-Toe End-Game Balance Scale
Entropy 0.739 ± 0.025 1.461 ± 0.037
LF 1.368 ± 0.014 2.219 ± 0.043
p value (LF) 1 × 10−19 3 × 10−19

RA 1.671 ± 0.012 2.737 ± 0.019
p value (RA) 8 × 10−21 4 × 10−20

Fig. 1. Dynamic Clustering on Tic-Tac-Toe End-Game and Balance Scale

It is clear from these results that the entropy-based measure systematically
out-performs both the LF and RA approaches, yielding better cluster quality for
essentially the same algorithmic cost. The more informed approach is better able
to rapidly form clusters. What is more, it appears that despite the dynamicity
of the problem, the entropy-based method is able to continue to improve the
clusters from epoch to epoch.

6 Conclusions and Further Work

Our results suggest that dynamic clustering, for a realistic problem scenario, can
provide significant benefits over static clustering, achieving comparable cluster-
ing results at lower computational cost. This provides further confirmation of
the arguments of Lumer and Faieta, and of Ramos and Abrahams.

Equally important, we have shown that the performance of a dynamic ant-
based clustering algorithm can be significantly improved by using an entropy-
based metric to guide the clustering, and that such a metric is able to incorporate
useful information about the local structure. The performance of the algorithm,
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with this metric, on two realistic dynamic problems, was substantially better
than either of the two earlier metrics. This was achieved despite a substantially
reduced number of algorithm parameters.

Future work will concentrate on validating the approach on a wider range of
dynamic problem scenarios, and on characterising the robustness of the param-
eter settings of the algorithm.
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Abstract. This paper introduces a hybrid metaheuristic, the Variable
Neighborhood Particle Swarm Optimization (VNPSO), consisting of a
combination of the Variable Neighborhood Search (VNS) and Parti-
cle Swarm Optimization(PSO). The proposed VNPSO method is used
for solving the multi-objective Flexible Job-shop Scheduling Problems
(FJSP). The details of implementation for the multi-objective FJSP and
the corresponding computational experiments are reported. The results
indicate that the proposed algorithm is an efficient approach for the
multi-objective FJSP, especially for large scale problems.

1 Introduction

Flexible Job-shop Scheduling Problems (FJSP) is an extension of the classical
JSP which allows an operation to be processed by any machine from a given
set. It incorporates all the difficulties and complexities of its predecessor JSP
and is more complex than JSP because of the additional need to determine the
assignment of operations to the machines. The scheduling problem of a FJSP
consists of a routing sub-problem, that is, assigning each operation to a machine
out of a set of capable machines and the scheduling sub-problem, which consists
of sequencing the assigned operations on all machines in order to obtain a fea-
sible schedule minimizing a predefined objective function. It is quite difficult to
achieve an optimal solution with traditional optimization approaches owing to
the high computational complexity. In the literature, different approaches have
been proposed to solve this problem. Mastrolilli and Gambardella [1] proposed
some neighborhood functions for metaheuristics. Kacem et al. [2,3] studied on
modeling genetic algorithms for FJSP. Ong et al. [4] applied the clonal selec-
tion principle of the human immune system to solve FJSP with re-circulation.
By hybridizing particle swarm optimization and simulated annealing, Xia and
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c© Springer-Verlag Berlin Heidelberg 2006
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Wu [5] developed an hybrid approach for the multi-objective flexible job-shop
scheduling problem (FJSP). Because of the intractable nature of the problem
and its importance in both fields of production management and combinato-
rial optimization, it is desirable to explore other avenues for developing good
heuristic algorithms for the problem.

Particle Swarm Optimization (PSO) incorporates swarming behaviors ob-
served in flocks of birds, schools of fish, or swarms of bees, and even human
social behavior, from which the intelligence is emerged [6]. It has become the
new focus of research recently. However, its performance deteriorates as the
dimensionality of the search space increases, especially for the multi-objective
FJSP involving large scale. PSO often demonstrates faster convergence speed
in the first phase of the search, and then slows down or even stops as the
number of generations is increased. Once the algorithm slows down, it is dif-
ficult to achieve better scheduling solutions. To avoid termination at a local
minimum, we introduce a novel hybrid meta-heuristic, the Variable Neighbor-
hood Particle Swarm Optimization (VNPSO) for the multi-objective FJSP.
The basic idea is to drive those particles by a shaking strategy and get them
to explore variable neighborhood spaces for the better scheduling solutions.

2 Problem Formulation

The classical FJSP considers in general the assignment of a set of machines
M = {M1, · · · , Mm} to a set of jobs J = {J1, · · · , Jn}, each of which consists
of a set of operations Jj = {Oj,1, · · · , Oj,p}. There are several constraints on
the jobs and machines, such as (1) each machine can process only one operation
at a time; (2) operations cannot be interrupted; (3) there are no precedence
constraints among operations of different jobs; (4) setup times for the operations
are sequence-independent and included in the processing times; (5) there is only
one of each type of machine; (6) machines are available at any time.

To formulate the objective, define Ci,j,k (i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n},
k ∈ {1, 2, · · · , p}) as the completion time that the machine Mi finishes the
operation Oj,k;

∑
Ci represents the time that the machine Mi completes the

processing of all the jobs. Define Cmax = max{∑Ci} as the makespan, and
Csum =

∑m
i=1(

∑
Ci) as the flowtime. The problem is thus to both determine

an assignment and a sequence of the operations on all machines that minimize
some criteria. Most important optimality criteria are to be minimized: (1) the
maximum completion time (makespan): Cmax; (2) the sum of the completion
times (flowtime): Csum.

Minimizing Csum asks the average job finishes quickly, at the expense of the
largest job taking a long time, whereas minimizing Cmax, asks that no job takes
too long, at the expense of most jobs taking a long time. Minimization of Cmax

would result in maximization of Csum. The weighted aggregation is the most
common approach to the problems. According to this approach, the objectives,
F1 = min{Cmax} and F2 = min{Csum}, are summed to a weighted combination:
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F = w1min{F1} + w2min{F2} (1)

where w1 and w2 are non-negative weights, and w1 + w2 = 1. These weights
can be either fixed or adapt dynamically during the optimization. The dynamic
weighted aggregation [7] was used in the paper. Alternatively, the weights can be
changed gradually according to the Eqs. (2) and (3). The variation for different
values of w1 and w2 (R = 200) are illustrated in Fig. 1.

w1(t) = |sin(2πt/R)| (2)

w2(t) = 1 − w1(t) (3)
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Fig. 1. Dynamic weight variation

3 The VNPSO Heuristic for FJSP

The classical PSO model consists of a swarm of particles, which are initialized
with a population of random candidate solutions. They move iteratively through
the d-dimensional problem space to search the new solutions, where the fitness,
f , can be calculated as the certain qualities measure. Each particle has a po-
sition represented by a position-vector xi (i is the index of the particle), and
a velocity represented by a velocity-vector vi. Each particle remembers its own
best position so far in a vector x#

i , and its j-th dimensional value is x#
ij . The

best position-vector among the swarm so far is then stored in a vector x∗, and
its j-th dimensional value is x∗

j . During the iteration time t, the update of the
velocity from the previous velocity to the new velocity is determined by Eq.(4).
The new position is then determined by the sum of the previous position and
the new velocity by Eq.(5).

vij(t) = wvij(t−1)+c1r1(x
#
ij(t−1)−xij(t−1))+c2r2(x∗

j (t−1)−xij(t−1)) (4)

xij(t) = xij(t − 1) + vij(t) (5)
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The particle swarm algorithm can be described generally as a population
of vectors whose trajectories oscillate around a region which is defined by each
individual’s previous best success and the success of some other particle. The best
particle acts as an attractor, pulling its neighborhood particles towards it. Some
previous studies has been shown that the trajectories of the particles oscillate
in different sinusoidal waves and converge quickly [8]. During the iteration, the
particle is attracted towards the location of the best fitness achieved so far by
the particle itself and by the location of the best fitness achieved so far across
the swarm. The algorithm has faster convergence. But very often for multi-
modal problems involving high dimensions it tends to suffer from premature
convergence.

Variable Neighborhood Search (VNS) is a relatively recent metaheuristic
which relies on iteratively exploring neighborhoods of growing size to identify
better local optima with shaking strategies [9,10]. More precisely, VNS escapes
from the current local minimum x∗ by initiating other local searches from start-
ing points sampled from a neighborhood of x∗, which increases its size iteratively
until a local minimum is better than the current one is found. These steps are
repeated until a given termination condition is met. The metaheuristic method
we propose, the VNPSO, was originally inspired by VNS. In PSO, if a particle’s
velocity decreases to a threshold vc, a new velocity is assigned using Eq.(6):

vij(t) = wv̂ + c1r1(x
#
ij(t − 1) − xij(t − 1)) + c2r2(x∗

j (t − 1) − xij(t − 1)) (6)

Algorithm 1. Variable Neighborhood Particle Swarm Optimization Algorithm
01. Initialize the size of the particle swarm n, and other parameters.
02. Initialize the positions and the velocities for all the particles randomly.
03. Set the flag of iterations without improvement Nohope = 0.
04. While (the end criterion is not met) do
05. t = t + 1;
06. Calculate the fitness value of each particle;
07. x∗ = argminn

i=1(f(x∗(t − 1)), f(x1(t)), f(x2(t)), · · · , f(xi(t)), · · · , f(xn(t)));
08. If x∗ is improved then Nohope = 0, else Nohope = Nohope + 1.
09. For i= 1 to n
10. x#

i (t) = argminn
i=1(f(x#

i (t − 1)), f(xi(t));
11. For j = 1 to d
12. If Nohope < 10 then
13. Update the j-th dimension value of xi and vi

14. according to Eqs.(4),(5)
15. else
16. Update the j-th dimension value of xi and vi

17. according to Eqs.(7),(6).
18. Next j
19. Next i
20. End While.
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v̂ =

{
vij if |vij | ≥ vc

u(−1, 1)vmax/ρ if |vij | < vc

(7)

Our algorithm scheme is summarized as Algorithm 1. The performance of
the algorithm is directly correlated to two parameter values, vc and ρ. A large
vc shortens the oscillation period, and it provides a great probability for the
particles to leap over local minima using the same number of iterations. But
a large vc compels the particles in the quick “flying” state, which leads them
not to search the solution and forcing them not to refine the search. The
value of ρ changes directly the variable search neighborhoods for the parti-
cles. It is to be noted that the algorithm is different from the multi-start
technique and the turbulence strategy [11]. We also implemented the Multi-
Start PSO (MSPSO) and Velocity Turbulent PSO (VTPSO) to compare their
performances.

For applying PSO successfully for the FJSP problem, we setup a search space
of O dimension for a (m−Machines, n−Jobs, O−Operations) FJSP problem.
Each dimension was limited to [1, m + 1). Each dimension of the particle’s po-
sition maps one operation, and the value of the position indicates the machine
number to which this task is assigned to during the course of PSO. The particle’s
position may appear real values such as 1.4, etc. We usually round off the real
optimum value to its nearest integer number.

4 Experiment Settings and Results

To illustrate the effectiveness and performance of the proposed algorithm, three
representative instances based on practical data have been selected. Three
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problem instances ((J8, O27, M8), (J10, O30, M10) and (J15, O56, M10) are
taken from Kacem et al. [2,3]. In our experiments, the algorithms used for com-
parison were MSPSO (Multi-start PSO), VTPSO (Velocity Turbulent PSO) and
VNPSO (Variable Neighborhood PSO). The parameters c1 and c2 were set to
1.49 for all the PSO algorithms. Inertia weight w was decreased linearly from 0.9
to 0.1. In VTPSO and VNPSO, ρ and vc were set to 2 and 1e-7 before 15,000
iterations, while they were set to 5 and 1e-10 after 15,000 iterations. The swarm
size in all the algorithms were set to 20. The average fitness values of the best
solutions throughout the optimization run were recorded. The averages (F ) and
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Table 1. Comparing the results for FJSPs

Instance Items MSPSO VTPSO VNPSO
Best makespan 30 26 24
Best flowtime 168 155 152

(8, 27, 8) average 39.9087 28.3853 28.8000
std ±5.7140 ±2.3146 ±3.8239
time 184.0620 181.2500 181.2970
Best makespan 19 13 11
Best flowtime 96 92 75

(10, 30, 10) average 19.4612 15.2000 15.0000
std ±1.8096 ±1.3166 ±1.8257
time 1.7145e+003 1.5891e+003 1.5908e+003
Best makespan 36 30 29
Best flowtime 231 241 220

(15, 56, 10) average 37.2000 31.9000 30.8000
std ±1.0328 ±1.2867 ±1.7512
time 2.0497e+003 12.0816e+003 2.0703e+003

the standard deviations (std) were calculated from the 10 different trials. The
standard deviation indicates the differences in the results during the 10 different
trials. Usually another emphasis will be to generate the schedules at a minimal
amount of time. So the completion time for 10 trials were used as one of the cri-
teria to improve their performance. Figs. 2, 3 and 4 illustrate the performance for
the three algorithms during the search processes for the three FJSPs. Empirical
results are illustrated in Table 1. In general, VNPSO performs better than the
other two approaches, although its computational time is worse than VTPSO for
the low dimension problem, (J8, O27, M8). VNPSO could be an ideal approach
for solving the large scale problems when other algorithms failed to give a better
solution.

5 Conclusions

In this paper,we introduce ahybridmetaheuristic, theVariableNeighborhoodPar-
ticle Swarm Optimization (VNPSO), consisting of a combination of the Variable
Neighborhood Search (VNS) and Particle Swarm Optimization(PSO), and con-
sidered its application for solving the multi-objective Flexible Job-shop Schedul-
ing Problems (FJSP). The details of implementation for the multi-objective FJSP
are provided and its performance was compared using computational experiments.
The empirical results have shown that the proposed algorithm is an available and
effective approach for the multi-objectiveFJSP, especially for large scale problems.

Acknowledgments. This work was supported by the Korea Research Foun-
dation Grant funded by the Korean Government (MOEHRD, Basic Research
Promotion Fund) (KRF-2006-353-B00059).
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Abstract. An innovation long period grating (LPG) synthesis method based on 
intelligent particle swarm optimization (PSO) algorithm is demonstrated to be 
very effective for designing flat band LPG filters. A flatten 3dB loss spectrum 
LPG with bandwidth over 100nm is designed as an example to show the effec-
tiveness of the PSO algorithm. To improve the capability of optimization algo-
rithm, we use the improved LPSO version proposed recently. This 3dB LPG is 
a key component of multi-channel filter in optical communications and optical 
sensors. The results showed that the intelligent PSO algorithm is very powerful 
and can be used for complex optimization problem.  

1   Introduction 

Fiber gratings have been evolved into one of the key optical components and found a 
multitude of applications in optical communications and optical sensor fields [1,2]. 
LPG is one of the most popular transmission-type grating devices, which couples the 
fundamental guided mode to one or more the phase-matched cladding modes. The 
LPG filters have proved to be very useful in band rejection filter [3], high sensitive 
temperature and strain sensors [4], and EDFA gain flattening [5]. Generally specking, 
the uniform LPG has little applications because of the limited transmission loss 
spectrum. In recent years, lots of synthesis methods are developed to design the index 
modulation profile that can produce the specific spectrum applications. These 
synthesis methods can be roughly divided into two groups: the fist group is inverse 
scattering based algorithm including the layer-peeling method, which can be used for 
both the LPG and fiber Bragg grating (FBG) designing [6,7]. The other kind of 
synthesis methods is the stochastic optimization approaches. Because the FBG or 
LPG filters synthesis is generally a complex optimization problem, the used 
optimization algorithms are not common sense’s optimization algorithms. The 
evolutionary programming (EP) and genetic algorithm (GA) are important branches 
of the evolution algorithms, which are probabilistic search algorithms gleaned from 
the organic evolution process. EP is relative simple compared with the GA) and only 
use the mutation process of continuous variables and does not use the coding and 
crossover process. However, for both these methods, the controllable parameters are 
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problem sensitive and not easy selective properly. Recently, PSO has been proposed 
as a simple and alternative tool for solving optimization problems. PSO has been 
shown to be effective in optimization for multidimensional discontinuous problems. 
PSO has also been successfully applied in electromagnetic design problems. In this 
article, we have successfully utilized this intelligent optimization algorithm to design 
a LPG with flatten 3dB loss spectrum within the bandwidth about 100nm. 

2   The Principle of PSO 

The PSO algorithm, like GA, is population-based optimisation tool and can be applied 
to virtually any problem that can be expressed in terms of an objective function for 
which extremum must be found [8]. It emulates some aspects of social behaviour of a 
flock of birds and a school of fish. The PSO algorithm is iterative and involves initial-
izing a number of vectors (particles) randomly within the search space. The collective 
of the particles is known as the swarm. Each particle presents a potential solution to 
the problem of the target function. At initial stage, each particle is also randomly 
initializing a vector called particle speed.  During each time step (generation), the 
objective function is evaluated to establish the fitness of each particle using the parti-
cle position itself as the input parameter. Then the particle will fly through the search 
space being attracted to both their personal best position as well as the best position 
found by the swarm so far.  

We make the position of particle i  expressed as ),,( 2,1 idiii xxxX = and the best 

position of that particle so far expressed ),,( 21 idiii pppp = . The best position of 

the whole swarm can be expressed as ),,,( 21 gdggg pppp = . Then the particle 

position update can be expressed as ididid vxx +=  where the idv denote the speed of 

the d dimension component of particle i and expressed as: 

)()()()( 21 gdgdidididid xprandxprandwvv −+−+= φφ  (1) 

where w  is the inertia weight determining how much of the particle’s previous speed 
is preserved, 21,φφ are two acceleration constants present the cognition part and the 

social part respectively, ()rand is uniform random sequences from {0,1}.  

It should be noted that, each particle has the memory ability and could remember 
the best position it has been gone through. What’s more, there is information flow 
among the particles, by which they could communicate with the global particles or 
with the special particles based on some topological neighbourhood structure. Each 
particle updates its speed and position based on its memory and communion informa-
tion of the swarm. So we called the PSO algorithm as intelligent PSO algorithm.  

The absolute value of the current speed determines the searching depth and ex-
pandability in solve spacing. The direction of the speed determines the path by which 
the particle could quickly or slowly go to the best solution. So the speed update is 
very important in the PSO algorithm. Fro the speed update, there are two basic ver-
sions: one employ the weight factor w , A large weight facilities the global explora-
tion, while a small exploration facilities the local exploration; the other one employ 
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the K factor, which has proved to be better than the first one in success probability 
and searching speed . Thus, in later sections, the position vectors and speed vectors in 
our paper are mainly based on the constriction factor factor K technique, which de-
scribes in detailed as follows: 

( )(
( ))

1

2 min max

()

() ,

0,

id id id

id gd id id

id

K v rand p x

v rand p x x x x

v otherwise

φ

φ

+ −

= + − < <

=

   

  

 (2) 

                 

, min max

max, max

min, min

id id id

id id

id

x v x x x

x x x x

x x x

+ < <
= ≥

≤
  

  

  

       

       

 (3) 

where K is computed as:
1

22 2 4K ϕ ϕ ϕ
−

= − − − , 1 2ϕ φ φ= + , 4ϕ > . 1φ , 2φ are 

constants represents the social learning and self recognition components and set 1.1 
and 3.0 respectively in our algorithm. Just as can be seen in (2), we used the absorber 
boundary conditions when the one components of the particle vector overcome the 
boundary. In other PSO literatures, boundary selection problem have been studied and 
show that reflection and trap boundary generally can produce better performance. 

The iterative process will continue using the formula (2) until the extremum has 
been found or the number of iteration reached the maximum value. The algorithm in 
pseudo-code follows:[9]  

Intialize population 
Do  
For 1i =  to population swarm size 

If ( ) ( )i if x f p<  then ii xp =  

( )ming neighorsp p=  

      for 1d =  to Dimension 

( )
( )

, , 1 , ,

2 , ,

()

        ()

i d i d i d i d

g d i d

v wv rand p x

rand p x

ϕ

ϕ

= + −

+ −
 

       ( ) ( ), , , maxmin ( ),i d i d i dv sign v abs v v=  

       dididi vxx ,,, +=  

    Next  d   
Next i  
Until termination criterion is met 
The ability of avoiding being trapped into the sub optimal is an important factor to 

evaluate the performance of an algorithm. Fro the PSO algorithm, it provides the 
selective topological structures to solve this problem. The two most common used 
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structures are known as a global neighbor and a local neighbor. In the global 
neighborhood structure, the trajectory of each particle’s search is influenced by the 
best position found so far and the other particles of the entire swarm. The local 
neighborhood structure allows each individual particle to be influenced by only some 
small number of adjacent members. A kind of lore has evolved regarding these so-
ciometric structures. It has been thought that the global structure converges rapidly on 
problem solutions but has a weakness of being trapped into local optima, while the 
local structure can flow around local optima and avoids being trapped into local op-
tima. In this paper we use two possible structures just as in reference [7] Generally, 
there are two kinds of topological neighbourhood structures, global neighbourhood 
structure, corresponding to the global version of PSO (GPSO), and local neighbour-
hood structure, corresponding to the local version of the PSO (LPSO). In the GPSO, 
each particle’s search is influenced by the best position found by any member of the 
entire population. In contrast, in LPSO, the search is influenced only by parts of the 
adjacent members. It is widely believed that GPSO converges quickly to an optimum 
but has the weakness of being trapped in local optima occasionally, while the LPSO is 
able to “flow around” local optima, because the sup-swarm explore different regions 
in hyperspace. To improve the search ability, for the simple applications, we can use 
the GPSO algorithm and get the optimised solution in short searching time. For the 
complex applications, we used the LPSO algorithm to improve the probability of 
finding the best global solution. The two possible topologies for LPSO are shown in 
Fig.1 (a) [10]. 

3   Analysis and Optimization of LPG 

The coupled mode equations describing the coupling in long period fibre gratins are 
given by [11] 

AiikBdzdA δ−−=  
 

BiikAdzdB δ+−=  (4) 

where A  B  are respectively the amplitude of the guide mode and cladding mode, 
k is the couple strength, Λ−Δ πλπδ neff represents the detuning and 

clacorneff nn −=Δ , where corn and clan  are the effective refractive index, and Λ  is 

the period of the LPG. For the uniform LPG there exist analytic solution for the equa-
tion (2). If only one cladding mode is excitated, the un-uniform LPG of the equation 
can be solved by the transfer-matrix method. The LPG is assumed to be divided into 
N  sections and each section is treat as a uniform LPG in index modulation and pe-
riod, and then the transmission characteristics of the whole grating can be expressed 

as ∏
=

=
N

i
iTT

1

, where iT is the transmission matrix of the section i  and can be seen in 

general grating literature, we not listed here. In our problem, we first define an error 
function to evaluate the fitness of the particles (each particle is a set of the index 
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modulations). The spectral window are divided into m discrete wavelength, the sum 
of the weighted errors is normally used as cost function. 

Ni
TT

m
ParticleErr

m

l l

lilett
i 2,1,

1
)(

2

1

,,arg =
−

=
= σ

 (5) 

where the )( iParticleErr is the deviation of the calculated spectrum of particle i from 

the target spectrum, lettT ,arg  is the target spectrum component at the sampling point 

l , liT , is the calculated spectrum component of particle i  at the sampling point l , and 

lσ  is the uncertainty at the sampling point l . In the simulation, we have to specify 

the upper and lower bounds of the grating physical parameters that should be opti-
mized. The N particles are randomly initialized and each particle is a set of the grating 
index modulation parameters. In the upper and lower bonds the parameters values are 
continuous. The parameters of PSO algorithm is set as: 1.11φ , 0.32 =φ , 20=N , 

500=l , and w  is tuneable parameter expressed as: 

))(/()( minmaxmaxmax wwiteriterwiterw −−=  (6) 

where iter and maxiter are the current and the maximum iteration number respectively. 

The advantage of tuneable inertia weight are as follows: At the beginning stage, the 
inertia weight can be set a large value, so we can expand the searching space, when 
the potential particle has been approached to the best solution, the inertia weight must 
be very small, which make the PSO can implement elaborate searching around the 
best solution and avoiding escaping from the best solution to bad solutions. To im-
prove the convergence solution to be the best results, we used local PSO (LPSO) 
where a special neighbour topology is introduced [10]. This can be seen in Fig.2, 
which shows two possible topologies used in our simulation. 

 
(a) (b) 

Fig. 1. Two possible particles swarm local topological structure (a), the optimized index modu-
lation envelop for 3dB LPG transmission spectrum (b) 

4   Numerical Results and Discussions 

Mini Das proposed an improved version to realize wavelength multiplexing isolation 
filter using concatenated chirped LPG [12]. Although the introducing of chirp 
increased the useful channels by extending the loss window of the single LPG, 
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however, to get high isolation between the channels, the key factor is to design the flat 
loss spectrum of the single LPG approach to 50%. The loss spectrum of the chirped 
LPG is approximately to be parabolic curve, which limited the useful channels, 
otherwise, in the chirp-type cascaded filter, the isolation undulation among the 
channels are very large. To overcome these problems, the best method is to design a 
wide bandwidth 3dss LPG filter within the bandwidth of 100nm, and the 
characteristics of the LPG pair interferometer made of two identical designed LPGB 
LPG filter. In the first example, we designed a 3dB los sandwiched a standard fiber 
are also discussed.  

 
                                    (a)                                                        (b) 

Fig. 2. The designed (solid line) and target (dotted line) transmission spectrum for the cladding 
mode (a), the transmission spectrum ripples of the designed LPG 

 
                               (a)                                                           (b) 

Fig. 3. (a) the interference spectrum of the LPGs pair with the inserted single mode fibre is 
20cm, (b) part of the transmission spectrum of (a) 

The target spectrum loss in the region of 1500nm to1600nm should be 3dB, and 
outer the bandwidth the spectrum loss is 0. In our problem we mainly focus on the 
3db loss bandwidth range. Fig.1 (b) shows the optimized index modulations envelop 
using the improved LPSO method. In our simulation, we divided the fibre grating into 
80 sections of the same length and assumed the index modulation in each section is 
unchanged; the whole length of the LPG is 5cm, the center resonance wavelength is 
1550nm, the grating period is uniform along the whole LPG, the effective index dif-
ference between the core mode and cladding mode is 0.01. As can be seen, the  
designed index modulation profile is just like a sinc function, and the envelope is  
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approximately symmetry. The maximum index modulation position is located in the 
center of the LPG, and the index modulation amplitude is less than 42 10−× , so it is 
easy to realize such device for the low index modulation. Fig.2(a) shows the output 
spectrum of the core mode of the single stage LPG calculated by the couple mode 
equation using the transfer matrix method. As can be seen, within the 100nm band-
width that starts from 1500nm to 1600nm, the designed spectrums agree well with the 
target spectrums. There is a little divergence around the side band where the target 
transmission loss spectrum is a steep step, and break the continuity fortunately, how-
ever, those parts are not useful to our problem, and we are not concern about those 
region. Fig.2 (b) shows the divergence degree of the designed spectrum from the 
target spectrum within part of the useful bandwidth, we can see the divergence ripple 
is less than 0.0002± , the influence of the divergence on the transmission to the LPG 
pair interferometer can be ignored.  

Fig.3 (a) shows the interference spectrum of the two identical optimized LPGs pair 
interferometer that made by cascading two LPGs together, and length of the sand-
wiched fibre between them is 20cm. We can see, in the bandwidth scope of more 
than100nm, the isolation degree at the stop bands is larger than 30db. What’s more, 
the isolation undulation among channels is very small, and almost all the channels are 
in equal operation in the 100nm bandwidth region. This is because of the little diver-
gence between the designed spectrum and that of the idea 3dB transmission loos  
filter. The channel spacing is about 1nm, so there are more than 100 useful equal 
spaced channels produced by the LPGs pair. To give a clear picture, Fig.3 (b) shows 
part transmission spectrum of Fig.3 (a), in the central part, the isolation degree is 
about 40dB. The channel spacing can be tuned by changing the length of sandwiched 
fibre. with increasing the length of sandwiched fibre, the channel spacing will become 
narrower and we will get more useful channels.  

5   Conclusions 

In conclusion, we proposed a novel synthesized method based on the improved 
intelligent LPSO algorithm. To make the algorithm convergence to a global optimal 
or a better sub-optimal, a special topology is used in our problem. An example to 
design a flatten loss spectrum in a large bandwidth that approach 50% is demonstrated 
to test the effectiveness of the algorithm. From the optimized LPG’s sinc-type index 
modulation profile, we obtained a flat transmission spectrum in bandwidth of 100nm 
with the transmission loss approximately to be 50%. A numerical simulation showed 
the good performance of the cascaded isolation filter consisted of two identical LPGs. 
Based on the studied results, we believe that the LPSO algorithm is an effective 
inveiglement algorithm for optimally designing complicated LPG and other fibre 
grating filters. Since the LPSO is a stochastic search approach in nature, the required 
computation time cannot be precisely predicted. However, the advantage computer 
hardware can remedy this disadvantage. Otherwise, we may change some PSO 
control parameters to accelerate the convergence speed. 
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Abstract. This paper proposes an Adaptive Comprehensive Learning Particle 
Swarm Optimizer with History Learning (AH-CLPSO) based on the previous 
proposed Learning Particle Swarm Optimizer (CLPSO) [1], which is good at 
multimodal problems but converges slow on single modal problems. A self-
adaptation technique is introduced to adjust the learning probability adaptively 
in the search process and the historical information is used in the velocity up-
date equation to search more effectively. The experiment results show that the 
history learning strategy and the adaptation technique improves the perform-
ance of CLPSO on problems which need fast convergence and achieve compa-
rable results on the problems requiring slow convergence.  

1   Introduction 

The Particle Swarm Optimizer (PSO) [2, 3] is introduced by Eberhart and Kennedy as 
a new optimization technique in 1995. Different from other evolutionary computation 
techniques, the standard PSO does not use evolution operators such as crossover and 
mutation. It emulates the swarm behavior of insects, birds flocking and fish schooling 
and each member in the swarm adapts its search direction by learning from its own 
experience and other members’ experiences.   

In PSO, a member in the swarm, called a particle, represents a potential solution 
which is a point in the search space. Each particle has a fitness value and a velocity to 
adjust its flying direction and the particles fly in the D dimensional problem space by 
learning from the historical information of all the particles. Using the useful informa-
tion collected in the search process, the particles have a tendency to fly towards better 
search area over the course of search process. The velocity Vi

d and position Xi
d  

updates of dth dimension of the ith particle are presented below:  

1 21 ( ) 2 ( )d d d d d d d d
i i i i i i iV w V c rand pbest X c rand gbest x= ∗ + ∗ ∗ − + ∗ ∗ −  (1) 

d d d
i i iX X V= +  (2) 

where c1 and c2 are the acceleration constants, rand1i
d and rand2i

d are two uni-
formly distributed random numbers in the range [0,1]. 1 2( , ,..., )D

i i iX X X=X i
 is the 

position of the ith particle; 1 2( , ,..., )D
i i ipbest pbest pbest=pbest i

 is the best previous 
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position yielding the best fitness value pbesti for the ith particle; 
1 2( , ,..., )Dgbest gbest gbest=gbest  is the best position discovered by the whole popu-

lation; 1 2( , ,..., )D
i i iv v v=Vi

 represents the rate of the position change (velocity) for 

particle i. w is the inertia weight used to balance between the global and local 
search abilities [4]. Except the inertia weight, by analyzing the convergence behav-
ior of the PSO, a PSO variant with a constriction factor was introduced by Clerc 
and Kennedy [5]. Constriction factor guarantees the convergence and improves the 
convergence velocity. 

In the PSO domain, there are two main variants: global PSO and local PSO. In the 
local version of PSO, each particle’s velocity is adjusted according to its personal best 
and the best performance achieved so far within its neighborhood instead of learning 
from the personal best and the best position achieved so far by the whole population 
as in the global version. The velocity updating equation becomes: 

1 21 ( ) 2 ( )d d d d d d d d
i i i i i i i iV w V c rand pbest X c rand lbest x= ∗ + ∗ ∗ − + ∗ ∗ −  (3) 

where 1 2( , ,..., )D
i i ilbest lbest lbest=lbest i

 is the best position achieved within its 

neighborhood. Kennedy [6] claimed that PSO with a small neighborhood might per-
form better on complex problems while PSO with a large neighborhood would  
perform better on simple problems.  

In the 10 years of development, PSO has attracted a high level of interest and 
many different interesting and efficient versions are proposed. For example, Par-
sopoulos and Vrahatis combined the global version and local version together to 
construct a Unified Particle Swarm Optimizer (UPSO) [7]. Mendes and Kennedy 
introduced a fully informed PSO in [8] in which instead of using the pbest and 
gbest positions in the standard algorithm, all the neighbors of the particle are 
weighted based on its fitness value and the neighborhood size to update the veloc-
ity. Veeramachaneni et al. developed the Fitness-Distance-Ratio based PSO (FDR-
PSO), with near neighbor interactions [9]. When updating each velocity dimension, 
the FDR-PSO algorithm selects one other particle, nbest, which has a higher fitness 
value and is nearer to the particle being updated. A Cooperative Particle Swarm 
Optimizer (CPSO-H) was proposed in [10]. Although CPSO-H uses 1-D swarms to 
search each dimension separately, the results of these searches are integrated by a 
global swarm to significantly improve the performance of the original PSO on  
multimodal problems.  

Comprehensive Learning Particle Swarm Optimizer proposed in [1] is also one 
of those variants. It employs a comprehensive learning strategy where other 
particles’ previous best positions are exemplars to be learned from by any particle 
and each dimension of a particle can potentially learn from a different exemplar. 
With the comprehensive strategy the particles have more exemplars to learn from, a 
larger potential space to fly and can make use of the information in swarm more 
effectively to generate better quality solutions frequently when compared to some 
other PSO variants. The CLPSO is not the best choice for solving unimodal 
problems due to its slow convergence. Thus in this paper we propose a new 
adaptive CLPSO with history learning (AH-CLPSO) to improve the performance of 
the original CLPSO.  
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In Section 2, the CLPSO algorithm will be introduced briefly, the history learning 
strategy and the employed adaptation method is analyzed, then the whole algorithm is 
summarized in the same Section. The experiments results are presented and discussed 
in Section 3 and the conclusion is given in Section 4. 

2   Adaptive CLPSO with History Learning  

2.1   Comprehensive Learning Particle Swarm Optimizer 

Before we introduce the adaptive CLPSO with History Learning, some brief descrip-
tion of the CLPSO algorithm is necessary. Though much better results are achieved, 
CLPSO is very simple, the only difference between the original PSO and CLPSO is 
the velocity updating equation: 

( )* ( )d d d d d
i i i fi d iV w V c rand pbest X← ∗ + ∗ −  (4) 

where [ (1), (2),..., ( )]i i if f f D=if  defines which particle’s pbest particle i should 

follow. ( )
d
fi dpbest  can be the corresponding dimension of any particle’s pbest includ-

ing its own pbest, and the decision depends on probability Pc, referred to as the learn-
ing probability. For each dimension of particle i, we generate a random number. If 
this random number is larger than iPc , this dimension will learn from its own pbest, 

otherwise it will learn from another particle’s pbest. When choosing an exemplar for 
one dimension of a particle, first randomly choose two particles out of the population 
which excludes the particle whose velocity is updated, then compare the fitness values 
of these two particles’ pbests and select the better one as the exemplar to learn from 
for that dimension. If all exemplars of a particle are its own pbest, we will randomly 
choose at least one dimension to learn from another particle’s pbest’s corresponding 
dimension.  New exemplars are chosen for a particle when it fails to improve itself, 
say finds better position, for m generations. Here m is called refreshing gap. The flow-
chart of CLPSO is given in Fig.1.  
 

Step 1: Initialize the particles (position X and velocity V), calculate f(X) for each 
particle. Set pbest=X. Define Pci  and find exemplars for each particle i. 
Step 2:  For each particle, update the velocity Vi and position Xi as eq. (4) and eq. (2). 
Update pbesti if better position is found by the particle.  
Step 3: Re-choose exemplars for the particle which has not be improved for m gen-
erations. 
Step 4: If no stop criterion is satisfied, go to Step 2.    

Fig. 1. The flowchart of CLPSO 

2.2   History Learning Strategy 

In the original PSO or in CLPSO, only the best positions achieved so far in the search 
process are directly made use of and no historical search direction information is 
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considered in the updating equation. Velocity seems keeps some historical 
information, but in fact its main function is giving the particle inertia and adding the 
diversity of the particles to prevent the premature convergence. If t

ipbest  represents 

the best position found by particle i in t generations, and t T
ipbest −  represents pbest of 

particle i of the (t-T)th generation, then the vector t t -T
i i i= −pbest pbest  represents 

the improving direction of the passed T generations. Illustration of  i  is shown in 

Fig.2. Obviously i  is a promising search direction of particle i. If 
t t -T
i i=pbest pbest , i =0. It means this particle has stop improving for T generations, 

so it’s no meaning to continue the search on this direction. Under such situation, this 
history learning will lose its function and wait for the next good direction. 

 

Fig. 2. Illustration of the improving direction t t-T
i i i= −pbest pbest  

In order to push the particles to fly to the promising correct direction and speed up 
the search, combining i  into the velocity updating equation is a reasonable choice. 

The new updating equation is: 

1 2* ( )i i i i iw c c← ∗ + ∗ − + ∗fiV V rand pbest X  (5) 

From the authors’ observation, the history learning strategy works and can achieve 
better results than the old CLPSO with a proper Pc setting. But it becomes sensitive to 
the parameter Pc. Thus making Pc self-adaptive is necessary. 

2.3   Self-adaptive Pc   

In the previous study, it is observed that the CLPSO requires Pc values in order to 
solve different problems effectively. In order to deal with this problem, an adaptation 

technique is employed to adjust Pc. In the initialization stage, Pc is predefined to take 

different random values in the range [0,1] with normal distribution of mean Pc  and  
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standard deviation 0.1. Every T generations, ( ) ( )t -T t
i if f−pbest pbest is sorted to 

identify the best Pci achieving the biggest improvement and the best Pci chosen as the 

new Pc and a new set of Pci is generated using the new Pc . Hence, Pc  will learn a 
proper value for different problems and during different stages of evolution. In order 

to have a larger diversity in the initial stages, a small initial Pc  is recommended. 
To test the efficiency of the adaptive Pc, CLPSO with history learning is tested on 

10 dimensional Rosenbrock’s Function and Rastrigin’s Function with different Pc 

values and with the proposed adaptive Pc where the initial Pc  is set at 1/D. The mean 
results of 10 runs are shown in Fig. 3. From the results, it is clear that these two prob-
lems show two extreme situations: Rosenbrock’s Function performs better with a 
larger Pc and the best result is achieved when Pc=1; While Rastrigin’s Function 
yields better results with smaller Pc and the best Pc value is 0. As expected, the adap-
tive Pc performs well on both test functions though it does not achieve the best results 
in comparison to a well tuned fixed Pc value. 
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 (b) Rastrigin’s Function 

Fig. 3. Comparison of Results of CLPSO with history learning with different Pc and the  
adaptive Pc 
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2.4   Adaptive CLPSO with History Learning 

The entire flowchart of the adaptive CLPSO with history learning is concluded below: 
 

Step 1: Initialize the particles (position X and velocity V), calculate f(X) for each 
particle. Set pbest=X and fill pbest history archive pbest_hist with pbest. Generate 

Pc according to the predefined Pc  and find exemplars for each particle i as described 
in Section 2.1.  
Step 2:  For each particle, update the velocity Vi and position Xi using eq. (5) and eq. 
(2). Update pbesti if better position is found by the particle. Add pbesti into 
pbest_histi. and remove the member in pbest_histi. which is older than T. 
Step 3: Re-choose exemplars for particles which stop improving for m generations 

Step 4: Every T generations, check the improvement of each particle and move Pc  
to Pci whose corresponding particle has the biggest improvement. 
Step 5:  If no stop criterion is satisfied, go to Step 2.    

Fig. 4. The flowchart of the AH-CLPSO 

4   Experiments 

Experiments were conducted to compare ten PSO algorithms including the CLPSO 
algorithm with the new proposed AH-CLPSO on 4 10 dimensional test problems. The 
first two problems favour the algorithm which converges fast and has good local 
search ability and the other two can be solved by having big diversity and has good 
global search ability. The equations of the four functions are listed below and the 
global optimum, search ranges and initialization ranges of the test functions are given 
in Table 1. 

1) Sphere function   2
1 1
( )

D

ii
f x x

=
=  

(6) 

2) Rosenbrock’s function 
1 2 2 2

2 11
( ) (100( ) ( 1) )

D

i i ii
f x x x x

−
+=

= − + −  (7) 

3) Rastrigin’s function   2
3 1
( ) ( 10cos(2 ) 10)

D

i ii
f x x xπ

=
= − +  (8) 

4) Schwefel's function  
1/ 2

4 1
( ) 418.9829 sin( )

D

i ii
f x D x x

=
= × −  (9) 

Table 1. Global optimum, search ranges and initialization ranges of the test functions 

f x* f(x*) Search Range Initialization Range 

f1 [0,0,…,0] 0 [-100, 100]D [-100, 50]D 

f2 [1,1,…,1] 0 [-2.048, 2.048]D [-2.048, 2.048]D 

f3 [0,0,…,0] 0 [-0.5,  0.5]D [-0.5,  0.2]D 

f4 [420.96, 420.96,…420.96] 0 [-500, 500]D [-500, 500]D 
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The algorithms in the experiment include: 

 PSO with inertia weight (PSO-w) [4] 
 PSO with constriction factor (PSO-cf) [5] 
 Local Version of PSO with inertia weight (PSO-w-local)  
 Local Version of PSO with constriction factor (PSO-cf-local) [6] 
 Unified Particle Swarm Optimization (UPSO) [7] 
 Fully informed particle swarm (FIPS) [8] 
 Fitness-distance-ratio based particle swarm optimization (FDR-PSO) [9] 
 Cooperative particle swarm optimization (CPSO-H) [10] 
 Comprehensive Learning particle swarm optimizer (CLPSO) [1]  
 Adaptive CLPSO with history learning (AH-CLPSO) 

Among these PSO local versions, PSO_w_local and PSO_cf_local were chosen 
as these versions yielded the best results [6] with von Neumann neighborhoods 
where neighbors above, below, and one each side on a two-dimensional lattice were 
connected. Fully informed particle swarm (FIPS) with U-Ring topology that 
achieved the highest success rate [8] is used. The population size is set at 10 and the 
maximum fitness evaluations (FEs) is set at 30,000. The default parameters are used 
for the other algorithms and c1=1, c2=0.2, T=20, m=7 are set for AH-CLPSO.  All 
experiments were run 30 times. When (f(x)- f(x*))<=1e-10, the final errors are re-
ported as 0, denoting the algorithm has found the global optimum. The mean values 
and standard deviation of the errors are presented in Table 2. From the results, we 
can observe that the proposed adaptive CLPSO with history learning (AH-CLPSO) 
gives the best performance when compared to the other PSOs on different types of 
problems. 

Table 2. Results achieved by varrious PSO varriants 

   Func 
PSOs 

f1 f2 f3 f4 

PSO-w 
0 

 ± 0 
3.08e+000 

 ± 7.69e-001 
5.82e+000 

± 2.96e+000 
3.20e+002 

 ± 1.85e+002 

PSO-cf 
0 

 ± 0 
6.98e-001 

 ± 1.46e+000 
1.25e+001 

 ± 5.17e+000 
9.87e+002 

 ± 2.76e+002 

PSO-w-local 
0 

 ± 0 
3.92e+000 

 ± 1.19e+000 
3.88e+000 

 ± 2.30e+000 
3.26e+002 

 ± 1.32e+002 

PSO-cf-local 
0 

 ± 0 
8.60e-001 

 ± 1.56e+000 
9.05e+000 

 ± 3.48e+000 
8.78e+002 

 ± 2.93e+002 

UPSO 
0 

 ± 0 
1.40e+000 

 ± 1.88e+000 
1.17e+001 

 ± 6.11e+000 
1.08e+003 

 ± 2.68e+002 

FDR 
0 

 ± 0 
8.67e-001 

 ± 1.63e+000 
7.51e+000 

 ± 3.05e+000 
8.51e+002 

 ± 2.76e+002 

FIPS 
0 

 ± 0 
2.78e+000 

 ± 2.26e-001 
2.12e+000 

 ± 1.33e+000 
7.10e+001 

 ± 1.50e+002 

CPSO-H 
0 

 ± 0 
1.53e+000 

 ± 1.70e+000 
0 

 ± 0 
2.13e+002 

 ± 1.41e+002 

CLPSO 
0 

 ± 0 
2.46e+000 

 ± 1.70e+000 
0 

 ± 0 
0 

 ± 0 

AH-CLPSO 
0 

 ± 0 
1.14e-002 

± 2.44e-002 
0 

 ± 0 
0 

 ± 0 
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5   Conclusion 

A novel adaptive comprehensive learning particle swarm optimizer with history learn-
ing algorithm (AH-CLPSO) is proposed in this paper. Through the analysis of the 
search behavior, a history learning strategy and an adaptive technique are combined in 
the old comprehensive learning particle swarm optimizer (CLPSO) to improve the 
performance of the CLPSO on certain types of the problems. The experiments show 
that the self-adaptation of the learning probability Pc is successful and the new algo-
rithm can yield good results on problems requiring faster convergence and good local 
search ability or problems requiring slower convergence and good global search abil-
ity. Compared to the other variants of PSO and the old CLPSO, the improved CLPSO 
version, AH-CLPSO performs better. In the future work, we will study the history 
learning strategy’s search behavior further and attempt to make more parameters self-
adaptive.  
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Abstract. An innovative long-period fiber grating (LPG) used for erbium-
doped fiber amplifier (EDFA) gain flattening synthesized by the particle swarm 
optimization (PSO) algorithm is demonstrated. In our problem, we used the 
topological neighborhood local PSO algorithm to improve the performance, in 
addition, we used the damp boundary conditions to avoid the particles escaping 
out of the solve space. The simulated results are in good coincidence with de-
sign targets, and proved the capability and effectiveness of the algorithm. In ad-
dition, this algorithm is general and can be used for other similar synthesis 
problems of fiber Bragg gratings (FBGs). 

1   Introduction 

Fiber Bragg gratings have evolved into critical components for a multitude of 
applications in the optics fiber communication systems [1]. Among the various 
members of FBGs family, LPGs are exhibiting great promise as spectral-selective 
filters, due to unique features such as low insertion loss, low back-reflection, and 
excellent polarization-insensitivity [2]. It has proved that the LPGs are very useful 
devices in applications like band-reject filter, high sensitivity sensors, mode converters 
and ideal candidates for gain-flattening filter of EDFA etc. LPG is one type of 
transmission grating device based on the principle of coupling the guide fundamental 
mode to one or several forward propagating cladding modes. The advantage of the 
LPGs to FBGs is that the LPGs have a much greater periodicity and can be easily 
fabricated. In recent years, a lot of FBGs synthesis or inverse methods have been 
proposed such as Layer-peeling method, the Fourier transform technology, genetic 
algorithm and the Gel’fand-Levitan-Marchenko method [3][4][5][6]. Although 
extremely powerful, they require complete information on both the amplitude and the 
phase of the reflection or transmission coefficient. In this paper, another synthesis 
method for fiber grating based on PSO algorithm is proposed. This method is 
population-based evolutionary mechanism. To verify the effectiveness of the approach, 
we use PSO algorithm together with the transfer-matrix method based on the coupled 
mode theory to design a single LPG transmission spectrum used for EDFA gain 
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flattening. Because the phase information is unrelated to the EDFA gain flattening, we 
ignore the phase information in designing such a device. 

2   Synthesis of LPG Using PSO  

The PSO was first presented by Kenedy and Eberhart in 1995, which original from 
the social modal. For its simplex and powerful, PSO algorithm has achieved great 
successes and become one of special topics by ‘CEC’ [7][8]. The PSO algorithm can 
be applied to virtually any problem that can be expressed in terms of an objective 
function for which extremum must be found. The PSO algorithm is iterative and in-
volves initializing a number of vectors (particles) randomly within the search space. 
In our problems the vectors of each particle represent the couple information along 
the grating. The collective of the particles is known as the swarm. Each particle pre-
sents a potential solution to the problem of the target function. Each particle also 
randomly initializes a vector called particle speed. During each time step, the objec-
tive function is evaluated to establish the fitness of each particle according the particle 
itself as the input parameter. Then the particle will fly through the search space being 
attracted to both their personal best position as well as the best position found by the 
swarm so far.  The flow chart of the PSO algorithm can be seen in Fig.1 (a). 

The position of particle i  is expressed as 1, 2( , , )i i i idX x x x= and the best position 

of that particle so far is expressed 1 2( , , )i i i idp p p p= . The best position of the 

swarm can be expressed as 1 2( , , , )g g g gdp p p p= . Then the particle position update 

can be expressed as id id idx x v= +  where the idv denotes the speed of the d dimen-

sion component of particle i and is expressed as [9]:  

1 2()( ) ()( )id id id id gd gdv wv rand p x rand p xφ φ= + − + −  (1) 

where the w  is the inertia weight determining how much of the particle’s previous 
speed is preserved, 1 2,φ φ are two acceleration constants present the cognition part and 

the social part respectively, ()rand is uniform random sequences from {0,1}. In the 

stand PSO algorithm (1) only the inertia weight is introduced. To improve the per-

formance, we introduce another parameter 
1

22 2 4K ϕ ϕ ϕ
−

= ⋅ − − − , where 

1 2ϕ ϕ ϕ= + 4ϕ > , so the speed update can be expressed as: K  

( ) ( )( )1 2() ()id id id id gd idv K wv rand p x rand p xϕ ϕ= + − + −  (2) 

The iterative process will continue using the formula (2) until the extremum has 
been found or the number of iteration has accessed to the maximum value. In the 
designing of our problem, the LPG for EDFA gain flattening, we select the parameter 

1 1.1φ = , 2 3.0φ =  and w  is tunable parameter expressed as: 

max max max min( ) ( / )( )w iter w iter iter w w= − −  (3) 
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where iter and maxiter are the current and the maximum iteration number respectively. 

In order to calculating the fitness, we divide the spectrum window into m  discrete 
sampling wavelength, and try to design the transmission spectrum approach the target 
spectrum in according to the EDFA gain spectrum. We define the error function as:   

2

arg , ,

1

1
( ) , 1,2

m
t et l i l

i
l l

T T
Err Particle i N

N σ=

−
= =  (4) 

where ,i jT  is the transmission coefficient at the sampling point l  of the particle i  and 

arg ,t et lT  is the target value. N  is the number of the particle swarm and iσ  is the uncer-

tainty with which this value is defined. Uncertainties iσ  should be smaller for the 

parts of the spectrum where it should be fitted better. We divided grating into equal 
M sections then the whole grating spectrum properties can be calculated by the  
transfer matrix method. 

 
                          (a)                                                             (b) 

Fig. 1. The flow chart of the PSO for synthesizing the FBG’s parameters (a), the possible struc-
tures used for the fully informed LPSO algorithm (b) 

Although the PSO algorithm is easy to implement and has been empirically shown 
to perform well on many optimization problems. However, it may easily get trapped 
into a local optimum in solving complex problems. In order to avoiding such cases, 
we use the improved fully informed PSO algorithm to solve our problem. The two 
most common used structures are known as a global neighbor and a local neighbor. In 
the global neighborhood structure, the trajectory of each particle’s search is influ-
enced by the best position found so far and the other particles of the entire swarm. 
The local neighborhood structure allows each individual particle to be influenced by 
only some small number of adjacent members. A kind of lore has evolved regarding 
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these social structures. It has been thought that the global structure converges rapidly 
on problem solutions but has a weakness of being rapidly on problem solutions but 
has a weakness of being trapped into local optima, while the local structure can flow 
around local optima and avoids being trapped into local optima. In this paper we use 
two possible structures just as in reference [7,9] Generally, there are two kinds of 
topological neighborhood structures, global neighborhood structure, corresponding to 
the global version of PSO (GPSO), and local neighborhood structure, corresponding 
to the local version of the PSO (LPSO). For the global neighborhood structure the 
whole swarm is considered as the neighborhood, while for the local neighborhood 
structure some smaller number of adjacent members in sub-swarm is taken as the 
neighborhood. In the GPSO, each particle’s search is influenced by the best position 
found by any member of the entire population. In contrast, in LPSO, the search is 
influenced only by parts of the adjacent members. It is widely believed that GPSO 
converges quickly to an optimum but has the weakness of being trapped in local op-
tima occasionally, while the LPSO is able to “flow around” local optima, because the 
sup-swarm explore different regions in hyperspace. To improve the search ability, for 
the simple applications, we can use the GPSO algorithm and get the optimized solu-
tion in short searching time. For the complex applications, we used the LPSO algo-
rithm to improve the probability of finding the best global solution. The two possible 
topologies for LPSO are shown in Fig.1 (b) [12]. 

       
                           (a)                                                                           (b) 

           
                        (c)                                                                         (d) 

Fig. 2. Four boundaries operations for particles across the boundary of the solve space 

In most cases, a parameter maxV  acts as an upper limit for the achievable velocity of 

the particles to search and should be confined within the problem solve space. How-
ever, in some conditions the position update may lead the next position go through the 
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boundary and hence induce an invalid solution. To solve this problem, one can define 
several methods. First, if the one dimension of the particle across the boundary in the 
next update, we make an absorbing boundary, so we make the boundary value as  
the update value of that dimension of the particle.  Second, we can make a reflecting 
boundary, by doing this operation, the update value will reflected into the solve space 
again. Third, the damping boundary, by doing this operation, part of the velocity is 
absorbed by the boundary, during the collision of the particle and the boundary, then 
the particle if reflected into the solve spacing with a less velocity. Another boundary 
condition is invisible boundary, in which the particle is allowed to escape the solve 
space, but the fitness evaluator is ignored. The feature of each boundary condition is 
illustrated in Fig. 2 (a) (b) (c) (d).  In many practical optimization problems, it is de-
sirable to have a single boundary condition that can offer a robust and consistent per-
formance for the PSO technique regardless of the problem dimensionality and the 
location of the global optimum. In this paper, we used the damping boundary to 
avoiding the particles escaping out of the space, this boundary condition combine the 
advantage of the reflective and absorbed boundary conditions and has been prove  
to be very powerful [12].  

3   Numerical Example 

To demonstrate the effectiveness of the PSO based synthesis algorithm, a practice 
design example is given in this section. We designed a LPG used for EDFA gain 
flattening. In literature, EDFA gain flattening technology is proposed by blaze grat-
ing or cascade of one Phase-shifted LPG and one normal LPG [10][11]. In this 
article we have succeed in designing a single stage LPG for EDFA gain -flattening 
of the entire C-band by the PSO algorithm proposed above. The grating length is 
10cm, and we divide the grating into 20 uniform sections, and the spectrum points 
are chosen to be 501m = , and the center grating period is 1550nm . The effective 
core and cladding mode index are assumed to be 1.45  and 1.46. Fig.3 (a) gives the 
designed and target transmission spectrum. Fig.3 (b) shows the EDFA gain curve 
before and after flattened. The curve can be flattened to be less 0.4db±  within the  
 

 
                              (a)                                                               (b) 

Fig. 3. (a) The designed spectrum (dotted line) and the target spectrum (solid line), (b) Flat-
tened gain profile (dashed line) and original gain profile (solid line) of a typical EDFA 
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                             (a)                                                             (b)  

Fig. 4. The index amplitude modulation (a) and phase modulation (b) distribution along the 
optimised LPG for EDFA gain flattening 

band of 35nm. Fig.4(a) and (b) give the couple coefficient of the whole grating 
including the amplitude and phase information. From Fig.4, we can see the de-
signed parameters are not difficult to be used for fabricating by the side-writing 
technology. As the knowledge about author, it is the first time that the PSO algo-
rithm is successfully used for designing only one stage of LPG for EDFA gain  
flattening in the whole C-band. 

4   Conclusions 

In conclusion, for the first time, we have presented a novel fiber grating synthesis 
method based on the PSO algorithm. We used an example to demonstrate the effec-
tiveness and capability in solving such problems. The advantage of the PSO is that 
this method is not sensitive to the dimensions of the particle. So this method is 
especially useful for synthesis of fiber grating problems with many of parameters. 
But when the number of parameters is large, the probability of the algorithm 
trapped into the local best will increase. To improve the performance one has to use 
the improved PSO algorithm such as local PSO (LPSO) algorithm, which use the 
topology neighbor and divide the swarm of particles into many sub-groups and sub-
group transfer the information by the interval particles between the sub-groups, can 
avoid to be trapped into the local best in the early stage and we will not discuss in 
detail here. In addition the uncertainty iσ  is a critical parameter to increase the 

convergence speed of the PSO, one should set smaller iσ  value at the parts of  

spectrum not fitted well. 
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Abstract. This paper gives a mathematical description of the undi-
rected network capacity definitions and theorems of computing capaci-
ties towards the network. Prove of the theorem correctness is also given.
According to them, the paper proposes an algorithm of computing the
undirected network capacities based on spanning tree and even an ad-
vanced optimization algorithm. In addition, it discusses network capacity
expansion problems with constraints. And then, the optimization algo-
rithm in the scenario of undirected network with limited costs is outlined,
whose feasibility and process are illustrated via examples.

1 Introduction

Various problems of computer network theories and technologies have close con-
nections with network optimization. Researches on related optimization prob-
lems mean much to the field of computer science. The importance penetrates
through network design and implementation process, especially in allocation of
network traffics and capacities [1].

Network optimization is an important branch of operation research. Some
theories of operation research, such as combination optimization, etc. apply to
network optimization widely. The paper employs some theories of network traffic
of combination optimization, combined with the graph theory, to solve expansion
problems at network bottlenecks [2]. We begin with expanding edge capacities
to obtain a desired maximum traffic, and the expansion goes on till bottleneck
problems are solved. In the mean time, we will also take minimizing cost problem
into consideration [3].

2 Definitions and Problem Description

This paper researches computing undirected network capacities and expansion
problems based on spanning tree. The definition of undirected network is as
follows. Assume a network G = (V, E, C), a vertex set V = {v1, v2, · · · , vn}
and a edge set

E ⊆ {(vi, vj) | i = 1, 2, · · · , n; j = 1, 2, · · · , n} ,

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 228–235, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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where n is the vertex number. C is a non-negative real number function, whose
component c(vi, vj) denotes the capacity of the edge (vi, vj).

Definition 1. In a network G, if the vertex (vi, vj) ∈ A, then (vj , vi) ∈ A.
These two vertices are called symmetrical if c(vi, vj) = c(vj , vi). A network is
undirected when this condition matches all the vertices in the network; otherwise,
it is directed.

The following definition is the one of network capacity. In this paper, it is the
maximum value of all spanning tree capacities which is the minimum capacity
of edges on the tree.

Definition 2. Given the network G = (V, E, C) which consists of a set V of
vertices, a set E of edges, and a function C: E → R+ of capacity function on
edges. Then the capacity of the network

c(G) = max{c(T ) | T ⊆ G, T is the spanning tree of G},

and the capacity of the spanning tree c(T ) = min{c(vi, vj) | (vi, vj) ∈ E(T )}.

3 Spanning-Tree Based Undirected Network Capacity
Expansion

This section proposes the theorem and its corollary. According to the computing
process of undirected network capacity, it gives a spanning-tree based capacity
computing algorithm and even an advanced one. Then it discusses the capacity
expansion problem of undirected networks and an expansion algorithm as well
as its pseudocode that could be applicable in computers.

3.1 Computing Undirected Network Capacities and Algorithms

Assume an undirected network G = (V, E, C)which consists of a set V of vertices,
a set E of edges, and a capacity function C, is connected.

Theorem 1. For any edge (x, y) ∈ E in a connected network G, it is always in
the spanning tree of G.

Proof (of theorem). For any give edge (x, y) ∈ E, choose a spanning tree T
randomly. The theorem is true if (x, y) ∈ E(T ). Otherwise, as the spanning tree
definition, there must be a path between x and y in T . Suppose T denotes the
path, then P + (x, y) forms a circle Q. Choose a edge (u, v) ∈ E(Q), where
(u, v) �= (x, y). Then T + (x, y) − (u, v) = T1 is also a spanning tree of G, where
(x, y) ∈ E(T1).

Corollary 1. Suppose a network G(V, E, C). On the basis of not destroying
connectivity of G and while c(T ) = min{c(x, y)|(x, y) ∈ T }, erase the edges
(x, y) with the minimum capacity one by one till someone is inerasable. The
generated sub-graph is then the spanning tree T whose capacity is the minimum
capacity of edges, say c(T ) = min{c(x, y)|(x, y) ∈ T }.
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According to above theorem and corollary, we can come to a methodology of
computing undirected network capacity: Order the elements of set E by capacity
from small to large and form a sequence L, whose component lkij denotes the kth
element in L which is also the component (vi, vj) of the set E; Let k = 1 · · · m;
If G is connected after erasing lkij(erase (vi, vj) in E), then erase it, otherwise,
keep it; The process continues till all edges are inerasable.

Then a spanning tree T = (V, ET , CT ) is generated, where ET is the set of
retained edges. The minimum capacity r of edges in ET is the spanning tree
capacity as well as network capacity. The spanning tree of a network consists of
(n − 1) edges. Hence, if there are edges, the connected graph after erasing edges
is the spanning tree.

Algorithm description is:

Step 1. Let u = 0, k = 1.
Step 2. Order the elements of set E by capacity from small to large and form

a sequence L, whose component lkij denotes the kth element in L which is
also the component (vi, vj) of the set E.

Step 3. If G is connected after erasing lkij(erase (vi, vj) in E), then erase it and
u = u + 1. Otherwise, keep it.

Step 4. Go to step 6 if u = m − (n − 1).
Step 5. k = k + 1 and go to step 3.
Step 6. The spanning tree T = (V, ET , CT ) is generated, where ET is the set

of retained edges. The minimum capacity r of edges in ET is the network
capacity. Output T and r.

Implementing the algorithm needs a 2-array Graph[3][m] to store undirected
network G. Graph[0][i] stores the capacity of the ith edge, while Graph[1][i] and
Graph[2][i] store two vertices of the ith edge separately. m is the number of edges,
and n is that of vertices (1 ≤ i ≤ m). The algorithm suppose: the capacity of the
ith edge sets to −1 if erased, say Graph[0][i] = −1. Now introduce a parameter
count to be the number of erased edges, which is initialized to 0.

The pseudocode is as follows:

Step 1. Initialize Graph[3][m], and order its elements by capacity from small
to large. Let i = 1, count = 0.

Step 2. Let vj and vk denote two vertices. vj =Graph[1][i] and vk =Graph[2][i].
Verify the graph connectivity. If G is connected after erasing (vi, vk), then
erase it. Let Graph[0][i] = −1 and count = count + 1.

Step 3. i = i + 1. Go to step 4 if count = m − (n − 1). Otherwise, go to step 2.
Step 4. Scan the array Graph by capacity from small to large. That is, let

i = 0, and set i = i + 1 if Graph[0][i] = −1 until Graph[0][i] �= −1. Then
output Graph[0][i] which is the final result.

On the basis of maintaining the graph connectivity, the algorithm finds the
first inerasable edge is the edge with minimum capacity in the spanning tree
while erasing edges with minimum capacity. Since edges are ordered by capacity
from small to large, that first inerasable one is the capacity of the spanning tree,
say, the capacity of the network G.
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3.2 The Advanced Algorithm of Computing

It needs m − (n − 1) times of verifying the connectivity for the algorithm in
section 3.1 to cut the network G be a minimum connected graph, a spanning
tree T . Hence, if the scale parameter m and n are very large, so is the total
verifying time. Now we can consider the problem reversely. Suppose the vertices
are individual connected components initially, which means the network G is a
null graph at that time. And then generate its spanning tree. The capacity could
be computed on the basis of the tree. The Kruskal algorithm, which is used to
compute the minimum spanning tree of a network, is applied to this problem
[4]. However, some modifications need to be made.

The Kruskal based algorithm to compute network capacity is:
Initially, the network is an unconnected graph G′ = (V, E′, C′) which consists

of n vertices but without edges, and E′ = ∅. Each vertex is a connected com-
ponent. Order the elements of set E by capacity from small to large and form
a sequence L, whose components lkij denote the kth element in L which is also
the component (vi, vj) of the set E. Let k = 1 · · · m. If the attaching vertex vi

and vj on lkij are on various connected components of G′, then add lkij to E′;
otherwise, take no action. This process continues till all the vertices of G′ are on
the same connected components. The minimum capacity of edges in E′ is then
the network capacity.

Then, the advance computing algorithm is:

Step 1. Order the elements of set E by capacity from small to large and form
a sequence L, whose components lkij denote the kth element in L which is
also the component (vi, vj) of the set E.

Step 2. Let k = 1, E′ = ∅.
Step 3. If the attaching vertex vi and vj on lkij are on various connected com-

ponents of G′, then add lkij to E′, say E′ = E′ ∪ {(vi, vj)}; otherwise, take
no action.

Step 4. Turn to next step if the number of edges in E′ is n − 1 ; otherwise,
k = k + 1 and turn to step 3.

Step 5. A spanning tree T = (V, ET , CT ) is generated, where ET = E′ and
CT = {c(vi,vj)| (vi,vj) ∈ ET }. The minimum capacity r of edges in ET is
the network capacity. Output T and r.

Implementing the algorithm needs a 2-array Graph[3][m] to store undirected
network G. Graph[0][i] stores the capacity of the ith edge, while Graph[1][i]
and Graph[2][i] store two vertices of ith edge, separately. m is the number of
edges, and n is that of vertices. Then introduce two auxiliary 1-arrays to achieve
a greater running efficiency. EdgeDeasc[m] stores subscripts of vertices after
ordered by capacity in a descending order. For example, if EdgeDeasc[k] = t,
the sequence number of ordered tth vertex in the array Graph is k. Because
of the introduction of EdgeDeasc, classical ordering program needs some little
modifications when using it to order vertices. The variables to be compared
is Graph[0][EdgeDeasc[i]], and the one to be moved is EdgeDeasc[i]. Then
initialize the array EdgeDeasc. Let EdgeDeasc[i] = i, 0 ≤ i ≤ m − 1.
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And another array V ertexIndex[n] stores index of connected component of
each vertex in order to verify whether two vertices are in the same connected
component or not. V ertexIndex[0] stores the first vertex index, and so forth.
If two indices equal to each other, then they are in the same connected compo-
nent. The initial values of each index are their own sequence number. Obviously,
equality of all indices means all vertices are connected. And if a connected com-
ponent consists of some vertices, we use the minimum sequence number of these
vertices to signify the component.

Combining two components is to make their indices equal. We choose the
minimum sequence number as the index of the combined components. And the
vertex index in the new combined one needs modifications. The modification
process is: if indices of two pre-combined ones are a and b, the new index is then
a(suppose a is smaller than b); The algorithm scans all the indices. Change the
index to a if one is b; Scan the sequences. If the ith edge could not be added to
it (or needs to be erased), then let EdgeDeasc[i] = −1.

According to the above analysis, the pseudocode is as follows:

Step 1. Initialize EdgeDeasc. Let EdgeDeasc[i] = i, 1 ≤ i ≤ m. Order vertices
by their capacities in an ascending order. EdgeDeasc stores sequence of
ordered edges. Namely, let Graph[EdgeDeasc[i]][0] ≥ Graph[EdgeDeasc[i+
1][0]].

Step 2. Initialize V ertexIndex. Let V ertexIndex[i] = i, 1 ≤ i ≤ n, and j = 0.
Step 3. Scan V ertexIndex. Go to step 6 if all elements in the array are equal.
Step 4. Let

t1 = V ertexIndex[Graph[1][EdgeDeasc[j]]],

and
t2 = V ertexIndex[Graph[2][EdgeDeasc[j]]].

Let t3 = t1 and t4 = t2 if t1 �= t2(suppose t1<t2, t3 = t2, t4 = t1). And let
k = 0···n−1. If V ertexIndex[k] = t4, then V ertexIndex[k] = t3. Otherwise,
EdgeDeasc[j] = −1.

Step 5. j = j + 1, and turn to step 3.
Step 6. Let k = 0, · · ·, n − 1. If EdgeDeasc[j] = −1, then k = k + 1 until

EdgeDeasc[k] �= −1. Then Graph[EdgeDeasc[k]][0] is the network capacity.

The average time complexity is O(n log n) if the algorithm in section 3.2 uses
quick sorting to order vertices [5]. And if not implement ordering, namely, the
capacities are in ascending order before inputting the array Graph, then it be-
comes O(n). The need for auxiliary storage space is m + n integer space. The
introduction of EdgeDesc is to decrease times of exchanging data while sort-
ing. 3 pairs of data needs to be exchanged in a round of exchange only with
the Graph, but 1 pair after introducing the EdgeDesc. This advanced algo-
rithm avoids verifying the graph connectivity via traversing the whole graph.
It is highly improved in efficiency that the more complex the networks are, the
more obvious advancement would be obtained. Hence, the algorithm has better
adaptability in complex networks.
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3.3 The Algorithm of Undirected Network Capacity Expansion

Assume G = (V, E, C, W, D) is an undirected network. The definition of V , E,
C is the same as above ones, while W is a non-negative real number function
on E. Component w(vi, vj) of W denotes cost of expanding unit capacity of the
edge (vi, vj). D denotes a given investment cost and r denotes network capacity.

The algorithm description is as follows.

Step 1. Invoke the algorithm in section 3.2. Compute the spanning tree T =
(V, ET , CT ) and capacity r.

Step 2. Order the elements of set ET by capacity from small to large and form
a sequence L, whose component lkij denotes the kth element in L which is
also the component eij of the set E.

Step 3. Let k = 1, R = ∅, and d = 0.
Step 4. Turn to step 6 if c(lkij) �= r.
Step 5. R = R ∪ {(vi, vj)}, k = k + 1, and turn to step 4.
Step 6. If d +

∑
(vi,vj)∈R

wij < D, then d = d +
∑

(vi,vj)∈R

wij . For all (vi, vj) ∈ R,

c(vi, vj) = c(vi, vj) + 1, r = r + 1 and turn to step 4. Otherwise, go to next
step.

Step 7. Output r, which is the maximum capacity under given investment D.

4 Examples

Example 1. Given a network G = (V, E, C, W ). Its capacity distribution is shown
as Fig.1. Compute capacity of this network.

Fig. 1. Topology of the network G

This network consists of 15 vertex and 30 edges. The edge set ordered by their
capacities is shown as Table 1. After computing capacities according to the algo-
rithm in section 3.2, edges with sequence number 1,2,3,4,5,6,7,8,9,10,12,13,14,16,
17,24 are to be erased (marked by grey blocks), while the remains construct the
spanning tree which is shown via solid lines in Fig.2. The computed network
capacity is the minimum capacity of the retained edges, which is c(v9, v12) = 7 .
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Table 1. Correspondence table of spanning tree vertices and capacities of example 1

SequenceNumber 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Capacity 1 2 3 3 4 5 5 5 6 7 7 8 9 10 11

Vertex 14 12 3 9 6 2 3 8 7 8 9 9 10 4 2

Vertex 15 13 4 10 9 3 6 12 8 13 12 14 11 5 6

SequenceNumber 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Capacity 13 13 14 15 16 17 18 18 20 23 24 25 27 30 32

Vertex 1 5 8 1 4 1 1 7 13 13 10 10 11 5 3

Vertex 9 10 9 8 10 7 2 13 14 15 14 15 15 11 10

Fig. 2. Network G and its spanning tree

Table 2. Correspondence table of spanning tree vertices and capacities of example 2

SequenceNumber 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Capacity 19 19 19 19 19 19 19 19 23 24 25 27 30 32

Vertex 9 2 8 1 4 1 1 7 13 10 10 11 5 3

Vertex 12 6 9 8 10 7 2 13 15 14 15 15 11 10

Example 2. On the basis of computing capacity in the example 1, give an invest-
ment 36. Assume components of W is wij = 1, such that unit cost of capacity
expansion of each edge is 1. Now expand capacities of G according to the al-
gorithm of section 3.3. The edges which have been expanded are marked by
grey blocks, and the conclusion that the total capacity is expanded to 19 could
be drawn. The capacity distribution of edges after expansion is shown as Fig.3
(origin capacities on left side of plus signs, while expanded ones on right side).
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Fig. 3. Capacity distribution of edges after expansion

5 Conclusions

Comparing to the capacity expansion algorithms of existing researches, the great-
est innovation of this paper is: it computes network capacity and carries out
expansion based on spanning tree capacity. Besides, the expansion algorithm in
[6] uses a fixed root vertex of a spanning tree. Expand in this scenario results in
a tree that meets capacity needs.

However, the advanced expansion algorithm in this paper uses every single
vertex to be the root in a spanning tree. This could achieve the same expansion
goals, which matters more in practical applications.
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Abstract. The Traveling Salesman Problem (TSP) is one of the classic NP hard 
optimization problems. The Dynamic TSP (DTSP) is arguably even more diffi-
cult than general static TSP. Moreover the DTSP is widely applicable to real-
world applications, arguably even more than its static equivalent. However its 
investigation is only in the preliminary stages. There are many open questions 
to be investigated. This paper proposes an effective algorithm to solve DTSP. 
Experiments showed that this algorithm is effective, as it can find very high 
quality solutions using only a very short time step. 

1   Introduction 

With the development of computer science and communication technology, from 
highly centralized computing through distributed computing to today’s highly mobile 
computing, computing environments have changed a great deal. Key research chal-
lenges they face in common are the optimization of dynamic networks, arising from 
network planning and designing, load-balance routing and traffic management. How-
ever, guaranteeing that these systems run effectively and reliably is a difficult  
problem. It leads to a very important theoretical mathematical model: the Dynamic 
TSP (DTSP).  

Because of the characteristics of DTSP itself, the solutions to general static TSPs 
are usually unsuitable for DTSP. Most cost too much time to gain good solutions, so 
the general algorithms are inefficient. Though a number of authors have researched 
[1][2][3][4] the DTSP, since it was proposed by Psaraftis[5], exploration of the DTSP 
is still in the preliminary stages, and many open questions need to be discussed. The 
ultimate (but unobtainable) goal is to find an optimum solution at every moment, as 
time progresses. In fact, if you want to get better solutions, the efficiency will be 
lower, and conversely, if you require quick solutions, their quality will reduce that is 
to say the two goals (solution quality and time response)are in conflict. Since we can’t 
get an optimum solution at every instant, we can solve the problem in discrete time 
steps, finding good solutions in a time step as short as possible.  

In this paper, we will introduce an improved Inver-Over[6] algorithm(GSInver-
Over) based on a gene pool. Generally, we find that using a gene pool, which  
reduces the search space sharply, gives solutions much more rapidly, without  
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degradation of the solution quality. Thus it dramatically improves the system per-
formance in the combined objectives. The GSInver-Over algorithms can improve 
the individuals using information either from other individuals or from gene pools. 
We augment this with elastic relaxation as a local search method, which permits the 
rapid evolution of variants of individuals which were successful in previous situa-
tions. Our experiments show that these operators can provide highly satisfactory 
results.  

In the remainder of this paper, there are five sections: (1) description of DTSP; (2) 
design of the gene pool; (3) the detailed algorithms; (4) analysis of the results; (5) 
summary and conclusions. 

2   Description of DTSP 

Definition 1 
A dynamic TSP(DTSP) is a TSP determined by a dynamic cost (distance) matrix as 
follows:  

( ) ( )( ) { ( )}ij n t n tD t d t ×=  (1) 

where ( )ijd t  is the cost from city(node) ic  to city jc , and t is the real-world time. In 

this definition, the number of cities ( )n t  and the cost matrix are time-dependent. The 

Dynamic Traveling Salesman Problem is to find a minimum-cost route containing the 
all the ( )n t  nodes. 

Definition 2 DTSP 
Given all ( )n t 1 2 ( )( , ,..., )n tP P P  points, and the corresponding cost matrix 

{ ( )}, , 1,2,..., ( )ijD d t i j n t= = , find a minimum-cost route containing all the ( )n t  

points, where t stands for the moment of time t; ( )ijd t  stands for the distance between 

the objective point iP  and the objective point jP , and ( ) ( )ij jid t d t= . 

For example               

1
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,
1

( ( ( ))) min( ( ))
i i
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Min d T t d t
+

=

=  (2) 

where {1,2,..., ( )}T n t∈  if i j≠ , then i jT T≠ , ( ) 1 1n tT T+ =  

In definition 1, we deem the change of a DTSP’s cost matrix with time as a con-
tinuous process. Practically, we discretize this change process. Thus, A DTSP be-
comes a series of optimization problems: 

( ) ( )( ) { ( )}
k kk ij k n t n tD t d t ×=  (3) 

0,1,2,..., 1k m= − , with time windows [tk, tk+1], where 0{ }m
k it =  is a sequence of real 

world time sampling points. 
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3   Design of Gene Pool  

Heuristic rules can dramatically affect the efficiency of DTSP algorithms. The TSP is 
an NP-hard problem, and adding only one node, will increase the candidate search 
space by !n n× . Thus it is impossible to search all the candidate individuals. One 
useful heuristic derives from the fact that most of the edges in a minimum-cost route 
will join nearby vertices. So it is generally desirable for the elements in the gene pool 
to select from edges which go to nearby vertices. Unfortunately, this heuristic is often 
violated: for hard TSPs, a small proportion of the edges in optimal routes will need to 
connect distant vertices. If the heuristic is too rigidly applied, some of the edges in the 
optimal route won’t exist in the gene pool. So a heuristic method based on minimising 
local distances seems reasonable, but in fact, this kind of restriction usually results in 
bad performances. We describe an alternative heuristic for the design of the gene 
pool. It is based on the concept of α-nearness [7], which derives from Minimum 
Spanning Trees (MSTs). The α-length α(i,j) of an edge <vi,vj> can be defined as the 
difference in length between the true MST, and the length of the 1-tree which is  
constrained to contain <vi, vj>.  

( ) ( )( ) ( )TLj,iTLj,i  (4) 

where T is an any given MST of length L(T),T+(i,j) is a 1-tree that contain the edge < 
vi, vj > ,that is, given a MST of length L(T), (i,j) is the increase length of a 1-tree 
required to contain the edge < vi, vj > . 

It is easy to see that: (i,j) 0 and (i,j) 0 when the edge < vi, vj > belong to T. It 
can compute (i,j) in the following rules: 

(1) if the edge < vi, vj > belong to T, then (i,j)=0. 
(2) Otherwise, insert the edge < vi, vj > into T, this will create a circle contain-

ing the edge < vi, vj >,then (i,j) is the length difference between the longest 
edge of the circle and the edge < vi, vj >.  

The gene pool is a candidate set of some most promising edges. The candidate set 
may, for example, contain k α-nearness edges incident to each node. Generally speak-
ing, the experience value of k is 6 to 9.we set k=8 in CHN144 problem[8]. 

Through experiments, it can be shown experimentally that 50%-80% (i.e the ex-
periment result of table 1 of instances in TSPLIB) of the connections in an optimal 
TSP solution are also in the minimum spanning tree. This is a far larger proportion 
than the proportion of the n shortest edges. Thus we expect that a gene pool con-
structed based on α-nearness may perform better than a gene pool constructed on the 
distance. It should be possible to use a smaller gene pool while maintaining the solu-
tion quality. Taking the CHN144 problem for example, 76.3% of the connections in 
the best known solution are also edges in the minimum spanning tree. If we bias the 
gene pool based on the α-nearness, we expect that it will better match the optimal 
solution. That is to say, we expect that a gene pool that probabilistically includes 
elements close to members of the MST will also include elements close to members 
of the optimum TSP circuit. The gene pool based on the α-nearness has another re-
markable advantage that it is independent of instance scale, it means ,when the in-
stance scale increases ,the size of gene pool won’t increase. This character of gene 
pool is much suitable to DTSP.  
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Table 1. Instances in TSPLIB 

CHN144 a280 pr439 u574 u724 rl1323 
76.3% 75.7% 79.1% 75.6% 75.2% 89.2% 

4   Introducing the Algorithms 

Operator design is the key to solving TSPs. A vast range of operators have already 
been proposed (for example: -Opt[9], LK[10], Inver-Over), and we anticipate that 
this trend will continue. Based on performance, many of these local-search inspired 
operators are superior to the traditional mutation, crossover and inversion operators. 
In this paper, we adopt a form of improved Inver-Over operator. We propose a highly 
efficient dynamic evolution algorithm based on elastic.  

.1   GSInver-Over Operator  

Inver-Over is a high-efficiency search operator based on inversion, and having a  
recombination aspect. It can fully utilize information from other individuals in the 
population to constantly renew itself. This gives it better search ability than many 
other operators (within a certain range of problems), yet the complexity of algorithm 
is low. We can say Inver-Over is a highly adaptable operator which has very effective 
selection pressure.  

However Inver-Over operator has its own constrains, experiments show that reduc-
ing the inversion times can sharply increase the convergence, this is favourable to 
DTSP. We set the maximal inversion times Max_time in the GSInver-Over operator, 
when the inversion times surpass Max_time, end the algorithm. The search environ-
ment has increased and it can get useful heuristic information not only from other 
individuals, but also from the gene pool. The choice of matching individuals is not 
random, but biased toward better individuals in the population. This reduces the prob-
ability of incorporating bad information that damages the individual. The inversion 
operator is more rationally designed, incorporating knowledge about the directionality 
of the route, further improving the performance of the algorithm. Based on the above 
improvements, the GSInver-Over performed substantially better than the original 
algorithm. the algorithm for our GSInver-Over operator is as follows:   
GSInver-Over Operator:  

1. Select a gene g from individual S randomly and set S =S;  
2. If the number p generated randomly is less than p1, then select the gene g  from 
    the gene pool of g;  
3. Else if p<p2 select an individual randomly from some best individuals and g  is 
    the gene that is next to g in the selected individual;  
4. Else select next gene g  randomly from other genes; 
5. If the next gene or the previous gene of g in S  is g , then go to step 9;  
6. Inverse the section from the next gene of g to g  in S ; 
7. counter++, if counter > Max_time, then go to step 9; 
8. g= g  and go to step 2;  
9. If the fitness of S  is better than S, then replace S with S ; 
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4.2   The Dynamic Elastic Operator 

The changes of a node include three cases: the node disappears, the node appears and 
the position of the node changes. If the node disappears, it will be deleted directly, 
then link the two adjacent nodes of the deleted node. if the node appear, find the near-
est node to the appearing node, then insert it to the tour that minimize the total length. 
if the node position changes, it can be seen as the combination of the two former 
cases. The dynamic-elastic operator is very simple in concept, but we find it is an 
effective local search operator.  

Dynamic Elastic Operator  

1. Delete the node c and link the cities adjacent to c;  
2. Find the nearest node c* to c in the current individual;  
3. Insert c next to C*, on the side that minimize the total length; 

4.3   Main Program Loop  

In the main program loop, we use a difference list Dlist to store the information of 
changed nodes. Note that T is the time step.  

1. Initialize the population; 
2. If Dlist is not empty goto 3, else goto 5;  
3. Update gene pool;  
4. Dynamic-elactic (); 
5. For each individual in the population,do 
    GSInver-Over ();  

Optimizing(); 
6. If the T>0 goto 5;  
7. If not termination condition goto 2; 

When some nodes change at time t, it needs to update the gene pool, that is to say, 
create a new MST of the new nodes topology of time t, then construct a gene pool 
according to α-nearness. 

5   Experiments with CHN146+3 

We tested our algorithm in a relatively difficult dynamic environment, adapted from 
the well-known CHN145[11] static TSP benchmark. The problem has 146 static loca-
tions (145 Chinese cities, plus a geo-stationary satellite) and three mobile locations, 
two satellites in polar orbit and one in equatorial orbit (fig. 1).  

In dynamic optimisation experiments, since the results represent a trade-off be-
tween solution quality, computational cost and problem dynamics, it is important to 
specify the computational environment in which experiments were conducted. Our 
experimental environment consisted of the following: CPU: Intel C4 1.7GHz, 
RAM:256MB. We measure the offline error  and μ as our quality metric:  
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))(())(()( kkk tdtdte ππ −=  
(5) 

))((/)()( kkk tdtet πμ =  (6) 

where ))(( ktd π  is the best tour obtained by a TSP solver (which is assumed to be good 

enough to find an optimal solution for the static TSP) ))(( ktd π  is the best tour obtained 
by our DTSP solver. Together with:  
Maximum error: 

)}({max
,,0

k
mk

m tee
=

=      )}({max
,,0

k
mk

m tμμ
=

=  (7) 

Minimum error: 

)}({min
,,0

k
mk

r tee
=

=      )}({min
,,0

k
mk

r tμμ
=

=    (8) 

Average error: 

=+
=

m

t
ka te

m
e

0

))((
1

1     
=+

=
m

t
ka t

m 0

))((
1

1 μμ    (9) 

 

Fig. 1. Experiments with CHN146+3 

120 sample time-points in the period of the satellites were performed for the ex-
periments. The results are given in table 2 with T ranging from 0.059s to 1.3s. Fig. 2 
to fig. 5 are error curves respectively for T=0.059s, T=0.326s, T=0.579s and 

T=0.982s. 
From the experiments, we can see that, when T is very small, the result is  

relatively poor. As T increases, the maximal and average errors decrease, and the 
solution quality improves showing the stability of the algorithm, and its rapid conver-
gence. The experiments also demonstrate the conflict between the two DTSP goals, 
requiring a compromise through the choice of T. With the exception of the shortest 
time interval, the data in table 2 are generally acceptable, with the average errors 
being under 1%, and the maximal errors less than 2%. 
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Table 2. Error of experiments 

T(s) em(km) m(%) er (km) r(%) ea(km) a(%) 
0.059 1742 1.487 206 0.199 796 0.727 
0.222 2020 1.722 773 0.062 406 0.372 
0.326 1310 1.122 0 0 289 0.264 
0.481 1014 0.866 0 0 283 0.257 
0.579 1038 0.884 0 0 203 0.187 
0.982 899 0.770 0 0 240 0.218 
1.300 1514 1.297 0 0 188 0.170 
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Fig. 2. Error Curve for T = 0.059s 
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Fig. 4. Error Curve for T = 0.579s 
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Fig. 3. Error Curve for T = 0.326s 
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Fig. 5. Error Curve for T = 0.982s 

6   Conclusions 

In this paper, we analyze the DTSP which can be seen as a two-objective problem by 
trading off the quality of the result and the reaction time. We propose a solution based 
on a gene pool, which greatly reduces the search space without degradation of the 
solution quality. By adding the improved GSInver-Over Operator, we were able to 
significantly improve the efficiency of the algorithm. Adding the elastic relaxation 
method as a local search operator improves the system’s real-time reaction ability.  
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Abstract. Chaotic neural networks have been proved to be strong tools to solve 
the optimization problems. In order to escape the local minima, a new chaotic 
neural network model called Shannon wavelet chaotic neural network was 
presented. The activation function of the new model is non-monotonous, which 
is composed of sigmoid and Shannon wavelet. First, the figures of the reversed 
bifurcation and the maximal Lyapunov exponents of single neural unit were 
given. Second, the new model is applied to solve several function optimizations. 
Finally, 10-city traveling salesman problem is given and the effects of the 
non-monotonous degree in the model on solving 10-city traveling salesman 
problem are discussed. The new model can solve the optimization problems more 
effectively because of the Shannon wavelet being a kind of basic function. Seen 
from the simulation results, the new model is powerful. 

1   Introduction 

Neural networks have been shown to be powerful tools for solving optimization 
problems. The Hopfield network, proposed by Hopfield and Tank [1, 2], has been 
extensively applied to many fields in the past years. The Hopfield neural network 
converges to a stable equilibrium point due to its gradient decent dynamics; however, 
it causes sever local-minimum problems whenever it is applied to optimization 
problems. Several chaotic neural networks with non-monotonous activation functions 
have been proved to be more powerful than Chen’s chaotic neural network in solving 
optimization problems, especially in searching global minima of continuous function 
and traveling salesman problems [3, 8~9]. The reference [4] has pointed out that the 
single neural unit can easily behave chaotic motion if its activation function is 
non-monotonous. And the reference [5] has presented that the effective activation 
function may adopt kinds of different forms, and should embody non-monotonous 
nature. In this paper, a new chaotic neural network model is presented to improve the 
ability to escape the local minima so that it can effectively solve optimization 
problems. The chaotic mechanism of this new model is introduced by the 
self-feedback connection weight. The activation function of the new chaotic neural 
network model is composed of Sigmoid and Shannon Wavelet, therefore the 
activation function is non-monotonous. And because Shannon wavelet function is a 
kind of basic function, the model can solve optimization problems more effectively. 
Finally, the new model is applied to solve both function optimizations and 
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combinational optimizations and the effects of the non-monotonous degree in the 
model on solving 10-city TSP are discussed. The simulation results in solving 10-city 
TSP show that the new model is valid in solving optimization problems. 

For any function )()( 2 RLxf ∈ and any wavelet Ψ which is a basic function, the 

known formula can be described as follows: 

∞

−∞=
Ψ=

j,k
j,kj,k xcxf )()(  (1) 

2   Shannon Wavelet Chaotic Neural Network (SWCNN) 

Shannon wavelet chaotic neural network is described as follows: 
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Where i is the index of neurons and n is the number of neurons, )(txi  the output of 

neuron i , )(tyi the internal state for neuron i , ijW the connection weight from neuron 

j  to neuron i , iI the input bias of neuron i , α the positive scaling parameter for 

inputs, k the damping factor of the nerve membrane ( 10 ≤≤ k ), )(tz i the 

self-feedback connection weight, 21,εε the steepness parameters of the activation 

function, β  the simulated annealing parameter of the self-feedback connection 

weight )(tz i , )(tiη  the other simulated annealing parameter of the activation, 0I  a 

positive parameter and coef the non-monotonous degree ( 10 ≤≤ coef ). 

In this model, the variable )(tz i  corresponds to the temperature in the usual 

stochastic annealing process and the equation (4) is an exponential cooling schedule for 
the annealing as well as the equation (5). The chaotic mechanism is introduced by the 
self-feedback connection weight as the value of )(tz i  becomes small step by step. The 
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chaotic behavior plays a global search role in the beginning. When the value of 
)(tz i decreases to a certain value, the network functions in a fashion similar to the 

Hopfield network which functions in gradient descent dynamic behavior. Finally, the 
neurons arrive at a stable equilibrium state. The reference [6] shows that both the 
parameter β governed the bifurcation speed of the transient chaos and the parameter α  

could affect the neuron dynamics; in other words, the influence of the energy function 
was too strong to generate transient chaos when α was too large, and the energy 
function could not be sufficiently reflected in the neuron dynamics whenα  was too 
small. So in order for the network to have rich dynamics initially, the simulated 
annealing parameter β must be set to a small value, and α  must be set to a suitable 

value, too. 
In this model, the parameter coef presents the non-monotonous degree of the 

activation function. Seen from the equation (6), it is concluded that the equation (6) is 
similar to the function of Sigmoid alone in form in the circumstance of the value of 
coef  being between 0 and 1 without consideration of the monotonous nature. So the 

parameter coef presents a local non-monotonous phenomenon of the activation 

function. In other words, if the parameter coef borders on 1, the non-monotonous 

phenomenon of the activation function is very apparent; otherwise, if the parameter 
coef borders on 0, the non-monotonous phenomenon of the activation function is very 

weak. 
In order to gain insight into the evolution progress of the single neural unit, the 

research was made as follows. 

3   Research on Single Neural Unit 

In this section, we make an analysis of the neural unit of the Shannon Wavelet chaotic 
neural networks. 

The single neural unit can be described as (9) ~ (12) together with (6) ~ (8): 

))(()( tyftx =  (9) 

))()(()()1( 0Itxtztkyty −−=+  (10) 
)()1()1( tztz β−=+  (11) 

)))t(1(exp(1)(ln

(t)
)1t(

−λ+
=+  (12) 

In order to make the neuron behave transient chaotic behavior, the parameters are set 
as follows: 

0.0041 =ε , 25.12 =ε , 283.0)1( =y , 1.0)1( =z , 1=k , 8.0)1( =η , 5.0=λ , 5.0=0I  

The state bifurcation figures and the time evolution figures of the maximal 
Lyapunov exponent are respectively shown as Fig.1~Fig.3 when 004.0=β  and  

=β  0.002. 
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Fig. 1. State bifurcation figure of the neuron when 004.0=β  

 

Fig. 2. Time evolution figure of the maximal Lyapunov exponent of the neuron when 
004.0=β   

 

Fig. 3. State bifurcation figure of the neuron when 002.0=β  
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Seen from the above state bifurcation figures, the neuron behaves a transient chaotic 
dynamic behavior. The single neural unit first behaves the global chaotic search, and 
with the decrease of the value of )0,0(z , the reversed bifurcation gradually converges to 

a stable equilibrium state. After the chaotic dynamic behavior disappears, the dynamic 
behavior of the single neural unit is controlled by the gradient descent dynamics. When 
the behavior of the single neural unit is similar to that of Hopfield, the network tends to 
converge to a stable equilibrium point. The simulated annealing parameter β affects the 

length of the reversed bifurcation, that is, the lager value of β prolongs the reversed 

bifurcation. 

4   Application to Continuous Function Optimization Problems 

In this section, we apply the Shannon wavelet chaotic neural network to search global 
minima of the following function. 

The function is described as follows [7]: 

]15.0)4.0[()5.0(]1.0)6.0[()7.0(),( 2
1

2
2

2
2

2
1212 ++−+++−= xxxxxxf  (13) 

The minimum value of (13) is 0 and its responding point is (0.7, 0.5). 
The parameters are set as follows: 

0.051 =ε , 102 =ε , 80.0=α , 1=k , 5.0=0I , 4/1=coef , β =0.002, )0,0(z =[0.8, 

0.8], )0,0(y =[0.283, 0.283], )0,0(η =[0.8, 0.8], )0,0(λ =[0.01, 0.01].  

The time evolution figure of the energy function of SWCNN in solving the function is 
shown as Fig.4. 

 

Fig. 4. Time evolution figure of energy function 

The global minimum and its responding point of the simulation are respectively 
2.1448e-015 and (0.7, 0.5). 

This section indicates that SWCNN has a good performance to solve function 
optimization problems. In order to testify the performance of SWCNN, the new model 
is applied to solve 10-city traveling salesman problems. 
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5   Application to 10-City TSP 

A solution of TSP with N cities is represented by N N-permutation matrix, where 
each entry corresponds to output of a neuron in a network with N N lattice structure. 
Assume xiv  to be the neuron output which represents city x in visiting order i . A 

computational energy function which is to minimize the total tour length while 
simultaneously satisfying all constrains takes the follow form [1]: 
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ij
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ij dxxxxxE  (14) 

Where ini xx =0 and 11, ini xx =+ . 1W and 2W are the coupling parameters corresponding 

to the constrains and the cost function of the tour length, respectively. xyd is the 

distance between city x and city y . 

This paper adopts the following 10-city unitary coordinates: 
(0.4, 0.4439),( 0.2439, 0.1463),( 0.1707, 0.2293),( 0.2293, 0.716),( 0.5171,0.9414), 

(0.8732,0.6536),(0.6878,0.5219),( 0.8488, 0.3609),( 0.6683, 0.2536),( 0.6195, 0.2634). 
The shortest distance of the 10-city is 2.6776. 

The reference [6] has presented that the effective activation function may adopt 
kinds of different forms, and should behave non-monotonous behavior. In this paper, 
coef that represents the non-monotonous degree is analyzed in order to simply 

ascertain the effect of the non-monotonous degree to SWCNN in solving 10-city TSP. 
Therefore, the models with different values of coef in solving 10-city TSP are 

analyzed as follows: 
The parameters of the network are set as follows:  

1W1 = , 8.0W2 = , 2.0)1( =iz , 5.0=α , 1k = , 8.0)1( =i , 5.0=0I , 008.0=λ ,

0.0041 =ε , 2.52 =ε . 

2000 different initial conditions of ijy are generated randomly in the region [0, 1] for 

different β . The results are summarized in Table1, the column ‘NL’, ‘NG’, ‘LR’ and 

‘GR’ respectively represents the number of legal route, the number of global optimal 
route, the rate of legal route, the rate of global optimal route. 

The lager value of the simulated annealing parameter β is regarded stronger if the 

network can all converge to the global minimum in 2000 different random initial 
conditions. 

Seen from table 1, the follow observations can be drawn according to numerical 
simulation test: 

First, the model with smaller coef s such as 0, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9 and 10/1  in 

solving 10-city TSP can all converge to the global minimum. But, it is not true that the 
smaller the parameter coef is, the more powerful the ability to solve 10-city is. 

Because, for example, the parameter 10/1=coef  can all converge to the global 

minimum as 0005.0=β while the parameter 9/1=coef  can all converge to the global 

minimum as 0007.0=β . 
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Table 1. Results of 2000 different initial conditions for each valueβ on 10-city TSP 

coef β NL NG LR GR 

0.0003 2000 1923 100% 95.65% 
0.001 1998 1998 99.9% 99.9% 

0=coef

(common network) 0.0008 2000 2000 100% 100% 
0.003 1837 620 91.85% 31% 
0.001 1891 1146 94.55% 57.3% 1=coef

0.0008 1904 1075 95.2% 53.75% 
0.003 1962 1791 98.1% 89.55% 

0.0008 1925 1858 96.25% 92.9% 1/2=coef
0.0005 1842 1672 92.1% 83.6% 
0.003 1975 1811 98.75% 90.55% 

0.0008 2000 1997 100% 99.85% 4/1=coef
0.00046 2000 2000 100% 100% 
0.003 1979 1797 98.95% 89.85% 
0.001 2000 1999 100% 99.95% 5/1=coef

0.0009 2000 2000 100% 100% 
0.003 1987 1819 99.35 90.95% 6/1=coef
0.001 2000 2000 100% 100% 
0.003 1989 1806 99.45% 90.3% 
0.001 1999 1999 99.95% 99.95% 7/1=coef

0.0008 2000 2000 100% 100% 
0.003 1990 1713 99.5% 85.65% 

0.0008 1999 1999 99.95% 99.95% 8/1=coef
0.0006 2000 2000 100% 100% 
0.003 1993 1713 99.65% 85.65% 

0.0008 1999 1999 99.95% 99.95% 9/1=coef
0.0007 2000 2000 100% 100% 
0.003 1998 1799 99.9% 89.95% 

0.0008 1999 1998 99.95 99.9% 10/1=coef
0.0005 2000 2000 100% 100% 

 

Second, with the decrease of the value of coef , the value of ‘NL’ becomes large 

gradually from 1837 ( 1=coef ) to 2000 ( 0=coef ) as 003.0=β  .In other word, with 

the decrease of the value of coef , the ability to get legal route becomes strong.  

Third, when the parameter 1/5=coef and 1/6=coef , the ability to all converge to 
the global minimum is more powerful than that of 0=coef , that is, the 
non-monotonous degree of the activation function has a positive effect on the solution 
of 10-city TSP.  

However, as is analyzed in second, the ability in reaching ‘NL’ when the parameter 
1/5=coef and 1/6=coef  is weaker than that of 0=coef . So, which model is needed 

is connected with the concrete request. However, in order to get the tradeoff effect, the 
value of 6/1=coef  may be chose. As the test result is not based on the theoretical 
analysis, the relationship between coef and the performance need to be studied further. 
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6   Conclusion 

The presented chaotic neural network called SWCNN is proved to be effective in 
solving optimization problems, and in the section of application to 10-city TSP, the 
model with different coef is analyzed and made a comparison. As a result, the simple 
rule of the model is disclosed. However, there are a lot of points in the model needed to 
be studied. 
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Abstract. There is a class of GA-hard problems for which classical genetic al-
gorithms often fail to obtain optimal solutions. In this paper, we focus on a class 
of very typical GA-hard problems that we call decomposable black-box optimi-
zation problems (DBBOP). Different from random methods in GA literature, 
two “deterministic” divide-and-conquer algorithms DA1 and DA2 are proposed 
respectively for non-overlapping and overlapping DBBOP, in which there are 
no classical genetic operations and even no random operations. Given any 
DBBOP with dimension l and bounded order k, our algorithms can always re-
liably and accurately obtain the optimal solutions in deterministic way using 
O(lk) function evaluations. 

1   Introduction 

Genetic algorithms (GAs) are successful stochastic optimization algorithms that guide 
the exploration of the search space by application of selection and evolutionary 
operators. However, on a class GA-deceptive problems which can be additively 
decomposed into subfunctions of bounded order, the simple GAs often experience 
building block disruption and exhibit very poor performance [9]. That is why there 
has been a growing interest in the study of designing effective methods to solve the 
class of GA-deceptive problems. In GA literature, various attempts have been made to 
solve such problems. One class of approaches refers to manipulating the 
representation of solutions to make the interacting components of partial solutions 
less likely to be disrupted. This work includes the messy GA [2], the gene expression 
messy GA [12], and the linkage learning GA [13]. Another way to deal with 
interactions between variables is estimation of distribution algorithms (EDAs) 
[9,10,11,14], that use probabilistic models of promising solutions found so far to 
guide further exploration of the search space.  

Different from the methods in GA literature, this paper develops “deterministic” 
divide-and-conquer algorithms for the decomposable GA-hard problems. We call this 
class of problems decomposable black-box optimization problems (DBBOPs), and 
mathematic description and some related theorem are given. Based on the fact that the 
                                                           
* This work is funded by National Key Project for Basic Research of China (G2002cb312205). 
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decomposable underlying structure of DBBOP can be explored by its Walsh represen-
tation, two efficient algorithms DA1 and DA2 are proposed respectively for non-
overlapping and overlapping problems. The advantages of our algorithms include 
determinacy, reliability, accurateness and scalability. Given any DBBOP with dimen-
sion l and bounded order k, our algorithms can always reliably obtain the optimal 
solutions in deterministic way. Both DA1 and DA2 are developed based rigorous 
theoretical induction. It can be theoretically guaranteed that the solution obtained by 
DA1 and DA2 is globally optimal. Our algorithms exhibit good scalability and require 
polynomial number kO l of function evaluations.  

Section 2 gives mathematic description of DBBOP; in Section 3, the close relation-
ship between the underlying structure of DBBOP and Walsh coefficients is described, 
based on which Walsh decomposition algorithm is given; Section 4 proposes determi-
nistic algorithms DA1 and DA2; the paper is concluded in Section 5. 

2   DBBOP 

This section gives general mathematic formulation of a class of GA-hard problems, 
which have the characters of additive decomposition.  

The black-box optimization problem with the prior knowledge “decomposable” is 
called decomposable black-box optimization problems (DBBOP) and formulated as: 

arg min ( )
x D

x f x
∈

=  

where f  can be represented as ( )( )
1

( )
m

i i
i

f x g s
=

= , in which Xsi ⊆ , { }1 2, , lX x x x=  

indicates the parameters set, is  indicates the size of is , ( )ii sg  is black-box sub-

function that can be also written as ( ) =
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iiiiii xxxgsg ,,,
21

, and m is the number of 

sub-functions. If { }mji ,,1, ∈∀ , ji ≠ , φ=ji ss , then it is a non-overlapping 

DBBOP. If { }mji ,,1, ∈∃ , ji ≠ , we have φ≠ji ss , then it is overlapping DBBOP. 

i
mi

sk
≤≤

=
1
maxarg  is named the order of DBBOP. 

In this paper, we will restrict DBBOP to binary domain { }lD 1,0= . It has been found 
that the simple GAs often experience building block disruption and exhibit very poor 
performance for high-dimension DBBOP[2,9,11,13]. However, the decomposable 
character of DBBOP makes divide-and-conquer strategy available if problem struc-
ture can be obtained. 

Theorem 1. For non-overlapping DBBOP )(minarg xfx
Dx∈

= where { }lD 1,0=  and 

k l<< , the time-complexity of solving it is no more than ( ) ( )lOAO + , where ( )AO  
indicates the time complexity of decomposition algorithm, k is the order and l is the 
dimension. 
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Proof 
Suppose that the DBBOP has been decomposed by algorithm A. The parameter set 

{ }nxxxX ,, 21=  is clustered as mi ssss ,,,,, 21  where Xsi ⊆  and f can be repre-

sented as ( )( )
1

( )
m

i i
i

f x g s
=

= . Then we will attempt obtain the optimal solution by di-

vide-and-conquer strategy. Because of the black-box nature of ig , we can not solve 

ig  directly. For each ig , we randomly set the values of parameters that are not in is , 

and then we form a new optimization problem ( )iis ssfx
i

,minarg=  where is  is the 

complementary set of is . The parameters in is  has been set randomly, so we can get 

the optimal settings is  by enumerating all possible settings for variables in is . The 

time complexity is (2 )isO .  So the total time complexity of solving f  is: 

( ) ( ) ( )( ) ( ) ( )
1

2
m

k
i i

i

O f O A O g s O A O l
=

= + ≤ +  (1) 

The time-complexity to solve non-overlapping DBBOP is ( ) ( )lOAO + .                    

The above theorem gives us theoretical foundation to design deterministic algorithm 
for non-overlapping DBBOP. For overlapping DBBOP, the situation becomes much 
more complex, that will be discussed in Section 4. 

3   The Connection Between Walsh Transformation and DBBOP 
Structure 

In this section, the connection between Walsh transformation and problem structure is 
introduced, that will provide a clue to implement the “divide” process in the divide-
and-conquer strategy for DBBOP.  

Before going on, we give the definition of partition. Given a DBBOP, 
{ }lxxxX ,, 21=  is the parameters set, Xs ⊆ is an arbitrary subset of X, and ( )Xρ is the 

power set of X. partition is defined as ( )b pa s= , where ( ) { }: 0.1
l

pa Xρ is a function: 

∉
∈

=
sx

sx
b

i

i
i    

0

1
 

The function pa is a bijective function. For example, { }4321 ,,, xxxxX = , { }31, xxs = , 

the partition corresponding to s can be written as ( )1010=b . For any parti-

tions { }lba 1,0, ∈ , we say that ba ⊆ , if ba ss ⊆ , where ( )aspaa =  and ( )bspab = . 

It has been proved that the values of Walsh coefficients can reflect the partition 
structure of DBBOP [6]. 

Theorem 2. If a binary-code function f can be written as ( )( )
1

( )
m

i i
i

f x g s
=

= , then 

( )
ii,1 i m,s s

    
0              pa s otherwise

α
ω

∃ ≤ ≤ ⊆
=  (2) 
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in which ( )pa s
ω  is Walsh coefficient, ( )s Xρ∈ , pa is the bijective function that map 

( )Xρ  to the partitions, and α is a value depending on the Walsh coefficients of 

( )i ig s  where is s⊆  [6]. 

This theorem explicitly demonstrates that the underlying structure of the given prob-
lem can be captured by the partitions with non-zero Walsh coefficients. However, 

computation of a single Walsh coefficient usually requires all the l2 values of f. In the 
literature, several attempts has been made to calculate the Walsh coefficients of 
DBBOP [1,6,15]. Here, we restrict ourselves to only the deterministic Walsh decom-
position algorithm proposed by Hillol Kargupta et.al.[1].  

According to the Walsh representation ( ) ( )
−

=

=
12

0

l

i

ii xxf ψω , for any partition i, we 

have: 

( ) ( ) ( ) ( )
−

=

=
12

0

l

j

ijji xxxxf ψψωψ  (3) 

It can be further written as:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 1

0

l

i j j i
x i j x i

j j i j j i
j i x i j i x i

f x x x x

x x x x

ψ ω ψ ψ

ω ψ ψ ω ψ ψ

−

⊆ = ⊆

⊇ ⊆ ⊆

=

= +
 (4) 

It can be easily proven ( ) ( ) 0j j i
j i x i

x xω ψ ψ
⊆

= , thus equation (4) can be written as: 

( ) ( ) ( ) ( )
⊆⊇ ⊆

=
ix

i

ij ix

ijj xxfxx ψψψω  (5) 

According to the characters of Walsh functions, we know that, if ij ⊃ , then 

( ) ( ) 1, =⊆∀ xxix ij ψψ . So Equation (5) can be rewritten as ( ) ( )
⊆⊇

=
ix

i

ij

ij xxfs ψω , 

where is is the variables set corresponding to partition i, ( )ispai = . Thus, we have:  

( ) ( )
⊆⊇

=
ix

i
iij

j xxf
s

ψω 1
. (6) 

Now, let’s consider the calculation of Walsh coefficients. Given a DBBOP with 
dimension l and order k, the computing method of iω  can be considered in 3 cases. 

Case 1: is k>  

According to Theorem 2, it is obvious that is∀ is k> , 0iω = , where ( )ii pa s= . 

Case 2: is k=  

In Equation (6), we set ksi = , then ijj ⊃∀ ,  we have 0=jω . Thus, for any parti-

tion i with order k, we can calculate its corresponding Walsh coefficient by equation: 
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( ) ( )1
i i

x ii

f x x
s

ω ψ
⊆

= . (7) 

For each order-k Walsh coefficient, k2  function evaluations are needed. So, comput-

ing all the order-k Walsh coefficients requires k
l

k C2  function evaluations. 

Case 3: is k<  

First of all, we set 1−= ki . According to Equation (5) in which ijj ⊃∀ , , jω has 

been computed before, we can obtain iω  by  

( ) ( ) ( ) ( )

( ) ( )
⊆

⊃ ⊆⊆

−

=

ix

ii

ij ix

ijj

ix

i

i
xx

xxxxf

ψψ

ψψωψ

ω , (8) 

where the values of ( )xf , ix ⊆  has been calculated in Case 2. Using the Equation 
(8), we can continue iteratively to calculate Walsh coefficients of  ( )2−k , ( ) ,,3−k 1-
order partitions.  

Till now, all the Walsh coefficients have been calculated. According to Theorem 2, 
once the Walsh coefficients is computed, the underlying decomposable structure is 
obtained by the partitions with non-zero Walsh coefficients. 

Note that, for an order-k DBBOP, no additional function evaluation is needed after 
the order-k Walsh coefficients have been computed. The number of function evalua-

tions required is 2k l

k
. So, the time complexity is polynomial ( )klO  in l for DBBOP 

with fixed bounded order k.  

4   Deterministic Divide-and-Conquer Algorithms 

In this section, we propose two deterministic divide-and-conquer algorithms DA1 and 
DA2 for non-overlapping and overlapping DBBOPs respectively. 

4.1   DA1: Deterministic Algorithm for Non-overlapping DBBOP 

Theorem 1 shows that non-overlapping DBBOP can be optimized by divider-and-
conquer method with time complexity ( ) ( )lOAO + , where ( )O A  indicates the time 

complexity of decomposition algorithm. In the proposed algorithm DA1, the optimi-
zation process is implemented during the decomposition process. 

Given a non-overlapping DBBOP with dimension l and order k, DA1 is imple-
mented as follows:  

1. X  indicates the variables set ( )lxxxX ,, 21= . φ=0X . 0x stores the optimal 

solution and is initiated as 0 111 11x = . kk =′ .  

2. Select k ′ variables from 0XX −  and there are k
Xl

C ′
− 0

 possible selections.  
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3. For each selection 0XXsi −⊆ , ksi ′= , ( )ispai = , calculate the Walsh coeffi-

cients: 
 (7)

 (8)i

Equation k k

Equation k k
ω

′ =
=

′ ≠
 

If 0iω ≠ , isXX 00 = , *
00 xxx ∧= , where ( )xfx

ix⊆
= minarg* .  

4. 1−′=′ kk . If 0=′k  or φ=− 0XX , then 0x  is the optimal solution and exit; else go 

to step 2. 

In step 2, we consider two cases, k k′ =  and k k′ < . In case kk =′ , if the Walsh  
coefficient corresponding to is  is non-zero, then we obtain ( )* arg max

x i
x f x

⊆
=  by enu-

meration. ,x x i∀ ⊆ , ( )xf   has been calculated during the process of calculating iω , so 

no additional function evaluation is required. In case k k′ <  and is k ′= , if the Walsh 

coefficient corresponding to is  is non-zero, then we obtain ( )* arg min
x i

x f x
⊆

=  by  

enumeration, in which all the ( )xf  have been calculated during the process of calculat-
ing jω  where ji ⊆ and j k= . So, In case of k k′ < , no additional function evaluation is 

needed. DA1 always finds the optimum using 2k l

k
 function evaluations.  

For each sub-problem, the optimal solution is obtained by enumeration, so it is 
guaranteed that the solution obtained by DA1 is always global optimal. The reliability 
and accuracy can be guaranteed by Theorem 1 and Theorem 2.  

4.2   DA2: Deterministic Algorithm for Overlapping DBBOP  

This subsection presents a deterministic algorithm to solve overlapping DBBOP. 
Because of the overlapping structure, it gets much more complex to directly divide 
and conquer DBBOP.  

Firstly, Overlapping variable set is defined as a set of variables in which each vari-
able appears in at least two sub-problems. If we know f can be represented as 

( )( )
1

( )
m

i i
i

f x g s
=

= , the overlapping variable set *s  can be formulated as 

( )
{ }

*

, 1, , ,
i j

i j m i j

s s s
∈ ≠

=  

For example, in Fig.1., the problem with dimension 7 is partitioned into 3 sub-
problems. The shadow part is *s  and the white part indicates *

i
s s− , 1,2,3i = . 

 

Fig. 1. Partition of variables set. The white part indicates *

i
s s− , 1,2,3i = , and the shadow part 

is *s . 

Because the interactions between overlapping partitions, the overlapping variable 
set makes it impossible to directly divide and conquer the overlapping DBBOP. After 
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the decomposable structure has been captured by algorithm in section 3, we can solve 
DBBOP in the way as illustrated in Figure 2. First of all, the overlapping variable set 

*s  can be obtained from the decomposable structure. And then, we set binary values to 
the variables in *s . For each setting, we can divide the problem into sub-problems and 
solve them separately. Thus, we can obtain the optimal settings of other variables in 

the condition of current *s  setting. There are totally 
*

2
s

 possible settings, so we can 

get 
*

2
s

 conditional optimal solutions, of which the best one is the global optimum. 

 

Fig. 2. Divide and conquer process for solving overlapping optimization problem 

Given an overlapping DBBOP with dimension l and order k, the algorithm DA2 
can obtain its global minimal solution by the procedure described as follows. 

1. X  indicates the variables set ( )lxxxX ,, 21= . φ=0X , kk =′ .  

2. After decomposition algorithm described in section 3, the structure of the problem 
is represented as { }msssS ,,, 21= . 

3. The overlapping variable set is ( )
{ }

*

, 1, , ,
i j

i j m i j

s s s
∈ ≠

=  and ( )* *i pa s= . 

* *111 11i i= − .  

4. For every *ia ⊆ ,  

0=f , +∞=*f  
111110 =x used to store the optimal solution in condition of a.  

For every js , mj ≤≤1  

( )( )
( )

*
arg minj

x i a i
x f x

⊆ ∧ ∨
= , where ( )jspai =  

           (Note that, for ix ⊆ , ( )xf  has been calculated during the decompo-
sition process. So, no additional fitness evaluation is needed.) 
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        jxxx ∧= 00  

        jfff +=  

if ff >*  

        
0

*

*

xx

ff

=

=
 

5. *x  is the global optimal solutions that make DBBOP globally minimal.  

Step 4 is used to calculate the conditional optimal solution in condition of detailed 
*s  setting. In the sixth line of Step 4, 

( )( )
( )

*
arg minj

x i a i
x f x

⊆ ∧ ∨
=  is used to compute the 

best parameter setting of js  in the condition that the detailed setting of *s  is embed-

ded in a. In the above equation, for every ( )( )*x i a i⊆ ∧ ∨ , ( )xf  has been calculated 

during the decomposition process, so no additional fitness evaluation is needed.  
In DA2, only Step 2 needs to calculate the function values. So the implementation 

of DA2 requires totally 2k l

k
function evaluations. For any overlapping DBBOP, the 

proposed DA2 can reliably and accurately obtain optimal solution in a deterministic 
way using only polynomial number of function evaluations. However, it should note 
that it does NOT mean that the overlapping DBBOP can be solved in polynomial time 

(overlapping DBBOP is NP-complete problem). Although only 2k l

k
function evalua-

tions are needed, the computational time or space may scale exponentially if the *s is 
very large. In practical application, it very often happens that calculating the objective 
function one time is quite expensive either in computation or money, so we can obtain 
its optimal solutions by only polynomial number of function evaluations using DA2 
plus other technology to enhance the computation speed. 

4.3   Experimental Verifications  

The purpose of this section is to verify the performance of DA1 and DA2. Because of 
the determinacy of the algorithms, no parameter setting is needed. What we care 
about is whether DA1&DA2 can obtain solutions as the previous sections described. 

DA1 and DA2 are implemented on Matlab 6.5 platform. Some typical GA-
deceptive problems are used as test problems, which include order-3 deceptive func-
tion [9] (dimension ranged: 30, 60, 90, 120, 150), oder-5 trap function [9] (dimension: 
50, 100, 150), Whitley’s order-4 deceptive function [8] (dimension: 40, 80, 120), 
Overlapping order-3 deceptive function [9] (with dimension 30, 60) and overlapping 
order-4 deceptive function [9] (with dimension 20, 40, 60).  

Because the determinacy of the algorithm, the description of the empirical results 
is very simple: Experimental results demonstrate that DA1 and DA2 can always relia-
bly obtain optimum in deterministic way. The number of function evaluations in DA1 

and DA2 is 2k l

k
, where l is the dimension and k the bounded order. In addition,  

experiments also show that DA1 behaves polynomial time complexity, while DA2  
behaves exponential time complexity because of the overlapping variable set. 
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5   Conclusion 

The main contribution of the paper is that two deterministic algorithms DA1 and DA2 
are proposed to solve DBBOP with bound difficulty that is usually very hard for  
simple GA. Divide-and-conquer strategy is the spirit of the two algorithms. The ad-
vantages of our algorithms include determinacy, reliability, accurateness and scalabil-
ity. Given any DBBOP with dimension l and bounded order k, the algorithms can 
always reliably obtain the optimal solutions in deterministic way. DA1 and DA2 are 
developed based on rigorous theoretical induction. It can be theoretically guaranteed 
that the solution obtained is globally optimal. For a DBBOP with dimension l and 
order k, the algorithms can find the optimal solution using ( )kO l  function evaluations.  

However, it should be noted that DA2 is far from efficient enough to solve over-
lapping DBBOP, even though it need only polynomial number of function evalua-
tions. Future work will focus on how to handle overlapping variable set intelligently. 
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Abstract. QoS multicast routing in networks is a very important research issues 
in the areas of networks and distributed systems. Because of its NP-
completeness, many heuristics such as Genetic Algorithms (GAs) are employ 
solve the QoS routing problem. Base on the previously proposed Quantum-
behaved Particle Swarm Optimization (QPSO), this paper proposes a QPSO-
based QoS multicast routing algorithm. The proposed method converts the QoS 
multicast routing problem into an integer programming problem and then solve 
the problem by QPSO. We test QPSO-base routing algorithm on a network 
model. For performance comparison, we also test Particle Swarm Optimization 
(PSO) algorithm and GA. The experiment results show the availability and 
efficiency of QPSO on the problem and its superiority to PSO and GA.  

1   Introduction 

Multicast routing including Quality-of-Service (QoS) multicast routing has continued 
to be a very important research issue in the areas of networks and distributed systems. 
An efficient allocation of network resources to satisfy the different QoS requirements 
is the primary goal of QoS-based multicast routing. However the inter-dependency 
and confliction among multiple QoS parameters makes the problem difficult. It has 
been demonstrated that it is NP-Complete to find a feasible multicast tree with two 
independent additive path constraints. Generally, heuristics are employed to solve this 
NP-complete problem. Some Genetic Algorithms (GAs) has been used to solve the 
problem from different aspects ([5] etc.).  

Particle Swarm Optimization (PSO) is a new efficient evolutionary optimization 
method originally proposed by J. Kennedy and R.C. Eberhart ([6]). Recently, a novel 
variant of PSO, called Quantum-behaved Particle Swarm Optimization (QPSO), has 
been proposed in order to improve the global search performance of the original PSO 
([10], [11], [12]). The goal of this paper is to solve QoS multicast routing problem 
with QPSO, which is the first attempt to explore the applicability of QPSO to 
Combinatorial Optimization Problems. The rest of the paper is structured as follows. 
In Section 2, the network model of QoS multicast routing problem is introduced. A 
brief introduction of PSO and QPSO is given in Section 3. Section 4 is our proposed 
QPSO-based QoS multicast routing algorithm. The experiment results are presented 
in Section 5 and the paper is concluded in Section 6. 



262 J. Sun, J. Liu, and W. Xu 

2   Network Model 

A network is usually represented as a weighted digraph G = (V, E), where V denotes 
the set of nodes and E denotes the set of communication links connecting the nodes. 
|V| and |E| denote the number of nodes and links in the network, respectively. Without 
loss of generality, only digraphs are considered in which there exists at most one link 
between a pair of ordered nodes.  

Let Vs ∈ be source node of a multicast tree, and }}{{ sVM −⊆ be a set of end 

nodes of the multicast tree. Let R be the positive weight and R+ be the nonnegative 
weight. For any link Ee ∈ , we can define the some QoS metrics: delay function 

delay (e): RE → , cost function cost (e): RE → , bandwidth function bandwidth (e): 

RE → ; and delay jitter function delay-jitter (e): +→ RE . Similarly, for any node 
Vn∈ , one can also define some metrics: delay function delay (n): RV → , cost 

function cost (n): RV → , delay jitter function delay-jitter (n): +→ RV  and packet loss 
function packet-loss (n): +→ RV . We also use ),( MsT  to denote a multicast tree, 

which has the following relations: 

( )( ) ( )
( )

( )
( )∈∈

+=
TspnTspe

ndelayedelayTspdelay
,,

,  
(1) 

( )( ) ( )
( )

( )
( )∈∈

+=
MspnMspe

ntetMsTt
,,

coscos,cos
 

(2) 

( )( ) ( )( ) ( )TspeebandwidthTspbandwidth ,,min, ∈=  (3) 

( )( ) ( )
( )

( )
( )∈∈

−+−=−
TspnTspe

njitterdelayejitterdelayTspjitterdelay
,,

,  
(4) 

( )( ) ( )( )
( )

∏
∈

−−−=−
Tspn

nlosspacketTsplosspacket
,

11,  
(5) 

where ( )Tsp ,  denotes the path from source s to end node t to T(s, M). With QoS 

requirements, the multicast routing problem, which was proved to be NP-complete, 
can be represented as finding a multicast tree T(s, M) satisfying the following 
constraints: Delay Constraint: DTspdelay ≤)),(( ; Bandwidth Constraint: 

BTspbandwidth ≥)),(( ; Delay-jitter Constraint: JTspjitterdelay ≤− )),(( ; Packet-

loss Constraint: LTsplosspacket ≤− )),(( ; 

3   Quantum-Behaved Particle Swarm Optimization 

Particle Swarm Optimization (PSO) was originally proposed by J. Kennedy and R. 
Eberhart [9]. The underlying motivation for the development of PSO algorithm was 
social behavior of animals such as bird flocking, fish schooling, and swarm theory. In 
the Standard PSO with S individuals, each individual is treated as a volume-less 
particle in the D-dimensional space, with the position and velocity of ith particle 
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represented as ),,,( 21 iDiii XXXX = and ),,,( 21 iDiii VVVV = . The particles move according 

to the following equation: 

)()()()( 21 idgidididid XPRandcXPrandcVwV −⋅⋅⋅+−⋅⋅⋅+⋅=  (6) 

ididid VXX +=  (7) 

where 
1c  and 

2c  are positive constant and rand() and Rand() are two uniform random 

functions within [0,1]. Parameter w is the inertia weight introduced to accelerate the 
convergence speed of the PSO. Vector ),,,( 21 iDiii PPPP =  is the best previous 

position (the position giving the best fitness value) of particle i called personal bet 
position, and vector ),,,( 21 gDggg PPPP =  is the position of the best particle among 

all the particles in the population and called global best position. 
Many improved versions of PSO have been proposed ([1], [3], [7] etc.). In the 

previous work presented in [10], [11] and [12], we proposed a novel variant form of 
PSO, Quantum-behaved Particle Swarm Optimization algorithm (QPSO), which was 
inspired by Quantum Mechanics and seems to a promising optimization problem 
solver. In QPSO, the particle moves according to the following equation: 

(),)/1ln( RanduuXmbestpX iddidid =−±= γ  (8) 

where mbest is the mean of personal best positions among the particles, that is 
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11  
(9) 

and 
idp  is determined by (),)1( randPPp gdidid =⋅−+⋅= ϕϕϕ . ϕ  is a random umber 

distributed uniformly on [0,1] and u is another uniformly-distributed random number 
within [0,1] and γ  is a parameter of QPSO called Contraction-Expansion Coefficient. 

The stochastic evolution equation (8) comes from a quantum δ  potential well model 
proposed in [10]. One may refer to references [10], [11] and [12] for the origin and 
development of QSPO.  

4   QPSO-Based QoS Routing Algorithm 

The first step of solving QoS routing problem by QPSO involves encoding a path 
serial into a feasible solution (or a position) in search space of the particle. In our 
proposed coding scheme, the number of paths (no loop) reaching each end node 

Mt ∈ is worked out first. With the number of end nodes denoted as M , the number of 

paths to end node i is represented as an integer )1( Mini ≤≤ . Thus each path to end 

node i can be numbered by an integer variable )1( Miti ≤≤ , where 

)1](,1[ Mint ii ≤≤∈ . Consequently, we can obtain a M -dimensional integral vector  
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),,,( 21 Mttt  denoting a possible path serial with each component 
it  varying within 

],1[ in . In the QPSO for QoS Multicasting routing problem, such an integral vector 

represents the position of the particle and the QoS routing problem is reduced to a 
M -dimensional integral programming. 

In our proposed method, the fitness unction is defined as: 

( ) ( )( ) ( ) ( ) ( )( )pfjfdf
MsTt

xf ⋅+⋅+⋅= 432
1

,cos
max ωωωω  (10) 

where 1, 2, 3 and 4 is the weight of cost, delay, delay-jitter and packet loss, 
respectively; f(d), f(j) and f(p) are defined as 

( ) ( )( )( ),,∏
∈

−=
Mt

d DtspdelayFdf  ( )( )( ) ( )( )
( )( ){ Dtspdelay

Dtspdelayd DtspdelayF <
≥=− ,,1
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( ) ( )( )( ),,_∏
∈

−=
Mt

j JtspjitterdelayFjf  ( )( )( ) ( )( )
( )( ){ Jtspjitterdelay

Jtspjitterdelayj JtspjitterdelayF <
≥=− ,_,1

,_,,_ β
 

(12) 

( ) ( )( )( )∏
∈

−=
Mt

p LtsplosspacketFpf ,,_  ( )( )( ) ( )( )
( )( ){ Ltsplosspacket

Ltsplosspacketp LtsplosspacketF <
≥=− ,_,1

,_,,_ σ  (13) 

where Fd(x), Fj(x) and Fp(x) are penalty functions for delay, delay-jitter and packet 
loss, respectively, and ,  and  are positive numbers smaller than 1. With above 
specification, QPSO-based QoS multicast routing algorithm is described as follows. 

QPSO-Based QoS Multicast Routing Algorithm 

Input: The dimension of the particles’ positions (equal to the number of end nodes); 
Population size; Parameters of the network model. 

Output: The best fitness value after QPSO executes for MAXITER iterations; 
optimal multicast tree.  

Procedure: 
1. Initialize the population; 
2. for t=1 to MAXITER 
3. Compute the fitness value of each particle according   to (10); 
4. Update the personal best position 

iP ; 

5. Update the global best position 
gP ; 

6. Compute the mbest of the population by (9) and the value of γ; 
7. for each particle in the population 
8. Update each component of the particle’s position by (8) and adjust the component 

it  as an integer in ],1[ in ; endfor 

9. endfor 

Implementation of QPSO on the problem yields a multicast tree denoted by a path 
serial. The path serial is a M -dimensional integral vector with each component being 

the path number of a path from the source code to corresponding end node. To make 
the multicast tree a feasible solution, we must delete loops existing in the tree.  
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5   Experiments 

We use the network model in Figure 1 as our testing problem. In the experiments, it is 
assumed that all the end nodes of multicast satisfy the same set of QoS constraints 
without regard to the characteristics of the nodes. The characteristics of the edges 
described by a quaternion (d, j, b, c) with the components representing delay, delay-
jitter, bandwidth and cost, respectively. For performance comparison, we also used 
Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) to test the problem.  
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Fig. 1. A network model as the testing paradigm in our experiments 

The experiment configuration is as follows. The population size for PSO and 
QPSO is 50 and maximum number of iterations is 200 for all three algorithms and the 
number of the end nodes is 5. The fitness function is formula (11) with 1=1, 2=0.5, 

3=0.5, 4=0.3, =0.5, =0.5, =0.5. There are 23 nodes in the network model 
(Figure 1), and we assume node 0 to be the source node; the set of end nodes to be 
M={4,9,14,19,22}. For QPSO, the value of γ  varies from 1.0 to 0.5 over the course 

of running. The inertia weight w in PSO decreases linearly from 0.9 to 0.4 over a 
running and acceleration coefficients c1 and c2 are fixed at 2.0. For GA, the individual 
is real coded, the population size is 100 and binary tournament selection is used. The 
probability of crossover operation is 0.8 and that of mutation operation is 0.2. We 
adopt two sets of constraints in the experiments: 

1. When delay constraint D=20, delay-jitter constraint J=30, bandwidth constraint 
B=40 and packet loss constraint L=0.002, the three algorithms executed for 50 runs 
respectively and the multicast trees corresponding to best fitness value at the end of 
200 iterations out of 50 runs are shown in Figure 2(a), Figure 3(a) and Figure 4(a). 

2. When delay constraint D=25, delay-jitter constraint J=35 and bandwidth constraint 
B=40 and packet loss constraint L=0.002, the three algorithms executed for 50 runs 
respectively and the multicast trees corresponding to best fitness value at the end of 
200 iterations out of 50 runs are shown in Figure 2(b), Figure 3(b) and Figure 4(b). 
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Fig. 2. The best Multicast trees (broad-brush) generated by Genetic Algorithm. (a). D=20, 
J=30, B=40 and L=0.002; (b). D=25, J=35, B=40 and L=0.002. 
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Fig. 3. The best Multicast trees (broad-brush) generated by PSO Algorithm. (a). D=20, J=30, 
B=40 and L=0.002; (b). D=25, J=35, B=40 and L=0.002. 
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Fig. 4. The best Multicast trees (broad-brush) generated by QPSO Algorithm. (a). D=20, J=30, 
B=40 and L=0.002; (b). D=25, J=35, B=40 and L=0.002. 

Table 1. Average fitness values and standard deviation over 50 runs 

Iteration GA PSO QPSO 

Average Fitness 0.11312714 0.19680293 0.20772234 

Standard Deviation 0.00736464 0.04100095 0.03485647 
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Fig. 5. The figure shows the convergence process of (a). Best fitness value; (b). Cost, (c). Delay 
and (d). Delay-jitter, with the development of iteration for three algorithms 

It can be seen that QPSO could generate better multicast tree than other two 
algorithms. For example, when constraints is that D=25, J=35, B=40 and L=0.002, we 
recorded in Table 1 the average best fitness over 50 runs and standard deviations for 
the three algorithms. It is shown that QPSO has best performance generally. Figure 5 
is the visualization of convergence process of fitness value, cost, delay and delay-
jitter over 200 iterations corresponding to the runs that lead to best fitness value by 
the algorithms out of 50 runs under the above constraints that D=25, J=35, B=40 and 
L=0.002. For QPSO under these constraints, the fitness value after 200 iterations is 
0.22644928, the corresponding cost is 138, delay is 18.8, and delay-jitter is 29.6. 
These results correspond to the multicast tree in Figure 4(b). The results generated by 
GA and PSO correspond to the multicast tree in figure 2(b) and figure 3(b).  It can be 
seen that convergence speed of QPSO is most rapid. It means that among the three 
algorithms, QPSO has the strongest global search ability. 

6   Conclusion 

This paper has presented a QPSO-based multicast routing policy for Internet, mobile 
network or other high-performance networks. This algorithm provides QoS-sensitive 
paths in a scalable and flexible way in the networks environment. It can also optimize 
the network resources such as bandwidth and delay, and can converge to the optimal 
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on near-optimal solution within fewer iterations. The incremental rate of comput-
ational cost can close to polynomial and is less than exponential rate. The availability 
and efficiency of QPSO on the problem have been verified by experiments. We also 
test the other two heuristics, PSO and GA, for performance comparison, and the 
experiment results show that QPSO outperforms PSO and GA on QoS the tested 
multicast routing problem. Our future work will focus on using QPSO to solve QoS 
multicast routing in network environment with uncertain parameter. 
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Juan Frausto-Soĺıs1, Héctor Sanvicente-Sánchez2, and
Froilán Imperial-Valenzuela3

1 ITESM, Cuernavaca Campus, Paseo de la Reforma 182-A,
Col. Lomas de Cuernavaca, C.P. 62589, Temixco Morelos, México
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Abstract. Because the efficiency and efficacy in Simulated Annealing
(SA) algorithms is determined by their cooling scheme, several meth-
ods to set it have been proposed. In this paper an analytical method
(ANDYMARK) to tune the parameters of the cooling scheme in SA for
the Satisfiability (SAT) problem is presented. This method is based on
a relation between the Markov chains length and the cooling scheme.
We compared ANDYMARK versus a classical SA algorithm that uses
the same constant Markov chain. Experimentation with SAT instances
shows that SA using this method obtains similar quality solutions with
less effort than the classical one.

Keywords:Satisfiability, SimulatedAnnealing,CombinatorialOptimiza-
tion, NP-Hard Problems, Optimization, Heuristics.

1 Introduction

Simulated Annealing algorithm (SA) proposed by Kirkpatrick et al. [1] and
Cerny [2] is considered as an extension of the Metropolis algorithm [3] used
for the simulation of the physical annealing process. SA is especially applied to
solve combinatorial optimization problems where it is very difficult to find the
optimum or even near optimal solutions with a fast convergence rate.

Efficiency and efficacy are given to SA by the cooling scheme which consists
of initial (c1) and final (cf) temperatures, the cooling function (f(ck)) and the
length of the Markov chain (Lk) established by the Metropolis algorithm. For
each value of the control parameter ck (temperature), SA accomplishes a certain
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number of Metropolis decisions. In this sense, in order to get a better perfor-
mance of SA a relation between the temperature and Metropolis cycle may be
enacted.

Several methods to tune the parameters of the cooling scheme have been pro-
posed. These methods usually are based on a) a tuning experimental process or
b) with an adaptive criteria (mean and standard deviation). Case a) produces a
lot of tuning time, while case b) may stop SA prematurely because the stochastic
equilibrium can not always be identify correctly by measuring dynamically the
mean and standard deviation of several solutions.

In this paper an analytical method to tune the parameters of the cooling
scheme for the SA algorithm is presented. It uses a modified Markov chain build-
ing cycle in order to explore the solution space that each temperature requires.

We implemented two algorithms: 1) Simulated Annealing with Constant
Markov chains (SACM) that uses the same Markov chain length at each tem-
perature and 2) Simulated Annealing with Dynamic Markov chains (SADM)
using ANDYMARK. Experimentation with some SAT instances shows that
our method reduces the process time maintaining a similar quality of the final
solution.

2 Background

In this section the mathematical background of the ANDYMARK method is
presented.

2.1 Neighborhood

In [4] is established that SA requires a well defined neighborhood structure and
the value of the maximum and the minimum cost increment in the objective func-
tion in order to calculate c1 and cf temperatures. So following the analysis made
in [4] we give the basis of this method. Let PA(Sj) be the accepting probability
of one proposed solution (Sj) generated from a current solution (Si), and PR(Sj)
the rejecting probability. The probability of rejecting Sj can be established in
terms of PA(Sj) as follows:

PR(Sj) = 1 − PA(Sj) . (1)

Accepting or rejecting Sj only depends on the cost deterioration size of the
current solution that this change will produce, that means:

PA(Sj) = g
(
Z
(
Si
)− Z

(
Sj
))

= g(ΔZij) (2)

Z(Si) and Z(Sj) are the cost associated to Si and Sj respectively, and g(ΔZij)
is the probability to accept the cost difference ΔZij = Z(Si) − Z(Sj).

The solution selected from Si may be any solution Sj defined by the next
neighborhood scheme:
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Definition 1. Let {∀ Si ∈ S, ∃ a set VSi ⊂ S|VSi = V :S → S} be the neigh-
borhood of a solution Si, where VSi is the neighborhood set of Si, V :S → S is a
mapping and S is the solution space of the problem being solved.

From the above definition it can be seen that neighbors of a solution Si only
depend on the neighborhood structure V established for a specific problem. Once
V is defined, the maximum and minimum cost deteriorations can be written as:

ΔZVmax = Max
{

Z(Sj) − Z(Si)
}

∀ Sj ∈ VSi , ∀ Si ∈ S (3)

ΔZVmin = Min
{
Z(Sj) − Z(Si)

}
∀ Sj ∈ VSi , ∀ Si ∈ S (4)

where ΔZVmax and ΔZVmin are the maximum and minimum cost deteriorations
of the objective function through V respectively.

2.2 Markov Chains and Cooling Function

The SA algorithm can be seen like a sequence of homogeneous Markov chains,
where each Markov chain is constructed for descending values of the control
parameter ck > 0 [5]. The control parameter is set by a cooling function like:

ck+1 = f(ck) (5)

and ck must satisfy the next property:

lim
k→∞

ck = 0 (6)

ck ≥ ck+1 ∀k ≥ 1

At the beginning of the process ck has a high value and the probability to
accept one proposed solution is high. When ck decreases this probability also
decreases and only good solutions are accepted at the end of the process. In this
sense every Markov chain makes a stochastic walk in the solution space until the
stationary distribution is reached. Then a strong relation between the Markov
chain length and the cooling speed of SA exists: when ck → ∞, Lk → 0 and when
ck → 0, Lk → ∞. Because the Markov chains are built through a neighborhood
sampling method, the maximum number of different solutions rejected at cf when
the current solution Si is the optimal one, is the neighborhood size |VSi |. In this
sense the maximum Markov chain length is a function of |VSi |. In general Lk can
be established as:

Lk ≤ Lmax = g
(|VSi |

)
(7)

where Lmax is the Markov chain length when ck = cf , and g
(|VSi |

)
is a function

that gives the maximum number of samples that must be taken from the neigh-
borhood VSi in order to evaluate an expected fraction of different solutions at
cf . The value of Lmax only depends on the number of elements of VSi that will
be explored at cf .
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Usually a SA algorithm uses an uniform probability distribution function
G(ck) given by a random replacement sampling method to explore VSi at any
temperature ck, where G(ck) is established as follows:

G(ck) = G =
{

1/|VSi |, ∀Sj ∈ VSi ;
0, ∀Sj /∈ VSi .

(8)

In this sense, the probability to get the solution Sj in N samples is:

P (Sj) = 1 − exp
(

− (
N/|VSi |

))
(9)

notice that P (Sj) may be understood as the expected fraction of different solu-
tions obtained when N samples are taken. From (9) N can be obtained as:

N = − ln
(
1 − P (Sj)

)
|VSi | = C|VSi | (10)

where C establishes the level of exploration to be done, C = − ln
(
1 − P

(
Sj
))

=
lnPR(Sj). In this way different levels of exploration can be applied. For example
if a 99% of the solution space is going to be explored, the rejection probability
will be PR(Sj) = 0.01, so C = 4.6. Therefore N = 4.6|VSi |; in the same way if
86% of the solution space will be explored, N = 2|VSi |.

Then in any SA algorithm the maximum Markov chain length (when ck = cf)
may be set as:

Lmax = N = C|VSi | (11)

because a high percentage of the solution space should be explored C varies from
1 ≤ C ≤ 4.6 which guaranties a good level of exploration of the neighborhood
at cf [4].

3 ANDYMARK Method

As shown before, a strong relation between the cooling function and the length
of the Markov chain exists. For the SA algorithm, the stationary distribution for
each Markov chain is given by the Boltzmann probability distribution, which is
a family of curves that vary from an uniform distribution to a pulse function. At
the very beginning of the process (with ck = c1), SA has an uniform distribution,
henceforth any guess would be accepted as a solution. Besides any neighbor of
the current solution is also accepted as a new solution. In this way when SA is
just at the beginning the Markov chain length is really small (Lk = L1 ≈ 1).
By the time k → ∞ the value of ck is decremented by the next cooling function
until the final temperature is reached (ck = cf):

ck+1 = αck (12)

where α is normally in the range of 0.7 ≤ α ≤ 0.99 [5].
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In this sense the length of each Markov chain must be incremented at any
temperature cycle in a similar but in inverse way that ck is decremented. This
means that Lk must be incremented until Lmax is reached at cf by applying an
increment Markov chain factor (β). The cooling function given by (12) is applied
many times until the final temperature cf is reached. Because Metropolis cycle
is finished when the stochastic equilibrium is reached [5], it can be also modeled
as a Markov chain as follows:

Lk+1 = βLk (13)

Lk represents the length of the current Markov chain at a given temperature,
that means the number of iterations of the Metropolis cycle for a k temperature.
So Lk+1 represents the length of the next Markov chain. In this Markov Model,
β represents an increment of the number of iterations in the next Metropolis
cycle.

If the cooling function given by (12) is applied over and over again until
ck = cf , the next geometrical function is easily gotten:

cf = αnc1 (14)

knowing the initial (c1) and the final (cf) temperature and the cooling coefficient
(α), the number of times that the Metropolis cycle is executed (i.e. the number
of temperatures) can be calculated as:

n =
ln cf − ln c1

lnα
. (15)

Applying systematically (13), another geometrical function is gotten:

Lmax = βnL1 . (16)

Once n is known, the value of the increment coefficient (β) is calculated as:

β = exp
(

lnLmax − lnL1

n

)
. (17)

Once Lmax, L1 and β are known, the length of each Markov chain for each
temperature cycle can be calculated using (13). In this way Lk is computed
dynamically from L1 = 1 for c1 until Lmax at cf .

In the next section is shown that if the cooling scheme parameters are estab-
lished with ANDYMARK, then the same quality of the final solution is gotten
with less effort than using the same Markov chain for each temperature cycle.

4 Computational Results

To measure the efficiency of ANDYMARK, two SA algorithms were imple-
mented. One using the same Markov chain length for any temperature cycle (i.e.
Lk = Lmax = L) or SACM algorithm, and other using ANDYMARK named
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Simulated Annealing with Dynamic Markov chains (SADM). Both SACM and
SADM were tested and compared using the same SAT instances obtained from
[6]. Efficiency and efficacy were measured respectively according to the next
parameters: a) executing process time and b) quality of the final solution.

The processing time was measured in seconds. Quality means how many clauses
where made true for each instance. Table 1 shows the SAT instances solved for
both algorithms. Table 2 shows the characteristics of each SAT instance and the

Table 1. SAT instances tested

Category Name Id
Random balancedhidden-k3-n918-pos5-neg5-03-S166036896.cnf r1
Random glassyb-v399-s500582891.cnf r2
Random unif-r4.25-v600-c2550-03-S1158627995.cnf r3
Random gencnf-k10-r720-v50-c36000-03-S999535890.cnf r4
Random hgen6-4-20-n390-01-S682927285.cnf r5

Handmade bqwh.60.1080.cnf h1
Handmade color-18-4.cnf h2
Handmade genurq30Sat.cnf h3
Planning huge.cnf pp1
Planning medium.cnf pp2
Planning bw-large.a.cnf pp3

Circuit fault analysis ssa7552-038.cnf c1

corresponding value of c1, cf and β used. These parameters were obtained with
ANDYMARK as follows:

c1 =
−ΔZVmax

ln
(
PA

(
ΔZVmax

)) , and (18)

cf =
−ΔZVmin

ln
(
PA

(
ΔZVmin

)) . (19)

At the beginning of the annealing process, the probability to accept any pro-
posed solution as the new solution is high, but this probability is reduced while
the temperature is reduced. Thus, the accepting probability for high temper-
atures PA(ΔZVmax) must be high (i.e. 0.90, 0.95 or 0.99) and the rejecting
probability for low temperatures PA(ΔZVmin) must be set too low values (i.e.
0.10, 0.05 or 0.01) to accept anly good solutions at the end of the process [5].
Next we show the parameters setting used to test the algorithms:

– From the cooling function ck+1 = αck two values of the cooling coefficient
were used: α = 0.85 and α = 0.95.

– The value of Lmax was set to enable SA to explore around 86% of the neigh-
borhood at the final temperature (cf). This is when Lmax = N = 2|VSi |. For
SACM algorithm it was set to Lk = Lmax = 2|VSi | for each temperature
cycle.



ANDYMARK: An Analytical Method 275

Table 2. Characteristics of the instances and values of c1, cf and β

Id Variables Clauses SACM and SADM β (SADM)
c1 cf α=0.85 α=0.95

r1 918 3054 194.957 1.737 1.295 1.085
r2 399 1862 272.94 3.040 1.273 1.079
r3 600 2550 506.889 0.869 1.198 1.058
r4 50 36000 143332.576 1535.665 1.179 1.053
r5 390 1638 292.436 2.606 1.257 1.075
h1 6283 53810 604.367 1.737 1.299 1.086
h2 1296 95904 5712.248 63.624 1.328 1.093
h3 3622 17076 623.863 1.737 1.278 1.080
pp1 459 7054 1267.222 1.520 1.179 1.053
pp2 116 953 721.342 1.520 1.154 1.046
pp3 459 4675 111.256 1.52 1.183 1.054
c1 1501 3575 5302.837 0.217 1.137 1.041

– To obtain c1 and cf temperatures, the value of PA(ΔZVmax) was 0.95 and
PA(ΔZVmin) was set to 0.01.

Both algorithms were implemented in a HP Laptop with 512 MB of Ram
memory with a Pentium 4 processor running at 1.8 GHz. From Table 3, notice
that the quality of the solution obtained from SACM and SADM algorithms
was maintained almost at the same value for both cooling coefficients (α = 0.85
and α = 0.95). Note that setting the length of Lk for each temperature as is
established in Section 3, the processing time of SA is outperformed.

For the instances tested the mean reduction of the processing time that SADM
algorithm produces is 90.049% for α = 0.85 and 86.157% for α = 0.95. For

Table 3. Performance of SACM and SADM with α = 0.85, α = 0.95 and C = 2

Id Quality (%) Time (secs)
SACM SADM SACM SADM

α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95
r1 91.650 91.650 91.781 91.912 25 38 1 5
r2 92.213 92.642 92.266 92.589 5 8 < 1 1
r3 95.961 95.882 95.686 96.392 15 23 1 3
r4 99.947 99.961 99.944 99.961 17 28 1 6
r5 92.063 92.125 92.369 92.491 4 7 1 1
h1 96.432 96.486 96.402 96.540 3007 7858 252 841
h2 97.089 97.440 97.431 97.538 782 1865 68 298
h3 96.410 96.422 96.410 96.422 526 1674 47 184
pp1 98.696 98.993 98.625 98.852 18 67 2 9
pp2 97.587 97.901 96.747 97.482 < 1 < 1 < 1 < 1
pp3 97.134 97.647 97.241 97.668 12 41 1 6
c1 98.713 99.413 98.462 99.217 48 198 6 24
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example, for the instance h1 (the biggest tested) the processing time was reduced
from 3007 to 252 secs (91.619%) when α = 0.85 and from 7858 to 841 secs
(89.297%) when α = 0.95.

5 Conclusions

In this paper a new analytical method to tune the parameters of the cooling
scheme in Simulated Annealing for the Satisfiability problem is presented. This
method models the temperature and Metropolis cycles with Markov models.
The paper shows that using a geometrical cooling scheme, both initial and final
temperature can be determined in an analytic way. Once initial and final tem-
perature are derived, the length of the Markov chains for every temperature can
be determined dynamically with a first order Markov model.

Satisfiability instances are solved with Simulated Annealing algorithms using
two implementations: 1) ANDYMARK, where the length of the Markov chains
are changed during the execution of the algorithm, changing in this way the
number of iterations of the Metropolis cycle, and 2) Simulated annealing with
constant Markov chains (i.e. a constant number of iterations) in the Metropolis
cycle. The results presented show that using ANDYMARK to tune the cool-
ing scheme’s parameters in SA algorithms produces a mean reduction time of
90.049% and 86.157% for α = 0.85 and 0.95 respectively.

An important feature of ANDYMARK is that it enables SADM to produce
solutions with similar quality in less time than SACM using the same values of
the decrement temperature’s parameter.
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Abstract. In this paper, we present an accelerated micro genetic algorithm for 
numerical optimization. It is implemented by incorporating the conventional 
micro genetic algorithm with a local optimizer based on heuristic pattern move 
and Aitken Δ2 acceleration method. Performance tests with three benchmarking 
functions indicate that the presented algorithm has excellent convergence 
performance for multimodal optimization problems. The number of objective 
function evaluations required to obtain global optima is only 5.4-11.9% of that 
required by using conventional micro genetic algorithm. 

1   Introduction  

Genetic Algorithms (GAs), initially developed by Holland [1] in 1960s, remain the 
most recognized and practiced form of Evolutionary Algorithms which are based on 
stochastic search strategy. These algorithms are able to reach global optima without 
the dependence on initial guesses, and only using the objective function value, 
requiring no derivatives or other auxiliary information. However, they are sometimes 
very poor in terms of convergence performance. To improve the efficiency of GAs, 
some hybrid genetic algorithms are developed by combining genetic algorithms with 
heuristic search strategies based on gradient, such as conjugate gradient algorithm [2]. 
These hybrid algorithms are demonstrated to have good performance by using GAs 
for global search and gradient-based algorithm for local search. However, the use of 
gradient-based search strategies limits the applicable area of these algorithms. Micro 
genetic algorithm (micro-GA) proposed by Krishnakumar [3] uses very small 
population size (typically 5), the population evolves in normal GA fashion and 
converges in a few generations, at this point, a new random population is chosen 
while keeping the best individual from last converged generation and the evolution 
restart. The micro-GA can avoid premature convergence and converge faster to the 
near-optimal region than does a simple GA. With the incorporation of micro-GA with 
a local optimizer based on the heuristic pattern move, an effective hybrid GA (hGA) 
was proposed by Xu et al [4, 5].  

In this study, we proposed an accelerated micro genetic algorithm by incorporating 
micro-GA with local optimizer based on the heuristic pattern move and Aitken Δ2 
accelerating scheme.  
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The paper is organized as follows: Section 2 presents the detail of proposed 
algorithm and Section 3 gives the performance test result with some benchmarking 
function. Finally some general conclusions are drawn in Section 4. 

2   Accelerated Micro Genetic Algorithm 

In the proposed algorithm, two local optimization operators are combined with micro 
genetic algorithm to accelerate the convergence of evolution. The Aitken Δ2 
acceleration scheme is used to update current generation population. The local 
optimizer based on heuristic pattern move is used to update offspring generated by 
genetic operators.  

2.1   Aitken Δ2 Acceleration Scheme 

It is well known that Aitken Δ2 scheme has excellent performance in accelerating the 
convergence of sequence [6]. It uses three points, b1, b2 and b3 to constitute a new 
point bm. 

123
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1 2
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bbb

bb
bbm +−

−−=  (1) 

In our algorithm, b1, b2 and b3 are three best individuals obtained successively at 
previous generations in the evolution process. The new individual bm is evaluated and 
compared to the worst individual at current generation, if bm is better then the worst 
individual is replaced by it.  

2.2   Local Optimizer Based on Pattern Move 

The local optimization operator is used to update offspring in the proposed algorithm. 
The best individual c1 and the second best individual c2 in the offspring are selected to 
constitute a pattern move. Three new individuals are obtained by using extrapolation 
and interpolation operations based on this pattern move. Then, the best individual 
among these three new individuals is selected to replace the worst individual in the 
offspring obtained with genetic operations. 

The local optimizer can be described as follows: 

(1) Constitute the pattern move of the best individual: 

21 ccd −=  (2) 

(2) Generate three new individuals: 

dcc α+=′ 11  (3a) 

dcc β+=′ 22  (3b) 

dcc γ−=′ 23  (3c) 
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Where α, β and γ are control parameters which are recommended to be 0.3, 0.5 and 
0.3, respectively. 
(3) Select the best one (cm) among three individuals, 1c′ , 2c′  and 3c′ : 

},,{)}(),(),(max{)( 321321 cccccfcfcfcf mm ′′′∈′′′=  (4) 

(4) Replace the worst individual in offspring with cm. 

2.3   Implementation of Proposed Algorithm 

The new algorithm can be carried out as follows: 

(1) Initialize the optimization process, including: 
a) Select the operation parameters of population size Npopsize, crossover 

possibility pc, random seed id, local operator control parameter α, β and γ. 
b) Set generation index ig=1 and acceleration flag ia=1. 
c) Generate the initial population P(ig) by random method  
d) Evaluate each individual use fitness function and select the best one to be 

b(ia). 
(2) Check if the termination criterion is fulfilled. If yes, the optimization process 

ends. Otherwise, select the best individual and check if it is different from b(ia). 
If yes, let the best individual be b(ia+1) and set ia=ia+1.  

(3) Check if ia=3. if yes, apply acceleration by using equation (1) to obtain a new 
individual bm and set b(1)=b(3), ia=1. Check if bm is better than the worst 
individual in P(ig), if yes, replace the worst individual with bm. 

(4) Generate the offspring C(ig) by using genetic operators: selection, crossover and 
elitism. 

(5) Use the local optimization operator described in previous section to update the 
obtained offspring C(ig). 

(6) Check if nominal convergence is reached in offspring. If yes, use the restart 
strategy to obtain a new offspring C(ig). 

(7) Set ig= ig+1 and go back to (2) 

3   Numerical Experiments 

3.1   Test Functions 

Three typical benchmarking functions, f1, f2 and f3, are used to test the performance of 
the proposed algorithm. 
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These benchmarking functions are all multimode functions. Function f1 has 25 
local optima and the global maximum 0.1max1 ≈f at 832066.021 ≈= xx . Fig. 1 shows 

the search space of function f1.  

 

Fig. 1. The solution space of function f1 

 

Fig. 2. The solution space of function f2 
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Function f2 is symmetric to grid origin and reaches its global maximum 
542997.0max2 ≈f at the points with distance of 1.570796 to grid origin. The solution 

of f2 varies smarter with the closing to global optimum. Figure 2 is a part of its 
solution space. 

Function f3 was first proposed by Rastrigin [7] as a 2-dimensional function and has 
been generalized by Mühlenbein et al in [8]. This function is a fairly difficult problem 
due to its large search space and its large number of local minima. The local minima 
are located at a rectangular grid with size 1. The global minimum is at 0=ix , 

ni ,,1= , giving 0min3 =f . Grid points with 0=ix  except one coordinate, where 

1=ix , give 13 =f , the second best minimum. With increasing distance to the global 

minimum the local minima become littler. 

3.2   Experiment Results 

Using the method described in the previous section, the genetic operations and control 
parameters are set as follows: population size of five, real-number coding, tournament 
selection, and uniform arithmetic crossover of pc=0.5 with one child. The local 
optimizer parameters are α=0.3, β=0.5 and γ=0.3. The number of objective function 
evaluations that is required to obtain the global optimum (with in ±0.001) are listed in 
table 1, where na, nh and nm are evaluation numbers using proposed algorithm with 
Aitken Δ2 scheme and local optimizer (A-hGA), proposed algorithm with local  
 

Table 1. Comparision of the number of function evaluations to convergence 

No. na nh nm 
na/nm 

(%) 
nh/nm 

(%) 
f1 815 3960 15020 5.4 26.4 
f2 1317 2200 11045 11.9 19.9 
f3 69689 96000 / / / 
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Fig. 3. Convergence processes of function f1 for different algorithms 
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Fig. 4. Convergence processes of function f2 for different algorithms 
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Fig. 5. Convergence processes of function f3 for different algorithms 

optimizer alone (hGA) and conventional micro-GA, respectively. The A-hGA and 
hGA require only 5.4-11.9% and 19.9-26.4%, respectively, of the number of function 
evaluations required by micro-GA. It should be noted that, for function f3, micro-GA 
can’t converge to global optimum. Figures 3 to 5 show the convergence processes of 
function f1, f2, and f3. It can be seen that the proposed algorithm converges much faster 
than conventional micro-GA does. 

4   Conclusions 

This study proposed an accelerated micro genetic algorithm for numerical 
optimization. Performance tests using three typical benchmarking functions show that 
the new algorithm has superior performance than conventional micro-GA.  
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The proposed algorithm only requires objective function value in optimization 
process. This property makes it highly convenient and universal.  
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Abstract. This study considers inventory of reusable items with shortages and 
develops a replenishing and production policy to satisfy customer need, and to 
promote the smart use of resources. Distinct from former researches, our study 
considers reusable items with shortages to derive the best replenishment and 
production strategy. A hybrid of numerical analysis and search method is used to 
derive the minimum total cost of the mathematical model. The result is compared 
with the case when no shortage is allowed. 

1   Introduction 

The process of returning and reusing materials is not a new concept. In the last several 
decades, it has been a common practice to reuse metal, paper and glass. This is due to 
the increase in environmental concerns as well as the economy of recycling [1].  

There are four synonyms of reuse according to Thierry et al. [2]. They are: direct 
reuse, repair, recycling and remanufacturing. In the US, remanufacturing is a fifty 
billion dollar per year business (Corbett and Kleindorfer, 2001). Schrady [3] was the 
first author to consider reuse in a deterministic model. He assumed a constant demand; 
constant return rates and fixed lead times for external orders and recovery. Two costs 
were considered: fixed setup costs for orders and recovery process, and the linear 
holding costs for serviceable and recoverable items. In his model, Schrady [3] proposed 
a control policy with fixed lot sizes. Demand is satisfied as far as possible from the 
recovered products. Recently, Mabini et al. [4] extended Schrady’s model to consider 
stock out service level constraints, and a multi-item system sharing at the same repair 
facility. Richter [5] developed a model with a different control policy. In the policy, 
expressions for the optimal control parameter values were obtained. Koh [6] developed 
a joint EOQ and EPQ model in which the stationary demand could be satisfied by 
recycled products and newly purchased products. The recycled products were assumed 
to be a fixed proportion of the used products collected from the customers. Shortage 
due to stock-out occasionally occurs in the real world. In order to reduce loss of sales or 
goodwill, the supplier can reduce shortage with reusable items. 

In this study, we extend Koh’s model [6] by assuming stationary demand and 
shortage backorders. To the best of our knowledge, research on recovery inventory 
with allowable shortage and finite replenishment has not been done previously. The 
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demand in our inventory system is met either by external ordered new products or 
recovered items. The objective of this inventory management system is to minimize the 
fixed and the variable costs. This study developed a model to analyze an inventory 
system where the stationary demand can be satisfied by recovered products and newly 
purchased products. Shortage back order is allowed. The objective is to minimize the 
total cost and obtain the optimum inventory level to initiate the recovery process for 
recoverable items. Because a closed form solution is infeasible, we propose a search 
procedure to solve the problem. When p is equal to d, the optimal quantity for the newly 
procured items is the same for models with and without shortage. However, issues in 
recyclable items with shortages are complex, and our understanding of the issues could 
significantly influence managerial decisions and environmental impacts. 

2   Notation and Assumptions 

The mathematical model in this paper is based on the following assumptions: 

1. The demand rate is deterministic and known. 
2. The return rate is known. 
3. The quality for reuse items is the same as new ones. 
4. The repair capacity is constant and known. 
5. The cost parameter is constant and known. 
6. The shortage cost is constant and known. 
7. The procurement lead-time is constant and known. 
8. The repair lead-time is constant and known. 
9. The repair costs are less than purchasing costs. 
10. The recovery rate is greater than the returning rate (p>r). 
11. The demand rate is greater than the recovery rate (d>r). 

 
The following notation is used: 

Input parameters 
r collected rate (units/time) 
p recovery process rate (units/times) 
d demand rate (units/time) 
Ch1 per unit holding cost for recoverable items 
Ch2 per unit holding cost for serviceable items 
CJ per unit shortage cost 
Co ordering cost for the new item 
Cs setup cost for recovery process 
Decision variables 
J shortage quantity 
R inventory level of recoverable items to start recovery process 
Q order quantity for newly procured items 
n number of orders for one setup in the recovery shop 
T cycle time of the model 
t idle time length of the recovery facility 



286 H.M. Wee et al. 

3   Mathematical Modeling and Analysis 

Three cases are analyzed in accordance to the three parameter conditions: p>d, p=d and 
p<d. 

3.1   Case 1: dp >  

From the Fig. 1, one can see that 
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Fig. 1. Recovery inventory system (p>d>r) 
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d
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From Fig.1, one can see that 
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The total cost = recoverable inventory cost +ordering cost+ serviceable inventory cost. 
The total cost per unit time for this case is as follows: 
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For a constant n, the optimal solution, R* and J*, can be found by differentiating the 
above equation with respect to R and J and equate them to zero. One has 

3.2   Case 2: dp =  

From Fig. 2, one can easily see that 
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Shortage cost for n triangles( triangle  in Fig. 2 ) is 
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The total cost per unit time for this case is as follows: 
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For a fixed n, the optimal solution, R* and J*, can be found by differentiating the above 
equation with respect to R and J and equate them to zero.  
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Fig. 2. Recovery inventory system (p=d) 

3.3  Case 3: dp <  

From Fig. 3, one can easily see that 
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Fig. 3. Recovery inventory system (p<d) 

The cost for recoverable inventory per cycle is 
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Inventory holding cost for n triangles ( triangle  in Fig. 3) is 
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From Fig. 3, one can see that 
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The total cost per unit time for this case is as follows: 
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Take the first derivative of TVC with respect to R and J, and then equate the first 
derivative to zero to derive the optimal solution, R* and J*.  

3.4   Solution Procedure 

From the given parameters and n, it is easily seen that the optimal values of R, J and Q 
can be obtained. The closed form optimal values of the integer variables is not feasible. 
Therefore the following computer search procedure is suggested to derive the optimal 
decision variables. 

Step 1  Determine the values of the system parameters r, p, d, Co, Cs, Ch1, Ch2 and CJ. 
Step 2  Calculate )1( =nTVC  for n =1. 

Step 3  Calculate )2( =nTVC  for n =2. 

Step 4  If )1( =nTVC  > )2( =nTVC , set n = 1, else, set 1+= nn  and calculate 

       the total cost till )()1( nTVCnTVC >+ . 

4   Conclusion 

This study developed a mathematical model to analyze an inventory system where the 
stationary demand can be satisfied by recovered products and newly purchased 
products. Shortage backorder is allowed. The objective is to minimize the total cost and 
obtain the optimum inventory level for the recoverable items. We propose a hybrid of 
numerical analysis and search procedure to solve the problem since a closed form 
solution is infeasible. Table 1 compares Koh’s model (no shortage) with our model. 
When p is equal to d, the optimal quantity for the newly procured items is the same for 
models with shortage and without shortage. Our model considering shortage backorder 
has shown a significant improvement in cost as compared with Koh’s model.  

Table 1. Comparing the result of Koh’s model with our model 
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Abstract. Gene Expression Programming (GEP) has wide searching ability, 
simple representation, powerful genetic operators and the creation of high levels 
of complexity. However, it has some shortcomings, such as blind searching and 
when dealing with complex problems, its genotype under Karva notation does 
not allow hierarchical composition of the solution, which impairs the efficiency 
of the algorithm. So a new automatic programming method is proposed: Gene 
Estimated Gene Expression Programming(GEGEP) which combines the ad-
vantages of Estimation of Distribution Algorithm (EDA) and basic GEP. Com-
pared with basic GEP, it mainly has the following characteristics: First, improve 
the gene expression structure, the head of gene is divided into a head and a body, 
which can be used to introduce learning mechanism. Second, the homeotic gene 
which is also composed of a head, a body and a tail is used which can increase its 
searching ability. Third, the idea of EDA is introduced, which can enhance its 
learning ability and accelerate convergence rate. The results of experiments show 
that GEGEP has better fitting and predicted precision, faster convergence speed 
than basic GEP and traditional GP. 

Keywords: Gene Expression Programming; Genetic Programming; Gene Esti-
mated Gene Expression Programming,; Estimation of Distribution Algorithm. 

1   Introduction 

Gene Expression Programming(GEP) was first proposed by Candida Ferreira [1]. In 
this new syste- m, the complex computer programs the phenotype evolved by GEP 
are totally encoded in simple strings of fixed length the genotype .  

GEP is the inheritance and development of GA and GP, it synthesizes the merits of 
basic GA and traditional GP and has stronger ability of solving problems [2][3]. How-
ever, the learning procedure of GEP can be improved upon when dealing with complex 
problems with respect to both time efficiency and solution quality. The biological evo-
lutionary process has revealed the principle of evolving from a self-contained functional 
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single cell to a well- developed entity with numerous specialized components [4]. We 
are naturally inspired to assume that solutions to complex problems might be built up 
incremen- tally from simpler elements. Although the phenotype of expression trees in 
GEP has retained the struct- ural representation from GP, the linear representation of 
the genotype conforms to Karva notation, under which the genotype-phenotype map-
ping mechanism does not guarantee that the levels of functional complexity in the 
phenotype are also directly reflected in the genotype. Since it is the genotype that is 
subject to the different genetic operations, it is difficult to follow the approach of in-
crementally forming solutions with the original GEP. Moreover, an evolved good 
functional structure is very likely destroyed in the subsequent generations not only by 
mutations but also by recombination and transpositions, which may require much 
additional computation to recover before an optimal solution is found. In view of this 
weakness, we propose a Gene Estimated Gene Expression Programming ( GEGEP), it 
combines EDA with GEP . Compared with GEP, it mainly has the following charac-
teristics: First, improve the gene expression structure, original gene structure is divided 
the head of chromosomes into a head and a body, which can be used to introduce the 
learning mechanism. Second, the homeotic gene which is also composed of a head, a 
body and a tail is used which can increase its searching ability. Third, the idea of EDA 
is introduced, which can enhance its learning ability and accelerate the convergence 
rate. We believe GEGEP benefits the evolution in terms of the convergence of a good 
functional structure. 

The other parts of this article is organized as follows. Section2 explains GEGEP 
algorithm; Section3 proves the validity of the GEGEP algorithm through experiments; 
Section 4 presents some conclusions and ideas for future work. 

2   Gene Estimated Gene Expression Programming 

2.1   The Improvement of GEGEP 

2.1.1   Improve the Structure of Gene Expression Programming  
In GEGEP, gene head in GEP is divided into a head and a body. The head contains only 
functions, the body like the head of GEP contains symbols representing both functions 
and terminals, whereas the length of the tail is a function of head ,body and the number 
of arguments of the function with more arg- uments n(also called maximum arity) and 
is evaluated by the equation: tail =( head+body)×(n-1) + 1. 

2.1.2   Improve the Structure of Homeotic Gene 
Homeotic genes have exactly the same kind of structure as conventional genes of 
GEGEP and are built using an identical process. They are also composed of a head,a 
body and a tail.The heads only contain linking functions.The bodys contain linking 
functions, a special class of terminals:genic terminals representing conventional gene 
and random numerical constants.The tails contain obviously random numerical con-
stants and genic terminals.  
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   Sub-ET0                            Sub-ET1                  Sub-ET2 

               a)The sub-ETs codified by each conventional gene            b)The final program 

Fig. 1. Expression of chromosomes 

The head, body and tail of homeotic gene are respectively represented as 
homo_head, homo_body, homo_tail.The method of computation of homeotic gene is 
same as conventional genes. So the length of gene individual is evaluated by the 
equation:  
length=(head+body+tail) *n_gene+ homo_head +homo_body + homo_tail, where 

n_gene represents the number of genes. For example, if we choose head=2, 

body=4,n=2,then tail = (head+body)*(2-1)+1=7,the length of conventional genes is 

2+4+7 =13.In this case ,if n_gene=3, homo_head =1,homo_body=4,then the length of 

homeotic gene is equal to 11, the length of gene individual is equal to 50. 

One such gene individual is shown below: 

0123456789012 0 123456789012 0123456789012 01234567890 

+-d+ adbc?d?c c SL+- abc?aa?bc LCa*b- abd? cca +-20 / 21?20?                

Where ? represents random numerical constant, 0 1 2 respectively represent  
first second third conventional gene, L C and S respectively represent ln cos 
and sin function. It codes for three conventional genes and one homeotic gene. The 
conventional genes code as usual for three different sub-ETs. The homeotic gene con-
trols the interactions between the different sub-ETs . The homeotic gene and conven-
tional genes have same functional set and terminal set. The corresponding phenotypes 
are shown in Figure1.   

2.1.3   EDA 
EDA[5] is put forward from the viewpoint of statistics by MüHlenbein and Paaß, which 
is evolutionary algorithm based on probability analysis. EDA is similar to traditional 
genetic algorithm, the difference between them is that EDA selects evaluation and 
learning distribution to produce new offspring. New offspring are produced by Bayes 
network. The Bayes network is a directed acycline graph, which considers specific  
 



 A New Algorithm of Automatic Programming: GEGEP 295 

interactions of the problem among the variables of chromosomes. It can make full use 
of realm knowledge and information of sampling datum with Bayes statistics. So it has 
strong learning ability and uses to model on discretional or continual polynomial in 
common.EDA contains three kinds of models: Univariate EDA Model, Bivariate 
EDA Model and Multivariate EDA Model which are shown in Figure2. Univariate 
EDA Model supposes that there have no interdependencies among variables. 
Bivariate EDA Model supposes that there have dependencies between pairs of 
variables. Multivariate EDA Model supposes that there have dependencies among 
variables greater than two. 

For the convenience of computation, we only use Univariate EDA Model. The 
Model is shown in Figure 2(a). This basic thought of GEGEP is to carry on the statistics 
to the head and body department of each above operator of the conventional genes and 
homeotic gene , extracts its statistical probability, then carries on the mutation ac-
cording to its statistical probability.    

a) Univariate EDA Model     (b)Bivariate EDA Model    (c)Multivariate EDA Model  

x1
X2 X3

X4

X5

X7

X6

 

Fig. 2. Graphical representation of probability model among variables 

The procedure of updating statistical information is as follows: 

(1) Initialize fitness table 
The size of fitness table is (n + 1) lines and L rows, where n expresses the size of 

function set, L expresses the total length of all he- ad and body added in the chromo-
some. For example: Function set = { +, -, *, /, Exp, Log, Sin, Cos, Sqrt }, the chro-
mosome has 4 genes and 1 homeotic gene, the length of head of each gene is 3, the 
length of body is 7, then the size of total table is (9+1) *(5* (3+ 7)) = 10 *50. The 
initial value is ( 0.1) and initial frequency is once each generation.  
(2) Initialize statistical information table  

Statistical information table has the same size as fitness table, the initial value is also 

 ( 0.1).The frequency is once every run. 

(3) Renew fitness table 

Renewing method is as follows: The fitness of each individual is added to the cor-

responding position of fitness table. 
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(4) Renew statistical information table  

It directly adds the value of fitness table to original value of the corresponding po-

sition of statistical information table.  

2.2   Fitness Function and Termination Condition  

The fitness reflects whether the individual is good or bad. In this paper, the following 
fitness function is used: 

)0,1000max(
1=

⋅
−

−=
n

j j

jij
i factor

T

TC
f

 

Where n is the number of computation cases Cij is the value returned by the indi-
vidual program i for fitness case j and Tj is the target value for fitness case j. Factor is a 
proportional constant and is equal to 1000 dividing the number of records. Obviously, 
if the bigger fitness value is, then the better individual is. 

The termination condition is the actual Evolutionary generation exceeding reserved 
evolutionary generation (Maxgenerations) or the best fitness having no change for L 
continuous generations  
If  generation Maxgenerations1||unchange_generation L 

Then Terminates 

The best solution or the approximate best solution is what we wanted when  

terminates. 

2.3   Algorithm 

PROCEDURE  GEGEP algorithm 

begin 

Initialize P(0) ; 

Evaluate the fitness of P(0); 

Renew statistical information table; 

t:=0; 

repeat 

       Pm(t):=mutation{P ( t) } according to statistical information; 

        Pc(t):=crossover{P ( t) }; 

        Pt(t):=transpose{P ( t) }; 

        P(t+ 1):=selection{P( t) }; 

      Renew statistical information table; 
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t:= t+ 1; 

until  termination condition ; 

output solution of Pbest; 

end 

3   Experiment  

In order to justify the advantage of GEGEP as compared to traditional GP and basic 
GEP ,we first experimented on three algorithms with two function modeling . Later a 
suite of Symbolic Regression were conducted on the testing datasets .Last we experi-
mented on another function modeling. 
(1) Function modeling. 

We select two cases from relevant references to check the validity of this method. 
Considering different impact of homeotic gene and conventional genes, the homeotic 
gene determines which gene is expressed in which cell and how they interact with one 
another. So the mutation rate is separated into homeotic gene rate and conventional 
generate.  

The parameter setting of two experiments is same and is shown as Table1: 

Table 1. Parameter Setting for GEGEP 

Evolutionary generation 100000 One-point recombination rate 0.3

  Population size 80 Two-point recombination rate 0.3

Mutation rate of homeotic gene 0.044 IS transposition rate 0.1

Mutation rate of conventional genes 0.044 RIS transposition rate 0.1

Gene recombination rate 0.1 Gene transposition rate 0.1

Conventional gene Numbers 4 Homeotic gene’s head length 4

Conventional genes’ head length 2 Homeotic gene’s body length 20

Conventional genes’ body length 15   
 

The calculation result of Y by GP and GEP are respectively obtained from [6] and 
[7]. There are six main factors: the depth of coalface x 1 m ,the height of coalface x 
2 m , the amount of coalfaces x 3 m3/t , the layer interval between working 
coalface and neighboring coalface x 4 m , average day progress of working face  
x 5 m /d and average output per day x 6 t/d  as the main input variates ,the amount 
of gas emitted from coalfaces(Y) as the output variate. So the termination set is de-
fined as T = {x 1, x 2, x 3, x 4, x 5, x 6, ? },where ? represents random numerical 
constant and is chosen from the interval [-10, 10].The function set is defined as F = 
{+ * ÷ sqrt, exp, sin, cos, ln}.The aim is to obtain a prediction function for 
Y with x 1, x 2, x 3, x 4, x 5 and x 6 being the parameters: Y =μ (x 1, x 2, x 3, x 4,  
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x 5, x 6). Fifteen cases from sample 1 to 15 in table2 are used as training datum to 
build the prediction model while three cases from sample 16 to 18 in table3 are used 
as test datum. 

The function evolved by GEGEP is  

y=Ln(Exp((Sin((Sin(((Exp(x3)+x3)-x6))/2.3661))+x2)))+Exp((Sqrt(Sin(Sin(Ln(x4))))

+(Exp((Sin(Sin((x3*x6)))+Sin(x4)))/((x3-Ln (Sin(Sqrt(x5))))+ x4)))) 

Table 2. Comparison of fitting results by GP ,GEP and GEGEP 

Calculation result of y 
m3/min  Relative error of Y 

sample x 1 
(m) 

x 2 
(m)

x 3 
(m3/t) 

x 4 
(m) 

x 5 
(m/d) 

x 6 
(t/d)

Y GP GEP GEGEP GP GEP GEGEP 

1 408 2.0 1.92 20 4.42 1825 3.34 3.18 3.27 3.37 0.048 0.020 0.00885 

2 411 2.0 2.15 22 4.16 1527 2.97 2.79 3.29 2.93 0.061 0.108 0.01420 

3 420 1.8 2.14 19 4.13 1751 3.56 3.89 3.47 3.56 0.092 0.024 1.62E-05 

4 432 2.3 2.58 17 4.67 2078 3.62 3.46 3.71 3.71 0.044 0.026 0.02398 

5 456 2.2 2.40 20 4.51 2104 4.17 3.98 4.10 4.15 0.046 0.018 0.00579 

6 516 2.8 3.22 12 3.45 2242 4.60 4.78 4.68 4.64 0.039 0.017 0.00913 

7 527 2.5 2.80 11 3.28 1979 4.92 4.88 5.03 4.98 0.008 0.022 0.01178 

8 531 2.9 3.35 13 3.68 2288 4.78 4.38 4.84 4.87 0.084 0.012 0.01833 

9 550 2.9 3.61 14 4.02 2325 5.23 5.1 5.19 5.21 0.025 0.008 0.00291 

10 563 3.0 3.68 12 3.53 2410 5.56 5.78 5.42 5.57 0.040 0.024 0.00102 

11 590 5.9 4.21 18 2.85 3139 7.24 7.09 7.35 7.24 0.021 0.015 0.00056 

12 604 6.2 4.03 16 2.64 3354 7.80 8.15 7.49 7.78 0.045 0.040 0.00291 

13 607 6.1 4.34 17 2.77 3087 7.68 7.36 7.58 7.68 0.042 0.013 3.1E-05 

14 634 6.5 4.80 15 2.92 3620 8.51 8.91 8.30 8.52 0.047 0.024 0.00105 

15 640 6.3 4.67 15 2.75 3412 7.95 7.43 7.94 7.98 0.065 0.001 0.00428 

Table 3. Comparison of predicted results by GP,GEP and GEGEP 

Calculation result of y 
m3/min  

Relative error of Y 
sample x 1 

(m) 
x 2 
(m)

x 3 
(m3/t

) 

x 4 
(m) 

x 5 
(m/d

) 

x 6 
(t/d)

Y GP GEP GEGEP GP GEP GEGEP 

16 450 2. 2 2. 43 16 4. 32 1996 4. 06 4. 32 4.11 4.01 0.064 0.012 0.01268 

17 544 2. 7 3. 16 13 3. 81 2207 4. 92 5. 15 4.93 4.91 0.046 0.002 0.00105 

18 629 6. 4 4. 62 19 2. 80 3456 8. 04 7. 79 8.01 7.80 0.031 0.004 0.03037 

From Table2, we can see that the largest relative errors of GP, GEP and GEGEP are 
9.2%, 10.8% and 2.398% respectively. Meanwhile, among the 15 training samples, the 
result of GEP has smaller relative errors than the one of GP on 13 samples, and 
the result of GEGEP has smaller relative errors than the one of GEP on 13 samples. It’s 
obvious that concerning the goodness of fit, GEP outperforms GP and GEGEP out-
performs GEP. 
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From table3, we can see that GEGEP has the higher prediction results and a smaller 
relative error of Y than the one of GP and GEP on three and one sample respectively.  
(2) Function modeling. 

The data comes from paper[8] which describes the GDP of China in some periods .  
The termination set is defined as T = {K, L, ? }, where ? represents random nu-

merical constant and is chosen from the interval [-10, 10].The function set is defined as 
F = {+ * ÷ sqrt, exp, sin, cos, ln, tan}. The parameter setting is same as ex-
periment1. 

The aim is to obtain a prediction function for GDP with K and L being the pa-
rameters: GDP =  (K, L). Fifteen cases from the year 1980 to 1994 in table4 are used as 
training datum to build the prediction model, while two cases from 1995 to 1996 in 
table5 are used as test datum. 

The second column K in table3 and table4 describes the sum of net value of fixed 
assets and the average balance of floating assets in the corresponding year. The third 
column L describes the number of employed person, including all kind of workers 
and peasants. The fourth column calculation result of GDP describes the actual 
statistical data of GDP in the same year.From Table4, we can see that the largest rela-
tive errors of GP, GEP and GEGEP are 8.29%, 3.182% and 3.177% respectively. 
Meanwhile, among the 15 training samples, the result of GEP has smaller relative 
errors than the one of GP on 13 samples, and the result of GEGEP has smaller relative 
errors than the one of GEP on 6 samples. It’s obvious that concerning the goodness of 
fit, GEP outperforms GP and GEGEP outperforms GEP.From table5, we can see that 
GEGEP has the higher prediction results and a smaller relative error of GDP than the 
one of GP and GEP on one sample.  

Table 4. Comparison of fitting results by GP ,GEP and GEGEP 

Calculation result of 
GDP 109  yuan  Relative error of GDP 

 
Year 

K 
(109 yuan

 
 L 

(104) 

Statistical 
data of GDP 
(109 yuan  GP GEP GEGEP GP GEP GEGEP 

1980 461.67 394.79 103.52 100.56 103.521 103.800 0.0286 0.00001 0.00271 
1981 176.32 413.02 107.69 111.29 107.696 107.504 0.0309 0.00006 0.00145 
1982 499.13 420.50 114.10 120.02 114.687 115.421 0.0519 0.00514 0.01158 
1983 527.22 435.60 123.40 133.63 123.374 123.460 0.0829 0.00021 0.00049 
1984 561.02 447.50 147.47 147.95 142.777 147.238 0.0032 0.03182 0.00157 
1985 632.11 455.90 175.71 171.68 173.509 175.821 0.0229 0.01253 0.00063 
1986 710.51 466.94 194.67 199.85 193.524 193.802 0.0266 0.00589 0.00446 
1987 780.12 470.93 220.00 222.45 217.766 217.706 0.0114 0.01015 0.01043 
1988 895.66 465.15 259.64 252.39 260.763 256.438 0.0279 0.00433 0.01233 
1989 988.65 469.79 283.34 282.81 287.707 286.217 0.0019 0.01541 0.01015 
1990 1075.37 470.07 310.15 308.42 310.990 309.670 0.0056 0.00271 0.00155 
1991 1184.58 479.67 342.75 349.05 346.464 347.097 0.0184 0.01084 0.01268 
1992 1344.14 485.70 411.24 403.05 410.710 410.960 0.0199 0.00129 0.00068 
1993 1688.02 503.10 536.10 529.49 531.169 553.134 0.0123 0.00920 0.03177 
1994 2221.42 513.00 725.14 714.81 728.118 729.770 0.0142 0.00411 0.00639 
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The function evolved by GP is  

GDP=exp ( ln (K)-576.032/L)-ln (K+L)  

The function evolved by GEP is  

GDP=tan(sin(sin(L)/cos(K)))+sin(tan(L))*9.16+log(abs(tan(L)))+K*log(log(abs 

(sqrt(L-6.44)+L-K)))/6.32+log(14.46*sqrt(L)+sin(K))/sin(log(K+L))+tan(log(L+5.08)

*L3/-9.58) 

The function evolved by GPGEP is  

GDP=2*((tan(-2.95022)*K)-sqrt((2*K)))-8.92026-2*(((cos(sqrt(((-0.36897)+K)))*

(-8.17927))/(2.44667))-tan(ln(K-5.137215)))-(tan(0.450852-K)-0.99622)+tan(exp(cos

(ln(K))))+exp(tan(K))/cos(cos(L))+tan(((cos(sqrt(K-0.36897))*(-8.17927))/(2.44667))

-tan(ln(K-5.137215))) 

Table 5. Comparison of fitting results by GP ,GEP and GEGEP 

Calculation result of GDP
109   yuan  Relative error of GDP 

Year 
K 

(109 yuan
L 

(104) 

Statistical 
data of GDP 
(109 yuan GP GEP GEGEP GP GEP GEGEP 

1995 2843.48 515.30 920.11 921.64 922.012 921.342 0.0017 0.00207 0.00134
11996 3364.34 512.00 1102.10 1083.91 1107.010 1126.604 0.0165 0.00446 0.02223

4   Conclusions 

This paper puts forward a new algorithm GEGEP, which takes GEP as foundation, 
improves gene structure and introduces the learning mechanism. The learning mecha-
nism benefits preserving good structure which leads to a better evolutionary process. So 
it has the potential of identifying useful structural information emergent in the evolu-
tionary process. Practical examples show that this alg- orithm possesses the advantages 
of automation of the modeling process, more flexible and various model structures, 
wider range of applications , faster speed of convergence and higher precision of fitting 
and predicted datum. 

Future research on GEGEP will mainly focus on the following:  

(1) Here we only consider Univariate EDA Model and do not consider Bivariate 
EDA Model and Multivariate EDA Model. So next we will try to use Bivariate EDA 
Model or Multivariate EDA Model. (2) The speed of algorithm has decreased because 
of large quantities of computation spending for statistics. We will adopt some methods 
to improve. (3)We will realize parallelism which can further improve the ability of 
solving complex problems. (4)Here we only realize one-layer call model , next we will 
realize multilayer call model.  
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Abstract. This paper designs a new kind of structured population and evolu-
tionary operators to form a novel algorithm, Organizational Evolutionary Algo-
rithm (OEA), for solving constrained optimization problems. A simple and non 
problem-dependent technique is incorporated into OEA to handle the con-
straints. In OEA, a population consists of organizations, and an organization 
consists of individuals. All evolutionary operators are designed to simulate the 
interaction among organizations. In experiments, 4 well-studied engineering de-
sign problems are used to test the performance of OEA. The results show that 
OEA obtains good results both in the solution quality and the computational 
cost. 

Keywords: Evolutionary algorithms, organization, constrained optimization. 

1   Introduction 

In economics, R. H. Coase explains the sizing and formation of organizations from 
the framework of transaction costs [1]. The basic idea is that the organization exists 
because it reduces the overhead transaction costs associated with exchanging goods 
and services. This concept was introduced to the classifier based on genetic algo-
rithms by Wilcox in 1995 [2], which put emphasis on inventing an autonomous 
mechanism using transaction costs for forming the appropriately sized organizations 
within a classifier. Actually, in the real world situation, to achieve their purposes, 
organizations will compete or cooperate with others so that they can gain more re-
sources. As a result, the resources will be reasonably distributed among all organiza-
tions little by little. This process plays an important role in human societies. From the 
viewpoint of computing, we think such a process can be viewed as a kind of optimiza-
tion, and is an interesting new source for designing EAs. 

Taking inspiration from the aforementioned process, this paper proposes a new 
frame for evolutionary optimization, namely, first composing organizations by mem-
bers, which are equivalent to the individuals in traditional EAs, and then composing 
population by organizations, so that a structured population results. In this frame, all 
evolutionary operations are performed on organizations. Therefore, three evolutionary 
operators are developed for organizations. These operators are composed of several 
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crossover and mutation operations in common use so that the effect of the new frame 
can stand out. This new evolutionary frame is named as Organizational Evolutionary 
Algorithm (OEA). 

Being different from [2], OEA does not put emphasis on forming the appropriately 
sized organizations, but on simulating the interaction among organizations. This is 
realized by the three evolutionary operators. Therefore, in OEA, all evolutionary 
operators are not directly performed on individuals, but on organizations. As a result, 
there is no global selection at all, so the global fitness distribution is not required. An 
organization interacts with others so that the information can be transferred to them. 
Obviously, such a model of the population is closer to the real evolutionary mecha-
nism in nature than the traditional model. 

In [3], we also propose a new EA, OCEC, for solving classification problems on 
the basis of organizations. But the organizations in OCEC are different from those of 
OEA. OCEC is designed with the intrinsic properties of classification in mind. Al-
though both the organizations in OCEC and in OEA are composed of members, the 
members in OCEC stand for the examples in the training set while the members in 
OEA stand for the real-valued vectors in the search space. Moreover, the fitness in 
OCEC is especially designed so that the different importance of the attributes can 
stand out, while the fitness in OEA is the value of the objective functions. Of course, 
OCEC and OEA also have some similarities. Both of them simulate the interaction 
among organizations to solve problems. 

2   Organizational Evolutionary Algorithm 

2.1   Problem Definition 

A constrained optimization problem can be formulated as solving the objective 
function 

1 2minimize  ( ),     ( ,  ,  ,  )nf x x x= ∈x x  (1) 

where n⊆  defines the search space which is an n-dimensional space bounded by 

the parametric constraints i i ix x x≤ ≤ , i=1, 2, …, n. Thus, [ ],  = x x , where 

1 2( ,  ,  ...,  )nx x xx =  and 1 2( ,  ,  ...,  )nx x xx = . The feasible region  is defined as 

{ }( ) 0, 1,  2,  ,  n
jg j m= ∈ ≤ =x x  (2) 

where gj(x), j=1, 2, …, m are constraints. 
In this paper, the constraints are handled using a comparison mechanism based on 

the following criteria [4]: 1) Between two feasible solutions, the one with the highest 
fitness value wins; 2) If one solution is feasible and the other one is infeasible, the 
feasible solution wins; 3) If both solutions are infeasible, the one with the lowest sum 
of constraint violation is preferred. This technique is non problem-dependent, and no 
parameter need to be tuned. 
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2.2   Organization Definition 

In OEA, an organization consists of several members, and a member just is a solution 
of the objective function. We define Member as follows, 

Definition 1. A Member is a real-valued vector that belongs to the search space, 
namely, Member∈ . There are two measures, MemberF and MemberV, to evaluate 

the member’s quality. MemberF stands for the fitness, and it is computed as follows, 

MemberF=-f(Member) (3) 

MemberV stands for the sum of constraint violation, and it is computed as follows, 

{ }1
max 0, ( )

mV
jj

g
=

=Member Member  (4) 

Thus, the purpose of OEA is maximizing MemberF of the members. When we com-
pare the qualities of two members, both MemberF and MemberV should be consid-
ered. Therefore, the members are compared according to Definition 2. 

Definition 2. If two members, Member1 and Member2, satisfy (5) or (6) or (7), then 
Member1 is better than Member2, and labeled as 1 2Member Member . 

( ) ( ) ( )1 2 1 2=0   and  0   and  V V F F= >Member Member Member Member  (5) 

( ) ( )1 2=0   and  0V V >Member Member  (6) 

( ) ( ) ( )1 2 1 2>0   and  0   and  V V V V> <Member Member Member Member  (7) 

Definition 3. An Organization, org, is a set of members, and the best member is 
called Leader, which is labeled as Leaderorg, that is, an organization and the leader 
satisfy (8) and (9), where |org| indicates the number of elements in org. 

{ }( ) ( )1 2 | |,  ,  ...,    and  orgorg org= ≠ ∅Member Member Member  (8) 

,   orgorg∀ ∈Member Leader Member  
(9) 

When comparing the qualities of two organizations, we just compare the qualities of 
their leaders. Namely, we say org1 is better than org2 if 

1 2org orgLeader Leader , and 

labeled as 1 2org org . 

2.3   Evolutionary Operators for Organizations 

In the real world situation, there is a fierce competition among organizations, and 
those with feeble strength always are annexed by others. In OEA, the strength of an 
organization manifests in the fitness of the leader. So the purpose of each organization  
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is to increase the leader’s fitness as much as possible. To achieve this purpose, each 
organization must interact with others. On the basis of such interaction, three evolu-
tionary operators are designed. 

Splitting operator. In human societies, an organization whose size is too large usu-
ally is split into several small organizations so that they can be easily managed. In 
OEA, if most of the members belong to the same organization, the evolutionary op-
erations would be disabled. So when an organization’s size exceeds a limit, this  
organization must be divided. This is the function of the splitting operator. In this 
operator, MaxOS is the parameter controlling the maximum size of an organization, 
and MaxOS>1. If a parent organization, orgp, satisfies (10), orgp will be split into two 
child organizations, orgc1 and orgc2. 

( ) ( ) ( )( ){ }| |  or | |  and 0,1
o

org
NOS OSorg Max org Max U> ≤ <  (10) 

Where U(⋅, ⋅) is a uniform random number generator, and No the number of organiza-
tions in initialization. To keep the randomicity and a small difference between the 

sizes of orgc1 and orgc2, 
| |

3
porg

 to 
2| |

3
porg

 members are first randomly selected from orgp 

to form orgc1, and the remainder forms orgc2. 

Annexing operator. This operator realizes the competition between two organiza-
tions. The better organization is the winner, and the other one is the loser. The winner 
will annex the loser to form a larger organization. The members of the winner can 
directly go into the new organization while those of the loser must die. But the mem-
bers of the loser perhaps still have useful information, so the leader of the winner 
interacts with them to generate members for the new organization. The detail of this 
operator is given as follows. 

Two parent organizations, orgp1={x1, x2, …, xM} and orgp2={y1, y2, …, yN}, are 
randomly selected from the current generation. Without loss of generality, let 
orgp1 orgp2. Thus, orgp1 will annex orgp2 to generate a child organization, orgc={z1, 
z2, …, zM, zM+1, zM+2, …, zM+N}. Where zi=xi, i=1, 2, …, M. Let AS∈(0, 1) be a prede-
fined parameter. Then, if Uj(0,1)<AS, zj, j=M+1, M+2, …, M+N are generated by 
Annexing Strategy 1 (AnStr1); otherwise, they are generated by Annexing Strategy 2 
(AnStr2). The subscript j in Uj(0,1) indicates that the random number is generated 
anew for each value of j, and AnStr1 and AnStr2 are given by (11) and (12), respec-
tively. Given that the leader of orgp1 is (x1, x2, …, xn) and new members are rj=(rj,1, 
rj,2, …, rj,n), j=1, 2, …, N. 

In AnStr1, rj, j=1, 2, …, N are determined by (11), 

( ), ,

    

   ,   ,   1,  2,  ...,  

   otherwise

k k k

j k k k k k k k k j k

k

x x

r x x x x y k n

β
β β α

β

<
= > = + × − =  (11) 

where αk is a uniformly distributed random number over [0, 1], and is generated anew 
for each value of k. 
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In AnStr2, rj, j=1, 2, …, N are determined by (12), 

( ) ( ) ( ) 1

,

0,1    0,1
,     1,  2,  ...,  

                                   otherwise
k k k k n

j k

k

x U x x U
r k n

x

+ × − <
= =  (12) 

After rj, j=1, 2, …, N are calculated out, zj+M, j=1, 2, …, N are determined by (13), 

( ) ( ) ( ){ }
      

       and  0,  1 exp

     otherwise

j j j

F F
j M j j j j j j

j

U+ = < −

r r y

z r y r r y

y

 (13) 

As can be seen, when rj is better than yj, rj gets into orgc so as to improve the qual-
ity of orgc. When rj is worse than yj, in order to maintain the diversity, rj gets into orgc 
with a probability. The more rj is close to yj, the greater the probability is. For more 
clarity, this operator is shown in Fig.2. orgc has (M+N) members, where Memberi, 
i=1, 2, …, M, come from orgp1 and Memberi, i=M+1, M+2, …, M+N are generated by 
the leader of orgp1 and the members of orgp2 together. After orgc is generated, its 
leader is also selected. In this case, the leader is the ith member, that is, the leader of 
orgp1, or the best member among MemberM+1, MemberM+2, …, MemberM+N. 

Cooperating operator. This operator realizes the cooperation between two organiza-
tions. The leaders of the organizations interact with each other to generate two new 
members. Then, in each organization, a member which is worse than the new member 
is replaced. As a result, two new organizations are generated. The detail of this opera-
tor is given as follows. 

Two parent organizations, orgp1={x1, x2, …, xM} and orgp2={y1, y2, …, yN}, are 
randomly selected from the current generation. They will cooperate with each other to 
generate two child organizations, orgc1 and orgc2. Let CS∈(0, 1) be a predefined pa-
rameter. Then, if U(0, 1)<CS, then orgc1 and orgc2 are generated by Cooperating Strat-
egy 1 (CoStr1); otherwise, they are generated by Cooperating Strategy 2 (CoStr2), 
where CoStr1 and CoStr2 are given by (14) and (15), respectively. Given that the 
leader of orgp1 is (x1, x2, …, xn), the leader of orgp2 is (y1, y2, …, yn), and two new 
members are q=(q1, q2, …, qn) and r=(r1, r2, …, rn). 

In CoStr1, q and r are determined by (14), 

( )
( )

1
,     1,  2,  ...,  

1

k k k k k

k k k k k

q x y
k n

r x y

α α
α α

= × + − ×
=

= − × + ×
 (14) 

where αk is the same with that of (11). 
In CoStr2, q and r are determined by (15), 

( )
( )

1 1 1 2 2 2

1 1 1 2 2 2

1 2 1 1 1 2

1 2 1 1 1 2

,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  

,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  

i i i i i i n

i i i i i i n

x x x y y y x x x

y y y x x x y y y

− + + +

− + + +

=

=

q

r
 (15) 

where 1<i1<n, 1<i2<n, and i1<i2. 
After q and r are calculated out, orgc1 and orgc2 are determined by (16) and (17), 

respectively, 
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{ }1 2 1 1 2 1

1
1

,  ,  ,  ,  ,  ,  ,  ,     ,

                                                          otherwise
i i i M i p i

c

p

org
org

org

− + + ∃ ∈
=

x x x q x x x x q x
 (16) 

{ }1 2 1 1 2 2

2

2

,  ,  ,  ,  ,  ,  ,  ,     ,

                                                          otherwise

j j j N j p j

c

p

org
org

org

− + + ∃ ∈
=

y y y r y y y y r y
 (17) 

2.4   Implementation of OEA 

In OEA, the population consists of organizations, and the above three operators must 
be performed on organizations reasonable so that high quality members can be ob-
tained. In this paper, we control the three operators by means of evolution. In each 
generation, the size of each organization in the population is first checked. If the size 
of an organization satisfies (10), then the splitting operator is performed on this or-
ganization. Next, two organizations are randomly selected from the population, and 
annexing operator or cooperating operator are performed on them with the same prob-
ability. This process is continued until the number of organizations in the population 
is less than 2. The population evolves generation by generation. At last, the best 
member among all organizations is output as the result. The details are shown in 
ALGORITHM 1. 

ALGORITHM 1  Organizational Evolutionary Algorithm 
01: begin 
02:     Initializing population P0 with No organizations, 

and each organization has one member; 
03:     t←0; 
04:     while(the termination criteria are not reached)do 
05:     begin 
06:         For each organization in Pt, if it satisfies 

(10), performing the splitting operator on 
it, deleting it from Pt, and adding the child 
organizations into Pt+1; 

07:         while(the number of organizations in Pt is 
greater than 1)do 

08:         begin 
09:             Randomly selecting two parent organiza-

tions, orgp1 and orgp2, from Pt; 
10:             Performing the annexing operator or the 

cooperating operator on orgp1 and orgp2 
with the same probability; 

11:             Deleting orgp1 and orgp2 from Pt, and add-
ing the child organizations to Pt+1; 

12:         end; 
13:         Moving the organization in Pt to Pt+1; 
14:         t←t+1; 
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15:     end; 
16:     Output the best member among all organizations as 

the result; 
17: end. 

As can be seen, in the initialization, each organization has only one member, and 
the population has total No organizations. During the evolutionary process, the num-
ber of organizations varies from generation to generation due to the effects of the 
splitting operator and the annexing operator, but the number of members in the popu-
lation remains constant. 

3   Experimental Studies 

In this section, 4 well-studied engineering design problems (Welded Beam Design, 
Spring Design, Speed Reducer Design, and Three-Bar Truss Design) [5] are used to 
test the performance of OEA. Moreover, OEA is compared with Society and Civiliza-
tion Algorithm (SCA) [5]. OEA is terminated after 50 generations for Three-Bar 
Truss Design and 80 generations for the 3 other problems such that the number of 
function evaluations of OEA is less than that of SCA. The other parameters of OEA 
are set as follows: No=1500, MaxOS=20, AS=0.8, and CS=0.6. 

3.1   Experimental Results of OEA 

Table I summarizes the experimental results of OEA over 50 trials, which include the 
best, the median, the mean, the standard deviation, and the worst function value 
found. OEA provides 100% feasible solutions for all functions. As described in Table 
I, the standard deviations of the 4 problems is relatively small, so the performance of 
OEA is very stable in solving these problems. 

Table 1. The experimental results of OEA on the 4 engineering design problems over 50 trials 

f Best FV Median FV Mean FV St. dev. Worst FV Mean NFE 

Welded Beam 
Design 

2.3842157 2.3987177 2.4022077 1.09×10-2 2.4330366 25 549 

Spring  
Design 

0.01267551864 0.012719265 0.012715621 9.05×10-6 0.012721341 25 650 

Speed Reducer 
Design 

2994.580437 2994.705544 2994.723808 8.75×10-2 2994.910336 25 590 

Three-Bar 
Truss  

Design 
263.8958 263.8972 263.8973 1.26×10-3 263.90055 17 306 

3.2   Comparison Between OEA and SCA [5] 

The comparison is shown in Table II where the results of SCA are obtained from [5]. 
As can be seen, except the Best FV of OEA for the Spring Design Problem is little 
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worse than that of SCA, OEA significantly outperforms SCA for the 4 problems in 
terms of all the four criteria. 

Table 2. The comparison between OEA and SCA over 50 trials 

f Method Best FV Median FV Mean FV St. dev. Worst FV NFE of Best 

OEA 2.3842157 2.3987177 2.4022077 1.09×10-2 2.4330366 25 668 Welded 

Beam Design SCA 2.3854347 3.0025883 3.2551371 9.59×10-1 6.3996785 33 095 

OEA 0.01267551864 0.012719265 0.012715621 9.05×10-6 0.012721341 25 293 Spring 

Design SCA 0.01266924934 0.012922669 0.012922669 5.92×10-4 0.016717272 25 167 

OEA 2994.580437 2994.705544 2994.723808 8.75×10-2 2994.910336 25 919 Speed Re-

ducer Design SCA 2994.744241 3001.758264 3001.758264 4.01 3009.964736 54 456 

OEA 263.8958  263.8972 263.8973 1.26×10-3 263.90055 17 557 Three-Bar 

Truss Design SCA 263.8958466 263.8989 263.9033 1.26×10-2 263.96975 17 610 
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Abstract. Multi-objective problems with parameter interactions can
present difficulties to many optimization algorithms. We have investi-
gated the behaviour of Simplex Crossover (SPX), Unimodal Normally
Distributed Crossover (UNDX), Parent-centric Crossover (PCX), and
Differential Evolution (DE), as possible alternatives to the Simulated
Binary Crossover (SBX) operator within the NSGA-II (Non-dominated
Sorting Genetic Algorithm II) on four rotated test problems exhibiting
parameter interactions. The rotationally invariant crossover operators
demonstrated improved performance in optimizing the problems, over a
non-rotationally invariant crossover operator.

1 Introduction

Traditional genetic algorithms that use low mutation rates and fixed step sizes
have significant trouble with problems with interdependent relationships between
decision variables, but are perfectly suited to many of the test functions currently
used in the evaluation of genetic algorithms [1]. These test functions are typically
linearly separable and can be decomposed into simpler independent problems.
Unfortunately, many real-world problems are not linearly separable, although
linear approximations may sometimes be possible between decision variables.

Interdependencies between variables can be introduced into a real-coded func-
tional problem by rotating the coordinate system of a test function. A rotated
problem cannot be solved efficiently by the directionless step-sizes and low mu-
tation rates that Genetic Algorithms typically use [1]. Although the NSGA-II
is a very robust multi-objective optimization algorithm it suffers from similar
limitations as traditional Genetic Algorithms on these problems.

Previous work has reported on the poor performance of a number of Multi-
objective Evolutionary Algorithms, including the NSGA-II, on a rotated prob-
lem [2]. NSGA-II uses a crossover technique called Simulated-Binary Crossover
(SBX) [3,4], combined with a uniform crossover operator in which half the time
parameters of an offspring solution are replaced with parameters from a par-
ent solution. This crossover technique searches effectively along the principle

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 310–317, 2006.
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coordinate axes of the decision space. This makes finding more optimal solu-
tions difficult when the decision space is large, and the problem has parameter
interactions. Problems which are rotated, and not aligned with the coordinate
axes typically require correlated self-adapting mutation step sizes in order to
efficiently search for optimal solutions [1].

Differential Evolution (DE) has previously demonstrated rotationally invari-
ant behaviour in the single objective and multiobjective domain [5,6,7]. Simplex
Crossover (SPX), Parent Centric Crossover (PCX), and unimodal Normal Dis-
tribution Crossover (UNDX-m) have also demonstrated rotationally invariant
behaviour on single objective test problems. This provides the motivation to
study the worth of these multi-parent crossover techniques on rotated multi-
objective optimization problems, where such characteristics are desirable.

Experiments have been conducted on rotated problem from [7]. These prob-
lems were rotated arbitrarily and uniformly in the decision space in order to test
the rotationally invariant behaviours of the crossover operators.

In Section 2 we will briefly introduce the crossover operators used in this
study, followed by Section 3, where the methodology and parameters associ-
ated with the experiments are discussed. Section 4 discusses the results of these
experiments, followed by the conclusions drawn from this study in Section 5.

2 Background

The NSGA-II uses a simulated binary crossover operator [4] with uniform cross-
over to generate offspring parameter values. The SBX operator takes two par-
ents and produces two offspring, but does not have the property of rotational
invariance because the correlation between the location of parents, and the lo-
cation of offspring which are generated, is lost under a rotation of the decision
space. The discrete crossover of variables also results in non-rotationally invari-
ant behaviour. For example, if an offspring vector has a parameter replaced by a
parent parameter, as it might under some uniform crossover scheme, rotational
invariance is destroyed [8]. It has been shown that the SBX has a zero proba-
bility of generating some points in the space between two parents [9], although
in the new version of SBX implemented in the latest revision of NSGA-II, this
problem has been addressed by generating offspring in quadrants adjacent to the
location of the parents, as well as surrounding the parents.

The UNDX crossover [10] has demonstrated excellent performance in optimiz-
ing highly epistatic functions [11]. It generates offspring around a centroid region
specified by a number of parents. It has been applied to some difficult real world
problems such as design of optical lens systems [12]. A multi-parent variant of
the UNDX was proposed, called UNDX-m [13]. The UNDX-m covers the search
space more effectively by having a greater diversity of offspring generated, and
it is this variant that we will be considering.

The PCX [14,15] is similar to the UNDX-m, but instead of distributing the
offspring around the centroid of a number of parents, the offspring distribute
around the parents themselves.
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The Simplex crossover (SPX) was originally proposed in [16]. It generates a
simplex from a number of parents. This simplex is expanded, and offspring are
generated inside the expanded region.

The other reproduction technique studied here is Differential Evolution, which
differs from other EAs in the mutation and recombination phase. Differential
Evolution has also been applied to multi-objective problems [17,18,19,20,6,7].
Unlike stochastic techniques such as Genetic Algorithms and Evolutionary Strat-
egies, where perturbation occurs in accordance with a random quantity, Differen-
tial Evolution uses weighted differences between solution vectors to perturb the
population. The variant of differential evolution used in this study is known as
DE/current-to-rand/1 [8]. In order to maintain diversity, a Log-normal dithering
operator was employed as well [21]. This operator maintains rotational invari-
ance, while helping to randomly perturb individuals within the population.

3 Experiments

In order to test each of the crossover techniques, the crossover operator of NSGA-
II was replaced with one of the rotationally invariant crossover operators. For
the SPX, UNDX-m, and PCX, a single set of parents was randomly selected each
generation from the mating pool. These parents were used to generate 100 new
offspring individuals. For the DE and SBX variants, parents were randomly se-
lected from the mating pool, and this was repeatedly done in a single generation
for each of the 100 offspring generated. A population size of 100 individuals was
used for each of the algorithms on each of the test problems. A number of the
crossover techniques investigated here have not previously been studied within
the NSGA-II framework, and we expect that some of the choices of our parame-
ter settings to be sub-optimal for the problems explored. It is not our intention
to perform a comparative study in order to find the best parameter settings of
these crossover techniques, but we do expect non-specifically tuned settings to
demonstrate improvements in the performance of the NSGA-II with the rota-
tionally invariant behaviour of the DE, SPX, UNDX-m, and PCX operators. A
number of appropriate parameter settings have been reported for these operators
and we have utilised these reported settings where possible. It should be noted
that these settings were reported with respect to single-objective optimization
problems. We leave a more detailed comparative study of these operators on
rotated multi-objective problems, as an area of future study.

For the DE variant of NSGA-II, F was set to 0.8 and K was set to 0.6.
Suggestions from the literature helped guide our choice of parameter values for
the NSDE [5]. The factor which controls the spread of the distribution for F in
the dithering operator was set to 0.5 [21].

In the SPX operator, the simplex size, ε, determines the size of the expanded
simplex, and we have used

√
n + 1 which was used in previous studies in the

single objective domain, where n is the decision space dimension. A mutation
rate of 0.1 was also used with the UNDX-m, PCX, SPX, and SBX variants, using
the mutation operator in NSGA-II. For the UNDX-m operator, the parameters
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σξ = 1√
m

and ση= 0.35√
n−m

were recommended in [13] and we have used these
values in this study. For the PCX, the σξ and ση parameters were set to 0.7
and 0.2 respectively. The PCX variant is sensitive to the σξ parameter. If σξ is
too small the offspring generated do not spread across the Pareto-optimal front.
In the UNDX-m and PCX version of NSGA-II, m was assigned a value of 3.
The NSGA-II used a crossover rate of 0.9, but the other variants each used a
crossover rate of 1.0.

Experiments were conducted on the unimodal problem R1, R2, R3, and R4,
from [7]. Each of these problems incorporates features which are designed to trap
points from progressing along the Pareto-optimal front. Problem R1 is unimodal.
ProblemR2 is discontinuous in the objective space. Problem R3 has a non-uniform
mapping between the decision and objective spaces. Problem R4 is deceptive and
has a non-local Pareto-optimal front which can trap points from progressing to the
global Pareto-optimal front. These problems are described in more detail in [7].
The problems are also 10-dimensional in the decision space. Rotations were per-
formed in the decision space, on each plane, using a random uniform rotation ma-
trix generated using the technique described in [7]. The rotation introduces non-
linear dependencies between all parameters. Each algorithm was run 50 times on
each test problem, for a total of 800 generations (80,000 problem evaluations) for
each run. A new random uniform rotation matrix was generated for each run of
each algorithm. For the purposes of evaluating the algorithms, the generational
distance metric was employed, as well as its inverse, in order to measure both the
convergence to the Pareto-optimal front, and the diversity of solutions across the
front [6]. The GD(Q,P*) metric measure the convergence of the non-dominated set
Q, towards the Pareto-optimal set P. Similarly, the GD(P*,Q) metric measure the
average distance of P to Q, thereby quantifying the degree that Q covers the set
P. As both measures approach zero, one can expect good coverage of the Pareto-
optimal set, as well as good convergence.

4 Discussion and Results

Previous work has reported on problem R1 [7] and the tendency of the NSGA-
II to migrate non-dominated solutions away from the Pareto-optimal region, as
well as the difficulty in expanding across the Pareto-optimal front because of
these easily favoured non-dominated solutions.

Each of the rotationally invariant crossover operators apparently yields supe-
rior performance over the SBX on this relatively simple problem, with respect to
both convergence to the Pareto-optimal front and coverage across the front. The
boxplots in Figure 1 also demonstrates that the variation in both the GD(Q,P*)
which measures convergence, and the GD(P*,Q) which measure spread, is rela-
tively low for the SPX, DE, UNDX, and PCX variants.

Over successive generations, the SBX operator generates non-dominated so-
lutions which skew away from the Pareto-optimal front [7]. In Problem R2, the
Pareto-optimal front is discontinuous. This characteristic exacerbates this be-
haviour further, because the infeasible regions do not allow better non-dominated
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DE UNDX SPX PCX SBX

R1

DE UNDX SPX PCX SBX

R2

DE UNDX SPX PCX SBX

R3

DE UNDX SPX PCX SBX

R4

Fig. 1. Boxplots of the GD(Q, P∗) and GD(P∗, Q) for problem R1, R2, R3, and R4.
The GD(Q, P∗) boxplot is always to the left of the GD(P∗, Q) boxplot.

solutions to be found through independent perturbations of the decision vari-
ables when the problem is rotated, as can be seen with the SBX in Figure 2.
Contrasting this, from Figure 2, DE does manage to find a variety of solutions
close to the Pareto-optimal region. In the boxplots of Figure 1 it is apparent that
there is a high variation in the convergence and diversity of the non-dominated
solutions found with SBX on R2. The measured convergence and diversity is
also worse than the other rotationally invariant operators.

For Problem R3, the NSGA-II wih SBX achieved a rather good spread of
non-dominated solutions, but was not able to converge sufficiently to the Pareto-
optimal front. Each of the rotationally invariant crossover operators outper-
formed the SBX on this problem as well.

Problem R4 is highly multimodal, and deceptive. When this problem is ro-
tated, a number of regions can hamper SBX from increasing the spread of solu-
tions across a non-dominated front. This is apparent in the boxplot of Figure 1
as well, where the average of the GD(P*,Q) metric is significantly worse than
the rotationally invariant schemes.
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Fig. 3. Average GD(Q, P∗) and GD(P∗, Q) for problem R2 over 300 generations

From the boxplots in Figure 1 it is apparent that the DE variant demonstrated
very competitive performance with respect to the spread of solutions on Problem
R1, R2, and R3. It is also of relevance that the number of evaluations required
can be significantly reduced through the use of rotationally invariant crossover
operator in the presence of parameter interactions. This is demonstrated by the
plots in Figure 3. These plots demonstrate the superior performance on Problem
R2 of the DE, SPX, UNDX, and PCX variants, in comparison with the base-
line NSGA-II with SBX. It is apparent that the rotationally invariant crossover
operators have faster convergence to the Pareto-optimal front, while also main-
taining a diverse set of solutions across the front. This has important practical
relevance to real-world problems which often exhibit parameter interactions and
also have computationally expensive evaluations of solutions.

5 Conclusion

This paper has described an empirical study of the effects that rotation of prob-
lems has on the NSGA-II. Rotation can trap the search on four problems with the
properties of uni-modality, discontinuous Pareto-optimal fronts, a non-uniform
mapping between the objective and decision space, and a problem with a decep-
tive front. We have demonstrated that on these four problems, that the UNDX,
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SPX, and DE outperformed the SBX, taking into consideration the performance
metrics for convergence to the Pareto-optimal front and distribution of solutions
across the front.

There are a number of future avenues of work which may be worthwhile
considering, such as the effect of rotation on problems with more than two ob-
jectives, and when the dimensionality of the decision space increases. One would
expect an increase in difficulty with an increase in the decision space dimension,
with degraded non-dominated solutions becoming even more likely with non-
rotationally invariany algorithms, because there will be far more non-dominated
solutions generated which are not Pareto-optimal.

Secondly, it would be useful to conduct further tests on problems which do
not have a linearly distributed Pareto-optimal set. This could be achieved using
the Okabe framework for constructing multiobjective test problems [22].
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Abstract. Two novel schemes of selecting the current best solutions for mul-
tiobjective differential evolution are proposed in this paper. Based on the search 
biases strategy suggested by Runarsson and Yao, a hybrid of multiobjective dif-
ferential evolution and genetic algorithm with (N+N) framework for constrained 
MOPs is given. And then the hybrid algorithm adopting the two schemes respec-
tively is compared with the constrained NSGA-II on 4 benchmark functions con-
structed by Deb. The experimental results show that the hybrid algorithm has 
better performance, especially in the distribution of non-dominated set. 

1   Introduction 

Genetic Algorithm (GA) for Multiobjective Optimization Problems (MOPs) was 
suggested by Rosenberg in his dissertation as early as 1967 [1]. However, until 1985, 
the first genetic algorithm for MOPs, namely VEGA, was proposed by Shaffer [2]. 
Because of the deficiencies of VEGA, Multiobjective Evolutionary Algorithms 
(MOEAs) have been paid more and more attention. Two generations of Evolutionary 
Multiobjective Optimization have been classified by Coello Coello [3]. The first gen-
eration (1985-1998) emphasizes the simplicity of algorithms, where the most repre-
sentative are NSGA [4], NPGA [5] and MOGA [6]. The second generation started 
when elitism became a standard mechanism, which was firstly adopted by Zitzler [7] 
in SPEA. In this generation, efficiency is stressed and the most representative are 
SPEA [7], SPEA2 [8], PAES [9] and NSGA-II [10]. Meanwhile, the -dominance 
MOEAs [11], particle swarm optimization [12] and differential evolution [13] for 
MOPs are also proposed in this generation. These MOEAs are mainly for uncon-
strained MOPs. However, the real-world MOPs are often with constraints. To solve 
these problems, the crucial problem is how to handle the constraints in MOPs, i.e., 
how to balance the search between the feasible and infeasible regions. 

Runarsson and Yao [14] proposed the search biases strategy and introduced the dif-
ferential evolution to their algorithm [15] in order to achieve a good compromise 
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between feasible and infeasible regions in constrained single objective optimization. 
In this paper, the search biases strategy is introduced to solve constrained MOPs. 
Firstly, two novel schemes of selecting the current best solutions for multiobjective 
differential evolution (MODE) in constrained MOPs are proposed. And then a hybrid 
of MODE and GA with the (N+N) framework for constrained MOPs is given. Finally, 
the hybrid algorithm is implemented on NSGA-II [10] with the two schemes respec-
tively, and is compared with a state-of-the-art MOEA, i.e., constrained NSGA-II 
(CNSGA-II) [20]. 

2   Preliminary 

2.1   Problem Definition 

Definition 1 (Constrained MOP). A general constrained MOP includes a set of n 
decision variables, a set of m objective functions, and a set of p inequality constraints 
(equality ones may be approximated by inequalities [14]). The goal of optimization is 
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Where x is the decision vector in decision space X, and f(x) is the objective vector in 
objective space Y. 

In constrained optimization problems, p constraints are usually transformed to a 
constraint violation function, which is defined in (2). 
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Where the exponent  is usually 1 or 2 and the weights wi>0 (j=1,…,p) would be 
tuned during search ( =1 and w=1 in this study). And the feasible set Xf is defined as 
the set of decision vector x which satisfy the p constraints, i.e., (g(x))=0. 

Definition 2 (Pareto Dominance "" ). For any two decision vectors a and b, 

)()( 1)()( 1 bababa jjii ffmjffmi <≤≤∃∧≤≤≤∀⇔  . (3) 

The non-dominated set P in Xf is Pareto-optimal set (POS) and the set f(P) is Pareto-
optimal front (POF). 

2.2   Constraint Pareto Dominance 

Among constraint handling methods for MOPs, the most promising one is the Con-
straint Pareto Dominance proposed by Deb [10] [20], which is defined as follows. 

Definition 3 (Constraint Pareto Dominance "" c ) For any two decision vectors a, b, 
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3   Hybrid of MODE and GA for Constrained MOPs 

3.1   Differential Evolution 

Storn and Price [16] proposed the differential evolution method which is a simple and 
efficient adaptive scheme for global optimization over continuous spaces, and gave 
two most promising schemes of differential evolution. Differential Evolution (DE) is 
a population-based evolutionary algorithm with simple mutation and crossover opera-
tors to create next generation. DE has similarities with traditional Evolutionary Algo-
rithms. However, it doesn’t employ binary encoding like a simple GA and doesn’t 
utilize a probability density function to self-adapt its parameters like an ES [21]. 

Runarsson and Yao [14] suggested the search biases in constrained single objective 
optimization, and proposed the corresponding method as follows. When creating the 
next generation based on ES ( , ),  individuals are generated according to 

)( 11 +−+←′
iik xxxx γ  . (5) 

Where x1 denotes the top one after stochastic ranking for the whole individuals, i.e., 
the current best solution, xi and xi+1 are random samples from the population, and  is 
the parameter of search step length. It is suggested by the authors [19] that (5) can be 
deduced from the second scheme of the differential evolution method in [16]. And (5) 
has obtained satisfying results for constrained single objective optimization [14]. 

3.2   Two Schemes of MODE 

According to (5),  individuals generated newly are close to x1, which denotes the 
current best solution in the population. However, there are usually more than one 
solutions in the non-dominated set of MOPs. Furthermore, the diversity of population 
is crucial for MOPs, which determines whether the pure POF could be found or not. 
Therefore the diversity of population and the pureness of the non-dominated set will 
be affected seriously if (5) is applied to constrained MOPs directly. So how to choose 
the “current best solutions” in MOPs becomes a key problem. 

In order to preserve the population diversity, the “current best solutions” should 
be extended to a solution set, which could denote the main search biases in MOPs. A 
simple way is to select the boundaries of current non-dominated solutions as the “cur-
rent best solutions”. So the number of “current best solutions” is no more than the 
dimension of objective space. Individuals will be generated by sampling the bounda-
ries uniformly, which is described in Algorithm 1. 

In Algorithm 1, N denotes the size of population and  is the percentage of the in-
dividuals generated by B-Scheme. The N individuals are close with the boundaries 

Algorithm 1. B-Scheme (Boundaries as the current best solutions) 
1. for k = 1 to N do 
2.     xbest=Uniform_Sample(Boundary(Non_Dominated_Set)) 
3.     i=rand[1,N] 
4.    )( 1+−+←′

ibestik xxxx γ  

5. end for 
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of current non-dominated set. Then the boundary search ability will be improved, and 
the population diversity could be maintained. So the pure POF will be located with 
larger probability. 

However, it may be still hard to find the pure POF just by enhancing the boundary 
search ability when the distribution of POF is non-continuous. Because the bounda-
ries of non-dominated set can only represent part of the search biases in such situa-
tions. To solve this problem, the representative individuals should be picked out from 
current population, and offspring are generated by differential evolution around the 
representatives to improve the search ability. So a better distribution of non-
dominated set could be obtained. In this paper, a fitness function based on constraint 
Pareto dominance and crowding distance [10] is proposed to pick out the representa-
tive individuals, which is given as Algorithm 2. 

Algorithm 2. Representative Individuals Selection 
1. Split the population P according to "" c , and get kFFP 1=  

2. Calculate the crowding distances I of P: the feasible individuals’ values are 
calculated by the definition in [10] while the infeasible ones’ values are set to 0 

3. Calculate the fitness of the individuals in P: iFIifitness ∈++= xxx )),(2/(1)(  

4. Sort P by fitness values and the top M are selected as the representatives 

The representative individuals selected by Algorithm 2 are feasible solutions or in-
feasible ones with smaller constraint violations. The diversity of these representative 
individuals is good because the crowding distance is employed. And then the off-
spring generated by differential evolution are close to these representatives. So the 
search ability to feasible region during evolution will be improved and the diversity of 
the offspring will be better. Treating the M representative individuals (RI) as the 
“current best solutions”, the offspring will be generated according to Algorithm 3. 

Algorithm 3. R-Scheme (Representative Individuals as the current best solutions) 
1. for k = 1 to N do 
2.     best=mod(k-1, M)+1 
3.     i=rand[1,N] 
4.    )( 1+−+←′

ibestik xRIxx γ  

5. end for 

According to the definition of crowding distance in [10], the I values of bound-
ary individuals in each layer are . Therefore, Algorithm 1 and Algorithm 3 are 
identical when M equals the number of the non-dominated set boundaries. But when 
M is less than the number of the boundaries, the representatives are part of the 
boundary individuals. Here the representatives may not denote the main search 
biases, and the diversity may be deteriorated in this condition. Thus the value of  
M should be greater than the number of non-dominated set boundaries to make  
a distinct difference otherwise the performance of R-Scheme will be similar to  
B-Scheme or even worse. 



322 M. Zhang et al. 

3.3   Hybrid Algorithm with the Framework of NSGA-II 

The hybrid algorithm (DE-MOEA) proposed in this paper is based on the (N+N) 
framework of NSGA-II [10]. And N individuals in the next generation are created as: 

N individuals are generated by MODE and the left ones are by genetic operators 
(crossover and mutation) like NSGA-II. DE-MOEA is described in Algorithm 4. 

Algorithm 4. DE-MOEA with (N+N) Framework 
1. Initialization: create the initial population P0, t=0, |P0|=N 
2. Evaluate the population Pt 
3. Pt+1=generate_next_pop(Pt)  
3.1. Calculate the fitness of individuals in Pt according to Algorithm 2 
3.2. Sort Pt by the fitness values and select the top N as population Qt 
3.3. Generate N individuals with MODE on Qt and put them to Pt+1 
3.4. Generate (1- )N individuals from Qt with binary tournament selection, 

crossover and mutation, and put the offspring to Pt+1 
3.5. Pt+1=Pt+1+Qt 
4. t=t+1, if termination satisfied then output non-dominated set, else go to step 2 

In Algorithm 4, the MODE in step 3.3 can be implemented by Algorithm 1 or Al-
gorithm 3 and the corresponding algorithms are denoted as HBGA and HRGA. 

In NSGA-II the termination is satisfied when the number of already split individu-
als is not less than N. However, it seems that it is needed to split the entire population 
in DE-MOEA, but actually it doesn’t. For any two individuals )(, jiFF ji ≠∈∈ ba  

1)(,1)( +<≤+<≤ jfitnessjifitnessi ba  . (6) 

So (7) follows easily 

jifitnessfitness <⇔< )()( ba  . (7) 

From (7) the terminating condition of splitting population in DE-MOEA is the same 
as NSGA-II, so the time complexity of algorithm 4 is equal to the NSGA-II. 

4   Experimental Results and Discussions 

4.1   Test Functions and Performance Measures 

In this section, 4 benchmark functions (CTP1, CTP2, CTP6 and CTP7) are chosen 
from [20] to evaluate the performance of DE-MOEA, which are described in (8), (9). 
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Where the decision space of each function has 5 dimensions, which are defined as: 
0 x1 1, -5 x2,3,4,5 5, and 

=
−+=

5

2

2 ))2cos(10(41)(
i ii xxxg π . For CTP1, J=2, a1, 2= 

(0.858, 0.728), b1, 2= (0.541, 0.295), and the parameters chosen to the different CTP2, 
CTP6 and CTP7 functions are listed in Table 1. 

Table 1. Parameter Settings in CTP2, CTP6 and CTP7 

Function  a b c d e 
CTP2 -0.2  0.2 10 1 6 1 
CTP6 0.1  40 0.5 1 2 -2 
CTP7 -0.05  40 5 1 6 0 

Performance measures for MOPs are analyzed and classified by Zitzler [17]. And 
the unary indicator D1R [17] and binary indictor V(A, B) [18] are selected here, which 
are defined as follows. 

∈
∈−= * ||/};min{)(1D R Xa

*XXbbaX  , (10) 

where X* denotes a reference set (1,000 uniform samples from POF in this paper), and 
X is the non-dominated set found by the algorithm. 

The definition of V(A, B) is the percentage of objective space dominated exclu-
sively by A in the smallest hypercube which contains the both non-dominated set A 
and B. Like [18], 50,000 Monte Carlo samples are taken to calculate the values. When 
calculating the hypercube we desire that the solutions with the first objective less than 
10-7 should be rejected in order to obtain more distinct differences between the two 
non-dominated sets by finite samples. The two situations are illustrated in Fig. 1 and 
Fig. 2, where the two non-dominated sets are obtained from CNSGA-II [20] and 
HBGA on CTP1 in a run. 
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Fig. 1. Two non-dominated set without rejection   Fig. 2. Two non-dominated set with rejection 

From Fig. 1, it can be found that there exist a few solutions with very large f2 val-
ues and quite little f1 values in each set. This will influence the quality of the V(A,B) 
seriously because the great majority of samples are located in the area which is domi-
nated by both sets and few samples can find out the slight but significant differences 
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between the both sets. The values of V(A,B) in Fig.1 is (0.0000%, 0.2180%), so we 
can assert that HBGA outperforms CNSGA-II on CTP1 [17]. However, from the 
corresponding value (0.1900%, 11.8260%) in Fig.2, this assertion can’t come into 
existence. This is because the differences between the both sets can be captured by 
this appropriate scale in Fig. 2 with 50,000 samples. Meanwhile, the rejection influ-
ences the experimental results little. The f1 values of all the benchmark functions are 
ranged from 0 to 1, and then the probability of sample points in the rejected area is 10-

7. So the mean and standard deviation values of the times in the rejected area by 
50,000 samples are 0.005 and 0.0707 respectively, which can hardly influence the 
final experimental results. Therefore, this rejection is employed here in order to obtain 
distinct results without increasing sample times. 

4.2   Results and Discussions 

To the best of our knowledge, CNSGA-II [20] is the most promising method for con-
strained MOPs and is selected to compare with DE-MOEA (HBGA and HRGA). All 
the algorithms are performed in Matlab 7.0, and the source code may be obtained 
from the author upon request. Real-coded GA (simulated binary crossover “SBX” and 
polynomial mutation “PM”) is adopted in the implementation and the parameter val-
ues are the same as [20], which are listed in Table 2. 

Table 2. Parameter Settings for CNSGA-II and DE-MOEA 

N  pc pm SBX c
* PM m

* FE* 
100 10% 0.9 1/n* 20 20 50,000 

* n denotes the dimension of decision space, and FE is the total number of function evaluations. 

Table 3. Mean and Standard Deviation of the Unary Indicator D1R 

Function CTP1 CTP2 CTP6 CTP7 
HBGA 0.0043 (0.0003) 0.0023 (0.0003) 0.2234 (0.9297) 0.0097 (0.0125) 
HRGA 0.0056 (0.0007) 0.0037 (0.0021) 0.1103 (0.6587) 0.0241 (0.0932) 

CNSGA-II 0.0970 (0.0570) 0.1889 (0.1236) 0.3525 (1.1969) 0.0610 (0.0847) 
Results highlighted in bold signify significantly better than CNSGA-II at =0.05 by a two-tailed test. 

Table 4. Mean and Standard Deviation of the Binary Indicator V(A, B) 

 CTP1 CTP2 CTP6 CTP7 
V(HBGA, CNSGA-II) 4.4609% (0.0349) 12.5761% (0.0892) 5.4083% (0.1757) 2.6680% (0.0467)
V(CNSGA-II, HBGA) 0.2617% (0.0007) 0.0497% (0.0002) 3.2613% (0.1345) 0.1681% (0.0024) 
V(HRGA, CNSGA-II) 4.0455% (0.0346) 12.1040% (0.0881) 5.4424% (0.1766) 2.9616% (0.0506)
V(CNSGA-II, HRGA) 0.3684% (0.0014) 0.0961% (0.0006) 1.7138% (0.0965) 0.1814% (0.0021) 

V(HBGA, HRGA) 0.4046% (0.0015) 0.2008% (0.0023) 1.7404% (0.0958) 0.4740% (0.0109) 
V(HRGA, HBGA) 0.2000% (0.0009) 0.0442% (0.0003) 3.5931% (0.1382) 0.7050% (0.0168)  

Results highlighted in bold signify significantly better than the other at =0.05 by a two-tailed test. 

The values of search step length parameter  in HBGA and HRGA are set to 1.1 
and 0.85 respectively. And the number M in HRGA is set to 5, i.e., 5% of the popula-
tion size. All the algorithms for each benchmark function perform 100 independent 
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runs, and the initial populations of all the algorithms in each run are the same for fair 
comparison. Table 3 and Table 4 show the means and standard deviations of the D1R 
and V(A, B) indicators obtained by all the algorithms, where the standard deviations 
are in the parenthesizes. 

From Table 3 and Table 4 it can be observed that HBGA and HRGA have better 
results than CNSGA-II in all the 4 benchmark functions, and especially the results are 
significant better except CTP6. It can also be seen that HBGA performs better than 
HRGA in CTP1 and CTP2 while the latter has better results in CTP6. 

To illustrate the pureness of the POF found by each algorithm, the statistical values 
in 100 independent runs are listed in table 5. 

Table 5. Pureness Statistic of POF Found by the Three Algorithms 

Benchmark 
Function 

Algorithm 
Number of runs 

produce pure POF 
Numbers of runs 

produce partial POF 
Number of runs produce 

local Pareto front 
HBGA 100 0 0 
HRGA 100 0 0 CTP1 

CNSGA-II 4 96 0 
HBGA 100 0 0 
HRGA 100 0 0 CTP2 

CNSGA-II 10 90 0 
HBGA 94 2 4 
HRGA 97 1 2 CTP6 

CNSGA-II 89 4 7 
HBGA 48 52 0 
HRGA 80 20 0 CTP7 

CNSGA-II 15 85 0 

From table 5, for CTP1 and CTP2, HBGA and HRGA converge to the pure POF 
with probability 1 in 100 runs, while the probability of CNSGA-II is not greater than 
10%. For CTP6, all the three algorithms converge to the partial POF or local Pareto 
front with a low probability, but it is somewhat lower for HBGA and HRGA. For 
CTP7 it is hard for CNSGA-II to find the pure POF while the situation becomes easier 
for HBGA, and especially for HRGA. 

The search ability in the boundaries of non-dominated set is improved in both 
HBGA and HRGA, so it is easier for both HBGA and HRGA to locate the pure POF 
in CTP1, which has a continuous POF. The CTP2 and CTP7 have non-continuous 
POF, and the intervals in CTP7’s POF are much larger. So it could be still efficient to 
find the pure POF of CTP2 for HBGA, but it is not the case in CTP7. However, the 
HRGA could solve the problem by choosing representatives from population for dif-
ferential evolution. And the experimental results of CTP2 and CTP7 give an evidence 
for this explanation. CTP6 has several local Pareto fronts for the infeasible holes 
towards the Pareto-optimal region in objective space. By introducing the different 
evolution, a better tradeoff between feasible and infeasible regions could be achieved. 
So the number of convergence to local Pareto front is less than CNSGA-II. Compared 
with HBGA, the HRGA has better diversity during search for choosing more “current 
best solutions” for differential evolution, and the probability of its getting into local  
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Pareto front is much lower than HBGA. However, the approximating and diversity of 
non-dominated set are two (possible) conflicting objectives [8]. So when the diversity 
exceeds the actually required, the approximating will be deteriorated. This could be 
the reason why HBGA performs better than HRGA on CTP1 and CTP2. 

With the above results and analysis, the algorithm DE-MOEA proposed in this pa-
per has superior performance compared with CNSGA-II, especially in the distribution 
of the non-dominated set. 

5   Conclusion 

This paper proposes two novel schemes of selecting the current best solutions for 
MODE. And then based on the search biases strategy suggested by Runarsson and 
Yao, a hybrid algorithm of MODE and GA is put forward here for constrained MOPs. 
We implement the hybrid algorithm based on NSGA-II with the two schemes of 
MODE respectively, named HBGA and HRGA. HBGA and HRGA are compared 
with CNSGA-II on 4 benchmark functions constructed by Deb. Experimental results 
show that the quality of non-dominated set obtained by the both algorithms is better 
than that of CNSGA-II on all the benchmark functions. The future work is to apply 
the hybrid algorithm to more complex problems and applications. 
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Abstract. In a repurchase program, different firms can obtain different gains 
when they announce a stock repurchase, so a firm needs to know whether an-
nouncement is an optimal choice. This paper presents a dynamic, two-player 
game model with imperfect information, analyzes its further equilibrium condi-
tion. The model shows that repurchase announcements have various effects on 
the firms. High-earnings firms choose to make announcements, whereas low-
earnings ones are inclined not to announce. Finally, it gives empirical test for 
the model to validate the conclusion according to the data of China. 

1   Introduction 

The repurchase program of open-market stock is commonly used for distributing 
corporate earnings to shareholders. In a repurchase program, a firm buys back its 
shares in the market over a period time from months to years. During recent years, 
repurchase programs have become increasingly popular relative to other common 
forms of payout, approximately accounting for 90% of the dollar value of all an-
nounced repurchases[1]. Stock repurchases have become an important financial policy 
for listing firms these years, they can adjust the market if market undervalues the 
stock prices of a firm. If companies are unsatisfied with the price of shares, the firms 
usually choose announcing the repurchase announcements. 

Grinblatt and Hwang(1989)[2] provide a foundation for a repurchase-signaling 
game. They show that withholding part of a new share issue can signal greater earn-
ings, because entrepreneurs of firms with high earnings derive less marginal disutility 
from the additional risk of holding more firm’s stock. Risk-averse entrepreneurs of 
low-profit firms derive greater marginal disutility from the added risk and so optimal 
repurchase is less than owners of high-profit firms. So the low-profit firms don’t want 
to simulate high-profit firms because of their aversion to the added risk. Therefore, in 
contrast to the low-profit firms, high-profit firms are inclined to announce. 

William J McNally (1999) [3]constructs a signaling model in open market repur-
chase. He simulates the effects of a repurchase on the shareholders when repurchase 
proportion is continuous and concludes that if insiders refrain from tendering, their 
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choice of the repurchase proportion will reveal much to the market: 1. firms that re-
purchase more have higher earnings, 2. riskier firms have higher earnings, and 3.firms 
where insiders have a greater ownership stake have higher earnings, ceteris paribus. 
McNally demonstrates that signaling and agent problems can explain why firms 
choose stock repurchase in perfect markets. This paper uses the model to prove that 
the utility of high earnings type is higher if it signals than if it doesn’t signal based on 
the signaling theory and agent problems, it explains why firms choose a specific pay-
out form(open market stock repurchase) in particular, and extend his conclusion. On 
the other hand, high earnings firms choose to make a repurchase announcement of 
open-market and a low earnings firms choose not to announce. But repurchase an-
nouncements is a discrete signal here. 

2   The Model of Repurchase 

2.1   The Variables of Economics 

Assumption 1. The open market repurchase is modeled as a dynamic, two-player 
game with imperfect information. 

Assumption 2. The market is assumed to be risk neutral, and the risk free rate is as-
sumed to be zero. 

Assumption 3. Figure1 summarizes the sequence of events and decisions over four 
dates. 

2.2   The Analysis of Model (Figure1) 

In the first state 0: A risk-averse entrepreneur controls an already existing firm that 
has cash of C . Most of the action occurs at the beginning: though nature reveals new 
level of u to firm, entrepreneur announces open market repurchase. Finally, market 
accepts or rejects, then announces its conditional valuation. 

In the second state 1: The firm will generate the intermediate cash flow: 

                                                    2
1 ~ (0, )x N σ                                                       (1) 

In the third state 2: Uncertainty regarding price is resolved, then nature reveals u to 
market with probabilityπ , and the owner have opportunity to trade. 

In the fourth state 3: the firm generates terminal cash flow. 

2
3 ~ ( , )x N u σ                                                      (2) 

The open market repurchase is modeled as a dynamic; the objective of the game is 
the valuation of these cash flows by the risk-neutral market. 

In the first state, nature assigns the firm a new level of period 3 earnings, since all 
firms start with a common level of expected earning, 0u > . Because the intermediate 
cash flow has a mean of zero, it does not affect the market value of the firm. But the 
owner has to hold the stock over period 1 and experiences the uncertainty of the  
 



330 W. Tang and J. Peng 

                          Date-0                   date-2               date-3             date-4 

 
 

Fig. 1. 
 

cash flow. The random cash flow at time period 1 is critical to the model because it is 
the source of risk associated with stock ownership. At the same time, the terminal 
cash flow is very important, because the dominant cash flow from the firm is the 
terminal payout at time period 3.It is as if the firm is liquidated with an expected pay-
out of 3( )E x u= . In the model, we suppose that the owners are interested in maximiz-

ing the market value of the firm at the periods2.The entrepreneur essentially behaves 
as if he or she is going to sell his or her shares at time period 2. Owner s objective is 
that they want to maximize expected utility on a date prior to the terminal payout 
(period 2). From the equation (1) we know that risk is reintroduced by having a pe-
riod1( 1x ) cash flow with a mean of zero and a variance equal to the variance of the 

terminal cash flow: 

                                             Var 1( )x = Var 3( )x 2σ=                                             (3) 

Entrepreneur’s prior proportional holdings are α .The market also holds posterior 
beliefs about the firm’s type, which is denoted ( | )P T NCIB .Entrepreneur announces 

(or no-announce) the repurchase signaling by the means of NCIB Normal Course 
Issuer Bids . William McNally proved that NCIB was a discrete sign by the condi-
tional event study model, and market calculated its valuation of the firm. The set of 
expected earnings types are generated from set T , good earnings G , bad earnings N : 

            T G N= ∪ , { | }NN u u u= = , { | }L HG u u u u= ≤ ≤  and L Hu u<            (4) 

Earnings in subset G  can be interpreted as  high expected earnings, and earnings 
in subset N  can be interpreted as low expected earnings. At this moment, entrepre-
neur will choose NCIB to increase their utility. Entrepreneur’s utility is dependent on 
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the earnings of firm and the valuation of the firm by the market, and the market calcu-
lates its valuation of the firm by the announcements. Therefore, entrepreneur’s utility 
can be denoted as [ ( , )]E U u NCIB , when 1NCIB = for an announcement and 

0NCIB =  for no announcement. In following equilibrium, market can infer the 
firm’s type. The market observes the repurchase announcements, when the firm in 
subset G , the price of share can be increased because of signaling, while the firm in 
subset N , there will be no change about the price. Where Lu is the lower bound and 

Hu is the upper bound, there is no fixed value. 

3   Equilibrium and Market’s Strategy 

We will aim at the model of open-market stock repurchase signaling, proving that the 
equilibrium exists by using the mean/variance expected utility function, and obtaining 
the market’s strategy. 

Because the market value of the firm is equal to the sum of cash and expected earn-
ings-the market’s strategy function, it is denoted by: 

                                                  0 ( ) ( )V C V NCIBδ = +                                                (5) 

Making an unbiased valuation of the firm through drawing an unbiased inference 
about the firm’s type is the market’s objective. The entrepreneur maximizes his or her 
wealth expected utility of date 2 by choosing to announce NCIB , knowing that 
investors infer the value of the firm from their decisions. Before expressing the 
entrepreneur’s objective function, some notation and assumptions are explained.α = 
entrepreneur’s prior proportional holdings 

                                                 { | 1}Lα α α α∈ ≤ <                                                     (6) 

π =probability of truth revelation at date 2. Where π  is assumed to be quite small, 

Lπ α<                                                                                                                          (7) 

~

2V ~
( ),1

,

C V NCIB

C u

π
π

+ −
+

                                               (8) 

Date 2 firm values, 
~

2V  is equal to the true value with probabilityπ , and equal to 
the market valuation with probability 1 π− .The mean and variance of this random 
variable are: 

~

2( ) ( ( ))(1 ) ( )E V C V NCIB C uπ π= + − + +                                (9) 

Var
~ ~ ~

2 2
2 2 2( ) ( ) ( )V E V EV= −  

2(1 ) ( ) 2(1 ) (2 ) ( )

(5 4 3 2 1)

V NCIB C u V NCIB

C C u C u

π π π π
π π π

= − + − +
+ + − − −

                                (10) 

On date 2, the entrepreneur’s wealth is equal to the value of his or her stock  
holdings plus the random date 1 intermediate cash flow: 
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~

22 1( )W V xα= +                                                (11) 

Substituting the (9), (10), and (11) into the mean/variance expected utility function: 

                                    [ ( )] ( ) ( / 2)E U W E W b= − Var ( )W                                    (12) 

We can obtain the entrepreneur’s objective function: 

2
2

2

2

2

[ ( )] (1 ) ( ) (1 )[1
2

(2 )] ( ) { [ (5 4
2

3 2 1) ] (1 ) ( )}

b
E U W V VCIB b

b
C u V NCIB C C u

C u C C u

α π π α π απ

α π

π π σ α π απ

= − − + − −

+ + − + −

− − + + − + +

                                 (13) 

Theorem. If b satisfies 

           1[ (3 4 )]L Nb u u Cαπ −> + +                                           (14) 

Then beliefs and strategies constitute a Bayesian perfect separating equilibrium. 
Firm’s strategy 

1 Type= G announce ( 1NCIB = ) 
2. Type= N do not announce ( 0NCIB = ) 

Market’s beliefs and strategy: 

1. ( | 1) 1P T G NCIB= = =    ( 1) LV NCIB u= =  

2. ( | 0) 1P T N NCIB= = =   ( 0) NV NCIB u= =  

Proof: 1) If the high-earnings type announces repurchase, the returns is higher than it 
doesn’t announce, high earnings type prefers to signal. Substituting the objective 
function (13) into the 

[ ( 1, )] [ ( 0, )]G GE U NCIB u E U NCIB u= > =  

2 2
2

2

2 2
2

2

(1 ) (1 )[1 (2 )] { [
2 2

(5 4 3 2 1) ] (1 ) ( )}

(1 ) (1 )[1 (2 )] { [
2 2

(5 4 3 2 1) ] (1 ) ( )}

L G L

G G G

N L N

G G G

b b
u b C u u C

C u C u C C u

b b
u b C u u

C C u C u C C u

α απ π α π απ π

π π σ α π απ
α απ π α π απ

π π π σ α π απ

− − + − − + + −

+ − − − + + − + +

> − − + − − + + −

+ − − − + + − + +

 

Therefore 

2
2(1 ) (1 )[1 (2 )]

2 L G L

b
u b C u u

α π π α π απ− − + − − +  

2
2(1 ) (1 )[1 (2 )]

2 N G N

b
u b C u u

α π π α π απ> − − + − − +  
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Since L G Hu u u≤ ≤ , we have 

1[ (3 4 )]L Nb u u Cαπ −> + +  

So this inequality holds u G∀ ∈ if the above condition on b holds and if N Lu u< , then 

the strategies will be held. 
2) If a low earnings type’s utility is higher if it refrains from signaling than if it sig-
nals to simulate the high earnings type, then for the low earnings type, we have: 

                              [ ( 0, )] [ ( 1, )]N NE U NCIB u E U NCIB u= > =                            (15) 

Or  

                                   1(3 ) [2 (4 )]N Lu b b C uαπ απ−> − +                                      (16) 

We have 

( )( ) ( ) (2 )( )
2 L N N L N L N N L

b
u u u u u u b C u u u

απ απ− + − + − > + −  

Since N Lu u< , so 

1 ( ) (2 )
2 L N N

b
u u b C u

απ απ− + > +  

therefore 
1(3 ) [2 (4 )]N Lu b b C uαπ απ−> − +  

So if this condition holds with the equilibrium beliefs and strategies, the beliefs and 
strategies will be held. That is the same as the high earnings firm. 

From the equilibrium, we can know that false signaling increases the insider’s un-
certainty about future wealth, and correct signaling reduces that uncertainty. Insiders 
of high earnings firms receive a significant increase in expected wealth and reduce 
uncertainty about their future wealth if they signal, and insiders of unchanged  
earnings firms receives a smaller increase in expected wealth and an increase in  
uncertainty if they signal. If insiders are sufficiently risk averse, then the firms with 
unchanged earnings types finds out that the uncertainty associated with falsely signal-
ing offsets the potentially greater wealth, and chooses not to simulate a high earnings 
type. All firms with high earnings types in subset G  find out that it is worth to signal 
because that can increase their expected wealth and reduce the potential variability in 
their wealth. The high earnings firm’s utility is higher if they make the announce-
ments than that if they reject to announce, after they announces the signals, they can 
obtain returns from buying the cheap shares from the out stockholdings. 

From the above analysis, we can know that the equilibrium will be held: that is 
high earnings firms are inclined to announce, and low earnings firms would better not 
announce. 

4   Empirical 

In this section, we make an empirical analysis, using the data from the securities busi-
ness of China to test the signaling model’s implications. The data comes from the 



334 W. Tang and J. Peng 

Wind ZIXUN. Because there are not so many companies which take repurchase 
measures in recently, it causes difficult for people to collect data ,so we take twelve 
companies which have announced the repurchases for example from 2005 to now ,we 
will make some simple statistical analysis for them. All the companies below are 
going on in this way which is open market stock repurchases. 

Table 1. The Analysis of Data 

Company Cash-flow 
(yuan) 

Return 
Rate(%) 

Company Cash-flow 
(yuan) 

Return 
Rate(%) 

000932 
600801 
000090 
600583 
600726 
600102 
600859 
600556 
600839 
600727 
000950 
600367 
600637 
600966 
002006 
600638 
600031 
000068 
001696 
000917 
600220 
600095 
600456 
000635 

1.5319 
1.5321 
1.5208 
1.5198 
1.263 

1.2812 
1.2669 
1.2572 
0.6568 
0.6618 
0.6614 
0.662 

0.3806 
0.3846 
0.3837 
0.3788 
0.308 

0.3086 
0.3071 
0.3097 
0.2059 
0.2046 
0.206 

0.2055 

7.55 
-25.55 
-17.62 
-2.16 
22.83 
12.59 
9.47 

19.01 
18.37 
12.31 
6.91 

13.45 
19.69 
8.03 
2.07 

14.18 
-7.67 
-12.3 
-9.12 
-8.6 

12.44 
6.81 

11.78 
12.47 

600165 
600521 
600987 
600455 
600810 
000627 
000078 
000602 
600315 
000509 
000883 
600845 
000848 
600984 
000801 
000906 
600121 
002036 
600705 
000691 
600001 
002020 
000967 
600689 

0.0854 
0.0868 
0.0867 
0.0838 
0.0815 
0.0818 
0.0817 
0.0818 

0.01 
0.0101 
0.0095 
0.0092 
-0.042 

-0.0394 
-0.041 

-0.0428 
-0.0513 
-0.0531 
-0.0577 
-0.0453 
-0.1516 
-0.149 

-0.1493 
-0.1557 

8.79 
10.64 
7.35 
0.28 
24.2 
9.84 

10.32 
19.79 
7.96 

-13.46 
-5.2 
6.42 
-0.44 
3.4 

15.67 
11.57 
-5.29 
12.68 
-1.51 
-4.44 

-31.66 
-5.61 
-10.9 
1.06 

Firstly we make some sequence for 1354 companies (SHANGHAI or SHENZHEN 
STOCK EXCHANGE) according to cash-flow per stock, then we define the first 451 
companies (one third out of total companies) as high-quality company, at this time 
CFPS of company is over or equal to 0.2782. And the last 451 companies are low-
quality companies, CFPS of company is under or equal to 0.013. In our samples, there 
are five companies in high-quality company, four companies in low-quality company 
and three companies between high-quality and low-quality company .so we can draw 
a conclusion that high-quality company is more apt to announce the repurchases. 

In order to explain that the return of announcing the repurchases of high-quality 
companies is more than that of not announcing the announcements, we stochastically 
choose some companies which are equal to each repurchase company according to 
CFPS. We compared stock returns of these companies (total 48) in the same period of 
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announcing the repurchases. Since financial market in chain is still defective maturity, 
there exist serious asymmetry between inside of the company and outside of the stock-
holder .So return calculated during the announcing the repurchases is based on the data 
before one month which are formal announcd by company .we can know that from the 
table1 below , (the overstriking stands for company which announcd repurchase, the not 
overstriking stands for three stochastically chosen company which not announcd repur-
chase), the return of announcing the repurchases of seven high-quality companies before 
is more than that of not announcing the repurchases ,but the return of announcing the 
repurchases of there low-quality companies is less than that of not announcing the re-
purchases, this is in agreement with theory above. There are three companies in the 
middle, the return of 600810 is the same to high-quality company, as for 600220 and 
600165, the return of two companies is more and of one companies is less. The reason 
for leading to these phenomena is mainly that our sample is relative small and there is 
not accurate definition for high- and low-quality company. We not consider the coeffi-
cient of market risk when we calculate the rate of return else. Therefore, our date con-
clusion is not so perfect. So we are going to scale-up our sample and make some more 
particular demonstrative analysis in the future. 

5   Summary and Conclusions 

The stock repurchases of open market are paid more and more attention at present. 
Although many companies get large returns when they repurchase, many firms suffer 
from loss, because they repurchase blindly. So different firms should choose different 
strategies, if the bad firms simulate good ones to announce a repurchase program, 
they cannot deal with the firms’ problems and they will suffer from larger cost of 
signaling. Therefore, in order to maximize the firm’s utility, we should know the type 
of the firm and choose the optimal strategy. This paper adopts the William J 
McNally’s (1999)[3] signal model, combines with the mean/variance expected utility 
function, analyses the same model from different aspects, and extends the conclusion. 
The model shows that repurchase announcements have various effects on the firms. 
High-earnings firms choose to make announcements, whereas low-earnings ones are 
inclined not to announce. 
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Abstract. To handle the constrained multi-objective evolutionary optimization 
problems, the authors firstly analyze Deb’s constrained-domination principle 
(DCDP) and point out that it more likely stick into local optimum on these 
problems with two or more disconnected feasible regions. Secondly, to handle 
constraints in multi-objective optimization problems (MOPs), a new constraint 
handling strategy is proposed, which keeps infeasible elitists to act as bridges 
connecting disconnected feasible regions besides feasible ones during optimiza-
tion and adopts stochastic ranking to balance objectives and constraints in each 
generation. Finally, this strategy is applied to NSGA-II, and then is compared 
with DCDP on six benchmark constrained MOPs. Our results demonstrate that 
distribution and stability of the solutions are distinctly improved on the prob-
lems with two or more disconnected feasible regions, such as CTP6. 

Index Terms. Constraint multi-objective optimization, infeasible elitists, sto-
chastic ranking. 

1   Introduction 

Since Schaffer firstly applied evolutionary algorithms to solve MOPs in 1985 [1], 
multi-objective evolutionary algorithms (MOEAs) have amply demonstrated the ad-
vantage of using population-based search algorithms for solving multi-objective op-
timization problems [2]-[8]. In MOPs of varying degrees of complexities, elitist 
MOEAs have demonstrated their abilities in converging close to the true Pareto-
optimal front and maintaining a diverse set of solutions, such as SPEA [2], PESA [3], 
SPEA2 [4], NSGA-II [5] and RDGA [6].  Despite all these rapid developments, there 
seem to be not enough studies concentrating on handling constraints. Constraint han-
dling is a crucial part of real-world problem solving and it is time that MOEA re-
searchers focus on solving constrained MOPs [10] [11]. 

Stochastic ranking strategy [9] [14] has solved constrained single-objective optimi-
zation problems successfully, whereas the strategy can’t be applied to constrained 
MOPs directly. This is because the individuals are fully ordered in single-objective 
optimization but only partially ordered in multi-objective. Despite some MOEAs can 
transform partial order into full order by the fitness function designed, this kind of full 
order depends on the algorithm. In addition, the goal of multi-objective optimization 
is to achieve a set of Pareto optimal solutions and a good distribution of solutions. 
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At present, one of the most effective constraint handling methods in MOPs is 
DCDP [5] [10]. In the principle of DCDP, a feasible solution is always superior to 
an infeasible one, so it probably results in premature convergence. Therefore,  
by both keeping infeasible elitists during optimization and incorporating stochastic 
ranking to select individuals in each generation, a novel constraint handling  
strategy is put forward in this paper to handle constraints to avoid premature  
convergence. 

2   Constrained MOP 

A general MOP consists of a number of objectives and is associated with a number of 
inequality and equality constraints. Mathematically, without loss of generality, a 
minimization problem can be written as follows: 
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Where x is the l-dimension vector of solutions, ( )mkxfk ≤≤1)(  is the k-th objective 

function, ( )nixg i ≤≤1)( is the i-th inequality constraint, ( )pjxh j ≤≤1)( is the j-th 

equality constraint. 
Having several objective functions, the notion of “optimum” changes because in 

MOPs the aim is to find a good tradeoff rather than a single solution as in single-
objective optimization. The decision vectors that are non-dominated and satisfy con-
straints in entire search space are denoted as “Pareto optimal set” or “Pareto optimal 
solutions”. And the corresponding objective vectors are denoted as “Pareto optimal 
front”. The Pareto dominance solution is presented as follows. 

Definition (Pareto Dominance Solution). A solution vector ),,( 1 luuu = is said to 

dominate a solution ),,( 1 lvvv = (denoted by vu ) iff 
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In constrained MOPs, all equality constraints may be approximated by inequality 
constraints by 0)( ≤−εxhj

, where is a very small value. This allows us to deal only 

with inequality constraints. Constraint violation function is defined as follows. 
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Where ))(( xg +φ  is the constraint violation function, β  is normally 1 or 2, 

pniwi += ,,1,  are the penalty parameters. 
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3   Drawbacks of DCDP  

In MOPs, DCDP ( ' ) [5] [10] is one of the most effective constraint handling meth-
ods by far, which is defined as follows: 
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From the above, in DCDP each feasible solution has a better rank than any infeasi-
ble one. Obviously the main drawback of this principle is DCDP probably results in 
premature convergence. The drawback is illustrated in Fig.1 and Fig.2 by 2-objective 
minimization optimization problems. 

                  

Fig. 1. Outline of local optimum using DCDP     Fig. 2. Outline of global optimum using  
                                                                                      infeasible elitists 

In Fig.1, the regions A and B are feasible ones but C is infeasible, the bold curve 
PF_A and PF_B are the Pareto optimal fronts in region A and B respectively, but 
PF_B is the global Pareto optimal front. In DCDP the individuals of region A will 
dominate those of region C, so the search will be guided to region A. Region C is as a 
“wall” between region A and region B. As can be seen region B is very small and it is 
probable that no individual of this region will be generated in the initial population. 
So finding an individual in region B would be a hard task and evolutionary population 
will be filled with the individuals in region A, leading to converge to the front PF_A 
not PF_B. 

To avoid the drawback, some infeasible solutions (black nodes in Fig.2) can be 
kept to act as bridges connecting region A and region B during optimization, and it is 
more probable that population will be filled with individuals in region B not region A. 
Finally, optimization will converge to global optimum PF_B.  

Considering the analysis above, a novel constraint handling strategy is proposed 
in next section, which keeps infeasible elitists besides feasible ones during optimiza-
tion and adopts stochastic ranking to obtain a good balance between non-dominated 
feasible and infeasible individuals in each generation. 
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4   Infeasible Elitists and Stochastic Ranking Selection 

In DCDP infeasible solutions are always dominated by feasible ones, so it probably 
steps into local optimum for problems where many feasible regions in the whole 
search space are disconnected. To avoid premature convergence in DCDP, a novel 
constraint handling strategy, namely IE-SRS (infeasible elitists and stochastic ranking 
selection), is given. In IE-SRS, infeasible elitists act as bridges connecting two or 
more different feasible regions during optimization, and that stochastic ranking selec-
tion is applied to balance objectives and constraints in each generation. 

Infeasible Elitists Preservation. Ever since Zitzler and Thiele firstly raised elitist 
population in SPEA [2], elitist strategy has become an effective major strategy to 
maintain evolutionary population diversity and enhance global convergence [11]. The 
IE-SRS strategy still adopts elitist preservation scheme, but it includes feasible and 
infeasible elitist strategies. Elitists are divided into feasible and infeasible elitists. 
Feasible elitists originate in non-dominated feasible individuals and infeasible elitists 
are defined as the infeasible individuals that have better objective function values 
and/or less constraint violation function value.  

The process of keeping and updating infeasible elitists is the following: 

Step 1) For each individual p  in evolutionary population. 

Step 2) Considering constraint, remove the individuals dominated by p  from an infeasible elitist set R. 

Step 3) If p  is infeasible ( ))(( pg +φ >0) then 

if p  is dominated by any of individuals in R, then reject p and stop. 

if R is not full, then add p into R, else replace the individual x  with the maximum 

Rxxg ∈+ )),((φ  with p . 

Stochastic Ranking Selection. To achieve a better tradeoff in selection between non-
dominated feasible and infeasible individuals, the IE-SRS strategy also adopts 
Runarsson and Yao’s [9] stochastic ranking to select individual in each generation. 
Moreover, to better preserve population diversity, the first step in this selection strat-
egy is to copy all the non-dominated feasible solutions to the next population.  

The process of generating the next population based on the stochastic ranking se-
lection is described as follows:  

Step 1) Copy all the non-dominated feasible individuals to the next population and sort by ascend 
fitness. 

Step 2) If the size of the next population exceeds a given maximum, maintain the population according 
to the crowded comparison approach [5] and stop. 

Step 3) Remainder individuals except the non-dominated feasible individuals are denoted as Pr, let 
|Pr|=Nr, Pr{i} is the i-th individual of Pr, set generation counter K as 1. 

Step 4) Set swapped flag sflag as 0, i=1. 
Step 5) If both Pr{i} and Pr{i+1} are feasible and Pr{i}’s fitness is greater than  Pr{i+1}’s, then swap 

them, sflag=1 and go to Step 7. 
Step 6) Generate a random number μ  between 0 and 1.  

If Pf  (comparison probability) and Pr{i}’s fitness is greater than  Pr{i+1}’s  

or Pf and Pr{i}’s ))(( xg+φ  is greater than  Pr{i+1}’s  

Then swap them, sflag=1. 
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Step 7) If i Nr, then i increases 1 and go to Step 5. 
Step 8) If K  Nr or sflag= 0, then stop, else K increases 1 and go to Step 4. 
Step 9) Add the front individuals into the next population until population size is equal to a given  

maximum. 

5   Constrained MOEA with IE-SRS (IS-MOEA) 

To solve constrained MOPs, a constrained MOEA combining IE-SRS strategy with 
NSGA-II algorithm (real-coded), named IS-MOEA, is described as follows. 

Step 1) Parameter setting: population size N, infeasible elitist maximum size M, crossover probability Pc,  
mutation probability Pm, distribution indices for crossover c, distribution indices for mutation m, 
comparison probability Pf, penalty parameters wi(j=0,1,…,n+p), , maximum generation gen_max. 

Step 2) Initialization: Generate an initial population P, create child population Q=  and infeasible elit-
ists R= , set generation counter gen=1. 

Step 3) Calculation: Calculate m objective function values ( ))(,),(),( 21 xfxfxf m
 and constraint viola-

tion function value ))(( xg +φ  for each individual x  in P and Q, and then calculate Pareto domi-

nance value for each pair of individuals without considering constraint. 
Step 4)Fitness assignment: According to Pareto dominance value of individuals in P and Q, calculate 

their ranks and distances using non-dominated sorting and crowding distance assignment algo-
rithms [5], and then calculate fitness values by formula fitness=rank+distance. 

Step 5) Update and selection: Update infeasible elitists R according to the keeping and updating strategy 
presented in Section , and then generate next population P from P and Q using the stochastic 
ranking selection strategy referred in Section 4. 

Step 6) Evolutionary operation: According to the individual order in P, select individuals from P to mat-
ing pool by binary tournament selection, add R into mating pool, and generate new population Q 
by performing Simulated Binary Crossover (SBX) and polynomial mutation on the individuals of 
mating pool. 

Step 7) Termination: If ge gen_max or another stopping criterion is satisfied then stop, else increment 
generation counter (gen=gen+1) and go to step 3. 

6   Experimental Results and Discussions 

Test Problems. To evaluate the performance our IE-SRS strategy, six benchmark 
constrained problems are chosen, which are taken from [5] (CONSTR, SRN, TNK) 
and [10] (CTP1, CTP6, CTP7), and are summarized in table 1. 

Performance Measures. The goals of constrained multi-objective optimization are 
approximation and diversity, so comparison of Pareto optimal solution sets is difficult 
[13]. According to [12], v(A,B) measure is also adopted in this study. v(A,B) is the 
fraction of the volume of  the minimum hypercube containing both solution set A and 
B that is strictly dominated by members of A but is not dominated by members of B, 
and  is calculated by Monte Carlo sampling  and counting the fraction of samples that 
dominated exclusively by A. we take the same 50000 samples  as [12]. 

Results and Discussions. Run both IS-MOEA (denoted as IE-SRS) and NSGA-II 
based on DCDP (denoted as DCDP) in MATLAB6.5, both of which adopt real-coded 
(simulated binary crossover and polynomial mutation). The source code may be ob-
tained from the authors upon request. The parameter settings of both algorithms are as 
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Table 1. Six constrained minimized benchmark problems 
p

Problem n Variable bounds Objective functions Constraints 
CONSTR 2 x1 [0.1,1.0] 

x2 [0,5] 
f1(x)=x1

f2(x)=(1+x2)/x1

g1(x)=x2+9x1  6 
g2(x)=-x2+9x1  1 

SRN 2 xi [-20,20] 
i=1,2 

f1(x)=(x1-2)2+(x2-1)2+2
f2(x)=9x1-(x2-1)2

g1(x)=x2
2+x1

2  225 
g2(x)=x1-3x2  -10 

TNK 2 xi [0, ]
i=1,2 

f1(x)=x1

f2(x)=x2

g1(x)=-x1
2-x2

2+1+0.1cos(16arctan(x1/x2))  0 
g2(x)=(x1-0.5)2+(x2-0.5)2  0.5 

CTP1 5 0 x1 1,-5 xi 5
i=2,3,4,5 

f1(x)=x1

f2(x)=c(x)exp(-f1(x)/c(x))
g1(x)=f2(x)-0.858exp(0.541f1(x))  0 
g2(x)=f2(x)-0.728exp(0.295f1(x))  0 

CTP6 5 0 x1 1
-5 xi 5
i=2,3,4,5 

f1(x)=x1

f2(x)=c(x)(1-f1(x)/c(x)) 
g1(x)=cos( )(f2(x)-e)-sin( )f1(x)  a|sin(b sin( )
(f2(x)-e)+cos( )f1(x))c)|d
=0.1 , a=40, b=0.5, c=1, d=2, e= -2 

CTP7 5 0 x1 1
-5 xi 5
i=2,3,4,5 

f1(x)=x1

f2(x)=c(x)(1-f1(x)/c(x)) 
g1(x)=cos( )(f2(x)-e)-sin( )f1(x)  a|sin(b sin( )
(f2(x)-e)+cos( )f1(x))c)|d
=0.05 , a=40, b=5, c=1, d=6, e=0  

))2cos(10(
2

5
41c(x)* 2

ii xx
i

π−
=

+=
 

follows [5][9][10]: population size N=100, infeasible elitist maximum size M=20, 
crossover probability Pc=0.9, mutation probability Pm=1/n (where n is the number of 
decision variables), distribution indices for crossover operations c=20, distribution 
indices for mutation operations m=20, comparison probability Pf=0.45, penalty pa-

rameters wi=1 (j=1,…,n+p), β =1, maximum generation gen_max=500. For each 
benchmark function, 30 independent runs are performed using IE-SRS and DCDP 
respectively. Table 2 summarizes the experimental results. Assume U and C are the 
optimal fronts obtained separately by IE-SRS and DCDP. 

Table 2. Comparison between end-of–run optimal fronts from IE-SRS and DCDP using v 
measure. Mean are over 30 runs, standard deviation in parentheses, values as a percentage. 
Results highlighted in bold signify significantly better results under the Wilcoxon nonparamet-
ric signed ranks test. 

Prob. v(U,C) v(C,U) Prob. v(U,C) v(C,U) 

 0.330%(0.00064) 0.370%(0.00059)  1.720%(0.00021) 1.653%(0.00020) 

 0.380%(0.00018) 0.420%(0.00130)  2.460%(0.04950) 0.023%(0.00019) 

 0.250%(0.00020)  0.270%(0.00038)  0.077%(0.00120) 0.007%(0.00007) 

As is shown in table 2, as for functions CONSTR, SRN, TNK and CTP1, the per-
formance of IE-SRS is almost equal to that of DCDP. While for CTP6 and CTP7, the 
performance of IE-SRS is significantly better than that of DCDP, because problems 
CTP6 and CTP7 have many disconnected feasible regions [10]. In order to highlight 
effectively the remarkable results of IE-SRS, the Pareto optimal fronts of functions 
CTP1, CTP6 and CTP7 are illustrated in Fig.3, Fig.4 and Fig.5. 

As for problem CTP1, there appear three Pareto optimal fronts in the results of IE-
SRS and DCDP: case 1 is the front of 0.6; case 2 is the front of 0.6 0.8; case 
3 is the front of 0.8. In 30 independent runs, for IE-SRS, case 1 appears six times, 
case 2 sixteen times and case 3 eight times; for DCDP, case 1 appears twenty-two 
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times, case 2 six times, and case 3 two times. Though the Pareto front of problem 
CTP1 isn’t disconnected, IE-SRS increases the population diversity, so IE-SRS is 
better than DCDP in solution distribution. 

As for problem CTP6, there are four Pareto optimal fronts in the results of IE-SRS 
and DCDP: case 1 is the front of 0.9 and 5 ; case 2 is the front of 0.9 and 

5; case 3 is the front of 0.9 and 5 ; case 4 is the front of 0.9 and 
5. In 30 independent runs, IE-SRS wholly gets case 4; for DCDP, case 1 appears 

eight times, case 2 fifteen times, and case 3 four times and case 4 three times. Because 
the entire search space consists of infeasible patches parallel to the Pareto optimal 
front, and the situation in Fig. 2 is fitted (where lies between 5 and 10, there is 
infeasible region [10]) and considering the results, IE-SRS can always converge to 
Pareto optimum front. However DCDP has fallen into local optimum for 12 times, 
and has found global optimum for 18 times, three of which are complete. That is be-
cause IE-SRS adopts stochastic ranking and infeasible elitist preservation mechanism, 
which can maintain the population diversity during evolution, and achieves global 
optimum. IE-SRS does not get stuck onto the local Pareto fronts, and it is also proved 
that the effectiveness of this new constraint handling strategy. 
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Fig. 3. Three Pareto optimal fronts on CTP1     Fig. 5. Three Pareto optimal fronts on CTP7 
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Fig. 4. Four Pareto optimal fronts on CTP6 

As for problem CTP7, there appear three Pareto optimal fronts in the results of IE-
SRS and DCDP: case 1 is the front with 5 feasible regions; case 2 the front with 6 
feasible regions; and case 3 the front with 7 feasible regions. In 30 independent runs, 
for IE-SRS, case 1 appears zero time, case 2 fifteen times, case 3 fifteen times; for 
DCDP, case 1 appears twelve times, case 2 fifteen times, and case 3 three times. The 
CPT7 problem makes some portions of the unconstrained Pareto optimal region feasi-
ble, thereby making many disconnected feasible regions according to value [10]. In 
the results, IE-SRS can find at least 6 infeasible regions in the Pareto optimal front 
every time, in which it finds the entire regions for 15 times, while DCDP finds 6-
above regions for only 18 times, of which 3 are entire. The above results validate 
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again the effectiveness of using infeasible elitist preservation mechanism and stochas-
tic ranking to maintain population diversity. 

To sum up, in light of the above comparisons, the performance of IE-SRS is equal 
to that of DCDP for the first four benchmark problems. However for CTP6 and TP7 
problems with many disconnected feasible regions, it is obvious that the solution 
distribution and stability of IE-SRS are better than that of DCDP. 

7   Conclusions 

This paper analyses DCDP and points out that it probably converges to local opti-
mum. By keeping infeasible elitists during optimization, a new constraint handling 
strategy with stochastic ranking approach, namely IE-SRS, has been proposed to 
handle the constrained MOPs. Compared with DCDP on six benchmark constrained 
MOPs, IE-SRS has made distinct improvement in distribution and stability of the 
solutions on the problems with two or more disconnected feasible regions [10], such 
as CTP6. The future work of this study includes the application of IE-SRS to other 
MOEAs. 
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Abstract. A new strategy for parameter estimation of dynamic differential 
equations based on nondominated sorting genetic algorithm II (NSGA II) and 
one-step-integral Treanor algorithm is presented.  It is adopted to determine the 
exact model of catalytic cracking of gas oil.  Compared with those conventional 
methods, for example, quadratic programming, the method proposed in this pa-
per is more effective and feasible.  With the parameters selected from the 
NSGA II pareto-optimal solutions, more accurate results can be obtained. 

1   Introduction 

When attempting to achieve the exact model of industrial process plant, the identifica-
tion of unknown parameters in dynamic differential equations is always involved. 
Generally, the way of the identification is to obtain some observed data through sam-
pling randomly, and then resort to the methods of mathematical optimization. The 
conventional mathematical optimization is to transform the differential equations into 
nonlinear programming problem denoted by algebraic equations. Ref. [1] solves such 
problem by using rSQP(reduced Sequential Quadratic Programming) and hybrid 
automatic differential algorithm, and Ref.[2] by a scheme of hybrid successive quad-
ratic programming. The conventional methods work well in solving the problems, 
however, they have some drawbacks, such as complicated algorithm, single result, 
and insufficient precision. 

In order to solve the dynamic optimization problem better, we regard such problem 
as the multi-objective optimization problem and resort to intelligent algorithm such as 
genetic algorithm. NSGA [3] proposed by Srinivas and Deb, which is a genetic algo-
rithm based on the concept of pareto-optimal [4], has been applied to the problem of 
multi-objective optimization extensively, while NSGA II [5] developed from NSGA, 
which accelerates the computation as well as improving the robustness, has become a 
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more powerful alternative. By adopting NSGA II together with using one-step-
integral Treanor algorithm [6], a new approach to solve the problem of dynamic dif-
ferential equations’ parameters identification is presented.   

This paper is organized as follows: Section II gives an example of dynamic differ-
ential equations and its sampling data. Section III provides a brief introduction to the 
principle of NSGA II and one-step-integral Treanor algorithm. Section IV presents a 
new strategy for solving the nonlinear model parameters estimation problem. Conclu-
sion is made in Section V. 

2   Example of Dynamic Differential Equations 

The model of catalytic cracking of gas oil, proposed by Froment and Bischoff, de-
scribes an overall reaction of catalytic cracking of gas oil (A) to gasoline (Q) and 
other byproducts (S), and is of the form [7]: 

1

3

2

k

k

k

A Q

A S

Q S

→

→

→

                                                            (1) 

According to Ref.[7], the model (1) can be denoted by dynamic differential equa-
tions as follows: 

                       

21
1 3 1

22
1 1 2 2

( )
dy

k k y
dt
dy

k y k y
dt

= − +

= −
                                               (2) 

where ( 1, 2)iy i =  is the concentrations of A  , Q  and ( 1,2,3)ik i = is the reaction 

coefficients. Initial condition for dynamic differential equations (2) is 0 (1,0)Ty = , 

and the constraint condition is 0,0 1i ik y≥ ≤ ≤ .   

The coefficients ( 1,2,3)ik i =  in the equations are the parameters to be determined. 

As mentioned above, the acquisition of observed data of model is always a necessity. 
Through sampling randomly under certain conditions, the 21 observed data of 

( 1, 2)iy i = , according to Ref. [7], is shown in Table 1. 

The problem is to minimize  

21
2

1

| ( ; ) | , 1, 2i j ij
j

y t k c i
=

− =                                           (3) 

where ijc  is the observed data of iy  at time points jt , which is given in Table 1, 

while ( ; )i jy t k  is the fitted data of ijc  ( 1,2; 1,2,..., 21)i j= = . 
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Table 1. Observed Values ci of yi at Time tj 

t/s c1 c2

        0.000       1.0000      0.0000 
        0.025       0.8105      0.2000
        0.050       0.6208      0.2886 
        0.075       0.5258      0.3010
        0.100       0.4345      0.3215 
        0.125       0.3903      0.3123
        0.150       0.3342      0.2716
        0.175       0.3034      0.2551
        0.200       0.2735      0.2258
        0.225       0.2405      0.1959
        0.250       0.2283      0.1789 
        0.300       0.2071      0.1457
        0.350       0.1669      0.1198
        0.400       0.1530      0.0909
        0.450       0.1339      0.0719
        0.500       0.1265      0.0561
        0.550       0.1200      0.0460
        0.650       0.0990      0.0280 
        0.750       0.0870      0.0190 
        0.850       0.0770      0.0140 
        0.950       0.0690      0.0100 

 

3   NSGA II and One-Step-Integral Treanor Algorithm 

In the problem of multi-objectives optimization, what is expected is one solution that 
fit all the objectives. To attain the goal, the conventional way is always to aggregate 
the multiple objectives into a singular scalar objective, and this way involves the 
determining of the objectives’ relative importance, which reduces the precision of 
result. To avoid the disadvantage, several optimization algorithms have been pro-
posed, among which NSGA shows great advantage in several aspects. The multiple 
objectives are invariably unable to reach the optimal point simultaneously due to the 
conflicts between them, and there may exist a set of solutions, which are partially 
superior or inferior to each other, and all the other solutions are dominated by those 
solutions. These solutions are called Pareto-optimal solutions or nondominated solu-
tions. With multi-objective optimization problem optimized by NSGA, we would 
obtain a set of feasible solutions, from which we may pick up one solution, which is a 
compromise after considering the practical requirements. 

The only difference between NSGA and SGA is the way that the selection operator 
works, while the crossover and mutation operators remain the same. Before perform-
ing the selection operator, ranking manipulation is conducted where all the population 
are ranked using the nondominated sorting algorithm based on the individuals’  
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nondomination. Following shows the ranking procedure. Firstly, pick up all the non-
dominated individuals from the current population to fill in the first nondominated 
front, and assign a large dummy fitness value to this front. Secondly, ignore the indi-
viduals already picked out and choose the nondominated individuals from the rest of 
the population to constitute the second nondominated front with a relatively smaller 
dummy fitness value assigned to it. Repeat the procedure until the entire population is 
divided into several fronts in terms of dummy fitness value. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. NSGA II Main Algorithm 

NSGA reserves the most excellent offspring population, and is capable of obtain-
ing a set of evenly distributed pareto-optimal solutions, in addition, it results in quick 
convergence of the population towards the optimal points of the entire region, rather 
than towards the local region. However, NSGA still has criticisms due to its defects. 
NSGA II makes improvements on the basis of NSGA in three aspects [5]. Firstly, fast 
nondominated sorting approach is presented, with the computational complexity re-
duced from 3( )O mN  to 2( )O mN (where m  is the number of objectives and N  is the 

population size). Secondly, crowded-comparison approach and its corresponding 
operator are introduced, which guarantee the diversity of nondominated individuals 
as well as avoiding the appointment of shareσ  value, a key parameter of the sharing 
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function in NSGA. Thirdly, elitism is also introduced, that is, to generate a new parent 
population through selecting individuals from the combined population of the current 
parent population and its child population. 

NSGA II is proved to be an effective alternative in the problem of multi-objective 
optimization in the Ref. [5] through several experiments and simulation, and the main 
algorithm of it shows in Fig. 1. 

One-step-integral Treanor algorithm is frequently adopted to integrate the dynamic 
differential equations as follows [6]: 

1 0 0( , ,..., ), ( ) , 1, 2,...,i
i n i i

dy
f t y y y t y i n

dt
= = =                              (4) 

If the values of ( 1,2,..., )ijy i n=  in differential equations (4) at the time jt  are 
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4   Optimal Estimation of  Parameters Based on NSGA II 

The key procedure of determining unknown parameters in model (2) using NSGA II 
is to obtain the value of ( 1, 2)iy i =  at ( 1,2,..., 21)jt j =  by resorting to the one-step-

integral Treanor algorithm before calculating the fitness function of this model. Obvi-
ously, the objective functions (3) aiming at the minimum values, can be regarded as 
fitness functions of NSGA II without transformation. 



350 Y. Shi, J. Lu, and Q. Zheng 

Individuals are represented by 1 2 3( , , )k k k , and the real-coded NSGA II is adopted. 

As mentioned above, the constraint condition of parameters ( 1,2,3)ik i =  is 0ik ≥ .  

And it has been proved by the practical experiments that the model could reach a set 
of pareto-optimal solutions with adequate accuracy when setting the scope of 

( 1,2,3)ik i =  as [0,100]. The one-step-integral step of Treanor algorithm is 0.001l = , 

and the parameters of NSGA II are in Table 2.  Table 3 shows a set of pareto-optimal 
solutions after optimization. Using solution (11.816,8.353,0.985)  from Table 3, the 

fitted data of  ( ; )i jy t k ( 1,2; 1,2,..., 21)i j= =  at time point jt  are listed in Table 4. 

Table 2. Algorithm Parameters of NSGA II 

Random Seed 0.6 
Population size 100 

Generation size 200 

Real variable number 3 

Probability of crossover (real code) 0.9 

Probability of mutation (real code) 0.1 
Boundary of ( 1, 2,3)ik i =  [0,100] 

Table 3. A Set of Pareto-optimal Solutions 

1k  11.816 11.815 11.815 11.813 11.814 …… 

2k  8.353 8.353 8.353 8.354 8.354 …… 

3k  0.985 0.985 0.986 0.984 0.984 …… 
 
 

 

Fig. 2. Comparison of Fitted Data and Observed Data 



 A New Strategy for Parameter Estimation of Dynamic Differential Equations 351 

Table 4. Fitted Data of ( ; )i jy t k  at jt  

t/s y1 y2

        0.000       1.0000      0.0000 
        0.025       0.7565      0.2007
        0.050       0.6086      0.2852 
        0.075       0.5091      0.3137
        0.100       0.4376      0.3138 
        0.125       0.3837      0.2992
        0.150       0.3416      0.2777
        0.175       0.3079      0.2533
        0.200       0.2802      0.2285
        0.225       0.2571      0.2046
        0.250       0.2376      0.1835 
        0.300       0.2062      0.1444
        0.350       0.1821      0.1131
        0.400       0.1631      0.0887
        0.450       0.1477      0.0700
        0.500       0.1349      0.0557
        0.550       0.1242      0.0447
        0.650       0.1071      0.0298 
        0.750       0.0942      0.0209 
        0.850       0.0841      0.0153 
        0.950       0.0759      0.0117 

 

In order to verify the effectiveness of the result obtained by using NSGA II, two 
comparisons are conducted here. Firstly, compare the fitted data in Table 4 with the 
observed data in Table 1, and the comparison result shows in Fig. 2. Secondly, com-
pare the value of the objective functions between the result obtained in this paper and 
that of Ref. [2], where the objective function values are worked out through one-step-
integral Treanor algorithm, and the comparison result shows in Table 5. 

Table 5. Comparison of k  in Terms of Objective Functions Value 

Derivation Value of ( 1,2,3)ik i =  Value of objective functions 

Ref. [2] (11.948,7.993, 2.024)  (0.0094,0.0011)  

This paper (11.816,8.353,0.985)  (0.0047,0.0006)  

 

As shown in the Fig. 2 and Table 5, the fitted data in Table 4 match the observed 
data in Table 1 more closely. It can be concluded that the method proposed in this 
paper is more effective and feasible. 
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5   Conclusion 

A new strategy for parameter estimation of dynamic differential equations based on 
NSGA II, which is adopted to determine the exact model of catalytic cracking of gas 
oil, is proposed. This method is proved to be more effective and feasible than the 
traditional methods. With the parameters selected from the NSGA II pareto-optimal 
solutions, more accurate results can be obtained. 
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Abstract. The Dynamical Optimization Evolutionary Algorithms
(DOEAs) have been applied to solve Dynamical Optimization Problems
which are very common in real-world applications. But little work focused
on the convergent DOEAs. In this paper new definitions of convergence
are proposed and a new algorithm named Vector Prediction Approach is
designed. This algorithm firstly analyzes the genes of best individuals from
the past, then predicts the next genes of best individual in every tick by
Gene Programming, such that the algorithm tracks the optima when time
varying. The numerical experiments on two test-bed functions show that
this algorithm can track the optima when time varying. The convergence
of this algorithm under certain conditions is proved.

1 Introduction

Real-world optimization problems are often time-varying, so they are called Non-
Stationary Optimization Problems or Dynamical Optimization Problems(DOPs).
At present, applying Evolutionary Computation to solve Static Optimization
Problems is under extensive investigation, but as to DOPs, many foundational
questions are not answered yet.

Since 1960s, various Dynamical Optimization Evolutionary Algorithms
(DOEAs) have been proposed. Kazuko Yamasaki et al. [1] pointed out that
all the algorithms base on those typical characteristics of DOPs as follows:

1. Reappearance. The representative DOEAs are memory-based DOEAs[2, 3].
2. Continuity. For example, some DOEAs employ neighborhood search

operators.
3. Rarity. The representative DOEAs are Diversity-based DOEAs. The Trig-

gered Hyper-mutation Approach would be the representation of this kind of
algorithm[4, 5].

4. Predictability. ”Futurist Approach”[6] is the representative algorithm. Cur-
rently, prediction-based DOEAs focus on how to rebuild the dynamical
environment[7].
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Furthermore, some algorithms tried to combine the characteristics to improve
the performance of DOEAs. For example, Multi-population Approach bases on
the reappearance and rarity[8].

So far, the convergence of DOEAs has not been well considered. Little work
has focused on this topic. Actually, the DOEAs mentioned above do not con-
verge except some memory-based DOEAs under some special conditions. Even if
these memory-based DOEAs, they are just capable of dealing with some specific
Dynamical Optimization Problems with small periods.

In this paper, we focus on how to design a convergent DOEA. Firstly, we pro-
pose the definitions of convergence. Secondly, we introduce a new approach named
Vector Prediction Approach which analyzes the track of every gene of the chro-
mosome of the best solutions from the past, and predict the next locations of the
genes, such that the algorithm can track the optima of DOPs. Thirdly, we theoret-
ically prove the convergence of the proposed algorithm under some certain condi-
tions. Fourthly,we represent the experimental results which experimentally prove
the convergence. At last, we discussed some important issues and future work.

2 Introduction to the Algorithm

Definition 1 (Strong Convergence). For functionf(−→x , t),if one algorithm
can obtain an infinite sequence of −→x ∗

t (−→x ∗
t1 ,

−→x ∗
t2 , · · · ) to satisfy

∀ε > 0 ∧ i > 0 |min f(−→x , ti) − f(−→x ∗, ti)| < ε (1)

then the algorithm is strongly convergent to f(−→x , t).
Here −→x is independent variable vector,f(−→x , t) is a time-varying function, and

the functional value is real number, t is time variable and ε is an positive arbi-
trary small constant,i is a positive integer.

Definition 2 (Weak Convergence). For functionf(−→x , t),if one algorithm can
obtain an infinite sequence of −→x ∗

t (−→x ∗
t1 ,

−→x ∗
t2 , · · · ) to satisfy

∀ε > 0, ∃N > 0 such that ∀i > N |min f(−→x , ti) − f(−→x ∗, ti)| < ε (2)

then the algorithm is weakly convergent to f(−→x , t).

The strong convergence is very hard to achieve. So we focus on the weak con-
vergence to the predictable Dynamical Optimization Problems.

It is a good choice to employ meta-learning approach to learn from the past
and construct the −→x ∗

t ’s expressions and predict the next value: −→x t+1.
We suggest that two populations be used, one for evolving, and the other for

predicting.
The algorithm can be depicted as follows,

Procedure VPA
Initializing the parameters;
Initializing the population;
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Initializing the predicting population;
Evaluate and store the best;
while (not termination-condition) do
begin

if environment changed then
record the number of changes
if prediction-condition then

fitting
end if
predict the current best solution
copy the prediction solution into population
for each solution in population

do crossover and mutation operators to generate the new solution
if the new solution is better than current solution

replace the current solution with the new solution
end if
end for
store the best solution

end if
end

In this algorithm, the population(also called evolutionary population) means
the population to be used to solve problem in the current tick and the predicting
population means the population to be used to predict.

2.1 Environmental Detection

Environmental detection would contribute to the convergence of DOEAs. Here
we assume that the algorithm knows the ticks. That is, the algorithm knows
when the environment would change.

2.2 Prediction Procedure

In this algorithm, we use the improved GEP (Gene Expression Programming)
[9, 10] to predict the functions, e.g.,use the GEP to perform symbolic regression
for obtaining some expressions, and then compute −→x t+1

The procedure would be depicted as follows,

Procedure fitting;
Begin
While( not fitting- termination-condition) do

for each individual in predicting population
evaluate the current individual
do crossover, mutation operator to generate a new individual
evaluating the new individual
if the new individual is better than current individual in predicting pop-

ulation then
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replace current individual in predicting population with the new one
end if

end for
end while
store the best individual in the predicting population
end;

In this algorithm, every individual’s chromosome is a vector, and the dimen-
sion number is the same as the dimension number of −→x . Every element in this
vector is a functional expression, and every expression is divided into two parts,
the first is symbolic sequence, the second is a array to store the real constants.

Therefore, the chromosome of every individual can be depicted as follows,⎧⎪⎪⎨
⎪⎪⎩

expression1
expression2
. . .
expressionn

(3)

And the evaluation function would be

Fitness = f(x1, x2, . . . , xn, t)
xi = expressioni(−→x best, t)

(4)

We store the symbolic sequence with the suffix expression. This make the
encoding, decoding and evaluation easy, because it is unnecessary to construct
the grammatical trees.

2.3 Prediction Conditions

When the individual which is generated by the predicting population is worse
than the best individual which is generated by the evolutionary population, it
is obvious that the prediction process should continue.But when the individual
which is generated by the predicting population is better than the best individual
which is generated by the evolutionary population and continue for several times,
we can think the prediction results are good enough, and the prediction process
would pause until the prediction is necessary again.

3 Convergence Analysis

Here we denote predicting population as P1 and evolutionary population as P2.
The basic definitions and theorems on Markov Chain are not introduced here,
please refer to [11].

Definition 3 (K − M Predictable). Given a sequence S and a universal ma-
chine, if there exists a code C whose length is K bit, for any t, such that the
machine should obtain S(t) in M step, then the sequence S is (K-M) predictable.
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Lemma 1. A homogeneous Markov chain with finite state space and irreducible
transition matrix visits every state infinitely often with probability one regardless
of the initial distribution.

Proposition 1. Assumed that the variable space is discrete and for any i ∈
[1, n], here n is the number of genes, the sequences of genes are Si(Ki, Mi)
predictable ,the populations sequence (P1, P2)t(t ≥ 0) is a homogeneous finite
Markov chain with irreducible transition matrix.

Theorem 1. If the variable space is discrete, the environmental changes are
known and for any i ∈ [1, n], here n is the number of genes, the sequences of genes
are Si(Ki, Mi) predictable, then VPA should weakly converge with probability
one.

Proof. 1. According to lemma 1, as the sequences of genes are Si(Ki, Mi) pre-

dictable, the maximum search space of predicting population would be 2
n∑

i=1
Ki

.
Assumed that the variable space is 2l, the total size of state space would be

2
n∑

i=1
Ki+l

. Because the transition matrix is irreducible, every state would be in-
finitely often visited with probability one regardless of the initial distribution.
2. Because the elitism is employed in this algorithm, once the best individual in
evolutionary population and the best individual in predicting population emerge
simultaneously, they would be stored and would not be replaced. 3. Because the
best predicting individual and the best evolutionary individual would emerge si-
multaneously with probability one and would be stored forever, so this algorithm
would weakly converge with probability one.

4 Numerical Experiments and Analysis

4.1 Benchmark Functions

Currently, the moving parabola problem[12] is one of the foundations of the
other problems. Here we design two test-bed functions based on it.

Function Z1

f(x1, x2, t) = 100 ∗ ((x1 − sin(t)2 + (x2 − cos(t))2) (5)

Here t= (current generation) - (current generation) mod 2, this means, the
environment will change with a 2-generation interval.

Function Z2
f(x1, x2, x3, t) =

√
y2
1 + y2

2 + y2
3

y1 = x1 − sin( t
2 )

y2 = x2 − t
y3 = x3 − x1 cos( t

2 )

(6)
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Here t is the same as in Z1.
Function Z1 has a small period, but Z2 is not periodic.

4.2 Parameters Setting

For comparing with the proposed DOEA, we re-implemented a DOEA with
Memory-Enhanced Strategy (MES). The size of memory is set to 60. And the
best individual in current tick would replace the eldest individual in the memory
just after the environmental change. For both DOEAs, the size of population is
set to 300 and the generation number is set to 5000. For every function, the
DOEAs are carried out 30 times.

4.3 Results and Analysis

For direct representation, we plot the best fitness sequences of MES and VPA
on Z1 and Z2 (The data come from only one run).
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Fig. 1. The comparison on Z1

From the figures we can see that this algorithm can obtain very nice results
as the red lines have shown: after some generations(the very generation would
be called as the first hitting generation), this algorithm obtained the optima
at every tick, but MES did not, though it obtained very good results when
dealing with Z1. Furthermore, we did not find the convergence trend of MES.
Actually,theoretically, it would not converge when dealing with such problems.

First Hitting Generation (FHG) and Off-Line Performance (OLP) are used
to measure the performance of both the algorithms. In Table 1, the average
FHG (AVG FHG) and the standard error of FHG (SE FHG), average OLP
(AVG OLP) and the standard error of OLP (SE OLP) are compared.

The data in table 1 imply that the performance of VPA is much better than
MES. Actually, VPA converged in all the runs, but MES did not.
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Fig. 2. The comparison on Z2

Table 1. Comparisons of Performance Measures

AVG FHG SE FHG AVG OLP SE OLP

Z1
MES 5000 - 0.0355543 0.0062121
VPA 50.6666667 1.3474066 0.0000334 0.0000008

Z2
MES 5000 - 1.0205465 0.0005568
VPA 651.4666667 22.5594604 0.0035794 0.0001091

5 Discussions and Future Work

In this paper, we propose a new approach: Vector Prediction Approach. The
experimental results and theoretical analysis imply that the algorithm has a
good performance. In contrast to the memory-based approach, the proposed
approach could deal with non-periodic Dynamical Optimization Problems.

We concentrate on only the dynamical optimization problems without random-
ness, because the ”domino effects” of randomness are very difficult to be catego-
rized. Actually, the randomness probably make a mass of DOPs unsolvable or
meaningless. Even if some of them are solvable, the ”online” and ”off-line” per-
formance measures which are commonly used are somehow doubtable because the
measures base on a hypothesis: the comparative algorithms should converge. Any-
how, the randomness would be an interesting topic and we leave it as future work.

Notwithstanding its limitation, this study does imply that Vector Prediction
Approach should be feasible to deal with the DOPs which are predictable.
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Abstract. The success (and potential success) of evolutionary algo-
rithms and their hybrids on difficult real-valued optimization problems
has led to an explosion in the number of algorithms and variants pro-
posed. This has made it difficult to definitively compare the range of
algorithms proposed, and therefore to advance the field.

In this paper we discuss the difficulties of providing widely available
benchmarking, and present a solution that addresses these difficulties.
Our solution uses automatically generated fractal landscapes, and allows
user’s algorithms written in any language and run on any platform to be
“plugged into” the benchmarking software via the web.

Keywords: real-valued optimisation, evolutionary algorithms, hybrid
algorithms, benchmarking.

1 Introduction

The success of population-based optimization algorithms, such as genetic, evolu-
tionary and swarm-based algorithms, along with the steady increase in accessible
computing power, has allowed previously impractical search and optimization
problems to be addressed across many application domains. This has led to an
explosion in the number of algorithms and their variants proposed by researchers.
In addition there has been renewed interest in more traditional algorithms, such
as hill-climbing and other local searches, as part of hybrid or “memetic” algo-
rithms combining distributed and traditional approaches.

Effective means of comparing the multitude of proposed algorithms are lim-
ited. This in turn makes it difficult for the field to progress, since it is difficult
to evaluate the relative merits of proposed algorithms and modifications.

In this paper we discuss the difficulties of providing effective and widely avail-
able benchmarking, and present a solution that addresses some of these diffi-
culties. Our solution uses a series of automatically generated fractal landscapes,
and allows user’s algorithms written in any language and run on any platform
to be “plugged into” the benchmarking software via the web. The benchmark-
ing system is available on-line at http://gungurru.csse.uwa.edu.au/cara/
huygens/ [1].

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 361–368, 2006.
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2 Difficulties in Universal Benchmarking

We begin by outlining some of the issues that inhibit the development and
adoption of universal benchmarking facilities.

2.1 Programming Languages and Architectures

Researchers develop implementations for testing their algorithms in program-
ming languages and development environments they are familiar with. Problem
sets to test the algorithms tend to be developed in the same language, and often
as part of the same code. Where other researchers have used different languages
or coding structures, it often requires many hours of programming and testing,
and in many cases rewriting in a new language, in order to compare algorithms
on the same problems.

Our approach to this problem uses Simple Object Access Protocol (SOAP)
as an interlingua between the user’s code and the benchmarking suite, and is
discussed further in Section 4.

2.2 Choice of Problem Domains

Optimization algorithms are developed for a huge range of problem domains.
Many of these are not widely known or understood. In order for benchmarking
problems to be widely accepted they must be readily available and familiarized.

Fig. 1. A cross section of Schaffer’s F6
function

Some defacto standards have emerged
through common use. Well-known exam-
ples are those by De Jong [2] and Schaf-
fer [3]. These are typically mathematical
functions that are designed to be in some
way challenging to the solver. An exam-
ple is Schaffer’s F6 function, shown in
Figure 1.

While a focus on these problems has
raised many important issues, they are ar-
guably poorly representative of naturally
occurring optimization problems. F6, for
example, is difficult because the closer a
candidate solution gets to the global min-
imum, the bigger the hill that must be
climbed or “jumped” to move from one
local minimum to the next. However we are not aware of any naturally occur-
ring phenomena which clearly have this property.

In this paper we choose self-similar “landscapes” as our problem domain. This
domain is appealingly familiar and intuitive while raising many difficulties for
solvers that generalise to other domains, and is discussed futher in Section 3.
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2.3 Ready Access to Benchmark Problems and Comparative
Statistics

In recent years various more natural benchmarking problems and problem gener-
ators have been made available on the web (see for example [4, 5]). However, even
if one overcomes the coding issues raised above, it remains difficult to benchmark
an algorithm against those of a large number of peers. Aside from the overheads
of obtaining or implementing other authors’ algorithms, without a centralised
system, the number of comparisons needed increases combinatorially with the
number of algorithms proposed.

2.4 A Word on the No Free Lunch Theorem

The No Free Lunch (NFL) Theorem [6, 7] states, roughly speaking, that no algo-
rithm performs better than any other when averaged over all fitness functions.
The theorem therefore implies that algorithms cannot be benchmarked to find a
best general algorithm. It does not take account, however, of structure in natu-
rally occurring classes of problems. The theorem assumes a uniform probability
distribution over fitness functions, and closure under permutation. It appears
that naturally occurring classes of problems are unlikely to be closed under per-
mutation. Igel and Toussaint [6] show that the fraction of non-empty subsets
that are closed under permutation rapidly approaches zero as the cardinality of
the search space increases, and that constraints on steepness and number of local
minima lead to subsets that are not closed under permutation. (Similar results
are provided for non-uniform probability distributions.)

Thus for naturally occurring classes of structured problems, one might expect
(as is intuitive) that some algorithms generally perform better than others.

3 Randomised Self-similar Landscapes

In this section we highlight some of the main issues involved in selecting the
problem domain and generating instances for evaluation. The reader is referred
to [8] for a more detailed treatment.

3.1 Why Landscapes?

As well as being familiar and intuitive, (suitably detailed) landscapes exhibit
many of the properties that raise difficulties in search and optimization algo-
rithms. For example, landscapes have a very large number of local minima (some-
times referred to as highly multimodal). However these are achieved naturally and
at random, unlike mathematical functions such as F6 mentioned earlier.

Secondly, landscapes are more complex than functions such as F6 in that de-
tail does not diminish with scale. Natural landscapes are considered to exhibit
(or at least approximate) the fractal property of statistical self-similarity. As
one zooms in, rather than reaching a scale in which the landscape is smooth,
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successively more detail reveals itself. This is particularly important in regard to
the following two issues that arise in population-based and hybrid algorithms.

Exploration versus Exploitation. One of the most difficult issues in de-
signing optimisation algorithms is managing the balance between exploration
(searching for better regions) and exploitation (converging on local minima). In
many contrived problem domains knowledge of scale of the fitness function al-
lows one to implicitly “cheat” in tuning the parameters of the algorithm. As a
simple illustration consider a bowl function (such as F1 in [2]). Any reasonable
algorithm can solve this problem quickly using either local search or population
convergence. This is because prior information is (implicitly) provided that the
minimum lies within the given bounds, and therefore parameters can be chosen
to favour convergence.

If we assume, however, that the bowl could be a small perturbation in a
much larger picture, the implications of the parameter choice change entirely
and sufficient exploratory action is required. If the available computing resource
is, for example, number of evaluations, we are faced with a very difficult problem
of how best to use them.

Population-based Search Versus Local Search. One approach to dealing
with the exploration/exploitation problem has been to propose hybrid algorithms
combining population-based methods with local search. Again, when the scale
at which the detail occurs is known or bounded, these algorithms can perform
above their general potential.

To continue the bowl illustration, consider say an egg box (or muffin tray). It
would be very easy to parameterize a hybrid algorithm so that the population
operators search “across” the egg cups, while local search is used to rapidly find
minima within the cups. This may report excellent results for this problem, but
perform extremely poorly when the number of minima (“cups”) within each cup
(and in turn within those cups) is increased — suddenly the scales at which the
population-based and local search are operating are inappropriate.

We have chosen automatically generated pseudo-random self-similar surfaces
as our problem domain to bring out these challenges. Algorithms that do well
on these problems should generalize easily to problems with more limited scale.

3.2 Generating the Landscapes

A Meteor Impact Algorithm. The most widely used algorithms for random
fractal landscape generation are midpoint displacement algorithms. However they
cannot be used for this purpose since the number of midpoints that must be
stored or generated increases exponentially with the depth of iteration. This may
not be a problem if landscapes are being generated for human viewing, however
we wish to generate the landscapes with detail to the limit of the computer’s
resolution (which we take to be 64 bit IEEE floating point).

We have developed an alternative approach in which the depth of a point
can be generated independently of its neighbours. The approach is based on a
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Fig. 2. Training series surfaces 5 2, 10 2 and 20 2 showing successive maturation of
the moon surface by meteor impact. Each surface is twice as old as its predecessor.

Fig. 3. Two example landscapes from the benchmarking series (20 101 and 20 103).
Notice (a) that both wrap in both x and y directions, and (b) that a small difference
in seed (101 vs 103) generates entirely unrelated landscapes.

simplified model of the natural process of meteors impacting a moon (or plane-
tary) surface. Intuitively a new moon begins as a sphere, although for practical
reasons we use a surface that wraps in both x and y directions. As each meteor or
boulder hits the surface it leaves a crater proportional to the size of the boulder.
This can be seen in the sequence of surfaces shown in Figure 2.

Seeding a Suite of Landscapes. Using a single landscape for benchmarking
would reward optimizers that are overly specific, or overtrained, and may gener-
alize poorly. We therefore use a large suite of landscapes, each of which can be
(re)generated from a unique index using a portable (multiplicative congruential)
pseudo-random generator [9]. Since sequential seeds produce related random de-
viates in multiplicative congruential algorithms, we first scatter or hash the index
to produce the actual seed used by the generator for each landscape.

Figure 3 shows two example landscapes illustrating the distinctly different
outcomes from different indices or seeds.

3.3 Implementation

As with midpoint displacement algorithms, it is not possible to generate and
store the surfaces in advance as the storage required is many orders of magnitude
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Fig. 4. A one dimensional slice of surface 20 101 shown at magnifications of 100 to
102. The detail at the minimum of each plot is shown in the subsequent plot.

too great. It is not possible to store all the boulders for the same reason — the
number increases exponentially with resolution. Similarly, it is not possible to
generate all the boulders when evaluating the surface. What is needed is an
algorithm that generates just the boulders that can affect the point (or co-
ordinates) of evaluation. This number increases only linearly with resolution
(since self-similarity requires that the average number of boulders per unit square
at any resolution is the same).

We achieve this using a recursive approach. The trick is to associate a re-
cursively generated seed with each unit square at each scale. That is, the seed
associated with a square at scale 10−(m+1) is uniquely determined by its parent
seed at scale 10−m, along with its relative position within that parent square.
Thus all seeds are uniquely determined from the surface index. The contribution
of boulders within that unit square to the depth of a co-ordinate point can then
be determined from that seed, and the contribution from different resolutions
summed.

To illustrate that the self-similarity property holds we have included in Fig-
ure 4 cross sections of the first landscape from Figure 2 at successively smaller
scales. Notice that there is no systematic change in the amount of detail (number
of local minima, height of peaks, etc) as one progresses through the sequence.
Indeed the images could be shuffled in any order without looking out of place.

4 The Huygens Server

Now that we have addressed the content of the benchmarking suite, we briefly
address the question of making it readily accessible to all users. The benchmark
server is designed to satisfy the following principles:

1. Access to the benchmarking software and results should be freely available
through the web.

2. The user should be able to develop their algorithm in the programming
language of their choice, and run it on their platform of choice.

3. The user should be free of any need to understand (or even see) the bench-
marking code.
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Fig. 5. Architecture of the Huygens Benchmark Server

4. The user should be able to initiate the benchmarking process. (For example,
they should not have to submit an algorithm and rely on another human at
the “other end” to run it.)

The primary design decisions that allow these principles to be satisfied are the
separation of the user and benchmarking (server) environments, and communi-
cation via the language independent SOAP protocol [10] for method invocation.
The user’s algorithm runs in his or her own environment, and “plugs into” the
SOAP client. This structure is illustrated in Figure 5.

4.1 Comparing Algorithms

For the purposes of training or fine-tuning algorithms, the server allows unlimited
access to a series of training surfaces. For benchmarking, however, some measure
of computing resource consumed is required for comparison.

In evolutionary algorithm research a wide variety of measures have been
used. Examples include number of epochs or iterations to reach the global min-
imum (which in our case is unknown) to within a given accuracy, best value
achieved in a given number of evaluations, average population fitness, through
to environment-dependent measures such as CPU time.

In order to allow comparison of a very broad range of algorithms, including hy-
brid and traditional search algorithms, we have steered clear of paradigm-specific
concepts such as epochs. Similarly to support multiple computing environments
we have steered clear of environment-dependent measures. We have taken the
view that in most practical applications the expensive operation is fitness evalua-
tion. We therefore allow each algorithm a fixed number of evaluations, or probes,
for each landscape to produce its best solution.

We also need to make a decision on how to score algorithms. Because of the
fractal nature of the landscapes, the differences in raw minimums achieved will
decrease exponentially as improvements are made at higher resolutions. There-
fore we need to “stretch” those differences as the scale decreases. We achieve
this by mapping them onto an exponential function. Further details on scoring
and comparison can be found in [8].
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5 Conclusion

While arguments such as the No Free Lunch Theorem mean that it will never be
possible to identify the “universal best” general purpose optimization algorithm,
it is nevertheless vital to develop some definitive and widely accessible means of
comparing algorithms. This paper presents one attempt at such a system.

We have argued that the problem domain chosen is intuitively simple, nat-
urally appealing, and challengingly complex, while overcoming technical issues
to provide efficient, high resolution fitness functions. We have also presented
an architecture for accessing the system that overcomes problems of language
and environment incompatibilities. The system allows the user to plug in their
algorithm and initiate automated benchmarking and subsequent scoring.

We hope that this system will provide a valuable resource to the evolutionary
algorithms research community.
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Abstract. Interactive genetic algorithms depend on more knowledge embodied 
in evolution than other genetic algorithms for explicit fitness functions. But 
there is a lack of systemic analysis about implicit knowledge of interactive ge-
netic algorithms. Aiming at above problems, an interactive genetic algorithm 
based on implicit knowledge model is proposed. The knowledge model consisting 
of users’ cognition tendency and the degree of users’ preference is put forward, 
which describes implicit knowledge about users’ cognitive and preference. 
Based on the concept of information entropy, a series of novel operators to real-
ize extracting, updating and utilizing knowledge are illustrated. To analyze the 
performance of knowledge-based interactive genetic algorithms, two novel 
measures of dynamic stability and the degree of users’ fatigue are presented. 
Taking fashion design system as a test platform, the rationality of knowledge 
model and the effective of knowledge induced strategy are proved. Simulation 
results indicate this algorithm can alleviate users’ fatigue and improve the speed 
of convergence effectively. 

1   Introduction 

Interactive genetic algorithms(IGAs) are a kind of genetic algorithms in which 
fitness of individuals is evaluated by human subjectively. They combine canonical 
genetic algorithms with human intelligent evaluations. Now they have been applied 
to optimization problems whose objectives can not be expressed by explicit fitness 
functions, such as music composition, production design and so on[1].However 
there exits users’ fatigue in evaluation, which limits population size and the number 
of evolutionary generations. Moreover, human subjective fitness mainly reflects 
users’ cognition and preference, which is related to domain knowledge. So IGAs 
need more knowledge than other genetic algorithms for explicit optimization  
functions. 

Domain knowledge was classified into priori knowledge and dynamic knowledge 
according to the extracted methods by Giraldez[2].The former is obtained from prob-
lems directly before starting a search. So they are relatively constant. The latter is 
extracted from an evolution and updated throughout the evolution. In this paper, we 
are interested in the latter one. In IGAs, this kind of knowledge is implicit and reflects 
users’ cognition and preference, called implicit knowledge. The key problems about 
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implicit knowledge are how to represent, extract and utilize it so as to alleviate users’ 
fatigue and improve the speed of convergence. Up to now, many knowledge-induced 
evolutionary strategies have been proposed. A knowledge model based on artificial 
neural networks was adopted to update fitness of bad individuals so as to drive them 
to good solutions[3][4]. Sebag and Fan presented a rule-based knowledge model gen-
eralized by induction learning to improve the generalization of solutions[5][6]. Based 
on dual structure, cultural algorithms and co-evolutionary GA were proposed, which 
extract schema to induce the evolution in search space[7][8]. However, the fitness 
functions of above knowledge-based algorithms are explicit. It is necessary to build a 
knowledge model aiming at IGAs for implicit optimization functions. So an interac-
tive genetic algorithm based on implicit knowledge model(IK-IGA) is proposed in 
this paper. 

2   Description of Implicit Knowledge 

In IGAs, users’ cognition and preference embodied in the evolution are extracted 
from samples and other information about evolution. Samples consist of genotype of 
individuals and corresponding fitness evaluated by users. In order to simplify the 
description, an implicit knowledge model based on characteristic-vector is adopted. 
Define a characteristic-vector C as 

C=[W   P   ]T  (1) 

where W=[w1  w2 …wM] and P=[p1   p2 … pM] expresses users’ cognition tendency and 
the degree of users’ preference to each locus respectively.  is the reliability of a char-
acteristic-vector. M is the length of an individual. 

In many problems solved by IGAs, individuals consist of some building blocks 
with special meaning which consist of some neighboring loca. They are called 
gene-meaning-unit(GM-unit)[9].Suppose individuals take the form of bit strings. 
Assuming n is the number of GM-unit and mi is the number of loca included in ith 

GM-unit which satisfy
== n

i imM
1

.Each unit Vi={vi1,vi2,…,vi
il
}(i<n) has im

il 2=  possi-

ble meanings,called attributes. Based on GM-unit, implicit knowledge model is 
extended as W=[w1  w2 … wn] and P=[p1  p2 … pn] where wi denotes the distribution 
of attributes in ith GM-unit and pi expresses the importance of ith GM-unit among all 
units. 

There exits users’ fatigue during the evaluation in IGAs. More individuals evalu-
ated by users and more similar individuals in each generation will increase users’ 
fatigue. When users feel tired, fitness evaluated by users can not reflect users’ true 
preference any more. This lowers the reliability of extracted implicit knowledge. So 
the reliability of characteristic-vector is defined as  

- tt t Sde •ζ =  (2) 

where t is the number of generation.
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 denotes the similarity 
of population where d(xi,xj)=|xi-xj| is the Hamming distance between xi and xj. 
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3   Operators for Knowledge 

3.1   Extraction 

This operator is adopted to extract implicit knowledge described by characteristic-
vector from sample-population S by statistical learning method.  

Extraction of Users’ Cognition Tendency. In a GM-unit, attributes which users 
most like have more probability to exist in offspring. Define the survival probability 

ijvρ of jth attribute in ith GM-unit as 

( )
1

1
i j

K
k k

v i ij i
k

f s ,v , s S
K =

= ∈ρ  (3) 

where 
( ) ( )

( )
01

0 0

i ij

i ij

i ij

d x ,v
f x ,v

d x ,v

=
=

≠

is the distance of an attribute of an individual. si
k is the 

value of ith GM-unit of kth sample. K=INT( s·N) is the number of samples. s is the 
probability of sampling. INT(x) rounds the elements of x to the nearest integers. It is 
obvious that 

ijvρ is larger when more samples include vij.  

Define average survival probability of ith GM-unit as 1
iV il=η .According to the re-

lationship between 
ijvρ and 

iVη , users’ cognition tendency is extracted as follows. 

Rule A: ( ) ( ){ }ij ij i ij iki v v V v v ij ik i iw | , v ,v V , j k , j,k l= > ∧ > ∀ ∈ ≠ ≤ρ ρ η ρ ρ  

Rule B: ( ){ }0
ij ii v V ij i iw | , v V ,, j l= ≤ ∀ ∈ ≤ρ η  

Rule C: ( ) ( ) ( ){ }0
ij ik ij i ik ii v v v V v V ij ik i iw | , v ,v V , j k , j ,k l= = ∧ > ∧ > ∀ ∈ ≠ ≤ρ ρ ρ η ρ η  

Rule A shows that users favor the attributes which have the maximum survival 
probability exceeding average survival probability. In other words, users’ cognition 
tendency about this unit is clear. So these attributes are extracted as good schema 
which will direct the evolution to good solutions. But if one more attributes with the 
maximum survival probability as shown in Rule B, it indicates users can not clearly 
judge which attribute is better. So these attributes can not give specific direction dur-
ing the evolution. Rule C indicates there is no valuable information embodied in this 
GM-unit and users’ cognition tendency is not clear. 

Extraction of The Degree of Users’ Preference. When users pay more attention to a 
GM-unit, users’ cognition tendency of this unit is more accurate. That is, this unit is 
in higher proportion to all units. So the degree of users’ preference is formed as 
follows. 

1=

=
n

i
iii wwp  (4) 



372 Y.-n. Guo, D.-w. Gong, and D.-q. Yang 

Schema Based on GM-unit. Based on users’ cognition tendency, characteristic-
individual Vo=[vo1  vo2 … von] is extracted in which 

( )
0

0i

ij i
m

i

v w
Vo

w*

≠
=

=

.Combing with 

the definition of schema proposed by Holland[10], schema based on GM-unit is 
defined as 

CH={a|a SVi, i,CHi vij
*  CHi=aj, i=1,2,… n, j=1,2,… li} (5) 

where a=(a1,a2,…an),CH=(CH1,CH2,…CHn),ai SVi,CHi SVe
i,vij

*=(*)
im

.SH
im

={0,1}
im  

is gene space. SHe
im

={0,1,*}
im

is extended gene space. SVi={Vi}  SH
im

is attribute 
space. SVe

i={Vi,vi
*}  SHe

im

is extended attribute space. 

3.2   Update 

Users’ cognition varies and becomes clearer during the evolution. So characteristic-
vector which reflects users’ preference is variable and needs to be updated dynami-
cally so as to exactly track users’ cognition in time. Two key problems which influence 
the speed of track and the efficiency of computation are how to update samples in 
sample-population and the frequency of extracting knowledge. 

Update Strategy for Samples. Individuals in evaluated population are added to 
sample-population if they improve the diversity of sample-population and provide 
more information which contributes to the evolution than before. In order to describe 
the quantity of information, information entropy of sample-population before and 
after adding xi in tth generation is define as H( S

t-1) and Ht(xi).  
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Letting Ft(xi) denotes fitness of xi.A novel update strategy is shown as follows. 

Step1: Rank population according to Ft(xi)  and Ht(xi) respectively. 
Step2: Individual with maximum fitness is added to sample-population directly. 
Step3: Other individuals which satisfy Ht(xi)>H( S

t-1) are added to S . 
Step4: Rank new sample-population according to fitness. 
Step5: Individuals with minimum fitness are move from new sample-population. 

The number of moved individuals is equal to the number of added individuals. 

The Frequency of Extracting Knowledge u. u is a key parameter which decides 
the speed of updating knowledge. It depends on the similarity among samples. While 
similar samples are more, the diversity of S is worse and redundant information 
embodied in S is more. u is defined as 

( )- d s S

u e=ω  (8) 

where ( )Sds  denotes the similarity of S . 
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3.3   Direction 

Each genetic operation can be influenced by implicit knowledge. Here, a novel 
knowledge-inducing strategy for replacing individuals is proposed. Characteristic-
individual Vo is adopted as the constraint to limit the number of similar individuals in 
the population of next generation. Considering users’ preference to each GM-unit, the 
weighted Hamming distance is defined as 

( )
1

n

s i i i
i

d p f x ,vo
=

= ζ  (9) 

The detailed steps of the strategy are shown as follows. 

Step1: Calculate ds between Vo and each individual in offspring population. 
Step2: Move individuals which satisfy ds=0.Go back to Step1 with a new individual 

               generated randomly. 
Step3: Individuals which satisfy ds 0 are placed in new population. 

4   Two Measures for IK-IGA 

Convergence and the speed of convergence are main measures to analyze the per-
formance of genetic algorithms. But there is no measure for analyzing transition per-
formance of an evolution using IK-IGAs. Moreover, users’ fatigue is a key problem in 
IGAs. But there is no measure to describe the degree of users’ fatigue directly. Aim-
ing at above problems, two novel measures including the measure of dynamic stabil-
ity and the degree of users’ fatigue are proposed. 

The Degree of Users’ Fatigue. The main factors, which reflect users’ fatigue, include 
the number of generation Ns, the similarity of population Sd and waiting time during 
the evaluation tw. So the degree of users’ fatigue Fa is defined as follows. 

Fa=1-e-Ns Sd tw (10) 

The Measure of Dynamic Stability. Combing with the transition analysis in 
automation control[11],a novel measure of dynamic stability including error and the 
cost of computation is proposed. The increment of computation time caused by 
operations about knowledge is called the cost of computation. Letting Tst,Tat,Tut and 
Tit denote the time spent on sampling, extraction, update and direction respectively. 
The cost of computation is defined as Ctt=Tst+Tat+Tut +Tit. It reflects the performance 
of transition time of IK-IGAs. Assuming x* is the optimal solution. Error is defined as 
et=min{d(xi

t,x*)|∀ xi
t Xt}. It reflects the spatial performance of IK-IGAs. 

These measures are related to the frequency of extracting knowledge u. Under ex-
tremely large u, knowledge is updated continually which causes increasing of Ct. But 
error fluctuates in a small range. So this state is called over-induced evolution. Under 
extremely small u, knowledge can not timely track users’ cognition which misguides 
the evolution and causes large fluctuation of error. So this state is called under-
induced evolution. It is obvious that too large or too small u will lead to increasing 
of evolution generation and slow down the speed of convergence. 
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5   Simulations and Analysis 

In this paper, fashion design system is adopted as a typical background to validate the 
rationality of IK-IGAs. Visual Basic6.0 as programming tool and Access as database 
are utilized. In fashion design system, each dress is composed of collar, skirt and 
sleeve. Each part has two factors including pattern and color. If each factor is de-
scribed by two bits binary code, each dress will be expressed by 12 bits, which act as 
6 GM-units. They are collar’s color and pattern, skirt’s color and pattern, sleeve’s 
color and pattern orderly[9]. The attributions of each GM-unit are shown in Table.1.  

Table 1. The attributions of GM-units 

name code of 
attributions collar’s pattern sleeve’s pattern skirt’s pattern color 

name medium collar long sleeve formal skirt pink 1 
code 00 00 00 00 
name high collar medium sleeve long skirt blue 

2 
code 01 01 01 01 
name wide collar short sleeve medium skirt black 

3 
code 10 10 10 10 
name gallus non-sleeve short skirt white 

4 
code 11 11 11 11 

To validate the rationality of implicit knowledge model, the algorithm proposed in 
this paper is compared with canonical IGA in two groups of experiments. These ex-
periments have different desired objectives which reflect different psychological re-
quirements of human. Desired objective in Group1 is to find a favorite dress fitting 
for summer without the limit of color. Desired objective in Group2 is to find a favor-
ite dress fitting for summer and the color is pink. During the experiments, the values 
of main parameters using in IK-IGA is: crossover rate Pc=0.5, mutation rate Pm=0.01, 
N=8, stop evolution generation T=30, K=20, s=0.6. 

Table 2. Testing results by canonical IGA and IK-IGA( Ns  andT denote average number of 
individuals evaluated by users and average evolution generation in experiments. x* and Vo 
denote optimum individual and characteristic-individual which appear in most of results). 

Experiment No. Group1 Group2 
algorithms IGA IK-IGA IGA IK-IGA 

T  28 10 40 16 

Ns  224 80 320 128 
x* 111011001111 111011001111 111011001111 110011001111 
Vo - ****11**11** - ****110011** 

 

20 persons are divided into two testing group. Each group does one experiment. 
Testing results are shown in Table.2. It is obvious that IK-IGA converges faster than 
IGA averagely. When IK-IGA is adopted, Ns  reduces 62.1% averagely. These indi-
cate implicit knowledge model and corresponding inducing strategies are beneficial to 
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alleviating users’ fatigue. Vo in different experiments are different, which reflect key 
characters of desired objectives accurately .This shows Vo can track users’ preference 
exactly. Moreover, comparison of results between two groups show while the con-
straint of desired objectives are more, the speed of convergence is slower. This 
matches the rules of users’ cognition. All above indicate knowledge-inducing strategy 
is effective and rational. 

The degree of users’ fatigue Fa in above experiments is plotted in Fig1.It is obvi-
ous that user feel more tired along with the evolution. But Fa is different in different 
experiments. Based on the same algorithms, Fa under desired objective in Group1 is 
lower than it in Group2 on each generation, as shown in Fig.1(a) and (b).In Group1, 
desired objective have less constraint than it in Group2.This means users are easy to 
feel tired when there are more GM-units concerned by them. Under the same desired 
objectives, users quickly feel tired adopting IGA, as shown in Fig.1(c) and (d). It is 
obvious that IK-IGA can effectively alleviate users’ fatigue. 

 

Fig. 1. The degree of users’ fatigue(Solid line and dashed denote Fa using IGA under different 
desired objectives. Dotted line and dashdotted line denote Fa using IK-IGA under different 
desired objectives). 

To validate the influence of u to IK-IGA,15 persons are divided into 3 groups to 
do three groups of experiments with different u and same desired objective in 
Group2.Testing results shown in Table.3 indicate that too large or too small frequency 
can lead to bad convergence. However, u adopted in IK-IGA is self-adaptive and 
varies according to the state of sample-population. Results show this updating strat-
egy can improve the speed of convergence effectively. 

Table 3. Testing results of different u 

the frequency of extracting knowledge u 1 ( )Sdse-  0.2 

T  21 17 24 

6   Conclusions 

Aiming at systemic analysis and effective application about implicit knowledge em-
bodied in IGAs, an interactive genetic algorithm based on implicit knowledge model 
is proposed. A novel knowledge model based on characteristic-vector is adopted to 
describe implicit knowledge about users’ cognitive tendency the degree of users’ 
preference. Four types of operators are given to realize extracting, updating and utiliz-
ing knowledge. Two novel measures about dynamic stability of evolution and the 
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degree of users’ fatigue are proposed to analyze the performance of knowledge-based 
interactive genetic algorithms. Taking fashion design system as a testing platform, the 
rationality of the knowledge model and the validity of knowledge-inducing strategy 
are proved. Simulation results indicate this algorithm can alleviate users’ fatigue and 
improve the speed of convergence effectively. The knowledge migration strategy for 
multi-user based on IK-IGAs is the future research. 
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Abstract. Fuzzy mathematical programming (FMP) has been shown not only 
providing a better and more flexible way of representing the cell formation (CF) 
problem of cellular manufacturing, but also improving solution quality and 
computational efficiency.  However, FMP cannot meet the demand of real-
world applications because it can only be used to solve small-size problems. In 
this paper, we propose a heuristic genetic algorithm (HGA) as a viable solution 
for solving large-scale fuzzy multi-objective CF problems. Heuristic crossover 
and mutation operators are developed to improve computational efficiency. Our 
results show that the HGA outperforms the FMP and goal programming (GP) 
models in terms of clustering results, computational time, and user friendliness. 

1   Introduction 

Mathematical programming (MP) is a common approach to modeling combinatorial 
optimization problems.  However, most elements in MP such as goals, constraints, 
and parameters, cannot be decided or defined precisely that reduce its practical value. 
For this reason, fuzzy set theory has been applied widely to solve a variety of real 
world optimization problems, such as transportation, facility layout, reliability, sched-
uling, project management, communication network design, etc. [7, 19].   

Cellular Manufacturing (CM) is a potential approach that can be used to enhance 
both flexibility and efficiency in today’s small-to-medium lot production environment. 
CF, which concerns the problem of grouping parts with similar design features or proc-
essing requirements and corresponding machines into manufacturing cells, is the key 
step in implementing CM. Over the past few decades, many analytical methods have 
been proposed for solving the CF problems. A thorough review of literature can be 
found, for example, in [4, 5, 16]. Applying fuzzy set theory to CF is a relatively new 
attempt [14, 15]. A major factor causing the clustering bottleneck in CF is the exis-
tence of exceptional elements (EEs), the parts that need to be processed by machines 
                                                           
* Corresponding author. The paper was completed while the author was on leave to Singapore 

Management University (8/2005 - 7/ 2006). 
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not in the same cell. Most prior research removes EEs manually or deals with them af-
ter forming the initial cells [5, 12]. In [14] and [15] the authors used a FMP approach 
to dealing with EEs while forming manufacturing cells. They show that FMP per-
formed better than traditional MP in terms of solution quality and executing efficiency. 
However, when problem size increases, FMP performance deteriorates [14].   

Genetic Algorithms (GAs) have been used extensively as an alternative method for 
solving optimization problems in a wide variety of application domains including en-
gineering, economics, business, telecommunications, and manufacturing [7, 8]. Not-
withstanding, GA, is a powerful heuristic search approach that can solve complicated 
CF problems [6, 7, 18]. Despite of its effectiveness, several issues in GA yet need to 
be explored in order to get good solutions: (1) The selection of fitness function; (2) 
The selection and design of heuristic genetic operators: reproduction, crossover, and 
mutation; and (3) The determination of system parameters: population size, # of gen-
erations, crossover probability, and mutation probability. In this paper, an efficient 
HGA, considering the domain-specific characteristics of CF, was developed to solve 
the fuzzy multi-objective CF problems. Its performance was compared with FMP and 
GP approaches.  

2   Mathematical Formations 

In a fuzzy environment, fuzzy constraints, vague goals, and ambiguous parameters 
can be taken into consideration in the MP model. Several membership functions can 
be used to incorporate fuzziness for fuzzy objective functions or parameters [19], 
among which, non-increasing linear function has shown to perform better than the 
others for CF. Also, the min-add operator has shown to perform better than other 
fuzzy operators for CF and the results of asymmetric and symmetric cases of the 
FMLP models are the same [14, 15]; therefore, in this study, we will use the linear 
non-linear membership function, min-add operator, and the asymmetric case of FLMP 
for our comparisons.  

2.1   Traditional Models 

The proposed bi-objective model is an extension of the model used in Tsai et al. [15], 
where a second objective (2) is added. Objective function (1) is to minimize the total 
cost of duplicating machines, inter-cell transfer, and subcontracting. Objective (2) is 
to maximum total similarity between a pair of parts or machines. The constraint sets 
and notation can be found in [15]. The single objective model can have either objec-
tive (1) or (2). The GP model is the same as that in [14].   
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2.2   Fuzzy Multi-objective Linear Programming (FMLP) Model 

Applying the non-increasing linear membership function and min-add operator, the 
objective functions (1) and (2) can be easily modified as: 

 Min Pc
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Where (3) is the objective function of minimizing the total cost of dealing with EEs. 
The λ value for (3) can be obtained from (4)  

3   The Proposed Heuristic GA 

GAs applications start by encoding the solution of the problem into a chromosome 
string, followed by population initialization, fitness evaluation, reproduction, cross-
over, mutation, replacement. The process continued until a predefined termination 
condition was satisfied [8]. The performance of GAs is highly dependent on the 
chromosome representation scheme, reproduction operators used, and the systems pa-
rameters specified. If these operators and parameters are not properly specified the 
computational results may not be as good as expected [7, 8]. The proposed HGA uses 
a reproduction operator similar to that of the traditional GA approach, but replaces the 
crossover and mutation operators with a new heuristic for each. To explain the major 
logic of the proposed algorithm, we use an example with 9 machines and 10 parts 
from [12].   

3.1   Chromosome Representation Scheme 

The chromosome strings of CF consists of m + n integer genes, in which the first m 
genes relate to machines and the next n genes correspond to parts; each value of gene 
stands for the cell number to which a machine or part to be assigned. For example, the 
chromosome for the illustrated example can be represented as (1 1 2 3 1 2 3 2 1, 2 3 1 
3 2 1 2 1 2 3). Here, this chromosome indicates that cell #1 contains machines 1, 2, 5, 
9 and parts 3, 6, 8; cell #2 has machines 3, 6, 8 and parts 1, 5, 7, 9 and the cell #3 has 
machines 4, 7 and parts 2, 4, 10. 

3.2   Initial Population 

In this study, the initial population was randomly generated to satisfy two problem 
constraints: (1) the total number of machines in each cell has to be less than or equal 
to NM and (2) the number of machines and parts in each cell have to be greater than 
one. If the chromosome is infeasible, we simply discard it and regenerate a new one. 
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3.3   Fitness Function and Reproduction Operator 

Similar to the traditional GA approach, we used a roulette wheel selection method to 
reproduce chromosomes. We used the objective function directly from the FMLP 
model as the fitness function for evaluation. That is, equation (3) is the main fitness 
function for FMLP. But since we also need to consider the objective of maximizing 
total similarity (4), λ  value can be calculated from (4) and insert into (3) to obtain the 
fitness values.  

3.4   Heuristic Crossover 

Similarity coefficient (SC) has been used in CF to evaluate part similarity. See [14] 
for details about the SC index that we used. We apply the part similarity idea to im-
prove crossover performance. The process consists of two phases: In the first phase, a 
traditional single-point crossover is used for part genes. In the second phase, a SC-
based heuristic crossover is used to improve the grouping efficiency of part genes.  

Single-point crossover. Suppose that the two chromosomes selected for crossover are: 
Parent 1: 1 1 3 1 1 3 2 3 2, 1 3 1 1 * 2 1 2 3 3 2 and Parent 2: 1 1 2 3 1 2 3 2 1, 2 3 1 3 
* 2 1 2 1 2 3. Assuming that the position we randomly selected for crossover is 13 
(marked as *), then the two children produced by this phase are: Child 1: 1 1 3 1 1 3 2 
3 2, 1 3 1 1 * 2 1 2 1 2 3 and Child 2: 1 1 2 3 1 2 3 2 1, 2 3 1 3 * 2 1 2 3 3 2. 

Heuristic crossover. The logic of our proposed heuristic crossover works as follows: 

1. Generating a random number, from the range of [average of SCs ±  allowance], 
as the threshold similarity for comparison. The average SC for the example is -
0.41. If the allowance for SCs is 0.5, then the possible range for generating the 
threshold similarity is [-0.91, 0.09]. Let us assume that the generated threshold 
similarity is 0.04. 

2. Selecting the children to which the crossover will be performed.  This can be done 
by presetting a probability (normally 0.5), then randomly generate a number for 
each child.  If the random number for a child is larger than the preset probability, 
that child needs to perform the heuristic crossover; otherwise, that child remains 
unchanged. Suppose that only the number randomly generated for child 1 is larger 
than 0.5, then in this case, only child 1 is selected for crossover and child 2 will 
remain unchanged. 

3. Starting from cell #1, randomly select a part j’, from a list of existing parts which 
belong to that cell, as the seed, comparing the similarity value between the seed 
part and the other parts (i.e., SCjj’, j = 1, 2, ..., n; j ≠ j’) with the threshold similar-
ity.  If SCrj’ (r ≠ j’) is larger than the threshold value, merging part r with the seed 
part j’. This process continues until all cells have been considered. Currently, cell 
#1 contains four parts 1, 3, 4, and 6. Assuming that part 3 was selected (randomly) 
as the seed part. Because there is only one part, part 1 (SC13 = 0.14 > 0.04), quali-
fied, the new cell #1 will contain parts 1 and 3. Assuming that part 7 was selected 
as the seed part for cell #2, the new cell #2 will contains parts 7 and 10. Conse-
quently, cell #3, will contain the remaining parts, that is, parts 2, 4, 5, 6, 8, and 9. 
After the heuristic crossover, the new child 1 becomes: 1 1 3 1 1 3 2 3 2, 1 3 1 3 3 
3 2 3 3 2.  
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3.5   Heuristic Mutation 

The traditional mutation operator mutates the gene's value randomly according to a 
small probability of mutation; thus, it is merely a random walk and does not guarantee 
a positive direction to reach the optimal point. The proposed heuristic mutation reme-
dies this deficiency. The heuristic consists of two modules:  

Machine Mutation. The purpose of this module is to mutate gene value for machines, 
which works as follows:  
1. Computing the TPik values, the total numbers of parts need to be processed by 

every machine i in each cell k, and  
2. Assigning the cell number having the largest TPik for each machine gene. If there is 

a tie, randomly select a cell number having the same number of TP.  

Part Mutation. The purpose of this module is to mutate the gene value for parts. The 
process is similar to machine mutation except that we replace TPik with TMjk - the to-
tal number of machines used by each part j in each cell k. 

The heuristic mutation needs to be applied to all children. Let us use child 1 as an 
example for illustration. In machine mutation, there are three parts, 1, 3 and 10, need 
to be processed by machine 1; since parts 1 and 3 belong to cell #1 and part 10 be-
longs to cell #2; the total number of parts to be processed by machine 1 at cell #1 (i.e., 
TP11) is 2 and the value for cell #2 (i.e., TP12) is 1. Therefore, machine 1 will be  
assigned to cell #1. The process continued until all machines for this child are consid-
ered. For part mutation, there are five machines, 1, 2, 3, 4, and 6, need to be used to 
process part 1. Since machines 1, 2, and 4 belong to cell #1 and machines 3 and 6 be-
long to cell #3, part 1 should be assigned to cell #1 (instead of cell #3). The process 
continued until all parts for this child are considered. The process continued until all 
children were considered. The new children so generated are: Child 1’:  1 3 1 3 3 1 2 
3 2, 1 1 1 1 2 1 2 3 3 2 and Child 2’:  2 1 3 3 1 2 2 3 2, 2 2 1 1 3 1 3 3 2 1. 

4   Computational Experience 

Nine data sets from open literature were used to evaluate the relative performance of 
the proposed HGA. Since most of these data sets did not include relevant information, 
such as part processing times, costs involved, and part demand, we generated them 
randomly using a computer program based on the mean value and the variance given 
in data set 2 [12]. We used the LINDO (linear interactive and discrete optimizer) 
package running on a PC with Pentium 4 processor to solve all models.  The formula-
tions required for running LINDO were generated by a generator coded in BASIC 
language. The GA was coded in ANSI C. Performances were measured in terms of to-
tal cost, CPU time (in seconds), and total similarity. Table 1 summarizes our compu-
tational results. 

Several observations can be made from the computational results. First, in terms of 
clustering results, HGA and GP allows us to consider a trade-off between two con-
flicting objectives while FLP can only consider either objective, thus, HGA and GP is 
more flexible than FLP. HGA can always produce the same results as those of FMLP 
and GP, but it is more computationally efficient and can be used to solve larger-size 
problem within an acceptable timeframe.   
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Table 1. Summary of computational results 

FMLP GP HGA Data 
Set 

Size 
(m x n)

NM 
(Pr) 

Ref 
Cost CPU Cost CPU Cost CPU SCs 

1 9 x 9 4 (2) [9] 168,200 822 168,200 2,244 168,200 2.857 3.21 
2 9 x 10 4 (2) [12] 325,892 5,138 325,892 265,982 325,784 7.198 -2.66 
3 12 x 10 4 (3) [11] 220,908 1,359 220,908 43,231 220,947 5.824 5.263 
4 12 x 19 4 (3) [17] __ __ __ __ 788,385 24.945 7.391 
5 14 x 24 4 (2) [10] 67,758 67,534 __ __ 67,774 8.791 2.38 
6 16 x 30 5 (3) [13] __ __ __ __ 939,332 10.67 -4.293 
7 16 x 43 5 (4) [1] __ __ __ __ 1,102,827 155.28 -21.85 
8 24 x 40 5 (3) [3] __ __ __ __ 520,178 249.94 49.81 
9 40 x 100 6 (3) [2] __ __ __ __ 2,108,586 229.55 310.31 

__: Computer running time exceeds one day (86,400 seconds). 
 
Second, in terms of computational efficiency, the HGA outperformed FMLP and 

GP models in term of CPU time. Although FMP approach is more computationally 
efficient than goal programming, when the problem size increases, it becomes imprac-
ticable to use FMP or GP to solve the problem. In contrast, the HGA took less than 
four minutes to solve the problem with 40 machines and 100 parts.  Thus, only the 
HGA is efficient enough to tackle real-world applications.   

Third, the HGA is more user-friendly than traditional GAs. The HGA does not use 
crossover and mutation probabilities in reproducing offspring, thus it can reduce the 
troublesome of determining these parameters. Also, our experience shown that, for 
most data sets, a population of 10 or 40 chromosomes and two generations are suffi-
cient to converge to a good solution. The only exception is data set #9, which requires 
100 chromosomes as its population.  

Finally, the HGA is a flexible design that it can be easily adapted to solve other 
MP or FMP models for CF, by changing the corresponding fitness function (s).  For 
instance, using objective (1) or (2) as the fitness function, we can solve large-scale 
single objective CF problems modeling with LP or FLP. Similarly, by changing fit-
ness function to the objective function of goal programming model, we can solve 
large-scale goal programming CF problems in only just few minutes.  

5   Conclusions 

In this paper, an efficient heuristic GA, integrating the domain-specific characteristics 
of CF, was developed to solve the fuzzy multi-objective CF problems. Our comput-
ational results indicated that the proposed HGA is fairly efficient and its solution 
quality is the same as the optimal solution for small-size data sets. But the most 
distinguished feature is that HGA is more user-friendly. It reduces the troublesome of 
determining the appropriate crossover and mutation rates, needed by most traditional 
GA approaches.  Moreover, the HGA is flexible that it can be easily adapted to solve 
CF problems with other MP models, by changing the corresponding fitness function. 
The significant improvement in computational efficiency can be attributed to the 
heuristic crossover and mutation operators used.  
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This study shows that a hybrid genetic algorithms and fuzzy modeling is a practical 
approach for solving large-scale CF problems. It may have potential for solving other 
combinatorial optimization problems. 
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Abstract. In this paper, we propose a framework using local models
for multi-objective optimization to guide the search heuristic in both
the decision and objective spaces. The localization is built using a lim-
ited number of adaptive spheres in the decision space. These spheres are
usually guided, using some direction information, in the decision space
towards the areas with non-dominated solutions. We use a second mech-
anism to adjust the spheres to specialize on different parts of the Pareto
front using the guided dominance technique in the objective space. With
this dual guidance, we can easily guide spheres towards different parts
of the Pareto front while also exploring the decision space efficiently.

1 Introduction

Evolutionary multi-objective optimization has been applied in numerous do-
mains [4,5]. Researchers have been investigating theoretically as well as empir-
ically the performance of evolutionary multi-objective optimization algorithms
(EMOs) on a wide range of artificial optimization problems from combinatorial,
real-valued to dynamic and noisy problems. To date, there exists a number of
algorithms, such as VEGA [7], SPEA2 [9], PDE [1] and NSGA-II [5]. These algo-
rithms are still being continuously analyzed, compared, and tested under various
problems and criteria.

EMOs (or Evolutionary Algorithms in general) are usually blind search tech-
niques in the sense that they do not usually use any auxiliary functions like
derivatives (as in traditional deterministic optimization techniques). To reduce
the effect of the “blindness”, there are increasing number of attempts to incorpo-
rate some guidance techniques into EMOs. Basically, some guidance is employed
to direct the search towards promising areas satisfying specific criteria, such as
avoiding infeasible areas or of approaching particular parts of the Pareto front.
Guidance can be done in either decision or objective spaces. In this paper, we
hypothesize that interleaving guidance in both the decision and objective spaces
can help to accelerate the search process.

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 384–391, 2006.
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Our proposed idea is to localize the search in the decision space by using the
framework of local models [3] that divide the decision search space into a number
of local search areas, where each area is seen as a hyper-sphere. In other words,
we transform searching in EMOs on the original search space into a sphere-
oriented space, where each sphere is running its own version of EMOs. These
spheres move following some direction information to improve their local Pareto
front. When we apply the guided dominance mechanism [6], they also tend to
specialize and move towards different parts of the Pareto Optimal Front (POF).

The remainder of the paper is organized as follows: background information
are the methodology and presented in Section 2. An experimental study is carried
out in section 3. The last section is devoted to the conclusion.

2 Background

2.1 Guided Dominance Approach

The motivation for guided dominance [2] is that in practical problems we usually
need a limited number of sample points of the POF, rather than the whole
POF. With guided dominance, the dominance relation is determined from the
transformed functions Ω of the original objective functions F , in which the points
in the POF area of interest dominate all others in the remaining areas of POF.
For the details of this approach, readers are referred to [2].

Based on this approach, Deb et al [6] proposed a technique to divide the POF
into a number of parts where each part is tracked by a subpopulation. In order
to do this, an equivalent number of weighted matrices is defined to transform
the original objective functions. In other words, the dominance relation in each
population is defined by a separate weighted matrix. With the partition of the
POF in the objective space, the search process is easily guided. Note that this
approach only works on problems with a convex POF; and also that is the class
of problems we are addressing in this paper.

2.2 Local Models

In local models, the decision search space S is divided up into a number of
non-overlapping spheres, where each sphere si is defined by a pair of a centroid
and radius: S = [s0, s1, ..sn] and si = (ci, ri). Initially, all ri are set to be the
same value r. Inside each sphere, points are generated uniformly, except for the
restriction that they are kept distant from each other by a predefined distance
threshold β.

More formally, let DB
A be the Euclidean distance between two centroids of

arbitrary spheres A and B and dj
i be the Euclidean distance between two arbi-

trary points i and j inside any arbitrary sphere A where cA is the centroid of
that sphere A. The following condition must then hold:

DB
A ≥ 2r, dcA

i ≤ r, dcA

j ≤ r, dj
i ≥ β (1)
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To initialize a sphere si, we use a spherical coordinate system. Assume x =
(x1, x2, ...xn) is a point in the Cartesian coordinate system. We can calculate x
from the parameters of an equivalent spherical coordinate system, including a
radial coordinate r, and n-1 angular coordinates α1, α2...αn−1 as follows:

x1 = ci
1 + r cos(α1)

x2 = ci
2 + r sin(α1) cos(α2)

...
xn−1 = ci

n−1 + r sin(α1)... sin(αn−2) cos(αn−1)
xn = ci

n + r sin(α1)... sin(αn−2) sin(αn−1)

(2)

Therefore, for a point x in a sphere, we generate randomly a set of n-1 angular
values (α) and then apply Eq. 2 to calculate Cartesian coordinate values for x.
Each sphere is run by its own EMO algorithm. Over time, these spheres move
and are being guided towards the global Pareto front. The general steps for the
framework of local models are as follows:

– Step 1: Define spheres: Number of spheres, Radius for spheres, and Minimal
distance between two points

– Step 2: Calculate the initial positions of the centroids of the spheres, com-
plying with the rules in Eq. 1

– Step 3: Initialize spheres: using an uniform distribution, while following Eq.
2 and complying with the rules in Eq. 1.

– Step 4: Run one evolutionary cycle with the EMO on each sphere.
– Step 5: Start the moving operator to move spheres.
– Step 6: If Stop condition is not met Goto step 4, otherwise Stop the process.

An issue associated with the above framework is how to balance exploration
and exploitation. This model might not have an advantage over the global model
in the case of single-modal problems since it heavily focuses on exploration. How-
ever, in the case of multi-modal problems, the exploration ability in combination
with a suitable adaptation strategy for spheres can help the system to approach
the global optima quickly. Obviously, the adaptation strategy for spheres is the
central point of the proposed local models, as it defines how to suitably move
the spheres (including their speed and direction) and how to adjust the radius
of the spheres to be suitable with the current state. We refer the readers to [3]
for more details on localization.

2.3 Guidance of Spheres

All spheres are initialized following the conditions in Equation 1. Centroids are
then recalculated for all spheres after every round of evolution - a round is
completed when all spheres finish one cycle of their own evolutionary process.
The new and old centroids are used to determine the direction of improvement.
We use PSO-V2 (a version of the local models to guide spheres in the decision
space), which in simple terms, applies a weak stochastic pressure to move the
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spheres towards the global optima. Details of how the direction of improvement
is implemented as well as PSO-V2 are given in [3] instead for space limitations.

Note that the direction of improvement in the local models exploits both
local and global information. However, in problems such as the ZDTs, the use
of global information might cause the spheres to quickly move closely to each
other as they are approaching the POF. Thus, searching time might be wasted
since the spheres search the same areas of the POF. It seems better to instead
guide each sphere to occupy a different part of the POF, or at least reduce as
much as possible the overlapping of the POF’s parts that are discovered by the
spheres.

To implement this idea, we need to divide the POF into a number of parts.
Each part is then used to guide a sphere. In this way, we use a number of global
centroids instead of only one as in PSO-V2. The number of parts, spheres, and
global centroids are kept the same. However, we want to use a “soft” division,
in the sense that the parts are allowed some overlapping, but the overlapping
is kept as small as possible. For this, we select the guided dominance approach
in [6].

In this approach, each sphere is associated with a POF part the one that
it contributes the most non-dominated solutions to, in comparison with other
parts. Each POF part is assigned only one sphere. When a sphere needs to be
guided by global information, the sphere’s centroid is determined from both the
new local centroid, which is calculated based on all individuals of the sphere that
belong to its associated POF part and the global centroid, which is considered
to be the centroid of that POF part.

3 Experiments

In order to validate the proposed method, which we call GUIDED, we carried
out a comparative study in which we tested the method on three ZDT problems:
ZDT1, ZDT3 and ZDT4 which all have similar convex shapes of their POFs, but
different types of difficulties, namely continuous, discontinuous, and multi-modal
(See [11] for more details). We selected NSGA-II as the algorithm to run in each
sphere of our models. Also, all the results will be analyzed and compared with
two other systems, one is built on an equivalent number of sub-populations,
which are defined on the global search space as well as NSGA-II itself.

We use the hypervolume ratio [4,10] to measure the comparative performance
of the different techniques. Note that hypervolume is used to indicate both the
closeness and diversity of the obtained POFs. The reference point for each prob-
lem is seen as the worst point in the objective space obtained by all comparing
methods.

We initialize the parameters as follows, and apply non-dominated sorting to
update the global archive. All cases were tested on 30 separate runs with dif-
ferent random seeds. We used 5 spheres, total population size is 200, maximum
global archive size 100, update frequency for each centroid is every 5 generations,
crossover rate 0.9 and mutation rate 0.1.
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We will compare the guided version with NSGA-II with the same population
of 200 individuals and also with NSGA-II with five - possibly initially overlapping
- populations, called 5NSGA-II. All models were run with the same number of
evaluations in order to make a fair comparison.

3.1 Results and Discussion

Convergence is one of the most important characteristics of an optimization tech-
nique since its main use is to assess the performance of the algorithm. However,
the way of looking at convergence of single objective and multiobjective opti-
mizations are quite different [8]. If some measurements of the objective function,
with regard to the number of generations, are experimentally considered as an
indication for convergence in single objective optimization, it is not a suitable
method for multi-objective optimizations since they do not involve the mutual
assessment on all objective functions.

Further, the consideration of convergence is not only on how close the obtained
POF, at the last generation, is in comparison to the true Pareto optimal front,
but also the rate of convergence which is convergence over time. We consider
both issues in this section.

For the closeness of the obtained POF, we use the hyper–volume ratio, denoted
H. However, it should be noted that this measurement is not always possible
in practice, since the true POF is not always known. With test problems, we
calculate H of the last generation for all models, and report the best, median,
worst, mean and standard derivation among 30 runs. All the results are reported
in Table 1.

Table 1. Values of the hyper-volume ratio for each method on ZDT1, ZDT3, and
ZDT4 (bold indicates the best results obtained on a problem)

Prob Models Best Median Worst Mean(STD)
GUIDED 0.9998 0.9996 0.9988 0.9995 (0.0002)

ZDT1 NSGA-II 0.9989 0.9987 0.9984 0.9987 (0.0001)
5NSGA-II 0.9937 0.9925 0.9900 0.9923 (0.0009)
GUIDED 1.0000 0.9998 0.9993 0.9998 (0.0002)

ZDT3 NSGA-II 0.9989 0.9980 0.9974 0.9981 (0.0003)
5NSGA-II 0.9924 0.9890 0.9872 0.9895 (0.0013)
GUIDED 1.0000 0.9984 0.9948 0.9982 (0.0015)

ZDT4 NSGA-II 1.0000 0.9997 0.9974 0.9994 (0.0008)
5NSGA-II 0.9994 0.9951 0.9923 0.9954 (0.0016)

It is obvious that allowing populations to run concurrently without guidance
(even on the global scale) does not help to improve the performance of the
optimization process. That is the reason for the inferior performance of 5NSGA-
II on all problems.

For ZDT1, an easy problem, there is no contradiction between the local and
global information; hence GUIDED was able to get closer to the POF and achieve
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the best overall performance. Moreover, the localization in the objective space
resulted in some sort of a division of labor thus allowing the system to smoothly
converge to the POF. ZDT3 shows similar behaviour.

However, in the case of ZDT4, the GUIDED approach was not as good as
we thought it should be. Despite that one of the runs obtained the best overall
hyper-volume ration, the average and overall performance is inferior to NSGA-
II. We conjecture that the small population size in each sphere, is the reason
for these inferior results, since ZDT4 is highly multi-modal. This point will be
analyzed later in this section.

Fig. 1. The hypervolume ratio of differing techniques (up to 20000 evaluations) over
time in ZDT1, ZDT3, and ZDT4

To track the convergence of an EMO, there are several techniques in the
literature. However, in this analysis, we have used another simple mechanism for
tracking the convergence, by measuring the hypervolume ratio (H ) over time,
since it is consistent with the performance measure used above. We can compare
H of all models; as an example in Figure 1, we visualize the averaged H of 30
runs for all models. It is very clear that in the first few generations, GUIDED is
quite slow. This is because localization starts with an exploration phase which
consumes time. However, the adaptive strategy of GUIDED helps the method to
adjust to move faster if the search space seems smooth enough. It then becomes
clearer to see that GUIDED converges very quick to the optimal. However, for
ZDT4, it seems that GUIDED gets trapped in the local optima a bit longer than
NSGA-II does.

As we hypothesized above, that the small sub-population sizes might have
caused the poor performance of the local models, since they were unable to
capture the local fitness landscape well enough when the problem is highly multi-
modal such as for ZDT4. To test this hypothesis, we increased the population size
for each sphere to 100 individuals (500 individuals overall). The hyper–volume
ratio that each method achieved over time (up to 50000 evaluations) is visualized
in Figure 2.

It is clear from Figure 2 that GUIDED achieves faster convergence than the
other two methods. Again, the pattern is repeated in which GUIDED starts
slowly in the exploration phase and increases the speed over time. It is also
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Fig. 2. The hyper–volume ratio of the three techniques over time for ZDT4 with a
total population size of 500 individuals and up to 50000 objective evaluations

possible to see a regular series of drops in the curve for GUIDED (also in Figure
1). These drops reflect some sort of loss of diversity in the POF. This sometimes
happens when the sphere’s motion changes (with the update frequency), and
then the sub-population has to adjust to that change. Therefore, this is reflected
in the drop-recovery cycles shown in the figure, which seems to be part of the
process of first moving to a new better area in the search space, followed by an
exploration phase of that area.

Fig. 3. POFs that GUIDED obtained over time for ZDT1, ZDT3, and ZDT4

All in all, the dual guidance technique shows a good ability to quickly approach
the true POF. With the above test problems, it was able to obtain converged
and diverse POFs ( see Figure 3).

4 Conclusion

This paper proposed a novel technique (GUIDED) to guide a localized - us-
ing hyper–spheres - version of NSGA-II. Each sphere is simultaneously focus-
ing on separate areas of the decision and objective space. The technique was
tested against NSGA-II with one population, as well as with multi-populations



Dual Guidance in Evolutionary Multi-objective Optimization 391

searching on the global space. The experimental results showed the superior per-
formance of GUIDED in comparison with NSGA-II and 5NSGA-II. For future
work, we intend to validate the approach with different schemes of dividing the
POF and also with the problems that have more than two objectives.
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Abstract. Particle swarm optimization (PSO) and fast evolutionary
programming (FEP) are two widely used population-based optimisation
algorithms. The ideas behind these two algorithms are quite different.
While PSO is very efficient in local converging to an optimum due to its
use of directional information, FEP is better at global exploration and
finding a near optimum globally. This paper proposes a novel hybridi-
sation of PSO and FEP, i.e., fast PSO (FPSO), where the strength of
PSO and FEP is combined. In particular, the ideas behind Gaussian and
Cauchy mutations are incorporated into PSO. The new FPSO has been
tested on a number of benchmark functions. The preliminary results have
shown that FPSO outperformed both PSO and FEP significantly.

1 Introduction

Evolutionary computation for numerical/parameter optimization can be divided
into two ideas, one is mainly with probability-based technique, such as the clas-
sical evolutionary programming (CEP) and its improved version[1]; the other
is mainly with notion-based vector operation, such as particle swarm optimiza-
tion[2]. One of the way of recent studies on evolutionary programming (EP)
is clearly along with the direction of analyzing the characteristics of different
mutations with different probability density functions, e.g. from the Gaussian
mutations to the Cauchy mutations[1], and the Lévy mutations[3], and then to
multiple representations[4]. Historically, heuristic methods were also introduced
into studies of evolutionary programming algorithms, such as 1/5 rule[5].

However, notion-based algorithms, such as the particle swarm optimization
(PSO) at which this paper aims specially, has few of introducing the advan-
tageous mechanism of probability-based studies included in evolutionary pro-
gramming. Obviously, it is an interesting and valuable issue for improving the
performance of notion-based optimization algorithms with probability factors, if

� This work is partially supported by the National Natural Science Foundation of
China through Grant No. 60573170 and Grant No. 60428202.
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there is a certain conjunction between them could be found. For the problem of
introducing probability factors into notion-based algorithms to make improve-
ment of optimization performance, the educed concept in studies of evolutionary
programming deserves more attentions.

In this paper, the similarity and difference between PSO and EP were inves-
tigated, and the common feature between them thereby had been generalized.
Through analyzing the expected length of PSO jumps with probability method,
and possible shortages of PSO under some special conditions, we present a fast
PSO (FPSO) algorithm with hybrid using of Gaussian mutations and Cauchy
mutations in the update equation simply. Experimental results show that FPSO
is efficient in integration of different optimization ideas: the proposed FPSO has
better performance than both the standard PSO and FEP.

2 Preliminaries

2.1 Particle Swarm Optimization

PSO[2] consists of a swarm of particles flying in an n-dimensional, real-valued
search space of possible problem solutions. Every particle has a pair of real-
valued vectors (xi, vi), ∀i ∈ {1, · · · , μ}, where xi denotes the ith position
vector, and vi denotes the ith velocity vector, μ is the number of particles
(similar to the population size of EPs). At each time (similar to the generation
of EPs) the velocity is updated and the particles is moved to a new position.
The new position of a particle is calculated by the sum of previous position and
the new velocity as follows.

x′
i = xi + vi (1)

The update of the velocity from the previous velocity to the new velocity is
determined by the following equation

v′
i = �vi + U(0, φ1)(pi − xi) + U(0, φ2)(g − xi) (2)

where U(a, b) is a uniformly distribute number between a and b. The parameter
� is called the inertia weight and controls the magnitude of the old velocity vi

in the calculation of new velocity v′
i, where φ1 and φ2 determine the significance

of the memory stored own best position of the ith particle pi and the global best
position of swarm g respectively.

2.2 Fast Evolutionary Programming

Optimization by Evolutionary Programming (EP) can be summarized into two
major steps: 1) mutate the solutions in the current population; 2) select the
nest generation from the mutated and the current solutions. Each individual is
taken as a pair of real-valued vectors (xi, ηi), ∀i ∈ {1, · · · , μ}, where xi’s
are objective vectors variables and ηi’s are standard deviations for mutations
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(also known as strategy parameters in self-adaptive evolutionary algorithms).
For each current individual (xi, ηi), the update equation are

x′
i(j) = xi(j) + ηi(j)Nj(0, 1) (3)

η′
i(j) = ηi(j)exp(τ ′N(0, 1) + τNj(0, 1)) (4)

where xi(j), x′
i(j), ηi(j), and η′

i(j) denote the j-th component of the vec-
tors xi, x′

i, ηi and η′
i, respectively. N(0, 1) denotes a normally distributed

one-dimensional random number with mean zero and standard deviation one.
Nj(0, 1) indicates that the random number is generated anew for each value of
j. The factors τ and τ ′ are commonly set to (

√
2
√

n)−1 and (
√

2n)−1[1,5]. Study
by Gehlhaar and Fogel[6] showed that swapping the order of (3) and (4) may
improve EP’s performance.

Usually, evolutionary programming using (3) and (4) is called the classical
evolutionary programming (CEP). In [1], Cauchy mutation is introduced into (3)
to substitute Gaussian mutation. The one-dimensional Cauchy density function
centered at origin is defined by

ft(x) =
1
π

t

t2 + x2 , − ∞ < x < ∞ (5)

where t > 0 is a scale parameter. The update equation of (3) is replaced by

x′
i(j) = xi(j) + ηi(j)δj (6)

where δj is a Cauchy random variable with the scale parameter t = 1 and is
generated anew for each of j.

EP using Cauchy mutations is called the fast evolutionary programming (FEP).
Ingeneral,Gaussianmutation ismore suitable forfine search,andCauchymutation
is more suitable for coarse search when individuals are relative far away from the
global optimum and for escaping from local minima.

3 Improving PSO by Introducing Reduced Factors

As related in Section 2, it can be found out that the computational circle of PSO
and EP are similar. To make it clear, we use an uniform update equation for
PSO and EPs as follows.

x′
i(j) = xi(j) + ξi(j) ψ (7)

where ξi(j) means vi(j) in PSO, and means ηi(j) in EP. ψ means a constant
number (i.e. ψ = 1) in PSO, and means a Gaussian random number Nj(0, 1) in
CEP, and means a Cauchy random number δj in FEP.

It is apparent, the PSO can also subjoin a reduced factor with velocity in the
update equation for changing position, i.e. take ψ as a random number other than
a constant one. Since the velocity of a moving object usually may be damped in
the air, there is no reason to take ψ as one in a movement equation in intuition.
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From the viewpoint of evolutionary programming, the search step size of PSO
with update equation (1) may have relative fewer chance of fine search when a
particle is just at the neighborhood of the global minimum.

Generalize the analysis method for the mean search step size in [1], the ex-
pected length of ψ jumps in the universal equation (7) can be calculated as
follows:

Eψ =
∫ +∞

−∞
x · Ψ(x) dx (8)

where Ψ(x) is the distribution density function for generating the number ψ.
Obviously, if Ψ(x) takes Gaussian function, the mean step size of CEP is

EGaussian = 2
∫ +∞

0
x

1√
2π

e−
x2
2 dx = 0.8,

and if Ψ(x) takes Cauchy function, the mean step size of FEP is

ECauchy = 2
∫ +∞

0
x

1
π(1 + x2)

dx = +∞,

and if Ψ(x) takes Ψ = δ(x − 1), the mean step size of PSO is

EPSO =
∫ +∞

−∞
x δ(x − 1)dx = 1.

That is, if the update equation (2) of PSO can be taken as a kind of self-adaptive
mechanism like evolutionary programming, the expected length of PSO jumps
is within that of Gaussian and Cauchy.

To make the PSO jumps more localized, Eq.(1) can be improved directly by
follows:

x′
i = xi + viN(0, 1) (9)

where N(0, 1) denotes a normally distributed one-dimensional random number
with mean zero and standard deviation one.

Now another problem appears immediately. Compare to Cauchy mutation,
Eq.(1) and Eq.(9) are both with relative smaller search step size, therefor there
are relative more less chance for PSO to generate an offspring (or moving a
particle to new position) at the neighborhood near the global optimum. Look
into the velocity adjust equation (2), which can be thought as an another self-
adaptive mechanism corresponding to EP, the change of the new velocity of a
particle xi can be known easily. Usable hints are included in two case studies:

1) xi is just the global position of the swarm thus also its own best position,
i.e. xi = pi and xi = g. In this case, the new velocity becomes

v′
i = �vi.

To simplify the analysis, assume the optimization problem is unimodal, and the
moving direction of the particle xi is correct. Thereby,

v(t + k) = �kv(t), � < 1



396 J. He, Z. Yang, and X. Yao

where t denotes the time step, and k denotes the time delay. It is obviously that
even in this kind of ideal circumstance, the performance of PSO may be worse,
since the moving speed of g would tend to zero.

2) xi is just its own best position, but not the global position of the swarm,
i.e. xi = pi and xi �= g. In this case, the new velocity becomes

v′
i = �vi + U(0, φ2)(g − pi).

Succeed the assumption of the first case, the global best position g can be a
constant vector after some generations (time step), thus at the next time step

x′
i = xi + v′

i = xi +
[
�vi + U(0, φ2)(g − pi)

]
=
[
xi + U(0, φ2)(g − xi)

]
+ �vi

The first item in above equation means the new position is generated more nearly
at neighborhood of the global best position, and the second item means the
velocity is still the old direction but with reduced numerical value. It is obviously
detrimental to escaping the trap of PSO itself that the best own position is
converged to the global best position too fast, since the case is similar to the
case of the first study.

Although the above two case studies have some special condition, the possible
problem is trouble indeed. To make the global best position g and those best
own positions p have more diversity, the following adjustment equation can be
used for remedy:

x′
i(j) = xi(j) + vi(j)δi(j), s.t. xi = pi, or xi = g. (10)

where δj is a long jumps Cauchy random variable with the scale parameter t = 1
and is generated anew for each of j.

Using Eq.(9) and (10) together to replace Eq.(1) can improve the standard
PSO much faster. In addition, recombination technique in evolutionary program-
ming can still be introduced into PSO to replace Eq.(1) randomly as follows.

x′
i =

1
2
(xi + g)U(0, φ1) +

1
2
(xi + pi)U(0, φ2) + vi, (11)

where the first and the second items denote recombination between the current
particle and the global best, so as to the own best respectively. The above equa-
tion denotes a twice recombination between two items. Here the improved PSO
with hybrid adjustment of velocity is noted as fast PSO, or FPSO.

4 Experiments

The algorithms used for comparison were FEP, the standard PSO, and the
FPSO. For all algorithms, the parameter settings are fixed as follows without
any manually tuning in the later.
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Fig. 1. The optimization performance on f8 by PSO (left) and FPSO (right), where
each line denotes one trial of optimization. It is apparent, although PSO is a non-
selection optimization method, there are many traps out of the mechanism of PSO
itself, while FPSO can escape traps of standard PSO efficiently.

Table 1. Comparison between FPSO and the standard PSO. All results have been
averaged over 50 runs, where the value of t with 49 degrees of freedom is significant at
α = 0.05 by a two-tailed test.

Test FPSO Std. PSO FPSO-PSO
Func. Generation Mean Best(Std. Dev) Generation Mean Best (Std. Dev) t-test

f1 1,500 2.23e-6 (2.23e-6) 1,500 8.63e-3 (1.05e-2 ) −5.8102†
f3 1,500 7.58e-4 (8.15e-4) 5,000 6.35 (5.55) −8.0894†
f5 1,500 1.25e-4 (1.33e-4) 1,500 0.48 (0.62) −5.4729†
f8 5,000 -12567.12(16.59) 9,000 -10052 (2044.6) −8.6980†
f9 1,000 8.06e-4 (7.02e-4) 5,000 19.11 (24.26) −5.5698†
f10 1,500 1.10e-3 (4.66e-4) 1,500 1.99e-2 (1.13e-2) −11.754†
f11 300 8.00e-6 (7.02e-6) 2,000 0.22 (0.27) −5.7614†
f12 300 6.86e-6 (6.34e-6) 1,500 5.82e-5 (6.14e-5) −5.8812†
f13 300 2.33e-5 (2.44e-5) 1,500 4.92e-4 (5.11e-4) −6.4784†
f21 100 -10.135 (0.0015) 100 -10.10 (0.0503) −4.9180†
f22 100 -10.386 (0.0134) 100 -10.35 (0.0637) −3.9110†
f23 100 -10.52 (0.0216) 100 -10.49 (0.03985) −4.6800†

For FEP, the parameter settings are the same as in [1]. That is, the population
size μ = 100, the initial η = 3, the tournament size q = 10 for selection. For the
standard PSO and FPSO, the same number of particles μ = 10, the same initial
v = 3 as the η in FEP. The inertia weight � for the standard PSO and FPSO
were just the random number bounded in [0, 1] (doing such was to eliminate man-
made factors as much as possible). For the standard PSO, its update equations
were Eq.(1) and Eq.(2), where φ1 = φ2 = 2. This kind of settings can make
better results for the standard PSO than the tested results in [7]. For FPSO, its
updated equations are Eq.(9) and Eq.(10), where φ1 and φ2 just take one.
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Table 2. Comparison between FPSO and FEP. All results have been averaged over
50 runs, where the value of t with 49 degrees of freedom is significant at α = 0.05 by
a two-tailed test

Test FPSO FEP FPSO-FEP
Func. Generation Mean Best(Std. Dev) Generation Mean Best (Std. Dev) t-test

f1 1,500 2.23e-6 (2.23e-6) 1,500 5.7e-4 (1.3e-4) −30.878†
f3 1,500 7.58e-4 (8.15e-4) 5,000 1.6e-2 (1.4e-2) −7.6854†
f5 1,500 1.25e-4 (1.33e-4) 20,000 5.06 (5.87) −6.0952†
f8 5,000 -12567.12(16.59) 9,000 -12554.5 (52.6) −1.618
f9 1,000 8.06e-4 (7.02e-4) 5,000 4.6e-2 (1.2e-2) −26.585†
f10 1,500 1.10e-3 (4.66e-4) 1,500 1.8e-2 (2.1e-3) −55.554†
f11 300 8.00e-6 (7.02e-6) 2,000 1.6e-2 (2.2e-2) −5.14†
f12 300 6.86e-6 (6.34e-6) 1,500 9.2e-6 (3.6e-6) −2.2695†
f13 300 2.33e-5 (2.44e-5) 1,500 1.6e-4 (7.3e-5) −12.558†
f21 100 -10.135 (0.0015) 100 -5.52 (1.59) −20.524†
f22 100 -10.386 (0.0134) 100 -5.52 (2.12) −16.23†
f23 100 -10.52 (0.0216) 100 -6.57 (3.14) −8.8949†

Benchmark functions for testing are taken from [1], herewe still use their original
number. f1, f3, and f5 are unimodal functions, f8–f13 aremultimodal functionwith
many local minima, and f21–f23 are multimodal functions with a few of local min-
ima. All of them are widely used in optimization algorithms researches.The results
andcomparisons for benchmarkproblemsofPSO,FEP,andFPSOare summarized
in Table 1 and Table 2. It is clear, FPSO, the hybrid of the standard PSO and FEP,
has shown better performance both than PSO and FEP.

The explanation why FPSO is better than FEP (as shown in Table 2) is rel-
ative simple: since pure-probability-based FEP has no referenced direction for
generating offsprings, there are many non-directed offsprings have been gener-
ated. In this sense, that introducing heuristic bias into probability-based searches
to improve its performance may be an option.

The expectant comparative result between PSO and FPSO confirms our an-
alytical results in Section 3, that is, the expected length of the standard PSO
jumps is within Gaussian mutations and Cauchy mutations, thereby that in-
troducing more smaller and more larger jumps into PSO is necessary. To the
standard PSO using Eq.(2), the search method for each particle xi can be ex-
plained as a random search in half of a random selected hyper-ellipsoid region
with pole g and pole pi. To FPSO using Eq.(9) and Eq.(10), the search method
for each particle xi can be explained as a probability-based search in a random
selected hyper-ellipsoid region, or in a random selected hyperboloidal region,
or in a random selected hyper-sphere region since both Gaussian and Cauchy
random number have negative value, where Gaussian factor makes searches in
relative small size with different density, while Cauchy factor enlarges this re-
gion much more. In addition, recorders of the optimization performance of PSO
and FPSO on the typical multimodal function f8 are shown in Fig.1, which can
illustrate the difference between them clearly.
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5 Conclusions

This paper proposes FPSO, and evaluates its optimization performance on a
number of benchmark problems. FPSO is the result of hybridisation between the
standard PSO and the fast evolutionary programming (FEP), which inherits two
kinds of different ideas on optimization problems: heuristic bias and probabilistic
search.

On the issue of hybrid evolutionary algorithm, the analytic methodology on
the problem of expected length of probability-based jumps and the concept of
neighborhood for generating offsprings are introduced into the analysis of the
notion-based PSO with heuristic search. The experiment results show that the
hybrid approach provides an effective and efficient way to connect two kinds of
optimization ideas as well as methods.
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Abstract. In this paper, the local search and clustering mechanism are incorpo-
rated into the Multi-Objective Particle Swarm Optimization (MOPSO). The lo-
cal search mechanism prevents premature convergence, hence enhances the 
convergence of optimizer to true Pareto-optimal front. The clustering mecha-
nism reduces the nondominated solutions to a handful number such that we can 
speed up the search and maintain the diversity of the nondominated solutions. 
The performance of this approach is evaluated on metrics from literature. The 
results against a three objectives optimization problem show that the proposed 
Pareto optimizer is competitive with the strength Pareto evolutionary algorithm 
(SPEA) in converging towards the front and generates a well-distributed non-
dominated set. 

1   Introduction 

Many optimization models in real-world involve single objective function only. How-
ever, the assumption that decision makers pursue the single objective of cost minimi-
zation (or wealth maximization) rather than multiple objectives has been questioned 
in many literatures. For example, in product design a firm may wish to minimize its 
manufacturing cost while also trying to maximize the performance of the prototype. 
These objectives are usually incommensurate and in conflict with one another. A 
multi-objective optimization problem (MOP), hence, does not have a single solution 
that could optimize all objectives simultaneously. 

Instead of aggregating the objectives into a scalar function and solving the result-
ing single objective optimization problem, we are concerned with finding a set of 
optimal trade-offs, the so called Pareto-optimal set. The curve (for two objectives) or 
surface (more than two objectives) that exhibits the optimal tradeoff possibilities 
between objectives is known as the Pareto-optimal front. Solutions lying on the Pareto 
front can not improve any objective without degrading at least one of the others. 
Therefore, the goal of a multi-objective optimizer (or Pareto optimizer) is to find the 
Pareto front of these nondominated solutions. 

Because of their population-based approach, evolutionary algorithms, or genetic 
algorithms, are able to find several nondominated solutions in a single run. Over 
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many years of research has produced a number of efficient multi-objective evolution-
ary algorithms (MOEAs), which are ready to be applied to real-world problems.  
Several MOEAs, such as VEGA (vector evaluated genetic algorithm), NSGA (non-
dominating sorting genetic algorithm), NSGA II, and NPGA (niched Pareto genetic 
algorithm), have been suggested since a decade ago [1]. In addition to MOEAs, scien-
tists have been studying ants, bees, and wasps because of the amazing efficiency of 
social insects in the real world. Particle swarm optimization (PSO) inspired by the 
flocking and schooling behavior of birds and fishes, differs from evolutionary compu-
tation methods in that the population members, called particles, are flown through the 
problem hyperspace [2]. Since PSO and evolutionary algorithms have structural simi-
larities, it is a natural extension to apply PSO to MOPs. One of the successful applica-
tions of PSO to MOP, named multi-objective PSO (MOPSO), is the seminal work of 
Coello and Lechunga [3]. Other famous algorithms which apply PSO to find nondo-
minated solutions of an MOP are Nondominated Sorting Particle Swarm Optimization 
(NSPSO) [4], Vector Evaluated PSO (VEPSO) [5], and the algorithm proposed by 
Fieldsend and Singh [6]. 

No matter what specific algorithm you prefer, two conflicting ends in applying 
evolutionary-like algorithm to MOPs are that ensuring convergence closer to the true 
Pareto-optimal front and maintaining a diverse and handful nondominated set. So, 
constructing a Pareto optimizer also falls in a dilemma – how to converge to the true 
Pareto-optimal front while achieving a well-distributed front in a reasonable time. 
This paper proposes an approach called MOPSO-LC, which incorporates the local 
search and clustering mechanism into the MOPSO, trying to escape from the dilemma 
described above. The rest of this paper is organized as follows. Section 2 reviews 
basic concepts of Pareto optimality. MOPSO-LC is described in Sections 3. Section 4 
reports the computational results of comparing the proposed Pareto optimizer to a 
famous MOEA named strength Pareto evolutionary algorithm (SPEA). Finally, con-
clusions and future research directions are drawn out in Section 5. 

2   Pareto Optimality 

An MOP (also Pareto optimization problem) with K  objectives and bounded decision 
variables can be stated as follows: 

Minimize 1 2( ) [ ( ), ( ),..., ( )]T
Kf f f=f x x x x     (1) 

Subject to ∈Ωx     (2) 

{ }, 1,2,...,i i il x u i DΩ = ≤ ≤ =x ,    (3) 

where 1 2[ , ,..., ]T
Dx x x=x  is a D  dimensional vector. 

A decision vector 1 2( , ,..., )Du u u=u is said to strictly dominate 1 2( , ,..., )Dv v v=v  

(denoted by u v ) if and only if ( )f u  is partially less than ( )f v , i.e., 

( ) ( )i if f≤u v {1,2,..., }i K∀ ∈  and ( ) ( )i if f<u v {1,2,..., }i K∃ ∈ . Less stringently, u  

weakly dominates v  (denoted by u v ) if and only if ( ) ( )i if f≤u v {1,2,..., }i K∀ ∈ . 
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A set of decision vectors is said to be a nondominated set if no member of the set is 

dominated by any other member. The true Pareto-optimal front, P , is the nondomi-
nated set of solutions which are not dominated by any feasible solution. One way to 
solving an MOP is to approximate the Pareto-optimal front by the nondominated 
solutions generating from the solution algorithm. 

3   Proposed Approach 

The proposed algorithm called MOPSO-LC incorporates the mechanism of local 
search (L) and clustering (C) into the MOPSO specifically on enhancing convergence 
to true Pareto-optimal front and reducing the nondominated solutions to a handful and 
diverse set. The scheme of the proposed approach is presented in Table 1. 

To run the proposed algorithm in Table 1 we need to dictate the number of parti-
cles ( N ) and the number of iterations ( T ). After initializing each particle’s position 

D
nx , velocity D

nv , the individual best solution D
np , and the global best solution D

ng , the 

nondominated set A  will collect current nondominated solutions. 

Table 1. The pseudo-code of MOPSO-LC 

01  A = ∅  

{ }
1

02   ,   ,  ,  ()
ND D D D

n n n n n
Initialize

=
=x v p g  

03  for 1 to t T=  
04      ((max_   min_ ) (   ) /  )  min_T t Tδ δ δ δ= × +− −  
05    ( ,  )LocalSearch LSITER δ  
06    for 1 to n N=  

07      ( )D
n Random A=g  

08      for 1 to d D=  

( ) ( )1 1 2 209        new old
nd nd nd nd nd ndv w v c r p x c r g x= ⋅ + ⋅ ⋅ − + ⋅ ⋅ −  

10        new old new
nd nd ndx x v= +  

11      end for  

( ) ( ) ( )1 212      ( ) , , ...,D D D D
n n n K nf f f=f x x x x  

13       Update Nondominated Set A  

( ) ( ) 14      if    orD D D D
n n n nx p x p  

15        D D
n n=p x  

16      end if  
17    end for  
18    Cluster Nondominated Solutions in A  
19  end for  

At each iteration, the local search subroutine (line 05 in Table 1) described in the 
next subsection will be called in to gather local information for each nondominated 
solution and update A  if needed. To search in the decision space, we randomly 
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choose a solution from the nondominated set, A , as a global best solution for each 
particle (line 07 in Table 1) [7]. Then the velocities D

nv  and positions D
nx of each parti-

cle are updated according to lines 09 and 10. Notice that each particle might have a 
different global guide for its next flight. This is why the global best solutions carry a 
subscript n . After evaluating the objective vector for each particle in line 12, we 
update the nondominated set ( A ) in line 13 and its individual best solution ( D

np ) in 

lines 14-16. If D
nx  is not weakly dominated by all the nondominated solutions in A , 

then D
nx  is added into A  and the solutions in A  which are strongly dominated by D

nx  

are deleted.  If D
nx   weakly dominates D

np  or they are not strongly dominated by each 

other, then D
np  is set to the current position ( D

nx ) (lines 14-16 in Table 1). Finally, the 

nondominated solutions in A  is clustered in order to reduce the size of nondominated 
set while maintaining its diversity (line 18 in Table 1). 

Table 2. The LocalSearch() procedure 

01  ( ,  )LocalSearch LSITER δ  

{ }( )02  max d d

d
L u lδ= ⋅ −  

03  for   1 to | |  doi A=  
04      1counter =  
05    while    docounter LSITER<  

06        D D
i=z x  

07      for   1 to  dod D=  

1 208        (0,1);  (0,1)U Uλ λ= =  

109        if  0.5 thenλ >  

210          d dz z Lλ= +  
11        else  

212          d dz z Lλ= −  
13        end if  
14      end for  

15      if    thenD D
iz x  

16         Update Nondominated Set A  

17        D D
i =x z  

18      end if  
19      counter + +  
20    end while  
21  end for  

3.1   Local Search 

The parameters, LSITER and δ , represent the number of iterations and the range for 
the local search, respectively. The local search procedure iterates as follows. First, the 
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maximum feasible step length ( L ) is calculated according to the parameter of local 
search range δ  (line 02 in Table 2). Similar to the simulated annealing, the local 
search range δ  decreases from max _ δ  to min _δ  as the number of iterations, T , 

increases (line 04 in Table 1). Second, for each nondominated solution D
ix  in A , 

improvement is sought dimension by dimension (lines 7-14 in Table 2). The tempo-
rary D -dimensional vector, Dz , first holds the initial information of each particle. 
Next, two random numbers are generated to set moving direction and step length for 
each dimension, respectively. If the vector Dz  observes a better nondominated solu-
tion within LSITER iterations, the nondominated set A  is updated and the local search 
for particle i  ends (lines 15-18 in Table 2). 

3.2   Clustering 

In general, the Pareto-optimal front is comprised of extremely large number of solu-
tions. Presenting all nondominated solutions found is not necessary because of the 
bounded rationality of decision makers. Moreover, the size of nondominated set impose 
heavy computational burden on the algorithm each time when a newly found solution is 
put into a big set for verification. On the other hand, preserving the diversity of a non-
dominated set by clustering, for each particle, could lift the probability of flying through 
the less crowded area in the current set. Consequently, pruning the nondominated set 
and maintaining its diversity might be necessary or even imperative. 

Morse [9] might be the first one to apply the clustering technique to this problem. 
Generally speaking, clustering is concerned with the division of data into homoge-
nous subgroups. The objective of this division is twofold: data items within one clus-
ter are required to be similar to each other, while those within different clusters should 
be dissimilar. Because the average linkage method has been proved to perform well 
on pruning the nondominated set in SPEA [8], it is also adopted in our approach. 

4   Computational Results 

The following test problem was used to validate the MOEM. 

Minimize   ( ) 1
1 1 2 2

2

2000
, 25 2

2

x
f x x x

x
= + +     (4) 

Minimize   ( ) ( )( )2 1 2 2
1

100
, 1f x x g x

x
= −     (5) 

Minimize   ( ) ( ) ( )( )( )3 1 2 2 2 2
1

200
, 1f x x h x x g x

x
= − −     (6) 

Suject to 1 20 100 ,  3 50x x≤ ≤ ≤ ≤ ,    (7) 

where 

( ) 2 3 4 4
2 2 2 2 21 (0.5(1 0.196854 0.115194 0.000344 0.019527 ) )g x x x x x −= − + + + +     (8) 

( ) 2
2 21/ 2 exp( / 2)h x e x= ⋅ −     (9) 
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The benchmark is the well-known SPEA which outperformed four population-
based approaches including VEGA [10], Aggregation by Variable Objective Weight-
ing (AVOW) [11], NPGA [12], and NSGA [13] on a 0/1 knapsack problem. 

The population size for SPEA and MOPSO-LC are set to 40. The number of it-
erations and nondominated solutions for both algorithms are set to 60 and 50, re-
spectively. For SPEA, the crossover and mutation probabilities are set to 0.9 and 
0.2, respectively. For MOPSO-LC, the number of local search iterations, maximum 
and minimum range of local search is set to 1, 0.3 and 0.1, respectively. To com-
pare our results with SPEA in a quantitative way we use the following three  
performance measures: set coverage metric ( , )C U V , spacing ( S ), and maximum 

spread ( D ) [14]. 

{ }|  :   
( , )

b V a U a b
C U V

V

∈ ∃ ∈
=  (10) 

where ⋅  means the number of components in the set. 

( )
2

1

1
A

i
i

S d d
A =

= −
 

(11) 
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===
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Tables 3-6 are the results of 10 independent runs of both algorithms. From the results 
in these tables, some findings are explained in the following. 

Table 3. Results of the set coverage (C) metric for MOPSO-LC and SPEA 

Set Coverage C(MOPSO-LC, SPEA) C(SPEA, MOPSO-LC) 

Average 0.74 0.228 
Coefficient of variation 0.14216 0.144576 
Standard Deviation 0.377041 0.380232 
Median 0.94 0.03 

Table 4. Results of the spacing (S) metric for MOPSO-LC and SPEA 

Spacing MOPSO-LC SPEA 
Average 0.010599152 0.009006427 
Coefficient of variation 9.74735E-06 4.78817E-06 
Standard Deviation 0.003122074 0.002188189 
Median 0.010197755 0.0085064 
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Table 5.  Results of the maximum spread (D) metric for MOPSO-LC and SPEA 

Maximum Spread MOPSO-LC SPEA 
Average 0.517781 0.492949 
Coefficient of variation 0.000615 0.000512 
Standard Deviation 0.024794 0.022618 
Median 0.514683 0.494712 

Table 6. Results of the computational time for MOPSO-LC and SPEA 

Time MOPSO-LC SPEA 
Average 17.9 20.1 
Coefficient of variation 8.89 6.69 
Standard Deviation 2.98161 2.586503 
Median 18 20 

1. In view of the set coverage metric in Table 3, MOPSO-LC exhibit much better 
results than SPEA. The nondominated solutions generated by MOPSO-LC are 
closer to the Pareto front than those by SPEA in our test problem. 

2. For the spacing and maximum spread in Tables 4 and 5, both algorithms are 
nearly equal. SPEA slightly outperforms MOPSO-LC in the spacing metric. 
However, MOPSO-LC gets better score than SPEA in the maximum spread met-
ric. This implies MOPSO-LC perform as well as SPEA do in the distribution and 
the spread of nondominated solutions in our test problem. 

3. Although the coefficient of variation and the standard deviation of execution time 
of MOPSO-LC are somewhat bigger than those of SPEA in Table 6, the average 
and median execution time of MOPSO-LC are smaller than those of SPEA. So, 
in terms of computational time, MOPSO-LC is also competitive with SPEA in 
our test problem. 

5   Concluding Remarks 

A Pareto optimizer has incorporated the local search and clustering mechanism into 
the MOPSO. The local search mechanism prevents premature convergence, hence 
enhances the convergence of optimizer to true Pareto-optimal front. The clustering 
mechanism reduces the nondominated solutions to a handful number while maintain-
ing the diversity of nondominated set in which the global guide for each particle is 
generated. Computational results show that the MOPSO-LC performs well in our test 
problem, although more experiments should be conducted. 

This study intends to point out a direction for combining different algorithms into a 
Pareto optimization scheme. The local search employed here is a linear random search 
and the clustering method is also in its basic form, but they indeed strengthen the 
possibilities of particles in MOPSO flying towards the Pareto front and generating a 
well-distributed nondominated set. Future research to this work include thorough 
comparisons with SPEA or other MOEAs using more difficult test problems, and 
accommodating linear or nonlinear constraints in the Pareto optimizer.  
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Abstract. In this paper, a special nonlinear bilevel programming prob-
lem (BLPP), in which the follower’s problem is a convex quadratic pro-
gramming in y, is transformed into an equivalent single-level program-
ming problem by using Karush-Kuhn-Tucker(K-K-T) condition. To solve
the equivalent problem effectively, firstly, a genetic algorithm is incorpo-
rated with Lemke algorithm. For x fixed, the optimal solution y of the
follower’s problem can be obtained by Lemke algorithm, then (x, y) is
a feasible or approximately feasible solution of the transformed problem
and considered as a point in the population; secondly, based on the best
individuals in the population, a special crossover operator is designed to
generate high quality individuals; finally, a new hybrid genetic algorithm
is proposed for solving this class of bilevel programming problems. The
simulation on 20 benchmark problems demonstrates the effectiveness of
the proposed algorithm.

1 Introduction

The bilevel programming problem(BLPP) can be defined as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
x∈X

F (x, y)

s.t. G(x, y) ≤ 0
min
y∈Y

f(x, y)

s.t. g(x, y) ≤ 0

(1)

and x ∈ X ⊆ Rn, y ∈ Y ⊆ Rm. Here x(y) is called the leader’s (follower’s) vari-
able. In the same way, F(f) is called the leader’s (follower’s) objective function.
The bilevel programming problem is a mathematical model of the leader-follower
game, it can be viewed as a static version of the noncooperative, two-person game
introduced by Von Stackelberg [1] in the context of unbalanced economic mar-
kets. As an optimization problem with a hierarchical structure, BLPP has a wide
variety of applications, such as network design, transport system planning, and

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 408–415, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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management and economics [2,3,4]. However, owing to the complex structure,
the vast majority of researches on BLPP are concentrated on the linear version
of the problem [5,6,7,8], and a few works on the nonlinear BLPP. Moreover, most
of existing algorithms for nonlinear BLPP are usually based on the assumption
that all of the functions are convex and twice differentiable [9,10,11]. In this
paper, we extend the linear case to a special class of nonlinear BLPP, where the
follower’s problem is a convex quadratic programming in y and the leader’s func-
tions may be nonconvex and nondifferentiable. In order to solve the transformed
problem effectively by using Genetic Algorithm(GA), firstly, for x fixed, we ap-
ply Lemke algorithm to obtain an optimal solution y of the follower’s problem,
and (x, y) is regarded as an individual in the population, which guarantees that
we can get an approximately feasible point that at least satisfies the follower’s
problem; secondly, for the leader’s constraint G(x, y) ≤ 0, we design a fitness
function in a magnified feasible region. In the new feasible region, the fitness
function makes any feasible solutions better than all infeasible solutions; finally,
a new hybrid genetic algorithm with specifically designed crossover operator is
proposed to solve the class of bilevel programming problems.

2 Bilevel Programming Problem

We consider the following nonlinear bilevel programming problem:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
x∈X

F (x, y)

s.t. G(x, y) ≤ 0

min
y∈Y

f(x, y) = 1/2 × yT Q(x)y + c(x)T y

s.t. A(x)y + b(x) ≤ 0, y ≥ 0

(2)

where F : Rn × Rm → R, G : Rn × Rm → Rp, for each x ∈ X , Q(x) ∈ Rm×m

is symmetric and positive definite, A(x) ∈ Rq×m, b(x) ∈ Rq and c(x) ∈ Rm. For
the purpose of convenience, denote Q(x), c(x), A(x) and b(x) by Q, c, A, and
b, respectively. The sets of X and Y may represent upper and lower bounds on
elements of the vectors x and y. Now we introduce some related definitions [14].

1) Search space: Ω = {(x, y)|x ∈ X, y ∈ Y }.
2) Constraint region: S = {(x, y) ∈ Ω|G(x, y) ≤ 0, A(x)y + b(x) ≤ 0, y ≥ 0}.
3) For x fixed, the feasible region of follower’s problem: S(x) = {y ∈ Y |A(x)y+

b(x) ≤ 0, y ≥ 0}.
4) Projection of S onto the leader’s decision space: S(X) = {x ∈ X |∃y, (x, y) ∈

S(x)}.
5) The follower’s rational reaction set for each x ∈ S(X): M(x) = {y ∈ Y |y ∈

argmin{f(x, v), v ∈ S(x)}}.
6) Inducible region: IR = {(x, y) ∈ S|y ∈ M(x)}.

In the remainder, we always assume that for x ∈ X fixed, S(x) is nonempty as
well as S. Since, for x fixed, all functions in the follower’s problem are differentiable



410 H. Li and Y. Wang

and convex in y, K-K-T stationary-point problem of follower’s programming can
be written as following ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Qy + AT λ1 + λ2 + c = 0
Ay + b + u = 0

λT
1 u = 0

λT
2 y = 0

λi, y, u ≥ 0, i = 1, 2.

(3)

where λ1 = (λ11, λ12, . . . , λ1q)T , λ2 = (λ21, λ22, . . . , λ2m)T are Lagrangian mul-
tipliers, and u ∈ Rq is an slack vector. Replace the follower’s programming in
(2) by (3), then (2) is transformed into (4) as follows⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
x∈X

F (x, y)

s.t. G(x, y) ≤ 0
E(x, y, λ1, λ2, u) = 0
y, λ1, λ2, u ≥ 0

(4)

where E(x, y, λ1, λ2, u) = 0 stands for all equations in (3). In order to solve
the transformed programming (4), at first, we rewrite (3) as the following linear
complementary problem ⎧⎪⎨

⎪⎩
w + Mz = b̂ (c1)
w, z ≥ 0 (c2)

wT z = 0 (c3)

(5)

where

w =
(

λ2
u

)
, z =

(
y

λ1

)
, M =

(
Q AT

A 0

)
, b̂ =

(−c
−b

)

If (w, z) satisfying (c3) is a basic feasible solution of (c1-c2) in (5), (w, z) is
called a complementary basic feasible solution (CBFS) of (5)[13]. For x fixed, if
one wants to get the optimal solution y of the follower’s problem, what he needs
to do is to solve problem (5) via Lemke algorithm for a CBFS (w, z) [13]. Take y
from z, then (x, y) satisfies all the follower’s constraints and for x fixed, f(x, y)
gets its optimal value at y. Such points (x, y) form the initial population of GA.
In the process of evolving, genetic offspring are generated in two steps. At first,
the variable x is acted by crossover or mutation operator to get x̄; For x̄ fixed,
to solve problem (5) for ȳ. Such (x̄, ȳ) is regarded as the offspring and satisfies
the follower’s optimization problem. When the populations are generated with
the method, all that we need to do is to solve the following single programming
problem {

min
x∈X

F (x, y)

s.t. G(x, y) ≤ 0
(6)
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3 New GA

3.1 Fitness Function

Let ε = (ε1, . . . , εp)T ,where εi are small positive numbers and tend to zero with
the increasing of the generations, S̄ = {(x, y) ∈ Ω|G(x, y) ≤ ε}, v(x, y) =
max(max(G(x, y) − ε), 0), and K be an upper-bound of F (x, y) on the set
{(x, y)|v(x, y) = 0}. The fitness function F̄ (x, y) is defined as following

F̄ (x, y) =
{

F (x, y), v(x, y) = 0;
K + v(x, y), v(x, y) �= 0.

The fitness function implies that any point in S̄ always is better than all points
out of S̄, and between two points out of S̄, the point with the smaller v is better
than the other.

3.2 Crossover Operator

In the process of evolving, the best point found always is recorded as (xbest, ybest).
Let (x, y) be a crossover parent. We, at first, get an x̄ by the formula x̄ =
x + diag(τ) × r × (xbest − x), where τ ∈ Rn is a positive vector determined by
the upper and lower bounds of variable x, and r ∈ [0, 1] is a random number.
For x̄ fixed, we solve the problem (5) for ȳ. The resulting (x̄, ȳ) is the crossover
offspring of (x, y).

3.3 Mutation Operator

Let (x, y) be a mutation parent. We, at first, get an x̂ by Gaussian mutation
x̂ = x+
(0, σ2), where each component of 
(0, σ2) obeys Gaussian distribution
N(0, σ2

i ), i = 1, 2, . . . , n. For x̂ fixed, we solve the problem (5) for ŷ. The resulting
(x̂, ŷ) is the mutation offspring of (x, y).

3.4 Proposed Algorithm

Algorithm 1
Step 1 (Initialization). Randomly generate a set pop of Np points in X . For each
x ∈ pop fixed, we solve the problem (5) for y. If y /∈ Y , randomly generate
another x to replace the original one, the process doesn’t stop until y ∈ Y is
satisfied. All such points (x, y) form the initial population pop(0) with Np indi-
viduals. Let N stand for the set of all the best points found by Algorithm 1 so
far and k = 0.
Step 2. Evaluate the fitness value F̄ (x, y) of each point in pop(k), and let
N = {pi1 , · · · , pik

}.
Step 3 (Crossover). Randomly select a parent p from pop(k) according to the
crossover probability pc. We can obtain a crossover offspring p̄ via the crossover
operator. Let O1 stand for the set of all these offspring.
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Table 1. Comparison of the best results found by Algorithm1 and by the related
algorithms in references for Problems 1-20

F (x∗, y∗) f(x∗, y∗)
No. CPU(s) Algorithm1 Ref. Algorithm1 Ref.

F1([15]E4.1) 10.0115 0.5015 0.5 −15.7475 −14.4879
F2 ([15]E4.2) 8.1894 0.5015 0.5 −4.5000 −4.5
F3 ([15]E4.3) 12.0063 1.8605 1.859 −10.9321 −10.9310
F4 ([15]E4.4) 10.6969 0.8485 0.919 −22.9505 −19.4686
F5 ([15]E4.5) 9.3870 0.8975 0.897 −14.9249 −14.9311
F6 ([15]E4.6) 10.1625 1.5629 1.562 −11.6826 −11.6808
F7 ([15]E3.1) 10.1292 −8.9172 −8.92 −6.1179 −6.054
F8 ([15]E3.2) 9.2068 −7.5784 −7.56 −0.5723 −0.5799
F9 ([15]E3.3) 11.4052 −11.9985 −12 −438.4165 −112.71
F10 ([15]E3.4) 10.3932 −3.6 −3.6 −2 −2
F11 ([15]E3.5) 9.5588 −3.92 −3.15 −2 −16.29
F12 ([16]E5.2) 10.625 225 225 100 100
F13 ([17]E3.2) 11.2531 0 5 200 0
F14 ([9]E3.2) 10.2531 −12.6787 −12.6787 −1.016 −1.016
F15 ([18]E4.2) 23.2859 −6600 −6599.99 f1 = 23.6358 f1 = 23.47

f2 = 30.5833 f2 = 30.83
F16 ([12]E6.2) 6.0922 81.3279 82.44 −0.3359 0.271
F17 ([12]E6.3) 6.4875 100 100.58 0 0.001
F18 ([12]E6.4) 13.6151 −1.2099 3.57 7.6172 2.4

F19 23.0260 0 NA 13.3283 NA

F20 11.7354 0 NA 200 NA

Sept 4 (Mutation). Randomly select parents from pop(k) according to the mu-
tation probability pm. For each selected parent p, we can get its offspring p̂ via
the mutation operator. Let O2 stand for the set of all these offspring.
Step 5 (Selection). Let O = O1 ∪O2 and evaluate the fitness values of all points
in O. Select the best n1 points from the set pop(k) ∪ O and randomly select
Np − n1 points from the remaining points of the set. All these selected points
form the next population pop(k + 1).
Step 6. If the termination condition is satisfied, then stop; otherwise, renew N,
let k = k + 1 and ε = θε, θ ∈ [0, 1], go to Step 3.

4 Simulation Results

In this section, 20 benchmark problems are used for simulation, in which the first
18 problems are selected from the related references. In order to illustrate the
efficiency of the proposed algorithm for solving complex nonlinear BLPPs with
nondifferentiable , even nonconvex, leader’s objective function, we construct 2
new benchmark problems, F19 and F20 as follows
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Table 2. Comparison of the best solutions found by Algorithm1 in 30 runs and by the
related algorithms in references for problems 1-20

(x∗, y∗)
No. Algorithm1 Ref.

F1([15]E4.1) (2.25.5, 2.9985, 2.9985) (2.07, 3, 3)
F2 ([15]E4.2) (0, 2.9985, 2.9985) (0, 3, 3)
F3 ([15]E4.3) (3.4564, 1.7071, 2.5685) (3.456, 1.707, 2.569)
F4 ([15]E4.4) (2.8563, 3.8807, 3.0402) (2.498, 3.632, 2.8)
F5 ([15]E4.5) (3.9977, 1.6651, 3.8865) (3.999, 1.665, 3.887)
F6 ([15]E4.6) (1.9095, 2.9786, 2.2321) (1.90, 2.979, 2.232)
F7 ([15]E3.1) (1.2046, 3.0972, 2.5968, 1.7922) (0.97, 3.14, 2.6, 1.8)
F8 ([15]E3.2) (0.2785, 0.4759, 2.3439, 1.0327) (0.28, 0.48, 2.34, 1.03)
F9 ([15]E3.3) (46.7128, 124.9863, 2.9985, 2.9985) (20.26, 42.81, 3, 3, )
F10 ([15]E3.4) (2, 0.0296, 2, 0) (2, 0.06, 2, 0)
F11 ([15]E3.5) (−0.4050, 0.7975, 2, 0) (2.42, −3.65, 0, 1.58)
F12 ([16]E5.2) (20, 5, 10, 5) (20, 5, 10, 5)
F13 ([17]E3.2) (0, 0, −10, −10) (25, 30, 5, 10)
F14 ([9]E3.2) (0, 2, 1.8750, 0.9063) (0, 2, 1.8750, 0.9063)
F15 ([18]E4.2) (7.034, 3.122, 11.938, 17.906, 0.25, (7.05, 4.13, 11.93, 17.89, 0.26,

9.906, 29.844, 0) 9.92, 29.82, 0)
F16 ([12]E6.2) (10.0164, 0.8197) (10.04, 0.1429)
F17 ([12]E6.3) (10.0000, 10.0000) (10.03, 9.969)
F18 ([12]E6.4) (1.8889, 0.8889, 0) NA

F19 (13.6508, 8.5111, 10.0000, 8.5111) NA

F20 (0, 0, −10, −10) NA

F19).The problem is the same as F12 except for

F (x, y) = | sin((x1 − 30)2 + (x2 − 20)2 − 20y1 + 20y2 − 225)|
F20). The problem is the same as F13 except for

F (x, y) = | sin (2x1 + 2x2 − 3y1 − 3y2 − 60)|
In all problems, the follower’s problems are quadratic programming problems in

y for x fixed, while the leader’s functions may be nonlinear and nondifferentiable.
The parameters are chosen as follows: the population size Np = 30, pc = 0.8,

pm = 0.3, n1 = 10, the initial ε = (1, · · · , 1) ∈ Rp, θ = 0.7 for k ≤ kmax/2, while
θ = 0 for k > kmax/2, where k represents the generation number, while kmax the
maximum generation number. For F1 − F20, The algorithm stops after 50 gen-
erations. We execute Algorithm 1 in 30 independent runs on each problem on a
computer(Intel Pentium IV-2.66GHz), and record the following data: (1) best so-
lution (x∗, y∗), and the leader’s(follower’s) objective values F (x∗, y∗)(f(x∗, y∗))
at the best solution; (2) worst solution (x̄, ȳ) and the leader’s (follower’s) objec-
tive function value F (x̄, ȳ) (f(x̄, ȳ)) at the point (x̄, ȳ); (3) mean value of CPU
time(denoted by CPU in short).
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Table 3. The worst results found by Algorithm1

No. F (x̄, ȳ) f(x̄, ȳ) (x̄, ȳ)
F6 ([15]E4.6) 1.5633 −11.6859 (1.9101, 2.9785, 2.2319)
F8 ([15]E3.2) −7.5782 −0.5726 (0.2827, 0.4668, 2.3432, 1.0307)
F15 ([18]E4.2) −6599.6 f1 = 25.1041 (6.9191, 3.0261, 12.0210, 18.0337,

f2 = 28.4778 0.1417, 9.8035, 30.0525, 0)

All results are presented in Tables 1-3, in which Table 1 provides the com-
parison of the best results found by Algorithm1 in 30 runs and by the related
algorithms in references for problems 1-20 , as well as mean CPU time needed
by Algorithm1 in a run. Table 2 shows the best solutions found by Algorithm1 in
30 runs and by the related algorithms in references for problems 1-20. For those
functions for which Algorithm1 finds different results in 30 runs, Table 3 gives
the worst solutions (x̄, ȳ) and the related objective function values. The first
volume of Tables 1-3 consists of two parts, Fi and ([l]Ej.k). Fi stand for test
function numbers (i = 1, 2, · · · , 20), and ([l]Ej.k) the kth example in Section j
of reference [l]. NA means that the result is not available for the algorithm and
Ref. stands for the related algorithms in references in Tables 1-3.

It can be seen from Table 1 that for problems F4, F11, F13, F16, F17 and
F18, the best results found by Algorithm 1 are better than those by the com-
pared algorithms in the references, which indicates these algorithms can’t find
the optimal solutions of these problems; For the constructed F19 and F20, Al-
gorithm1 can find the best results; For other problems, the best results found
by Algorithm1 are almost as good as those by the compared algorithms.

In all 30 runs, Algorithm1 finds the best results of all problems except the
problems 6, 8, and 15. For the three problems, the proposed algorithm also
found the best solutions in 25, 24 and 19 runs, respectively. The worst results
are shown in Table 3. From Table 3, we can find the worst results are close to
the best results. This means that the proposed Algorithm 1 is stable and robust.

5 Conclusion

For the nonlinear bilevel programming problem, whose follower level problem is
a convex quadratic programming in y, we transform it into a single-level pro-
gramming problem by using K-K-T condition. To solve the equivalent problem
effectively, we propose a new hybrid genetic algorithm incorporated with Lemke
algorithm, in which an efficient crossover operator is designed to generate high
quality individuals. The simulation on 20 benchmark problems demonstrates the
robustness and the effectiveness of the proposed algorithm.
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Abstract. According to the Neo-Darwinist, natural selection can be classified 
into three categories: directional selection, disruptive selection, and stabiliz-
ing selection. Traditional genetic algorithms can be viewed as a process of 
evolution based on directional selection that gives more chances of reproduc-
tion to superior individuals. However, this strategy sometimes is myopic and 
is apt to trap the search into a local optimal. Should we restrict genetic algo-
rithms to direction selection? No! First, we show that stabilizing selection and 
disruptive selection are complementary and that hybridize them may super-
sede directional selection. Then, we adopt an island model of parallel genetic 
algorithms on which two types of selection strategies are applied to two sub-
populations that both evolve independently and migration is allowed between 
them periodically. Experimental results show that the cooperation of disrup-
tive selection and stabilizing selection is an effective and robust way in the 
genetic algorithms. 

1   Introduction 

The motivation of this study is try to design an effective and robust genetic algorithm 
(GA) to solve problems. The three primary operators in the GA are selection, cross-
over, and mutation. What we emphasize on is the selection operator. That is to say, 
our goal is to design an effective and robust selection strategy in the GA. According 
to the Neo-Darwinist, three types of natural selection can be distinguished: directional 
selection, disruptive selection, and stabilizing selection [11]. Directional selection has 
the effect of increasing (or decreasing) the mean value of the entire population. Dis-
ruptive selection tends to eliminate individuals of mediocre values and prefers to 
those individuals of extreme values. In contrast, stabilizing selection tends to favor 
individuals of mediocre values. Throughout this paper, we will use the TGAs stands 
for traditional genetic algorithms that adopt directional selection, the DGAs stands for 
genetic algorithms that adopt disruptive selection and the SGAs stands for genetic 
algorithms that adopt stabilizing selection. The only difference between these three 
types of genetic algorithms relies on the fitness function that maps the object function 
value to the fitness measure. It must be noted that we still adopt proportionate selection 
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with weighted roulette wheel sampling method to implement a generational produc-
tion process.1  

Following the “survival-of-the-fittest” principle, the TGAs offer more chances of 
reproduction to superior individuals.2 But this strategy sometimes is myopic and is 
likely to guide the search to a misleading direction. The key of success is what kind of 
solution should be viewed as a “fitter”solution. Kuo and Hwang introduced the DGAs 
that favor to both superior and inferior individuals simultaneously, and confirmed that 
it can solve some problems that the TGAs perform inefficiently or even do not solve 
[7], [9].3  

We believe that it should be a good idea to view a solution as“fitter”as it is closer 
to the optimal solution no matter what function value it has. This belief is based on 
the fact that for any solution that is away from the optimal solution with bits, 
there are schemata out of its schemata contain the optimal solution [8].  

With this realization, we have confidence in arguing that the function values of so-
lutions in the neighborhood (in the Hamming distance, hence thereafter) of the opti-
mal solution act as an important role in the genetic algorithms. That is to say, in some 
problem instances, even a contemporary mediocre solution also may has a greater 
potential of “evolving” to a superior solution, in the future. Why we discard these 
mediocre solutions rather than exploit them? In fact, just like the NFL tells us, we can 
foresee that different types of selection strategies are good for different types of opti-
mization problems [15]. Unfortunately, to deal with an optimization problem in prac-
tice, we have no prior knowledge of the solution space to which we are faced. Why 
we confine us to a certain selection strategy? Maybe we can syncretize different types 
of selection strategies to enhance the searching power of genetic algorithms. In brief, 
we do not expect to looking for a universal strategy that can ensure to guide the 
search towards the area where the optimal solution locates in, what we try to do is not 
miss the chance of exploiting and exploring those solutions that are mediocre or even 
inferior in a contemporary population but actually seat around the optimal solution. 
This is the philosophy of our study. 

To achieve our goal, we will accomplish three tasks. First, we will demonstrate that 
the SGAs, just like the DGAs do, promise to be helpful in solving some problem 
instances that are hard for the TGAs to optimize. Secondly, we will demonstrate that 
the SGAs and the DGAs are complementary to each other and hybridize them may 

                                                           
1  Although there are other selection schemes, for example, such as tournament selection and 

rank selection, proportionate selection is the mostly used method that gives an individual the 
probability of reproduction according to the ratio of the individual’s fitness to the entire 
population’s fitness [3].There are two general types of probabilistic reproduction process: 
generational reproduction and steady-state reproduction [14]. Generational reproduction re-
places the entire population with a new one in each generation. In contrast, steady-state re-
production only replaces part of individuals in each generation. 

2 Traditionally, we use the function value of an individual as its fitness measure or use a mono-
tonic mapping between function value and fitness measure, i.e., g(x1)<= g(x2) iff f(x1)<= 
f(x2), where g(x) is fitness measure of an individual x, f(x) is its function value of a maximi-
zation problem [4]. 

3 The mapping between function value and fitness measure is non-monotonic: g(x) = abs (f(x) - 
f(t)), where f(t) is average function value of the population in generation t, and abs is an op-
eration of taking absolute value of its argument. 
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supersede the TGAs. Thirdly, we will demonstrate that the cooperation of the SGAs 
and the DGAs is an effective and robust way in the genetic algorithms. 

2   Stabilizing Selection 

We adopt a stabilizing selection that, unlike the TGAs, takes a non-monotonic map-
ping between function value and fitness measure as follows 

g(x) = 1/ (abs (f(x) - f(t))). (1) 

Here, all notations are same as those in footnotes 2 and 3. In short, a stabilizing selec-
tion eliminates those extreme solutions and prefers to give more chances to those 
mediocre solutions. We construct two multimodal problem instances that are func-
tions of unitation. A function of unitation is a function that the function value of a 
binary string depends only on the total number of 1’s in that string and not on the 
position of those 1’s [2]. Figs. 1 and 2 show the landscapes of these two problem 
instances in the unitation space, where u(x) is the total number of 1’s in the solution x, 
f(x) is function value of the solution x. The optimal solution of these two problem 
instances is x = 111111111, that is u(x) = 9, with a function value of 1024. From Fig. 
2, it is clear that the optimal solution of problem instance F2 is surrounded by medio-
cre solutions; whereas the superior and inferior solutions are far away from the opti-
mal solution. As we know that the TGAs prefer to those superior individuals, problem 
instance F2 is hard to optimize by the TGAs. 

 

Fig. 1. Landscape of problem instance F1    Fig. 2. Landscape of problem instance F2 

 
To measure the hardness of these two problem instances we need an estimator that 

can classify them into the type of GA-hard or GA-easy. Jones and Forrest proposed to 
use a statistics, the fitness distance correlation (FDC), as a measure of problem diffi-
culty [6].4 The FDC indicator r for problem instances F1 is -0.42. It is straightforward 
(i.e., easy) for the TGAs to optimize. In contrast, the FDC indicator r for problem 

                                                           
4 Here, actually, the fitness measure stands for the function value. 
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instances F2 is 0.326.It is misleading (i.e., hard) for the TGAs to optimize, and the 
degree of difficulty is corresponding to several fully deceptive functions [2], [6].  

In this study, a population size of twenty and the following parameter settings were 
used: the crossover rates (Pc) 0.9, 0.7, 0.5, 0.3, and 0.1; and the mutation rates (Pm) 
0.01, 0.05, 0.1, 0.2, and 0.3. That is, there are twenty-five settings of parameters, and 
for each setting of parameters, we tested the SGAs and the TGAs, respectively. We 
replicated twenty re-initialized runs for each setting of parameters, and each run lasts 
for one hundred generations. The performance of a single run was taken to be the best 
solution ever found during the search.  

Experimental results show that the TGAs perform very well on problem instance 
F1. On the other hand, the SGAs do not solve this problem instance successfully. 
Conversely, the SGAs perform very well on problem instances F2, but the TGAs do 
 

  

Fig. 3. Performance of the TGAs on F1          Fig. 4. Performance of the SGAs on F1 

  

Fig. 5. Performance of the TGAs on F2         Fig. 6. Performance of the SGAs on F2 
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not solve this problem instance successfully. These results are presented in Figs. 3 to 
6. In short, these experimental results verify that the selection strategy is of paramount 
importance in the genetic algorithms and that the function values of solutions that 
located in the neighborhood of the optimal solution actually play an important role in 
the genetic search. 

3   Should We Restrict Genetic Algorithms to the Direction 
Selection? 

Now, the question is should we restrict genetic algorithms to the direction selection? 
To answer this question, we will show that the SGAs and the DGAs are complemen-
tary to each other and that the SGAs combine with the DGAs may supersede the 
TGAs. The test problems used here are also functions of unitation. In the case of a 
representation which use a binary string of length l, the function values of all 2l feasi-
ble solutions can be classified into l+1 different groups, each group maps to the 
strings that contain 0,1,2,…, or l total number of 1’s in that string. 

To be fair, we should consider all possible ways of the mapping, in other words, 

we should test all possible landscapes of the search spaces and this number is ( )1+l ! 

Thus, we use a binary string of length five to construct the test problem instances. For 
these test problem instances, we map the function values of feasible solutions to 2 4

8 16 32 and 64. For the sake of simplicity and without loss of generality, we 
assume the optimal solution of these problem instances is x = 11111, that is u(x) = 5, 
with a function value of  64. Thus, we test 5! = 120 possible problem instances. 

In all cases, a population size of six and the following parameter settings were 
used: the crossover rates 0.9 0.7 0.5 0.3 0.1and 0; and the mutation rates 
0.001 0.01 0.05 0.1 and 0.3. That is, there are thirty settings of parameters. For 
each setting, we replicated ten re-initialized runs that each run lasts for twelve genera-
tions to test the SGAs, the DGAs and the TGAs, respectively. The performance of a 
single run was taken to be the best solution ever found during that run.  

The results indicate that, on the average, the SGAs and the DGAs perform slightly 
better than the TGAs. With carefully checkup, we find that different types of selection 
strategies are good for different types of search spaces. In other words, each type of 
selection strategy has its own upsides and downsides. Furthermore, the SGAs and the 
DGAs are complementary to each other. Fig. 7 manifests this finding explicitly. It is 
worth noting that the performance of the TGAs varies widely over all 120 problem 
instances. 

In order to solidify this finding, we went further into computing the coefficients of 
correlation of the data presented in Fig 7. The coefficients of correlation between 
every two types of GAs are -0.85 for the SGAs and the DGAs, -0.245 for the SGAs 
and the TGAs, and 0.636 for the DGAs and the TGAs, respectively. The first figure 
shows a strong complementary relationship between the SGAs and the DGAs. The last 
figure indicates that the DGAs may substitute for the TGAs. In brief, as we have seen, 
these findings encourage us to study how to hybridize different types of selection 
strategies for enhancing the searching power of genetic algorithms. We will address 
this issue in next section. 
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Fig. 7. Performance of the SGAs, the DGAs, and the TGAs from the perspective of problem 
instances (i.e., average over thirty settings of parameters) 

4   A Synergistic Selection Strategy 

It is advisable to implement a parallel GAs on which different types of selection 
strategies are applied to different GAs. The two models of parallel GAs that most being 
cited in literatures are island model and grid model (or neighborhood models) [1], [10], 
[12], [13]. In this study, we adopt an island model of parallel GAs on which two types 
of selection strategies are applied to two subpopulations that both evolve independently 
and migration of the best individual is allowed between them periodically to substitute 
the worst individual in a subpopulation with the best individual from the other one.  
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The test problems and parameter settings used here are same as those mentioned in 
the preceding section. For each setting of parameters we replicated ten re-initialized 
runs by three island models and a TGA model (with a population size of twelve), 
respectively. In notation, we use the T+S to denote the island model of the TGAs and 
the SGAs, the T+D of the TGAs and the DGAs, and the S+D of the SGAs and the 
DGAs. Each run lasting for twelve generations and for the three island models migra-
tion took place every four generations. The performance of a single run was taken to 
be the best ever found individual of that run.  

Experimental results give evidence to claim that the cooperation of disruptive se-
lection and stabilizing selection is an effective and reliable combination of selection 
strategies in the genetic algorithms. Overall, the model of S+D performs better than 
other models. Especially, we can find that the S+D model outperforms the T model, in 
the criteria of avg., by 10.45% on the average. In details, for each one of all thirty 
settings of parameters, the avg. of the S+D model is largest and its std. is smallest 
except for some cases. These exceptional situations almost occur under lower muta-
tion rates, such as 0.01 and 0.001. We interpret this to mean that in such a low muta-
tion rate, the number of flipped bit of the entire population during one generation is 
less than one (6*5*0.01=0.3 and 6*5*0.001=0.03). That is to say, although a medio-
cre or even an inferior individual has been intently exploited by stabilizing or disrup-
tive selection to produce more offspring, these new born individuals still can not 
evolve to a superior individual without the exploration of mutation. Of cause, lower 
crossover rates, such as 0.3, 0.1 and 0, may be is one of the causes of these excep-
tional situations. 

5   Conclusion and Suggestions 

Let us stress again that, whereas the SGAs and the DGAs just like the TGAs or all 
other search schemes do not ensure to guide the search towards the area where the 
optimal solution locates in, they will not miss the chance of exploiting and exploring 
the solutions that actually locate surrounding the optimal solution but are relative 
worse than other superior solutions in a contemporary population. 

Despite the encouraging results of this study, future research is obviously required. 
We intend to continue pursing this line of work in a series of experimental studies. To 
address some real problems will be the first step. Besides, since the selection mecha-
nism is the kernel of evolutionary computation techniques, the proposed model de-
serves an in-depth study to extend its scope of applications. 
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Abstract. Genetic algorithms and genetic local search are population
based general-purpose search algorithms. Nevertheless, most of combina-
torial optimization problems have critical requirements in their definition
and are usually not easy to solve due to the difficulty in gene encoding.
The traveling salesman problem is an example that requires each node to
be visited exactly once. In this paper, we propose a genetic local search
method with priority-based encoding. This method retains generality
in applications, supports schema analysis during searching process, and
is verified to gain remarkable search results for the traveling salesman
problem.

1 Introduction

Genetic algorithms (GAs) are population-based and problem independent search
algorithms. Figure 1(a) shows the main processes of genetic algorithms, i.e.,
initialization, evaluation, selection, and reproduction. Hybrid with local search
heuristics, Genetic Local Search (GLS) is an upgraded version that replaces
each individual with its local optimal neighbor. As shown in Fig. 1(b), a local
search process is launched in evaluation. GLS is thereby regarded as a method
to mimic the cultural evolution instead of biological evolution, and also referred
to as Memetic Algorithm (MA) or Lamarckian Evolutionary Algorithm [1].

Genetic local search is aimed to improve search quality of traditional genetic
algorithms and has been examined to search efficiently for the near-optimal
solutions to certain combinatorial optimization problems, such as the constraint
satisfaction problem [2], flowshop scheduling problem [3], constraint minimum
spanning tree problem (dMST) [4], and traveling salesman problem (TSP) [5].
Notably, these optimization problems usually have critical requirements that
have forced researchers to develop new genetic operators. For example, for the
dMST we have an upper bound on the node degrees and for the TSP we require
that each city be visited exactly once.

These critical requirements put a great constraint for us to encode the genes
in a GA. In the case of the TSP instance, for example, directly encoding cities
into the chromosomes (the order presentation as shown in Fig. 2) does not work
altogether with traditional crossover methods — the offspring may become an
invalid tour if two chromosomes crossover using traditional 1-point or 2-point

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 424–432, 2006.
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Fig. 1. Genetic Algorithm (GA) and Genetic Local Search (GLS). (a) GA flowchart,
(b) GLS is a combination of GA and local search heuristics; (c) Priority-Based GLS
(PB-GLS) proposed in this paper uses a greedy algorithm and a Lamarckian feedback
process to alternate between genotype and phenotype.

Fig. 2. Directly encoding cities into the chromosomes does not work altogether with
traditional crossover methods. The offspring may become an invalid TSP tour.

operators. To overcome this difficulty, some renowned crossover operators were
developed, many of which depend on the tour representation, such as the order
presentation (partially matched crossover, PMX), the adjacency presentation
(matrix crossover, MX), and the locus representation (natural crossover). There
are also genetic operators independent of tour representations, such as greedy
crossover (GX) and distance preserving crossover (DPX). For more information,
the reader is referred to [6] for a comprehensive overview.

Although the-above mentioned approaches make genetic algorithms and ge-
netic local search algorithms applicable to the TSP, they have some drawbacks
as follows: The order representation does not ensure a unique representation for
a TSP tour. This situation usually retards the evolutionary process. The adja-
cency matrix representation is time-consuming and does not have a significant
performance. The locus representation is much limited in that it can only be
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applicable for the Euclidean TSP. Most importantly, these crossover operators
are specialized mainly for the TSP and involve repair procedures to generate a
valid tour. In contrast with the original intention of genetic algorithms, these
operators are short of general practical values. In this paper, we propose a Ge-
netic Local Search method with Priority-Based encoding, dubbed the “PB-GLS”
model. This model retains generality in applications, supports schema analysis
during searching process, and has been empirically proven to gain remarkable
search results for the traveling salesman problem.

2 Priority-Based Genetic Local Search

For a combinatorial optimization problem for which a near-optimal solution can
be obtained by using a greedy algorithm, certain entities, such as the nodes of the
dMST and TSP problems and the jobs in the flowshop scheduling are selected
step by step. Herein, the links between two consecutively selected entities are
called “consecutive selections”. We propose a priority-based encoding policy that
assigns priorities to all the links between entities and the policy is expected
to set high priority to the correct consecutive selections. The greedy algorithm
employed remains the same, except that we select the next entity in consideration
of the link priority prior to the original ranking key. By doing so, the greedy
algorithm leads to a valid solution and the priority encoding makes it possible
to follow traditional genetic evolutions. This approach does not lose generality in
applications because we only need to provide a chromosome conformation that
is simply a priority assignment.

2.1 Priority-Based Encoding with Local Search Method

As Fig. 1(c) shows, our idea is based on Mendelian inheritance that distinguishes
genotype and phenotype in inheritance process. A greedy algorithm plays the role
as the biochemical process that transfers the genotype encoding to the phenotype
of each individual. The PB-GLS model further conducts a local search method to
improve this phenotype. After that, we need a Lamarckian feedback process for
encoding the local optimal solution and converting it back to its genotype. This
process can be done if we enable all consecutive selections in the given solution
by assigning them with higher priorities and disable potentially incorrect links by
setting lower priorities. The range of priorities can be determined experimentally,
although two priority levels are sufficient in our case.

2.2 Characteristics of the Priority-Based GLS

The priority-based genetic local search has three main features, i.e., broad ap-
plicability, problem transformation, and simulation of Mendelian inheritance
theory.

1. Broad applicability: The priority-based encoding policy suits to any problem
whose optimal solution can be approximated by a greedy algorithm, because
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the greedy algorithm is characterized by two features, i.e., (a) the candi-
date entities are selected one after another sequentially, and (b) the selected
entities are not discarded thereafter.

2. Problem transformation: The PB-GLS transforms combination and permu-
tation problems into priority assignment problems. This problem transfor-
mation suggests a new direction to tackle the given problems. Imagine that
the perfect optimal solution contains some crucial consecutive selections of
problem entities (e.g. crucial edges in the TSP). Assigning higher priori-
ties to these links leads to a near-optimal solution. Naturally, priority-based
encoding allows us to analyze searching schema during the search process.

3. Simulation of Mendelian inheritance theory: We use greedy algorithms to
simulate chemical processes, and use the priority-based encoding policy to
simulate the gene codes in inheritance procedure. These priorities control the
biochemical processes to ”enable” and ”disable” some biological functions,
and finally develop a phenotype that fits the definition of the genotype.

3 Application to the TSP

We demonstrate using the PB-GLS model to solve the TSP. A greedy algorithm
known as double-ended nearest neighbor (DENN) is used in this experiment.

3.1 Experiment Design

The DENN algorithm is described as follows. Let E(A, B) denote the edge be-
tween city A and city B, and assume E(A, B) is identical to E(B, A) for any
two distinct cities A and B:

1. Sort the edges by their costs into a sequence S.
2. Initialize a partial tour T = {S[1]}. Let S[1] = E(A, B) be the current

subtour from A to B.
3. Suppose the current subtour is from X to Y . We trace the sequence S to

find the first edge E(P, Q) that could extend the subtour at either end city
X or city Y without creating a cycle, i.e., a complete tour that does not visit
all the cities.

4. If the above edge E(P, Q) is found, add it into T to extend the current
subtour and repeat step 3; otherwise, add E(Y, X) into T and return T as
the searching result.

Note that the current state is extended by adding new nodes (cities) repeat-
edly. We now add priorities to the edges and change the sorting step by con-
sidering priorities of these edges first and then their costs in the first step. This
change never affects the validity of tours, because the other steps of this greedy
algorithm remain unchanged. The most concerned question is whether any tour
can be represented by this encoding method. Considering that a greedy algo-
rithm never discards an object once this object is selected, we can construct any
given tour “T” by a greedy algorithm as the following formula describes:
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( ∀ (r, s, t, k, |{r, s, t, k}| = 4 )
({E(r, s), E(s, t)} ⊆ T ∧ C(k, s) ≤ min{C(r, s), C(s, t)}

⇒ P (k, s) > max{P (r, s), P (s, t)}) )
⇒ The greedy algorithm constructs T ,

(1)

where C(a, b) and P (a, b) are the cost and priority of edge E(a, b) respectively,
and a lower priority value P (a, b) reflects a higher priority of edge E(a, b) to be
included in the tour.

The above description implies that the priority-based encoding can be used
to search the global optimal solution. Two levels of priorities are sufficient to
guarantee such an optimal solution. Formula (1) is also used in the Lamarckian
feedback process of our GLS model. We apply the LK heuristic [7] as the local
search method.

3.2 Complexity Analysis

It is well-known that an exhausted search for a TSP has an exponential time com-
plexity. Suppose that n is the number of vertices. An exact solution takes O(n!)
time, which is prohibitively long. Therefore, polynomial-time heuristic search
approaches are proposed. Heuristic or local search algorithms have complexities
ranging from O(n2) (e.g., nearest neighbor, double ended nearest neighbor, and
nearest insertion), O(n2 log(n)) (e.g., shortest edge first) to O(n2.2) (e.g., LK)
or higher order (e.g., k-opt).

The genetic algorithms with specialized crossover operators have time com-
plexity O(kmn2), where k is the generation number and m is the population
size. The n2 factor is due to the fact that all the repair procedures need to scan
all the possible pairs of the vertices which is O(n2). If we combine genetic al-
gorithms with a local search algorithm, the latter affects the time complexity.
For example, the genetic local search algorithm incorporating the DPX operator
with the LK heuristic [5] has time complexity O(kmn2.2). This model, referred
to as DPX-LK model, is currently known as the most efficient model and will
be compared with our model in the next section.

The time complexity of our model depends on the selected greedy algorithm,
the Lamarckian feedback process, and the local search heuristic. When the
DENN algorithm and LK heuristic are used, the PB-GLS needs O(n2) time
to crossover the parent chromosomes and O(n2 + n2.2 + n2) time to construct
the tour, search the local optimum, and feedback the upgraded gene information.
Therefore, the total time complexity is also O(kmn2.2).

4 Experimental Results

In this section, we conduct three parts of experiments applying PB-GLS to solve
the TSP. The first part used our own data to demonstrate how priority encoding
is used and how it supports schema analysis. The second part used benchmark
instances released by the TSPLIB [8] and proved that the proposed model can
find near-optimal solutions identical to the best known results, in cases where the
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Table 1. Cities in the first part of experiments

number of cities was no more than 400. In the last part, we generated sparsely
connected maps from the TSPLIB data instance and compared the experimen-
tal results between our model and the currently most efficient DPX-LK hybrid
searching model. The PB-GLS model in these experiments uses Holland’s simple
genetic algorithm model with the uniform crossover operator and conducts the
LK heuristic for local searching every five generation. To reduce the searching
space and simplify the result discussion, priority encoding in these experiments
used only two-level priority, i.e., the high priority was 1 and the low priority was
2. The population size and mutation rate were set as 100 and 0.2 respectively.

Table 1 lists the locations of the cities in the first part of experiments. These
cities were randomly generated in the [0, 1] × [0, 1] square. Figure 3(a) and (b)
show the city map and the near-optimal solution, found by both the DPX-LK
hybrid model and our model within 100 generations. According to repeated
experimental results, we believe that this tour with cost=4.35 is very close to
the optimal tour. Table 2 lists the searching results of gene values partially, and
the edges by their costs in ascending order. Columns from p1 to p4 are converged
near-optimal chromosomes. All these chromosomes can develop the near-optimal
TSP tour that is shown in Fig. 3(b). The final column denotes whether the edge
under consideration is selected to be part of the tour.

Edges E(3, 5), E(7, 15) and E(13, 19) in the 45th, 53rd, and 57th rows are the
longest three edges contained in the tour. We can observe that they all receive
a high priority. They are likely the crucial edges in the optimal tour. Interest-
ingly, the three edges excluded from the tour, E(9, 10), E(9, 12) and E(11, 12),
are also remarkable because they are quite short and all receive a low priority.
This result demonstrates that priority encoding allows schema explanation in
searching optimal TSP tours. This schema is also likely to be useful when the
number of cities increases or decreases.

In the second part of experiments, we used the instances released on the
TSPLIB website to test our method. Experimental results reveal that the PB-
GLS can find near-optimal solutions in maps with no more than 400 cities,
such as the st70, ch150, a280 and rd400 data instances. The solutions obtained
are identical to the presently best known results. For example, Fig. 3(c) is the
experimental result for the rd400 data instance with the tour cost equal to 15281.

The time complexity of the proposed model is described in the previous sec-
tion as O(k m n2.2), where k, m and n are respectively the generation number,
population size and city size. The running time increases quickly as more cities
are added. For the first part of experiments, the searching result converged within
100 generations and took less than 3 seconds running on Sun’s Ultra SPARC
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Fig. 3. Experimental results of the TSP. (a) map of the cities of Table 1; (b) near-
optimal solution of the above listed cities; (c) near-optimal solution of the rd400 data
instance.

Table 2. Searching results of the first part experiment (shown only partially). The
edges are sorted by their costs. Columns from p1 to p4 are the converged priorities on
four distinct chromosomes.

III Workstation with 750-MHz clock rate. In case of 400 cities, it takes an aver-
age of 6216 generations and almost 3000-minute CPU time before the evolution
converges to the best known solution.

If we do not want to enlarge the population size and the generation number,
it could be necessary that we prune the longest edges from the chromosomes to
improve the performance for a large scale TSP. In fact, fully connected maps
are not usual in the real word. In the third part of experiments, we generated
sparsely connected maps from rd400 data instance. In addition to the 400 edges
in the best-known optimal tour, another 1600, 2600, 3600, 4600, and 5600 edges
were randomly selected and added into the testing bed. We then conducted five
experiments using these 2000, 3000, 4000, 5000 and 6000 edges as the test data
respectively; these 400 nodes each had 10, 15, 20, 25 and 30 adjacent nodes in
average. Our model was compared with the DPX-LK hybrid model.
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Fig. 4. Assuming p priority levels are used for searching in a sparsely connected map
with k edges and n cities, Kp(n) = logp(n!) represents the highest tolerable values
of k to ensure the searching space of PB-GLS less than that of the DPX-LK model
(pk < n!)

Table 3. Applying DPX-LK and PB-GLS models to find TSP tours in sparsely con-
nected rd400 maps

Assuming the p priority levels are used for testing a data instance with k
edges and n nodes, the searching spaces of our model and the DPX-LK hybrid
model are of sizes pk and n! respectively. The condition to let pk < n! can be
derived as

pk < n! ⇐⇒ k < logp(n!) =
n∑

v=1

(logpv) (2)

Figure 4 draws the right part of formula (2), denoted as function Kp(n), with
n ∈ {1, 2, .., 1000} and p ∈ {2, 3, 4}. Given p = 2 and n = 400, k must be
less than 2886 to ensure search space pk < n!. However, the experimental results
listed in Table 3 reveal that our model converged efficiently than the DPX-LK
model even with k = 4000. This result implies that using permutation-based
algorithms in search sparsely connected maps may suffer an overhead that does
not occur when we use priority-based algorithms.

5 Conclusion

Genetic algorithms and Genetic Local Search methods encounter great diffi-
culties in solving certain combinatorial optimization problems, when they have
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critical requirements which cannot be easily encoded in a genetic algorithm or
genetic local search method. Previous results made use of specialized genetic
operators to enhance the GA and GLS. We have proposed a priority-based en-
coding method in conjunction with greedy algorithms. We encode link priorities
as chromosomes, and then use the underlying greedy algorithms to construct
the corresponding solution as the phenotype. By doing so, traditional genetic
algorithms can be exploited as usual.

Priority-based encoding supports not only broad applications but also schema
analysis. The priority-based genetic local search is empirically tested to achieve
remarkable searching results for the TSP by iteratively converging to crucial
edges. According to experimental results, this model found near-optimal solu-
tions to TSPLIB instances — in cases where the number of cities is no more than
400, the results are identical to the best previously known results. Experimental
results also reveal that the permutation-based algorithms using specialized GA
operators have an overhead in searching sparsely connected maps. This over-
head does not occur when we use priority-based algorithms, because it is not
necessary to encode the disconnected links into the chromosome.
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Abstract. Particle Swarm Optimization (PSO) is gaining momentum as a 
simple and effective optimization technique. However, its performance on 
complex problem with multiple minima falls short of that of the Ant Clony 
Optimization (ACO) algorithm. The new algorithm, which we call Hybrid 
Particle Swarm Optimization, combines the ideas of particle swarm optimizati-
on with clonal selection strategy and simplified quadratic interpolation (SQI), 
which is used to improve its local search ability, and to escape from the local 
optima. Simulation results on 14 benchmark test functions show that the hybrid 
algorithm is able to avoid the premature convergence and find much better 
solutions with high speed. 

1   Introduction 

The Particle Swarm Optimization Algorithms (PSO), originally introduced in terms of 
social and cognitive behavior, such as flocks of birds and school of fish ,by Kennedy 
and Eberhart in 1995 [1]. It has a number of desirable properties, including simplicity 
of implementation, scalability in dimension, and good empirical performance, and has 
widely applied to many optimization problems [2]. Even so, it is not without 
problems. PSO suffers from premature convergence, tending to get stuck in local 
minima, we also found that it suffers from an ineffective strategy, especially around 
local minima.  Moreover, adjusting the tunable parameters of PSO to obtain good 
performance can be a difficult task [2]. 

Here we integrated the simplified quadratic interpolation (SQI) method and clonal 
selection into the real-coded PSO, and presented a Hybrid PSO (HPSO). The SQI 
method is used to improve its local searching ability of the algorithm, and to escape 
from the local optima. We compared the performance of the HPSO to that of Standard 
Genetic Algorithms (SGA)[7], Clonal Selection Algorithms (CSA), Cloning Selection 
PSO (CSPSO), Chaos Mutation Evolutionary Algorithms (CMEA) and Self-adaptive 
Chaos Clonal Algorithms (SCCA) [3] in solving many benchmark test functions, the 
simulation results show that the HPSO is efficient. 
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In the remainder of this paper, the algorithm we proposed is described in Section 2, 
and Section 3 is the experiments of the HPSO on benchmark test functions comparing 
with the available algorithms, we finally conclude our paper in Section 4. 

2   The Hybrid Particle Swarm Optimization  

2.1   The Particle Swarm Optimization 

The basic PSO algorithm begins by scattering a number of “Particles” in the function 
domain space. Each particle represents a candidate solution,

1 2( , , , )i i i iDx x x x= , D is 

the dimension of the search space. the i -th particle of the swarm population knows: a) 
its personal best position  

1 2,( , )i i i gDP P P P= , i.e., the best position this particle has 

visited so far; and b) the global best position, 
1 2( , , , )g g g gDP P P P= , i.e., the position of 

the best particle that gives the best fitness value in the entire population; and c) its 
current velocity, 

1 2( , , )i i i iDv v v v= , which presents its position change. The 

following equation (2-1) uses the above information to calculate the new update 
velocity for each particle in the next iteration step. Equation (2-2) updates each 
particle’s position in the search space. 

1
1 1 2 2( ) ( )k k k k k k

id id id id gd idv wv c r P X c r P X+ = + − + −  (2-1) 

1 1k k k
id id idx x v+ += +  (2-2) 

where 1,2, , , 1,2, ,i N d D= = ; N is the size of the swarm population; w  is the 

inertia weight, which is often used as a parameter to control exploration/exploitation 
in the search space, and it can be set to a constant, a linear or nonlinear variance 
which is constructed on linearly decreasing weight (LDW) as follows: 

int max max( ) ( )( ) /end endw t w w T t T w= − − +  (2-3) 

where t  and 
maxT is the current and maximal generation.

1c  and 
2c  are two 

coefficients (positive constants); 
1r  and 

2r are two random number within the 

range[0,1] . There is also a 
maxv , which sets the upper and lower bound for velocity 

values. 

2.2   Clonal Selection Algorithm [3] 

The famous antibody clonal selection theory was put forward by Burnet in 1958. 
Clonal operator intrinsically produces a new sub population in the neighborhood of 
every individual based on its fitness, and thus expands the search space to improve its 
learning capability. An inconsistent mutation operator is embeds into the clonal 
selection instead of crossover in normalized real-coded individual. we will illustrate 
the process in following steps: 
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Step 1: Rank all of the individuals according to their fitness values  
Step 2: Decide the clonal size of every individual, produce a new sub population sub  

of this individual U  by mutation with the operator Δ . Supposed that 

1 2( , , , , )t ku u u u=  is an individual of the t -th generation, if we mutate 
ku , 

the result will be ' '
1 2( , , , , )t ku u u u= ,where, 

' ( , ) 0

( , )
k k

k
k k

u t UB u if r
u

u t u LB else

+ Δ − >
=

− Δ −
   

(2-4) 

and r  is a random number within the range [0,1] (1 / )( , ) (1 )
bt Tt y y δ −Δ = × − , δ  is a 

random number within[0,1] , b is a constant, ,UB LB  is the upper and lower bound of 

ku , t and T are the current and total generation. 

Step 3: Update the population: calculate the fitness values of the sub population’s 
individuals, select the best one of the sub and renewU . 

Step  4: Repeat step 2 and step 3 with ( ) ( 1, 2, )U i i N= , produce the new population. 

2.3   The Simplified Quadratic Interpolation  

SQI is one method of polynomial approximation, which constructs a quadratic 
interpolation polynomial closing to the object function by using the information and 
function values which the object function lies in many points, then calculate the 
optima of this polynomial as approximate solutions of the object function. 

Here, we introduced the SQI method, which will be integrated into PSO. Denote 
three individuals by

1( , , )a a a T
nx x x= , 

1( , , )b b b T
nx x x= , 

1( , , )c c c T
nx x x= and 

calculate their fitness values ( )a
af fit x= , ( )b

bf fit x= , ( )c
cf fit x= , Suppose that 

( ) ( )a bfit x fit x> and ( ) ( )c bfit x fit x> . Then, derived from the threepoint quadratic 

interpolation, the approximate minimal point 1( , , )T
nx x x=  is calculated according 

to: 

2 2 2 2 2 2[( ) ( ) ] [( ) ( ) ] [( ) ( ) ]1

2 ( ) ( ) ( )

1, ,

b c c a a b
i i a i i b i i c

i b c c a a b
i i a i i b i i c

x x f x x f x x f
x

x x f x x f x x f

i n

− + − + −=
− + − + −

=

 
  

(2-5) 

2.4   The Hybrid PSO Algorithm 

Now, we present the HPSO algorithm for optimization problems as follows. 

Data. The parameters we employed are: population size N , the dimension of the high 
dimensional function Nd , the maximal time of running cs , maximal number of 
generation ge , two positive constants coefficients

1 2 2c c= = . 

Step 1. (Initialization): set 1cs= , generate randomly the initial population set 
1( ) { ( ), ( )}NP k x k x k= , and compute the fitness values ( ( ))ifit x k , 1, ,i N= ,  

1,k Nd= and iterate cs  times. 
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Step 2. (Cloning): if ga ge< , execute clonal mutation by the strategy we introduced 

in section 2.2, and generate a new population. 
Step 3. (PSO Operation [7]): 
Step 3.1 In above step we generate a new population

bestp , the optima of all the 

individuals of the population is
bestg . 

Step 3.2 1, 2,...,i Nd=  , update population by the two equations (2-1) and (2-2), they 

stand for the renewal of velocity and individual respectively.  
Step 3.3 If the individual surpass the upper and lower bound, substitute it with the 

boundary value closing to it. 
Step 3.4 Compare the new population with the old one, preserve the better one, and 

renew the 
bestg as well. 

Step 3.5 If i Nd< , then go to step 3.2, otherwise go to step 4. 
Step 4. (SQI): Rank the new population according to their fitness values, order 

ascending and relabel them. The ordered fitness value set is denoted by 
{ (1), (2), , ( )},FIT F F F N= the corresponding individual set is denoted 

by { (1), (2), ( )}X x x x N= , let (1), (1).b bx x f F= =  

Step 4.1 Generate at random two integers
1 [2,2 ]r L∈ + ,

2 [3,3 ]r L∈ + , such that 
1 2r r≠  , 

here, we chose 3L =  , let 
1( ),ax x r=  

1( ),af fit r=   
2( ),cx x r=  

2( )cf fit r= . 

Step 4.2 If ( ) ( ) ( )b c c a a b
i i a i i b i i cx x f x x f x x f ε− + − + − <  6( 10 )ε −= , then go to step 4.1, 

otherwise, go to step 4.3. 
Step 4.3 Calculate x  by using (2-5), and then the fitness value ( )fit x . 

Step 4.4 If ( ) ,bfit x f< then replace the worst solution in current population with x . 

Step 5. (Stopping Criterion): if the stopping criterion is met, then stop, and record 
the best individual as the approximate global optimal solution of problem. 
Otherwise, set 1ga ga= + , and go to step 2. 

3   Experiments 

To evaluate the performance of the proposed HPSO, we test 14 benchmark test 
functions described in [3], which include 6 2-D functions and 8 difficult test functions 
(functions with high-dimensional decision variables), which often used to test the 
performance of proposed algorithm. Table 3-1 and table 3-2 give the main 
characteristics of these functions.  

From the two tables above, we can see evidently that almost all of them have a host 
of local optima, and some even have the amount beyond our calculation, especially 
for high dimensional function. So these functions can certify the validity, reliability 
and stability of the algorithm. 

We compare HPSO against CSA, CSPSO, and other better algorithms such as 
CMEA, SCCA, and SGA. For all functions and algorithms, we set 10Nd = (the 
number of the dimension), the iteration 30cs = , and chose the total evolutionary 
generation 100ge = , 300ge =  for 2-D and high-dimensional functions respectively. 

The final results are shown in table 3-3 and table 3-4. 
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Table 3-1. The main characteristics of 6 2-D test functions.“TF” stands for test function, 
“CGO”stands for the coordinate of Global optimum, “NGO” stands for the number of global 
optimum and “NLO” stands for the number of local optimum. NA  stands for the number is 
innumerable. 

TF optimum CGO NGO NLO 

1f  2.1188−  ( 0.64, 0.64)± ±  4  32 

2f  3600−  (0,0) 1 4  

3f  0  (0,0) 1 NA  

4f  0  (0,0) 1 NA  

5f  1−  (0,0) 1 4  

6f  1−  (0,0) 1 4  

Table 3-2. The main characteristics of 8 high-dimensional functions  

TF optimum CGO NLO 

7f  0  0 1,2,...,ix i N= =  1 

8f  0  0 1,2,...,ix i N= =  1 

9f  10N  0 1,2,...,ix i N= =  !N  

10f  0  0 1,2,...,ix i N= =  NA  

11f  0  0 1,2,...,ix i N= =  NA  

12f  78.3324  2.9035 1, 2,...,ix i N= − =  2N  

13f  418.9828N  421 1, 2,...,ix i N= =  NA  

14f  0  0 1,2,...,ix i N= =  NA  

In order to evaluate the ability of  convergence of the HPSO, we list the statistic 
results of SGA,CEA (Chaos Evolutionary Algorithms) [3] and HPSO, in which we set 

0.001ε = , the maximum generation 1500ge = ,and running 30 times. The one which 

failing to find the solution in the given maximal generation is regarded as an 
individual not receiving the optima, and excluded from the domain of the statistic 
results. 

Analyzing the results shown in table 3-3 and table 3-4, we conclude that HPSO 
surpasses other algorithms. They indicate that the qualities of the solutions found by 
other algorithms are significantly worse than those by HPSO for all the benchmark 
test functions. Additionally, the high accuracy of HPSO in finding the better solution 
should be put forward especially. We can also see from table 3-5 that HPSO mostly 
converging to a good solution with just a few steps comparing to SGA and CEA. To 
recapitulate, the performance of HPSO is better than that of other algorithms, and it is 
a powerful algorithm in resolving single objective optimization problems. 
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Table 3-3. Comparison of the mean solutions found by SGA, CMEA and SCCA 

SGA CMEA SCCA TF 
mean std mean std mean std 

1f  -2.0889 
2.7876 
e-004 

-2.0650 0.0033 -2.1187 
1.1877 
e-009 

2f  -2.7488 
e+003 

6.7262 
e+004 

3.2972 
e+003 

1.5298 
e+005 

-2.6774 
e+003 

46.3113 

3f  0.3282 0.7521 0.2682 0.0097 0.1033 
4.0255 
e-004 

4f  0.7702 2.3861 0.5420 0.3149 0.0111 
1.9720 
e-005 

5f  -0.9607 0.0414 -0.9980 
6.9722 
e-006 

-0.9825 
4.5686 
e-004 

6f  -1.0000 
3.5108 
e-016 

-0.9997 
9.1115 
e-008 

-1.0000 
6.0065 
e-012 

7f  21.2244 60.6353 18.1085 86.6769 0.0413 
8.7442 
e-005 

8f  8.2545 57.7729 9.6750 31.9932 0.0040 
1.8892 
e-006 

9f  -85.9322 25.2125 -89.4161 6.7282 -99.4818 0.2236 

10f  11.5421 17.7708 2.4163 0.2549 0.1027 
8.2656 
e-005 

11f  -44.4523 702.4695 -24.0003 137.6679 -0.0557 0.0055 

12f  -73.4419 12.5048 -77.4795 0.2181 -78.2917 
2.4116 
e-004 

13f  -3.2529 
e+003 

1.9807 
e 004 

-3.7919 
e+003 

3.0715 
e+004 

-4.1684 
e+003 

26.9978 

14f  9.1435 58.0884 14.3562 35.2720 0.6607 0.0034 

Table 3-4. Comparison of the mean solutions found by HPSO against CSPSO and HPSO 

CSA CSPSO HPSO TF 
mean std mean std mean std 

1f  -2.1187 
4.3903 
e-010 

-2.1188 
4.0373 
e-005 

-2.1188 
1.6729 
e-005 

2f  -2.7488 
e+003 

0.0301 -3600 0 -3600 0 

3f  0.1098 0.1512 0.0047 0.0181 
1.7049 
e-013 

4.7738 
e-013 

4f  0.0067 0.0270 0 0 0 0 

5f  -0.9869 0.0633 -0.9913 0.0552 -1 0 

6f  -1.0000 
4.4133 
e-006 

-1 0 -1 0 

7f  2.4761 
e-005 

2.1744 
e-010 

1.1700 
e-014 

5.5171 
e-01 

5.7309 
e-038 

1.7662 
e-037 
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Table 3-4. (continued) 

8f  8.4397 
e-010 

3.3055 
e-018 

1.0794 
e-009 

5.1656 
e-009 

2.2959 
e-016 

6.8150 
e-016 

9f  -99.9005 0.0891 -100.0000 
4.7580 
e-013 

-100 0 

10f  1.2745 
e-009 

2.7026 
e-019 

1.6206 
e-009 

2.6588 
e-009 

4.1585 
e-025 

9.3232 
e-025 

11f  -13.7967 9.4155 -0.0155 0.0856 -0.0068 0.0277 

12f  -73.4419 12.5048 -78.3323 
1.1080 
e-007 

-78.3323 
1.2073 
e-007 

13f  -3.2529 
e+003 

1.9807 
e+003 

-4.1898 
e+003 

3.0583 
e-005 

-4.1898 
e+003 

3.5544 
e-005 

14f  0.0561 0.0190 0.0161 0.1214 0.0060 0.0569 

Table 3-5. Comparison of the optimal performance of SCA , CEA and HPSO. N1, N2/N3/N4 stand 
for the number of achieving the optimum for every algorithm, the maximal/minimal/mean number 
of the generation achieving the optimum. “-“ means  the experiment is not done ,  “/ “means no 
feasible solutions were found. 

HPSO SGA CEA TF 
N1 N2/N3/N4 

(std) 
N1 N2/N3/N4 

(std) 
N1 N2/N3/N4 

(std) 

1f  30 15/2/8 
(1.57e-02) 

10 202/28//112 
(1.97e-02) 

22 478/3/118 
(1.86e-02) 

2f  30 4/2/2.3 
(1.3941e-04) 

2 13/13/12.5 
(1.86e-02) 

0 / 

3f  30 749/10/195 
(1.1853e-04) 

    

4f  30 7/4/5 
(2.8747e-04) 

30 56/9/21 
(3.19e-04) 

30 35/5/18 
(2.20e-04) 

5f  26 9/2/4 
(1.5e-02) 

9 95/1/29 
(1.89e-02) 

15 250/1/59 
(2.58e-03) 

6f  30 3/2/2 
(2.7622e-04) 

    

7f  30 69/58/59 
(1.5974e-04) 

30 135/86/101 
(2.42e-04) 

30 58/34/44 
(1.49e-04) 

8f  30 76/40/59 
(1.4968e-04) 

30 337/92/228 
(1.61e-04) 

30 201/146/174 
(1.14e-04) 

9f  30 32/24/28 
(2.0059e-04) 

24 223/104/179 
(4.17e-01) 

30 138/36/61 
(3.53e-03) 

10f  30 59/43/51 
(1.0407e-04) 

30 104/78/91 
(1.76e-1) 

30 36/26/31 
(1.29e-03) 

11f  30 499/101/269 
(1.9540e-04) 

30 1247/456/923 
(3.34e-03) 

30 126/61/96 
(1.45e-02) 
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Table 3-5. (continued) 

12f  30 49/36/43 
(9.21e-02) 

    

13f  30 839/359/611 
(5.8e-03) 

    

14f  29 134/2/6 
(8.9e-03) 

16 134/71/115 
(3.93e-01) 

30 179/32/70 
(1.57e-04) 

4   Conclusion 

In this paper, HPSO algorithm is proposed by integrated simplified quadratic 
interpolation and clonal selection into the improved PSO. The SQI method is a 
powerful heuristic way for improving the local search ability of the algorithm, and 
making the algorithm escape from the local optima. Clonal selection is an effective 
strategy in maintaining the diversity of the population. The simulation results 
indicated that HPSO performs remarkably well against others algorithms. It  increases 
local search ability and exploitation of PSO while retaining its key properties of 
sociality, momentum, exploration and stability. It represents a substantial 
improvement over the other algorithms not only in the resulting solution, but also in 
the speed and accuracy with which they are found. However, it still exists some 
problems, and we will concentrate on it in the further work. 
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Abstract. To solve constrained optimization problems, we propose to integrate 
genetic algorithm (GA) and cultural algorithms (CA) to develop a hybrid model 
(HMGCA). In this model, GA’s selection and crossover operations are used in 
CA’s population space. A direct comparison-proportional method is employed 
in GA’s selections to keep a certain proportion of infeasible but better (with 
higher fitness) individuals, which is beneficial to the optimization. Elitist pres-
ervation strategy is also used to enhance the global convergence. GA’s mutation 
is replaced by CA based mutation operation which can attract individuals to 
move to the semi-feasible and feasible region of the optimization problem to 
improve search direction in GA. Thus it is possible to enhance search ability 
and to reduce computational cost. A simulation example shows the effective-
ness of the proposed approach. 

1   Introduction 

Cultural algorithms were introduced by Reynold as new evolutionary computational 
approaches [1]. It utilizes culture as a vehicle and took a dual inheritance mechanism. 
The cultural interaction between its two spaces in cultural algorithms can ensure that 
the information acquired by an individual can be shared with the entire population. 
Thus culture can be taken as evolving knowledge to influence each individual’s be-
havior in the population space, and it also developed further as the process of evolu-
tion. It can be seen that cultural algorithms support self-adaptation at both the indi-
vidual and the population level. Now Cultural Algorithms have been developed for 
many application fields due to their noticeable advantages [2, 3, 4, 5, 6].  

Genetic algorithm is a highly paralleled and efficient method based on natural  
evolution. It has enjoyed increasing popularity in solving optimization problems. 
Particularly, the real coded version of GA (called RGA), has the advantages of high 
precision and easy to search in large space, meanwhile it avoids the troublesome en-
coding and decoding process of computing the objective function. Therefore RGA has 
been widely studied and applied in different fields, such as controller design [7, 8], 
engineering optimization [9, 10] and neural network training [11].  
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However, how to solve nonlinear constrained optimization problem remains a dif-
ficult and open question for GA and other evolutionary algorithms. The existing con-
straint-handling methods includes: (1) discarding infeasible solution, (2) intelligent 
encoding based method, (3) repair method [12, 13], and penalty function methods and 
so on. Penalty function is now the most used one in all methods. It imposes penalties 
on infeasible individuals that violate the problem constraints. The major difficulty in 
using penalty functions is still how to design an appropriate penalty function for a 
specific problem.  

In recent years, CA shows its powerful ability to solve constrained optimization 
problems because its unique characteristics. In CA, constraint of optimization prob-
lem can be extracted and stored in belief space in forms of knowledge. This constraint 
knowledge is further used to guide the evolution in the population, and enhance the 
search ability and efficiency. Here, we propose to integrate real coded genetic algo-
rithm and cultural algorithm to develop a more efficient algorithm, called HMGCA, 
in which GA’s selection and crossover are still used, and its mutation operation is 
replaced by CA based mutation, which are guided by the constraint knowledge of 
cultural algorithms and able to ‘attract’ the individuals to move to the feasible region 
of the optimization problem. It is possible to enhance the global search ability and to 
reduce the computational cost. 

2   Cultural Algorithms 

2.1   Overview 

Cultural algorithms provide for interaction and mutual cooperation of two distinct 
levels of evolution: a population space and a belief space. It models cultural evolution 
by allowing a collection of information at a macro evolutionary level. Such informa-
tion can be shared among single individuals whose evolutionary dynamics constitute 
the micro level. The two levels influence each other through the communication pro-
tocol. The presence of the belief space provides for a global knowledge repository and 
can guide the search towards better solutions, by using the knowledge to prune large 
portions of the state space. A framework for a CA can be depicted in Fig. 1.  

 

Fig. 1. Framework of cultural algorithms 
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As shown in Fig.1, the two spaces are connected together by an explicit communi-
cation protocol composed of two functions: an acceptance function and an influence 
function. The contents of the belief space can be altered via an updating function. In 
the population space, like traditional evolutionary population models, individuals are 
first evaluated by a performance function. Then, new individuals are created by a 
modification function.  

2.2   Cultural Algorithms Using Regional Schemata 

Jin and Reynolds explored the use of cultural algorithms for global optimization with 
very encouraging results [14]. They proposed a new framework based on cultural 
algorithms and regional schemata to solve constrained optimization problems. The 
regional schemata are the extension of classic symbolic schemata, and it represents 
the regional knowledge that can be used to provide the functional landscape informa-
tion and to guide the algorithm search in the population. In detail, a n -dimensional 
regional-based schema, called belief-cell, is as an explicit mechanism that supports 
the acquisition, storage and integration of knowledge about non-linear constraints in a 
cultural algorithm. This belief-cell can be used to guide the search of an evolutionary 
computation technique by pruning the infeasible individuals in the population space 
and promoting the exploration of promising regions of the search space [4, 14]. 

3   Genetic Cultural Algorithm for Constrained Optimization 

When CA is used for a constrained optimization problem, the domain space of the 
optimization problem can be partitioned into many feasible, infeasible and semi-
infeasible regions, which is stored and continuously updated in belief space as con-
straint knowledge [14]. The knowledge is further used to conduct individual evolution 
in population space by adjust it into feasible regions of problem. By contrast with CA, 
GA is a random search algorithm lacking of similar intelligence technique of CA. In 
our genetic cultural algorithm, GA is supervised by CA, and intelligently adjusts its 
individuals into feasible and semi-feasible regions to avoid blindness searching and to 
reduce computation cost. 

3.1   Constrained Optimization Problem Description 

The general forms of constrained optimization problem can be described as follows:  

)(min xf  

                    

⋅⋅⋅=≤≤
⋅⋅⋅+==

=≤

nibxa

mqkh

qjg

ts

iii

k

j

,,2,1,

,,1,0)(

,...,2,1,0)(

.. x

x

 
    (1) 

where n

n Rxxx ∈⋅⋅⋅= ),,,( 21x , )(xf  is the objective function. )(xkg and )(xkh are 

inequality and equality constraints respectively.  
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3.2   Genetic Operators  

Our HMGCA algorithm also uses three operators, namely selection (reproduction), 
crossover and mutation, in the population space. 

(1) Selection. The selection operation is a random selection process. However, the 
individuals with best fitness values would have more chance to be chosen for repro-
duction. To realize a better combination with DCPM, competition selection method is 
employed here: two parents individuals are selected from the population, they are 
compared according to their fitness values, and the one with higher fitness value is 
selected into the next generation. The above operation will be repeated for 

sizepop _ times to form a new population, where sizepop _  is the population size. 
For the constraint handling, we employ the strategy called direct comparison-

proportional method (DCPM) as proposed in literature [15]. For general constrained 
optimization problem, some infeasible individuals’ maybe exists near the global op-
timum and holds high fitness values. Although they are infeasible in current iteration, 
further GA operations (for example crossover and mutation) maybe make them to 
create new feasible offspring with higher fitness value. Thus it’s helpful for the opti-
mization to keep one small part of infeasible but good individuals. Based on the above 
idea, DCPM presents the comparison rules among individuals, as well as the adapta-
tion strategy to keep certain proportion of infeasible individual in the population. 

To describe the magnitude that all inequality constraints are violated, a measuring 
function is defined as follows: 

=
=

m

j j xfxviol
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)()(      (2) 

where )(xf j , j =1,2,…,m, is a series of penalty functions to measure what extent 

each constraint is violated to, it is defined as: 
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For a predefined constant ε ( 0>ε ), DCPM compares two individuals according to 
the follows rules: 

(a) When two individuals are both feasible, select the one with higher fitness 
value. 

(b) When two individuals are both infeasible, select neither. 
(c) When an individual x is feasible and another individual x′ is infeasible, and 

if ε≤)(xviol , compare their fitness, and select the one with higher fitness 

value. 

To maintain a rational proportion of infeasible individuals in the whole population, an 
adaptive updating strategy for ε can be done when every K generations evolution is 
completed, the update is as: 
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where a  is the number of infeasible individuals, p is a predefined constant to deter-

mine the proportion of infeasible individuals. 
In order to increase the probability of global convergence, an elitist strategy is 

added into the end of selection. The best individual in current population will be di-
rectly duplicated into next generation population by replacing its worst individual. 

(2) Crossover. After selection operations, two parent individuals exchange infor-
mation to produce a new offspring. This process is called crossover. Crossover is 
governed by a crossover probability cP , which determines the GA program whether to 

execute crossover. In this operation, two individuals iX and jX are randomly selected 

as parents from the pool of individuals formed by the selection procedure and 
crossover operations between them are executed according to the following equations: 

jii XXX ⋅−+⋅=′ )1( αα , 

jij XXX ⋅+⋅−=′ αα )1( , 
    (5) 

where α  is a random number extracted from region (0, 1). iX ′ and jX ′ are new 

offsprings created by crossover. 
A crossover operation can thus yield better solutions by combining the good 

features of existing solutions. If no crossover is performed due to the crossover 
probability, the offspring is the exact copy of the parent solution.  

(3) Mutation. Each offspring created from crossover is altered in a process called 
mutation. The effect of this operation is to create diversity in the solution population, 
thus the operation can avoid trapping in local minimum. In the real coded GA, 
mutation alters each offspring as the follow: 

dXX ii ⋅+′=′′ β      (6) 

where iX ′ is the parent individual selected for mutation. β  and d  are the step size 

and random direction of mutation, respectively. iX ′′  is the new offspring by mutation. 

Using the above mutation operation, the offspring generated could violate the 
constraints of the problem. In this paper, we introduce the intelligent mutation scheme 
used in the regional-based  sliding window cultural algorithm [4, 14]. Instead of Eq. 
(6), the new offspring can be created as  
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where jl  and ju  represent the current lower bound and upper bound, respectively, for 

the j th dimension of iX . γ  is a certain positive number. ][•Cell  is a r -dimensional 

template, called regional schemata, which is maintained in the belief space. This template 
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is used to record the constraint characteristics of a certain region in the search space. 
For a given cell i , namely a small region in domain space of optimization problem
it may be:  

(1)  a feasible cell including only valid individuals;  
(2)  an infeasible cell including only invalid individuals; 
(3)  a semi-feasible cell including both valid individuals and invalid ones; 
(4)  a unknown cell with no individuals in it, so no knowledge about it now. 

Based on which types all individuals in the cell belongs to, the i th cell can be as-
signed a different weight as follows:    

∈
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Wi .     (8)  

The choose (cell[l]) function is a function in Eq. (7) used to select a target cell from 
all cells for the moveTo() function. This process can be implemented by roulette 
wheel selection based on the weights values in Eq. (8), just similar to the previous 
selection operation. 

Assuming that the kth cell kC  is selected by roulette wheel selection, moveTo ( kC ) 

creates a new offspring as follows: 

kki CsizeLeftX ⋅+=′′′ 1)uniform(0,      (9) 

where kLeft is a r×1 array which denotes the left-most position of cell kC , kCsize is a 

r×1  array which represents the sizes of kC  in all dimensions, and 1)uniform(0,  gen-

erates a r×1  array of numbers within [0,1] by uniform distribution. 
It can be seen that the above mutation operation is guided by constraint knowledge 

preserved in belief space. The individuals continuously adjust its direction to semi-
feasible and feasible area of the problem space. These cultural based intelligences will 
enhance the search ability of HMGCA. 

4   Numerical Example 

The general optimization problems, minimization or maximization, can occur in many 
economic, technical and scientific projects. Solving it remains a difficult and open 
problem for evolutionary algorithms. The common opinion about evolutionary algo-
rithms is that they are good optimization methods but can’t handle constraints well [4, 
14]. Cultural algorithms can learn constrain knowledge during the search instead of 
having to acquire it beforehand and benefit from this acquired knowledge. The exam-
ple of nonlinear constrained optimization problem in literature [4] is used to illustrate 
the approach. It is given as follows: 

         Objective function:     2712),(min yyxyxf +−−= , 

         Constraints:                              20 ≤≤ x ; 



Hybrid Model of Genetic Algorithm and Cultural Algorithms for Optimization Problem 447 

30 ≤≤ y ;  

22 4 +−≤ xy . 

The GA population size is 50_ =sizepop , and other main parameters setting are: 

1.0=p , initial value of ε equals 10, cP =0.3, γ =0.3, 221 == ww , 3w =3, 14 =w . 

Simulations are performed with Matlab on 2.6G Pentium PC. The illustrated test run 
is shown in Fig. 2-(c). The proposed algorithm is tested statistically using the above 
example as listed in Table 1. To examine the performance, a standard real coded GA 
(called RGA) and CA by X. D. Jin are used as the comparison as shown in Fig. 2-
(a),(b) and Table 1.  
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              (a) RGA                                (b) CA                                (c) HMGCA  

Fig. 2. Iteration process of algorithms 

Table 1. Statistical contrast results of algorithms 

Algorithms 
Mean of number of 
generations 

Standard deviation of 
number of generations 

Mean of running 
times 

RGA 728 223 5.2 
CA 5.4 1.58 4.8 

HMGCA 4.9 1. 61 4.5 

From Table 1, it can be seen that RGA needs a large number of iteration genera-
tions because of its less intelligence in search process, but its running takes no long 
time since its simplicity algorithm results in lower computation cost of each iteration. 
CA has much fewer iteration generations and less time because its population space 
evolves under guidance of the belief space and has better adjusting direction to the 
optimal solution. Further, the HMGCA shows better performance to some extent 
because it synthesizes both the advantages of GA and CA, which is a GA-based 
search scheme meanwhile under intelligent guidance. 

5   Conclusions 

We present a hybrid computation model by integrating GA and CA. GA’s selection 
and crossover operators are used in CA’s population space, and GA’s mutation is 
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replaced by CA based mutation under guidance of the constraint knowledge of cul-
tural algorithm. In GA’s selection operation, introduction of DCPM can keep a certain 
proportion of infeasible but better individuals into next generation to speed up the 
convergence. Besides elitist preservation strategy can strengthen the global conver-
gence. This hybrid model can synthesize both the advantages of genetic algorithm and 
cultural algorithms and shows better performance for constrained optimization. 
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Abstract. Selection Enthusiasm is a technique that allows weaker individuals in
a population to compete with stronger individuals. In essence, each time a individ-
ual is selected its enthusiasm for being selected again is diminished relatively; the
converse happens to the unselected individuals i.e. their raw fitness is adjusted.
Therefore the fitness of an individual is based on two parameters; objectiveness
and Selected Enthusiasm. The effects of such a technique are measured and re-
sults show that using selection enthusiasism yields fitter individuals and a more
diverse population.

1 Introduction

Premature convergence is defined as prevention of exploration in the population; thus a
Genetic Algorithm, GA, with premature convergence has a population with low diver-
sity. This is caused by fitter individuals taking over the population too quickly. Selection
pressure set too high causes fitter individuals to be selected more often. If this high se-
lection pressure is maintained over several generations a population will emerge with
poor sub-optimal solutions. The balance can be maintained by changing the five basic
properties of the standard Genetic Algorithm: Population Size, Selection Methods, Re-
combination Techniques, Replacement Methods and Mutation. This paper investigates
Selection Methods and introduces a new selection operator, Selection Enthusiasm, to
maintain diversity.

To investigate if the Selection Enthusiasm has an effect, the diversity of each popu-
lation was measured. The diversity of the phenotype–not to be confused with the fitness
or objective of an individual–was considered and a new diversity metric is introduced.
All experiments in this paper use the standard GA, as stated in [4,7].

The structure of this paper is as follows: Section 2 looks at the problem domain
studied and the new diversity metric. Section 3 discusses the newly propose Selection
Enthusiasm method. Section 4 discusses the experimental design and evaluates the Se-
lection Enthusiasm method. Section 5 discusses the contribution of this paper and some
of the conclusions reached.

2 Diversity

The Symmetric Traveling Salesman Problem (STSP) [9] is a suitable domain to test
Selection Enthusiasm for two reasons; firstly, because its NP -completeness provides a
non-trivial problem solving area and standard GA’s find it difficult to solve. None of the
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results are optimum, and finding optimality is not the reason for stagnation. Secondly,
STSP provides a simple population diversity metric. Given a symmetric graph G(V,E)
the total number of possible edges (see Equation1).

∑
∀e∈E

e =
n(n − 1)

2
(1)

where E is the set of all edges, and n is the number of vertices. Initially it was thought
that a reasonable measure of phenotypic diversity metric would be the edge density, δ,
for any given population i.e.count the number of unique edges in the population divided
by the total number of edges (see Equation2).

δ =
∑

∀e∈P∑
∀e∈E

(2)

where P is the set of all edges in the population. The edge density, δ, is a value between
[0, 1].

There are many diversity metrics for Genetic Programs, see [1], but, fewer diver-
sity metrics for Genetic Algorithms. This is due to the many different representations
available to GA ([6] for many different GA representations for TSP), whereas the tree
formation is predominant in GP’s. Many researchers take various measurements of the
fitness of the individuals. This does not inform us of the diversity of the population,
but, the diversity of the performance. Therefore, this leaves two options to measure:
i)genotype or ii) phenotype.

Koza [5] suggests 4 different types of fitness: Raw Fitness; the evaluation and ulti-
mately the distance of the route taken. Standardize Fitness; minimization occurs whereby
the shorter routes are better. Adjusted Fitness and Normalized Fitness combine to give
fitness proportionate selection. It is important here to consider what is the phenotype?
For this we can refer to biological terms for some guidance; the phenotype is the physical
representation of the genotype. Therefore this does not refer to an individual’s perfor-
mance, but rather, to an individual’s physical representation. In terms of the STSP: the
genotype is a list of numbers; the phenotype is the route taken; the performance is the
distance. There is very little difference between the genotype and phenotype and this is
due to the order-based representation that makes the mapping simplistic. Just to labour
on this point, the difference between the two stages is that the genotype states the order
of the cities; the phenotype includes the edges between each of the cities; the evaluation
is the addition of all this edge values.

Since the number of cities in each Hamiltonian cycle is always going to be the same
for every route then the study of the genotype is of little interest. The evaluation of the
phenotype, raw fitness, does not indicate how different each route is e.g. a route with
2 cities swapped could produce a much higher result. This does not suggest that the
population has a higher diversity since the individual concerned uses the same edges
apart from 2. It is the order of these cities that is of interest and this is represented in
the phenotype and the number of edges. In an n-city STSP problem the total number
of edges are displayed in Eq.1. When investigating initial populations it was discovered
that they contained an instance of every edge; Therefore in a 130 STSP problem there
are (130 ∗ 129)/2 = 8395 edges. If the population is set large enough, say 2000, then
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Fig. 1. Investigation of edge density for a 12 city STSP

there are 2000 ∗ 130 = 260, 000 possible edges in a population. The diversity metric is
similar to Daida’s [2] tree visualisation for genetic programming.

Let us consider a simple 12 city problem in Fig.1. If we were to plot each of the
edges in the population initial generations would reveal a dense graph–the more edges
the better the diversity–as on the left of Fig.1. It is expected that later generations will
reveal a less dense graph indicating that there are less edges and hence less diversity.
This, however, is not enough information since the graphs do not tell us the distribution
of the edges in the population and therefore the frequency of each edge is recorded and
the mean, μ, and the standard deviation, σ, is also measured.

Figure 1 shows approximately what was expected for edge density for a 12 city
problem. It is expected that as the number of generations tends to M , then the edge
density decreases, where M is the maximum number of generations; however, it was
discovered that with large populations the density did not change significantly. This is
due to the high number of edges in a population exceeding the number of edges in a
given STSP instance and hence it is highly probable that at least one instance of one
edge is likely to occur.

As seen edge density, δ does not take into consideration the edge frequency. There-
fore the stdev., σ, was taken of the edge frequency. Thus, the higher the stdev. the lower
the diversity and the lower the stdev. the higher the diversity e.g. if the stdev. is 0 then
every edge has been used in the population a mean number of times and hence high di-
versity, and when the stdev. is high, say 300, we can infer that there is a greater variance
in the edge frequency and hence a low diversity.

3 Selection Enthusiasm

Selection Enthusiasm is combined with Tournament Selection. Firstly the Tourmanent,
T, is selected from the population and ranked according to their adjusted fitness, f(ti),
as in Eqn.3.

Rank(T) = {t1, t2, . . . , tθ−1, tθ} (3)

where θ is the size of the tournament and Rank(T) orders individuals such that f(t1) <
f(t2) < ... < f(tθ−1) < f(tθ).

The principle behind Selection Enthusiasm is to marginally improve the fitness of
individuals that have not been selected; thus if and when the individual competes in
another tournament it will have marginally improved its likelihood of being selected.
The rate of enthusiasm, λ, is the percentage by which the fitness is increased.
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Table 1. Parameters of the GA

Parameter Value

Parent Selection tournament;generational
Crossover two-point;PMX
Tournament Size 10
Initial Generation random(Knuth)
Population Size 2000
Replacment Percentage 0%
Mutation Rate 0.05%
Uniqueness Test none
Stopping criteria 2000 generations
Number of Runs 20

The two “winners” in the tournament are selected as parents. To reduce high selection
pressures, these individuals are not altered. The θ −2 individuals in the tournament that
are not selected have their fitness increased. This process is explained in Eqn.4.

f(ti) =
{

f(ti) ∀i = 1, 2
λf(ti) ∀i = 3, 4, . . . , θ

(4)

where λ is the rate of enthusiasm and f(ti) is the adjusted fitness of the i-th individual
in the tournament.

The value of the rate of enthusiasm, λ, is set to a constant, 0.95; thus adjusting the
fitness of non-selected individuals in the tournament by 5%. The emergent properties
of Selection Enthusiasm allow an individual to improve its fitness until it is selected as
a parent from the tournament. After the individual has been selected as a parent Eqn.4
resets the fitness to raw fitness.

4 Experimental Design

Unless stated Table 1 shows the parameter settings for each experiment. The experiment
is simple, investigate diversity and fitness of populations over time. All experiments
are run on STSP’s atta48, berlin52, eil76 and ch130 for 2000 generations, 20 times.
The difference between Experiment 1 & 2 is the additional of selection enthusiasm
technique. Each experiment is run 20 times on 4 STSP problems, taken from [9], giving
an overall total of 200 tests. A random block was implemented as suggested in [8], to
make the statistical analysis valid.

4.1 Hypotheses

The two hypotheses tested in this paper are to see if Selection Enthusiasm has an effect
on the GA and are as follows:
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Table 2. Investigating Evaluations

STSP atta48 berlin52 eil76 ch130
Generation without with without with without with without with

50 39399 38967 10968 10576 1202 1363 31149 28171
100 36380 35363 9945 8157 796 838 23636 20241
200 36107 35363 9945 8157 726 681 15272 13345
500 36107 35363 9945 8157 726 681 10804 9925

1000 36107 35363 9945 8157 726 681 10729 9807
1500 36107 35363 9945 8157 715 670 10652 9807
2000 35942 35363 9945 8157 715 667 10444 9763

Table 3. Investigating Diversity

STSP atta48 berlin52 eil76 ch130

hyp.mean 0 0 0 0
mean, μ 0.219150666 17.03154779 -26.70991049 12.69621759
median 0.24038497 4.865679491 -29.46434485 14.12411478
stdev.,σ 18.09401087 22.81404362 15.65289069 9.597465705
t-test 0.148338395 9.143184417 -20.89890393 18.70823367

p-value 0.882276278 4.18885E-16 3.84068E-46 9.93322E-46

H1: Selection Enthusiasm yields fitter individuals.
H2: Selection Enthusiasm increases diversity.

4.2 Measuring Perfomance

Table 2 compares results between using standard tournament selection and standard
tournament selection with Selection Enthusiasm. Table 2 shows the best individual of a
Generation (mean over 20 runs, to 0 d.p.). Results in bold show the fitter solutions; all
cases show that the GA with Selection Enthusiasm perfroms better. From this it can be
inferred that the Selection Enthusiasm improves the performance of the standard GA.

From these results it can be concluded that Hypothesis 1, H1, is true. The next sub-
section investigates the diversity using the diversity metric, σ, and tests the second
hypothesis.

4.3 Measuring Diversity

From Table 2 results show there is very little change after 150 generations. There is one
exception, ch130 which show little change after 200 generations. Therefore, the inves-
tigation will only look at the first 150 and 200 generations with concerns to diversity.

Table 3 shows four two-way t-tests between Experiments 1 & 2 for each STSP.
Null Hypothesis, N0 : μ = 0, indicating that Selection Enthusiasm does not change
the diversity of a population and the Alternate Hypothesis, Na : μ �= 0. Degrees of



454 A. Agrawal and I. Mitchell

0

100

200

300

0 50 100 150 200
0

45000

90000

σ

a) Atta48

SE

�

�

� � �

� NoSE

�

�

� � �

�

+

+ + + +
×

× × × ×

0

100

200

300

0 50 100 150 200
0

8000

16000

24000

f

b) Berlin52

�

�

�
� �

�

�

� � �

fNoSE

+

+ + + +

+ fSE

×
× × × ×

×

0

100

200

300

0 50 100 150 200
0

700

1400

2100

σ

Generation

c) Eil76

�

�

�

�
�

�

�

�

� �
+

+

+ + +

×
×

× × ×

0

100

200

300

400

0 100 200 300 400
0

13000

26000

39000

f

Generation

d) Ch130

�

�
�

�

�

�

�
�

�
�

+

+

+
+ +

×

×
× × ×

Fig. 2. a-d) compares diversity and fitness

Freedom is 150 for atta48, berlin52 and eil76, and 200 for ch130. From Table 3 with
the exception of the first result, all t-tests yield small p-values: thus rejecting N0, and
therefore accepting the Alternate Hypothesis. Two of these results, berlin52 and ch130,
have positive means indicating that Selection Enthusiasm increases diversity. These
results show that diversity is not the only contributing factor to fitness, since Table 2
clearly indicates that selection enthusiasm performs better.

4.4 Measuring Diversity and Fitness

Figures 2a-d) show that as the solution converges the diversity remains constant. The
keys are as follows:

– NoSE – Stdev. of diversity for Tournament Selection with No Selection Enthusi-
asm;

– SE–Stdev of diversity for Tournament Selection with Selection Enthusiasm;
– fNoSe – Raw Fitness of best individual (mean over 20 runs) in Tournament Selec-

tion with No Selection Enthusiasm;
– fSE – Raw Fitness of best individual (mean over 20 runs) in Tournament Selection

with Selection Enthusiasm.

Stdev.,σ, of edge frequency is plotted on the left y-axis. Raw fitness, f , of the best
individual (mean over 20 runs) is plotted on the right y-axis. It can be inferred from this
graph that there is a correlation between the diversity metric and the fitness converging.
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5 Conclusion

Selection Enthusiasm does have an effect on the overall performance of GA. As expected
over long-term, 1000-2000 Generations, the solutions have converged, but, over short-
term, between 0-500 generations, selection enthusiasm improves fitness of solutions.

The diversity metric, σ, for STSP gives a precise measure of the diversity. As ex-
pected figures 2a-d) indicate clearly that there is a correlation between the diversity
metric and fitness of the population. This diversity metric can be used in future runs to
determine when a GA is converging.

5.1 Contribution

There are two major contributions of this paper:

– Selection Enthusiasm; a proposed selection method that adjusts the raw fitness
value of the individual.

– Diversity Metric; a diversity metric that is based on the phenotype properties.

Two hypotheses were proposed and tested. H1: Selection Enthusiasm improved fitness;
results in Table 2 give evidence that this hypothesis is true. This is a significant result
considering that λ = 0.95 and therefore made small changes to the individual’s fitness.
This combined with the tournament size set to 10 limited the effect of Selection En-
thusiasm on the population; however, the emerging properties are such that Selection
Enthusiasm allows weaker individuals to be selected from a tournament. H2: Selection
Enthusiasm improved diversity; results in Table 3 were inconclusive; however, the di-
versity metric is an improvement on existing measures and from Figs 2a-d) show that it
clearly correlates with fitness.

5.2 Future Work

There are several improvements that could be considered with Selection Enthusiasm
and different values assigned to λ. Future work will include finding an optimum setting
of λ. Currently, the value is set to a constant, 0.95. This value could be changed for
future runs to see if improved fitness or diversity is reached. Ekárt in [3] employs various
techniques to reduce bloat in GP’s, similarly these techniques could be used in GA’s
to change the diversity in a population e.g making λ variable and dependend on the
diversity of the population.
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Abstract. Spatially-structured populations are one approach to in-
creasing genetic diversity in an evolutionary algorithm (EA). However,
they are susceptible to convergence to a single peak in a multimodal fit-
ness landscape. Niching methods, such as fitness sharing, allow an EA
to maintain multiple solutions in a single population, however they have
rarely been used in conjunction with spatially-structured populations.
This paper introduces local sharing, a method that applies sharing to
the overlapping demes of a spatially-structured population. The combi-
nation of these two methods succeeds in maintaining multiple solutions
in problems that have previously proved difficult for sharing alone (and
vice-versa).

1 Introduction

Traditional evolutionary algorithms (EAs) have difficulty in discovering and
maintaining multiple solutions to multimodal fitness landscapes. Through a com-
bination of selection and genetic drift, an EA tends to converge its population
onto a single point in a fitness landscape. Previous work has identified this prob-
lem and has looked to nature for to provide possible solutions [1]. One method,
fitness sharing, has received particular attention [2]. This method uses the con-
cept of finite resources to encourage elements of the population to explore differ-
ent regions of the fitness landscape. Sharing has been shown to generally perform
well, although it is known to have difficulty on at least one class of multimodal
problems.

Another method which claims to encourage population diversity is to impose
a structure on the population and restrict selection and mating to geographically
close individuals. Previous researchers have noted that, while spatially-structured
evolutionary algorithms (SSEAs) do not prevent population convergence to a
single phenotype, they tend to increase the time required for diversity loss.

Previous work has explored the concept of merging fitness sharing with
SSEAs [3]. The author noted that a sharing-like operator, combined with a
spatially-structured population, increased an EA’s ability to maintain multiple
peaks within a single population. However, the work was peculiar in that shar-
ing was applied globally, while selection and mating was confined to demes.

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 457–464, 2006.
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A method in which sharing acted locally was proposed, however it has never
materialised in subsequent work.

This paper introduces the concept of local sharing. The proposed method
applies sharing to each deme prior to selection and offspring replacement. This
method reduces the overall complexity of sharing, and is applicable to problems
that sharing has difficulty handling.

The remainder of this paper is structured as follows: §2.1 describes the con-
cepts of sharing and SSEAs as used in this paper; the proposed local sharing
method is described in §3 and a comparison between this method and existing
SSEAs is given in §4. Finally, a brief discussion of the findings of this paper and
a suggested path for future work is presented in §5.

2 Sharing Methods and Spatially-Structured EAs

The concept of sharing finite resources in an evolutionary algorithm was first
proposed by Holland [4], but fitness sharing [2] was the first successful attempt
at modelling resource contention within a simple EA. With sharing, each optima
in the fitness landscape is allocated a finite number of resources in relation to
its size. The fitness of a given optimum in space must then be shared by the
number of individuals representing this solution. This introduces two benefits
over a simple EA:

1. Rather than attempt to crowd around a single peak, individuals within the
population will actively seek out less populated optima. This ensures the
constant presence of a selection pressure and counteracts the effects of genetic
drift.

2. The effective value of a peak is reduced as the number of individuals exploit-
ing it increases. This in turn makes the lesser-valued optima in the fitness
landscape more attractive and drives selection towards them. This reduces
the likelihood of losing the lesser peaks from the population.

In order for sharing to work, some assumptions need to be made; it is as-
sumed that the optima in the problem occupy similar-sized areas and that they
are evenly distributed throughout the fitness landscape. This is due to the mech-
anism sharing uses to determine which resources are being consumed by each
individual. Sharing uses a radius measure, called the sharing radius, to deter-
mine the amount of similarity between individuals and hence the niche count of
an individual, given by:

sh(d) =

{
1 −

(
d

σshare

)α

, if d < σshare

0, otherwise.

The value of σshare is the sharing radius and α is a value that alters the shape
of the function (typically, this is set to 1). In the above function, d represents
the distance between two individuals in either a genotypic or phenotypic space.
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The distance measure is preferably in the phenotype space, in other words, the
distance metric should be applied as closely to the problem space as possible.

Implementing fitness sharing is a simple extension to standard EAs. Its sole
purpose is to dynamically alter the fitness of individuals after evaluation; in
terms of implementation, it plays no direct part in the fitness function. The other
operators in an EA, such as selection and recombination, are equally unaffected.

2.1 Spatially-Structured Evolutionary Algorithms

Fitness sharing is one method in which an EA can incorporate speciation. An-
other method is to impose a spatial structure on the population so that there
is a concept of geographic distance between individuals. Geographically close
individuals form localised subpopulations, or demes, within the global popula-
tion. Mating is confined to demes and offspring are placed within the vicinity of
their parents. Evolution potentially acts on demes in different ways so that they
explore different regions of the fitness landscape. Given enough time, individuals
within a deme will possess sufficiently different genotypes from those of other
geographically distant demes that they could be considered a different species.

A spatially-structured evolutionary algorithm (SSEA) [5] is essentially an im-
plementation of the parapatric speciation concept; there are no complete bound-
aries within the population to restrict gene flow. Instead, SSEAs use the vast
distances between some individuals to slow the rate of exchange of genetic mate-
rial to a sufficiently low level so as to promote local divergence of genotypes [6, 7].
Though each SSEA implements a slightly different algorithm, the overall method
for using a spatially-structured population within an EA is shown in Algorithm 1.
Essentially, there are three basic steps to an SSEA; first, for a given location,
construct a deme. After this, select the parents from this deme. Finally, the
newly created offspring must be inserted into the deme.

Algorithm 1. The general sequence for a spatially-structured evolution-
ary algorithm

input : A given problem
output: A spatially-structured population of evolved candidate solutions to the problem.
population ← {};1
foreach location in space do2

population[location] ← initialIndividual();3
end4
while not done do5

generation ← {};6
foreach location in space do7

deme ← constructDeme(location);8
parents ← select(deme);9
offspring ← breedOffspring(parents);10
evaluate(offspring);11
generation[location] ← pickSurvivor(offspring, deme);12

end13
population ← generation;14

end15
return population;16
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3 Local Sharing Methods for SSEAs

Spears, as part of his simple subpopulation schemes concept, used a spatially-
structured population in conjunction with a sharing method operating of tag
bits [3]. The sharing component operated once per generation and considered
the population as a whole. After this step, selection and reproduction continued
as for a typical SSEA. Spears noted that this scheme was more effective at
maintaining multiple peaks in a fitness landscape than a simple subpopulation
scheme that did not impose a population structure. It is not entirely clear that
the increase in performance was down to the combination of an SSEA and the
sharing method, or if the improvement was purely through the adoption of spatial
constraints in the population. The issue is further complicated by the fact that
the sharing component of the algorithm and the local mating did not interact;
the population topology played no part in determining the shared fitness of the
population members. Spears himself noted this peculiarity and suggested a third
subpopulation scheme which used the population topology within the sharing
process [3]. However, this new method has not appeared in any subsequent work.

This paper extends Spears’ idea to create a new niching method, local sharing.
The concept is actually rather simple; at the start of a generation, each location
calculates the shared fitness of its occupant by determining the individual’s niche
count with respect to the other members of the deme. After this, selection and
reproduction are performed as per a normal SSEA except that individuals are
selected via their shared fitness. Upon completion of mating, the shared fitness of
offspring are calculated. Offspring are then inserted into the population if their
shared fitness exceeds that of the current occupant.

One benefit of the local sharing method is a reduced complexity compared
to that of panmictic fitness sharing. Typically, fitness sharing is of O(N2) com-
plexity, as all pairs of individuals must be considered. With local sharing, only
individuals that share a common deme are compared, therefore the complexity
of local sharing given a deme size of d is O(2Nd). For small deme sizes, this rep-
resents a considerable saving in the number of distance comparisons required.
Another benefit of local sharing is the number of sharing instances that are
performed per generation. Local sharing performs multiple, smaller instances of
sharing in parallel per generation. The isolation of demes allows each sharing
instance to concentrate of different parts of the fitness landscape, increasing the
chance of discovering multiple optima. Finally, local sharing permits the use of
elitism, which helps to preserve optima once they are discovered.

4 Empirical Analysis

The local sharing SSEA was compared with a traditional SSEA and a panmictic
EA incorporating fitness sharing. Each algorithm was tested against two prob-
lems. The first problem, referred to as M6, is the Shekel’s foxhole problem as
used in De Jong’s thesis on genetic algorithms [8]. This problem is frequently
used in comparisons of niching methods [9] as it has 25 local optima in the fit-
ness landscape. The peaks vary in value, so a typical SSEA will have difficulty
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maintaining all but the global optimum. The second problem, M7, is a massively
multimodal, deceptive problem [10]. This problem has over five million optima in
the fitness landscape, of which only 32 are global and of interest. Fitness sharing
struggles with this problem as the deceptive optima lie within the sharing radius
of the global peaks and hence compete for the same resources. Together, M6 and
M7 form a good test suite for comparing the hybrid local sharing SSEA. The
fitness landscapes of M6 and M7 are shown in Figure 1.

(a) M6
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Fig. 1. The fitness landscapes of the test problems used in this paper

Population size plays an important role in the performance of EAs. The popu-
lation sizes for each of the test problems was taken from previous work. The pop-
ulation size for M6 was determined via a population sizing model developed for
fitness sharing [11] and was 289 (a 17 × 17 torus for the SSEAs). The population
size for M7 was taken from empirical studies [9] and was 676 (a 26 × 26 torus).

Selection in all EAs was via fitness proportional selection. Selection in the
sharing EA was via stochastic universal sampling [12] to remain consistent with
previous work [9]. Roulette-wheel selection was used for the SSEAs, again for
consistency with previous work [13]. Two parents were selected (without replace-
ment) to create offspring. A single offspring was created via one-point crossover
for the SSEAs, while the fitness sharing EA created two offspring for each re-
production instance.

The parameters for each test were as follows: One-point crossover with proba-
bility 1.0; mutation was via bit-flipping applied with probability 0.002 per locus;
the sharing radius σshare was 8 for M6 and 6 for M7; each SSEA used a torus
population structure and a Von-Neumann neighbourhood was used to determine
demes; elitist replacement of offspring was used in both SSEAs (via shared fitness
for local sharing); each run of an EA lasted for 500 generations.

4.1 Results

The performance of each SSEA on the test problems was measured through two
statistics used in previous niching studies [14]. The first measurement records
the number of peaks discovered and maintained by the population over 500
generations. Higher values for the number of maintained niches indicates better
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algorithm performance. The second measure is the Chi-Square-Like performance
which measures the deviation of the population from that of an “ideal” popula-
tion in which all individuals reside on a peak in distributions relative to a peak’s
value. Lower values for the Chi-Square-Like measure indicate better performance
(a value of zero being ideal). These measurements were averaged over 100 runs
and are reported below.

The number of peaks maintained over time is shown in Figure 2. On M6, local
sharing maintains approximately half of the 25 optima present in the fitness
landscape after 500 generations. However, local sharing on M7 is far superior
to that of either panmictic sharing of the traditional SSEA, with nearly all 32
optima present in the population after 500 generations. The Chi-Square-Like
performance of the three EAs, as shown in Figure 3, tells a similar story to the
number of peaks performance; local sharing distributes individuals among peaks
more efficiently than the traditional SSEA on both M6 and M7 and is superior
to panmictic sharing on the M7 problem.
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Fig. 2. Number of peaks maintained by each algorithm on M6 and M7
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Fig. 3. Chi-Square-Like performance of the tested EAs on M6 and M7

4.2 Discussion

The results presented here indicate that local sharing is able to discover and
maintain more optima than a traditional SSEA. Local sharing is also able to
support multiple optima on M7, a problem that has traditionally been difficult to
handle using sharing methods. However, the performance of local sharing on M6
does not match that of panmictic sharing. This may be in part due to the elitist
replacement of local sharing; too much emphasis is placed on the global optimum
by elitism at the expense of other niches. Elitism plays an important role in local
sharing’s performance on M7, so elitist replacement cannot be simply removed
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from the local sharing method. Instead, we propose a change in elitism from a
strict, “always better than” approach to a probabilistic method. In the proposed
strategy, offspring enter a tournament with the current occupant to determine
who is passed into the next generation. The probability of an offspring o winning
the tournament over the current occupant i is:

p (o) =
fsh (o)

fsh (o) + fsh (i)

where fsh is the shared fitness of an individual. Experiments on M6 were repeated
using this alternative elitism method and the results are shown in Figure 4.
The probabilistic elitism method allows local sharing to support more optima
within the population, and the distribution of individuals among those peaks is
much closer to that of panmictic sharing (as indicated by the Chi-Square-Like
performance).
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Fig. 4. Comparison of elitism strategies for the local sharing method on M6

5 Conclusion and Future Work

Space often plays an important role in speciation of populations. Traditionally,
EAs have used individual-based comparisons to perform niching in the absence
of spatial population structure. This paper presents a new method for niching,
local sharing, which takes the traditionally panmictic niching method of fitness
sharing and applies it within the demes of a spatially-structured population.
Initial results suggest that local sharing is applicable to problems that have
proved difficult to solve by either sharing or SSEAs alone.

Local sharing is clearly superior to panmictic sharing on the M7 problem. This
is possibly in part due to local sharing’s elitist replacement policies. However,
the same elitist strategy appears to prevent local sharing from maintaining all
optima in M6. An alternative elitism strategy greatly improved the performance
of local sharing on M6. Future work should investigate the elitism strategies
of local sharing in greater detail. One possible direction might be to implement
elitism as a Boltzmann tournament with annealing [15] so that the higher valued
optima do not dominate elitism in earlier generations of a run.
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Suggested Algorithms for Blood Cell Images 
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Abstract. Morphological mathematics is a powerful tool for image segmentation. 
The watershed is popularly used for multiple object images. In this paper, a new 
watershed algorithm without considering accurate boundary information is 
presented, for grey scale image segmentation, and Morphological mathematics is 
also used for cluster splitting. The result of running this algorithm shows that 
blood cell image can be well segmented using the proposed algorithm. A genetic 
algorithm is suggested for the further study. 

Keywords: Blood Image segmentation, Watershed, Splitting, genetic algori-
thm, Region merging. 

1   Introduction 

In blood analysis, doctors look for three different kinds of cells, red, white and blood 
platelets, hence the cells are needed to delineate [1]. One of example image is shown 
in Fig. 1, the images are original ones; the light color is for background and dark color 
for blood cell. In the image, a part of cells include one or two white sports in their 
interior, and blood cells touch each other. It is difficult to use one gray or color value 
to separate the touching objects, because the touching parts have gray values closed to 
the gray or color values of the cells, but the cell color or grey values are different 
from background. The white sports have gay values equal to or higher than image 
background. These characteristics make image segmentation difficult, and hard to 
identify blood cells in the image. According to the blood cell image investigation and 
segmentation testing, the need for a set of new segmentation algorithms for touching 
problem was obvious. There is a number of image segmentation algorithms have been 
studied by other researchers [1-3], but it is difficult to directly to use one of them for 
the blood cell images. 

Numerous segmentation methods for cell image from peripheral blood smears have 
been proposed. Histogram threshold methods and clustering methods are often used. 
Boundary detection method using local edge information is another approach; 
however it is difficult to integrate all the edge information to make satisfactory object 
boundaries. Region growing methods have been widely used in connection with local 
and global object properties; but it is hard to determine a stopping rule. Here we 
propose a segmentation method using watershed of mathematical morphology. It 
focuses on the image’s geometrical characters and has the virtue of speediness, 
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exactness and robustness. In this paper we focus on the problem of segmentation of 
blood cells by microscope images. The proposed system firstly preprocesses the 
image to reduce the noise and other influencing factors. Secondly it explains how to 
segment the cells by watershed algorithm and finally it using the region merging to 
overcome the flaw of over-segmentation. 

  
  (a) (b)  

Fig. 1. Two blood cell images: (a) parsley located cells, (b) densely located cells 

2   Image Segmentation 

For the grey level image segmentation, among the existing algorithms, watershed 
transformation has proved to be a very powerful tool for morphological image 
segmentation because of its moderate computational complexity and ability to 
identify the important closed contours of a given image. Watershed algorithms are 
widely used in fields like biomedical signal processing and medical image processing. 

A gradient image is considered as a topographical surface where the numerical 
value of each pixel stands for the elevation at that point [4-7]. Smooth surfaces could 
be decomposed into hills and dales by studying the critical points and slope lines of a 
surface. By viewing grayscale in an image as elevation and simulating rainfall, it is 
possible to decompose an image into watershed regions. Approaches to computation 
of watersheds vary ranging from iterative methods to flooding methods. 

Some watershed algorithms were developed to process digital elevation models 
and were based on local neighborhood operations on square grids. Other approaches 
use “immersion simulations” to identify watershed regions by flooding the image with 
water starting at intensity minima. Here, we use a method integrating watersheds 
segmentation and region merge which overcome the flaw of over-segmentation due to 
the noise and other irregularities of the gradient. 

Extracting watersheds from digital image is far from an easy task. Our 
investigation of watersheds has three phases. First, we describe how watersheds and 
their boundaries can be computed in the grayscale images. Then, we apply a region-
merge procedure according to the properties of the catchments including. This 
algorithm proves to be effective in blood cell image segment by the experiment. 

Watersheds are traditionally defined in terms of the drainage patterns of rainfall [5]. 
Regions of terrain that drain to the same point are defined to be part of the same 
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watershed. The same analysis can be applied to images by viewing intensity as height. 
In this case, the image gradient is used to predict the direction of drainage in an image. 
By following the image gradient downhill from each point in the image, the set of 
points, which drain to each local intensity minimum, can be identified [5-6]. These 
disjoint regions are called the watershed regions (catchment basins) of the image.  

Before making segmentation, let us assume the gray scale image F as digital grids 
which have M rows and N columns. Each pixel has two spatial coordinates and gray 
levels. We denote (x, y) the coordinate of each pixel, denote f(x, y) the gray value of 
this pixel. So each pixel stands for a grid, and its gray value stand for elevation. The 
detail segment process can be express as follows. First, we compute the watersheds 
for an image is identifying the local intensity minima. These are the points which 
define the bottoms of watersheds. To distinguish these critical points, each pixel is 
compared with its eight nearest neighbors. If all neighbors are greater than the central 
pixel, it is identified as an intensity minimum. After all the intensity minima are 
identified, the number of watershed regions is identified at the same time, since each 
watershed region corresponds to one intensity minimum. Next, we calculate the image 
gradient. The goal here is to identify the drainage directions for each pixel in the 
image. Rather than calculate the gradient based on the partial derivatives of the image 
or morphological gradient theory, each point is searched to determine most steeply 
downhill directions according to the approach following.  

Let Dist (x, y) denote the distance between any pixel and any intensity minimum. 
Similarly, ),( yxFall denote the elevation fall between any pixel and any intensity 

minimum (the intensity difference between them). Then we compute: 

Fall

Dist
Grad =  . (1) 

For each pixel, we obtain all the values of Gradient associated with all of intensity 
minima. Later, we select the maximum among all the Gradient values which 
corresponds to a given intensity minimum. The drainage direction for each pixel in 
the image is identified because the direction from each pixel to the selected intensity 
minimum is the mostly steeply downhill direction. These directions may or may not 
be in opposite directions due to discreteness. There are nine possible direction for 
each pixel (the central pixel could be a minimum), which are encoded and stored in a 
temporary image for use in the gradient following step of our algorithm [6]. Take a 
5×5 region in the image for example. 

Partitioning the input image into watersheds begins by marking the locations of 
intensity minima with unique region identifiers in an output image. For each of the 
remaining points in the image, the gradient information is used to follow the image 
downhill to some intensity minimum. The identifier of this minimum is then recorded 
in the output pixel corresponding to this starting point. Once all pixels in the image 
have been associated with their respective minima, the output image will contain the 
watershed regions of the image [7-9]. We can locate the watershed boundaries by 
accessing each pixel and its neighbors (its 4 neighbors in 4-connectivity). If some of 
its neighbor pixels aren’t in the same watershed region as given pixel, we mark this 
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pixel as well as the neighbor pixels which are in different regions. The watershed 
boundaries can be located after all the pixels and its neighbors be detected. 

 
 

 

Fig. 2. An example of the watershed regions and gradient vectors indicate the direction toward 
the lowest value 8-neighbor at each point. All points drain to intensity minima 11 or 15, 
defining two watershed regions. 

Since watershed boundaries are defined in terms of the global drainage patterns of 
the image rather than local differential geometry, not all boundaries detected in the 
image should be marked as watershed boundaries. Only those boundaries that 
separate drainage basins are identified. In more realistic images there are thousands of 
intensity minima and associated watershed regions. In this case, the image is over-
segmented. So the problem is identifying which watershed boundaries mark 
significant image structures and which catchments should be merged. Some methods 
on controlling over-segmentation reduction use only fractional regional minima of the 
input image in the flooding step rather than all of them. These selected regional 
minima are referred to as markers. Internal markers are associated with objects of 
interest, and external markers are associated with the background [7-10].  Prior to the 
application of the watershed transform, the image can be modified so that its regional 
minima are identical to a predetermined set of markers. Although markers have been 
successfully used in segmenting many types of images, their selection requires either 
careful user intervention or explicit prior knowledge on the image structure. 

In addition to the above over-segmentation reduction method, we apply a new 
region-merging procedure according to the property of the catchment basins. Let us 
express the process of merge more formally. First, we calculate the parameters of the 
catchment basins in the image: CB being the catchment basin in the over-
segmentation image, Surface (CB) denotes the surface area of every catchment basin. 
Similarly, Depth (CB) denotes its depth; Volume (CB) denotes its volume. 

Meanwhile we define the ),( yxf (�� ),( yxf �����as the gray value in 

position (x, y). 

Surface (CB) =
∈∀ CBYX ),(

1  . (2) 

Depth (CB) = ),(max
),(

yxf
CByx ∈∀

. (3) 

Volume (CB) =
∈∀ CByx

yxf
),(

),( . (4) 
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We merge the catchment basins according to these three parameters. Before this 
processing, we set the threshold of surface, depth and volume, so that we can deal 
with these catchment basins dissatisfy the threshold as the background and merge the 
adjacent catchment basins satisfy the threshold. Set mark (WS) be the Bool style, and 
ST, DT, VT are token of surface, depth and volume. Similarly, STΔ , DTΔ , VTΔ  
are token of the increment of the three threshold. 

Condition 1 ( )( ) ( )( ) ( )( )VTCBVolumeDTCBDepthSTCBSuiface ≥≥≥  

∀ ( ) TrueCBmark = ;  

Condition 2 DTCBDepth ≥)( ;  

Condition 3 STCBSurface ≥)( ;  

Condition 4 VTCBVolume ≥)( . 

The emerging can be followed as four steps: 

1) If CB can’t satisfy condition 1, set mark (CB) = False, and emerge the adjacent 

CB according to ( ) TrueCBmark = . (PRI is Depth>Surface>Volume). 

2) DTDTDT Δ+= , if CB can’t satisfy condition 2, set mark (CB) =False, and 
emerge the adjacent CB according to the mark (CB) =True.  

3) STSTST Δ+= , if CB can’t satisfy condition 3, set mark (CB) =False, and 
emerge the adjacent CB according to the mark (CB) =True.  

4) VTVTVT Δ+= , if CB can’t satisfy condition 2, set mark (CB) =False, and 
emerge the adjacent CB according to the mark (CB) =True. We get the final 
result through the iterative steps above (See Fig.4 (b)). 

For under-segmentation problem, the studied algorithm can be summarized as: (1) using 
morphological mathematics to detect skeletons of blood cells or clusters; (2) using the 
distance information of the skeletons to detect valley points which can be the candidates 
of starting points of splitting curves; (3) finding out concave points on the boundaries of 
the blood cells; and (5) tracing the splitting curves. Fig. 4 shows the general sequence of 
splitting algorithm. Fig. 5 shows two examples of cell delineation results. 

 

Fig. 3. (a) The image after watershed segmentation, (b) the image after merging 
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(a) Original image (b) Skeletons (c) Distance mapping    (d) Decomposing result  

Fig. 4. Decomposing sequence for touching cells, based on cell shape information 

  
 (a) (b) 

Fig. 5. The image after splitting based on shape information: (a) splitting result on the image in 
Fig. 1(b); (b) cell delineation result on the image in Fig. 1(a), where image background 
splitting; cluster decomposing based on local light grey variation; and decomposing clusters on 
cell shape information are used subsequently 

3   Further Study 

The genetic algorithm will be useful to enhance the developed blood cell image 
segmentation results for the further study. The basic idea is described as the follows. 

Give a genetic input image, X, of size × m, X (i, j) will indicate the gray-level 
value of the pixel located in (i, j). 

The genetic chromosome ji,α  is coded by a 32 bit binary string that codes the 

pixel-label, λ  in the 8 less significant bits and the pixel position (i, j) in the 24 most 

significant bits. Here, λ  identifies the clusters to which the pixel belongs. The 
functions used to codify label and position are: 

( ) λλ ×−=
K

L
128

, ( ) k
MN

kS ×
×

−= 1224

 (5) 

where, k = i × m + j and K is the maximum number of clusters. It follows 

that 03031, ....bbbkji ≡= αα with ( )λLbbb =233031 .... and ( )kSbbb =02122 .... . 

Each chromosome can be denoted with the ordered pair ( ) ( ) ( )( )kSLSL ,, λδ = . 



 Suggested Algorithms for Blood Cell Images 471 

The inverse function of L and S, ( )δ1−L  and ( )δ1−S , return the 

label, ( )δλ 1−= L , of a pixel in position ( ) ( )δ1, −≡ Sji . Each segment Pj is 

characterized by the mean value, mvj, of the gray levels: 

( )( )
j

P

j
P

SX
mv j∈

−

= δ
δ1

 
(6) 

The fitness function, f, has been defined on the basis of the similarity function, , 

computed between a given chromosome ( ) ( ) ( )( )kSLSL ,, λδ =  and the 

corresponding segment P : 

( ) ( )( )δδρδ 1, −=
L

mvf     (7) 

To evolve the system the classical single point crossover with bit mutation has 
been used and will be denoted by . Random labels are assigned to the starting 
population of chromosomes. The evolved population at the iteration t is: 

( ) ( ) ( ) ( ){ }ttttP mn×= ααα ,....,, 21      (8) 

Applying the genetic operators we obtain the population 

( )( ) ( ) ( ) ( ){ }ttttP mn×=Γ βββ ,...,, 21    (9) 

where, ( )rr αβ Γ= . The new population is determined by the selection process as 

follows: 

( ) { }mntP ×=+ γγγ ,...,,1 21      (10) 

such that  

( ) ( )<
=

otherwise

ffif

r

rrr
r α

αββ
γ  (11) 

The genetic operator and the selection process are applied until a halting conditions, 

based on the convergence of the total variance ( ( )= K

k tar kV
t

σ ), is satisfied: Halt 

computation if φ≤−
− tt arar VV

1
, where, ( )ktσ  is the internal variance of the clus-

ter k at the iteration t and 0≥φ . The condition 0=φ  is not usually reached and 

value of φ  is determined by the heuristics ( )
tt arar VV ,min

1−
≈φ . 

The above idea can be used for supplementary of the developed watershed 
algorithm, we are in the continuous study for this topic by using this genetic algorithm 
idea. 
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4   Conclusions 

Morphological mathematics is used for image processing and image segmentation for 
about 30 years. A number of special algorithms were developed in the last three 
decades, but there are very few researchers studied the algorithms for blood cell 
images. We proposed a method of watershed-based region merging for gray level 
image segmentation. Catchment basins were used as initial segments and conflicting 
regions, which were found among the watersheds by using gradient changes, guided 
the region merging with dissimilarity function and terminated the iterative process 
according to the conditions we given. Our algorithm is focused on the catchment 
basins according to the region merging last step, not the watersheds, so we can get the 
satisfied output image quickly.  

In order to resolve a common problem – object touching, we studied a splitting 
algorithm. The algorithm development is much different to normal splitting 
algorithms, we decompose clusters on cell shape information. For the further study, a 
genetic algorithm idea is suggested.  
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Abstract. A novel algorithm of adaptive multi-objective particle swarm
optimization (AMOPSO-II) is proposed and used to search the optimal
color image fusion parameters, which can achieve the optimal fusion in-
dices. First the algorithm of AMOPSO-II is designed; then the model
of color image fusion in YUV color space is established, and the proper
evaluation indices are given; and finally AMOPSO-II is used to search
the optimal fusion parameters. AMOPSO-II uses a new crowding op-
erator to improve the distribution of nondominated solutions along the
Pareto front, and uses the uniform design to obtain the optimal com-
bination of the parameters of AMOPSO-II. Experimental results indi-
cate that AMOPSO-II has better exploratory capabilities than MOPSO
and AMOPSO-I, and that the approach to color image fusion based on
AMOPSO-II realizes the Pareto optimal color image fusion.

1 Introduction

At present, multi-objective evolutionary algorithms include Pareto Archive
Evolutionary Strategy (PASE) [1], Strength Pareto Evolutionary Algorithm
(SPEA2) [2], Nondominated Sorting Genetic Algorithm II (NSGA-II) [3], Mul-
tiple Objective Particle Swarm Optimization (MOPSO) [4], etc, where MOPSO
has a higher convergence speed and better optimization capacities [5]. However,
MOPSO uses an adaptive grid [1] to record the searched particles, once the num-
ber of the objectives is greater than 3, MOPSO will need too much calculation
time. So we presented an adaptive multi-objective particle swarm optimization
(AMOPSO-I) in [6], in which the adaptive grid is discarded, and a crowding dis-
tance [3], an adaptive inertia weight and an adaptive mutation are introduced to
improve the search capacity. But the crowding distance needs too much time and
the optimal combination of the parameters is difficult to obtain in AMOPSO-I,
so we propose AMOPSO-II. AMOPSO-II adopts a new distance and introduces
the uniform design to obtain the optimal combination of parameters. In contrast
to AMOPSO-I and MOPSO, AMOPSO-II has a higher convergence speed and
better exploratory capabilities.

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 473–480, 2006.
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Color image fusion can be defined as the process of combining two or more
color images into a single composite image with extended information content
[7]. If one image is regarded as one information dimension, image fusion can be
regarded as an optimization problem in several information dimensions. A better
result, even the optimal result, can be acquired through searching the optimal
parameters. In fact, there are various kinds of evaluation indices. The traditional
solution is to change the multi-objective problem into a single-objective problem
using a weighted linear method. However, the relation of the indices is often non-
linear, and this method needs to know the weights of different indices in advance.
In order to realize the optimal image fusion, it is highly necessary to introduce
multi-objective optimization algorithms to search the optimal parameters. In
[6], an approach to image fusion in the gray-scale space based on multi-objective
optimization was explored. However, for the color image fusion, a nave approach
might include performing image fusion separately and independently on each
color channel, then providing the resulting three color channels as a single color
image. In practice, this does not work for two reasons: interpretation of color
scale space for feature selection and dependencies between the color components.
Therefore, the approach to color image fusion in YUV color space is presented,
and AMOPSO-II is used to optimize the fusion parameters.

The remainder of this paper is organized as follows. The AMOPSO-II algo-
rithm is designed in Sect. 2. The methodology of color image fusion is introduced
in Sect. 3. In addition, the evaluation indices also are given in section Sect. 3.
The experimental results and analysis are given in Sect. 4. Finally, a review of
the results and the future research areas are discussed in Sect. 5.

2 AMOPSO-II Algorithm

Kennedy J. and Eberhart R.C. brought forward particle swarm optimization
(PSO) inspired by the choreography of a bird flock in 1995 [8]. PSO has shown a
high convergence speed in multi-objective optimization [4], [5], [6], [9]. In order to
improve the performance of the algorithm, we make an improvement and propose
“AMOPSO-II” (adaptive multi-objective particle swarm optimization), in which
not only the adaptive mutation operator and the adaptive inertia weight is used
to raise the searching capacity, but also a new crowding operator based on Man-
hattan distance is used to improve the distribution of nondominated solutions
along the Pareto front and maintain the population diversity, and the uniform
design is used to obtain the optimal combination of the algorithm parameters.

2.1 AMOPSO-II Flow

The flow of AMOPSO-II is shown as Fig. 1. First the position and velocity of each
particle in the population are initialized, and the nondominated particles is stored
in the repository; second the velocity and position of each particle are updated [6],
the partly particles adaptively mutate [4] and the particles is maintained within the
decision space; third each particle is evaluated and their records and the repository
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Fig. 1. Illustration of AMOPSO-II algorithm

are updated; then the cycle begins. When the maximum cycle number is reached,
the Pareto solutions in the repository are output.

2.2 Crowding Operator

In order to improve the distribution of nondominated solutions along the Pareto
front, we introduce a concept of crowding distance from NSGA-II [3] that indi-
cates the population density. When comparing the Pareto optimality between
two individuals, we find that the one with a higher crowding distance (locating
the sparse region) is superior. In [3], the crowding distance has O(mnlogn) com-
putational complexity, and may need too much time because of sorting order.
Here we propose a new crowding distance that can be calculated using the Man-
hattan distance between the points and the barycentre of their objectives. It is
defined as

Dis[i] =
∑

|fij − Gj | (1)

where Dis[i] is the distance of particle i in the population, fij is objective j of
particle i, Gj is the barycentre of all the objectives j. The new crowding distance
doesn’t need to sort order and has less complexity, and it is superior to the grid
[1], [4] because the latter may fail to allocate memory when there exist too many
objectives.

2.3 Uniform Design of Parameters

We introduce the uniform design [10] to optimize the parameters of AMOPSO-
II. The main objective of uniform design is to sample a small set of points from
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a given set of points, such that the sampled points are uniformly scattered.
Let there be n factors and q levels per factor. When n and q are given, the
uniform design selects q combinations out of qn possible combinations, such
that these q combinations are scattered uniformly over the space of all possible
combinations. The selected combinations are expressed in terms of a uniform
array U(n, q) = [Ui,j ]q×n, where Ui,j is the level of the jth factor in the ith

combination. When q is prime and q > n, Ui,j is given by

Ui,j = (iσj−1modq) + 1 (2)

where σ is determined by the number of factors and the number of levels [10].

3 Multi-objective Color Image Fusion in YUV Space

3.1 Color Image Fusion Model

The result of the color image fusion should preserve color blending consistency
and color spatial consistency [7]. In the case of fusing source images, it is desired
that the structural details be emphasized while the color and its saturation
are preserved. For our methods, we choose the YUV color space, which has
components representing luminance, saturation, and hue. As shown in Fig. 2,
the approach to multi-objective color image fusion in YUV space is as follows.

Step 1: Input the source images A and B and convert the two images from
RGB color space into YUV color space respectively. Since the source images can
be assumed to have similar saturation and hue, the average of the U and V com-
ponents from source images can be substituted for the U and V components in
the fused image respectively, which can also reduce the computation complexity.

Step 2: Component Y represents the luminance, hence both the selection
functions are based on the discrete wavelet transform (DWT) of the luminance
components. Find the DWT of component Y of A and B to a specified number

Fig. 2. Illustration of multi-objective color image fusion in YUV space
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of the decomposition level, we will get one approximation and 3 × J details at
each level, where J is the decomposition level.

Step 3: For the details of component Y in DWT domain, salient features
in each source image are identified. The coefficient with the largest salience is
substituted for the fused coefficient [11].

Step 4: For approximations of component Y in DWT domain, let CF , CA,
and CB be the approximations of F , A, and B respectively, two different fusion
rules will be adopted. One rule called“uniform weight method (UWM)” is given
by

CF (x, y) = w1 · CA(x, y) + w2 · CB(x, y) (3)
where w1 and w2 are the decision variables with the values in the range [0, 1].

The other called “adaptive weight method (AWM)” is given by

CF (x, y) = w1(x, y) · CA(x, y) + w2(x, y) · CB(x, y) (4)

where w1(x, y) and w2(x, y) are decision variables.
Step 5. Using AMOPSO-II, we can find the optimal decision variables of the

Y component in DWT domain, and realize the optimal color image fusion.
Step 6: The new sets of coefficients are used to find the inverse transform to

get the Y component of the fused image F .
Step 7: The fused image in RGB color space can be attained using the inverse

YUV conversion.

3.2 Evaluation Indices of Color Image Fusion

The establishment of an evaluation index system is the basis of the optimization
that determines the performance of the final fused image [12]. The evaluation
indices of color image fusion can be divided into two categories with respect to
the subjects reflected. One category reflects the image features, such as gradient
and entropy. The second reflects the relation of the fused image of F to the
reference image of R, such as peak signal to noise ratio (PSNR) and structural
similarity.

Gradient. Gradient reflects the change rate in the details that can be used to
represent the clarity degree of an image. The higher the gradient of the fused
image is, the clearer it is. In the YUV representation, Y represents the luminance
of the image; hence gradient in the luminance component can also reflect the
characteristics of human vision system.

Entropy. Entropy is an index to evaluate the information quantity contained
in an image. If the value of entropy becomes higher after fusing, it indicates that
the information quantity increases and the fusion performances are improved.
The entropy in a color image is given by

E = (ER + EG + EB)/3 (5)

where R, G, and B denote the three color channel respectively, ER denotes the
entropy in channel R.
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PSNR. The higher the value of PSNR (Peak Signal to Noise Ratio) is, the
better the fused image is. PSNR in a color image is given by

PSNR = (PSNRR + PSNRG + PSNRB)/3 (6)

Structural Similarity. Structural similarity (SSIM) is designed by modeling
any image distortion [13]. The higher the value of SSIM is, the more similar the
F is to R. If two images are identical, the similarity is maximal and equals one.
SSIM for color image fusion is given by

SSIM = (SSIMR + SSIMG + SSIMB)/3 (7)

4 Experiments

The performances of the proposed color image fusion approach using AMOPSO-
II is tested and compared with those of different fusion schemes. The image
“fishman” from Lab. for Image and Video Engineering of Texas University is
selected as the reference image of R with 256 × 256 pixels in size, each pixel
being represented by three bytes (one for each of the R, G, and B channels).
The two source images of A and B is shown in Fig. 3(a) and Fig. 3(b) We
use AMOPSO-II to search the Pareto optimal weights of the color image fusion
model and compare the results with those of SWM (Simple Wavelet Method),
MOPSO, and AMOPSO-I. In order to get common evaluations, the sum of the
weights at each position in source images are limited to 1.

4.1 Uniform Design of AMOPSO-II Parameters

The more important and representative parameters of AMOPSO-II include the
number of particles, the number of cycles, the size of the repository, and the
mutation probability. We construct a uniform array with four factors and five
levels as follows, where σ is equal to 2. We compute U(4, 5) based on (2) and get

U(4, 5) =

⎡
⎢⎢⎢⎢⎣

2 3 5 4
3 5 4 2
4 2 3 5
5 4 2 3
1 1 1 1

⎤
⎥⎥⎥⎥⎦

The value range of the number of particles is [40, 120]; the range of the
number of cycles is [50, 250]; the range of the size of the repository is [100, 300];
the range of the mutation probability is [0.02, 0.06]. All combinations are run for
a maximum value of 100 evaluations. Results show that the third combination
is the optimal in the problem. Thus, the parameters of AMOPSO-II are as
follow: the particle number is 100; the maximum cycle number is 100; the allowed
maximum capacity is 200; the mutation probability is 0.06. The parameters of
MOPSO and AMOPSO-I are the same.
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4.2 Comparison Among Different Fusion Schemes

Since the solutions to color image fusion are nondominated by one another, we
give preference to the four indices so as to select the Pareto optimal solutions, e.g.
one order is SSIM, Gradient, PSNR, Entropy. The Pareto optimal fused images
are shown in Fig. 3(c) and Fig. 3(d). Table 1 shows the evaluation indices of the
fused images from different schemes, where MOPSO denotes the AWM based
on MOPSO, AMOPSO-I denotes AWM based on AMOPSO-I, AWM and UWM
denote methods based on AMOPSO-II, SWM takes a fixed weight of 0.5 for the
approximations.

(a) Source image A (b) Source image B (c) UMW image (d) AWM image

Fig. 3. Source and fused images

Table 1. Evaluation indices of the fused images from different schemes

Schemes Level Gradient Entropy PSNR SSIM

UMW 0 8.8186 7.6890 29.2640 0.9930
AWM 0 9.3027 7.7108 28.3477 0.9912
SWM 3 12.0254 7.7316 33.6438 0.9968
UMW 3 12.0236 7.7286 33.6572 0.9973
MOPSO 3 12.0293 7.7324 33.6974 0.9976
AMOPSO-I 3 12.0304 7.7329 33.6795 0.9976
AWM 3 12.0312 7.7394 33.8427 0.9977

From Table 1, we can see that the indices of AWM are not superior to those
of UWM when the decomposition level is equal to 1. The reason is that the
decision variables of AWM are too many and AWM can’t reach the Pareto
optimal front in limited time, e.g. the number of iteration is 100. The run time
of AWM should increase with the number of decision variables. When the level
is greater than one in DWT domain, the indices of AWM are superior to those
of UWM because the weights of AWM are adaptive in different regions. The
higher the decomposition level is, the better the fused image is, for a higher level
decreases the decision variables and improves the adaptability (the maximum
value of the level is limited to 3). The indices of AMOPSO-I and MOPSO are
inferior to those of AMOPSO-II, which indicates that the new crowding distance
can achieve better results than the distance in [3], that the uniform design can
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help to improve the performances of AMOPSO-II, and that MOPSO needs too
much memory because the grid [4] is worse for too many objectives, e.g. 4.

Therefore, the approach to color image fusion that uses AMOPSO-II to search
the adaptive fusion weights at level 3 in DWT domain is the optimal. This
approach can overcome the limitations of given fusion parameters, obtain the
optimal fusion results, and effectively enhance the features of the color image.

5 Conclusions

AMOPSO-II proposed is an effective algorithm to solve the parameter optimiza-
tion of color image fusion, which can effectively enhance the features of the color
image. One aspect that we would like to explore in the future is to analyze the
evaluation indices system to acquire a meaningful measurement. We are also
considering improving the optimization performances of AMOPSO-II.
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Abstract. This paper presents a new optimization model— Dynamic
Particle Swarm Optimizer (DPSO). A new acceptance rule that based
on the principle of minimal free energy from the statistical mechanics
is introduced to the standard particle swarm optimizer. A definition of
the entropy of the particle system is given. Then the law of entropy
increment is applied to control the algorithm. Simulations have been
done to illustrate the significant and effective impact of this new rule on
the particle swarm optimizer.

1 Introduction

The particle swarm optimization (PSO) is an optimization algorithm developed
by Kennedy and Eberhart in 1995[1] (We will refer to it as standard PSO) .It is
developed through simulating social behavior. In a particle swarm optimization,
the individuals are “evolved” by cooperation and competition among themselves
through generations. Each particle adjusts its flying according to its own flying
experience and its companions’ flying experience. Each individual is named as
a “particle” which, in fact, represents a potential solution to a problem. Each
particle is treated as a point in a D dimensional space. The i−th particle is
represented as Xi (xi1, xi2. . . x iD). The best previous position (the best position
giving the best fitness value) of particle i is represented as Pi(pi1, pi2... piD).
The index of the best particle among all the particles in the population is rep-
resented by Pg(pg1, pg2... pgD). The rate of the position change (velocity) for
particle i is represented as Vi(vil, vi2. . .ViD).

From iteration k to the following, each particle Xi moves according to a rule
that depends on three factors, as follows.

V k+1
i = w ∗ V k

i + c1 ∗ r1 ∗ (P k
i − Xk

i ) + c2 ∗ r2 ∗ (P k
g − Xk

i ) (1)

Xk+1
i = Xk

i + V k+1
i (2)

where w is called inertia weights which fixed in the beginning of the process, c1
and c2 are two positive constants, r1 and r2 are two random numbers sampled
from a uniform distribution in [0, 1]. The second part of the equation (l) is the
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“cognition” part, which represents the private thinking of the particle itself.
The third part is the “social” part, which represents the collaboration among
the particles. The equation (1) is used to calculate the particle‘s new velocity
according to its previous velocity and the distances of its current position from
its own best experience (position) and the group’s best experience. Then the
particle flies toward a new position according to equation (2). The performance
of each particle is measured according to a predefined fitness function, which is
related to the problem to be solved.

Now PSO has been around for over ten years. Already, it is being researched
and utilized in over a dozen countries. And some researchers found that the
stochastic nature of the particle swarm optimizer makes it more difficult to
prove (or disprove) like global convergence. Solis and R.Wets [2] have studied the
convergence of stochastic search algorithms, most notably that of pure random
search algorithms, providing criteria under which algorithms can be considered
to be global search algorithms, or merely local search algorithms. Frans Van
Den Bergh [3] used their definitions extensively in the study of the convergence
characteristics of the PSO and the guaranteed convergence PSO (GCPSO), he
proved the PSO is not even guaranteed to be local extrema, and GCPSO can
converge on a local extremum.

In this paper, we introduce a new dynamic acceptance rule in order to get
rid of this shortcoming. The new acceptance rule is based on the principle of
minimal free energy from statistical mechanics. It utilizes the temperature and
the Shannon Information Entropy, which is defined according to the particle
system, to get a hint on controlling the diversity of the system. So the particles
fly randomly and the optimizer gets out of the local optimal easily.

2 Theoretical Foundation of the DPSO

2.1 The Principle of Minimal Free Energy

Entropy is a very important concept in thermodynamics. The second law of ther-
modynamics is that the isolated system is always evolving towards the direction
of entropy increasing. It means that in the process of an isolated system evolving
towards the stable status, the entropy of the system increases continually. It is
described that,

dS ≥ 0 (3)

where S is defined as the entropy, and when the entropy reaches the maximum,
Eq.(3) gains the equal mark.

Joish Willard Gibbs proposed the concept of free energy in 1879. The formula
is,

F = E − TS (4)

where E is the interned energy, T is the temperature of the system, and S is
the entropy of the system. The principle of minimal free energy is described as
follows:
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For a closed system that keep the temperature unchanged through exchanging
heat with the ambience, the spontaneous diversifications of the states are always
going along the reducing direction of the free energy. When the free energy gets
to the minimum value, the systems come to equilibrium.

Consider that there are two states of constant temperature system, when the
system changes from the first state to the second one, the change of free energy
is that,


F = 
E − T
S (5)

It shows that in the process of the system evolving from unstable status to sta-
ble one, there is the competition between energy and entropy, and temperature
decides the relative weight.

From the viewpoint of the DPSO, by regarding -E as the mean fitness value of
the particle system, minimization of the free energy can be interpreted as taking
a balance of the minimization of the energy function (the first term in the RHS
of Eq.(4)), or equivalently maximization of the fitness function in the DPSO and
maintenance of the diversity (the second term in the RHS of Eq.(4)).

2.2 The Shannon Information Entropy

Entropy defined by Shannon in information theory is closely related to thermo-
dynamic entropy as defined by physicists and chemists. Boltzmann and Gibbs
did considerable work on statistical thermodynamics. This work was the in-
spiration for adopting the term entropy in information theory. There are deep
relationships between entropy in the thermodynamic and informational senses.

In general, for a source = (S, P ) with source alphabet S= {a1... an} and
discrete probability distribution P = {p1... pn}, the entropy is,

H(S) = −
∑

pilog pi (6)

where pi is the probability of ai (say pi = p(ai)).

2.3 The Simulated Annealing Algorithm

In the simulated annealing (SA), the state of the system X is perturbed and a
candidate of the new state X ′ is generated. If the energy value of the candidate
E(X ′) is smaller than that of the current state E(X), the candidate is accepted as
a new state. If E(X ′) is larger than E(X), the transition probability is controlled
by a parameter T called the temperature. By repeating the above probabilistic
procedure, the system is expected to attain the global minimum of the energy
function [4].

In the DPSO, we also set a temperature, which is used to decide the weight
of the diversity during the searching process. The temperature would decrease
while the algorithm runs. So we can use some temperature schedule like in the
SA to decrease the temperature T in Eq. (4) as the generation increase.
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3 A New Dynamic Particle Swarm Optimizer

The idea behind DPSO is to try to keep the particles from converging at a certain
local extremum at the early stage of the optimization. Refer to equation (1), the
right side of which consists of three parts. The third part is velocity memory.
Without this part, every particle will be “flying” towards its weighted centroid
of its own best position and the global best position of the population, and it is
more likely to exhibit a local search ability. However, even with the first part,
classical PSO is not even guaranteed to be local extrema [3].The most striking
point of classical PSO is the fact that for the essential of the movement rule, the
performance of classical PSO heavily depends on the initial seeds. It is intuitive
that if the particle swarm is not properly initialized, the algorithm risks to be
trapped at some local minimum. Therefore some more tuning is needed .To avoid
this kind of problem, some authors have suggested procedures of “re-seeding”
the research by generating new particles at distinct places of the search space.

The effect of our new acceptance rule is to solve this problem. Since it keeps
the population well distributed in the solution space, it is better than random
re-seeding. The new acceptance is as follows.

In general, we consider the Global Optimization Problems such as finding
x∗ ∈ S such that

f(x) ≤ f(x∗), x ∈ S (7)

where S ⊂ Rd is compact, and f : S→R is a continuous function defined on S.
Under these assumptions, the GOP is solvable, because f attains its minimum
on S.

Then we give the definition of how to calculate the information entropy in
DPSO.

The variable space VSP of the GOP is divided into M grids [5].We choose dif-
ferent M for different problems depending on the variable space of each function.
They can be marked as G1,G2, . . . , GM , which satisfy,

Gi ∩ Gj = ∅, i, j ∈ {1, 2, . . . , M}, i �= j (8)

∪Gi = VSP , i = 1, 2, . . . , M (9)

Then the number Ni should be calculated as the particles that locate in the
grid Gi, i ∈{1,2,. . . ,M} , and apparently they satisfy,∑

Ni = N, i = 1, 2, . . . , M (10)

The possibility of each grid is defined as

qi = Ni/N, i ∈ {1, 2, . . . , M} (11)

and they will satisfy ∑
qi = 1, i ∈ {1, 2, . . . , M} (12)



A New Dynamic Particle Swarm Optimizer 485

Therefore, the information entropy S of the particles system can be calculated
as

S =
∑

−qilog qi, i ∈ {1, 2, . . . , M} (13)

Then the free energy of the particle system can be calculated as

F =< E > − TS (14)

where < E > is the mean energy of the system. And in DPSO, the fitness of a
particle is considered as its energy.

At the t-th iteration, after a particle flying according to the movement rule,
the new position will not replace the particle’s previous one, but be used to take
place of another particle’s position in the current population P (t). Compute the
free energy for a trial population P (t + 1, k), where the new position replace
the k-th particle of P (t) (k is from 1 to N). Select the P (t + 1,k) for which the
free energy is minimal. Then use the new position to replace the k-th particle’s
position of P (t).

At a given iteration, after particle xi flies, we get a new x′
i, the general scheme

of DPSO is as the following:
(I) Set k =1;
(II) compute the free energy for a trial population P (t + 1,k), where the new

x′
i replace the k-th particle of P (t);
(III) i=i+1, return to II;
(IV) Select the P (t + 1,k) for which the free energy is minimal, and use the

new x′
i to replace the k-th particle.

Since there is a lot of computation work to do, we introduce a new parameter
called dynamical selector [6], to the algorithm to reduce it. In the following we
will give two definitions to make the new parameter easier to understand.

The momentum m (t, xi) of a particle xi at iteration t is defined as

m(t, xi) = f(t, xi) − f(t − 1, xi) (15)

where f(t, xi) denotes the function value of the particle xi at iteration t.
The activity of particle xi at iteration t is defined as

a(t, xi) = a(t − 1, xi) + 1 (16)

if particle xi is selected to fly at iteration t. Otherwise xi keeps unchanging.
Incorporating these two quantities the dynamical selector is defined as

slct(t, xi) =
∑

|m(t, xi)| + a(t, xi) (17)

In DPSO, slct (t, xi) (i =1, 2. . .N) is sorted in the order from small to large
expressed as slct (t) for short.

At a given iterationwe only choose a certain number of particles on the fore-
front of slct(t − 1).Then at every iteration, the number of flying particles is
smaller, so there will be less computation work to do, and also all the particles
have a chance to be chosen according to reference [6].
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4 Testing DPSO

The significance of a new optimization algorithm depends on the effectiveness
of solving practical problems. In this section, the new DPSO is used to solve
two typical hard global minimization problems, which are often used to test the
performance and reliability of optimization algorithms. The results can be easily
compared with other methods.

Test 1: Six-hump camel back function[7]
f1(X) = (4- 2.1x2

1 + x4
1/3) x2

1 + x1 x2+ (-4 + 4 x2
2) x2

1 ,
( -3≤x1≤3, -2≤x2≤2 ) .
It is known that this function has six local minima, just as its name sug-

gests, and has one global minimum value -1.031628 at two points (-0.089842,
0.712656 ) and (0.089842, 0.712656). Because of this, many algorithms only can
find the local minima, but lose the global optimization solutions.

Test 2: Shubert function III[8]
f2(X)={∑icos [(i+1) x1 + i]}{∑icos [(i+1) x2 + i]} + (x1+1.42513)2+

(x2+0.80032)2 ( -10≤x 1, x2≤10 ) (i=1,2. . . 5) .
This function has 760 local minima and only one global minimum-186.7309

at the point (−1.42513,−0.80032). Because of the large number of local minima
and the steep slope around the global minimum, this function has been widely
recognized as an important test function.

In our program, the parameters are as follows:
the number of the particles (the size of the population) N = 100;
the maximal iterative number MAXGENS=10000;
the initial temperature INITEMPER=100;
the number of particles that are chosen to fly at each iterative step m = 20;

c1=c2=1.494;
w = 0.729;

the number of the grids that the variable space are divided into M = 6 in test
1, and M = 8 in test 2;
the temperature schedule is defined as

T (t + 1) = 0.95T (t) (18)

which decreases the temperature slowly while the iterative number increases.
The program was executed 30 times for each problem. Table 1 shows the

numerical results of test 1, and Table 2 demonstrates the results of test 2.
Though the tables, we can see that DPSO is quite an efficient optimization al-
gorithm for GOP, and the successful rate of finding the optimal solutions is very
high.(Average of best fitness means the global minimum value of the function.)

Table 1. Experiment results for test 1

Average of best fitness Standard deviation for the samples (STDEV)
PSO -1.0316284 1.82574E-07
DPSO -1.0316285 0



A New Dynamic Particle Swarm Optimizer 487

Fig. 1. The figure of function 1

Table 2. Experiment results for test 2

Average of best fitness Standard deviation for the samples (STDEV)
PSO -186.4187377 0.388865957
DPSO -186.5956853 0.301233649

Fig. 2. The figure of function 2

5 Conclusion

In this paper, attempting to keep the particles from converging at a certain
local extremum at the early stage of the optimization, a new DPSO is proposed
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based on the theory of statistical mechanics and Information Theory. And a new
selector and acceptance strategy is presented. Some temperature schedule from
the Simulated Annealing algorithms is also used in this DPSO.

By solving some typical testing problems, the efficiency and effectiveness of
the DPSO are tested.

Although we get some achievement though this work, we still have some
problems to research. An exactitude analyse in theory to explain the effectiveness
of the new selector and acceptance strategy is needed. How to set some adaptive
values for the parameters in the DPSO, and how to apply it to real world problem
domains, where there are many difficult problems existing: these are all the
problems left for further studies.

After all, putting use of some theories in natural science into computation has
an extensive prospect. For the long run, we should pay much more attention to
this field, and may get more and more useful and interesting conclusions.
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Abstract. To enhance the diversity of search space, an improved version of Ant 
Colony Optimization (ACO), Mean-Contribution Ant System (MCAS) which is 
derived from Max-Min Ant System (MMAS), is presented in this paper. A new 
contribution function introduced in MCAS is used to improve the selection 
strategy of ants and the mechanism “pheromone trails smooth” mentioned by 
MMAS. Influenced by the improvements, the diversity of search space can be 
enhanced, which leads to better results. A series of benchmark Traveling 
Salesman Problems (TSPs) were utilized to test the performances of MCAS and 
MMAS respectively. The experiment results indicate that MCAS can outper-
form MMAS in most cases. 

1   Introduction 

Ant Colony Optimization, a novel approach to solve combinatorial optimization prob-
lems, was originally introduced in [1, 3], and had been applied widely [2]. It is in-
spired by the behavior of real ants [1], which can establish the shortest path from food 
sources to their nests. In the search process, a moving ant leaves the substances, 
which are called pheromone trails, to communicate among ants and help others decide 
which arc should be chosen to construct the whole tour. Meanwhile, the intensity of 
pheromone trails was declining due to evaporation over time unless more pheromone 
was laid down by other ants. An ant’s tendency to choose specific arc is positively 
correlated to the trails intensity, i.e., the more times an arc is chosen, the more phero-
mone trails would be left, which would attract more ants consequently. 

ACO uses simple artificial ants, called ants for short, to imitate real characteristics 
of ant colonies. Ants can communicate with each other via a mechanism influenced 
by the intensity of pheromone trails and the length of arcs [4, 5]. This mechanism al-
lows the collaboration among ants in order to search the solution space of combinato-
rial optimization problems. At present, there are many effective and efficient  
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improved versions including MMAS [11, 12] which is regarded as one of the most ef-
fective ACO algorithms for TSPs. However, it is inevitable that MMAS cannot be sat-
isfying in the process of maintaining the diversity of search space, which would 
deeply influence the qualities of results. 

In this paper, we present Mean-Contribution Ant System, an improved version of 
ACO based on MMAS, and prove that the validity of MCAS is better than that of 
MMAS through experiments on symmetric and asymmetric TSPs in TSPLIB 
(http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/index.html). 

The rest of this paper is organized as follow. To keep the integrality of this paper, 
the TSP and MMAS will be firstly introduced in Section 2. In Section 3, we present 
the Mean-Contribution Ant System algorithm and its improvements compared with 
MMAS. The results of experiments will be shown in Section 4 and conclusion with 
further work in Section 5. 

2   ACO and MMAS for TSPs 

The TSP can be formulated as the problem of finding a cyclic route of minimal length 
visiting every city exactly once in a complete weighted graph A. TSP can be repre-
sented by a complete weighted graph G = (V, A, d) where V is a set of cities, A = 
{(i,j)|(i,j) V×V} is a set of arcs, and d(i,j) R is a weight function, i.e. Euclidian dis-
tance for each pair of cities.  is the solution space of a TSP instance. The aim is to 
find a tour t  with the minimal cost function f(t)= d(i,j), (i,j) t. 

ACO makes use of ants that are set randomly on selected cities to construct candi-
date solutions for TSPs [8]. Each ant from the city i selected a city j which has not 
been visited according to probability P(i,j) which is influenced by the inverse of the 
distance (i,j) and the trails intensity (i,j) [1]. The equation is given by (1) [7].  

Pij= (i,j) × (i,j) (i,j) × (i,j)  (1) 

Where  and  are parameters, which determine the relative importance of pheromone 
and distance respectively. 

The pheromone trails are updated according to evaporation coefficient and incre-
ments of trails after all ants having constructed a complete tour. The equation is given 
by (2).  

ij
after= × ij

before+ ij
k (2) 

Where is the persistence of trails, and ij
k=1 Lk  only if arc(i,j) is chosen by ant k, 

and 1  represents the evaporation.  
Because ACO is a positive feedback search algorithm [6], the arcs used frequently 

and contained in shorter tours will accumulate a larger amount of pheromone and in 
turn will be selected more often in future. If ants only select cities with the highest  
intensity of pheromone trails, the stagnation of search will happen and final results 
will be obtained. The process of tour construction associating with trails update will 
be repeated for a given number of iterations. 
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MMAS algorithm improves the ACO by introducing restriction mechanism, which 
confines the trail strengths between maximum and minimum to efficiently prevent 
search from premature stagnation. The maximum trail limit max=1 Lmin, where Lmin 
is the minimal tour length found during the current iteration of search process. The 
minimum trail limit changing with maximum is represented as min= max 2n roughly 
(more details see [12]), where n is the number of cities. In MMAS, ants simply 
choose cities according to the lengths of arcs and the intensity of trails. In fact, arcs 
with much shorter lengths will be chosen with higher probability and left with more 
pheromone trails by ants, which results in that other longer arcs, which should be se-
lected more often, are chosen with such a low probability during the process of search 
that it is difficult to warrant the diversity of search space. That is the primary problem 
which MCAS wants to solve. 

To characterize the diversity of search space, the mean -branching factor can be 
used, for more details see [9]. If the mean -branching factor is very low (be equal 
to 1 approximately), ants will select no more arcs except ones with the highest trail 
intensity. 

3   Mean-Contribution Ant System 

In our experiments with MMAS, we observed that although some arcs with longer 
lengths and lower trail intensities were chosen seldom by ants, they can be contained 
in some evidently better tours occasionally. At the same time, however, the differ-
ences of trail intensity between these arcs and those with the highest trail intensity 
will be greater and greater due to the increasing iterations. The foregoing situation 
will result in that these longer arcs, which may be more beneficial to satisfying results 
than those ones with much shorter lengths, cannot obtain enough reinforcement of 
pheromone trails to attract ants to explore new potential tours. In this way, algorithm 
will be stagnant with suboptimal results.  

We use 3 sample instances including eil76.tsp, kroA100.tsp and kro124p.atsp in 
TSPLIB to demonstrate this tendency (see Fig. 1). The x-coordinate represents the it-
eration of search process, and the y-coordinate represents the average difference of 
trails intensity between arcs contained in better tours and arcs with the highest trails 
intensity. It is obvious that these arcs which are beneficial to better results were sel-
dom selected due to the lower intensity of pheromone trails and the difference of trail 
intensity between them and those with the highest trails intensity is increasing 
sharply. If ants select arcs only according to length of arcs and intensity of pheromone 
trails, the chance these longer arcs being selected will be smaller and smaller accom-
panying with the process of search, because selection strategy neglecting other infor-
mation from which the final result will benefit is unilateral. The increasing differences 
also cannot warrant the diversity of search space, and suboptimal results will be 
found. Therefore arcs with longer lengths and lower trails intensity should not be 
completely neglected by ants in searching process. Thus, it is reasonable to introduce 
other factors which can represent arcs’ characteristics better than length and trails  
intensity do.  
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Fig. 1. The average difference of trail intensity between arc with the highest trail intensity and 
others increases obviously accompanying with the process of search on the examples eil76, 
kroA100 and kro124p, respectively. The x-coordinate represents the process of search by  
using the number of iterations, and the y-coordinate represents the average difference of trail 
intensity. 

In the MCAS, we call arcs which are contained in the best tours of iteration, 
“contributive arcs” in spite of their lengths and trail intensities. The reason is that 
ants only see the lengths of arcs when they select the next city and cannot objec-
tively estimate the values of arcs without a global vision. So ants should selected 
cities not only according to arcs’ lengths and trails intensities but also according to 
their contribution to better solutions. Although not all of arcs contained in best tours 
of iteration are actually helpful to obtain better solutions, ants will not select them 
only by their contribution in spite of their lengths and trails intensities. Thus, if an 
arc belongs to “contributive arcs”, it may be beneficial to global optimization or at 
least not be detrimental to better solutions, so it should be selected later with a 
higher probability. We can use this idea to improve the selection strategy of ants. 
There are two obvious differences between MMAS and MCAS, as follow: 

1. In the MCAS, ants will choose arcs according to a selection strategy which not 
only considers the lengths and trails intensities of arcs, but also bases on the contribu-
tion of arcs to good results. 

2. MMAS introduces a mechanism called “pheromone trails smooth,” [12] to avoid 
suboptimal results when algorithm closes premature stagnancy. This mechanism in-
creases arcs’ trails intensity proportionally without discrimination. To the contrary, in 
MCAS, this mechanism will be changed and rely on the contribution of arcs to obtain 
good results. 

Therefore, these contributive arcs will obtain more opportunities to be explored in 
order to attain some competitive tours. The reason for making this improvement is 
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dual. On the one hand, arcs which are contributive for good results could be explored 
with a great probability. On the other hand, the useless arcs could be selected as little 
as possible to make useful arcs be selected with relative more chances in finite itera-
tions. Arcs with greater contributions for obtaining better results will be explored 
more often. The improved equation is given by (3).  

Pij= (i,j) × (i,j) × (i,j) (i,j) × (i,j) × (i,j)  (3) 

Where  is the parameter of relative importance, contribution function ij=Lmax Lij. 
Lij and Lmax represent the quality of tours consisting of arc(i,j) and the quality of tours 
consisting of the arc with the highest trail intensity among the arcs which begin with 
city i respectively. Lmax equals to mean length of tours which contain the arc with the 
highest trail intensity. The values of Lij and Lmax will increase with an inverse propor-
tion according to qualities of tours they construct. 

Lij could be either the mean length or the shortest length of the best tours consisting 
of arc(i,j) in each iteration. If the quality of tours consisting of arc(i,j) is better than 
that of tours consisting of the arc with the highest trail intensity among the arcs which 
begin with city i, ij 1, i.e., arc(i,j) which contributes more to good results should be 
selected with greater probability, vice versa. If arc(i,j) is not contained in any best tour 
after each iteration, its contribution will have no influence, then ij=1. Therefore ants 
will continue to choose contributive arcs with relatively higher probabilities and pay 
less attentions to those arcs which are longer and hence useless to good results; mean-
while the diversity of search space can be retained in order to find better results, be-
cause ants will construct tours with a global vision. 

3.1   Mean Length Versus Shortest Length for Lij 

As mentioned above, Lij can be the mean length of the best tours consisting of arc(i,j). 
But some bad tours make the average value of lengths bigger than it should be, be-
cause the length of the best tour after each iteration is much longer when the mean -
branching factor is not low enough. To diminish the counterproductive effects 
brought by long tours, in our experiment we calculate the Lij when the value of mean 
-branching factor is less than 2.0.  

Also, Lij can be the shortest length of tour consisting of arc(i,j) to eliminate bad 
results. Although some Lij are shorter than Lmax ( ij 1), they are not helpful to find 
better tour at all. In practice, these arcs with little contribution may be selected 
more frequently, which is not expected and leads to a suboptimal result. 

These two approaches maybe lead to different results. The experiment results of 
these two approaches are shown in Table 1. 

According to Table 1, it is obvious that most results with Lij as mean length are 
better than the ones with Lij as the shortest length at all aspects (the best result, aver-
age results and standard deviation). So mean length will be chosen to represent the 
quality of tours consisting of arc(i,j), and then ij represent the mean contribution of 
arc(i,j). This is the reason why the improved algorithm was named Mean-Contribution 
Ant System. 
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Table 1. Average experiment results with 10 independent runs and 10000 iterations, obtained 
by using mean length and the shortest length to respresent Lij respectively, Dev. is deviation 

Mean Length Shortest Length 
Problem 

best average Dev. best average Dev. 
eil51.tsp 428 428.7 1.16 427 429.4 1.78 
eil76.tsp 539 541.5 2.07 539 542.2 2.86 

kroA100.tsp 21296 21395.1 47.16 21379 21411 33.73 
bier127.tsp 119026 119383.4 186.31 119074 119680.3 369.39 
ch150.tsp 6555 6579.5 17.48 6559 6576.3 16.57 
ftv64.atsp 1854 1861.7 13.87 1854 1862.1 14.45 
ry48p.atsp 14459 14641.9 127.48 14549 14660.3 120.3 

kro124p.atsp 36695 37411.3 370.54 36882 37640.9 463.12 

3.2   Smoothing of the Pheromone Trails with Contribution 

In MMAS, an important improvement is the smoothing of the pheromone trails 
(PTS). When algorithm has converged or is very close to convergence which is indi-
cated by the mean -branching factor, this mechanism increases the pheromone trails 
proportionally based on their differences from the maximum pheromone trail limit 
(for more details see [12]). The main idea of PTS is to prevent ants from completely 
stopping searching the solution components with low pheromone trail. 

Nevertheless, the trail increasing only according to the difference of pheromone 
trails between arcs and the one with the highest trail intensity is not reasonable. With-
out considering whether and how many arcs contribute to good results, the trail inten-
sity of arcs which are not beneficial to shorter tours will be enhanced mistakenly as 
much as or even more than the one of useful arcs. Thus, new algorithm has to be pro-
posed to correct this mistake. In MCAS, the arcs with great contribution should obtain 
correspondingly more enhancements, and others with small contribution should ob-
tain less. So we improve the PTS by increasing the pheromone trails of arcs according 
to their contribution function  and make the trail intensity of arcs with more contri-
bution higher. In this way, the contributive arcs will obtain more enhancements than 
others. The equation is given by (4).  

ij
*= ij+ ×( max- ij)× ij (4) 

Where ij
* and ij are the pheromone trails before and after the smoothing. The value 

of  is between 0 and 1. 

4   Experiments with MCAS 

We choose equation (3) as the selection strategy and use the iteration-best ants for 
pheromone trails update (for more details see [11, 12]). The number of ants m is cho-
sen equal to the number of cities n, and ants are set averagely on each city. Other pa-
rameters are set as follow: =1, =2, =3, =0.98 and iteration = 10000. 

In order to avoid the premature stagnation of search, MCAS continue to use the re-
striction mechanism for the intensity of pheromone trails, and only the best tour in 
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each iteration is allowed to update pheromone trails. Furthermore, a 2-opt local search 
is added for higher quality solutions [10], and the average performance of these two 
algorithms (MCAS and MMAS) achieved over 10 independent runs. The experiment 
results are showed in Table 2. 

Table 2. Average experiment results with 10 independent runs and 10000 iterations, obtained 
by using MMAS and MCAS respectively. Obviously, the latter can achieve better results than 
the former, Dev. is deviation. 

MMAS MCAS 
Problem 

best average Dev. best average Dev. 
eil51.tsp 426 427.3 0.67 426 426.8 0.79 
eil76.tsp 538 539.9 2.64 538 538.1 0.32 

kroA100.tsp 21282 21349.7 41.36 21282 21347.6 38.36 
bier127.tsp 118803 118909 54.96 118759 118882.3 48.61 
ch150.tsp 6550 6559 6.32 6554 6560.9 7.08 
ftv64.atsp 1854 1854.2 0.63 1850 1853.6 1.26 
ry48p.atsp 14459 14494 38.02 14422 14489.1 31.22 

kro124p.atsp 36619 36914.2 137.82 36561 36828.7 273.16 

In Table 2, both the best results and average results obtained by MCAS are better 
than those obtained by MMAS for all problems except ch150, because of the mainte-
nance of diversity of search space. The experiment results indicate that the perform-
ance of MCAS is better than that of MMAS. 

5   Conclusion and Further Work 

In this paper, we presented the increasing difference of trail intensities between con-
tributive arcs and ones with the highest trail intensity, which will leads to a relative 
shallow diversity of search space. To enhance diversity, we introduced a new contri-
bution function, according to which ants’ selection strategy is improved. New strategy 
depends on not only the lengths and trail intensity of arcs but also their contributions 
to good results. There are two representations of contribution of arcs, one of which is 
the mean length of tours consisting of arc(i,j) and the other is the shortest length of 
tours consisting of arc(i,j). Throughout our experiments, we find that the former can 
achieve better results than the latter. Another improvement is that algorithm dynami-
cally diminishes the difference of trail intensity among arcs on the basis of their con-
tribution. The experiment results indicate that MCAS avoids the sparse diversity of 
search space effectively and increases possibility of acquirement of better solutions. 
Its performance is better than or at least the same as MMAS. 

The results obtained by ACO and its improved versions are closed to the best ones 
which are known at present. In future, a competitive tour improvement algorithm will 
be considered to enhance the performance of Ant Colony algorithm by making use of 
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the better solution obtained by MCAS. How to improve the efficiency of algorithm, 
especially when the number of cities is extremely large, is another problem which 
should be solved. 
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Abstract. One of the primary complaints toward Particle Swarm Optimization 
(PSO) is the occurrence of premature convergence. Quantum-behaved Particle 
Swarm Optimization (QPSO), a novel variant of PSO, is a global convergent 
algorithm whose search strategy makes it own stronger global search ability 
than PSO. But like PSO and other evolutionary optimization technique, 
premature convergence in the QPSO is also inevitable and may deteriorate with 
the problem to be solved becoming more complex. In this paper, we propose a 
new Diversity-Guided QPSO (DGQPSO), in which a mutation operation is 
exerted on global best particle to prevent the swarm from clustering, enabling 
the particle to escape the sub-optima more easily. The DGQPSO, along with the 
PSO and QPSO, is tested on several benchmark functions for performance 
comparison. The experiment results show that the DGQPSO outperforms the 
PSO and QPSO in alleviating the premature convergence. 

1   Introduction 

The Particle Swarm Optimization (PSO), first introduced by Kennedy and Eberhart 
[4], is a population-based optimization technique that can be likened to the behavior 
of a flock of birds or the sociology behavior of an organism. In PSO with population 
size M, each particle i ( Mi ≤≤1 ) represents a possible solution to the optimization 
problem at hand, flies in D-dimensional search space with the following attributes: A 
current position in the search space ),,,( ,2,1, Diiii XXXX = ; a current velocity 

),,,( ,2,1, Diiii VVVV = , and a personal best (pbest) position ),,,( ,2,1, Diiii PPPP = . During 

each iteration, each particle is updated according to 

)]()([)()]()([)()()1( ,,,22,,,11,, tXtPtrctVtPtrctVwtV jijgijijiijiji −⋅⋅+−⋅⋅+⋅=+  (1) 

)1()()1( ++=+ tVtXtX iii  (2) 

where )1,0(~1 Ur , )1,0(~2 Ur  are elements from two uniform random sequences in 

the range (0,1), and 1c  and 2c  denote the acceleration coefficients which typically  

are both set to a value of 2.0. The personal best position of each particle (the position 
with the best fitness value experienced by the particle so far) Pi is updated at each 
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iteration and gP  is the global best position found by any particle during all previous 

steps. The value of each component in every iV  vector can be restricted to the range 

[ ]maxmax ,VV−  to reduce the likelihood of particles leaving the search space. The 

variable w in (1) is called the inertia weight; this value is typically setup to vary 
linearly from 0.9 to near 0.4 during the course of training run ([14], [15]). Since its 
origin, there have been many improvement of PSO. For more detailed information of 
these improved versions, one may see literatures such as [1], [2], [5], [6] and [7] etc. 

In the previous work [8], [9], [10], we proposed a novel PSO called Quantum-
behaved Particle Swarm Optimization (QPSO), which was inspired by quantum 
mechanics. It has been shown that QPSO outperforms the original PSO on several 
widely known benchmark function problems. However, like other evolutionary 
algorithm, the PSO as well as QPSO, confront the problem of premature convergence, 
which result in great performance loss and sub-optimal solutions. In the PSO or 
QPSO, the fast information flow between particles seems to be the reason for 
clustering of particles. In this paper, we propose a Diversity-Guided Quantum-
behaved Particle Swarm Optimization (DGQPSO). In the DGQPSO, a threshold value 
was set for population’s diversity measure to prevent premature convergence and 
therefore enhance the overall performance of the QPSO. The rest part of the paper is 
organized as follows. In the next section, the QSO is introduced. The DGQPSO is 
proposed in Section 3. Section 4 is the experiment results and discussion.  Some 
conclusion remarks are given in Section 5. 

2   Quantum-Behaved Particle Swarm Optimization 

Trajectory analyses in [3] demonstrated that, to guarantee convergence of the PSO 
algorithm, each particle must converge to its local attractor ),,( ,2,1, Diiii pppp = , 

of which the coordinates are: 

)()( 21,2,1 ccPcPcp jgiiid ++= , or 
jgjiji PPp ,,, )1( ⋅−+⋅= ϕϕ , (3) 

for j=1,2,…D where )1,0(~ Uϕ .Assume that there is one-dimensional δ potential 

well on each dimension at point pi and each particle has quantum behavior. The 
probability distribution function of particle’s position on each dimension is 

 jijiji LXp

ji eXF ,,,2

, )(
−−=  (4) 

where Li,j determines search scope of each particle. Employing Monte Carlo method, 
we can obtain the position of the particle by 

)1,0()1ln(
2

,
,, randuu

L
pX ji

jiji =±=  (5) 

where  u is a random number uniformly distributed in (0, 1). The value of Li,j is 
evaluated by )(2 ,, tXCL jijji −⋅= β , where C called Mean Best Position, is defined 

as the mean of the pbest positions of all particles. That is 



 A Diversity-Guided Quantum-Behaved Particle Swarm Optimization Algorithm 499 

=

=
M

i
jij P

M
C

1
,

1 , ),,2,1( Dj =  (6) 

Hence, the position of the particle updates according to the following equaiton 

)1,0()1ln()()1( ,,, randuutXCptX jijjiji =−⋅±=+ β  (7) 

where parameter β is called Contraction-Expansion Coefficient, which can be tuned to 
control the convergence speed of the algorithms. The PSO with equation (7) is called 
Quantum-behaved Particle Swarm Optimization (QPSO).  

3   Diversity-Guided QPSO 

In a PSO system, with the fast information flow between particles due to its 
collectiveness, diversity of the particle swarm declines rapidly, leaving the PSO 
algorithm with great difficulties of escaping local optima. In QPSO, although the 
search scope of an individual particle at each iteration is the whole feasible solution 
space of the problem, diversity loss of the whole population is also inevitable.  
Inspired by works undertaken by Ursem and Riget et al ([12], [13]), we propose a 
Diversity-Guided Quantum-behaved PSO (DGQPSO) in this paper.  

As Uresem and Riget did, the diversity in DGQPSO is measured by average 
Euclidean distance from the particle to their centroid. However, in PSO or QPSO 
system, there are two populations or swarms, one of which is composed of the current 
positions of the particles, and the other of which is the set of the personal best 
positions of the particles, 

( )MX XXXS ,,, 21= , ( )MP PPPS ,,, 21=  (8) 

Correspondingly, there are two forms of diversity measure for a QPSO or PSO system 
described as follows, 
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where A  is the length of longest the diagonal in the search space, D is the 

dimensionality of the problem. Hence, we may guide the search of the particles with 
one of the above diversity measures when the algorithm is running. 

At the beginning of the search, the diversity of the particle swarm in QPSO is high 
after initialization. With the development of evolution, the convergence of the particle 
makes the diversity be declining, which, in turn, is enhancing the local search ability 
(exploitation) but weakening the global search ability (exploration) of the algorithm. 
At early or middle stage of the evolution, the declination of the diversity is necessary 
for the particle swarm to search effectively. However, after middle or at later stage, 
the particles may converge into such a small region that the diversity of the swarm is 
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very low and further search is impossible. At that time, if the particle with global best 
position is at local optima or sub-optima, premature convergence occurs.  

To avoid the premature convergence and improve the performance of QPSO, we 
proposed a Diversity-Guided QPSO (DGQPSO), in which a low bound for 

)( XSdiversity  or )( PSdiversity is set to prevent the diversity from constantly 

declining. The procedure of the algorithm is as follows. After initialization, the 
algorithm is running in convergence mode that is realized by varying β from 1.0 to 0.5 
on the course of running. This control method of the parameter is also adopted in the 
original QPSO and can result in good performance of QPSO generally.  On the course 
of evolution, if the diversity measure of the swarm declines to below the low bound 
dlow, the particles will explode to increase the diversity until it is larger than dlow.  

In [11], we proposed two methods of making the particles explode. One method is 
to control the value β, that is, we can set β=β0 (β0>1.79) once )( XSdiversity  is lower 

than the threshold value dlow. The other method of increasing the diversity is re-
initializing the Mean Best Position C of the population across the search space once 

)( XSdiversity  is smaller than dlow. The reason for the re-initialization of C is that 

when the diversity is low, the distance between the particle and C is too small for the 
particle to escape the local optima as can be seen from equation (7). Thus re-
initializing C could enlarge the gaps between particles and C, consequently making 
particles explode temporarily. These two methods are efficient when we adopt 

)( XSdiversity  as the diversity measure, but fail to result in good performance if 

diversity measure is )( PSdiversity . 

In this paper, we propose a new method of exerting the following mutation 
operation on the particle with global best position if the diversity measure is smaller 
than dlow, 

)1,0(~,,, NAPP jgjg εεγ ⋅⋅+= , ),,2,1( Dj =  (11) 

where ε is a random number with standard normal distribution N(0,1), γ is a 
parameter.  

When the mutation operation is exerted, the displacement of the global best 
particle will make increase the average distance of the particles’ personal best 
positions from their mean best position C and thus enhance the )( PSdiversity . In the 

meanwhile, the position C will be pulled away from its original position by the 
displaced global best particle, which, in turn, enlarges the gaps between particles’ 
current position and the position C, consequently making particles’ search scope 
extended and resulting in the gain of )( XSdiversity . Therefore, we may see that this 

mutation method can work on both )( XSdiversity  and )( PSdiversity . In this paper, 

we present two versions of Diversity-Guided QPSO, one use )( XSdiversity  as 

diversity measure and called DGQPSOX, the other employ )( PSdiversity  and named 

DGQPSOP. The DGQPSO is outlined as follows 

DGQPSO 
Initialize particles with random position Xi=X[i][:]and 
set the personal position of particles to Pi=Xi;  
for t=1 to MAXITER 
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  Compute the mean best position C[:] by equation (6); 
  β=(1.0-0.5)*(MAXITER-t)/MAXITER+0.5; 
  Measure the diversity by (9) (DGQPSOX)or (10)(DGQPSOP) 
  if (diversity<dlow)(in explosion mode) 
      for j=1 to D 
         P[g][:]=P[g][:]+γ* A *ε; X[g][:]=P[g][:]; 
         f(Pg)=f(P[g][:]); f(Xi)=f(Pg); 
       endfor 
  endif 
  for i = 1 to swarm size M  
     If f(Xi)<f(Pi) then Pi=Xi; Endif  
     Find the Pg=arg min f(P[g][:]); 
     for j=1 to D 
        ϕ=rand(0,1); u=rand(0,1);  
        p=ϕ*P[i][j]+(1-ϕ)*P[g][j];  
        if (rand(0,1)>0.5) 
            X[i][j]=p-β∗abs(mbestd-xid)*log(1/u); 
        Else  
            X[i][j]=p+β∗abs(mbestd-xid)*log(1/u); 
        Endif 
     Endfor 
  Endfor 
Endfor 

4   Experiment Results and Discussion 

We have tested the QPSO, DGQPSO as well as original PSO with inertia weight 
(called Standard PSO or SPSO) on four widely known benchmark functions that are 
used for testing the performance of different evolutionary optimization strategies. 
These functions are all minimization problems with minimum value zero. The four 
test functions are listed in Table 1. In all experiments, the initial range of the 
population in all cases also listed in Table 1 is asymmetry.  

The population size is set to be 20 for all cases and we had 50 trial runs for every 
instance and recorded mean best fitness over 50 runs and the standard deviations. 
The maximum numbers of iterations are set as 1000, 1500 and 2000 corresponding 
to the dimensions 10, 20 and 30 for first there functions, respectively. The dimension 
of the last functions is 2 and the maximum number of iterations is 2000 for this 
function. In performance test of the SPSO, the inertia weight w is decreases linearly 
from 0.9 to 0.4 and Vmax is set to be Xmax as in [14] and [15]. In performance tests for 
QPSO and DGQPSO, the Contraction-Expansion Coefficient β  varies from 1.0 to 
0.5 linearly when the algorithms are running. For both DGQPSO, the threshold value 
(low bound) of the diversity measure dlow is to be 0.0001 and the value of coefficient 
γ is set to 0.00001. This configuration for DGQPSO seems to generate better results 
than other parameter settings as shown by our preliminary experiments. Moreover, 
the length of longest the diagonal in the search space can be computed by 

DXXA ⋅−= )( minmax
. 



502 J. Sun, W. Xu, and W. Fang 

Table 1. The four benchmark functions tested for performance comparison 

 Function Expression (Xmax, Xmin) Initial Range 
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−
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1
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n

i
iii xxxXf

 (-100, 100) (15, 30) 

Rastrigrin 
=

−⋅−=
n

i
ii xxXf
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xx

xx
Xf

++
+

+=
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The mean values and standard deviations of best fitness values for 50 runs for each 
case are recorded in Table 2 to Table 5. It can be seen that both DGQPSOX and 
DGQPSOP outperform SPSO and QSPO considerably on the first three functions. On 
Rosenbrock function, the mean best fitness values resulted from DGQPSO are less 
than those from QPSO by at least two times. When dimensionality is 30, among 50 
runs, DGQPSOX and DGQPSOP can search out the best fitness values 51041.2 −×  and 

51057.2 −× , respectively, which are the optimal value of the function and never found 
out by SPSO and QPSO with the same parameter settings. On Rastrigrin function, the 
advantages of DGQPSO over QPSO and SPSO are also remarkable. When the 
dimensionality is 30, DGQPSOX and DGQPSOP can hit the best values 71069.2 −×  
and 81054.1 −×  respectively among 50 such that QPSO and SPSO can never found in 
the experiments. On Greiwank function, both DGQPSO have more successful 
searches than the other two algorithms. On Shaffer’s function, both DGQPSPO have 
the similar performance with original QPSO, which means that diversity controlling 
does not work on this function. 

Table 2. Average best fitness and standard deviation of all algorithms on Rosenbrock function 

  Dimension Generation Mean Best Fitness St. Deviation 
 10 1000 94.1276 194.3648 

SPSO 20 1500 204.337 293.4544 
 30 2000 313.734 547.2635 

 10 1000 59.4764 153.0842 
QPSO 20 1500 110.664 149.5483 

 30 2000 147.609 210.3262 
 10 1000 10.6058 24.0337 

DGQPSOX 20 1500 50.9962 48.1224 
 30 2000 55.3429 55.3429 

 10 1000 11.4846 18.9461 
DGQPSOP 20 1500 40.1360 34.5854 

 30 2000 68.5157 91.4298 
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Table 3. Average best fitness and standard deviation of all algorithms on Rastrigrin function 

  Dimension Generation Mean Best Fitness St. Deviation 
 10 1000 5.5382 3.0477 

SPSO 20 1500 23.1544 10.4739 
 30 2000 47.4168 17.1595 

 10 1000 5.2543 2.8952 
QPSO 20 1500 16.2673 5.9771 

 30 2000 31.4576 7.6882 
 10 1000 3.2979 3.5853 

DGQPSOX 20 1500 7.8673 8.3829 
 30 2000 14.9209 12.9739 

 10 1000 3.2503 4.1251 
DGQPSOP 20 1500 6.5896 6.9187 

 30 2000 14.9766 13.1449 

Table 4. Average best fitness and standard deviation of all algorithms on Greiwank function 

  Dimension Generation Mean Best Fitness St. Deviation 
 10 1000 0.09217 0.0833 

SPSO 20 1500 0.03002 0.03255 
 30 2000 0.01811 0.02477 

 10 1000 0.08331 0.06805 
QPSO 20 1500 0.02033 0.02257 

 30 2000 0.01119 0.01462 
 10 1000 0.0703 0.0599 

DGQPSOX 20 1500 0.0141 0.0215 
 30 2000 0.0049 0.0088 

 10 1000 0.0693 0.0648 
DGQPSOP 20 1500 0.0140 0.0162 

 30 2000 0.0056 0.0085 

Table 5. Average best fitness and standard deviation of all algorithms on Shaffer’s function 

 Dimension Generation Mean Best Fitness St. Deviation 
SPSO 2 2000 2.78E-04 0.001284 
QPSO 2 2000 0.001361 0.003405 

DGQPSO1 2 2000 0.001360 0.003405 
DGQPSO2 2 2000 0.001361 0.003405 

5   Conclusion 

In this paper, we proposed a Diversity-Guided QPSO (DGQPSO), in which low 
bound value is set for the diversity to prevent the particles from clustering. The 
diversity controlling in DGQPSO is realized by exerting mutation operation on global 
best particle once the diversity declines to below the low bound.  This method can be 
used to control both forms of diversity. The results of experiments on benchmark 
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functions show that DGQPSO outperforms SPSO and QPSO considerably. DGQPSO 
is also superior to the diversity control method for QPSO in [11], because the 
mutation operation on global best particle may guide the swarm into promising 
regions with better solutions.  
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Abstract. Spatially-structured evolutionary algorithms are frequently
implemented using a homogeneous environment throughout space. Such
a configuration does not promote local adaptation of individuals in space.
This paper introduces an evolutionary algorithm using space and lo-
calised environments to promote speciation. Surprisingly, a randomly
generated “rugged” landscape appears to best support speciation by en-
couraging crossover between niches, while maintaining locally distinct
species.

1 Introduction

Multimodal fitness landscapes present a difficult challenge for traditional evolu-
tionary algorithms (EAs) as they are typically unable to discover and maintain
multiple optima during the course of a single run. This is due to two factors:
genetic drift (in the case of equal-valued optima) will converge the population
onto a single point in the fitness landscape and selection (in the case of unequal
peaks) will adapt the population towards the fittest peak.

One analogy with discovering multiple optima is to view the evolutionary
process as a form of speciation. Speciation models often rely on some form of
breeding separation between subpopulations either spatially or through assorta-
tive mate preference. Spatial structure separates individuals into geographically
isolated groups (demes); this increases inbreeding and the resultant changes in
genetic drift promote local genetic divergence in the population [1]. In addition,
a spatially structured population often presents resources (eg. food, shelter) that
vary with location. Natural selection in space tends to encourage adaptation to
these local environments, again encouraging local divergence of gene frequencies.

Spatially-structured evolutionary algorithms (SSEAs) are known to delay con-
vergence of a population and increase overall genetic diversity [2]. This is pri-
marily through the change in genetic drift that is brought about through local
mating, but is also due in part to the fact that overall selection pressure in
an SSEA is qualitatively similar but quantitatively less than an unstructured,
panmictic EA [3]. The environment presented by a typical SSEA is typically ho-
mogeneous; the environment does not change with location and hence the second

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 505–512, 2006.
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property that spatial structures permit (local adaptation), is not present in an
SSEA.

Previous work has explored the use of SSEAs with localised environments in
the context of multiobjective optimisation [4,5]. This paper extends this work
to the field of multimodal function optimisation. Each location in space is ini-
tialised with a vector of “ideal” phenotypic traits. The mismatch between this
vector and the phenotype of an individual occupying the location is used to
determine the occupant’s localised fitness. Selection for parents is based around
this localised fitness, which helps to promote local adaptation. Empirical test-
ing of this method on several benchmark problems indicates that it is able to
sustain multiple optima more effectively than existing spatially-structured tech-
niques. In addition, the proposed model is robust and requires no additional
problem-specific information than a typical evolutionary algorithm.

The remainder of this paper is structured as follows: §2 describes the SSEA
used in this paper and a brief review on the success of SSEAs at searching
multimodal fitness landscapes; the proposed environmental gradient for SSEAs
is given in §3 and a comparison between this method and existing SSEAs is given
in §4. Finally, a brief discussion of the findings of this paper and a suggested
path for future work is presented in §5.

2 Niching with Spatially-Structured Populations

Previous research has developed many methods that extend traditional EAs and
allow them to maintain multiple optima for sustained periods [6,7,8]. Collectively,
these solutions are often referred to as niching EAs. This paper discusses one
specific group of niching EAs called spatially-structured evolutionary algorithms
(SSEAs). These methods impose a structure on the population of an EA and
restrict selection and mating to geographically “close” individuals [2].

SSEAs are said to naturally promote speciation. Many studies have investi-
gated the performance of SSEAs for multimodal optimisation, although usually
in the context of searching for one globally optimal solution. Davidor [9] cre-
ated the ECO GA and claimed that areas of homogeneity presented themselves
in space through the local interactions promoted by the population structure.
Davidor tested this framework on a multimodal problem with five optima of
varying value. The ECO GA produces localised “niches” that remained for a
period of time until the were eventually overwritten by the global optimum.
The author claims that the niches remain for thousands of generations, however
a steady state population was used in which only two individuals were created
per generation. The niching ability of this SSEA therefore seems somewhat over-
stated. Davidor et al. [10] modified the ECO GA in later work and demonstrated
better-than-benchmark performance on a job scheduling problem. However, the
focus of this later work was not on niching and the ability of the modified ECO
GA to maintain multiple solutions was not reported.

Others have suggested that spatially-structured populations are able to sup-
port multiple optima [11,3]. Collins and Jefferson [11] noted that their SSEA
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maintained homogeneous groups of optimal solutions on a bimodal graph par-
titioning problem and that regions of “lethal” (low fitness) individuals existed
between these groups. The formation of lethals is not surprising as the two
optima in this problem are bitwise compliments and hence crossover between
peaks should produce low-fitness offspring with high probability. The ability of
this SSEA to support more than two optimal species was not reported. Sarma
[3] examined an SSEA’s performance on two multimodal fitness landscapes each
with five optimal phenotypes. In one landscape, the optima were of equal value,
in the other they varied. Sarma noted that the SSEA always converged to the
single global optima in the unequal-peak fitness landscape. However, she was
able to support three peaks in the fitness landscape with equal value optima.

2.1 SSEA Implementation

This paper uses a two-dimensional population structure (a torus) as the basis of
its SSEA. Selection is limited to demes, which are constructed using the Von-
Neumann neighbourhood. The demes are overlapping in space, so any individual
belongs to five demes. This allows propagation of good solutions throughout the
population without the need for migration. Fitness proportionate selection is
used to remain consistent with previous work. Two parents are selected (without
replacement) from the deme and a single offspring is produced via one-point
crossover. Elitist replacement is also used; offspring replace the current occupant
of a location under the strict requirement that they are of greater localised
fitness.

3 Localised Environments for SSEAs

An SSEA usually presents the same environment throughout space. However,
evidence from theoretical population biology suggests that a series of varying lo-
cal environments is more likely to promote speciation [12]. To this end, Murata
et al. [4] implemented a multiobjective SSEA in which each location possessed
a vector of weights corresponding to the emphasis to be placed on each objec-
tive. Certain locations placed a higher importance on one objective, while others
treated each objective with equal importance. This encouraged certain areas to
optimise specific objectives within the overall problem. A similar environmen-
tal gradient concept was used by Kirley [5] in his metapopulation evolutionary
algorithm.

This paper introduces localised environmental conditions into an SSEA using
three methods. The first method applies a linear gradient for each phenotypic
trait. An example of such a gradient is shown in Figure 1(a). In the case of
multiple phenotypic traits, each gradient is placed onto the population with a
random offset. This is to increase the probability that a set of locations will exist
that are reasonably close to the ideal conditions for optimal phenotypes in the
fitness landscape. The second approach creates a gradient that covers the space
radially (Figure 1(b)). As with the linear gradient approach, the gradient for each
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phenotypic trait is offset by a random amount so as to increase the likelihood of
creating suitable habitats for optimal phenotypes. The final approach is to create
a “rugged” landscape. Each location in space contains a randomly generated
environment (Figure 1(c)). This method differs from the other two in that the
environments presented at a given location are not highly correlated with those
of its neighbours.

(a) Linear (b) Radial (c) Rugged

Fig. 1. The three varying environments implemented in this paper

Simply introducing a varying environment into the space of an SSEA is not
enough to encourage local adaptation. A function relating the phenotype of
an individual to the ideal phenotype for a local environment is needed. This
paper uses a function similar to the Gaussian function proposed by Doebeli and
Dieckmann [12]. The mismatch between the phenotype p and the environment
p0 is defined as:

K (p, p0) = e−
1
2 (

p−p0
σ )2

(1)

where σ determines the severity of the environmental response. High values of
σ negate the importance of the environment, while lower values encourage local
adaptation.While this parameter can obviously be tuned on a per-problem basis,
this paper uses a value of 1

4 of the range of permissible phenotypes. This is in
order to demonstrate the robustness of the proposed method. In the case of
multiple phenotypic traits, the response of a phenotype to an environment is the
mean value of Equation 1 for each trait.

The combination of environment, response function and phenotype can be
used to determine an individual’s local fitness. An individual with a phenotype
p occupying a location with environment e has the localised fitness of:

flocal (p, e) = f (p) · K(p, e) (2)

where f (p) is the fitness of an individual in the absence of the environment.

4 Empirical Analysis

The proposed environmental SSEA was compared with two SSEAs from previous
work: the ECO GA [9,10] and an SSEA similar to that used by Collins and
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Jefferson [11] and Sarma [3]. In the case of the ECO GA, both the original
implementation and the later method were tested.

Each SSEA was tested on four benchmark problems taken from a well-known
test suite [13]. The first two problems, M1 and M4, are sinusoidal problems.
M1 has five equally spaced peaks, all of equal value. M4 also has five peaks,
however they are of decreasing value and the distance between neighbouring
optima is not equal. These two problems are very simple, although most SSEAs
have trouble maintaining all five peaks. The third problem, M6 is the Shekel’s
foxholes problem. This has 25 unequal-value peaks in the two-dimensional fitness
landscape. The final test problem, M7, is designed to be deliberately difficult for
a niching EA. M7 has 32 global, desirable optima and over five million undesired,
deceptive optima. The reader is referred to the original work describing the test
suite for more detailed information on these functions [13].

Population sizes for each problem were taken from previous work. In the case
of M1 and M4 the population size was 225, taken from Sarma’s study [3]. The
population size for M6 was 289 and was determined from Mahfoud’s study on
population sizing for niching methods [14]. Finally, the population size of M7
was 676 taken from empirical studies in niching by Mahfoud [13].

Each SSEA used a similar set of parameters for crossover and mutation. Since
each algorithm implemented elitism, full crossover (probability 1.0) was used.
Bit-flipping mutation was applied at a per-locus level with probability 0.002.
Reproduction of two parents created a single offspring, except in the case of the
ECO GA, which creates two offspring per crossover. Also, the ECO GA used
a steady state population. A generation for the ECO GA was considered to be
the number of iterations required to create a number of offspring equal to the
population size. This allowed for direct comparison to the other SSEAs.

4.1 Results

The performance of each SSEA on the test problems was measured through two
statistics used in previous niching studies [15]. The first measurement records the
number of peaks discovered and maintained by the population over 500 genera-
tions. The second measure is the Chi-Square-Like performance which measures
the deviation of the population from that of an “ideal” population1. Higher val-
ues for the number of maintained niches indicates better algorithm performance,
while lower values for the Chi-Square-Like measure indicate better performance
(a value of zero being ideal). These measurements were averaged over 100 runs.

The number of peaks maintained over time is shown in Figure 2. All environ-
mental SSEAs are able to support nearly all optima on the M1 and M4 problems
while the “traditional” SSEAs quickly lose all but one optimum from the pop-
ulation. A similar trend is observed on the M6 problem. In the case of the M7
problem, all SSEAs (except the original ECO GA) support multiple optima,
however the most peaks are supported by an SSEA using a rugged environment.

1 A population in which all individuals reside on a peak in distributions relative to a
peaks value.
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The Chi-Square-Like performance of the various algorithms is shown in Fig-
ure 3. All three environmental SSEAs exhibit better distribution of individuals
on peaks than the SSEAs from previous work.
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Fig. 2. Number of peaks maintained for each problem using the different SSEAs

Two statements can be made about the results presented here: the niching
abilities of the traditional SSEAs presented here are supprisingly poor; con-
versely, SSEAs incorporating a localised environments are effective at maintain-
ing multiple peaks of a multimodal fitness landscape. The behaviour of the SSEA
using the rugged landscape is of particular interest, as most theories on speciation
on a cline assume gradual environmental changes are required for local adapta-
tion [12]. A possible explaination for this could be that a rugged environment
increases the likelihood of mating between two distinct optima. This scenario
would be particularly beneficial to the M6 and M7 problems, as crossover of
two distinct optima in these problems will produce a third optima with high
probability. The linear and radial environments promote breeding between ge-
netically close individuals. This restricts the flow of genetic information between
subpopulations and reduces the crossover interactions between niches.

If the above theory is true, then one would expect an SSEA using the rugged
environment to exhibit lower levels of inbreeding than the other SSEAs. This is
easily testable by calculating the inbreeding coefficient, F , of the population [11].
The inbreeding coefficient of SSEAs using the three environments is shown in
Figure 4. In this figure, a higher value for F indicates a greater level of inbreeding
(and hence intra-niche mating) and a value close to zero implies more frequent
crossover between individuals from different niches. As can be seen, in both
cases the rugged environment demonstrates less inbreeding than the other two
environmental configurations.
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Fig. 3. Number of peaks maintained for each problem using the different SSEAs
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Fig. 4. Inbreeding coefficient over time for the three gradients on the M6 and M7
problems

5 Conclusion and Future Work

This paper presents an SSEA customised for use in searching multimodal fitness
landscapes. It does this through the use of local adaptation via environments
that vary with location. A supprising outcome of this work is that a randomly
generated, rugged environment promotes and maintains the most speciation.
This could be in part to the increase in crossover between niches that such a
landscape promotes.

The proposed algorithm is an extension of existing SSEAs that is simple to
implement, requires little computational overhead and requires no additional
problem-specific information to operate. Future work in this field should explore
the progression of environments from highly ordered to completely random. Do-
ing so may discover a point of criticality that maximises the benefit of incor-
porating localised environments into SSEAs. In addition, the effect alternative
response functions would have on the behaviour of environmental SSEAs needs
to be considered in more detail.
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Abstract. The time complexity analysis of ant colony optimization (ACO) is one 
of the open problems in ACO research. There has been little proposed work on 
this topic recently. In the present paper, two ACO algorithms (ACO I and ACO 
II) for linear functions with Boolean input are indicated, and their time 
complexity is estimated based on drift analysis which is a mathematical tool for 
analyzing evolutionary algorithms. It is proved that the algorithm ACO II can 
find the optimal solution with a polynomial time complexity. It is a preliminary 
work about estimating the time complexity of ACO, which should be improved 
in the future study. 

1   Introduction 

ACO was first proposed by M. Dorigo and his colleagues as a multi-agent approach 
to deal with difficult combinatorial optimization problems such as TSP [1]. Since 
then, a number of applications to the NP-hard problems have shown the effectiveness 
of ACO [1]. Up till now, Ant Colony System (ACS) [2] and MAX-MIN Ant System 
(MMAS) [3] are so successful and classical that their strategies such as pheromone 
global-local update and Maximum-Minimum of pheromone are widely used in recent 
research [1].  

At present, the study on the speed of convergence is a hot topic [4]. As for the ACO’s 
convergence, W. J. Gutjahr [4-6], T. Stützle [7], M. Dorigo[7-9], A. Fahmy [10], and S. 
Fidanova [11, 12] have done a lot of work, which only paid attention to the 
convergence of ACO. However, there have been few progresses in the study of ACO’s 
time complexity. In the latest survey of ACO [9], the NO.1 open problem is proposed as 
follows: 

Open problem 1. The proofs that were presented in this section do not say anything 
about the time required to find an optimal solution, which can be astronomically large. 
It would be interesting to obtain results on the convergence speed for ACO algorithms, 
in spirit similar to what has been done in evolutionary computation for relatively simple 
problems. 
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For this interesting topic, this paper introduces two ACO algorithms for the linear 
function [13] solved by (1+1)EA [14]. With drift analysis by J. He and X. Yao[15-19], 
we prove that the algorithms can find the optimal solution with the time complexity 

( )kO n and 2( )O n respectively. According to the analysis of the algorithms, it is 

concluded that heuristic information is crucial to the performance of ACO in solving 
problems of linear functions. 

2   Drift Analysis for Mean First Hitting Times 

Drift analysis was applied for estimating the computation time of evolutionary 

algorithms by J. He and X. Yao [15, 20]. Let { ; 0,1,...}t tξ = be a Markov chain 

associated with an EA. Its first hitting time to the optimal set optE , or the number of 

generations for the EA to find an optimal solution first time, is defined by 

: min{ 0; }t optt Eτ ξ= ≥ ∈ [15]. The upper bound of the first hitting time can be 

estimated through the lower bound of the mean drift [21]. 

Lemma 1. Given a distance function ( )V x , if { ( ); 0,1,2,...}tV tξ = satisfies: for 

any time 0t ≥ and any population tξ  with ( ) 0tV ξ > ,  

1[ ( ) ( ) ]t t t lowE V V cξ ξ ξ+− ≥  (1) 

where 0lowc > , then the mean first hitting time satisfies 

0
0

( )
[ ]

low

V
E

c

ξτ ξ ≤  (2) 

Based on this lemma, we analyze the time complexity of the ACO algorithms which 
are introduced in the following sections. 

3   Time Complexity of ACO for Boolean Linear Function  

Consider the following linear function [13]: 

     0
1

( )
n

i i
i

f x w w s
=

= +  (3) 

where 1( ... )nx s s= is a binary string, weights 1 2 ... 0nw w w≥ ≥ ≥ >  and 0 0w ≥ . 

This function is maximal at (1,…,1). There are two ACO algorithms indicating in this 
section. 

The framework of the ACO algorithms for this problem is: 

 



 A Time Complexity Analysis of ACO for Linear Functions 515 

Algorithm: ACO for linear function 

Input: 1 2( , ,..., )nw w w  

begin 
Initialization;    

0t =        
while termination conditions not met do 
 Solution construction;          
Solution updating; 
Pheromone updating; 

1t t= + ; 
until meeting the condition to stop 

end. 
Output: The best-so-far solution 

3.1   ACO I for Boolean Linear Function and Its Time Complexity 

ACO I is a single-ant algorithm, which is designed in the following. 

Solution construction: 
A solution 1 2( ) ( , ,..., )nx t s s s=  is constructed by the artificial ant based on the 

transition rule:  
( )

( ) 1
1 1

( )
1

0

( )
{ }

( )

t
t

t

j

a
P s a

j

τ

τ
=

= =  and 
( )

( )
1 1

( )

0

( , )
{ }

( , )

t
t i

i i
t

i
j

b a
P s a s b

b j

τ

τ
−

=

= = =  

( 2,...,i n= ), where 0,1a=  and 0,1b = .  

Pheromone vector is defined as ( ) ( ) ( )
1( , ..., )t t t

nT T T=  where 
( ) ( ) ( )

1 1 1( (0), (1))t t tT τ τ=  and ( ) ( ) ( ) ( ) ( )( (0,0), (0,1), (1,0), (1,1))t t t t t
i i i i iT τ τ τ τ= .  

Initialization: 

(0)
1 1 1( , )T τ τ=  and (0) ( , , , )i i i i iT τ τ τ τ=  ( 2,...,i n= )  where 

2
i

i

w

n
τ =

−
 

( 1, ...,i n= ). 

Solution updating: 
If ( ( )) ( ( ))f r t f x t<  then ( 1) ( )r t x t+ = , otherwise, ( 1) ( )r t r t+ = , where 

( )r t  is the current best solution from iteration 0 to t . 

Pheromone Updating: 

( ) ( )( 1) ( ) ( ) ( ) ( )
1 1 1 1 1(0), (1) (0), (1)t t t t tT τ τ τ τ+ = + Δ Δ  (4) 

If 1 ( )s x t∈ and ( '( )) ( ( ))f r t f r t> then ( 1)
1 1( ) ( '( )) ( ( ))t s f r t f r tτ +Δ = −  

where 1 2,( ) ( , ..., )nr t r r r=  and 1 2'( ) ( , ,..., )nr t s r r= , otherwise, 

( 1)
1( ) 0t

i sτ +Δ = . 
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( ) ( ) ( ) ( )
( 1)

( ) ( ) ( ) ( )

(0,0) (0,1) (0,0) (0,1)

(1,0) (1,1) (1,0) (1,1)

t t t t
t i i i i

i t t t t
i i i i

T
τ τ τ τ
τ τ τ τ

+ Δ Δ
= +

Δ Δ
 (5) 

If ( )is x t∈ and ( '( )) ( ( ))f r t f r t>  then ( )
1( , ) ( '( )) ( ( ))t

i i is s f r t f r tτ −Δ == −   where 

1 1( ) ( ,..., , ..., )i i nr t r r r r−=  and 1'( ) ( ,..., , ..., )i i nr t r r s r= , otherwise, 
( )

1( , ) 0t
i i is sτ −Δ = . Let { ; 0,1,...}t tξ = be a Markov chain associated with an ACO, 

where ( )( ( ), )t
t x t Tξ = . We denote ( ) ( ( ))tV V x tξ =  because ( ) 0tV ξ =  when 

( ) optx t E∈ . 

Theorem 1. The worst-case time complexity of ACO I is 2( )lO n +  when the distance of 

the initial solution found is l . 

Proof. A distance function is denoted as 
1

( ( )) 1
n

i
i

V x t s
=

= − . So we have: 

[ ( ( )) ( ( 1)) ( ) ]E V r t V r t r t x− + =  

[ ( ( )) ( ( 1)) ( ) ] [ ( ( )) ( ( 1)) ( ) ]E V r t V r t r t x E V r t V r t r t x+ −= − + = + − + =  

{ : ( ) ( )} { : ( ) ( )}

( ( ) ( , ; ) ( )) ( ( ) ( , ; ) ( ))
y V y V x y V y V x

V x P x y t V y V x P x y t V y
< >

= − + −  

Similar to J. He and X. Yao’s study [15], we consider the positive drift 

[ ( ( )) ( ( 1)) ( ) ]E V r t V r t r t x+ − + = . Given ( ( ))V r t l= , the events that k  bits 

( 1,...,k l= ) among zero-valued bits of ( )r t  change into 1 and other bits keep 

unchanged after solution construction, will lead to a positive drift. There are 
l

k
 

kinds of the events denoted as iΩ  ( 1,...,
l

i
k

= )  for 1,...,k l= . 

[ ( ( )) ( ( 1)) ( )]E V r t V r t r t+ − + 0,1 0,0 1,1
1 1

[ ( , ) ( , ) ( , )]

l

kl

i i i
k i

k q k q l k q n l
= =

Ω ⋅ − Ω ⋅ − Ω=  

where , ( , )a b iq k Ω  is the probability that k  bits among a-valued bits of ( )r t  change 

into b value in the event iΩ  ( , 0,1a b = ). 

Then we consider the negative drift. Only the following event can produce the 

negative drift [ ( ( )) ( ( 1)) ( ) ]E V r t V r t r t x− − + = : k  bits ( 1,...,min( , 1)k l n l= − − ) 

in zero-valued bits of ( )r t  change into 1, k m+  bits ( 1,...,m n l k= − − ) of 

one-valued bits of ( )r t change into 0, and all other bits keep unchanged after solution 
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construction of artificial ant. There are n l

k m

−

+
 kinds of events that k m+  bits of 

one-valued bits of ( )r t change into 0, which are denoted as iΘ  ( 1,...,
n l

i
k m

−
=

+
). 

[ ( ( )) ( ( 1)) ( )]E V r t V r t r t− − +  

0,1 0,0 1,0 1,1
1 1 1 1

{ [ ( , ) ( , ) ( , ) ( , )]}

l n l

k k ml n l k

i i j j
k i m j

q k q l k m q k m q n l k m

−
+− −

= = = =

Ω ⋅ − Ω + Θ ⋅ − − − Θ=−

where , ( , )a b jq k m+ Θ  is the probability that k m+  bits among a-valued bits of 

( )r t  change into b value in the event jΘ  ( , 0,1a b = ). 

[ ( ( )) ( ( 1)) ( )]E V r t V r t r t− + 1 2DD ⋅=  (6) 

where 

           1 0,1 0,0 1,1
1 1

( , ) ( , ) ( , )

l

kl

i i i
k i

q k q l k q n lD
= =

= Ω ⋅ − Ω ⋅ − Ω  
(7) 

and  

          2 1,0
1 1 1,1

1
( , )

( , )

n l

k mn l k

j
m j j

k m q k m
q k m

D

−
+− −

= =

= − + Θ ⋅
+ Θ

 
(8) 

According to the solution construction and updating rules, we have: 

1,0 ( , )
k m

i

N
i

j
i N i i i

q k m
w

τ
τ τ

+

=

+ Θ =
+ +∏  and 1,1( , )

k m

i

N
i i

j
i N i i i

w
q k m

w

τ
τ τ

+

=

++ Θ =
+ +∏ . 

where 1 iN n≤ ≤  ( 1,...,i k m= + ). 

Therefore, 2
1

1

1

k mn l k

m

n l
k m

k m n
D

+− −

=

−
≥ −

+ −
 because 

2
i

i

w

n
τ =

−
 ( 1,...,i n= ). 

By the same mean,  

1
1

1 1 1 1
1 1

l n l l nl

k

l
k l

k n n n n
D

−

=

≥ − ≥ −  (9) 

[ ( ( )) ( ( 1)) ( )]E V r t V r t r t− +∴ 1 2DD ⋅=  
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2

1 1 1
1 (1 )

2( 1) ( 1)!

l n

m

m
l

n n n m

+∞

=

≥ − + −
− +

1
0

2( 1)

l

low

l
c

n n
≥ = >

−
 

10
0

( ) 2( 1)
[ ] l

low

V n
E n

c l

ξτ ξ +−≤ =∴  

Thus, the worst-case time complexity of ACO I is 2( )lO n + , which depends on the 

value of the distance of the initial solution l . We design ACO II as an improvement  
in the following section. 

3.2   ACO II for Boolean Linear Function and Its Time Complexity 

ACO II is a single-ant algorithm with heuristic information, which is designed in the 
following. 

Solution construction: 
A solution 1 2( ) ( , ,..., )nx t s s s= is constructed by the ant based on the transition rule:  

( )
( ) 1 1

1 1
( )

1 1
0

( ) ( )
{ }

( ( ) ( ))

t
t

t

j

a a
P s a

j j

τ η

τ η
=

+= =
+

 (10) 

( )
( )

1 1
( )

0

( , ) ( )
{ }

( ( , ) ( ))

t
t i i

i i
t

i i
j

b a a
P s a s b

b j j

τ η

τ η
−

=

+= = =
+

 (11) 

where ( 2,...,i n= ), and 0,1a=  and 0,1b = .  

Pheromone vector is defined as the one of ACO I. Heuristic vector is defined as 
( ) ( ) ( )

1( , ..., )t t t
nG G G=  where ( (0), (1)) (0 ,1 )i i i i iG w wη η= = × ×  ( 1,...,i n= ). 

The initialization, solution updating and pheromone updating of ACO II are the 
same as ACO I. 

Theorem 2. The worst-case time complexity of ACO II is 2( )O n . 

Proof. According to Exp. (4)-(7), we have: 

1
1

1 1 1 1 1 1
1 1 1

2

k l k n l l n l nl

k

l n n
k l l

k n n n n n n
D

− − −

=

− −≥ − ≥ − = −

2
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Therefore, heuristic information is crucial to the performance of ACO in solving 
problems of linear functions, which accords with our intuitive judgment. 

4   Discussions and Conclusions 

This paper proposes a preliminary work about estimating the time complexity of ACO 
which is one of the most popular evolutionary computation methods. Two single-ant 
ACO algorithms are designed specifically for linear functions with Boolean input.  
ACO II is the algorithm of ACO I with heuristic information, their time complexity is 
analyzed with drift analysis, which is the mathematical tool applied to the 
computational time analysis of evolutionary algorithm. Through the drift analysis, 
some conclusions can be drawn as follows:     

First, the ACO I and ACO II can find the optimal solution with the time complexity 

( )kO n  and 2( )O n respectively. Second, heuristic information is crucial to the 

performance of ACO in solving problems of linear functions, which prompts ACO II to 
perform better than ACO I. Third, besides evolutionary algorithms, drift analysis can be 
used for studying ACO algorithms for linear functions. 

Future study is suggested to analyze ACO and EA for other problems, such as 
ONE-MAX problem, TSP problem and so forth with drift analysis. Furthermore, new 
mathematical tools for estimating the computational time of ACO and EA should be 
studied because the encoding of the optimal solution is a necessity to drift analysis. 
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Abstract. A novel PSO algorithm called InformPSO is introduced in this paper. 
The premature convergence problem is a deficiency of PSOs. First, we analyze 
the causes of premature convergence for conventional PSO. Second, the princi-
ples of information diffusion and clonal selection are incorporated into the pro-
posed PSO algorithm to achieve a better diversity and break away from local  
optima. Finally, when compared with several other PSO variants, it yields better 
performance on optimization of unimodal and multimodal benchmark functions. 

1   Introduction 

Particle swarm optimization is one of the evolutionary computation techniques based 
on swarm intelligence. In PSO, each solution is a point in the search space and may 
be regarded as a particle. The particle could find a global optimum through its own 
efforts and social cooperation with the other particles around it. Each particle has a 
fitness value and a velocity. The particles fly through the problem space by learning 
from the best experiences of all the particles. Therefore, the particles have a tendency 
to fly towards better search area over the course of search process.  

The velocity and position updates of the ith particle are as follows: 

)(22)(11)()1( iiiii XgBestrcXpBestrctVwtV −⋅⋅+−⋅⋅+⋅=+  (1)

)1()()1( ++=+ tVtXtX iii  (2)

where Xi is the position of the ith particle, Vi presents its velocity, pBesti is the best 
previous position yielding the best fitness value for it. gBest is the best position dis-
covered by the whole population and w is the inertia weight used to balance between 
the global and local search abilities. c1 and c2 are the acceleration constants, which 
                                                           
* This paper is supported by the National Natural Science Foundation (10471083) and the 

Natural Science Fund, Science & Technology Project of Fujian Province (A0310009, 
A0510023, 2001J005, Z0511008), the 985 Innovation Project on Information Technique of 
Xiamen University (2004-2007), Academician Fund of Xiamen University, China. 
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represent the weighting of stochastic acceleration terms that pull each particle towards 
pbest and gbest positions. r1 and r2 are two random functions in the range [0, 1]. 

The PSO algorithm is simple in concept, easy to implement and computationally 
efficient. Since its introduction in 1995 [1], PSO has attracted a lot of attention. Many 
researchers have worked on improving its performance in various ways. Some re-
searchers investigated the influence of parameters in the PSO to improve its perform-
ance. A new inertia weight parameter is incorporated into the original PSO algorithms 
by Shi [2]. Another parameter called constriction coefficient is introduced to ensure 
the convergence of the PSO [3]. In [4], Ratnaweera et al. introduced to PSO the time 
varying acceleration coefficients in addition to the time varying inertia weight.  

Many researchers have worked on improving PSO’s performance by designing differ-
ent types of topologies. Kennedy [5] claimed that PSO with a small neighborhood might 
perform better on complex problems, vice versa. Kennedy [6] tested PSOs with 
neighborhoods of regular shape. In [7], a dynamic neighborhood concept for their multi-
objective PSO is proposed. FDR-PSO [8] with near neighbor interactions selects one 
particle with a higher fitness value to be used in the velocity updating equation. 

Some researchers investigated hybridization by combining PSO with other evolu-
tionary to improve the standard PSO’s performance. Evolutionary operators like se-
lection, crossover and mutation have been applied to PSO in [9]. In [10], each of the 
PSO, genetic algorithm and hill-climbing search algorithm was applied to a different 
subgroup and an individual can dynamically be assigned to a subgroup considering its 
recent search progress. In [11], CPSO employed cooperative behavior to significantly 
improve the performance of the original PSO algorithm by splitting the solution vari-
ables into a smaller number of variables in the search space. 

The paper is organized as follows. Section2 analyses causes of premature conver-
gence of traditional PSO algorithm and proposes an improved PSO algorithm. Results 
of experimental evaluation are given in Section 3, which contains the description of 
benchmark continuous optimization problems used for comparison of algorithms, the 
experimental setting for each algorithm, and discussions about the results. Section 4 
gives conclusions and future work. 

2   PSO Based on Information Diffusion and Clonal Selection 

2.1   Premature Convergence 

Though there are numerous versions of PSO, premature convergence when solving 
multimodal problems is still the main deficiency of the PSO. In the original PSO, 
each particle learns from its pBest and gBest simultaneously. Restrict the same social 
cognition aspect to all particles in the swarm appears to be somewhat an arbitrary 
decision. Furthermore, each particle obtains the same information from the gBest with 
others even if a particle is far from the gBest. In such situations, particles may be 
fleetly attracted and easily trapped into a local optimum if the gBest is in a complex 
search environment with numerous local solutions. Another cause of premature con-
vergence of PSO is that the pBest and gBest have no contributions to the gBest from 
the velocity update equation. The current best particle in the original PSO always flies 
in its direction of previous velocity, which makes it easy to trap into a local optimum 
and unable to break away from it. 



 Particle Swarm Optimization Based on Information Diffusion and Clonal Selection 523 

2.2   PSO Based on Information Diffusion and Clonal Selection (InformPSO) 

In fact, information diffusion among biological particles is a time process. Particles, 
close to the current best particle (gBest), change the direction and rate of velocities 
fleetly towards it, while particles, far from it, move more slowly towards it. On the 
assumption that information is diffused among particles in a short time, information 
received by particles close to the gBest is more than that received by those far from it. 
Therefore, an information function , related to membership degrees with respect to its 
“surrounding”, is incorporated into the PSO to adjust the variable “social cognition” 
aspect of particles. 

In this improved version of PSO, the velocity update is expressed as follows: 

)(22)}({)(11)()1( iiiiii XgBestrcdFXpBestrctVwtV −⋅⋅⋅+−⋅⋅+⋅=+ μ (3) 

where, )}({ idF μ is an information diffusion function, )( idμ  represents the member-

ship degree of ith particle with respect to the “surrounding” of the gBest, id  is the 

distance between particle i and the gBest. Here, the distance is measured by their 
position difference. By inspecting the expression in (3), we understand that particles 
perform variable-wise velocity update to the gBest. This operation improves the local 
search ability of PSO, increases the particles’ diversity and enables the swarm to 
overcome premature convergence problem. 

In order to pull the gBest to another direction if it is trapped in local optima, we use 
clonal selection operation on it. In multimodal problems, the gBest is often a local 
optimum, which may give other particles wrong information and lead to bad results. 
In our algorithm, we use a new method for the gBest to move out of local optima. 
First, the gBest is clonald [13] into a sub-swarm, then this sub-swarm mutates into a 
new one with different fitness values according to Cauchy distribution, finally the one 
with the highest fitness value is chosen as the gBest for velocity update of next gen-
eration. As a result, the gBest is improved in a local region by clonal selection opera-
tion, which enables the PSO algorithm effectively to break away from local optima. 

3   Experimental Results 

3.1   Benchmark Functions 

In the experiments, nine different D dimensional benchmark functions [8] [14] [15] 
with different properties are chosen to test InformPSO’s performance. The equations 
are listed below: 

Table 1. Nine benchmark functions 

Name Function Search Range x* f(x*) 

Sphere =
D

ixf 2
1  [-100, 100] 0 [0,0,…0] 

Hyper-

ellipsoid =
⋅=

D

i
ixif

1

2
2  [-5.12, 5.12] 0 [0,0,…0] 
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Table 1. (continued) 

Sum of differ-

ent powers =

+=
D

i

i
ixf

1

1
3  [-1, 1] 0 [1,1,…1] 

Rotated hyper-

ellipsoid = =
=

D

i

i

j
jxf

1

2

1
4  [-65, 65] 0 [0,0,…0] 

Rosenbrock 
=

−+−+⋅=
D

i
ixixixf

1

)]2)1(2)2
1(100[5  [-2.048, 2.048] 0 [1,1,…1] 

Griewank ∏
=

+
=

−=
D

i

n

i
i
ix

ixf

1

1

1

)cos(2
4000

1
6  [-600, 600] 0 [0,0,…0] 

Ackley ]

1

)2cos(
1

exp[)

1

21
2.0exp(20207

=
−

=
−−+=

D

i
ix

D

D

i
ix

D
ef π  [-32.768  32.768] 0 [0,0,…0] 

Rastrigin ]

1

10)2cos(102[8
=

+⋅−=
D

i
ixixf π  [-5.12, 5.12] 0 [0,0,…0] 

Weierstrass 

20max,3,5.0

0

)]5.02cos([

)

1 0

))]5.0(2cos([(9

max

max

===
=

⋅⋅

−
= =

+⋅=

kba

k

k

kbka

D
D

i

k

k
ixkbkaf

π

π
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3.2   Parameters Setting 

To optimize these test functions, the error goal is set at 1e-40 and w is reducing with 
increasing generations from 0.9 to 0.4. c1 and c2 are both set at 2. Particles’ initial 
positions are restricted by the search range and their velocities are restricted by Vmax, 
which is equal to the search range. The number of generations, for which each algo-
rithm is run, is set at Max_Gen. Except these common parameters used in PSOs, there 
 

Table 2. The same parameters setting used for InformPSO, PSO_w with that used for tradi-
tional PSO, FDR_PSO [8]. Initial Range, variable range in biased initial particles; Vmax, the 
max velocity; Size, the number of particles; Max_Gen, the max generation; Dim, the number of 
dimensions of functions. 

Function Initial Range Vmax Max_Gen Size Dim 

f1 [-5.12 ,5.12] 10 1000 10 20 

f2 [-5.12, 5.12] 10 1000 10 20 

f3 [-1, 1] 2 1000 10 10 

f4 [-65.536, 65.536] 110 1000 10 10 

f5 [-2.048, 2.048] 4 1500 10 2 

f6 [-600, 600] 600 1000 10 10 
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Table 3. The same parameters setting used for InformPSO and PSO_w on four multimodal 
functions with that used for PSO_cf_local, UPSO, PSO_H, DMS_PSO [15] except for the 
parameter, Max_Gen 

Function Initial Range Vmax Max_Gen Size Dim 

f6 [-600, 600] 600 2000 30 30 

f7 [-32.768, 32.768] 64 2000 30 30 

f8 [-5.12, 5.12] 10 2000 30 30 

f9 [-0.5, 0.5] 1 2000 30 10 

is an additional parameter in InformPSO that needs to be specified. It is sub-swarm’s 
population size, m. Suppose not to know if the function to be optimized is unimodal 
or multimodal, m is set at 10 for all functions.  

3.3   Comparison with Other PSOs 

In this part, we tested the same nine benchmark test functions using PSO_w. Parame-
ters are the same setting with parameters setting for InformPSO in Table 2 and  
Table 3. Other interesting variations of the PSO algorithm (described below) have 
recently been proposed by researchers. Although we have not implemented all these 
algorithms, we conducted comparison with them using the results reported in the 
publications cited below: 

− The original PSO [1]. 
− The modified PSO with inertia weight (PSO_w) [2]. 
− Local Version of PSO with constriction factors (PSO_cf_local) [7]. 
− Unified Particle Swarm Optimization (UPSO) [16]. 
− Fitness-distance-ratio based particle swarm optimization (FDR_PSO) [8]. 
− Cooperative PSO (CPSO_H) [11]. 
− Dynamic multi-swarm PSO (DMS_PSO) [15]. 
− Our improved PSO (InformPSO). 

Figure1 presents the results of InformPSO and PSO_w on the first six optimization 
functions introduced in the previous section. The two algorithms were continuously 
performed for 30 trials on each function. The best fitness values of each generation 
have been plotted in graphs. 

From Figure1 and graphs displayed in the literature [8], we see that InformPSO 
surpasses the three PSOs (PSO_w, traditional PSO, FDR_PSO) on each of the six 
functions. InformPSO has a significantly better global convergence ability. It achieves 
a sub-optima solution within 200 iterations for the first four unimodal functions. For 
Rosenbrock’s and Griewank’s functions, it gets global minima on most of trials. In 
each case, we find that the other three algorithms perform well in initial iterations, but 
particles easily reach the same fitness, consequently move into a local optimum. Fur-
thermore, they fail to make further progress in later iterations, especially in multimo-
dal problems. This does not happen in InformPSO as shown in all the graphs above, 
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where the best fitness continues to differ for many iterations. InformPSO is able to 
move out of local optima in later iterations even being trapped in it. This effect was 
most marked for the last graph in Figure 1. 

  

   

Fig. 1. InformPSO vs. PSO_w on f1-f6 functions 

Table 4. The best and average results achieved on the first six test functions using traditional 
PSO and FDR_PSO [8], PSO_w and InformPSO 

Best (Average) Fitness Values Achieved Algorithm 

Function Trad_PSO FDR_PSO PSO_w InformPSO 

f1 0.0156 2.2415e-006 1.2102e-10 5.9724e-006 3.9843e-041  7.2610e-041 

f2 2.1546e-007 1.8740e-015 1.7493e-009 8.0364e-005 2.3428e-041  6.9662e-041 

f3 2.3626e-011 9.3621e-034 5.1684e-041 2.8907e-022 1.2685e-042  4.0353e-041 

f4 0.0038 3.7622e-007 1.401e-014 1.9369e-008 2.8450e-041  6.6157e-041 

f5 5.3273e-008 4.0697e-012 1.9722e-029 2.5544e-017 0 1.7027e-026 

f6 1.3217e-008 1.1842e-016 0.0418  0.1152 0  8.2867e-003 

Table 4 also shows that InformPSO yields better results for the six test functions 
than the other three PSOs. On average, InformPSO achieves the best and average 
fitness values in each case. It is able to converge to global optima on unimodal prob-
lems. It can find global optima or sub-optima for Rosenbrock’s function and multi-
modal Griewank’s function. As an example in point, it attains to the global minimum 
of Rosenbrock’s function for 20 out of 30 trials and that of Griewank’ function for 25 
out of 30 trials. 
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Figure2 gives the results of InformPSO and PSO_w on four multimodal bench-
mark functions. The two algorithms were performed for 20 trials on each multimodal 
function. The best fitness values of each generation have been plotted in graphs.  

 

Fig. 2. InformPSO vs. PSO_w on the four multimodal functions 

From graphs above, we observe that InformPSO yields better results for the four 
multimodal functions than PSO_w. Our proposed PSO algorithm rapidly finds global 
minima for three out of four multimodal functions except for Ackley’s function. On 
multimodal functions, PSO_w rapidly loses the population diversity, and easily con-
verge to a local optimum. And it is unable to improve the best fitness in later itera-
tions. The population diversity of InformPSO results from its use of an information 
diffusion function in velocity update. The clonal selection operation contributes the 
best fitness to differing for many iterations. Thus, InformPSO is much less likely than 
the three PSO_w to get stuck in a local optimum and more effectively breaks away 
from a local optimum if being trapped in it. But our algorithm only attains a local 
solution to Ackley’s function. PSO_w needs much more iterations to reach the same 
local solution. It seems that the two PSOs are unable to find the global optimum re-
gion for Ackley’s function.  

Table 5. The best and average results achieved by different PSOs [16] 

Best (Average) Fitness Values Achieved Function 

Algorithm f6 f7 f8 f9 

PSO_w 
4.308e-013 

2.262e-002 

7.268e-007 

3.700e-001 

26.824 

43.828 

0 

1.291e-002 

PSO_cf_local 4.971e-002 9.763e-008 9.769 1.812e-001 

UPSO 3.453e-002 3.379e-009 14.231 2.226 

CPSO_H 1.527e-001 1.715e+003 21.392 4.208 

DMSPSO 2.338e-002 4.062e-009 3.277 0 

InformPSO 0 0  4.441e-015 4.441e-015 0 7.661 0 1.806e-004 

From the results, we can observe that among the six PSO algorithms, InformPSO 
performs the best results for Griewank’s (f6) and Ackley’s (f7) multimodal functions. 
Though when compared with DMSPSO, InformPSO achieves worse results for 
Rastrigin’s (f8) and Weierstrass’s (f9) function on average, it reaches the global 
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minimum for 15 out of 20 trials on  Rastrigin’s function and for 19 out of 20 trials on 
Weierstrass’s function. However, on Ackley’s function, InformPSO and PSO_w fail 
to arrive in the global minimum region. These comparisons suggest that InformPSO 
surpasses many of the recent improvements of the PSO algorithm. 

4   Conclusions 

A novel PSO algorithm called InformPSO and one of its applications are introduced 
and discussed in this paper. In order to improve the local search ability and achieve a 
better diversity, information diffusion function is given to InformPSO. Particles per-
form variable-wise velocity update to the current best particle. In order to break away 
from local optima, clonal selection is incorporated into it. This new PSO algorithm 
gives better performance on unimodal and on complex multimodal problems when 
compared with other PSO variants.  
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Abstract. In this work, we present a generalisation to continuous domains of an
optimization method based on evolutionary computation that applies Bayesian
classifiers in the learning process. The main di erence between other estimation
of distribution algorithms (EDAs) and this new method –known as Evolutionary
Bayesian Classifier-based Optimization Algorithms (EBCOAs)– is the way the
fitness function is taken into account, as a new variable, to generate the proba-
bilistic graphical model that will be applied for sampling the next population.

We also present experimental results to compare performance of this new
method with other methods of the evolutionary computation field like evolution
strategies, and EDAs. Results obtained show that this new approach can at least
obtain similar performance as these other paradigms1.

1 Introduction

Evolutionary computation techniques have undergo a great development with the ex-
tensive use of paradigms such as Genetic Algorithms (GAs) [5,8], Evolution Strategies
(ES) [6], and Estimation of Distribution Algorithms (EDAs) [10,13,17,18,20]. Many
other evolutionary computation paradigms have also been recently proposed such as
Learnable Evolution Model (LEM) [14], and Evolutionary Bayesian Classifier-based
Optimization Algorithms (EBCOAs) [16].

The main di erence between them is the way of improving the population of individ-
uals, in order to obtain fitter solutions to a concrete optimization problem. In GAs and
ES the evolution is based on using crossover and mutation operators, without express-
ing explicitly the characteristics of the selected individuals within a population. EDAs

1 This paper has been partially supported by the Spanish Ministry of Science and Technology
and the Basque Government with grants TIN2004-21428-E and SAIOTEK-S-PE04UN25 re-
spectively. The authors would like to thank Alexander Mendiburu, and the rest of the members
of the Intelligent Systems Group of the University of the Basque Country for their useful ad-
vise and contribution to this work. We would also like to thank Francisco Herrera and the rest
of the Soft Computing and Intelligent Information Systems research group of the University
of Granada for their support with the use of CMA-ES.

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 529–536, 2006.
c Springer-Verlag Berlin Heidelberg 2006
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take into account these explicit characteristics by considering the interdependencies be-
tween the di erent variables that form an individual, learning a probabilistic graphical
model to represent them. The approach of LEM, EBCOAs, and other similar propos-
als in this direction [12] is di erent in the sense of applying classification techniques
to build models that represent the main characteristics for which an individual in the
population appears in the group of the best (or worst) individuals within the population
of a generation. In that sense, these paradigms also take into consideration less fit indi-
viduals of the population in order to enhance and estimate the di erences between the
best and worst cases. This knowledge is later used for instantiating new individuals for
a new population.

This paper introduces EBCOAs (Evolutionary Bayesian Classifier-based Optimiza-
tion Algorithms) for continuous domains, which are motivated as an improvement of
EDAs for the need to avoid them to fall into local optima in very complex optimiza-
tion problems. EBCOAs evolve to a fitter generation by constructing models that take
into account more di erences than simply a subset of the fittest individuals. Continuous
EBCOAs generalize the ideas presented in [16] by supervised classification paradigms
in the form of conditional Gaussian networks to improve the generation of individuals
every generation.

2 Bayesian Classifiers for Continuous Domains

In EBCOAs for continuous domains, the classifiers are based on the learning of prob-
abilistic graphical models, more concretely Bayesian classifiers based on conditional
Gaussian networks [11]. The literature contains several examples of classifiers com-
bined with evolutionary computation techniques. One of the first examples is the LEM
algorithm [14] which makes use of rules to build a classifiers that records the main
di erences between the groups of best and worst individuals of each population.

The supervised classification problem with n continuous predictor variables con-
sists in assigning any vector x (x1 xn) n to one of the C classes of a class
variable C that is known. The class value is denoted by c and therefore we have that
c 1 2 C . As a result, a classifier in supervised classification is defined as a
function : (x1 xn) 1 2 C that assigns class labels to observations.

Next, we provide some examples of the classifiers from the ones considering less
interdependencies to the ones considering most of them.

2.1 Naive Bayes

The Bayesian classifier that considers all the variables X1 Xn to be conditionally
independent given the class value C is known as naive Bayes [15]. In this case, the
probabilistic graphical model can be considered to be a fixed structure as illustrated in
Figure 1(a). In continuous domains it is usual to assume that the joint density func-
tion follows a n–dimensional normal distribution, and since independence between the
variables –given the class variable C– is assumed, this is factorized by a product of
unidimensional and conditionally independent normal densities. Therefore, when clas-
sifying a new individual using the naive Bayes classifier we have that:
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Fig. 1. Example of structures of Bayesian classifiers that can be obtained as a result of the di erent
classification model building algorithms in a problem with four variables X1 X4 and the class-
variable C: (a) naive Bayes (b) seminaive Bayes (c) tree augmented naive Bayes.

p(C c X1 x1 Xn xn) p(c) f (x1 c) f (x2 c) f (xn c)

where

f (xi c)
1
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e
1
2 ( xic ic

ic
)2

for all i 1 n and c 1 C with ic and ic representing the mean and the
standard deviation of Xi C c respectively.

In order to apply a naive Bayes classifier in EBCOAs, the estimation of the a priori
probability of the class, p(c), as well as the parameters ic and ic of the conditional
density functions, f (xi c), are carried out from the database of selected individuals at
each generation.

2.2 Seminaive Bayes

The seminaive Bayes classifier [9] provides more complexity than the former since it
is able to take into account dependencies between groups of variables. This paradigm
represents the variables found to be related as a fused node in the conditional Gaussian
network, that is the seminaive Bayesian classifier proposed to group some variables in a
single node of the structure. Figure 1(b) illustrates the structure of a seminaive Bayesian
classifier for a problem with four variables, treating each of these grouped variables as
a single super-variable regarding the factorization of the probability distribution. When
grouping variables all the inter-dependencies between them are taken into account im-
plicitly in the Bayesian classifier. In a seminaive Bayesian classifier it is also possible
to ignore some variables and therefore not to include them in the final probabilistic
graphical model, which has the e ect of considering these variables not to be relevant
for labeling vectors to a particular c class. [19] introduced a greedy algorithm to detect
irrelevant as well as dependent variables (susceptible to be grouped) and to propose
variables that are likely to be ignored in a Bayesian classifier, although this is described
only for discrete domains. We propose to adapt it to the case of continuous domains by
grouping dependent continuous variables as a single multidimensional variable in the
form of one node in the conditional Gaussian network.
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Considering the example in Figure 1(b) to be the seminaive Bayes model structure
learned from one supervised classification problem, an individual x (x1 x2 x3 x4)
will be assigned to the following class:

c arg max
c

p(c) f (x1 c) f (x2 x4 c) (1)

Following this approach, in cases in which a variable Xi is estimated to be condition-
ally independent of the rest given the class variable (such as variable X1 in the latter
example), f (xi c) will be computed as

f (xi c)
1

2 ic

e
1
2 (

xic ic
ic

)2

Analogously, for the case of the dependencies with a number p of grouped variables
over a single node in the structure, similarly as variables X2 and X4 in our example, the
corresponding factor will be assumed to follow a p-dimensional normal distribution for
each value of variable C. Considering that z j represents the jth group of p variables,
we would have that

f (z j c)
1

(2 )p
jc

e
1
2 (z j jc)T 1

jc (z j jc)

where jc is a p p matrix representing the variance-covariance matrix of the jth group
of p variables when C c and jc denotes its corresponding expectation.

2.3 Tree Augmented Naive Bayes

Another example of a Bayesian classifier that is able to take into account di erent de-
pendencies between variables than the previous seminaive approach is the tree aug-
mented naive Bayes classifier [4]. Its name comes from the fact that the structures ob-
tained as a result of its learning approach have the form of a tree. This algorithm con-
stitutes an adaptation of the Chow-Liu algorithm [3] for predictor continuous variables
by estimating the mutual information between two univariate normal distributions.

Figure 1(c) shows the type of structures that could be obtained when applying
the tree augmented naive Bayes algorithm for a problem similarly as for the two
previous Bayesian classifiers. Following this particular example, an individual x
(x1 x2 x3 x4) will be assigned to the class

c arg max
c

p(c) f (x1 c x2) f (x2 c) f (x3 c x4) f (x4 c x2) (2)

Note that in this case the calculation of f (xi c xk(i)) –where Xk(i) represents the predictor
parent variable of variable Xi in case that this parent exists– can be computed as

f (xi c xk(i))
p(c) f (xi xk(i) c)

p(c) f (xk(i) c)

f (xi xk(i) c)

f (xk(i) c)
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3 The Evolutionary Bayesian Classifier-Based Optimization
Algorithm Approach

This approach combines Bayesian classifiers such as the ones presented in the previous
section and evolutionary computation to solve optimization problems. The main idea
is that having a population of solutions for the optimization problem, we will evolve
to a next population of fitter individuals by constructing a Bayesian classifier that will
represent the main characteristics between the fittest and the least fit individuals. The
EBCOA approach contains the following steps:

1. Firstly, the initial population D0 of R individuals is generated. This initial popula-
tion is generated similarly as EDAs, usually by assuming an uniform distribution
on each variable. Each of the created individuals is evaluated.

2. Secondly, each of the individuals in Dl are given a label K R to classify them
following their respective fitness value. This is the supervised classification step, as
each of the R individuals is assigned a k label, and as a result the class variable K
is created in the database, forming DK

l .
3. Thirdly, DC

l is created by selecting from DK
l only the C K classes that will be

used for building the Bayesian classifier, usually taking into account at least the best
and worst classes of individuals uniquely. A similar scheme of selecting individuals
with extreme fitness know as Stabilizing Selection is presented in [2]. The rest of
the classes in DK

l could be discarded to facilitate the learning by enhancing the
di erences between the most distant classes. The individuals which are in DK

l DC
l

are simply ignored.
4. A Bayesian classifier is build based on DC

l by applying techniques such as the ones
described in the previous section. This classifier estimates the probability distribu-
tion pl(c x) pl(c) fl(x c) which represents the probability of any individual x to
be classified in the any of the di erent possible C classes.

5. Finally, the new population Dl 1 constituted by the R new individuals is obtained
by carrying out the simulation of the probability distribution pl(c) fl(x c). This step
can be performed very similarly as in EDAs2.

Steps 2, 3, 4 and 5 are repeated until a stopping criterion is satisfied. Examples of
stopping conditions are: achieving a fixed number of populations or a fixed number of
di erent evaluated individuals, uniformity in the generated population, and the fact of not
obtaining an individual with a better fitness value after a certain number of generations.

The step of learning the Bayesian classifier is the most critical one regarding the
performance of EBCOAs in terms of convergence speed and computation time.

4 Experiments on Standard Continuous Optimization Problems

Experiments were carried out in order to test the performance of continuous EBCOAs
compared to such of some continuous EDAs and ES. For this comparison, we have cho-
sen continuous EDAs that take into account di erent number of dependencies between

2 The reader can find a detailed description on this topic as well as a review of some of the
possible techniques that can be applied in this step in [10].
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Table 1. Mean results after 10 runs with each algorithm and objective function. The V and E
columns represent the best fitness value obtained and the evaluations number respectively.

Ackley Griewangk Rosenbrock Sphere SumCan
n 10 V E V E V E V E V E

EBCOANB 7.7E-6 18116 3.0E-2 33597 4.4E 3 18235 4.4E-6 19632 1.0E 05 34116
EBCOAS NB 6.1E-6 11891 4.7E-6 8061 9.0E 0 7821 3.9E-6 7422 1.0E 05 16599
EBCOAT AN 6.7E-6 11333 5.3E-6 10495 3.8E 3 6704 5.1E-6 9657 1.0E 05 31163
UMDAc 8.8E-6 23063 5.4E-2 58814 8.7E 0 52589 7.3E-6 15003 1.6E 04 60250
MIMICc 7.8E-6 23382 8.2E-2 59093 8.7E 0 44968 6.7E-6 15163 1.7E 04 60250
EGNAee 7.9E-6 22983 5.4E-2 58654 8.6E 0 28889 6.7E-6 14884 1.0E 05 37108
EGNABGe 8.5E-6 22904 9.2E-2 54784 8.6E 0 26375 7.0E-6 14884 1.0E 05 37826
CMA-ES 1.9E-7 23962 2.7E-8 14562 3.9E-8 44082 3.7E-8 13802 1.0E 05 45682

n 50
EBCOANB 5.5E-6 29328 5.8E-6 24619 5.1E 5 2914 3.5E-6 16839 1.0E 05 34036
EBCOAS NB 6.9E-6 11851 5.7E-6 9976 4.9E 1 9976 5.7E-6 9976 1.0E 05 27293
EBCOAT AN 7.2E-6 10136 5.2E-6 8500 4.9E 1 7343 5.9E-6 10016 1.0E 05 30086
UMDAc 1.6E-5 56819 8.3E-6 35751 4.9E 1 59412 8.6E-6 42175 6.9E-1 60250
MIMICc 1.7E-5 56819 8.4E-6 35392 4.9E 1 59133 9.2E-6 42135 6.6E-1 60250
EGNAee 5.6E-2 38345 1.4E-4 33517 6.0E 1 50913 7.8E-3 39462 8.9E 0 27572
EGNABGe 2.5E-2 58694 5.0E-5 34116 5.7E 1 60250 1.6E-3 48519 1.8E 1 56340
CMA-ES 2.4E-3 60002 1.5E-6 60002 5.5E 1 60002 1.2E-5 60002 7.0E-1 60002

variables: UMDAc, MIMICc, EGNAee and EGNABGe
3. In addition, the overall perfor-

mance was compared to such of ES [21]. As an example of the latter we chose CMA-ES
(Evolution Strategy with Covariance Matrix Adaptation)[7] which is considered as one
of those with better performance4.

The optimization problems selected are the ones proposed in [1] to compare evo-
lutionary computation algorithms in continuous domains, namely Ackley, Griewangk,
Rosenbrock generalized, Sphere Model, and Summation Cancelation.

The size of the population was decided to be R 400 since we consider that this
is the smallest reasonable size required to allow EBCOAs discern characteristics of the
fittest and less fit individuals. The experiments have been carried out with individuals
of 10 and 50 variables (n 10 and n 50 respectively). For EBCOAs, we set the
following parameters: K 3 and C 2 (hence, we consider only the best and worst
classes of individuals). The size of the best and worst classes was chosen to be R 4,
where R is the size of the population as previously mentioned. In the case of continuous
EDAs, the learning of the model is done after selecting the R 2 best ones of the popula-
tion, keeping the same size of the population of R 400 and an elitist approach. Finally,
for CMA-ES we apply again the same population size and 200 as maximum number of
parents, while the rest of parameters have been left as the default values suggested by
the original authors.

The stopping criterion for all the algorithms and fitness functions is satisfied when
the optimum solution is found (assuming this case when the result obtained was closer

3 See [10] for a deep review on these algorithms.
4 For the simulation step we have applied the MATLAB program cmaes.m version 2.34 available

at
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than 10 6 from the global optimum fitness), when a maximum of 150 generations was
reached, or simply when no improvement has been obtained in the generation of the
last population. Each algorithm is run 10 times for each of the optimization problems.
Table 1 shows mean values of these 10 runs, illustrating the fitness value of the best
individual obtained (V) and the number of evaluations (E) required for each of the ex-
periments. The results of Table 1 evidence that EBCOAs perform quite well in most of
the optimization problems proposed, and also that the results obtained at least are com-
parable (in some cases even improved) to the ones of EDAs and CMA-ES. If we focus
individually in each of the proposed optimization problems, we appreciate that in those
containing no local optima (i.e. Sphere problem) or in the ones having many small local
optima (such as Ackley and Griewangk) EBCOAs show a performance comparable to
such of EDAs and CMA-ES. On the other hand, in optimization problems containing
local optima with much higher size (i.e. Summation Cancellation) EBCOAs manage to
reach the optimum for n 10 and n 50, while both EDAs and CMA-ES are also ca-
pable of solving them when the size of the problem is of 10 variables but show a poorer
performance when the size of the problem increases to 50. The Rosenbrock function
is especially di cult to optimize regarding the fact that the global optimum is located
in the middle of a quite flat region. This is the reason for EDAs not to manage to find
this global optimum and to fall in a local optimum. EBCOAs do not either manage to
improve these results and perform similarly as EDAs. CMA-ES is able to obtain the
global optimum uniquely in small problem sizes (n 10), although when increasing the
size of individuals to n 50 it also shows the same behavior as EDAs and EBCOAs.

At the light of the results we can conclude that continuous EBCOAs is a new
paradigm that is able to obtain comparable results as continuous EDAs and ES, al-
though its bigger computation cost makes it more suitable for complex problems since
mainly in those the results outperform EDAs and ES.

5 Conclusions and Further Work

The original contribution of this paper is to generalize EBCOAs to continuous domains
by applying Bayesian classifiers in these type of domains. EBCOAs combine evolu-
tionary computation techniques and Bayesian classifiers in order to solve optimization
problems. Experimental results to compare the performance of this new approach on
typical optimization problems in continuous domains have been shown, and they have
been compared with such of continuous EDAs and ES.

Future research trends also include the study and experimentation of other Bayesian
classifiers, even more complex ones capable to take into account more interdependen-
cies between variables that could be useful for more complex problems.
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10. P. Larrañaga and J. A. Lozano. Estimation of Distribution Algorithms. A New Tool for Evo-
lutionary Computation. Kluwer Academic Publishers, 2001.

11. S. L. Lauritzen and N. Wermuth. Graphical models for associations between variables, some
of which are qualitative and some quantitative. Annals of Statistics, 17:31–57, 1989.

12. X. Llorà and D.E. Goldberg. Wise breeding GA via machine learning techniques for func-
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Abstract. Many optimization problems that involve practical applications have 
functional constraints, and some of these constraints are active, meaning that 
they prevent any solution from improving the objective function value beyond 
the constraint limits. Therefore, the optimal solution usually lies on the bound-
ary of the feasible region. In order to converge faster when solving such  
problems, a new ranking and selection scheme is introduced which exploits this 
feature of constrained problems. In conjunction with selection, a new crossover 
method is also presented based on three parents. When comparing the results of 
this new algorithm with four other evolutionary based methods, using nine 
benchmark problems from the relevant literature, it shows very encouraging 
performance. 

1   Introduction 

Many optimization problems are nonlinear and constrained. These problems can be 
represented as follows:  
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where nRX ∈  is the vector of solutions X=[x1,x2,…,xn]
T The objective function is 

f(X), m is the number of inequality constraints, gi(X) is the ith inequality constraint, p 
is the number of equality constraints, and hj(X) is the jth equality constraint. Each 
decision variable xi has a lower bound Li and an upper bound Ui. 

Over the last two decades, Evolutionary Algorithms (EAs) have proved themselves 
as global optimization techniques. Among the evolutionary algorithms, Genetic Algo-
rithms (GAs) are the most widely used technique for solving optimization problems. 
Constrained optimization problems have been considered as difficult problems. Many 
researchers and practitioners (including Mezura and Coello [5], Barbosa and Lem-
onge [1], Deb [2], Koziel and Michalewicz [4] and others) attempted to solve con-
strained problems using traditional GAs. Later, Runarsson and Yao [8] developed an 
Evolutionary Strategy (ES) based approach for solving constrained optimization prob-
lems. They have shown that their algorithm outperforms all GA based approaches for 
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13 well-known test problems. From these studies, a question may arise of why GA-
based approaches cannot perform better or at least equal to the ES-based algorithm - 
which is the motivation of this research. In this paper, we have investigated whether a 
GA based approach can perform as good as an ES-based approach, for solving certain 
classes of constrained optimization problems. To carry out this investigation, we have 
designed a new ranking and selection method and a new crossover as part of our pro-
posed GA.  

It is a common situation for many constrained optimization problems that some 
constraints are active at the global optimum point, thus the optimum point lies on the 
boundary of the feasible space [4]. This is usually true for business applications with 
limited resources. In such cases, it seems natural to restrict the search of the solution 
to near the boundary of the feasible space [7]. However, this may not be the situation 
for some other problems such as engineering design and specially generated prob-
lems. As the first step of our algorithm development, we restrict ourselves only to 
inequality constraints.  

As we know, crossover is the heart of the storm for GAs. Many studies had been 
carried out to show how this operator affects the evolutionary process. The most 
widely used crossovers are k-point, uniform, intermediate, global discrete, order-
based, and matrix-based [9]. Most of these crossovers are based on two parents. How-
ever, Eiben et al. [3] introduced a multi-parent reproduction process to GAs. They 
have indicated that using more parents makes it harder for good individuals to transfer 
their fittest genes to the resulting offspring. However, this property is good for popu-
lation diversity, which in turn would be expected to slow down the convergence. In 
practice, the result of crossover with more parents is relatively better than what may 
be expected in terms of the quality of offspring. This means that multi-parent cross-
over provides better convergence than generally expected [3]. Keeping this in mind, 
we have designed a three parents crossover in this paper.  

Without mutation, GAs could be trapped in local optimum while solving complex 
optimization problems. Among others, uniform and non-uniform mutations are well 
known in GA applications. Uniform mutation uses uniform random changes to indi-
viduals - which favors diversity but slows down convergence. Michalewicz [6]  
proposed a dynamic non-uniform mutation to reduce the disadvantage of uniform 
mutation in real-coded GA. Zhao et. al. [11] reported that a non-uniform mutation 
operator has the feature of searching the space uniformly at the early stage and very 
locally at the later stage. In other words, the non-uniform mutation has the common 
merits of a higher probability of making long jumps at early stages and much better 
local fine-tuning ability at later stages [11]. We have introduced a mutation that uses 
both uniform and non-uniform mutation, to exploit the advantages of both of them. 

In GA applications, there are many different ways to select good individuals to sur-
vive and reproduce new offspring. There are three most commonly used ranking and 
selection methods. First, proportionate reproduction (also known as roulette wheel 
selection [9]), in this scheme individuals are chosen for selection in proportion to their 
fitness value. In the second method, the population is sorted from best to worst; then 
the higher ranked individuals are given higher probabilities to survive [9]. The third 
method is tournament selection where a random number of individuals are chosen 
from the population (with or without replacement) and the best individual from this 
group is chosen as a parent for the next generation [9]. This process is repeated until 
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the mating pool is filled. There are a variety of other selection methods including 
stochastic methods [8]. In this paper, we introduce an algorithm which uses a tourna-
ment selection in some stages of the evolution process, and uses a new ranking 
method in other stages. This will be discussed later in more details.  

The penalty function is the most widely used method to deal with constraints in 
constrained optimization. The penalty techniques used are: static, dynamic, annealing, 
adaptive, death penalties, superiority of feasible points, and faster adaptive methods. 
A good comparison and analysis of these methods can be found in Sarker and Newton 
[10]. In this paper, we have calculated the constraint violation, but have not penalized 
the individuals similarly to most GA algorithms. Instead, we have used this informa-
tion to rank and select the individuals as parents as detailed later.  

The developed algorithm was tested using nine benchmark problems from the spe-
cialized literature and was compared with three other GA-based and one ES-based 
algorithms. From the comparisons, we can claim that the proposed algorithm perform-
ing very well for the nine inequality constrained optimization problems tested.  

This paper is organized as follows, Section 2 presents the proposed algorithm, il-
lustrative examples and comparison are stated in Section 3 and finally, Section 4 
contains the conclusion.  

2   The Proposed Algorithm 

In this section, we present our proposed algorithm. This algorithm uses a floating 
point representation, and the main steps are follows:  

 1. Create random initial population.  
 2. Check feasibility of all individuals.  
 3. Evaluate the population.  
 4. If the stopping criterion has been met, stop; otherwise continue.  
 5. Rank the individuals and make the selection.  
 6. Apply the triangular crossover.  
 7. Apply the mutation.  
 8. Apply elitism by replacing the worst current individual with the overall 

generations’ best individual.  
 9. Go to step 4.  

The details of the components of our algorithm are discussed below:  

2.1   Ranking 

To exploit the feature that optimal solutions exist on the boundary of the feasible 
region, the selection and search process should concentrate on the individuals in that 
region. Therefore, the ranking scheme is designed as follows:  

• The feasible individuals are ordered from the best to the worst based on their ob-
jective function value.  

• Then, those solutions are divided into two groups. Group (a) has a fixed proportion 
of those with higher quality (smaller objective function value), and group (b) has 
lower quality feasible solutions. Hence the group (b) individuals are on the worse 
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side of the feasible region. Consequently, they should not be considered in the se-
lection process, as they will slow down the convergence of the algorithm.  

• The infeasible individuals are arranged in ascending order of the constraint viola-
tions. A given proportion of the individuals with the highest violations (high sum-
mation of the violation in all constraints) are discarded from the selection process 
(see group (e) in figure 1), because they are further away from the feasible region 
and will slow down the convergence of the algorithm. We are fully aware that 
these discarded individuals may diversify the search process, but consider that this 
diversity requires more computational time.  

• The rest of the infeasible individuals are then arranged in ascending order of their 
objective function values. All infeasible individuals who have worse objective 
function values than the best feasible individual should be discarded from the se-
lection (see group (d) in figure 1), because they will guide the search process in the 
wrong direction away from the optimal solution.  

• The remaining individuals are the target of the selection, because they are in the 
right space near to both the optimal and feasible space (see group (c) in figure 1).  

 

Fig. 1. The ranking scheme in the proposed algorithm. O(x) is the objective value of individuals 
in group (x). V(x) is the constraints violation of individuals in group (x).  is the optimal  
solution. 

2.2   Selection  

Up to now, there are two groups of individuals to still be considered, group (a) which 
includes the individuals on the feasible side of the boundary of the feasible region, 
and the other group (c) that includes the individuals on the infeasible side. If there are 
individuals in group (c), then in the selection process, two feasible individuals will be 
selected from the first group, and one infeasible individual will be selected from the 
second group, these three individuals then undergo the triangular crossover process, 
otherwise all three individuals are chosen from group (a).  

This ranking and selection scheme needs a reasonable amount of both feasible and 
infeasible individuals to work; therefore this mechanism is applied only if the ratio 
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between the feasible individuals and the population size (feasibility ratio) is between 
0.3 and 0.8. Otherwise, the regular tournament selection is used to select two indi-
viduals from the tournament set and the third one randomly. In cases where the opti-
mal solution is not on the boundary, group (b) can be used instead of group (c).  

2.3   Triangular Crossover 

Consider the three individuals selected as parents p1, p2, p3, and choose any three 
random numbers r1, r2, r3, each of them in the interval [0,1] where r1+ r2+ r3=1, the 
resulted offspring will be constructed as a linear combination of the three parents as 
follows:  

o1=(r1*p1)+ (r2*p3)+ (r3*p2), o2=(r1*p2)+ (r2*p1)+ (r3*p3), o3=(r1*p3)+ (r2*p2)+ (r3*p1). 

Selecting two feasible parents and one infeasible parent gives a higher probability 
for the offspring to be feasible. The resulting offspring from this crossover of such 
selected individuals should ideally be nearer to the boundary of the feasible region 
than their parents were. This method of crossover increases the diversity of the popu-
lation in good locations in the search space, more than as two parents would, as stated 
earlier in section 1. Therefore, any loss in diversity which may come from discarding 
many individuals during the selection could be compensated by using this crossover.  

2.4   Mutation 

We have introduced a mixed uniform and non-uniform mutation to exploit the advan-
tages of both mutation methods. The probability of doing mutation is fixed during the 
whole evolution, but the step size is nonlinearly decreased over time as stated in 
Michalewicz [6]. There is also a low probability of doing a uniform mutation that 
moves an individual to any part of the search space. In this way, the algorithm is con-
verging during most of the evolution using the non-uniform mutation, at the same 
time there is some chance to explore the rest of the feasible space in later generations 
using that part of the uniform mutation. This method helps with sophisticated multi-
modal problems or problems with complicated feasible fitness landscapes.  

2.5   Constraints Handling 

Deb [2] introduced a method to handle constraints in an efficient way. In that method 
all infeasible individuals were penalized, and the best infeasible individual was as-
signed worse fitness than the worst feasible individual. We used this method when the 
feasibility ratio was too low. After that, the constraint handling was done implicitly 
during the ranking and selection scheme, where we exclude high violation individu-
als, therefore it converges to the feasible space over time.  

3   Results and Discussion 

In order to measure the performance of our developed algorithm, we have compared it 
denoted as TC (Triangular Crossover) with four existing algorithms by solving nine 
benchmark problems out of a set of thirteen commonly used by other researchers. The 
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four test problems that were excluded involved equality constraints, which are not 
included in the focus of this paper. The characteristics of the test problems can be 
found in Runarrson and Yao [8]. The algorithms compared are  Barbosa and Lemonge 
[1] (denoted as ACM),  Deb’s [2] GA (DEB), and Koziel and Michalewicz’s [4] GA 
(KM). Although these three methods were GA based, Runarsson and Yao [8] intro-
duced an evolution strategy method (RY) which depends on stochastic ranking, so far, 
the results of this method are considered the best among the existing algorithms.  

We have solved each test problem 30 times with different random seeds. We have 
presented the best fitness values over 30 runs in Table 1. In all cases, only 350,000 
objective function evaluations had been made before stopping the algorithm, as a 
similar evaluation budget was used in the other four algorithms. The population size 
was set to 30, except in g02, g07, and g10, where because they have a higher number 
of variables, instead they used 150 individuals, but still with the same number of 
fitness evaluations. The probability of using cross-over is 0.8 for using the whole 
arithmetic triangular crossover discussed earlier. The overall mutation probability is 
0.1 and among the mutated individuals we have chosen a probability of 0.9 to use the 
non-uniform step size and 0.1 for the uniform step size.  

Considering the best results out of 30 independent runs, we can claim that our pro-
posed algorithm achieved superior results than the three GA-based algorithms (KM, 
DEB and ACM) presented. Note that ACM and DEB results are available only for 4 
and 5 test problems respectively [1, 2]. If we compare the solutions of our algorithm 
with the RY algorithm, both of them achieved the exact optimal solution in 5 test 
problems g01, g04, g06, g08, and g12. Our algorithm achieved significantly better 
solutions for test problems g02 and g10, while RY obtained the optimal solution for 
g09 and our algorithm failed to do so, although the difference between the results is 
insignificant. Moreover, RY is significantly better for g07. Therefore, we can claim 
that based on the best solutions obtained, our algorithm is comparable to RY.  

Since GA and ES are stochastic algorithms, it is logical to make a stochastic com-
parison instead of a static comparison using the best fitness value. Such a static com-
parison could be misleading as the best fitness value could simply be an outlier. For 
this purpose, we have analyzed the mean and standard deviations of the 30 independ-
ent runs for the two comparable algorithms.  

Table 1. The best results out of 30 run to each algorithm. RY = Runarrson & Yao, KM = 
Koziel & Michalewicz, DEB = Deb, ACM = Adaptive Penalty, TC = Proposed Algorithm.  

Optimal Best  Fcn 
 RY  KM  DEB  ACM  TC  

g01  -15.000  -15.000  -14.786  -15.000  -15.000  -15.000  
g02  -0.803619  -0.803515  -0.799530  -  -  -0.803616  
g04  -30665.539 -30665.539 -30664.500 -30665.537 -30665.403 -30665.539 
g06  -6961.814  -6961.814  -6952.100  -  -  -6961.814  
g07  24.306  24.307  24.620  24.373  -  24.505  
g08  -0.095825  -0.095825  -0.095825  -  -0.095825  -0.095825  
g09  680.630  680.630  680.910  680.635  680.667  680.633  
g10  7049.331  7054.316  7147.900  7060.221  -  7049.474  
g12  -1.000000  -1.000000  -0.999900  -  -  -1.000000  
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As per our analysis, both the algorithms have the same performance in g01, g08, 
and g12. The proposed algorithm has slightly better performance with respect to both 
measures of performance in g02 and is significantly better in g06 and g10. RY has a 
better mean, but not better standard deviation in g09, RY has slightly better perform-
ance in g04 and is significantly better in g07. By calculating in how many problems 
the proposed algorithm is better, we found for the mean they are 6 for each algorithm, 
but for the standard deviation 6 for TC and only 5 for RY.  

Table 2. Percentage of variation, Mean and Std. Deviation of 30 runs  

Percentage of variation Mean STD Deviation Fcn Optimal 
RY TC RY TC RY TC 

g01 -15.000 Optimal Optimal -15.000 -15.000 0.00E+00 0.00E+00 
g02 -0.803619 0.01294% 0.00037% -0.781975 -0.791345 2.00E-02 9.42E-03 

g04 
-

30665.539 
Optimal Optimal -

30665.539 
-

30665.531 
2.00E-05 9.16E-03 

g06 -6961.814 Optimal Optimal -6875.940 -6961.814 1.60E+02 3.70E-12 
g07 24.306 0.00411% 0.81873% 24.374 25.057 6.60E-02 2.38E-01 
g08 -0.095825 Optimal Optimal -0.095825 -0.095825 2.60E-17 4.23E-17 
g09 680.630 Optimal 0.00044% 680.656 680.659 3.40E-02 1.98E-02 
g10 7049.331 0.07072% 0.00203% 7559.192 7493.719 5.30E+02 3.87E+02 
g12 -1.000000 Optimal Optimal -1.000000 -1.000000 0.00E+00 0.00E+00 

In this paper, we have empirically shown that our approach is able to deal with a 
variety of constrained optimization problems (i.e., with both linear and nonlinear 
constraints and objective function, and with inequality constraints). The benchmark 
adopted includes test functions with both small and large feasible spaces. We also 
argue that our proposed approach is very simple to implement and can solve a variety 
of problems. Finally, we have shown that GA-based approaches can perform as well 
as ES-based approaches for inequality constrained optimization problems. 

4   Conclusions 

In this paper, new ranking, selection, and crossover methods were introduced to solve 
constrained optimization problems. The idea behind these new methods is the exploi-
tation of some of the features of constrained problems. The performance of the pro-
posed algorithm has been compared with four existing evolutionary algorithms using 
nine benchmark test problems. The results of the proposed algorithm are clearly better 
than the three GA-based approaches and are competitive with the best known  
ES-based approach. In two test problems, we have better results than other existing 
EA-based solutions. The superiority of our algorithm is the combined effect of our 
proposed ranking, selection, crossover and mutation methods. Finally, we have found 
that genetic algorithms can achieve similar results to those of evolution strategy in 
such types of problems. As immediate future work, we will test our algorithm for 
problems with equality constraints, and a mix of equality and inequality constraints. 
In addition, we will investigate the individual contributions of our proposed ranking, 
selection, crossover and mutation operators to the problem solving process. 
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Abstract. In the field of estimation of distribution algorithms, choosing prob-
abilistic model for optimizing continuous problems is still a challenging task. 
This paper proposes an improved estimation of distribution algorithm (HEDA) 
based on histogram probabilistic model.  By utilizing both historical and current 
population information, a novel learning method – accumulation strategy – is 
introduced to update the histogram model. In the sampling phase, mutation 
strategy is used to increase the diversity of population. In solving some well-
known hard continuous problems, experimental results support that HEDA be-
haves much better than the conventional histogram-based implementation both 
in convergence speed and scalability. Compared with UMDA-Gaussian, SGA 
and CMA-ES, the proposed algorithms exhibit excellent performance in the test 
functions. 

1   Introduction 

Recently, estimation of distribution algorithms have become the hot topic in the field 
of evolutionary computation [1]. The contribution of EDAs not only lies in its ability 
to explicitly learn the linkage relationship among variables, but also provides a novel 
macroscopical evolutionary paradigm, in which without any conventional operators, 
the population evolves by iteratively learning and sampling the probabilistic distribu-
tion model that describes the movements of population. Theoretical and empirical 
researches have shown that EDAs are a class of efficient black-box optimization 
algorithms.  

The core of EDAs is the probabilistic model.  
For 0-1 domain problem, the basic probabilistic model is very simple: (0)P p= and 

(1) 1P p= − , where 0 1p≤ ≤ . All the existent 0-1 EDAs are based on the basic model. 
During the last decade, large amounts of different versions of 0-1 EDAs were devel-
oped, which can be classified into three categories [1]: without interaction, pairwise 
interaction and multi-interaction. PBIL, UMDA and cGA are estimation of distribu-
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tion algorithms which do not take the interaction among variables into account; 
BMDA and MIMIC use probabilistic model that can represent the relationship be-
tween two variables; BOA and FDA can describe the distribution of solutions by 
Bayesian Network, which can model complex interaction among variables [1-3]. The 
amazing success in discrete domain attracts people to design efficient EDAs for con-
tinuous problems.  

However, choosing probabilistic model for continuous domain is still a chal-
lenging problem, even though several attempts have been made to extend the re-
search results from discrete to continuous problems. The complexity of continuous 
fitness landscape makes it impossible to choose an almighty probabilistic model 
that fits any problem. In general, continuous EDAs can be classified into two ap-
proaches – indirect and direct. The former employs transform methods such as 
discretization [4] and the latter estimates the parameters of the predefined distribu-
tion [3,6-9]. It should be noted that the “direct” approach occupies a predominant 
position because the “indirect” approach fails to scale with problem size and solu-
tion precision [12]. According to the probabilistic model employed in “direct” 
approach, continuous EDAs can be further classified into two categories: Gaus-
sian-based EDAs[1,3,6-9] and Histogram-based EDAs [5]. Most of the work con-
centrates on Gaussian probabilistic model. These include PBILC, UMDAC, EMNA, 
EGNA, IDEA and so on [1,3]. Histogram-based EDAs mainly refer to the work by 
Tsutsui, S. et al.[5], in which marginal histogram model was used to model the 
population in continuous domain for the first time.  

The purpose of the paper is to further study the continuous EDAs based on histo-
gram model. A novel estimation of distribution algorithm (HEDA) based on histo-
gram model is developed. Accumulation strategy is used to update the probabilistic 
model. In sampling phase, mutation strategy is designed to enhance the population 
diversity. Experimental analyses will show the performance of HEDA compared with 
FWH, SGA, UMDA-Gaussian[7] and CMA-ES[11]. 

The present paper is organized as follows. Next section will give the detailed de-
scription of HEDA. In Section 3, numerical experiments of HEDA, FWH, CMA-ES, 
UMDA-Gaussian and SGA are described. The paper is concluded in Section 4. 

2   HEDA – Histogram-Based Estimation of Distribution Algorithm 

2.1   The General Description of HEDA 

(1) Set the generation counter t := 1 
(2) Divide the searching space of each variable into a certain number of bins. These 

bins should be of the same width and do not overlap with each other. 
(3) Initialize the histogram model in which the height of each bin is same. The histo-

gram generated should be normalized.  
(4) Generate population P(t) using sampling method described in subsection 2.3. 
(5) Evaluate and rank the population P(t). Save the elitist.  
(6) Update the histogram model using accumulation learning strategy. 
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(7) Update the generation counter t := t+1.  
(8) If the termination conditions have not been satisfied, go to step 4.  
(9) HEDA is finished and solutions are obtained in P(t).  

2.2   Learning Method in HEDA 

Accumulation learning strategy is proposed to update the histogram model. The his-
togram model is updated according to two kinds of information: historical and current 
information. In each generation, for each variable i, the selected individuals will be 
used to construct a histogram model i

CH . The old histogram for variable i is denoted 

as i
HH . The height of a certain bin j of the renewed histogram for variable i is:  

( ) ( ) (1 ) ( )i i i
H CH j H j H jα α= + − , (1) 

where ( )i
HH j  is the height of bin j in the old model, α  (0 1)α≤ ≤ is the accumulation 

factor which determines the effect of the old model on the new model, ( )i

CH j is the 

height of the bin j in model ( )i

CH j , and ( ) 1i

Cj
H j = . It is clear that new histogram 

iH has been normalized. Accumulation strategy used in HEDA is a method to reserve 
the information of historical model. In comparison with FWH [5] which reserves some 
good individuals in each generation, HEDA emphasizes the importance of the model 
building. The reservation of the historical model also reserves the information of the 
good individuals in the past generations. If α =0, HEDA is reduced to the FWH [5]. 

In addition, the contribution of different individuals with different fitness values is 
considered in the learning process. The histogram model is learned according to rela-
tive ranking among different individuals. The height of each bin is modified accord-
ing to the ranking and the position of each individual. Different rankings of the indi-
viduals lead to different increments of the bins. In the paper, the relationship is linear. 
If N best individuals of the population are selected, the k-th best individual ( k N≤ ) 
will make an increment of the corresponding bin which it belongs to by: 

1

2( 1)
( 1) /

( 1)

N
i

k
l

N k
h N k l

N N=

− +Δ = − + =
+

 (2) 

So,  

1

( )
N

i i i

C k jk
k

H j h δ
=

= Δ  (3) 

where 1i
jkδ = for { }{ }| 1,2,..., min maxi i i i

jk j k jk N vδ ∈ ∧ ≤ < , and 0i
jkδ = otherwise. i

kv  

denotes the value of variable i of  the k-th best individual, min i

j and max i

j denote the 

lower and upper bound of bin j of variable i. The better individuals will have more 
effect on the new model. Updating i

CH based on the ranking information helps im-

prove the convergence property of HEDA. 
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2.3   Sampling Method in HEDA 

In HEDA, the population is sampled according to the model as follows: First, the bin j 
is selected according to the probability of ( )iH j ; then an individual is generated in the 

searching space of the bin j with uniform distribution.  
In order to enhance the diversity of population, mutation strategy is used. In 

HEDA, the mutation strategy means that each variable of an individual has a prob-
ability to be generated randomly. Here “randomly” means that the variable of an indi-
vidual is generated with uniform distribution in the whole searching space. If the 
mutation rate is set pm, that means there is a possibility of pm for each variable of each 
individual to be generated randomly and a possibility of 1 mp− for it to be generated 

according to the histogram model.  

3   Numerical Experiments 

3.1   Experimental Settings 

Several well-known continuous test functions, which include the 20-variable two-
peak function, the 20-variable Rastrigin function, the 10-variable Griewank function 
and the 5-variable Schfewel function, are used to verify the performance of HEDA. 
Table 1 lists these experimental functions and their respective optimal solutions. 

Table 1. Test functions  

Function name Formulation Domain Optimal solution 

Schwefel 2 2 2
12

(( ) ( 1) )
n

i ii
x x x

=
− − −  [-2,2]5 [1,1,1,…,1] 

Rastrigin 2

1
10 ( 10cos(2 ))

n

i ii
n x xπ

=
+ −  [-5,5]20 [0,0,0,…,0] 

Griewank 
2

1 1
cos( ) 1

4000

nn i i
i

x x

i=
− +∏  [-5,5]10 [0,0,0,…,0] 

Two-peak 
1

5
n

ii
n f

=
− , twopeak if [5] [0,12]20 [1,1,1,…,1] 

In the experiments, the proposed HEDA has been compared with several well-
known continuous evolutionary algorithms including FWH, UMDA-Gaussian, SGA 
and CMA-ES. FWH is the original proposed continuous EDA based on histogram 
probability model [5]. The objective of comparison with FWH is to show that HEDA 
is a superior optimization method based on histogram model. UMDA-Gaussian is an 
EDA based on Gaussian probability model [7]; SGA refers to simple genetic algo-
rithm; CMA-ES is an advanced evolution strategy with covariance matrix adaptation 
[11]. The objective of the comparison with UMDA-Gaussian, SGA and CMA-ES is 
to show that, among many kinds of continuous evolutionary algorithms, HEDA hold 
an outstanding position in solving the above test functions. 
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To evaluate the performance of HEDA, two criteria are used: convergence property 
and scalability. The convergence property is to measure the ability of the algorithm to 
reach the global optimum. In our experiments, we evaluate the convergence property 
by measuring the number of runs in which algorithm succeeds in finding the global 
optimum and the mean number of function evaluations (MNE) to find the global op-
timum in those successful runs. We define the successful detection of the solution as 
being within ε±  of the actual optimum point ( 0.1ε = ). The scalability of HEDA in 
solving two-peak problem is used to see how the behavior of algorithms changes 
when the dimension of the problem increases. 

All the algorithms run 20 independent times on each problem. The termination 
condition for the 5 algorithms is detection of optimal solution or maximum 100,000 
function evaluations. In all the algorithms, the initial population is generated uni-
formly. The parameter settings HEDA, FWH, SGA, UMDA-Gaussian and CMA-ES 
are as follows. 

HEDA: the width of bin is set 0.1, mutation rate is set 0.05, and accumulation rate 
0.2. 50% of population is selected for model updating. Elitist strategy is used. 

FWH: we directly use the results obtained by FWH published in [5]. 
SGA: crossover probability 0.8 and mutation probability 0.05. Selection method is 

tournament selection. Elitist strategy is used. 
UMDA-Gaussian: the Gaussian probability model is updated using method intro-

duced in [9]. 50% of parent population is selected for model updating. Elitist strategy 
is used. 

CMA-ES: 4μ λ= , where is λ is the size of parent population and μ is the num-

ber of descendants. The Matlab code of CMA-ES in [13] is used in the experiments. 

3.2   Convergence Property 

Table 2 illustrates the convergence property of HEDA, UMDA-Gaussian, FWH, 
SGA, and CMA-ES in solving the above test functions.  

Firstly, we compare the performance of HEDA and FWH, both of which have the 
common feature: estimation of distribution algorithms based on marginal histogram 
probability model. The results of FWH have been published in [1]. From table 2, it is 
obvious that HEDA performs much better than FWH. For example, in solving 
Griewank function, with population size 100, HEDA can always obtain the optimal 
solution in the 20 runs, while FWH fails in all the 20 runs. Excellent behavior in solv-
ing the 4 problems shows the effectiveness of accumulation learning strategy and 
mutation strategy in HEDA.  

And then, let’s see the comparison with SGA, UMDA-Gaussian and CMA-ES. As 
shown in Table 2, for Schwefel functions, CMA-ES exhibits very good performance. 
For example, with population size 100, CMA-ES can obtain optimal solution in all the 
20 runs with less MNE 1205.6. UMDA-Gaussian performs very well in solving 
Griewank function and it can always succeed in converging to optimum in all the 20 
runs. However, UMDA-Gaussian and CMA-ES performs worse than HEDA in solv-
ing other test functions. It can be observed that the convergence property of HEDA 
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is consistently good in solving all the 4 functions. CMA-ES often fails in solving 
Two-peak function and Rastrigin function; UMDA-Gaussian often fails in solving 
Two-peak function, Schwefel function and Rastrigin function. Compared with SGA, 
HEDA performs much better both in MNE and #OPT. Experimental results show that 
HEDA is a stable, robust and efficient algorithm in solving the test functions. 

3.3   Scalability of HEDA 

The scalability of HEDA is tested on Two-peak function. The problem dimension 
starts at 10, increased to 100 with step 10. For each dimension, 20 independent runs 
are executed. Fig.1 shows the mean number of fitness evaluations until HEDA finds 
the optimal solution. The number of fitness evaluations can be approximated by 
O( 1.256n ). Therefore, the results indicate that HEDA can solve Two-peak function in 
sub-quadratic number of evaluations. 

 

Fig. 1. Scalability of HEDA for Two-peak problem 

3.4   Drawback of HEDA 

In the previous subsections, experiments demonstrate that HEDA can efficiently solve 
the test functions and performs much better than some of well-known continuous 
evolutionary algorithms. However, in the procedure of HEDA, the relationship among 
variables is not taken into consideration. This will limit the ability of HEDA in solv-
ing complicated problems with strong linkage information. Here, 20-variable Rosen-
brock function with optimum [1,1,…,1] is used to test the limited performance of 
HEDA: 

2 2 2
1 12

( ) 100( ) (1 )
n

i i ii
f x x x x− −=

= − + − . 

There are strongly correlated variables in Rosenbrock function. In the experiment, 10 
runs are executed for each population setting. The experimental results in Table 3 
demonstrate it is hard to find optimal solution using HEDA. The drawback of HEDA 
is due to the fact that HEDA does not encode the linkage information. 

Table 3. Convergence property of HEDA in solving Rosenbrock function 

100 200 400 800 
OPT# MNE OPT# MNE OPT# MNE OPT# MNE 

1 29232.6 2 18625.4 0 ---- 1 62816.0 
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4   Conclusion 

In this paper, we have proposed an improved estimation of distribution algorithm 
(HEDA) based on histogram probabilistic model. In the algorithm, a novel learning 
strategy named accumulation strategy is proposed, which considers the historical and 
current information of population at the same time. Mutation strategy is brought into 
the sampling phase to enhance the population diversity. HEDA is tested to solve a 
class of well-known continuous problems. Experimental results demonstrate that 
HEDA significantly outperforms FWH, and exhibits excellent capability compared to 
other evolutionary algorithms, e.g. CMA-ES, SGA and UMDA-Gaussian. 

It is also noted that the capability of HEDA is limited by the fact that HEDA does 
not take the relationship among variables into account. Future work will focus on 
extensions of HEDA that can model the relationship among variables. 
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Abstract. This paper presents a population climbing evolutionary algorithm 
(PCEA) for solving function optimization containing multiple global optima. 
The algorithm combines a multi-parent crossover operator with the complete 
local search. The multi-parent crossover operator can enables individual to 
draw closer to each optimal solution,thus the population will be divided into 
subpopulations automatically , meanwhile, the local search is adopted to en-
able individual to converge to the nearest optimal solution which belongs to 
the same attractor. By this way, each individuals can converge to a global op-
tima, then the population can maintain all global optima. Comparing with 
other algorithms, it has the following advantages.(1) The algorithm is very 
simple with little computation complexity .(2) Proposed algorithm needs no 
additional control parameter which depends on a special problem. The ex-
periment results show that PCEA is very efficient for the optimization of mul-
timodal functions, usually it can obtain all the global optimal solutions by 
running once of the algorithm.  

1    Introduction 

Many real world problems could be transformed to multimodal function optimal prob-
lems.However, when attempting to optimise a multi-modal function, the simple Ge-
netic Algorithm (SGA) only converges to a single solution of the multiple optima due 
to genetic drift. So many researchers have proposed some effective methods to solve 
multimodal function optimization.DeJong(1975) in his doctoral dissertation used a 
crowding model to introduce diversity among solutions in a GA population [1].The 
main idea of DeJong’s study was the suggestion of replacing one solution by a similar 
solution in maintaining optimum solutions in an evolving population.Mahfoud im-
proved standard crowding of De Jong by introducing competition between children 
and parents of identical niches [2].After crossover and eventually mutation,each child 
replaces the nearest parent if  it has an higher fitness.Other researchers have devel-
oped some different crowding schemes,for example,Restricted Tournament Selection 
(RTS)[3],adapts tournament selection for multimodal optimization,Mengshoel et 
al.[4] proposed probabilistic crowding as a probabilistic extension of the original 
Deterministic crowding (DC) method.Goldberg and Richardson proposed another 
revolutionary concept, sharing function model [5],where instead of replacing a solution 
by a similar solution, the focus was more on degrading the fitness of similar solu-
tions.Most subsequent GA studies have used this model in solving multimodal 
optimization problems [6].However, there are two difficulties with the sharing function 
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approach. On the one hand, fitness sharing is computationally expensive because it 
requires the comparison of each couple of individuals to measure their distance at 
each generation. On the other hand, it is difficult to choose a suitable parameter 

shareQ  . 

Many other people’s researches fall into parallel subpopulation method [7].One 
important class of parallel subpopulation method is island model parallel GAs 
(IMGAs)[8].Species conservation proposed by Jian-ping Li et al[7] also is a technique 
of parallel subpopulation method.The main drawback lies in these algorithms is that 
some additional control parameters have been introduced that need careful selection 
to ensure good algorithm performance.If we lack of the background of the multimodal 
function optimization problems,choosing suitable parameters is a difficult task . 

This paper presents a population climbing evolutionary algorithm (PCEA) for solv-
ing function optimization containing multiple global optima. The algorithm combines 
a multi-parent crossover operator with the complete local search. The multi-parent 
crossover operator can enables individual to draw closer to each optimal solution,thus 
the population will be divided into subpopulations automatically , meanwhile, the 
local search is adopted to enable individual to converge to the nearest optimal solution 
which belongs to the same attractor. By this way, each individuals can converge to a 
global optima, then the population can maintain all global optima. The experiment 
results show that PCEA is very efficient for the optimization of multimodal functions, 
usually it can obtain all the global optimal solutions by running once of the algorithm. 

The rest of this paper is organized as follows:Section 2 gives the structure of  
PCEA and describes the implementation of the algorithm.The experiments and com-
parisons with other algorithms are illustrated by solving several benchmark problems 
in section 3.Finally,section 4 concludes with some brief remarks.  

2   Description of Population Climbing Evolutionary 
Algorithm(PCEA) 

The algorithmic description of PCEA is as follows: 

PROCEDURE PCEA ALGORITHM                              

 BEGIN                                                   

Randomly initialize population  P={ NXXX ,...,, 21 };    

    generation=0;                                        

    t=0 ;                                                

   while(the termination condition is not satisfied) do                                     

   BEGIN                                                                               

           select M points MXXX ′′′ ,...,, 21 �from population ;     

X=GCMX( MXXX ′′′ ,...,, 21 );                                               

            IF ),( worstXXbetter  THEN  BEGIN 

;XX worst = �



 Population Climbing Evolutionary Algorithm 555 

 X= LocalSearch(X); 

  IF ),( worstXXbetter  THEN  BEGIN 

���� ;XX worst = �

��END; 

END; 

generation = generation + 1; 

ENDWHILE; 

Output Result; 

END; 

END. 

2.1    Multi-parent Crossover Operator (GCMX) 

Multi-parent crossover operators,which mean that more than two parents are involved 
when generating offspring,are a more flexible version,generalizing the traditional 
two-parent crossover of nature.A novel Multi-parent crossover operator is introduced 
to accelerate the convergence of the evolution[12]. Fig.1 shows how to generate a 
new individual using  Multi-Parent crossover operator. 

 
Fig. 1. Multi-Parent Crossover Operator 

The flow of generating a new child is as follows: 

1. M individuals Mjx j ,...2,1, =  are randomly selected in the population. 

2. find the worst individual p1 in these M individuals ( by comparing with the value 
of their fitness ) 

3. Denote the center of  the remanent M-1 individuals as p2:  

1

1

2
1

−

−

= =

M

px

p

M

j
j

 
(1) 

4. find the reflecting point  p3 of  p1 corresponding to p2: 

1223 ppp −×=  (2) 
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This Multi-Parent crossover operator has two main advantages : 

1. The new offspring generated by GCMX will near the region where individu-
als may have higher fitness value,so there is rather larger probability that the 
new individual has higher fitness value than that of the worst individual in the 
population.Thus,this crossover operator can accelerate the constringency be-
cause of its strong direction.In fact,it can instruct its search direction using 
statistical information.  

2. This operator can enables each individual to climb to one optimal solu- 
tion in evolution, thus the population will be divided into subpopulations 
automatically . 

2.2    Local Search 

The local search is adopted when a new child is generated, as a result, the new indi-
vidual will be converge to a optimal solution. To avoid the disadvantages of the  tradi-
tional optimization algorithms, we adopt SIMPLEX algorithm[11] to implement the 
complete local search algorithm, because SIMPLEX algorithm belongs to the class of 
direct search methods, a class of optimization algorithms which neither compute nor 
approximate any derivatives of the objective function.  

3   Numerical Experiments and Analysis 

When testing the algorithm on well understood problems,there are two measures of 
performance: 

1. Success rate: the ratio of  found modals and actual modals. 
2. The average number of objective function evaluations required to find these 

optima. 

The algorithm SCGA proposed in [7] and the algorithm TSEA proposed in [10] are 
also evolutionary algorithms for solving multimodal function global optimization 
problems which proved to be very effective. Some test problems are selected to com-
pare the performance of the proposed algorithm with the algorithm SCGA and TSEA. 

Example 1[9]. Humpback function (the function has six local optimal solutions,two of 
which are global optimal solutions) 

2
2

2
221

2
1

4
1

2
121 )44()3/1.24(),(min xxxxxxxxxf +−+++−=  (3) 

where ]2,2[],3,3[ 21 −∈−∈ xx  

Example 2[9]. N-dimension Shubert function(when n=2 the function has 720 local 
optimal solutions,18 of which are global optimal solutions. When n=3,the function 
has 81 global optimal solutions ) . 

∏
= =

++=
n

i j
in jxjjxxxf

1

5

1
21 ))1cos((),,,(min  (4) 

where nixi ,,2,1],10,10[ =−∈ . 
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Example 3 two-peak trap [7] 
The fitness function of the two-peak trap is defined by: 

    

≤≤−

<≤−

<≤

=

2015)15(
5

200

1510)15(
5

160

100
10

160

)(

cforc

cforc

cforc

cF  (5) 

This function has a global maximum of 200 at c = 20,but it has a “central” false 
maximum of 160 for  c = 0. 

To compare the performance of the proposed algorithm with the algorithm SCGA 
and the algorithm TSEA,we use the same population size adopted in SCGA and 
TSEA for each test problem.Table 1 summarizes the experimental results we obtained 
by using PCEA and statistics for the 30 independent runs. Table 1 also gives the com-
parison between our results and the lasted results [7] and [10] that we can find in the 
literature. 

From the Table 1,we can see that the experimental results using the new algorithm 
are surprisingly good. For the benchmark problems,PCEA can find all optimal solu-
tions by running once of the algorithm.Note that the average number of function 
evaluations of PCEA is larger than that of the algorithm SCGA and TSEA for every 
test problems, the reason lies that PCEA has gained all exact global optima by run-
ning once of the algorithm, while SCGA and TSEA can only gain the approximate 
 

Table 1. The comparison of this algorithm PCEA and the algorithms SCGA in the [7] and the 
algorithm TSEA in the [10] 

Example No Algorithm Population 
size 

Actual 
modals 

Success 
rate 

Average 
number of 
function 
evaluations 

TSEA 50 2 100% 1824 
SCGA 50 2 100% 1836 

Example 1 

PCEA 50 2 100% 12752 
TSEA 1000 18 100% 35016 
SCGA 1000 18 100% 64178 

Example  
2 (n=2) 

PCEA 1000 18 100% 460918 
TSEA 4000 81 100% 352486 
SCGA 4000 81 100% 850338 

Example 
2(n=3) 

PCEA 4000 81 100% 2552564 
TSEA 50 1 100% 522 
SCGA 50 1 100% 625 

Example 3 

PCEA 50 1 100% 2496 
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global optima . To compare with the performance of  PCEA and SCGA and TSEA 
fairly, the additional local search should be added to gain the exact global optima for 
the algorithm SCGA and TSEA. Generally, we can conclude that the average number 
of function evaluations of PCEA is less than that of the algorithm SCGA and TSEA 
for those difficult problems containing many global optima. 

Moreover,there is no additional control parameter in PCEA which is sensitive to a 
special problem,but the choice of the species distance has a significant effect on the 
performance of the algorithm SCGA.Meanwhile, it is no need to adopt a special 
mechanism to maintain the diversity of population in our algorithm , so the algorithm 
PCEA is very simple with little computational cost .The results show that our algo-
rithm is efficient for the global optimization of multimodal functions. 

4   Conclusions 

This paper presents a population climbing evolutionary algorithm (PCEA) for solving 
function optimization containing multiple global optima. Comparing with other algo-
rithms, it has the following advantages. 

(1) Our algorithm need no special mechanism to maintain the diversity of popu-
lation, so the algorithm is very simple with little computation complexity. 

(2) The algorithm can gain all exact global optima by running once of the  
algorithm.  

(3) Proposed algorithm need no additional control parameter which depends on 
a special problem. This is a most important feature which shows the general-
ity of  our algorithm. 
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Abstract. Segmentation for the region of nucleus in the image of uterine cervi-
cal cytodiagnosis is known as the most difficult and important part in the auto-
matic cervical cancer recognition system. In this paper, the region of nucleus is 
extracted from an image of uterine cervical cytodiagnosis using the HSI model. 
The characteristics of the nucleus are extracted from the analysis of morphemet-
ric features, densitometric features, colorimetric features, and textural features 
based on the detected region of nucleus area. The classification criterion of a 
nucleus is defined according to the standard categories of the Bethesda system. 
The fuzzy ART algorithm is used to the extracted nucleus and the results show 
that the proposed method is efficient in nucleus recognition and uterine cervical 
Pap-Smears extraction.  

1   Introduction 

Cervical cancer is a malignant tumor developed in the epithelial tissue of the cervix. 
Conquering the disease is a very important matter. A cell is gathered from cervix uteri 
of a patient for a uterine cervical cancer check first. Pathologist inspects the dyed 
sample by a naked eye through a microscope for the uterine cervical cancer consists 
of observing a cell and an action of a nucleus [1]. The best method for a completely 
curing cervix cancer is to prevent the cell from developing into cervical cancer. For 
this purpose, there have been many efforts to completely or at least partially automate 
the process of cytodiagnosis during the last 40 years [2][3].  

Diagnosis of the region of interest in a medical image is largely consisted of area 
segmentation, feature extraction and characteristic analysis. A medical doctor diagno-
ses a disease by using character analysis which is deciphering the extracted features to 
analyze and compare clinical information. The approaches can be largely divided into 
the pixel-center method and the area-center method [4][5]. Pixel-center method as-
signs an independent meaning to each pixel according to a predefined criterion. Pixel-
center method can use the overall characteristic [4]. Although area-center method 
relatively needs more calculation time than the pixel-center method, it provides the 
usage of regional characteristics [5].  
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In this paper, the following simplification process allows the nucleus to be more 
easily detected in the image: (i) converting the extracted image of cervix uteri cytodi-
agnosis to a grey scaled image, (ii) removing noise using brightness information, and 
(iii) applying a 5 5×  fuzzy grey morphology operation. Extracted information is 
categorized into 4 degrees based on the extent of abnormality in each nucleus by the 
fuzzy ART (adaptive resonance theory) algorithm.   

2   Nucleus Area Segmentation of Cervix Uteri Cytodiagnosis  

The proposed algorithm to extract the nucleus of cervix uteri cytodiagnosis is shown 
in Fig. 1.  
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Fig. 1. Process to extract nucleus of cervix uteri cytodiagnosis 

13 morphometric features, 8 densitometric features, 18 colorimetric features, and a 
textural feature are extracted after detecting the nucleus in cervix uteri in order to 
analysis the changes and characteristics of a nucleus. The classification criterion of 
extracted nucleus is defined according to the standard categories of the Bethesda 
system. The fuzzy ART algorithm is applied to classify the malignancy degree of the 
extracted nucleus according to the standard criterion.  

Color images are changed into grey images as a pre-treatment process. Noise is 
removed by Eq. (1) to improve the quality of the image.  
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In Eq. (1), a is the lowest brightness value + (30% of the highest brightness 
value), b is 80% of the highest brightness value, and z is a z b≤ ≤ . a′ and b′  are 0 
and 255 respectively. The image of cervix uteri cytodiagnosis is in Fig. 2(a). The 
grey image in which noise is removed by the proposed pre-treatment process is in 
Fig. 2(b).  

 

 
                                           (a)                                                 (b)  

Fig. 2. Image of cervix uteri cytodiagnosis with noise reduction: (a) Image of cervix uteri cyto-
diagnosis, (b) Image of cervix uteri cytodiagnosis which noise is removed 

If noise is removed by the proposed pre-treatment process, partial information of 
the normal cell nucleus and cancer cell nucleus is lost. The extracted nucleus of the 
normal cell and abnormal cell can be precisely extracted by applying a 5 5×  fuzzy 
grey morphology operation. Fuzzy morphology operation is in Eq. (2) and (3). a is the 
original image and b is the 5 5×  mask. The values of mask related to the brightness 
are described in Fig. 3. The image that is applied to a 5 5×  fuzzy grey morphology 
operation is shown in Fig. 4.  
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Threshold is chosen by using a repeat threshold selection method in 45% to 100% 
section of the histogram that is based on the simplified image using the proposed pre-
treatment process.  
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Fig. 3. The values of mask related to the brightness of 200 and 150, respectively 

 
                                      (a) Erosion                               (b) Dilation         

Fig. 4. Images of the closing results 

3   Nucleus Characteristic Extraction for Cancer Cell Recognition  

A normal nucleus in cervix uteri cytodiagnosis appears small and pale and the nu-
cleus, cytoplasm ratio is also small. On the other hand, an abnormal cell nucleus has a 
large size and longish or irregular shape compared to a normal cell [6][7]. 

In this paper, the characteristics of the nucleus and cell image were extracted to 
classify these characteristics. First, the following features are extracted for nucleus 
characteristic: area of nucleus, circumference of nucleus, ratio between circumference 
of nucleus and circumference of quadrilateral, degree of roundness in nucleus’ shape, 
reciprocal of degree of roundness in nucleus’ shape, log10 (height/width) in the small-
est area of quadrilateral, the longest interior line in horizontal and vertical directions, 
ratio between area of nucleus and area of quadrilateral. Second, we calculate the area 
that includes out area of nucleus and area of convex hull wrapped the nucleus in the 
convex range. HVS divides texture information into channels in which the energy 
vector and energy deviation are calculated. Texture characteristic vector that uses 
energy is calculated by the following.  

2[ ( )]
mn mn

q C pθ
ω θ

ω=  (4) 

log ( 1 )
mn mn

e p= +  (5) 
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Here ( )pθ ω represents the value in the frequency space of each channel. Cmn is a 

constant for the normalization value. The calculation of the texture feature using en-
ergy deflection is as follows [8]:  

2 2[( ( )) ]
mn mn mnw

q D p w pθθ
= −  (6) 

log (1 ).
mn mn

d q= +  (7) 

Here, Dmn is a constant for the normalization value. The calculated values from equa-
tion (4) to (7) and the texture representation that displays texture feature of a nucleus 
using the average value and standard deviation of an image is expressed in Eq. (8). 
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4   Nucleus Classification and Recognition 

The ART2 architecture is evolved to perform learning for binary input patterns and 
also accommodate continuous valued components in input patterns. The averaged 
mean value of the difference between input vector and connection weight is used for 
comparison with the vigilance factor [9].  

Fuzzy ART algorithm is an autonomous learning algorithm combined fuzzy logic 
and ART learning model. Similarity measure in fuzzy ART uses Min operator ( ∧ ) of 
the fuzzy logic intersection operator as shown in Eq. (9).  

/X W X∧  (9) 

Output of the fuzzy ART algorithm is calculated with Eq. (10) and a node that has 

the biggest value is selected as a winner node. 
j

O  is the output value, 
*j

O  is the out-

put of the j-th winner node. α  is a designer’s choice parameter.   

{ } { } *
|| || / || || ( ),   

j j j
O X W W O Oα= ∧ + = ∨  (10) 

The improved fuzzy ART algorithm that modifies the learning parameter according 
to the winning occurrence can classify and recognize features of the extracted nu-
cleus. Yager’s intersection operator is defined in Eq. (11) and the parameter p is a 
monotonic decline function. 

{ }1/

1
( ) 1 min 1, (1 ) (1 )

pp p

i n
X X Xμ = − − + + −  (11) 

The proposed fuzzy ART algorithm in order to classify and recognize features of 
the extracted nucleus is shown in Fig. 5. 
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Fig. 5. Algorithm for the selection of the critical value 

5   Experiment and Result Analysis  

The environment of the experiment is embodied by Visual C++ 6.0 and C++ Builder 
6.0. Specimen is 20 samples of 640*480 cervix uteri cytodiagnosis image size and it 
is acquired in Pusan university hospital. The results of the proposed method were 
compared with the diagnostic results of a medical specialist The nucleus number of 
cervix uteri cytodiagnosis extracted from a medical specialist in 20 samples is 316, 
and the number extracted nucleus is 284. The accuracy of extraction rate is 89.8% in 
this research. Table 1 shows a part of the characteristic information of the extracted 
nucleus based on the clinical trials and cell diagnostics of a medical specialist.  
The classification based on the Bethesda System is in Fig. 6. By using standards of 
nucleus classification information to identify normal cells and cancer cells such as in 
Fig. 6, the accuracy of cancer diagnosis can be much more improved compared to 
classifying the whole nucleus that appears in the image. 
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Table 1. A part of the characteristic information of the extracted nucleus 

Characteristic information of nucleus Characteristic value of nucleus 
Girth ratio between nucleus and rectangular region 0.5791 

Degree of roundness of the nucleus shape  0.8571 
Area ratio between nucleus and rectangular region 0.6457 

Area of convex hull around nucleus 0.5424 
Standard deviation of brightness 0.8721 

Variance of brightness 0.7452 
Mean of wavelet LL2 0.7611 

Variance of wavelet LL2 0.7562 

 

Classified featuresClassified features

 

Fig. 6. Information of the standard category in the Bethesda system 

The proposed fuzzy ART algorithm is applied to the characteristic information of 
the 284 extracted nucleuses in order to classify and distinguish normal cell, abnormal 
cell and cancerous cell. After learning process based on the characteristic information 
of nuclei, the number of cluster is set to 152. The results from classifying and distin-
guishing the state of cell using fuzzy ART algorithm based on the Bethesda System is 
in Table 2. 

As can be concluded from Table 2, much more frequently in the proposed method 
were normal cells classified as abnormal cells than in the diagnosis of a medical spe-
cialist. This is because the extracted nucleus is dyed, making it open to being classi-
fied as an abnormal cell. But, it can be confirmed that accuracy between abnormal 
cell and cancer cell that a medical specialist diagnosis has a little performance but 
classification grade of abnormal cell is different. But it can be concluded through 
Table. 3 that the proposed method is comparatively efficient in classifying abnormal 
cells and cancer cells, and can help a medical specialist in diagnosis. 

Table 2. Classification and recognition results of cell by fuzzy ART algorithm 

Medical specialist Proposed method 
Normal cell(WNL) 92 Normal cell(WNL) 72 

ASCUS 82 ASCUS 94 
LSIL 34 LSIL 39 Abnormal cell 
HSIL 56 

Abnormal cell 
HSIL 58 

Cancer cell(SCC) 20 Cancer cell(SCC) 21 
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6   Conclusion  

The nucleus is easily detected by using the following simplification process of the 
image: converting the extracted image of cervix uteri cytodiagnosis to a grey-scaled 
image, removing noise using compression and density transformation, and applying a 
5 5×  fuzzy grey morphology operation. Extracted information is categorized and 
recognized into normal cells, abnormal cells with 4 degrees, and cancer cells by the 
fuzzy ART algorithm. The results show that the proposed method is efficient in rec-
ognizing abnormal cells and cancer cells. In the future, research should be conducted 
to correctly extract characteristic information of nucleus by a fuzzy neural network 
and to clearly define a criterion of classification to reduce presumption error in nu-
cleus classification. 
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Abstract. This paper describes a new data mining algorithm to learn Bayesian 
networks structures based on memory binary particle swarm optimization 
method and the Minimum Description Length (MDL) principle. An memory 
binary particle swarm optimization (MBPSO) is proposed. A memory influence 
is added to a binary particle swarm optimization. The purpose of the added 
memory feature is to prevent and overcome premature convergence by provid-
ing particle specific alternate target points to be used at times instead of the best 
current position of the particle. In addition, our algorithm, like some previous 
work, does not need to have a complete variable ordering as input. The experi-
mental results illustrate that our algorithm not only improves the quality of the 
solutions, but also reduces the time cost. 

1   Introduction 

The Bayesian belief network is a powerful knowledge representation and reasoning 
tool under conditions of uncertainty. Recently, learning the Bayesian network from a 
database has drawn noticeable attention of researchers in the field of artificial intelli-
gence. To this end, researchers have developed many algorithms to induct a Bayesian 
network from a given database [1], [2], [3], [4], [5], [6]. 

Particle swarm optimization (PSO), rooting from simulation of swarm of bird, is a 
new branch of Evolution Algorithms based on swarm intelligence. The concept of 
PSO, which can be described with only several lines of codes, is more easily under-
stood and realized than some other optimization algorithms. PSO has been success-
fully applied in many engineering projects. 

In this paper, we have developed a new data mining algorithm to learn Bayesian 
networks structures based on an improved swarm intelligence method and the Mini-
mum Description Length (MDL) principle. An important characteristic of our  
algorithm is that, in order to prevent and overcome premature convergence, memory 
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feature are introduced into binary particle swarm optimization. The memory influence 
conceptually derives from the pheromone trail of Ant Colony Optimization (ACO). 
Furthermore, our algorithm, like some previous work, does not need to impose restric-
tion of having a complete variable ordering as input. 

We’ll begin with a brief introduction to Bayesian network and MDL principle. In 
section 2, the memory particle swarm optimization algorithm will be discussed. The 
in section 4 and 5, the performance of our algorithm will be demonstrated by conduct-
ing a series of experiments as well as a summary of the whole paper be made.  

2   Bayesian Networks and MDL Metric 

2.1   Bayesian Networks 

A Bayesian network is a directed acyclic graph (DAG), nodes of which are labeled 
with variables and conditional probability tables of the node variable which is given 
its parents in the graph. The joint probability distribution (JPD) is then expressed in 
the following formula: 

1
1

( , , ) ( | ( ))n k k
k n

P x x P x xπ
=

= Π  (1) 

where ( )kxπ is the configuration of kX ’s parent node set ( )kXΠ .   

2.2   The MDL Metric  

The MDL metric [7] is derived from information theory and incorporates the MDL 
principle. With the composition of the description length for network structure and 
the description length for data, the MDL metric tries to balance between model 
accuracy and complexity. Using the metric, a better network would have a smaller 
score. Similar to other metrics, the MDL score for a Bayesian network, S , is  
decomposable and could be written as in equation 2. The MDL score of the network 

is simply the summation of the MDL score of ( )kXΠ  of every node kX  in the 

network. 

( ) ( , ( ))k k
k

MDL S MDL X X= Π  (2) 

According to the resolvability of the MDL metric, equation 2 can be written when 
we learn Bayesian networks form complete data as follows: 
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Where N  is database size, || ||kX  is the number of different values of kX , and 

|| ( ) ||kXΠ is the number of different parent value combinations of ( )kXΠ . 

3   Memory Binary Particle Swarm Optimization Algorithm 

Particle swarm optimization (PSO), originally developed by Kennedy and Elberhart 
[8], is a method for optimizing hard numerical functions on metaphor of social behav-
ior of flocks of birds and schools of fish. It is an evolutionary computation technique 
based on swarm intelligence. A swarm consists of individuals, called particles, which 
change their positions over time. Each particle represents a potential solution to the 
problem. In a PSO system, particles fly around in a multi-dimensional search space. 
During its flight each particle adjusts its position according to its own experience and 
the experience of its neighbors, making use of the best position encountered by itself 
and its neighbors. The effect is that particles move towards the better solution areas, 
while still having the ability to search a wide area around the better solution areas. 
The performance of each particle is measured according to a predefined fitness func-
tion, which is related to the problem being solved and indicates how good a candidate 
solution is. The PSO has been found to be robust and fast in solving non-linear, non-
differentiable, multi-modal problems. The mathematical abstract and executive steps 
of PSO are as follows. 

Let the i th particle in a D -dimensional space be represented as 

1( , , , , )i i id iDX x x x= . The best previous position (which possesses the best 

fitness value) of the i th particle is recorded and represented as 

1( , , , , )i i id iDP p p p= , which is also called pbest. The index of the best pbest 

among all the particles is represented by the symbol g. The location Pg is also called 

gbest. The velocity for the i th particle is represented as 1( , , , , )i i id iDV v v v= . 

The concept of the particle swarm optimization consists of, at each time step, chang-
ing the velocity and location of each particle towards its pbest and gbest locations 
according to Equations (4) and (5), respectively: 

1 1 2 2( 1) ( ) ( ( )) ( ( ))i i i i g iV k V k c r P X k t c r P X k tω+ = + − Δ + − Δ  

                                ( 1) ( ) ( 1)i i iX k X k V k t+ = + + Δ  

(4) 

 
(5) 

where ω  is the inertia coefficient which is a constant in interval [0, 1] and can be 

adjusted in the direction of linear decrease [9]; 1c  and 2c  are learning rates which are 

nonnegative constants; 1r  and 2r  are generated randomly in the interval [0, 1]; tΔ is 

the time interval, and commonly be set as a unit; max max[ , ]idv v v∈ −  , and maxv  is a 

designated maximum velocity. The termination criterion for iterations is determined 
according to whether the maximum generation or a designated value of the fitness is 
reached. 
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The method described above can be considered as the conventional particle swarm 
optimization, in which as time goes on, some particles become inactive quickly be-
cause they are similar to the gbest and lost their velocities. In the following genera-
tions, they will have less contribution for their very low global and local search capa-
bility and this problem will induce premature convergence. Kennedy and Eberhart 
also developed the discrete binary version of the PSO. Then the particle changes its 
value by [10] 

1 1 2 2( 1) ( ) ( ( )) ( ( ))i i i i g iV k V k c r P X k t c r P X k tω+ = + − Δ + − Δ  

if ( )( 1) ( 1)i ik sig v kρ + < +  then ( 1) 1ix k + = else ( 1) 0ix k + =  

(6) 

 
(7) 

In this paper, a memory binary particle swarm optimization is proposed. The pur-
pose of the added memory feature is to prevent and overcome premature convergence 
by providing particle specific alternate target points to be used at times instead of the 
best current position of the particle [11]. To optimize this effect each particle in the 
swarm maintains its own memory. The maximum size of the memory and the prob-
ability that one of the points it contains will be used instead of the current local opti-
mal point. The local optimum point will be added to the memory if the fitness of this 
point is better than the least fit stored point. It may also be required to differ by at 
least a specified amount from any point already in the memory. The new memory 
point replaces the least fit point if the memory is full. There is a certain probability 
that a point from the memory will be used instead of the pbest in equation 6 above. 
When a point from a particle memory is to be used the point may be chosen randomly 
or the probability of selection may be fitness based (with better fitness producing a 
higher probability of selection). 

The memory binary particle swarm optimization algorithm we propose is shown 
below. 

1. Create an initial population, Pop(t). The initial population size is N. 
2. If the current population contains the optimal individual, then the evolution-

ary stop; otherwise, continues. 
3. Create N offspring according to formula (6) and (7), then randomly select a 

point from a particle memory and use it to instead of pbest. 
4. Go to 2. 
5. Display the result. 

4   Experimental Results and Analyses 

We have conducted a number of experiments to evaluate the performance of the im-
mune binary particle swarm optimization algorithm. The learning algorithms take the 
data set only as input. The data set is derived from ALARM network 
(http://www.norsys.com/netlib/alarm.htm).   

Firstly, we generate 5,000 cases from this structure and learn a Bayesian network 
from the data set ten times. Then we select the best network structure as the final 
structure. The population size N is 30 and the maximum number of generations is 
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5,000. We employ our learning algorithm to solve the ALARM problem. Some 

parameters in the experiment are taken as: 1c =1.9, 2c =0.8, ω =0.5, ρ =0.5, 

maxv =8. In order to achieve the algorithm conveniently, we select a point from a 

particle memory randomly. Table 1 is the performance variation with different 
memory depth. 

 
Table 1. Performance variation with different memory depth 

Memory depth Generation MDL metric 

No memory 4083.7 81268.3 
100 4052.8 81252.5 

200 4033.1 81240.6 

300 4022.4 81231.7 
 

We also compare our algorithm with binary particle swarm optimization and clas-
sical GA algorithm [6]. The algorithms run without missing data and memory depth is 
300. The MDL metric of the original network structures for the ALARM data sets of 
5,000 cases is 81,219.74. 

We also implemented a classical GA to learning the ALARM network. The one-
point crossover and mutation operations of classical GA are used. The crossover 

probability cp  is 0.9 and the mutation probability mp  is 0.01. The MDL metric for 

memory binary particle swarm optimization algorithm, binary particle swarm optimi-
zation algorithm and the classical GA are delineated in Figure 1. 

 

Fig. 1. The MDL metric for the ALARM network 
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From Figure 1, we see that the value of the average of the MDL metric for mem-
ory binary particle swarm optimization algorithm is 81231.7, the value of the aver-
age of the MDL metric for binary particle swarm optimization algorithm is 81268.3 
and the value of the average of the MDL metric for the GA is 8,1789.4. We find 
immune binary particle swarm optimization algorithm evolves good Bayesian net-
work structures at an average generation of 4022.4. Binary particle swarm optimiza-
tion algorithm and GA obtain the solutions at average generation of 4083.7 and 
4495.4. From Figure 1, we can also find that the proposed algorithm performs more 
poorly than Binary particle swarm optimization algorithm does at the early genera-
tions. But the performance of the proposed algorithm is better at the end of the gen-
erations. The reason of the phenomenon is that the proposed algorithm adds memory 
feature in order to prevent premature convergence. Thus, we can conclude that 
memory binary particle swarm optimization algorithm finds better network struc-
tures at earlier generations than binary particle swarm optimization algorithm and 
the GA does.  

5   Conclusions 

In this paper we propose a memory binary particle swarm optimization algorithm.  A 
memory influence is added to binary particle swarm optimization. The purpose of the 
added memory feature is to prevent and overcome premature convergence. Further, 
the proposed algorithm is used to learn Bayesian networks from data. The experimen-
tal results show that the proposed algorithm is effective for learning Bayesian net-
works from data. 
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Abstract. In brain-computer interfaces (BCIs), a feature selection approach us-
ing an adaptive genetic algorithm (AGA) is described in this paper. In the AGA, 
each individual among the population has its own crossover probability and mu-
tation probability. The probabilities of crossover and mutation are varied de-
pending on the fitness values of the individuals. The adaptive probabilities of 
crossover and mutation are propitious to maintain diversity in the population 
and sustain the convergence capacity of the genetic algorithms (GAs). The per-
formance of the AGA is compared with those of the Standard GA (SGA) and 
the Filter method in selecting feature subset for BCIs. The results show that the 
classification accuracy obtained by the AGA is significantly higher than those 
obtained by other methods. Furthermore, the AGA has a higher convergence 
rate than the SGA. 

1   Introduction 

Brain-computer interfaces (BCIs) are devices intended to help disabled people com-
municate with a computer using the brains’ electrical activity. The electrical activity 
can be measured by electroencephalogram (EEG) [1]. Most BCIs make use of sponta-
neous mental activities (e.g., thinking on moving a finger, the hand, or the whole arm, 
etc.) to produce distinguishable electroencephalogram (EEG) signals [2], [3]. The 
distinguishable EEG signals are then transformed into external actions. Over the past 
years a variety of evidences have evaluated the possibility to recognize a few mental 
tasks from EEG signals [4], [5]. However, how to improve the recognition perform-
ance of EEG signals in signal processing is still a key problem. This paper will focus 
on a feature selection approach. 

Feature selection is the problem of selecting a subset of d features from a set of D 
(D>d) features based on some optimization criterion. An automated feature selection 
is crucial for classification because irrelevant features or redundant information are 
known to cause the classifier to have poor generalization, increase the computational 
complexity and require more training samples. Various kinds of possible features 
(autoregressive parameters, power spectral density, averages, wavelet packet energy, 
etc.) are used for classifying the EEG signals, but the most effective features remain 
unclear. So, the algorithms which can find a good approximation to the best subset 
need to be developed.  

The most common algorithms for feature selection include Filter algorithms and 
Wrapper algorithms. The main disadvantage of the Filter algorithms is that it selects 
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feature subsets that are independent of classification algorithms and ignores the ef-
fects of the selected feature subset on the performance of the classification algorithm. 
As a kind of wrapper method, the genetic algorithm (GA) is often used to perform 
feature selection.  

In the feature selection algorithms for BCIs, there are some reported applications 
[6], [7] which are based on SGA, but there are very few reported application based on 
AGA. However, in most cases, the AGA outperforms the SGA significantly [8]. We 
will explore an adaptive GA (AGA) method. It is compared with those of the Stan-
dard GA (SGA) and the Filter method in selecting feature subset for BCIs. 

2   Dataset and Feature Extraction 

2.1   Dataset  

All data were acquired from six healthy subjects (three male and three female, 22-35 
years old). The subjects were asked to move a cursor up and down (two mental activi-
ties) on a computer screen, while his slow cortical potentials (SCPs) were taken. Each 
trial lasted 6s and consisted of three phases: a 1s rest phase, a 1.5-s cue presentation 
phase, and a 3.5-s feedback phase. The cue presentation is a visual target appearing 
either at the top or bottom. Data were recorded during the 3.5-s feedback at a sam-
pling rate 256Hz. The feedback is provided by a cursor whose vertical position indi-
cated the current level of SCPs (Cz-Mastoids). The following six channels of EEG 
data were recorded (denotation follows the 10/20 system):  

Ch1: A1-Cz (A1 = left mastoid)       Ch2: A2-Cz (A2 = right mastoid)    
Ch3: (2 cm frontal of C3 )-Cz          Ch4: (2 cm parietal of C3)-Cz       
Ch5: (2 cm frontal of C4)-Cz           Ch6: (2 cm parietal of) C4-Cz 

2.2   Feature Extraction 

Three common types of feature extraction methods were used in this paper.  

    (1) Autoregressive model coefficients (AR): The autoregressive coefficients of 3 
orders, obtained using the Yule-Walker method [9]. We can write the AR  fea-
tures of Ch1 as f1, f2, f3 , Ch2 as f4, f5, f6 , … , Ch6 as f16, f17, f18 . 

    (2) Average coefficients (AC): We select db4 wavelet functions to decompose the 
EEG signals up to sixth level giving 64 (26) sub-bands. The first 25 sub-bands 
whose frequencies lower than 50Hz are adopted and the other sub-bands are 
discarded as useless information. Average coefficients values of the 25 sub-
bands are calculated. So, we can obtain 25-Dimensional AC features for each 
single channel. The AC features from Ch1 to Ch6 can be written as f19 , …, f43; 
f44 , …, f68; f144, …, f168 . 

    (3) Average energies (AE): The process of obtaining AE is similar with AC. We also 
can obtain 25-Dimensional AE features for each single channel. The AE features 
from Ch1 to Ch6 can be written as f169 , …, f193; f194 , …, f218; f294, …, f318 .  

All the features can be written as U= f1,  f2, …, f318 .  
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3   AGA Method 

3.1   SGA 

The schematic of the EEG recognition procedure is shown in Fig.1. We can see from 
Fig.1 that the recognition procedure consists of three steps and the feature selection is 
one of the three steps. The GA algorithm starts to search from a set of initial solutions 
in a population. An individual (also called chromosome) represents a possible solu-
tion to the problem to be solved and consists of many genes. The procedures in de-
signing GAs mainly include the following five steps. 

 

Fig. 1. The schematic of the EEG recognition 

(1) Chromosome Encoding 
Firstly, let us denote the D (to our problem, D=318) features uniquely by distinct 

variables from f1 to fD, as U= f1, f2, …, fD . For the feature selection problem, a 
string with D binary digits is used. A binary digit represents a feature, values 1 and 0 
meaning selected and removed respectively. 

(2) Design of the Fitness Function 
A chromosome C represents a selected feature subset X and the evaluation function 

is f (XC). In this paper, f (XC) evaluates the classification performance and controls the 
required subset size d. The fitness can be defined as:  

f (XC)  f1 (XC)  f2 (XC) (1) 

Where f2 (XC) =  * || XC|  d|| with a penalty coefficient , | XC | is subset size of 
XC and  f1 (XC) is the classification accuracy of testing samples using 5-fold Cross 
Validation (5-CV) of all trials. We use the probabilistic neural network (PNN) as 
our classifier. Because of easy training and a solid statistical foundation in Bayesian 
estimation theory, PNN has become an effective tool for solving many classifica-
tion problems [10]. In the PNN, we take the value of the spread of the radial basis 
functions 1. 

(3) Selection Operator 
Our design adopts the rank-based roulette-wheel selection scheme. In addition, we 

use elitist selection. 
(4) Crossover Operator 
Crossover operation is one of the main methods of producing new generation. 

Crossover occurs only with some probability Pc (crossover probability). When the 
solutions are not subjected to crossover, they remain unmodified. Notable crossover 
techniques include heuristic crossover, arithmetic crossover and so on. Each crossover 
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operator has its own advantages and disadvantageous. Therefore, heuristic crossover 
and arithmetic crossover are adopted synchronously in order to avoid defects of single 
operator.  

(5) Mutation Operator 
Mutation operation is an assistant method of producing new generation. Mutation 

involves the modification of the value of each gene of a solution with some probabil-
ity Pm(mutation probability). There are many mutation operators used in the GA, such 
as multi-boundary, multi-uniform, multi-Gaussian. Similar reasons with selecting 
crossover operator, the above three mutation operators are adopted synchronously. 

3.2   Adaptive Selections of Probabilities of the Crossover and the Mutation 

Fixed crossover probability Pc and mutation probability Pm may result in premature 
and local convergence. On the one hand, a larger Pc and Pm makes GAs have a better 
search capability. However, it also enlarges the fluctuation of fitness values among 
individuals, which is detrimental to the convergence. On the other hand, a smaller Pc 
and Pm makes the GA have better development capability and decrease the fluctuation 
of fitness values among individuals. However, it maybe causes premature [11]. The 
choice of probabilities of crossover and mutation, Pc and Pm, are known to critically 
affect the behavior and performance of GAs. So, an adaptive selection strategy of Pc 
and Pm is very important to improve the performance of GAs. We will discuss an 
adaptive selection method of Pc and Pm.  

We define four variables fmax, f
* , f’, f”, where fmax and f* are the maximum fitness 

and the average fitness of a population respectively; f’fis the larger one of fitness 
values of the two individuals used to cross; f”is the fitness of the individual used to 
mutate. It is obvious that (fmax f*) represents the stability of the whole population. A 
small (fmax f*) means that the difference among individuals of population is small. 
So, Pc and Pm can be determined by(fmax f*). In order to avoid premature, Pc and Pm 
should be increased when (fmax f*) is small, while Pc and Pm should be decreased 
when (fmax f*)  is large. Therefore, we adopt the parameters selection strategy that Pc 
and Pm are inversely proportional to (fmax f*).     

However, when the population is close to global optimum, Pc and Pm will increase 
according to the strategy mentioned above because of the smaller(fmax f*). As a re-
sult, the strategy enlarges the probability of being destroyed of the best individual 
though it can overcome premature. So, we need not only overcome premature but also 
preserve excellent individuals. An effective way is that Pc and Pm varies among indi-
viduals within the same generation. Individuals with higher fitness values should be 
preserved and their Pc and Pm should be decreased, while Pc and Pm of individuals 
with lower fitness values should be increased. Finally, we can conclude that Pc and Pm 
are not only related to (fmax f*) but also related to (fmax f’)  and (fmax f”). So, we can 
define the following formulas: 

Pc = k1(fmax f’)/ (fmax f*) (2) 

Pm = k2(fmax f”)/ (fmax f*) (3) 

Where k1, k2 are constants k1, k2 1.0, the two parameters should be adjusted according 
to a given problem.  
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In addition, the AGA also provides an effective method to the problem of deciding 
the optimal values of Pc and Pm. 

We adopt the following parameters: 1) population size P=100; 2) the maximum 
number of generation T=150; 3) penalty coefficient w=0.2; It should be noted that the 
first two parameters are selected according to common suggestion [10]. 

4   Results and Analysis 

4.1   Results 

In order to choose a small number of key features for practical application, we take 
feature subset size d=5, 10, 15, 20, …, 45, 50 in our experiment. We discuss the fol-
lowing three methods: 

(1) The AGA method  
For the AGA, Pc and Pm are determined according to expressions (2) and (3) given 

in section 3. The AGA has introduced new parameters k1 and k2 for controlling the 
adaptive nature of Pc and Pm. We evaluate the performance of the AGA by varying 
values of k1 (0.1,0.2,0.3,…,0.8) and k2 (0.1,0.2,0.3,…,0.8). We notice that no signifi-
cant difference of the AGA in terms of classification accuracy. In other words, the 
AGA is not sensitive to parameters k1 and k2. So, we finally choose k1=0.5 and k2 =0.3 
for the AGA.  

(2) The SGA method 
For SGA, Moderately large values of crossover probability Pc (0.5-1.0) and small 

values of Pm (0.001-0.05) are commonly employed in GA practice [10]. We use Pc 
=0.8 and Pm=0.03. 

It should be noted that we run the program 10 times to each subset size d and to 
each subject. Fig.2 shows the average classification accuracy (firstly average the clas-
sification accuracy of the 10 times and then the six subjects) versus the number of 
generation at d = 20. 

(3) The Filter method based on Fisher criterion (FFC)   
FFC is independent of the classification algorithm. The Fisher criterion function, 

F(w) , can be written as 

F( ) = ( TSB )/( TSW ) (4) 
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Fig. 2. The classification accuracy versus the number of generation (d = 20) 



580 G.-z. Yan, T. Wu, and B.-h. Yang 

Number of features ( d )

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (%

) 

0 10 20 30 40 50 60 70 80
68

72

76

80

84

88

92
 AGA

 SGA

 FFC(S1)

 FFC(S2)

 

Fig. 3. Classification accuracy versus the number of features used for classification. This figure 
is the average classification of testing samples accuracy for the six subjects with different 
methods (AGA, SGA, FFC). 
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Fig. 4. Relative usability of the ten best features 

where SB is the between-class scatter matrix, Sw is the within-class scatter matrix, and 
 is Fisher weight vector which can be obtained by maximizing the value of F. F can 

be used as a means of assessing the separability of two classes of data. The higher the 
value of F, the more separable the data are. We adopt two strategies based on the 
criterion. 1) Strategy1 (S1): it evaluates each feature individually based on the value 
of F and then selects the d features with the highest values. 2) Strategy2 (S2): it is 
called the forward sequential method that starts by choosing the best individual fea-
ture. Then the feature subset is built from the ground up, by repeatedly adding the 
next feature that works best with the previously chosen features. 

Fig.3 shows the classification accuracy versus the number of features (d) used for 
classification with different methods. The average standard deviations of classifica-
tion accuracy with AGA, SGA, FFC (S1), and FFC (S2) are 0.53, 0.59, 0, and 0 re-
spectively. We examine the ten best features that are most frequently used for classi-
fication by the AGA method. The relative usability (the ratio between times being 
selected of each feature and times being selected of all features) of the ten features 
(averaged over all the running times, subset size, and subjects) is shown in Fig.4. At 
the same time, we analyse the corresponding channels of the features and the relative 
usage of the channels is shown in Fig.5. 
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Fig. 5. Relative usability of the six channels 

4.2   Analysis 

We can see from Fig.3 that the classification accuracies of the features obtained by 
the AGA and SGA are significantly higher than those obtained by FFC methods. The 
FFC(S1) is a simple ranking method and it obtains the lowest classification accuracy 
since it ignores the correlation between features. The FFC(S2) obtains higher classifi-
cation accuracy than that obtained by the FFC(S1) since the FFC(S2) find d features 
that work well together. Although the average standard deviations of GAs is higher 
than that of FFC, the GAs are still excellent feature selection methods owing to their 
classification performances. 

We can see from Fig.2 that the AGA obtains higher classification accuracy and 
convergence rate than the SGA. The AGA and SGA has similar standard deviations. 
Although the evidence is not conclusive, it appears that the AGA outperforms the 
SGA for feature selection of BCIs. By using adaptively varying Pc and Pm, the AGA 
not only improves the performance of GAs but also provides a solution to select the 
optimal values of Pc and Pm.  

In conclusion, the AGA is an efficient feature selection algorithm and obtains the 
highest classification accuracy among all the methods. 

5   Conclusion 

The AGA method can pick the most promising features from vast number of available 
features automatically.  

The proposed method provides a good solution for feature selection in BCIs - es-
pecially for the development of new paradigms and the use of more EEG recording 
positions. 

The most frequently selected features and channels will provide some useful in-
formation for the design of BCIs.  

The experiment results show that the AGA is a promising method in feature selec-
tion for BCIs. However, the AGA method needs to be handled properly for good 
performance. More researches and experiments are still needed to test its robustness. 
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Abstract. This study develops an optimal pricing and replenishment policy in an 
arborescent (tree-like) supply chain system. Since it benefits the up-streams more 
than the down-streams when a producer, a distributor and multiple retailers are 
integrated, a pricing strategy with price reduction is derived to entice the 
down-streams to accept the incentive system with minimum total cost. Negotia-
tion factors are incorporated to balance the cost saving between the players. A 
numerical example solved by GA (genetic algorithm) is provided to illustrate the 
theory and the problem-solving tool. The result shows that the percentage of total 
cost reduction incurred from the integration is quite impressive.  

1   Introduction 

The term leagile has been used by Naylor et al. [8] to include two important concepts: 
leanness and agility. Leanness emphasizes cost reduction with total waste removal to 
maximize profits and providing service through a level schedule. Agility requires de-
sign of total flexibility to maximize profits through providing exactly what the cus-
tomer requires at minimum cost. Finch [2] has studied the relationship between the JIT 
concept and quality improvement.  

Monahan [7] was one of the early authors who analyzed a vendor-oriented optimal 
quantity discount policy that maximized the vendor’s gain, but did so at no additional 
cost to the buyer. Lee and Rosenblatt [5] generalized Monahan’s model and developed 
an algorithm to solve the vendor’s ordering and price discount policy. Weng and Wong 
[10] developed a general all-unit quantity discount model to determine the optimal 
pricing and replenishment policy. Wee [9] developed a lot-for-lot discount pricing 
policy for deteriorating items with constant demand rate. Chen et al. [1] addressed a 
coordination mechanism for a distribution system with one supplier and multiple re-
tailers. None of them considered the general replenishment and pricing policies for an 
integrated arborescent supply chain system. 

GA (genetic algorithm) is a powerful tool to solve the complex-structure problem of 
many variables. John Holland and his team applied their understanding of the adaptive 
processes of natural systems to design software for creating artificial systems that re-
tained the robustness of natural systems (Holland [3]). During the last decade, GA, which 
is a search technique based on the mechanics of natural selection and natural genetics, has 
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been commonly used to solve global optimization problems. Jinxing and Jiefang [4] 
studied the application of GA for solving lot-sizing problems. Li et al. [8] demonstrated 
that GA is effective for dealing with production planning and scheduling problems. 

In this study, a general replenishment and joint pricing policy is developed in an 
integrated arborescent system considering price reduction for reciprocity. GA is used to 
solve the problem. A numerical example using GA as a solution tool is provided to 
illustrate the theory. 

2   Mathematical Modeling and Analysis 

Three scenarios are discussed. The first scenario neglects integration and price reduc-
tion. The second scenario considers the integration of all the players without consid-
ering price reduction. The last scenario considers integration and price reduction of all 
players simultaneously. 

The mathematical model in this study is based on the following assumptions: 

(a) The replenishment rates of the distributor and the retailers are instantaneous,  
while the producer’s replenishment rate is finite. 

(b) Each retailer has constant demand rate. 
(c) All-unit price reduction is considered. 
(d) All players have complete knowledge of each other’s information. 
(e) A producer, a distributor and multiple retailers are considered. 
(f) Unit purchase price is assumed to be the same for all retailers in scenario 1 and 2 

The producer’s parameters are defined as follows: 

P    Production rate 
Tp1j  Replenishment period for retailer j in scenario 1  
Tpi   Replenishment period in scenario i, i= 2, 3 
Cp   Setup cost, $ per cycle 
Cpd  Fixed cost to process order of any size 
Pp   Unit cost 
Fp   Inventory carrying cost percentage per time per unit dollar 
Ip1j   Stairs-shaped average inventory level in scenario 1 and retailer j 
Ipi   Stairs-shaped average inventory level in scenario i, i= 2, 3 
np1j  Number of deliveries from producer to distributor for retailer j per Tp1j in scenario 1  
npi   Number of deliveries from producer to distributor per Tpi in scenario i, i= 2, 3 
TCpi  Total cost in scenario i, i= 1, 2, 3 
Sp    Cost saving of TCp3 with respect to TCp1 

The distributor’s parameters are defined as follows: 

Td1j   Replenishment period for retailer j in scenario 1  
Tdi    Replenishment period in scenario i, i= 2, 3 
Cd    Setup cost, $ per cycle 
Cdr    Fixed cost to process order of any size 
Pdi    Unit cost in scenario i, i= 1, 2, 3 
Fd    Inventory carrying cost percentage per time and per unit dollar 
Idi    Stairs-shaped average inventory level in scenario i, i= 1, 2, 3 
nij    Integral number of deliveries to retailer j per Tdi in scenario i 
TCdi   Total cost in scenario i, i= 1, 2, 3 
Sd     Cost saving of TCd3 with respect to TCd1 
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The retailers’ parameters are defined as follows: 

Trij    Replenishment period for retailer j in scenario i, i= 1, 2, 3 and retailer j 
Crj    Ordering cost for retailer j  
Prij    Unit purchased price for retailer j to distributor in scenario i, i= 1, 2, 3 
Frj    Inventory carrying cost percentage for retailer j per year per dollar 
Irij    Average inventory level for retailer j in scenario i, i= 1, 2, 3 
TCri   Total cost for all retailers in scenario i, i= 1, 2, 3 
TCrij   Total cost for retailer j in scenario i, i= 1, 2, 3 
Sr     Cost saving of TCr3 with respect to TCr1 
Srj     Cost saving of TCr3j with respect to TCr1j 
N      Number of retailers 

The common parameters for the producer, the distributor, and the retailers are: 

dj    Demand rate for retailer j 
D    Total demand rate of all retailers 
TCi   Integrated total cost including TCpi, TCdi and TCri  

An example of single producer, single-distributor and multiple retailers is given. 
This example can be extended to other problem.  

The distributor’s inventory level and the producer’s time-weighted inventory are de-
picted in Figure 1. The retailer j’s, the distributor’s and the producer’s replenishment 
intervals are )/( ijpipi nnT ,

pipi nT /  and 
piT  respectively for i= 2, 3. In scenario 1, the re-

tailer j’s, the distributor’s and the producer’s replenishment intervals 
are )/( 111 jjpjp nnT ,

jpjp nT 11 /  and 
jpT 1
 respectively. The retailer j’s average inventory level is: 

2
rijj

rij

Td
I = , i= 1, 2, 3 (1) 

Since both the distributor’s and the retailer’s replenishment rates are instantaneous, 
the actual distributor’s average inventory level, Idi in the integrated system is the dif-
ference between the distributor’s single-echelon average inventory level and all  
retailers’ average inventory level. It is demonstrated as follows: 
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From Yang and Wee [11], the producer’s average inventory level is demonstrated in 
Figure 1 and derived as follows: 
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The annual retailer j’s and all retailers’ total costs are  
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Inventory level and time-weighted inventory  
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Fig. 1. DC’s inventory level and producer’s time-weighted inventory in scenario i= 2, 3  

2.1   Scenario 1: Integration and Price Reduction Are Not Considered 

 The distributor’s annual cost is 
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The relation between Td1j and Tr1j is 

jrjjd TnT 111 =  (8) 

Using (4), the producer’s annual cost is 
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The relation between Tp1j and Td1j is 

jdjpjp TnT 111 =  (10) 
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In the buyer market, the retailers make the first-step decision (11), the distributor 
makes the second-step decision (12) and the producer makes the last-step decision (13). 
The retailers, the distributor and the producer make their own independent decision 
instead of joint decision. Their individual and total costs are: 

=

=
N

j
jr

T
r TCMinTC

jr1
1

*
1

1

 
(11) 

=

=
N

j
d

n
d TCMinTC

j1
1

*
1

1

 
(12) 

1
*

1
1

p
n

p TCMinTC
jp

=  (13) 

*
1

*
1

*
1

*
1 pdr TCTCTCTC ++=  

(14) 

2.2   Scenario 2: The Integration of the Producer, Distributor and Retailers 
Without Price Reduction 

The distributor’s cost, the producer’s cost and the integrated cost of all players’ cost are  

dd

N

j

jrjd
N

j
drjd

d
dd FP

TdDT
CnC

T
DPTC 2

1

22

1
2

2
22 )

22
()(

1

==
−+++=  (15) 

pppd
dp

pdpp
pp FP

P

D

P

D
nDT

Tn

CnC
DPTC ])1)(1[(

2

1)(
22

22

2
2 +−−+

+
+=  

(16) 

And 

2222 pdr TCTCTCTC ++=  (17) 

The optimal value of the integrated total cost in scenario 2 is 
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For scenario 2, integration is considered. The variables, Tr2j, n2j and np2 are optimized 
jointly. 

2.3   Scenario 3: The Integration of the Producer, Distributor and Retailers with 
Price Reduction 

The retailer j’s discount price, Pr3j, is smaller than Pr1j. The annual distributor’s cost is: 
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The first, second, third and last terms in (19) are the purchased cost, the ordering cost 
and the order processing cost, the stairs-shaped carrying cost, and the increased cost 
when the distributor offers price reduction respectively. 
The annual producer’s cost is: 
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Let the retailer j’s cost saving be defined as the difference between TCr3j and TCr1j, one 
has 

jrjrrj TCTCS 31 −=  (21) 

All retailers’ total cost saving is: 
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The distributor’s cost saving is defined as the difference between TCd3 and TCd1. One 
has 

31 ddd TCTCS −=  (23) 

The producer’s cost saving is defined as the difference between TCp3 and TCp1. One has 

31 ppp TCTCS −=  (24) 

The values of Srj, Sr, Sd and Sp are greater than zero. Their relationship is defined as: 

rp SS β= , 
rd SS α= and 

rjrj SS γ=  (25) 

where 
β , α  and 

jγ are positive negotiation factors and 1...21 =+++ Nγγγ  

When each negotiation factor is zero, it means all saving are accrued to the retailers; 
when 1=β  and 1=α , it implies that the total cost saving is equally distributed be-

tween the producer, the distributor, and the retailers. A large β  means that benefit is 

accrued mainly to the producer. The nonlinear constrained function optimizing the 
integrated system is: 

3333 pdr TCTCTCTCMin ++=  (26) 

Subject to the constraint (25) 
Using (25), by means of the Variable-Reduction Method, each Pr3j and Pd3 can be 

derived as a function of variables, np3, n3j and Tr3j. Therefore, the integrated total cost, 
TC3 is a function of variables, np3, n3j and Tr3j. 

3   GA Solution Procedure 

Using a direct analogy to this natural evolution, GA presumes a potential solution in the 
form of an individual that can be represented by strings of genes. Throughout the 
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genetic evolution, some fitter chromosomes tend to yield good quality offspring inherit 
from their parents via reproduction. 

This study derives the number of deliveries per period to minimize the total cost. The 
objective function is ),,( ijpiriji nnTTC  with decision variables Trij, npi and nij. GA deals 

with a chromosome of the problem instead of decision variables. The values of Trij, npi 
and nij can be determined by the following GA procedure: 
(a) Representation: Chromosome encoding is the first problem that must be considered 

in applying GA to solve an optimization problem. Phenotype could represent a 
real numbers and an integer numbers here. For each chromosome, real numbers 
and integer numbers representation are used as follows: 

        )...,,,...,(),,( 2121 iNiipiriNririijpirij nnnnTTTnnTx ==  

(b) Initialization: Generate a random population of n chromosomes (which are suitable 
solutions for the problem) 

(c)  Evaluation: Assess the fitness f(x) of each chromosome x in the population. The 
fitness value fk = f(xk) = TCi( xk) where k= 1, 2…n 

(d)  Selection schemes: Select two parent chromosomes from a population based on 
their fitness using a roulette wheel selection technique, thus ensuring high quality 
have a higher chance of becoming parents than low quality individuals. 

(e)  Crossover: Approximately 50%-75% crossover probability exists, indicating the 
probability that the parents will cross over to form new offspring. If no crossover 
occurs, the offspring are an exact copy of the parents. 

(f)  Mutation: About 0.5%-1.0% of population mutation rate mutate new offspring at 
each locus (position in the chromosome). Accordingly, the offspring might have 
genetic material information not inherited from either parent, thus avoiding falling 
into the local optimum. 

(g)  Replacement: An elitist strategy and a steady-state evolution are used to generate a 
new population, which can be used for an additional algorithm run. 

(h)  Termination: If the number of generations exceeds 200, then stop; otherwise go  
to (b).  

4   A Numerical Example 

The following numerical example is used to illustrate the GA solution procedure given 
in section 3. 

One producer, one distributor and eight retailers; Annual demand rate (units per 
year): d1=6,000, d2=8,000, d3=15,000, d4=12,000, d5=14,000, d6=16,000, d7= 18,000, 
d8= 20,000; Production rate, P=300,000 units per year; Retailer’s ordering cost: Cr1= 
$100, Cr2=$110, Cr3=$50, Cr4=$80, Cr5=$90, Cr6=$40, Cr7=$110, Cr8=$45; Retailer’s 
percentage carrying cost per year per dollar: Fr1=0.2, Fr2=0.21, Fr3=0.26, Fr4=0.22, 
Fr5=0.25, Fr6=0.24, Fr7=0.26, Fr8=0.3; Each retailer’s purchased unit price before price 
discount, Pr1j=Pr2j =$25; Distributor’s setup cost, Cd=$5,000; Distributor’s fixed cost to 
process retailer’s order of any size, Cdr= $100; Distributor’s percentage carrying cost 
per year per dollar, Fd=0.2; Distributor’s unit cost, Pd1=Pd2=$20; Producer’s setup cost, 
Cp=$10,000; Producer’s fixed cost to process distributor’s order of any size, Cpd=$100; 
Producer’s percentage carrying cost per year per dollar, Fp=0.2; Producer’s unit cost, 
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Pp=$15; Negotiation factors: =0.25, =0.25, 15.04321 ==== γγγγ  and 

1.08765 ==== γγγγ . 

Using the GA solution procedure given in section 4 and Evolver 4 (a genetic algo-
rithm-based optimizer), the results are given in Table 1. Table 1 illustrates the solutions 
in various scenarios. In scenario 1, the unit purchased price from the distributor and the 
retailers are Pd1=$20 and Pr1j= $25 respectively. The retailers’ optimal replenishment 
intervals in scenario 1 are Tr11

*=0.0816, Tr12
* =0.0724… and Tr18

*=0.0245 years. The 
retailers’ regular price minimum total annual cost is TCr1=$2,752,349. With eight, 
eight… and fourteen times of deliveries from the distributor to the eight retailers per 
cycle (n11=8, n12=8… and n18=14), the distributor’s annual total cost is TCd1= 
$2,374,755. With two times of deliveries from the producer to the distributor per cycle 
(np1j=2, j=1, 2…8), the producer’s annual total cost is TCp1= $1,799,695, and the total 
annual cost is TC1= $6,924,799. 

In scenario 2, the producer, the distributor and the retailers are integrated without 
price reduction. The minimum integrated cost intervals are Tr21

* =0.1673 and 
Tr22

*=0.1673…and Tr28
*=0.0558 years, the retailers’, the distributor’s, the producer’s 

and the integrated total cost are TCr2
*=$2,763,383, TCd2

*=$2,233,253, 
TCp2

*=$1,692,837 and TC2
*=$6,689,473 respectively. The integrated total cost saving 

in scenario 2 with respect to scenario 1 is $235,326. Since the producer benefits 
$104,855, the distributor benefits $141,502 and the retailers lose $11,034, the retailers 
will resist integrating in such condition. 

Table 1. The optimal solution in various scenarios  

Scenario i i= 1 i= 2 i= 3 
Pri1,Pri2,Pri3, Pri4

Pri5,Pri6,Pri7, Pri8

25, 25, 25, 25 
25, 25, 25, 25 

25, 25, 25, 25 
25, 25, 25, 25 

20.99, 21.93, 23.33, 22.82 
23.61, 23.91, 24.06, 24.15 

ni1, ni2, ni3, ni4

ni5, ni6, ni7, ni8

8, 8, 13, 9 
9, 14, 9, 14 

1, 1, 2, 1 
2, 2, 2, 3 

1, 1, 2, 1 
2, 2, 2, 3 

Tri1, Tri2, Tri3,
Tri4, Tri5, Tri6,
Tri7, Tri8

0.0816, 0.0724, 0.0320
0.0492, 0.0454, 0.0289
0.0434, 0.0245 

0.1673, 0.1673, 0.0837
0.1673, 0.0837, 0.0837
0.0837, 0.0558 

0.1705, 0.1705, 0.0852 
0.1705, 0.0852, 0.0852 
0.0852, 0.0568 

Pdi 20 20 19.402 
npij or npi np1j = 2, j= 1…8  np2 = 2 np3 = 2 
TCri;(TCr1-TCri) 2,752,349 2,763,383; (-11,034) 2,593,671; (158,677) 
TCdi;(TCd1-TCdi) 2,374,755 2,233,253; (141,502) 2,335,086; (39,669) 
TCpi;(TCp1-TCpi) 1,799,695 1,692,837; (104,858) 1,758,026; (39,6669) 
TCi;(TC1-TCi) 6,924,799 6,689,473; (235,326) 6,686,783; (238,016) 
PTCRi ------------- 3.40% 3.44%  

To entice the retailers to cooperate in implementing the integrated system, the up-
stream offers some discount to the downstream in the selling price or permissible delay 
in payment. The optimal retailers’ replenishment intervals are Tr31

*=0.1705, 
Tr32

*=0.1705…and Tr38
*=0.0568 years. The reduction of the total annual cost from 
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scenario 1 to scenario 3 is $238,016. The reduced transaction prices for retailer 1, 
retailer 2…and the distributor are $20.99 (16.04% price discount), $21.93 (12.04% 
price discount) and $19.40 (3.00% price discount) respectively. 

The percentage total cost reduction (PTCRi) of TCi with respect to TC1 be defined 
as

11 /)( TCTCTCPTCR ii −= , i= 2, 3 are 3.4% and 3.44% respectively. 

5   Concluding Remark 

Using GA (genetic algorithm), an optimal pricing and replenishment strategy is derived 
in an arborescent supply chain system. This paper shows that the integration effect 
results in an impressive percentage total cost reduction, and the price reduction pro-
vides an incentive system to entice the retailers to order more quantity for mutual 
benefits. Negotiation factors are incorporated to share the cost saving benefits. 
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Abstract. This paper describes an approach to online simplification of
evolved programs in genetic programming (GP). Rather than manually
simplifying genetic programs after evolution for interpretation purposes
only, this approach automatically simplifies programs during evolution.
In this approach, algebraic simplification rules, algebraic equivalence and
prime techniques are used to simplify genetic programs. The simplifica-
tion based GP system is examined and compared to a standard GP
system on a regression problem and a classification problem. The re-
sults suggest that, at certain frequencies or proportions, this system can
not only achieve superior performance to the standard system on these
problems, but also significantly reduce the sizes of evolved programs.

1 Introduction

Since the late 1990s, genetic programming (GP) has already been applied to
many fields, including image analysis [1], object detection [2], regression prob-
lems [3] and even control programs for walking robots [4], and achieved quite a
reasonable level of success.

While showing promise, current GP techniques are limited, often require a
very long evolution time, and frequently do not give satisfactory results for diffi-
cult tasks. One problem is the redundancy of programs. Typically, the programs
are not simplified until the end of the evolutionary process to enable analysis.
However, the redundancies also affect the search process. They force the search
into exploring unnecessarily complex parts of the search space [5,2]. The re-
dundancies and complexities have the undesirable consequences that the search
process is very inefficient in execution, and the programs are very difficult to
understand and interpret. However, the redundant components of the evolving
programs can provide a wider variety of possible program fragments for con-
structing new programs.

The goal of this paper is to invent a method in GP that does online program
simplification during the evolutionary process. We will investigate the effect of
performing online simplification of the programs during the evolutionary process,
to discover whether the reduction in complexity outweighs the possible benefits
of redundancy. This approach will be examined and compared with the standard
GP without simplification on a regression problem and a classification problem.

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 592–600, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Table 1. Typical simplification rules

No. Precondition Effective Result No. Precondition Effective Result
(1) if<0(A, b, c) → b if A < 0, else c (2) if<0(a, b, b) → b
(3) A + B → C, C = A + B (4) A - B → C, C = A - B
(5) A × A → C, C = A × B (6) A ÷ B → C, C = A ÷ B
(7) A + (B + c) → C + c, C = A + B (8) A + (B - c) → C - c, C = A + B
(9) A - (B + c) → C - c, C = A - B (10) A - (B - c) → C + c, C = A - B
(11) A × (B × c) → C × c, C = A × B (12) A × (B ÷ c) → C ÷ c, C = A × B
(13) A ÷ (B ÷ c) → C × c, C = A ÷ B (14) A + (b + C) → B + b, B = A + C
(15) A + (b - C) → B + b, B = A - C (16) A - (b + C) → B - b, B = A - C
(17) A - (b - C) → B - b, B = A + C (18) A × (b × C) → B × b, B = A × C
(19) A × (b ÷ C) → C × b, B = A ÷ C (20) A ÷ (b ÷ C) → B ÷ b, B = A × C
(21) a ÷ 1 → a (22) a ÷ a → 1
(23) 0 ÷ a → 0 (24) 0 × a = a × 0 → 0
(25) a × 1 = 1 × a → a (26) a + 0 = 0 + a → a
(27) a - 0 → a (28) a - a → 0
(29) a × 1

b = 1
b × a → a

b (30) a × b
a = b

a × a → b

2 The Approach

In the tree-based GP, a genetic program looks like an algebraic expression. The
function set consists of the commonly used four arithmetic operators and a
conditional operator +, -, ×, ÷, if. The terminal set consists of a number
of feature terminals from the task and several constant terminals. The task
of the simplification method is to obtain a smaller program, by removing the
redundancy of a program, that yields the same output as the original program.
In this approach, we use this idea to construct simplification rules, apply these
rules using a postfix search to the genetic programs, and use hashing to estimate
the algebraic equivalence to simplify the genetic programs during evolution.

2.1 The Simplification Rules

As in algebraic expression simplification, we use multiple rules (ruleset) to sim-
plify a given genetic program, as shown in table 1. A specific rule might only be
suitable for removing/reducing a particular part of the genetic program. In this
table, constants are represented by upper-case letters (e.g. A, B), and variables
are represented by lower-case letters (e.g a, b).

2.2 Algebraic Equivalence of Two Subtrees

In a simplification system, it is important to determine whether two subtrees have
the same role (or are equivalent). For two single nodes, this is fairly trivial; formulti-
node subtrees, this will be more difficult. Our goal is to allow for not only noticeably
similar expressions (e.g. (x + y + z) and (z + x + y)) to be identified as equivalent,
but also seemingly dissimilar expressions, for example, (/ (+ (- (* w x) (* x y))
(* (- w y) y)) (- (* x x) (* y y))) and (/ (- w y) (- x y)) as well, which is a hard
problem.

We use hashing techniques to address the equivalence of two subtrees [6,7] to
cope with all common terminals and functions in the evolved programs. In this
work, p is used to denote the hashing order for the hash function. It is important
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that the collection of hash values qualify as a finite field [8] and so p should be
a prime number as any finite field with p elements is isomorphic to Zp [8].

Feature Terminals. In GP, feature terminals represent inputs from the task
environment and always keep the same value for a particular fitness case for
all genetic programs during evolution. Accordingly, in this approach, we assign
the feature terminals certain random hash values at the beginning of a GP run,
which remain unchanged for the entire evolution.

Constant Terminals. In GP, constants are usually represented by floating
point numbers. We handle this by approximating the floating point with a ra-
tional number, thus converting it to a simple division of two integers.

Calculating accurate and irreducible rationals can be very time consuming,
so a quick approximation is used. The numerator is formed by multiplying the
floating point by a predefined precision constant (δ) and truncating the leftover
fractional part. Using the same precision constant as a denominator, a rational
representation can be very quickly found.

Hash(c) =
c × δ

δ
mod p = (c × δ) × 1

δ
mod p (1)

This approach, of course, requires modular division. Now, the division of two
numbers x

y is equivalent to the multiplication of the first number with the mul-
tiplicative inverse of the second number x× 1

y . So to perform division, one needs
only to calculate the multiplicative inverse of y and multiply by x. The key point
here is to find the integer equivalence of the inverse of δ mod p. In this approach,
this is done using the Extended Euclidean Algorithm [9,10].

The Arithmetic Operators. Because the hashing method takes place in a
finite field, hashing these arithmetic operators are handled using modulo arith-
metic within the field as follows, where the division hashing follows the rule of
the extended Euclidean algorithm mentioned earlier.

Hash(A + B) = (A + B) mod p (2)

Hash(A − B) = (A − B) mod p (3)

Hash(A × B) = (A × B) mod p (4)

Hash(A ÷ B) = (A ÷ B) mod p (5)

The if operator. The if conditional operator is a more difficult case, as it
is not an arithmetic function and so cannot simply be converted to a modulo
arithmetic equivalent. We use the following approach to handle this operator,
which uses division and addition to take into account the position of the three
parameters.

Hash(if(A, B,C)) = (
A

B
+ C) mod p (6)
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(a) (b)

Fig. 1. An example program. (a) The original program tree; (b)traversal order.

Operator Closure. All of the functions supported are closed, meaning that for
any of the functions � ∈ {+, −, ×, ÷, if < 0}, (Hash(A) � Hash(B)) mod p =
Hash(A � B) in Zp. Using this property, one does not need to recalculate the
hash values of subtrees each time a tree is to be hashed, as stored hash values
of subtrees can be combined to give correct hash values of the whole tree.

2.3 Simplification Process

To apply the ruleset to a genetic program for simplification, we use a kind of
“greedy” engine, which is a recursive algorithm. It recursively travels through
the program tree in a bottom-up fashion by the postfix order traversal mode.
For each node it processes, the algorithm checks each simplification rule in the
ruleset. If a rule matches, it is applied to the partial tree associated with the
node to make simplification. If none of the rules can be applied at a node, the
algorithm moves to the next (either neighbouring or parent) node. In this way,
the algorithm guarantees that each node in the program tree is visited once only.

Here, we use an example to show the simplification process for a given genetic
program. The example program (- (- -0.2 -0.5) (if<0 (% (+ f0 f1) (+
f1 f0)) 0.8 (- f0 f0))) can be represented in the tree shown in figure 1
(a). Assume that the hashing order is 17, f0 and f1 are “randomly” assigned
the values 3 and 5 respectively. The algorithm traverses the program tree in a
“bottom-up” fashion using a post-fix traversal. This means that the algorithm
processes the program nodes in the order depicted by integers in figure 1 (b).

The first node inspected by the algorithm is “-0.2”, followed by “-0.5”.
As no simplification rule exists in the ruleset that governs single nodes, these
nodes (and indeed the entire bottom layer of nodes) are left unchanged. Next,
the algorithm moves to the parent node of “-0.2” and “-0.5”, which is “-”.
The subtree formed by this node and its children (- -0.2 -0.5) matches the
precondition for rule (4) A−B. The system applies this rule, replacing the subtree
with the rule’s effective result: “0.3”.

Now, the subtrees (+ f0 f1) and (+ f1 f0) do not match the preconditions
for any of the rules, so are left unchanged. Note however, that they both have
the same algebraic equivalence hash value (shown in figure 2 (a)). Therefore,
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when node 10 (“%”) is inspected, the subtree (% (+ f0 f1) (+ f1 f0)) does
indeed match the precondition for rule (22) a÷a. The entire subtree is replaced
using the rule to a single node 1. Similarly, the subtree (- f0 f0) matches rule
(28) a−a and is replaced by the single node 0 when the algorithm processes “-”.
Figure 2 (b) shows the tree after processing nodes 1 through 14.

(a) (b) (c)

Fig. 2. Program simplification. (a)Hashing of two subtrees with same value; (b) Partial
simplification; (c) final program.

At this stage, the program is already reduced to 6 nodes in size, and there
are still two nodes left to be processed. Inspecting the if<0 node, the algorithm
matches it with rule (1) if<0(A b c), as the first parameter of the if<0 operator
is a constant. In this case, the constant is 1, which will obviously never be less
than 0. The system then, following the rule, replaces this subtree with its third
parameter, which is 0.

Lastly the root node is processed, which again matches rule (4) A−A. Applying
it yields the final result, a single numerical constant node “0.3” (figure 2 (c)).

3 Experimentation Setup

3.1 Data Sets

We used two data sets, a symbolic regression task and a object classification
tasks, to examine the simplification method. The regression task is a quite com-
plicated piecewise function. We used 200 data points in [-10, 10] as the fitness
cases and the task is to evolve a genetic program that conform the curve, as
shown in figure 3 (a).

The classification task uses a subset of the Yale Database B Face Dataset
[11]. It consists of face images of 5 subjects taken from a single position under 65
different lighting conditions. This creates a set of 325 instances. The backgrounds
of the faces are very complicated and different, making the classification problem
more difficult. Example images for the task are shown in figure 3 (b). Due to a
small number of data examples, 10-fold cross validation method is applied.

3.2 Terminal Set, Function Set and Fitness Function

The terminal set consists of a number of feature terminals as well as several ran-
domly generated constant terminals. For the symbolic regression task, the feature
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(a) (b)

Fig. 3. Two data sets. (a) regression; (b) classification.

terminal corresponds to the single independent variable. In the face data set, we
used 18 feature terminals representing the extracted pixel statistic features from
the various facial regions. We use the four basic arithmetic operators and a con-
ditional operator to form the function set {+, −, ×, ÷, if<0}. For the symbolic
regression task, the fitness of a program is governed by the mean squared error
of the desired output and the actual output of the program on all the fitness
cases. For the classification task, the fitness of a program is governed by the
classification accuracy in the training set.

3.3 Parameters

The population size is 500, the rates used for crossover, mutation and repro-
duction are 60%, 30% and 10%, respectively, and the maximum program depth
is 8. The evolution will run 50 generations unless an ideal solution program is
found, in which case the evolution was terminated early. The hash order p was
1000077157, the constant precision δ is 1000000. In addition, we used different
proportions, the percentage of programs in a population to be applied to simpli-
fication, and different frequencies, how often (in generations) the simplification
process is applied, to examine property of the simplification algorithm. The pro-
portions tested here are 0%, 5%, 10%, 20%, 50% and 100%. The frequency used
here are every 0, 1, 2, 4, and 6 generations. All single experiments were repeated
50 runs to get the means and standard deviations as results.

4 Results and Discussion

4.1 Overall Results

Table 2 shows the typical best results of the two GP approaches on the two data
sets in terms of the effectiveness (best fitness—mean squared error for regression
and classification accuracy for classification), training efficiency (training time),
and average size of all the programs in the systems in number of nodes.
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Table 2. Average best results for the two tasks

Task FrequencyProportion Best Fitness Time(s) Avg. Prog Size

Regression
Without Without 83.774 ± 75.2835.141 ± 1.019 104.436 ± 22.171
Every 1 20% 60.354 ± 44.3654.743 ± 1.383 77.392 ± 24.393
Every 2 100% 67.346 ± 59.3154.270 ± 0.759 74.841 ± 13.886

Classification
Without Without 85.5% ± 11.7% 2.646 ± 0.578 37.861 ± 8.755
Every 1 20% 87.3% ± 7.2% 2.445 ± 0.484 29.436 ± 5.855
Every 2 100% 86.7% ± 11.7% 2.367 ± 0.460 29.364 ± 5.966

Efficiency. As expected, it is always possible to find certain proportions and/or
frequencies at which the GP approach with the simplification spent shorter time
to evolve good programs than the standard GP without simplification. This is
mainly because the simplification process removes the redundancy, makes the
genetic programs shorter, and accordingly reduces the search space.

Effectiveness. According to table 2, it is always possible to find certain propor-
tions or frequencies at which the GP approach with the proposed simplification
achieved superior fitness, either in mean square error or accuracy, on these data
sets than the basic GP approach without simplification.

We hypothesised that the simplification process during evolution might de-
stroy the existing good building blocks of the genetic programs, which might
result in worse performance. However, these results are clearly different from
the original hypothesis. After checking the evolutionary process, we identify the
following reasons. At the beginning of evolution, although the simplification al-
gorithm might destroy some potentially good building blocks, this effect was
very much offset by the powerful crossover operator, which can preserve good,
even form larger, building blocks. At the later stage, when the programs are
getting larger, the crossover operator starts to destroy good existing building
blocks. The simplification algorithm, however, can generate new genetic materi-
als which might contain good building blocks by reorganising the entire genetic
programs.

Program Size. According to our experiments, the average size of the programs
is significantly reduced for the GP system with simplification at all frequencies
and all proportions over the basic GP without simplification. The small size pro-
grams have a big advantage in that the actual computation time of the solution
program will be short. This is particularly useful in the situations that has a
strict time requirement such as in some industrial control and security systems.

4.2 Simplification Frequency/Proportion Analysis

According to our experiments, applying simplification to all programs at every
generation (the last line of table 2) led to a slight loss in fitness and/or a slightly
higher computational cost in most cases. This suggests that, if we apply the sim-
plification too often, the programs will not have sufficient chances for evolution
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and the simplification overhead will be increased. If the evolution chances are re-
duced to some extent or the overhead outweighs the time saved from processing
smaller simplified programs, the performances will deteriorate.

5 Conclusions

This paper aimed to develop an online program simplification approach in GP
during the evolutionary process. This goal was successfully achieved by defining
a set of algebraic simplification rules, traversing the program tree in a bottom-up
fashion by a postfix order, and applying the simplification rules along with an
algebraic equivalence component to non-terminal nodes in the evolved programs.

The GP system with the simplification algorithm was examined and compared
with the basic GP approach without simplification on a regression problem and a
classification problem. The results suggest that, at certain proportions or certain
frequencies, the new simplification approach always outperformed the basic GP
approach in terms of system effectiveness, efficiency and program size on these
data sets.

The results also suggest that performing simplification of all programs in the
population at every generation is not recommended. While the approach seems
to be able to reduce the search space, it is not clear whether and/or how it
destroys good building blocks in the early stage of evolution, which needs to be
further investigated.
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Research Fund 6/9 at Victoria University of Wellington.
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Abstract. This paper describes an approach to the refinement of a fit-
ness function and the optimisation of training data in genetic program-
ming for object detection particularly object localisation problems. The
approach is examined and compared with an existing fitness function on
three object detection problems of increasing difficulty. The results sug-
gest that the new fitness function outperforms the old one by producing
far fewer false alarms and spending much less training time and that
some particular types of training examples contain most of the useful
information for object detection.

1 Introduction

Genetic programming (GP) is a relatively recent and fast developing approach
to automatic programming [1,2,3]. Since the 1990s, GP has been applied to a
range of object recognition tasks with some success [1,4,5,6,7].

Finding a good fitness function for a particular object detection problem is an
important but difficult task in developing a GP system. Various fitness functions
have been devised for object detection, with varying success [1,5,7,8,9]. They
tend to combine many parameters using scaling factors which specify the relative
importance of each parameter, with no obvious indication of what scaling factors
are good for a given problem. Many of these fitness functions for localisation
require clustering to be performed to group multiple localisations of a single
object into a single point before the fitness is determined [10,9,8]. Other measures
are then incorporated in order to include information about the pre-clustered
results. While some of these systems achieved good detection rates, many of
them resulted in a large number of false alarms.

Organising training data is critical to any learning approaches. The previous
approaches in object detection tend to use all possible positions of the large image
in training an object detector [10,8], which often require a very long training time
due to the use of a large number of positions on the background.

This paper aims to investigate a new fitness function and a new way to opti-
mise the training data in GP for object localisation, with the goal of improving
the detection performance. The approach will be examined on a sequence of
object detection problems of increasing difficulty.

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 601–608, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Overview of the Approach

In object detection, a raw image is taken and a trained localiser applied to it,
producing a set of points found to be the positions of these objects. Single objects
could have multiple positions (“localisations”), however ideally there would be
exactly one localisation per object. Regions of the image are “cut out” at these
specified positions and then classified using a trained classifier.

The object localisation stage is performed by means of a window which sweeps
over the whole image, and for each position, the features are extracted and passed
to the trained localiser. The localiser then determines whether each position is
an object or not (i.e. background).

GP for Object Localisation. This work will focus on object localisation using
genetic programming, which has a learning process and a testing procedure. In
the learning/evolutionary process, the evolved genetic programs use a square
input field which is large enough to contain each of the objects of interest.
The programs are applied at many sampled positions within the images in the
training set to detect the objects of interest. If the program localiser returns a
value greater than or equal to zero, then this position is considered the centre of
an object of interest; otherwise it is considered background. In the test procedure,
the best evolved genetic program obtained in the learning process is then applied,
in a moving window fashion, to the whole images in the test set to measure object
detection performance.

Data Sets. We used three image data sets of New Zealand 5 and 10 cent coins
in the experiments. Examples are shown in Figure 1. The data sets are intended
to provide object detection problems of increasing difficulty. The first data set
(easy) contains images of tails and heads of 5 and 10 cent coins against an almost
uniform background. The second set (medium difficulty) consists of heads and
tails of 10 cent coins against a noisy background, making the task harder. The
third data set (hard) contains tails and heads of both 5 and 10 cent coins against
a noisy background.

We used 24 images for each data set in our experiments and equally split them
into three sets: a training set, a validation set, and a test set.

(a) (b) (c)

Fig. 1. Sample images in the three data sets. (a) Easy; (b) Medium difficulty; (c) Hard.
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(4)

(1) (2)

(3) (5)

Fig. 2. Examples of the design considerations of the fitness function

GP System Configurations. In this system, we used tree structures to rep-
resent genetic programs [2]. The ramped half-and-half method [1] was used for
generating programs in the initial population and for the mutation operator. The
proportional selection mechanism and the reproduction, crossover and mutation
operators were used in evolution.

The terminals use image features extracted by calculating the mean and stan-
dard deviation of pixel values within several circular regions. This set of features
has the advantages of being rotationally invariance. In addition, we also used a
constant terminal. The function set contains the four standard arithmetic and a
conditional operation {+, -, *, /, if}.

We used a population of 500 genetic programs in each experiment run. The
reproduction rate, crossover rate and mutation rate were 5%, 70% and 25%,
respectively. The maximum program size was 8. The system run 50 generations
unless it found a solution, in which case the evolution was terminated early.
A total number of 100 runs were performed on each data set and the average
results are calculated and presented.

3 Fitness Function

Different evolved programs typically result in different numbers of false alarms
and such differences should be reflected by the fitness function. For example,
some requirements shown in figure 2 should be considered. In this figure, the
circles are target objects and squares are large images or regions. A cross (x)
represents a detected object. In each of the five cases, the program associated
with the left figure should be considered better than that with the right.

As the goal is to detect the target objects with no or a small number of false
alarms, many GP systems uses a combination of detection rate and false alarm
rate or recall and precision as the fitness function. For example, a previous GP
system uses the following fitness function [6]:

fitnessCBF = A · (1 − DR) + B · FAR + C · FAA (1)

where DR, FAR, and FAA are detection rate, false alarm rate (also called false
alarms per object), and false alarm area, respectively, and A, B, C are constant
weights which reflect the relative importance of detection rate versus false alarm
rate versus false alarm area. Since this method used clustering before calculating
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the fitness, we refer to it as clustering based fitness, or CBF for short. While this
fitness function has considered case 1, and partially considered cases 2 and 4, it
does not take into accounts of cases 3 and 5.

3.1 A New Fitness Function — RLWF

To deal with all the situations in the five design requirements, we developed
a new fitness function based on a “Relative Localisation Weighted F-measure”
(RLWF), which attempts to acknowledge the worth/goodness of individual local-
isations made by a genetic program. Instead of using either correct or incorrect
to represent a localisation, each localisation is allocated a weight (referred to as
the localisation fitness, LF) which represents its individual worth.

Each weight is calculated based on its relative location, or the distance of the
localisation from the centre of the closest object, as shown in Equation 2.

LF(x, y) =

{
1 −

√
x2+y2

r
, if

√
x2 + y2 ≤ r

0 , otherwise
(2)

where
√

x2 + y2 is the distance of the localisation position (x, y) from target
object centre, and r is called the “localisation fitness radius”, defined by the
user. In this system, r is set to a half of the square size of the input window.
The localisation fitness is then used to construct the new fitness function, as
shown in Equations 3 to 4. The precision and recall are calculated by taking the
localisation fitness for all the localisations of each object and dividing this by
the total number of localisations or total number of target objects respectively.

WP =

∑N
i=1

∑Li
j=1 LF(xij , yij)∑N

i=1 Li

, WR =

∑N
i=1

∑Li
j=1 LF(xij ,yij)

Li

N
(3)

fitnessRLWF =
2 × WP × WR

WP + WR
(4)

where N is the total number of target objects, (xij , yij) is the position of the
j-th localisation of object i, Li is number of localisations made to object i, WP
and WR are the weighted precision and recall.

3.2 Results

To give a fair comparison, the “localisation recall (LR) and precision (LP)” were
used to measure the final object detection accuracy on the test set. LR is the
number of objects with one or more correct localisations within the localisation
fitness radius at the target object centres as a percentage of the total number of
target objects, and LP is the number of correct localisations which fall within
the localisation radius at the target object centres as a percentage of the total
number of localisations made. In addition, we also check the “Extra Localisa-
tions” (ExtraLocs) for each system to measure how many extra localisations
were made for each object.
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Table 1. Results of the GP systems with the two fitness functions

Dataset Fitness Test Accuracy Training Efficiency
function LR (%) LP (%) ExtraLocs Generations time(sec)
CBF 99.99 98.26 324.09 13.69 178.99

Easy RLWF 99.99 99.36 98.35 36.44 111.33
CBF 99.60 83.19 804.88 36.90 431.94

Medium RLWF 99.90 94.42 95.69 34.35 105.56
CBF 98.22 75.54 1484.51 31.02 493.65

Hard RLWF 99.53 87.65 114.86 33.27 107.18

Table 1 shows the results of the GP systems with the two fitness functions. The
results on the easy data set show that both the fitness functions achieved good
test accuracy. Almost all the objects of interest in this data set were successfully
localised with very few false alarms (both LR and LP are very close to 100%),
reflecting the fact that the detection task in this data set is relatively easy.
However, the new fitness function (RLWF) produced a far fewer number of
extra localisations per object than the clustering based fitness function (CBF).
Although CBF used a considerably smaller number of generations than the new
RLWF, it actually spent about 50% longer training time. This confirms our
early hypothesis that the clustering process in CBF is time consuming and the
approach with RLWF is more efficient than that with CBF.

The results on the other two data sets show a similar pattern in terms of
the number of extra localisations and training time. The systems with RLWF
always produced a significantly fewer number of extra localisations and a much
short training time than CBF. In addition, although almost all the objects of
interest in the large images were successfully detected (LRs are almost 100%), the
localisation precisions achieved by RLWF were significantly better than CBF,
suggesting that the new fitness function outperforms the existing one in terms
of reducing false alarms.

4 Optimising Training Data

This approach focuses on investigating whether some examples are better than
others and how to pick them up.

4.1 Four Training Data Types

The traditional approaches usually use positive and negative examples. The for-
mer refers to the exact object examples and the latter refers to those for the
background [5,6,9]. However, this did not consider those with some pieces of ob-
jects and some pieces of background. In this approach, we identified four basic
types of training examples, as shown in figure 3. The exact centre type (figure
3a) refers to the positive object examples which sit exactly the centre of the
sweeping window. The background type (figure 3d) refers to the positions (x)
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(a)

object

sweeping window

(b) (c) (d)

Fig. 3. Examples of training data types caused by different input window positions

which do not contain any piece of objects. The close to center type refers to the
examples that have the centre of the sweeping window falling down within the
bounds of an object (figure 3b). The include objects type refers to those that
contain some pixels of an object but are not considered as close to centre.

4.2 Optimisation of Training Data

We assume that there is some proportion of these four types which is optimal
(or close to optimal) for an object detection problem. From previous research,
we found that the exact centre type was always important for object detection.
As the number of examples of this type is very small, we will always use this
type of examples in the experiments and vary the proportions among the rest
three types to find the optimal combinations.

If C, I and B represent the percentages of the examples for the three types
close to centre, include objects and background, then we have C + I +B = 100%,
which has the nice feature that it represents only a plane effectively reducing
the parameter search space from 3D to 2D, as shown in figure 4 (left). We
experimented with 28 separate proportions sampled from the plane, as shown in
figure 4 (right), where each entry represents value for I for a given C and B. For
example, the first two entries in the first row show that, using no background
(B = 0), we will examine 100% C with 0% I, and 83% C with 17% I type
objects.

0

100%

100%

100%
Background

Close to Centre

Included Object
I for each C and B (%)

B\C 100 83 67 50 33 17 0
0 0 17 33 50 67 83 100
17 0 17 33 50 67 83
33 0 17 33 50 67
50 0 17 33 50
67 0 17 33
83 0 17
100 0

Fig. 4. Training data proportions set
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(a) (b) (c)

Fig. 5. Results of optimisation. (a) Easy; (b) Medium difficulty; (c) Hard.

4.3 Results

The average results of 100 independent runs on the test set are shown in figure
5. In the figure, the x and y axises are the C and B, and the z is the relative
fitness for the these problems (1.0 or 100% means the ideal case). For all the
three data sets, the percentage of the objects for the Close to Centre type (C)
played an important role using our new fitness function. The best detection
results were achieved at 100% C examples and the worst results were produced
when we do not use any example of this type. The more object examples used
in this type, the best results achieved. However, the Background type objects
were not critical for these data sets. These results suggest that, when using the
new RLWF fitness function for object detection, good results can be achieved
with only the two types, Exact Centre and Close to Centre, and most (if not all)
object examples for the other two types Include Object and Background can be
taken out from the training set.

This suggests that the new RLWF fitness function is capable of learning well
from these two types of examples and can cope well with the goal of finding
object centres from large images. This is mainly due to the fact that RLWF has
considered the relative effect of the detected “objects” in different locations.

A further inspection of the use of the old fitness function reveals that the
old fitness function must use object examples from all the four types. This is
because the old fitness function cannot capture the relative effect information
from the objects of the first two types only. This also suggests that the new
fitness function is more effective than the old one for object detection.

5 Conclusions

The goal of this paper was to develop a new fitness function for object detec-
tion and investigate its influence on optimising the training data. Rather than
using a clustering process to determine the number of objects detected by the
GP systems, the new fitness function used the localisation fitness and weighted
F-measures to reflect the goodness of the detected objects. To invetigate the
training data with this fitness function, we categorised the training data into
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four types. This approach was examined and compared to that with the old
clustering based fitness function on three coin detection problems of increasing
difficulty.

The results suggest that the new fitness function outperforms the old one by
producing far fewer false alarms and spending much less training time. Further
investigation on the four types of the training object examples suggests that the
new fitness function is effective in optimising training data for object detection.
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Abstract. In this paper we propose a hybrid model which includes
both first principles differential equations and a least squares support
vector machine (LS-SVM). It is used to forecast and control an envi-
ronmental process. This inclusion of the first principles knowledge in
this hybrid model is shown to improve substantially the stability of the
model predictions in spite of the unmeasurability of some of the key
parameters. Proposed hybrid model is compared with both a hybrid
neural network(HNN) as well as hybrid neural network with extended
kalman filter(HNN-EKF). From experimental results, proposed hybrid
model shown to be far superior when used for extrapolation compared
to HNN and HNN-EKF.

Keywords: Hybrid Least Squares Support Vector Machine, First Prin-
ciples, Kalman Filter, Neural Network.

1 Introduction

The treatment of polluted water is one of the most important environmental
problems worldwide. Unfortunately, the control of such bioprocess is difficult
because the inability to measure key parameters of the process. In these cases
the solution is of the type of inference control [1,2,3] which uses an machine
learning method to model the unmeasurable parameters, for use in conjunction
with the known part of the model. This hybrid model has the advantage of the
flexibility of nonparametric curve estimation for capturing the dynamics of the
unmeasurable part of the process along with a constraint imposed by the first
principles model which acts to keep the predictions both physically plausible
and stable[4]. Hybrid model can be trained with fewer data and extrapolate
better than pure machine learning method. In recent years, there has been a
spate of research[5,6] showing the utility of these hybrid model in a variety of
applications with particular attention to fed-batch bioreactors[7]. The aim of
this paper is to propose a hybrid model being able to perform on-line estimation
of directly unmeasurable process variables. Main attention is paid to hybrid
models that is combination of first principles(FP) models with least squares
� This study was supported by a grant of the Korea Health 21 R&D Project, Ministry
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support vector machine(LS-SVM) as well as with neural network(NN) based
models, with NN combined extended Kalman filter(HNN-EKF) is discussed. We
review the dynamics of microbial growth in the next section. In Section 3, we
introduce a hybrid LS-SVM model which uses a LS-SVM to estimate the growth
rate within the governing equations for the kinetics of process. In Section 4, we
compare the performance of this model with various other strategies. Finally we
investigate experimental results.

2 Dynamics of Microbial Growth

Biological reactors exhibit a wide range of dynamic hehaviors and offer many
challenges to modeling a complex kinetic expressions[8]. A bioreactor typically
consists of a large vessel containing an aqueous solution of biomass and one or
more substances. Bioreactors operating in a fed-batch manner that is, the vessel
is given an initial charge of biomass and substrate, and periodic additions of
substrate is made. Bioreactors operated in a fed-batch manner and are quite
difficult to model, since their operation involves microbial growth under con-
stantly changing conditions. Nevertheless, knowledge of process parameters(such
as growth rate kinetics) under a wide range of operating conditions is very im-
portant in efficiently designing optimal reactor operation policies. A fed-batch
bioreactor can be described by the following equations

dB

dt
= μ(t)B(t) − Q(t)

V (t)
B(t) (1)

dS

dt
= −μ(t)B(t) +

Q(t)
V (t)

[Si(t) − S(t)] (2)

dV

dt
= Q(t) (3)

where B(t) is the biomass concentration at time t, S(t) is the substrate concen-
tration, Q(t) is the volumetric flow into the system, V (t) is the volume, and μ(t)
is the specific growth rate. The differential equations(1)-(3) can be viewed as a
partial model of the system consisting of simple mass balances on the biomass,
substrate and volume in the reactor. The dynamics of the process are contained
in the kinetics parameter μ(t), known as the specific growth rate, which governs
the conversion of substrate to biomass. It is the parameter that complicates the
process, as it is a time-varying function of the biochemical variables of the sys-
tem. In the literature, many models have been developed for this unmeasurable
growth rate of which the most widely used are the Monod and Haldane function
of the amount of substrate in the system

μ(t) =
μ∗S(t)

Km + S(t) + S(t)2
Ki

(4)



A Novel Hybrid System for Dynamic Control 611

Above expression will only be used to simulate the true process model; for all
modeling techniques described in the remainder of the paper, the above expres-
sion describing the cell growth rate will be completely unknown.

The differential equations (1)-(3), can be discretized in unit time as follows

Bt+1 = Bt + (μt − Qt

Vt
)Bt (5)

St+1 = −μtBt + St(1 − Qt

Vt
) +

Qt

Vt
Si(t) (6)

Vt+1 = Vt + Qt (7)

If error terms ε, υ are added to reflect measurement error and model un-
certainty, then the system takes the form of a nonlinear dynamical system in
discrete time:

xt+1 = ft(xt, Ψt, μt(xt)) + εt (8)

zt+1 = H(xt) + vt (9)

Note that the form of μt is unknown in equation (8) and it is unmeasurable.
Because not all the state variables may be observable, the function H in equation
(9) is used to show the transformation from the full state x to the observable
state z. This step may also involve error, as shown by v. Were the μt observable,
an extended Kalman filter[9] could be applied for prediction of the next state,
using the current state estimates. Even when μt is not known, one can, through
a two step estimation scheme, iteratively estimate the next state and the μt.
The method is cumbersome, and requires a number of choices of turning param-
eters[10]. Moreover, while this method captures the dynamics of the system in
the short run, it is unable to forecast changes in the system in the long term
unless the growth rate stays constant. Thus, it is useless for process scheduling
or for extrapolation under different conditions. The hybrid LS-SVM described
below accomplishes the same estimation, but with the added feature that is can
provide reasonable extrapolation by directly estimating the growth rate.

3 Hybrid Least Square Support Vector Machine

3.1 Least Square Support Vector Machine

In the last decade, neural network have been successfully used as black-box mod-
els of dynamic systems and, more specifically, as process variable estimators in
bioreactor modeling applications[11]. In these efforts the process was operating
in a continuous mode; however, identification of batch processes is much more
difficult, since a wide range of operating regimes is involved and less data may
be available. Major breakthroughs are obtained at this point with new class of
neural networks called support vector machines(SVM)[12]. Solving QP in SVM
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needs complex computation and difficulty in implementation. Moreover, training
time is long and memory requirement is square. To solve this problem Suykens
developed least squares support vector machine(LS-SVM)[13]. In this paper, we
focus on function estimation using LS-SVM.

3.2 Hybrid Least Square Support Vector Machine

As discussed in the previous section, it is quite straightforward to derive an
approximate model of the bioreacotr (Eqs. 1-3) from simple first principles con-
siderations such as mass balances on the process variables. However, the critical
factor in determining the dynamic behavior of the process is the unknown ki-
netics(growth rate), of the conversion of substrate to biomass. The central idea
of this paper is to integrate the available approximate model with a LS-SVM
which approximates the unknown kinetics, in order to form a combined model
structure which can be characterized as a hybrid LS-SVM process model. The
first principles partial model specifies process variable interactions from physical
considerations; the LS-SVM complements this model by estimating unmeasured
process parameters in such a way as to satisfy the first principles constraints;
nonparametric estimation is needed since no knowledge is available about these
parameters. Such structured models are expected to perform better than black-
box models in process identification tasks, since generalization and extrapolation
are confined only to the uncertain parts of the process while the basic model is
always consistent with first principles and does not allow a physical variable
interactions. A schematic representation of the hybrid LS-SVM model is shown
in Figure 1. LS-SVM component receives as inputs the process variables and
provides an estimate of the current parameter values, in this case growth rate.
LS-SVM’s output serves as an input to the first principles component, which pro-
duces as output the values of the process variables at the end of each sampling
time. The combination of these two building blocks yields a complete hybrid
LS-SVM model of the bioreaction system. An important issue for LS-SVM is
model selection. For real world problem one often employs an RBF kernel. In
this case, the kernel width and regularization parameter need to be selected.
In [14] it is shown that the use of 10-fold crossvalidation for hyperparameter
selection of LS-SVM consistently leads to very good results on a large number of
UCI benchmark data sets[15] in comparision with many other methods reported
in the literature.

4 Experiment

We evaluate this hybrid LS-SVM(HLS-SVM) modeling scheme by comparing its
prediction accuracy with hybrid neural network(HNN) proposed by Ungar[9] and
hybrid neural network with extended Kalman filter(HNN-EKF). In order to test
the behavior of the HLS-SVM, we simulated data via the known first principles
differential equations (1)-(3) under a realistic condition. The specific growth
rate was generated using the Haldane model (equation (4)) with the parameter
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First Principle Model

B,S Estimate growth rate

Z

LS-SVM

Fig. 1. A schematic representation of the hybrid LS-SVM model. The LS-SVM esti-
mates the unobservable growth rate. This information plus the estimated growth rate
is then fed into the known model to obtain the next state.

values listed in[10], namely μ∗ = 5, Km = 10, Ki = 0.1. The inlet concentration
Si = 3.5 and the flowrate, Q, was held constant at 0.1. Future state variables
were then generated using the differential equations with random noise. We take
the same initial values B0, S0, V0 to generate the training, validation, test data
set used in [10]. Table 1 shows initial parameter value and number of data in
train, validation and test data respectively.

Table 1. Initial parameter value of train, validation and test data set

B0 S0 V0 Noise Number of data
Train 0.1 0.5 10 N(0,0.012) 20

Validation 0.3 0.7 4 N(0,0.012) 80
Test 0.001 1.5 4 N(0,0.012) 80

For the HNN, number of input, hidden and output node is 2,3 and 1 and
weight update is done by backpropagation method to estimate the growth rate.
The weights that produced the smallest SSE(Sum of Square Error) for the val-
idation data were selected for making the predictions for the test set. Because
learning and generalization ability of backpropagation neural network model is
sensitive to initial weight space, we try 10 times experiment and use the average
SSE value. In case of HNN-EKF, initial value of weight is set to 1. Covariance
and error matrix in process state set to identity matrix. Variance of error in
measurement state is 0.01. Forward pass to compute the output in HNN-EKF
is the same procedure as backpropagation neural network model does. Weight
update is done by EKF method. In HLS-SVM, we take the RBF kernel and ker-
nel parameter σ = 1.96 and λ = 0.479 are obtained by cross-validation method.
Figure 2 shows estimated and true μ(t) for training data by three methods. As-
terisk(*) in each graph is estimated value of μ(t). As we can see HNN model
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Fig. 2. From left to right estimated growth rate by HNN, HNN-EKF, HLS-SVM
respectively

Table 2. Comparision of sum of square error(SSE) on B and S by HNN, HNN-EKF
and HLS-SVM method

Method Train Validation Test
B S B S B S

HNN 0.22 0.22 19.57 19.52 23.5280 23.30
HNN-EKF 0.00310 0.02375 0.01846 0.01584 0.67861 0.67558
HLS-SVM 0.1206 0.03356 0.03759 0.03433 0.18469 0.19361
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Fig. 3. From left to right estimated Biomass by HNN, HNN-EKF, HLS-SVM
respectively

can’t estimate μ(t) well, whereas HNN-EKF and HLS-SVM model estimate well.
On the contrary Figure 3 and 4 show the generalization performance on B and
S respectively. From table 2 experimental results shows that in estimating B
and S, HLS-SVM is about 100 times outperform than HNN because LS-SVM
overcomes the overfitting problem and guarantees the global minima. Comparing
HLS-SVM to HNN-EKF the former is about 3 times outperform than the later.
Generalization ability of HNN-EKF is decreased because overfitting occurs more
or less during learning process.
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Fig. 4. From left to right estimated Substrate by HNN, HNN-EKF, HLS-SVM
respectively

5 Summary and Conclusion

In this paper we propose a new hybrid model comprised of a LS-SVM, together
with first principles differential equations for the forecasting and simulation an
environmental process. When sufficiently large training sets of data are available,
traditional black-box model gives an accurate model of the process. However
limited data are available, the hybrid model gives significantly better accuracy,
particularly on extrapolation. The hybrid model, once learned, can be used for
process control and optimization. The concept of combining LS-SVM with first
principle knowledge is a powerful one, and goes well beyond the example pre-
sented in this paper.
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Abstract. In this paper, we propose a novel method for rapid speaker adapta-
tion called speaker support vector selection (SSVS). By taking gaussian mixture 
model (GMM) as speaker model, the speakers acoustically close to the test 
speaker are selected .Different from other selection method, just computing the 
likelihood between models, we utilizing support vector machines (SVM) to ob-
tain a  ‘more optimal speaker subset’. Such selection is dynamically determined 
according to the distribution of reference speakers close the test. Furthermore, a 
single-pass re-estimation procedure conditioned on the selected speakers is 
shown. This adaptation strategy was evaluated in a large vocabulary speech 
recognition task. The presented method improves the relative accuracy rates by 
13% compared to the baseline system. 

1   Introduction 

The main challenge of speaker adaptation is to improve speech recognition perform-
ance by adjusting the speaker independent (SI) recognition system toward speaker 
dependent (SD) system. Dominant speaker adaptation technologies such as MLLR [1] 
and MAP [2] may become inefficient because of the lack of enough enrollment data. 
Recently, the adaptation based on the technique of speaker clustering and selection 
has been shown to be a successful solution for the sparseness of enrollment data [3]. 
The motivation of such system is based on considering that the training data contains 
a number of training speakers, some of whom are closer to the test speaker than the 
others. If the model is re-estimated from such selected speakers, it should be reasona-
bly close to the SD parameters, but the successes greatly depend on not only the num-
ber of selected speakers but also whether these statistics are sufficient for describing 
the distribution of the reference speakers. How to make a trade off between good 
coverage and small variance among the cohorts selected is still a very trick problems 
relied on the experiments. Dynamic instead of fixed number of close speaker selection 
seems to be a good alternative. 

In this paper, agreeing with the assumption above, we try to find subset of training 
speakers who are acoustically close to the test speaker using support vector machine 
(SVM) and then re-estimate the speaker’s model. Experimental results shown that the 
adaptation algorithm can obtain relatively accurate model based on two schemes as 
follow: 1) SVM outperforms general speaker selection method since it uses a  
smart way to choose an optimal set of reference models as well as save computation 
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time; 2) The adapted model can be calculated by using the previously stored hidden 
markov model (HMM) statistics, by which, a quick adaptation can be done. 

This paper is organized as follows. In the next section, the basic idea for speaker 
selection is described. Our proposed method, speaker support vector selection (SSVS) 
is explained in section 3. In section 4, we show our experiments in detail. Conclusions 
and discussion are provided in section 5. 

2    Speaker Adaptation Based on Speaker Selection  

The basic idea for speaker selection is that in speaker recognition field, one utterance 
with three seconds has achieved good accuracy on speaker identification. Then we 
can make full use of the statistics from the selected speaker subsets. There are various 
implementations of selection in practice which need to consider the following issues: 

• Efficient speaker representations. 
• Reliable similarity measurement between speakers. 
• Number of close speakers (cohorts) to be picked out. 
• Number of utterances from test speaker when considering the performance. 

Experiments in [4] showed that gaussian mixture model (GMM) based speaker 
representation and likelihood score based similarity measurement is the most efficient 
strategy (GMM-LR). The main procedure for selection is as follows. 

• Train one GMM for each training speaker ready for selection. 
• Calculate the likelihood of adaptation data of test speaker in each GMM. 
• Select training speakers with the K largest likelihood as cohorts. 
• Retraining the SI model using data of selected cohorts. 

However, retraining the SI model by data of selected reference speakers is very 
time-consuming. Model combination, that is, interpolating the Gaussian mean vectors 
of cohort models to obtain a new model, which can save more computation time, 
though only pre-calculated statistics are used [5]. 

3   The Algorithm 

3.1   SVM Based Speaker Selection  

For creating a speaker model, a typical strategy is to use MAP adaptation on a back-
ground model which is created by training a GMM on a large population of speak-
ers which is called universal background model (UBM) [6]. Then we can select the 
speakers who are close to the test speaker as described in Section 2. But it must 
build one model for each reference speaker and compute the likelihood of all 
speaker models during selection. Furthermore, the fact that the optimal number of 
cohorts for each test speaker is different motivates us to conduct dynamic speaker 
selection. 

SVM is a promising machine learning technique developed from the theory  
of Structural Risk Minimization [7, 8]. It is typically constructed as a two class 
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classifier. Fig.1 shows a typical two-class problem in which the examples are per-
fectly separable using a linear decision region. H1 and H2 define two hyperplanes. 
The closest in-class and out-of-class examples lying on these two hyperplanes are 
called the support vectors obtained from the training set by an optimization process. 
The optimization condition relies upon a maximum margin concept. For a separable 
data set, the system places a hyperplane in a high-dimensional space so that the 
hyperplane has maximum margin. The focus, then, of the SVM training process is 
to model the boundary between classes. The ideal outputs are either 1 or -1, depend-
ing upon whether the corresponding support vector is in class 0 or class 1, respec-
tively. Optimization on the input data in this case involves the use of a kernel-based  
transformation: 

                              )()(),( j
T

iji xxxxK ΦΦ=                                             (1) 

where )(xΦ  is a mapping from the input space (where x lives) to a possibly infinite 

dimensional space. 
Kernels allow a dot product to be computed in a higher dimensional space without 

explicitly mapping the data into these spaces. A kernel-based decision function has 
the form: 
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Different kernel functions form different SVM algorithms, here are three kernel 
functions that are often used [9, 10]: 

1) linear:                                

                                     j
T

iji xxxxk =),( .                                                      (3) 

2) polynomial:  

                                 d
j

T
iji rxxxxk )(),( += γ .                                             (4) 

3)  radial basis function (RBF):  

0),exp(),(
2

>−−= γγ jiji xxxxk                                   (5) 

here, γ , r, and d are kernel parameters. 

As support vectors carry all relevant information about the classification problem, 
the speakers who are acoustically close to the target speaker can be selected as sup-
port vectors. Particularly, such training method can give a dynamic decision of de-
fines how complex the classifier needs to be by the reference speaker set itself. This is 
in stark contrast to systems such as GMM-LR, where the complexity of the system is 
typically predetermined. 
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Fig. 1. H is the optimal hyperplane because it maximizes the margin the distance between the 
hyperplanes H1 and H2. Maximizing the margin indirectly results in better generalization. 

 

Fig. 2. Main adaptation procedure of selection can be considered as the training of SVM 
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stored for further utilizing. As described in section 2.1, the GMM models are adapted 
by using MAP technique [2]. These adapted models can be considered as the ap-
proximation of the reference speakers.  

For implementing reason, we extract the mean vectors of the GMM of M reference 
speaker to form M supervector ),2,1( MmSm = . We also apply MAP adaptation to 

the test  utterance based UBM and extract the mean vectors of the Gaussians to form 

the supervector of test speaker tŜ , every dimension of the tŜ  has the same length and 

order as 
mS . 

Using  these M+1 supervectors to represent speakers of two classes( one class is 
reference speakers and the other is test speaker), a SVM can be trained with the train-

ing set )},(),,ˆ{( mmt ySyS , where Mm ,,2,1= , 1−=y  and 1=my .Then we are 

able to select a subset of speakers corresponding to the support vectors in SVM. Fi-
nally, a speaker adapted acoustic model is calculated from the HMM statistics of the 
selected speakers using a statistical calculation method. 

3.3   HMM Model Estimation  

In this part, a single-pass re-estimation procedure, conditioned on the speaker-
independent model, is adopted. In the adaptation procedure, there has no inherent 
structure’s limitation of transformation-based adaptation schemes such as MLLR .A 
speaker adapted acoustic model is calculated from the HMM statistics of the selected 
speakers using a statistical calculation method.  

The process of re-estimation would update the value of each parameter. the poste-

riori probability of occupying the m’th mixture component, )(, tL ri
m , conditioned on 

the SI model, at time t for the r’th observation of the i’th  cohort can be stored in 
advance . 

The one-pass re-estimation formula may be expressed follows:  
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Among them, )(, tO ri is the observation vector of the r’th observation of the i’th 

speaker at time t, mμ~  is the estimated mean vector of the m’th mixture component of 
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the target speaker. The variance matrix and the mixture weight of the m’th mixture 
component can also be estimated in a similar way. 

4   Experiment Results 

4.1   Experiment Setup 

The database we used in these experiments is selected from the mandarin Chinese 
corpus provided by the 863 plan (China High-Tech Development Plan).About 60 
hours of speech data from Chinese male speakers are used to train a gender-
dependent SI model. We use 39 dimensional features consisting of 12 cepstral  
coefficients and log energy feature with the corresponding delta and acceleration 
coefficients. A five-state structure of a left-to-right HMM model with eight con-
tinuous density mixtures is trained. Then triphone-based HMM models are used in 
this continuous speech recognition.    

The speakers ready for selection consist of 100 male speakers, with 250 utterances 
each. Typically one utterance, both in training and test set, lasts 3~5 seconds. Test set 
consists of 20 male speakers from the same accent with training set, 20 utterances 
each. 10 of them are used for selecting and adaptation. The other 10 are used for test-
ing. It should be noted that we focus on very rapid adaptation of large-vocabulary 
system in this paper. All the adaptation methods in experiments are performed with 
only one adaptation sentence. 

4.2   Experimental Results 

When considering different kernels of SVM in SSVS, we have experimented with 
three kinds of kernels for speaker selection: linear, polynomial and RBF. The GMM-
LR  system is chosen as our baseline. Table 1 shows average recognition rates of 
SSVS (with 60 reference speakers) with different kernels of SVM. SV represents the 
number of selected speakers. We take the conventional methods, the MAP and MLLR 
as an comparison.  

From Table 1 we can see that GMM-LR based selection can get a better perform 
then traditional methods and linear kernel SVM based SSVS obtains the best recogni-
tion accuracy. As we known, although the polynomial kernel and RBF kernel can 
handle the case when the relation between class labels and attributes is nonlinear, but 
they use more parameters(see equation 4, 5) during training which influences the 
complexity of model selection. Then the support vectors obtained by linear kernel 
may bring a better performance in speaker selection.  

Table 1. Word accuracy percentage of different kernel of SVM 

SSVS Accuracy 

 
Baseline 

N= 
MLLR MAP Linear 

SV=33 
Poly 

SV=13 
RBF 

SV=35 

AWP 
Rel imp

46.81 
NA 

44.95 
-3.97 

44.33 
-5.3 

52.92 
13.05 

52.5 
12.16 

50.83 
8.59 
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From Figure.3 we can conclude that as the number of reference speakers grows, the 
proposed method can select more accurate support vectors which are acoustically 
close to the test. So the performance will be improved. It is make out  dynamically 
choosing the optimal cohort speakers for each target speaker is one of the key con-
cerns in order to keep the balance between good coverage of phone context and 
acoustic similarity to the target speaker. 

 

Fig. 3. Comparison with different number of reference speakers and different kernels 

5   Conclusion  

Generally, performance of selection based speaker adaptation is very sensitive to the 
choice of initial models, the number of selected speakers is always fixed. A novel 
selection method based on SVM is proposed in this paper. It realizes dynamic speaker 
selection by finding the support vector and its corresponding speaker in the subset of 
reference speakers. Our experiments have shown the proposed scheme can signifi-
cantly improve the performance and robustness of adaptation, even few adaptation 
sentence is available. Further work will be focus on how to measure the relative con-
tribution of each phone model of each specific speaker selected.  
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Abstract. Many researchers focus on enhancing the flexibility of the workflow 
management system. This paper shows how simulation plays an important role 
in improving the flexibility of temporal logic based workflow specification 
(TLWS) model. Detecting the TLWS model’s demand for changing and 
deciding what changes to carry out are very difficult. Simulation analysis can 
help to do these. After a task is finished, its time, cost and quality will be 
computed. And each will be compared with dual threshold values. If the value 
is below the bottom threshold, an exception will be thrown. If it is above this 
threshold, but below the top threshold, a warning will be sent out. If the value is 
above the top threshold, the execution is excellent. Workflow specification 
documents also need to be translated into simulation specification documents 
by using XLST. The utility of using simulation in improving the flexibility of 
TLWS model is outstanding. 

Keywords: simulation, adaptive workflow, temporal logic, flexibility. 

1   Introduction 

Many organizations make use of workflow management systems for automating their 
business processes. People widely recognize that a workflow management system 
should provide flexible ways of managing workflows [1]. 

At present, flexible workflow management systems are based on various workflow 
models. These models can provide convenience to users. But there are many 
disadvantages in these models. The flexible workflow management system based on 
TLWS model [2] can overcome the disadvantages of other models. 

Because of the complexity of modifying workflows, simulation analysis can be 
used to check the desirability of the changes.  

2   Workflow Model 

2.1   TLWS Model 

The kernel of workflow model is the specification of temporal synchronization among 
activities. In general, there are some kinds of workflow models as follows: Graph 
model, Petri-Net model, Event-Condition-Action model, CTR model and Hypermedia 
model [3]. 
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Based on the linear temporal logic theory [4], Z.S. Tang [5] designed a temporal 
logic based CASE environment, XYZ System, which can support various ways of 
programming. Based on temporal logic and the XYZ system, Ma proposes a 
workflow model based on temporal logic, called TLWS model [2]. 

TLWS model is defined as follow: 

Definition 1. Temporal Logic based Workflow Specification (TLWS) model is 
defined as a six tuple, TLWS = ( , F, R, T, O, S0), where 

 is a set of scene states; 
R is a set of roles; 
T is a set of tasks; 
F is called as a set of scene state transition rules. The formula of a rule is formed 

as: lb= iS ∧ iP i@ ( iQ ∧ lb)= jS ; 

O: F→{activity expression}∪{ω}; 
S0 is the start scene state. 
Compared with the previous models, TLWS model has some excellent features: 
(1) Process of workflow service; 
(2) Step-wise refinement design of a workflow service, thus the model supports the 

specification of workflow process and its evolution; 
(3) Abstraction of activities for a workflow service; 
(4) Synchronizations among activities. 

Those features make TLWS model a powerful model. TLWS model is compared with 
the previous models in Table 1 [6]. 

Table 1. Comparing workflow models 

Characteristic Graph Petri-Net ECA CTR TLWS 
Semantic No Yes No Yes Yes 

Activity abstraction No No No No Yes 
Refinement design No No No No Yes 

2.2   Structure of the System 

The system based on TLWS model includes several parts as follows: XPDL editor, 
workflow model library, workflow modifier, workflow instance library, workflow 
engine. The structure of the system is shown in Figure 1. 

 

Fig. 1. Structure of the system based on TLWS model 
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This system can provide both the flexibility by selection and the flexibility by 
modification. In build-time stage, users can design the flexible workflow process by 
XPDL editor. They can also use the abstract activity and exception handling to 
provide the flexibility by selection. 

In run-time stage, the workflow engine will provide the optional processes in the 
abstract activity for users. Moreover, when an exception is thrown, the engine will 
turn to the part of the exception handling. 

Users can modify the workflow model or workflow instance dynamically in the 
library. The system uses the workflow modifier to provide the flexibility by 
modification. Users can also modify the workflow process in XPDL editor. 

3   Improving the Flexibility 

The flexible workflow management system based on TLWS model improves 
flexibility in two ways [6]: by selection and by modification. 

3.1   By Selection 

When workflow runs normally, abstract activity provides the optional sub-flow; when 
exception happens, the system will provide the optional exception handling. 

Normal Running. In one business process, there often are many ways to choose. For 
example, if one machine part is needed in an enterprise business process, there are 
two possible ways to gain it: purchase one or produce one. The different ways to gain 
the part means different workflows to be chosen. If users want to purchase one, the 
workflow may be like: Apply → Approve → Purchase. If users want to produce it, 
the workflow may be like: Apply → Approve → Design → Produce. Figure 2 shows 
this process. 
 

 

Fig. 2. Process selection in abstract activity 

We can use abstract activity to describe such selection in the process. Abstract 
activity includes different sub-flow. In the run-time phase, the system will list all the 
optional process in a workflow instance. According to the requirement, workflow 
participant choose one of these optional process to complete the abstract activity. 
Figure 3 shows the structure of abstract activity. 
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…

 

Fig. 3. Structure of abstract activity 

Exception Handling. In the flexible workflow management system based on TLWS 
model, the flexibility by selection is also supported on the exception handling. There 
are many errors caused by external or internal events in run-time stage. When these 
errors occur, the system must provide the exception handling mechanism in order not 
to crash. With such good mechanism, the system can be robust. 

When the exception is thrown, the workflow engine will call the corresponding 
activity to handle this exception. For example, when a process is overtime, we can 
inform the manager, wait or go on the process ignoring the exception. 

3.2   By Modification 

We provide static modification and dynamic modification to improve flexibility by 
modification in the flexible workflow management system. 

Static Modification. In the workflow management system, the modification can be 
done by a set of basic primitive functions. They are as follows: 

    (1) addEdge(A, B, Condition): Add a directional edge between activity A and 
 activity B, and Condition is the condition of transfer. 

(2) AddNode(A): Add the activity A into workflow. 
     (3) DeleteEdge(A, B): Delete the directional edge between activity A and activity B. 

(4) DeleteNode(A): Delete the activity A from workflow. 

We can compose very complicated modification by assembling these primitive 
functions. We can modify the workflow statically or dynamically with these primitive 
functions. 

Dynamic Modification. An important problem in dynamic modification is how the 
modification to the workflow process affects the running workflow instance. There 
are two important conceptions: execution point and modification point. Execution 
point indicates the position of a task node where a workflow instance is running 
currently. Modification point indicates the position of a task node we want to change. 

According to the relation between execution point and modification point, we will 
discuss how to change the running workflow instance by the following three 
situations: 

    (1) Modification point is prior to execution point. It means the change to the 
workflow instance will not take effect until a new workflow process restarts. 

    (2) Modification point is the same as execution point. This situation can be 
subdivided into three cases. If the modification adds a node before the 
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execution point, the change will not take effect like the case (1). If the 
modification adds a node after the execution point, the change will take effect. 
If the modification modifies the current execution point, it depends on the state 
of the current execution point. If current execution point is in “wait” state, the 
change will take effect. If current execution point is in “active” state, it does 
not permit to be modified because the node is running. 

    (3) Modification point is later than execution point. It means the change to the 
workflow instance will take effect after the modification. 

4   Workflow Simulation 

Simulation analysis plays an important role in detecting the need for changing and 
deciding what changes to carry out. Before a change is actually made, its possible 
effects can be explored with simulation. 

4.1   Workflow Modeling 

For modeling purpose, a workflow can be abstractly represented by using directed 
graphs (e.g., one for control flow and one for data flow, or one for both). The directed 
graph consists of a nonempty set of nodes and edges with the following properties: 

(1) There are two types of nodes (AND node and XOR node). 
     (2) One of the nodes in the directed graph must be designated to be a START node 

and one must be designated to be a STOP node. 
(3) The directed graph must be weakly connected. 

    (4) Edge labels indicate the probability of edges being selected as the outgoing 
edge. 

4.2   Change Evaluation 

After a task is finished, its time, cost and quality metrics will be computed. These 
values will be sent to the monitor and saved in the monitor's log. Each of these three 
metrics will be compared with dual threshold values [7]. There are three results: (i) 
the value is below the bottom threshold, (ii) it is above this threshold but below the 
top threshold, (iii) the value is above the top threshold. For the first case, an 
appropriate exception will be thrown. For the second case, a warning will be sent to 
the monitor. For the third case, the execution is considered to be satisfactory. 

If an exception is thrown, it will be handled by exception handling process. There 
are several options such as ignore the exception, use an alternative task or adapt the 
workflow. As warnings are accumulated in the monitor, a pattern may indicate a 
helpful change. Such a pattern could be detected by a human monitoring the 
workflow or by an agent examining the monitor’s log. Identifying and classifying a 
pattern of substandard quality are consisted of in the detecting process. Then possible 
corrective actions are determined. 

Simulation is useful in setting the thresholds and in creating workflow 
modifications. Owing to simulation, the question what happens if one makes this 
change to the workflow is considered safely. 
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5   System Integration 

In order to facilitate rapid simulation of workflow, it is necessary to translate 
workflow design specifications into simulation specifications [7]. The workflow 
designer saves workflow designs as XML documents in an XML Model Repository. 
Such a design can be retrieved and translated into simulation specifications. The 
translation is simplified since both systems represent their models with AND node 
and XOR node. Before the simulation is actually run, this default mapping from a 
workflow node to a simulation node can be adjusted by using the workflow model 
design tool. 

Workflow designs and simulation designs follow their different Document Type 
Definition (DTD). Therefore, a workflow design document must be mapped to a 
simulation design document. This is accomplished using an XLST specification. The 
integration of workflow model with simulation is depicted in Figure 4. 

 

 

Fig. 4. Overall System Architecture 

6   Conclusions 

This paper has shown how simulation can be useful for supporting and improving the 
flexibility of TLWS models. We can answer “what-if” questions via a simulation 
instead of actually trying the change. 

Because both workflow and simulation have the analogical conceptual 
frameworks, interoperability is facilitated. Since design tools for both systems use 
XML for saving designs in a repository, design specifications can be translated using 
XSLT. Currently, translation is in the direction from workflow specification to 
simulation specification. This is because that is what is needed and that the simulation 
specification is more abstract. 

Quality metrics are very important to decide whether a workflow should be 
adapted and what change should actually be made. These metrics are important for 
both the workflow and the simulation. 
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Abstract. This paper presents a novel method for predictive lossless im-
age compression via evolving a set of switches, which can be implemented
easily by intrinsic evolvable hardware mode. A set of compounded mu-
tations for binary chromosome through combining the local asexually
reproducing with multiple mean step size search was proposed, and a
gradually approach method for evolving larger scale images was fabri-
cated. Experimental results show that the proposed method can reduce
the computing time much more, and can scale up the image size in-
creasing up to 70 times with relative slower increase speed of computing
time.

1 Introduction

As the new emerged field, evolvable hardware (EHW) may provides new types of
mechanism for automatic circuit design and optimization, and adapting the en-
vironment by circuit itself. Recent studies on applications of evolvable hardware
conduct an important issue, that is to seek valuable applications of evolvable
hardware and to discover new problems and their corresponding solutions. In-
deed, the way to study problems through combining intelligent computation with
real-world applications is one of the most important methodologies in the field
of evolvable hardware.

Among various applications, the adaptive lossless image compression is one
of the typical applications of evolvable hardware. T.Higuchi et.al.[1] firstly pre-
sented an evolvable chip implemented by a special functional FPGA (F2PGA)
with their special variable length genetic algorithm (VGA) for compressing im-
ages, which has been regarded as the merely non-toy problem in the early re-
searches in the field of evolvable hardware[2]. And afterwards, they present a
further research on the problem of evolving large scale images (up to 315MB,
the computing time has not been mentioned.) in [3]. As a different study, A.
Fukunaga et.al.[2][4] presented a new prototype system based on genetic pro-
gramming (GP) to solute the problem of such implementation on conventional
� This work is partially supported by the National Natural Science Foundation of
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FPGA. [5] shows that the GP-based model can enlarge the size of processable
image from 64K-bytes up to 2M-bytes, and can reduce the computing time from
2 hours[4] down to 5 minutes (in simulation mode) at the same time.

However, both models above have limitations in their functionality: VGA for
optimizing templates is executed on a host computer[3]; The compiling time of
converting a chromosomes to an assessable circuit is usually about 0.5 hour[2].
Obviously, problems behind them are seriously. In this sense, intrinsic EHW may
be more suitable for real-time applications[6], specially for the task of predictive
lossless image compression.

This paper proposes a novel and simple evolutionary technique for predic-
tive lossless image compression, where a genetic algorithm with small size of
populations was used for reducing the circuit resources, and the parameters of
predictive function was discrete, therefore the chromosome can be corresponded
to a set of circuit switches thus can be evolved on chip directly. Experimental
results show that the proposed method can process more larger images, while
reduce the computing time efficiently.

2 Lossless Image Compression Through Evolving a Set of
Switches

The character of extrinsic evolvable hardware mode is to use symbolic expres-
sion in chromosome, where each symbol corresponds to a real circuit completed
by conventional design. The advantage of using extrinsic mode is that many
commercial compilers and circuit resources out of conventional design can be
employed directly. The disadvantage of extrinsic mode in real-time control and
adaption is that this kind of using may be detrimental to online tasks, since
extrinsic mode needs an extra device to accommodate a compiler software, and
has to have many compiling time and download time.

On the problem of implementing the self-adaption task of real-time lossless
image compression on a chip, if the control parameters could be described as a
set of switches, the evolving of states of switches will be easily achieved inside a
chip through intrinsic mode.

2.1 The Binary Cording Mechanism

To obtain a fixed length chromosome with binary cording, here the exponen-
tial function is used to approach the predictive function. Thus the 4-neighbor
predictive mode can be written as

x′
k =

4∑
i=1

xk,ie
−αid(xk,xk,i), (1)

where x′
k denotes the kth predicted value, xk,i denotes the pixel value of the

ith neighbor of xk, α denotes the parameter of the interpolating function, and
d(xk, xk,i) denotes the distance between the current point and its ith neighbor.
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Therefore, the task of prediction becomes to minimize the following objective
function

f(x) =
N∑

k=1

||xk − x′
k||2 =

N∑
k=1

[
xk −

4∑
i=1

xk,ie
−αid(x,xi)

]2
(2)

where N is the number of pixels for prediction. Conveniently, assume the effect
of interpolating function only affects its neighboring pixels, i.e. d(xk, xk,i) equals
to one uniformly. Hence (2) becomes

f(x) =
N∑

k=1

[
xk −

4∑
i=1

xk,ie
−αi

]2
. (3)

Hence the problem of lossless image compression becomes a parameter opti-
mization problem with four variables α1, α2, α3, α4. Obviously, there are many
numerical/function optimization algorithms, e.g., IFEP[7], and StGA[8], can so-
lute this kind of problem well. However, the task of optimization problem in the
field of evolvable hardware (specially in intrinsic EHW mode) is quite different
from tasks implemented by software.

To make the problem of Eq.(3) be easily implemented by intrinsic EHW,
we can make parameters in Eq.(3) coded with a set of binary string. Thus the
value of exponential function can be calculated on chip by querying an embed-
ded LOOK-UP Table (LUT). e.g., we can use “101101,011100,101100,010101”
represent “0.8125, -1.7500, 0.7500, -1.3125” for the values of α1, α2, α3, α4
respectively, thus the candidate solution of predictive function with formulation
of Eq.(1) can be expressed as linear function as x′ = 2.25353478721321x1 +
0.173773943450445x2 + 2.11700001661267x3 + 0.269146348729184x4.

It is apparent, 1) The size of LUT is equal to 2L/4, where L is the length of
binary string; 2) This kind of cording method can make the task of predictive
lossless image compression being implemented on chip easily.

2.2 The Binary Evolutionary Programming Algorithm

Two important notions can make help in achieving a binary evolutionary pro-
gramming algorithm. The one is the technique of asexually reproducing for local
selection presented in StGA, and the other is the idea discussed in IFEP that
long jumps can help to generating an offspring at the neighborhood of the global
minimum. For the sake of minimizing the population size to reduce circuit re-
sources as much as possible, here the notion of asexually reproducing and the
idea of using long jumps are fabricated to archive the binary evolutionary pro-
gramming algorithm.

Technically, the asexually reproducing can repeat one by one with a series of
compounding mutations as shown in Fig.1, where h0 is the parent, h1–h5 are
offsprings, pm1 and pm2 are probability for mutations. Empirically, pm1 and pm2
can usually take 1

3 and 1
9 respectively. Thereby, the averaged differences (search

step size with hamming distance) between the parent and each offspring can
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Fig. 1. The illustration of the asexually dendriform reproducing, where h0 is the parent,
h1, h2, h3, h4, and h5 are offsprings, pm1 and pm2 are the probability of mutations

be calculated to be 1
3 , 1

9 , 4
9 , 1

27 , and 16
81 of the length of bit string respectively.

It is apparent, the characteristic of the local selection mechanism in StGA is
absorbed but the random generation method is substituted to a mixed search
with five different mean step size of mutations, the characteristic of using two
kinds different mean step size (Gaussian mutation and Cauchy mutation) for
mutation presented in IFEP is also absorbed but the jumping has been made
more times and more deeply.

Since the local dendriform reproducing as shown in Fig.1 is mixed with relative
large mutations and relative small mutations, it can be thought as a hybrid
mechanism between local and global search. For scalability reason, here we just
take it as an independent evolution procedure, and denote it as binEP. The basic
procedure of binEP is summarized as follows.

Step 1. Initial a L-bits binary string randomly, and denote it as h0. Set C = 1.
Each bit of h0 is taken as a circuit switch for controlling the real number of
parameter in the predictive function. Evaluate the fitness of h0.

Step 2. Generate five offsprings asexually as follows.
Mutate h0 with the probability pm1 → h1;
Mutate h0 with the probability pm2 → h2;
Mutate h1 with the probability pm1 → h3;
Mutate h3 with the probability pm1 → h4;
Mutate h2 with the probability pm2 → h5;

where 1 > pm1 > pm2, pm1 and pm2 are the probability of mutation happened
on each binary bit with the value changes from 0 to 1 or from 1 to 0.

Step 3. Evaluate the fitness of each offspring by Eq.(3).
Step 4. Select the best one out of {h1, h2, h3, h4, h5}, and denoted as h′

0. If h′
0

is better than or equal to h0, using h′
0 substitute h0 to be the parent of next

generation.
Step 5. Stop if the halting criterion is satisfied; otherwise, C = C + 1, go to

Step 2.

The sampling and interpolating mechanism in the field of signal processing
can make the problem of scalability solved simply and directly. To reduce the
computational time on large amount data, here we use a pyramidal fitness eval-
uation as follows. For convenient reason, we denote it as BinEP.
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Step 1. Segment the predictive area of a m × n size image to a set of l × k
templet, where l < m, k < n.

Step 2. Take the set of mean value of each l × k templet as the input data,
execute binEP .

Step 3. If the fitness has not been improved after some generations, reduce l
and k randomly, go to Step 2. Stop if the fitness has not been improved after
some generations, when l = 1 and k = 1.

Obviously in BinEP, the changing of input data can change the environment of
binEP from coarse granularity to fine granularity. Since the coarse expression of
search space can make the objective problem be approached more easily, therefor
BinEP can supply a kind of greedily and gradually approach through disposing
the scalability problem at the same time.

3 Simulation Experiments

The proposed BinEP is evaluated by comparing with the method of Huffman
coding, and the lossless JPEG. Images used here are Lena (as shown in Fig.2)
and a number of science images from NASA[9] (we use these images because they
are open, thus the work in this paper can be validated by others). In experiments,
the initial parameters of BinEP are that l = 10, k = 10, pm1 = 1

3 , pm2 = 1
9 , and

the length of chromosome is 24 bits. The size of compressed image is calculated
as: Sizeof(compressed Error)+Sizeof(compressed Bord)+Sizeof(Binary string).

Fig. 2. The 256 × 256 image of Lena, and the 1374 × 889 science image PIA04349

The experiments are divided into two parts based on different points of view.
The first is for comparing with the GP-based method on Lena image, since
this kind of comparison can exhibit the efficiency of methods basically. The
second is for evaluation on large scale images to see the scalability of BinEP.
Although the proposed evolutionary technique can be implemented by on our
DSP development platform (with TMS320VC5402), to put down the evolving
time for computational efforts comparison, all results have been averaged over
50 runs of software simulation on AMD 1.2G CPU.
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3.1 Evaluation on Small Size Image

Experiment results on Lena are summarized in Table 1, where two kinds of
parameter setting for BinEP with 3 × 3 and 1 × 1 templet (which means BinEP
is run with no technique of gradually approach, i.e., binEP) are also listed for
analysis. It is clear, the optimization performance of BinEP are better both than
the GP-based method and the lossless JPEG2000.

It is also clear that BinEP and binEP have the same performance of opti-
mization, while the computing time of BinEP is much less than that of binEP.
That is, the proposed technique for large amount of input data with gradually
approach method is validated to be feasible on small size image.

Table 1. Comparison between BinEP and GP-based method on Lena image (256×256,
grey, 66536 bytes), where BinEP is with 3 × 3 templet, and binEP means BinEP with
1 × 1 templet (i.e., BinEP with no technique of gradually approach). Here the method
for coding error matrix are both the Huffman code technique.

Methods Compressed Size Computing Time
GP 43, 154 bytes 169.0 ± 0.1 sec.

binEP 40, 247 bytes 11.23 ± 0.1 sec.
BinEP 40, 247 bytes 3.080 ± 0.1 sec.

JPEG2000 44, 090 bytes < 1 sec.

3.2 Evaluation on Large Scale Images

In experiment, the templet used in BinEP is 10 × 10. Two lossless coding tech-
niques were used to code the evolved error matrix, the one is Huffman code
which was used in the past approaches in [2] and [4], the other is the lossless
JPEG2000 which is investigated newly in this paper. The experimental results
are listed in Table 2, where the results of using Huffman code and the lossless
JPEG2000 compress the original image directly are also summarized. It is ap-
parent, the compressive results and the computing time of BinEP on large scale
images is better and acceptable. The difficulty of BinEP on vary large images,
such as PIA07335, is at the later period of evolution when the templet is shrunk
to one pixel. At this time, the computing time can not be reduced since the
evolved data is total of an image.

Take the result of binEP (with no technique of gradually approach) on 256×
256 size image Lena as the reference, the efficiency of BinEP on larger scale
images can be summarized approximately as shown in Fig.3. It seems that the
satisfying of BinEP is up to 70 times increase of image size, where the increase
speed of images is relative slower than the increase speed of computing time.

3.3 General Comparison Between BinEP and DRC

The Dispersed Reference Compression (DRC)[3] is the newly developed method
comes of [1]. Essentially, the idea of proposed method and DRC is quite different.
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Table 2. Comparison between BinEP, Huffman code, and the lossless JPEG2000 on
large scale images. BinEPv1 means that Huffman code is used for coding the error
matrix, and BinEPv2 means the lossless JPEG2000 is used for coding the error matrix.

Image Huffman JPEG2000 BinEPv1 BinEPv2 Evolving Time
Name (bytes) (bytes) (bytes) (bytes) (sec.)

PIA07335 5, 578, 020 2, 515, 657 2, 311, 920 2, 389, 501 266.57 ± 3
PIA07217 6, 286, 500 2, 031, 297 1, 918, 890 1, 983, 626 214.89 ± 3
PIA05578 5, 522, 256 1, 540, 111 1, 698, 480 1, 444, 500 161.81 ± 4
PIA07225 4, 919, 459 2, 108, 906 2, 151, 157 2, 016, 007 121.58 ± 2
PIA07096 4, 247, 303 1, 938, 940 1, 637, 002 1, 886, 143 132.92 ± 3
PIA07343 2, 270, 780 1, 935, 780 1, 762, 368 1, 814, 022 75.50 ± 2
PIA07227 1, 955, 670 1, 622, 853 1, 552, 944 1, 550, 086 52.23 ± 3
PIA04349 1, 115, 492 789, 619 720, 341 735, 189 32.32 ± 3
PIA05202 816, 127 576, 951 534, 536 541, 220 25.14 ± 2
PIA06322 731, 328 529, 634 481, 381 492, 653 37.03 ± 2

1The size of images from up to down are: 3000 × 2400, 3000 × 2400, 2400 × 2400,
2841 × 1846, 3000 × 1688, 2104 × 1726, 1320 × 1840, 1374 × 889, 1065 × 771, and
1239 × 805 respectively.
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Fig. 3. The approximately estimation of the efficiency of BinEP on larger scale images,
where the size of image for contrast is 256×256. The vertical axe is the increase times
of computing time, and the horizontal axe is the increase times of image scale.

On the issue of evolving large scale images, [3] presents a number of results of
compression ratio, however had not shown details about computing time. Thus
it is hard to give an exact experimental comparison between BinEP and DRC,
since the computing time is the most important issue for evolvable hardware,
special for real-time applications.

For the issue of predictive lossless image compression itself, intrinsic EHW is
more attractive than extrinsic EHW. The reason is vary simple and clear: using
extrinsic EHW, images have been evolved by software (simulator) already, that
repeat the last work done by software on a hardware has few realistic meaning
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but for study. On this issue, the proposed method has more advantageous, since
its problem expression is suit for intrinsic EHW mode.

4 Conclusions

This paper proposes an intrinsic EHW model for predictive lossless image com-
pression, which can be implemented on a chip directly, other than extrinsic EHW
model used by [1-4] and [5]. For the problem of solving large scale of images, this
paper presents a binary evolutionary programming (BinEP) by combining the
technique of local asexually reproducing with the idea of using mixed mutations.

The proposed evolutionary technique is suit for implementation with intrinsic
evolvable hardware mode. Experimental results show that the proposed method
can reduce the computing time much more, and can scale up the processed image
size up to 70 times larger with relative slower increase speed of computing time.
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Abstract. A method based on qualitative description is introduced to analyze 
the dynamic system of viral infection, and to predict the qualitative behaviors of 
the system by describing qualitative states and the transition between the states. 
The algorithm of building qualitative states is presented and then the qualitative 
states graph can be created from the dynamic model of viral infection. The rea-
soning algorithm is given to accomplish the transitions between the qualitative 
states. The qualitative trends of the state variables and their relative positions of 
the viral infection model are obtained, and then the corresponding transition 
graph of these qualitative states is gained. The qualitative simulation of the sys-
tem is also given without precise formulation of the model. 

1   Introduction 

The behavior analysis and prediction of dynamic system is a difficult task due to the 
absence of sufficient quantitative information and the lack of efficient methods. Espe-
cially in those fields that the models being researched are not fully known, the prob-
lem is more complicated. For a nonlinear dynamic model, the system may exhibit 
complex character even in low dimensions[5].  

The dynamical models in biological fields suffer this problem frequently. For the 
durative viral infection, the pathogenic bodies of virus propagate in the environments 
of the host organicity, and these bodies may be restricted by the physical and chemi-
cal barrier of the host, such as the mucous membrane of skin, the phagocyte, T cell, 
and so on[4,11,16]. For these complicated relationships among the terms in the environ-
ment, the dynamical model of the viral infection has not been known completely, 
which increase the difficulty to describe and analyze the viral infection model. 

Researchers have shown much interest in such nonlinear dynamical systems with 
incompletely known knowledge. If the dynamical system is given as ordinary differ-
ential equation, B.Kuipers writes its qualitative model in the formula of qualitative 
differential equation (QDE) and reasons the process qualitatively[10,14]. If the dynami-
cal system is linear or piecewise linear, the corresponding qualitatively simulation  
can be used to analyze the characters of the system[7]. The method of phase plane 
analysis can draw some useful conclusions to the behavior prediction in the case of 
                                                           
* Supported by Key Project of Natural Science Foundation of China (60434010). 
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low dimensions system[6]. J.L.Gouze analyzes the dynamical system of biology by 
considering the positive and negative circuits in the system[9]. And V.Volterra does 
some researches on the variations and fluctuations of the dy-namical model, and im-
plements it in coexisting animal species[8]. If the system is certain nonlinear dynami-
cal model with dimension differential equations, a qualitative method can analyze the 
be-haviors of system by studying the existing and sequence of every variable[3,15]. The 
subsequent works give some definitions and formal descriptions[13]. In reference [2] 
the author uses a qualitative method to describe the interaction among the factors 
existing in viral infection system and build qualitative viral infection model. 

Here we introduce the method based on qualitative description[3] to analyze viral 
infection model. The main idea is to create the qualitative behaviors description and 
build the transition graph between these qualitative states from the nonlinear dynami-
cal model with incompletely known information.  

We present the algorithm of building qualitative states to create the set of almost 
all possible qualitative characters. The qualitative description is expanded by relating 
the qualitative behaviors of extrema and those crossing through the equilibrium val-
ues. The characters of states are defined by the sign of variables’ qualitative trending 
and all the states are restricted to a specific set.  

Based on the set of qualitative states, we also present a reasoning algorithm of state 
transition, which predict the possible qualitative behaviors of the system according to 
the qualitative states of velocity and the variable. The transition is represented as a 
graph with crossing point of extrema and variables to describe the behaviors of dy-
namical model and the possible transition paths are all given in the graph. At the end 
of the paper, the application of qualitative analysis method to the viral infection col-
ony dynamical system is given and the conclusion is drawn. 

2   The Preliminary Knowledge 

Let Ω  be open convex domain in n , and f is a map from Ω to n . Here because the 
model in our studying is biological viral infection model, so domain Ω  should have 
biologic meaning, which means that the values of variables of the models are re-
stricted in domain and without meaning in outside of the domain.  

For nx ∈ , we call 0x > if for all i 0ix > . For nx ∈ and y ∈  we consider the 

function sign: 
1( )

( ) ...
( )n

sign x
sign x

sign x
= , 

1     0,
( )  0      0,

1      0,

if y
sign y if y

if y

− <
= =

>
 

We will give some definitions that about the qualitative description[13]. 

Definition 1. If for all i j≠ , the partial derivative / ( )i jy x x∂ ∂ won’t cancel in Ω , we 

call the system has a monotonous interactions in Ω . Obviously, for such monoto-
nous system the off-diagonal terms of the Jacobian matrix all have a fixed sign in Ω . 

Definition 2. Consider the set nS with 2n  elements: 1{ ( ,..., ) ;  { 1,1}}T
n n iS σ σ σ σ= = ∈ − , 

nS implies all the sign vector in n  with values are 1± . We can order all the elements 

and use qσ to denote the q th element. We will select 1 (1,...,1)Tσ = for convenience. 
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Definition 3. For all j  in {1,..., }n  and q in {1,..., 2 }n , if the partial derivative / ( )i jy x x∂ ∂ has 

fixed sign in the domain: ( *) { ;  ( )( *) 0}q
qW x x diag x xσ σ= ∈Ω − > , then the system ( )  can 

be called diagonally *x monotonous, and ( *)qW xσ  is called the orthants of *x devia-
tion(Here the *x is the equilibrium point of the system). The velocity domain qZσ is 

defined as: { ;  ( ) ( ) 0}q
qZ x diag f xσ σ= ∈ Ω > and qZσ is delimited by iU : 

{ ;  ( ) 0}i iU x f x= ∈ Ω = . 

Definition 4. Consider first the consistent set between velocity domain qZσ and devia-

tion domain ( *)qW xσ , which means the sign of ( )f x for a given x in ( *)qW xσ . That is: 

( ){ ( ) , ( *) \ }q
q sign f x x W x UσΓ = ∈ .The formal definition is to provide the restriction of 

possible qualitative states. In fact, the elements in qΓ imply the qualitative events of 
the velocity x . 

Next we consider the set: ( *) ( *)q p q px W x Zσσ σ σΩ = ∩ , and according to the definition 

above we get: ( *) { ( *); ( ) ( ) 0}q p q
px x W x diag f xσσ σ σΩ = ∈ > . The sets may be empty, and 

we call the non-empty sets as possible regions. 

3   The Transition Between Qualitative States 

After the sets of qualitative states of the system are defined, in this section we will 
consider how to analyze the behaviors of the dynamic system if the initial state is 
given, which means the transition between these qualitative states. 

The transitions between qualitative states proceed among the neighbors domain, so 
it touches the notion of neighbor. Two domains are called as neighbors if there is only 
one sign that is different in the equilibrium deviation vector or the velocity vector.  

3.1   Transition Rules  

Now consider the transition rules that describe the possible transferring events be-
tween qualitative states in the strict domain Ω partitioned by ( *)q p xσ σΩ . The qualitative 

behaviors obey the rule: 
Considering the system ( ) with monotonous interaction and equilibrium *x , and 

the domains 1 1 ( *)q p xσ σΩ and 2 2 ( *)q p xσ σΩ are strict neighbors, and , 1k kt + is the sign of the 

element ( , 1)k k + of Jacobian matrix, we have: 

(1) Suppose they are strict U-neighbors, and if 1 1
, 1 1

p p
k k k kt σ σ+ + = (or 1p

kσ− ) ,then it is only 

possible from the 2 2 ( *)q p xσ σΩ to 1 1 ( *)q p xσ σΩ  (or from 1 1 ( *)q p xσ σΩ to 2 2 ( *)q p xσ σΩ ), and it 

corresponds to a minimum (or maximum) of variable kx . 

(2) Suppose they are strict V-neighbors, and if 1 1
, 1 1

q q
k k k kt σ σ+ + =  (or 1q

kσ− ), then it is only 

possible from the 2 2 ( *)q p xσ σΩ to 1 1 ( *)q p xσ σΩ  (or from 1 1 ( *)q p xσ σΩ to 2 2 ( *)q p xσ σΩ ), and it 

corresponds for kx to cross from bottom to top (or from top to bottom) of  

variable kx . 
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The rule above provides the possible transitions between the qualitative regions, 
and a global qualitative behaviors rule will be shown to describe the qualitative be-
havior paths of a dynamical system with monotonous interactions, at the moment the 
domain Ω is partitioned by ( *)q p xσ σΩ . 

3.2   Algorithm of Creating Qualitative States 

In this section the algorithm steps will be presented to create qualitative states graph 
for a nonlinear dynamical model of biologic system (here the system aims at our 
studying model and it can be extended to a general case) according to the definition 
and the rules above. The main idea is to build the qualitative behaviors of the velocity 
and the qualitative information of the variables’ deviation of the equilibrium from the 
given dynamical system. The algorithm is described as follows: 

Input: A nonlinear dynamical model ( )  ( )x f x= ; 

Output: The set M including the qualitative behaviors of *( )x x−  and x ; 
Steps: 
(1) The n n×  matrix J will be created according to the dynamical model; 
(2) From the equations ( ) 0f x = ,we get the solution * *

1( ,..., )nx x (here assumed that 
the approximately linearized part A is nonsingular, and which is also satisfy the 
models we are studying); 

(3) Produce all the 2n elements of nS , all of which are 1n ×  matrix and the values 
in the matrix are either 1+ or 1− ,and inserts them in the set S ; 

(4) Substitute * *
1( ,..., )nx x for the x in n nJ × to create matrix R ; 

(5) Compute ( )n nR diag a× × for all the elements 1na × , and insert them in the set L ; 
(6) If the signs of elements in the set L conform the judgment condition, then 

compute the qualitative states of velocity ( ( ))sign f x for all a in S , and insert 
them in set F ; 

(7) Find all elements in S and F that have a S∈ and ( ) ( ) 0diag a f x > , and insert them 
in M ; 

Following the steps above, the qualitative states graph can be created from a given 
dynamical model. 

3.3   Reasoning Algorithm of States Transition 

In this section the reasoning algorithm of states transition is presented based on the 
sets of qualitative states after they are created by the algorithm in Section 3.4. The 
main idea is to find the next possibly accessible state from the qualitative regions of 
velocity and those relative to equilibrium, and so all the possible transition paths in 
the States Transition Graph (STG) are given from reasoning. 

The reasoning algorithm is described as follows: 

(1) Initialize the system and set the visiting flag of all qualitative states as FALSE; 
(2) The initial state is obtained from the actual model, and the analyzing program 

will represent the state as a qualitative set that can be identified by our system, 
which is also taken as the input * *

1 1( ,..., ; ,..., )n nx x x x ;    



644 H. Feng, C. Shao, and Z. Wang 

(3) Choose a state m from the set M according to the initial state; if the visiting flag 
of m is FALSE, then set it as TRUE and goto (4); if the flag of m is TRUE, then 
follow the directed arrow to go to next state that has not been visited ( the flag 
is FALSE) , let the state as m and set the flag as TRUE and goto (4); if the vis-
iting flag of all the qualitative states are TRUE, then goto (8); 

(4) Find all the strict domain neighbors of m  according to the qualitatively re-
stricted rules and insert them in the set N ; 

(5) If the neighbors set N is not empty, then select certain element n and delete it 
from set N , goto(6); If the neighbors set is empty, then follow the directed ar-
row to go to next state and let this state as the initial one, and goto (3); 

(6) Scan all the elements in M : if n  is in the set M , then goto (7); else then  
goto (5); 

(7) Using the directed arrow to couple this qualitative state and n  according to the 
Rule 1 and endue the transition symbol for them; 

(8) End of the reasoning with creating the States Transition Graph (STG). 

4   Qualitative Analysis of the Viral Infection Dynamical Model 

To illustrate better the method of dynamical analysis based on qualitative descrip-
tion, we will take the viral infection dynamical model[1] as an application example. 
The process of virus infection for the viral entry can be shown in the equation as 
follows. Let T denotes the target cells, V the virus and I the infected cells. The 
parameters , , , , ,k s d p c λ are all positive values. For the biological interests, we se-

lect the initial values as (0) 0T > , (0) 0I = , (0) 0V > , and the model can be called as 

model ( )VIT . 

The viral infection dynamical model in host body can be described as differential 

equations: 
/               (1)

/               (2)

/       (3)

dV dt pI cV

dI dt kVT sI

dT dt dT kVTλ

= −
= −
= − −

 

The comparison of this class of models with experimental data is given in [11]. The 
dynamic parameters can be estimated with mathematical tools . Now we will give 
basis properties of the model that are important. 

Property 1. The open domain 3{( , , ) ; 0, 0, 0}V I T R V I TΩ = ∈ > ≥ > is positively invariant. 
Because the variables (including the initial values) will be meaningless in the out-

side of domain Ω , so we study the model only in this domain. 

Property 2. The virus infection model has monotonous interaction in the domain 
3{( , , ) ; 0, 0, 0}V I T R V I TΩ = ∈ > ≥ > .  

The parameters of the system ( )VIT don’t rely on the time explicitly, so it is an 

autonomous system. We can consider the equilibrium ( *, *, *)V I T in particularly initial 
states: ( * ( ) / , * ( ) / , * / )V kp csd csk I kp csd psk T cs kpλ λ λ= − = − = . 
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From the intersection of ( *)qW xσ and qZσ we get the set of qualitative 

spaces ( *)q p xσ σΩ . It will be ignored if the set is empty, while the nonempty 

sets ( *)q p xσ σΩ indicate the qualitative states that are admitted by the model, which is 

shown in Fig.1. The domain ( *)q p xσ σΩ  can be represented by two column vectors and 

the values are signs. The one implies qσ  and the other pσ . 
Then we get the graphic representation of ( *)q p xσ σΩ and the transition graph be-

tween states. The qualitative behaviors of the system are given as a graphic form in 
Fig.2. With different initial situations the reasoning paths will be different too.  
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Fig. 1. The graphic representation of qualitative sets 

 

 

Fig. 2. Basic transition graph of qualitative states. iM (or im )denotes a maximum(or a mini-

mum) for the variable ix . iT  (respectively it )denotes a crossing of its equilibrium point from 

bottom to top(respectively from top to bottom) for the variable ix . 
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The nodes in the figure indicate the possible qualitative states that are compose of two 
parts: one is the relative position of the variable to the equilibrium point, and the other 
is the behavior signs of velocity. For example, when the qualitative state of velocity 
transfer from ( , , )− + − to ( , , )+ + − and the corresponding sign of the coefficient is posi-
tive, the variable is admitted to pass a minimum and the letter of the changing state is 
marked as 1m , and the path is from the first state to the next with passing the mini-
mum. If the qualitative state relative to the equilibrium point is transferring from 
( , , )− + + to ( , , )− − + , then the variable will follow the path to the next state by crossing 
the equilibrium from top to bottom and the letter is marked as kt . 

If the initially qualitative state is known, we obtain a qualitative simulation by fol-
lowing the edges between the nodes, which are determined by the transition rules and 
reasoning algorithm. It is shown that, at most, one maximum, one minimum, one 
equilibrium point crossing from top to bottom or reverse for each state variable are 
possible. Note that the path from the initial state to certain domain or final domain is 
not unique in qualitative conditions and there may be several paths can be followed. 
The transition path may be determined more exactly if we have more quantitative 
knowledge of the model. 

5   Conclusion 

The quantitative analysis of viral infection dynamical model can’t be processed easily 
due to the lack of complex quantitative knowledge in such biological system; there-
fore, the methods based on qualitative analysis become our alternative solution to 
researches in the complicated dynamical system. 

In this paper we introduce the method based on qualitative description to analyze 
the viral infection model, which predict the qualitative events of the system by de-
scribing the qualitative states and the possible transitions between those states, and 
this prediction and analysis don’t rely on the precise quantitative knowledge of the 
model. The building algorithm is presented to produce the qualitative states graph 
from the dynamical model of viral infection. And the reasoning algorithm of states 
transition is also given to accomplish automatically the transition between qualitative 
states graph. 

The method of qualitative analysis can be used both to predict the qualitative be-
havior of biological viral infection model, and to validate the structure of theoretical 
model. We can compare the qualitative behaviors gained from our simulation with the 
experimental observations of the temporal scenarios of qualitative transitions. Indeed, 
if the observed sequences of qualitative events do not correspond to a sequence con-
tained in the graph, it implies a conflict between the model and the data. 

However, the dynamical research of biological model based on qualitative is still 
on the way, there are lots of work should be done further. For instance, the validation 
of the theoretical model, the combination of quantitative with qualitative knowledge, 
the formal representation of states graph and filtration, and so on, are our further work 
in this direction. 
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Abstract. In a 3D intelligent virtual environment, multi 3D virtual
characters interact with emotion and construct a 3D artificial society.
Modeling emotion interaction is a challenging topic for virtual artificial
society. Nonverbal emotion interaction is a direct communication manner
for virtual characters. A cognitive model of virtual character is presented.
A 3D virtual character has a cognitive architecture with built-in knowl-
edge that control emotion and the response to outer stimuli. Some new
concepts on nonverbal social interaction are set up.

1 Introduction

Modern computer technology brings people more simulation methods for life.
Artificial life is the research field that tries to describe and simulate life by
setting up virtual artificial systems with the properties of life. Emotion inter-
action is very important in real society. Modeling emotion interaction in a 3D
virtual society is an interesting topic. A believable virtual character has the abil-
ity of emotion interaction to other virtual characters with verbal and nonverbal
manner. In fact, nonverbal interaction is even more important than verbal inter-
action, particularly in respect of social interaction. Nonverbal social interaction
includes a variety of signals, body language, gestures, tough, physical distance,
facial expression, and nonverbal vocalization [1][2][3].

There are a lot of researches on emotion modeling, but little on modeling
emotion interaction with social status in a 3D virtual environment. Ortony et
al. set up an emotion cognitive model that is called OCC model [4]. In the model,
emotions are generated in reaction to objects, actions of agents and events. Be-
havior animation of virtual character is a new animation technique, and a virtual
character has perception and behavior [5]. Funge presented a hierarchy of com-
puter graphics modeling [6]: the bottom three layers are geometric, kinematics
and physics, while the top layer is behavioral. Behavioral modeling involves
characters that perceive environment stimuli and react appropriately. Badler et
al.developed the Jack software for simulation human behavior [7]. Thalmann et
al. presented a frame of virtual characters[8], a virtual character should not only
look visual, but also, they must have behavior, perception, memory and some
reasoning intelligence. In recent years, Cassell et al. developed a behavior ex-
pression toolkit for virtual characters with XML-based language [9], Pelachaud
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created a subtle method of facial expression for virtual characters [10], Chi et al.
built a system called EMOTE to express natural posture movements of a virtual
character [11].

On the basis of these researches, the goal of the paper is to build a model
of non-verbal emotion interaction process between two virtual characters. A
cognitive model of 3D virtual characters is presented in this paper, a 3D virtual
character is provided with a cognitive architecture to control emotion interaction.

2 Cognitive Model of 3D Virtual Characters

A 3D virtual character is regarded as agent with a built-in knowledge. This
section improves the result in previous paper [12], a cognitive architecture of
3D virtual character is presented in Fig. 1. We can explain all components of
cognitive architecture as follows:

(1) Sensors module collects environments information from memory module.
In this paper, we only consider visual sensors, which can read from memory
module to get current information of a 3D environment.

(2) Perception module is different from sensor module, and a virtual character
can perceive the meaning of objects in environment through perception module.
The perception module reads and filtrates information from sensor module and
collect information of outer stimuli, a simplified attention mechanism can be
integrated in perception module. In general, attention mechanism of human vi-
sion is derived from the fact that the image in center of an eye is high-acuity
region, beyond which the image resolution drops [5]. In a dynamic environment,
virtual characters need not focus on all objects in environment. In this paper,
an attention object list can be set up beforehand for different virtual characters.
If an object is in the scope of perception, and is not in attention object list,
character will not perceive the object. Moreover, the perception module reads

Fig. 1. Architecture of 3D virtual character
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the memory module to get mental variables, knowledge, and social norm. Mean-
while, perception module can communicate with mental variables by memory
module.

(3) Plan module execute behavior plans by stimuli, knowledge, norm, and
mental variables. Behavior plans include some of productive rulers.

(4) Behavior module creates behavior codes by behavior plans. Inhibitory gain
and fatigue are time sequence characteristic of behavior. The higher Inhibitory
gain, the longer the duration of the behavior is and new behavior is excited
only under new stimuli. Fatigue means that behavior with low degree of priority
can obtain the chance to carry out, once a certain behavior is carried out, the
behavior will stop at some time. We introduce the inhibitory gain coefficient
(a real number greater than one) and fatigue coefficient (a real number smaller
than one) to measure inhibitory gain and fatigue correspondingly.

(5) Actuator module executes the behavior in behavior code, it includes in-
verse kinematic arithmetic to drive locomotion, and read motion capture data
from memory module (memory module will read motion capture data in data-
base). When actuator module successful executes a behavior code, it will write to
memory module with an action sign that indicate whether the character moves
to or executes a behavior code.

(6) Database module includes 3D geometry of virtual environment, original
information, such as, the original location and parameters of virtual character,
motion capture data, 3D model and location of objects, default motion plan
scripts that record some goal location.

(7) Memory module serves as a center of information share among all other
modules.

(8) Knowledge module includes guiding knowledge in environment for virtual
characters. For example, the meanings of objects in environment are part of
knowledge.

(9) Norm module includes status, interaction information and interaction
rules, it controls the process of a nonverbal social interaction, it provides the
social knowledge for virtual character.

(10) Mental variables module includes emotion, personality and motivation.
This module read external stimuli from memory (the perception module write
stimuli information to memory module). Activation of an emotion is relative to
external stimuli and inner mental variables. If an emotion is active, this module
will create emotion expression, emotion expression code will be sent to behavior
module. Emotion is core of the module, personality is some stable psychological
traits of a virtual character, and motivation variables include some physiology
parameters of a virtual character.

3 A Model of Social Norm

A virtual character lives in 3D artificial society, and the behavior and emotion of
the character will be influenced by its social attribute.In this section, some new
definitions about social interaction process of virtual characters are described.
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Definition 1. For a virtual character, a status is a social degree or position. In
general, a virtual character may own many status, let ST(CA) is a status set for
virtual character CA, ST(CA)={st1,..., stN}, sti is a status (such as mother or
son), i ∈[1, N], N is the number of ST(CA).

Status plays an important role in a social interaction. For example, in a
virtual office, there are two kinds of social status altogether, namely the manager
and staff member. The manager’s status is higher than the status of the staff
member. In general, a person will control emotion expression by one’s status.

Definition 2. Social relationships are connections with other characters in an
artificial society, and a social relationships set of a virtual character can describe
who is friend or who is an enemy.

Definition 3. For two virtual characters CA1 and CA2, let FD(CA1/CA2) is
friendliness degree from CA1 to CA2. If FD(CA1/CA2)=1, CA2 is a friend
of CA1; If FD(CA1/CA2)=-1, CA2 is a enemy of CA1; If FD(CA1/CA2)=0,
CA2 is a stranger of CA1; If FD(CA1/CA2)=2, CA2 is a lover of CA1; If
FD(CA1/CA2)=3, CA2 is a mother or father of CA1; If FD(CA1/CA2)=4,
CA1 is a mother or father of CA2.

A virtual character judges others with friendliness degree. In general, a virtual
character will not interact with a stranger unless in some exceptive conditions
(calling help in danger etc.).

Definition 4. For two virtual characters CA1 and CA2, let ET1(CA1/CA2)
is default-ending time of interaction from CA1 to CA2, let ET2(CA2/CA1) is
default-ending time of interaction from CA2 to CA1, and ET is the time from
beginning to ending in interaction.

In general, if ET>min (ET1 (CA1/CA2), ET2 (CA2/CA1)), the interaction
will end.

Definition 5. For two virtual characters CA1 and CA2, let IR (CA1/CA2) is
interaction radius from CA1 to CA2, let DS (CA1/CA2) is distance from CA1
to CA2. In general, if DS(CA1/CA2)>IR(CA1/ CA2), CA1 will not make
interaction to CA2; if DS(CA1/CA2)≤IR (CA1/CA2), CA1 may make inter-
action to CA2.

In default condition, when two agents encounter together, interaction radius
is critical distance of interaction triggering.

Definition 6. For two virtual characters CA1 and CA2, let PN (CA1, CA2)
is priority degree of social interaction between CA1 and CA2. If PN (CA1,
CA2)=0, CA1 first interact with CA2, CA1 is initiator; If PN (CA1, CA2)=1,
CA2 first interact with CA1, CA2 is initiator; If PN (CA1, CA2)=2, CA1 and
CA2 interact each other at the same time.

In general, a virtual character acts different status with interaction to others.
For instance, there are three virtual characters CA1, CA2 and CA3, CA2 is
mother of CA1, CA3 is a student of CA1, when CA1 meets CA2 or CA3, CA1
usually first interacts with CA2, CA3 usually first interacts with CA1, and PN
(CA1, CA2)=0, PN (CA1, CA3)=1.
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Fig. 2. Tom is happy when he meets John

Fig. 3. John is also happy to Tom

Definition 7. For two virtual characters CA1 and CA2, let INS(CA1←CA2) is
an interaction signal set from CA2 to CA1, INS(CA1←CA2)={ins1,. . . ,insM },
insj is a nonverbal interaction signal (such as “happy face expression”), j ∈[1, M],
M is the number of INS (CA1←CA2).

In a virtual environment,when two virtual characters begin to interact each other,
we can suppose each of them is able to know interaction signal, in a practical demo
system, interaction signals are sent to memory module by social norm module.

Definition 8. For a virtual characters CA, let IRU(CA) is an interaction rule
for virtual character CA, IRU control the manner of interaction, IRU include
some production rulers.

We can give a demo example to illustrate social norm and emotion interaction.
Tom, John and Billy are three virtual characters in the demo system. Billy is an
enemy of Tom, John is a friend of Tom. When Tom meets John, Tom will smile
to John. When Tom meets Billy, Tom will be angry with Billy.Four snapshots
of the demo system are shown in Fig.2-Fig.5, and the social norm for Tom is
recorded in a script file as follows:
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Status (Tom):=(worker);
Social relationships:=(enemy of Billy, friend of John)
Friendliness degree (to Billy)=-1;
Friendliness degree (to John)=1;
Friendliness degree (to others)=0;
Default-ending time of interaction (to Billy)=2 minutes;
Default-ending time of interaction (to John)=1 minutes;
Default-ending time of interaction (to others)=0.1 minutes;
Interaction radius (to Billy)= 10 meter;
Interaction radius (to John)= 3 meter;
Interaction radius (to others)= 5 meter;
Priority degree of social interaction( to Billy)=0;
Priority degree of social interaction( to John)=0;
Priority degree of social interaction( to others)=1;
Interaction signal set=(angry, happy, . . . );
Emotion Interaction rules of sending information to others

Fig. 4. Tom meets Billy and stops walking

Fig. 5. Tom is angry when he meets Billy
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If Friendliness degree=-1 then Emotion to other = angry
Else If Friendliness degree=1 then Emotion to other = happy
Else
Emotion to other =Null; //no any emotion to others
End
Emotion Interaction rules of receiving information from others
If Emotion from enemy = sad then Emotion to enemy =happy
Else Emotion to enemy =angry
End
If Emotion from friend = sad then Emotion to friend =sad
Else
Emotion to friend =happy
End
End

4 Conclusion

3D virtual characters are graphics entities that totally produced by computer
system. A believable 3D virtual character should be provided with architecture
that includes the mechanism of emotion interaction. In a certain virtual envi-
ronment, multi virtual characters interact with emotions and construct a 3D
artificial society. Some new concepts of social norm for virtual characters are
presented. A social norm includes status information, interaction signals and
interaction rules. All these new concepts are illustrated.

Simulation of emotion interaction for virtual characters is a very difficult
subject. This paper only gives a primary frame for emotion interaction. Social
interaction is related to many factors, such as different culture, emotion, per-
sonality, motivation etc. In fact, the architecture of a 3D virtual character can
integrate all these new components.
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Abstract. This paper explores the feasibility of computer simulation of
evolving populations of social animals in nature, both from the anatomi-
cal and socio-environmental viewpoints, addressing the gap between the
algorithms for evolution of digital objects, and the evolution of species
in nature. The main components of ant body are mathematically de-
scribed within the function representation framework; the parameters
directly determine both the visual characteristics of the ant as well as the
body characteristics encoded by the genome. The environmental diver-
sification of ant subspecies is studied for fungus-growing ants, in which
single-queen mating reproduction couples with large size of accessory
male glands, while multiple-queen mating correlates to large size of ac-
cessory testes. Our results show that within an environment of restricted
resources, both competing modes of sexual reproduction survive. The
frequency with which either mode becomes dominant in the population
is driven by the value of the mutation probability. The function repre-
sentation model should be useful also in the simulation of other simple
animal species, because of the ease in relating the genome parameters to
computer visualization tools.

1 Introduction

Ants are social animals, which have a very specific reproduction cycle. They live
in colonies, which consist of a queen, sterile female workers and male drones.
The queen lays fertilized eggs, which then metamorphose via larvae and pupae
stages to grown up adult female ants. At the same time, a small amount of
male drones develops from the unfertilized eggs. The queen mates in the air,
once per life, which may last up to 30 years. Few days after mating, the male
drones die, while the queen rips off her wings, and starts laying eggs for a new
ant colony. She stores all the sperm from mating in spermatheca in her body1.
In order to complete the reproduction cycle, a long phase of community growth
and maturation is required, before the fertile females are born, ready to become
the queens of the next ant colonies.

The anatomical features among ant species are very similar; nevertheless, vari-
ations has been found in male organs related to the sexual reproduction: the size of
1 Monoclonal sperm, which carries identical genes of the male in all cells, can in some

cases replace the standard sperm competition mechanism.
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Fig. 1. FRep: creating a spatial model (frog cartoon) from HF graphics primitives [3]

accessory testicles that contain previously formed sperm; and the size of accessory
glands, which contain accessory mating fluids secreted earlier: these fluids have a
positive impact onqueens life-length, fertility, andmayalsoact asanti-aphrodisiacs
against queen mating with other drones. It has been shown that multiple queen-
mating correlateswith large testes and small accessory glands; single queen-mating
correlates with small testes and large accessory glans. Ant colonies resulting from
the former mechanism are genetically more diverse and resistant to illnesses; the
colonies resulting from latter mechanism are more cooperative and stable. Within
the environment with limited resources, both mating mechanism can represent a
competitive advantage, especially in case the mating mechanism is minor [1].

A reproductive success of queen genes consists in the ergonomic growth of her
colony, which allows for multiple male and queen offsprings; and in the mating
success of her offsprings. While there is no environmental pressure known for
the queens, the drones compete by the size of accessory glands and testes, which
correlates to the mating mechanism. The reproductive success of male genes can
thus always be reduced to that of the mother queen.

Here we develop a computer simulation model of ant species, that includes (1)
genetic encoding of the main body characteristics, (2) function-based visualiza-
tion of ant creatures, and (3) model of the environment with restricted resources,
and the two possible mating mechanisms. Within this evolutional framework, we
determine the predominance of mating mechanisms in relation to the genetic al-
gorithm (GA) operators. The rest of the paper is organized as follows. Section
2 explains the mathematical parametrization of ant body within the function
representation (FRep) framework, and introduces its visualization tool, the Hy-
perFun software. An educational illustration of GA-run ant evolution from an
initial population of random creatures is also included. Section 3 deals with
the evolution of ant colonies competing for limited resources and discusses the
principal results on mating. We conclude with final remarks in Section 4.

2 Function Representation of Ants

This section show how the ant species can be represented by using the functional
representation, parameters of which are subjected to the genetic algorithm. As
an illustration, we also evolve a population of random ants into a physiologically
consistent species2.

2 Although the single optimum GA is not the main subject of the paper, visualization
of such evolution may be of educational interest in biology and/or computer science.
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Fig. 2. Parameterization of Ant Model: FRep with HyperFun

FRep was introduced in [2] as a uniform representation of multidimensional
geometric objects (shapes). The objects are described by a real-valued function
F of the space variables r: the points where F (r) ≤ 0 belong to the object;
F (r) = 0 defines the surface. One of the advantages of shape modeling with
FRep is the availability of an associated computer graphics tool, the HyperFun
(HF) [3]. FRep-defined objects are automatically visualized and animated with-
out requiring explicit polygonization. Elementary geometrical objects as well as
interpolated voxel clusters naturally express themselves as a function in the for-
mat of a parse tree with object primitives in the leaves, and FRep operators in
the tree nodes. Operations such as the set-theoretic, blending, offsetting, projec-
tions or non-linear deformations have been formulated for FRep within the space
of continuous real-valued functions. Figure 1 shows an example how to create a
complex spatial model of an animal (a frog) from elementary FRep components,
by using summation and subtraction (the sky and chessboard components were
added ex post into the picture).

In order to create a digital model of ant species, we must consistently param-
eterize the ant anatomy. All body components (head, eyes, feelers, trunk, legs
and metasoma) must be adjusted for connectivity for all gene values, unlike from
the original model [4]. The ideal ant creature, which is going to be the attractor
of single-optimum evolutional race is shown in Fig. 2. The body is defined as a
sphere (hfSphere centered at [0,0,0] with radius ρ. While the x coordinate for
the starting point of any legs can be selected freely between (−ρ, ρ), the next
coordinate, y, is restricted to (−√ρ2 − x2,

√
ρ2 − x2), and the last one, z, is

determined as z = ±
√

ρ2 − x2 − z2. The particular values are binary-encoded
as GA parameters in < −1, 1 > with proper normalization factors. The length
of leg segments and the orientation of joints are also encoded as parameters; the
minimal anatomical restrictions are taken care of as outlined in Fig. 3, so that
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Fig. 3. Ant model: parameterization of legs and joints

the legs are symmetric and do not interfere with the body. The shape of meta-
soma is modeled as an ellipsoid with the principal half-axis sized a, and shifted
by ρ+ a e from the center of the trunk. Similarly, the head attaches to the body
on the opposite side; its shaped is obtained by spatially-dependent transform of
a sphere along the body-symmetry axis (HF function hfTaperX). In a similar
manner, spherical eyes are attached; the mathematical model of attaching feel-
ers to the head closely follows the procedure for attaching legs to the trunk (cf.
Fig. 3).

Since the HyperFun language is a visualization tool, and does not easily allow
for numerical calculations, we have opted to generate the input files for HF
graphics from within a C-language program, which runs the GA. The program
outputs the full parameterization for each HF ant, including all commands and
directives to the HF interpreter; the HF parameters are simply obtained by
decoding gene values.

The parameters of the single-attractor GA [5], in which the ant creature in
Fig. 2 is evolved, are: 38 float genes normalized to the range in < −1, 1 >
and encoded as 20 bits; 200 GA steps; a population of 300 creatures; multiple
point crossover operator; and single-bit mutation operator (probability 1%). The
fitness function is expressed as the inverse of the least-square error from the
parameters of the ideal ant. Figure 4 shows the FRep-consistent population of
random digital ants, which was used to initialize the GA. Three evolved creatures
are randomly selected at steps 2, 10, and 30 in Fig. 5, when the GA population
effectively became homogenous. Most of the initial ant shapes in Fig. 4 would be
life-inconsistent. It is however worth noting that all are GA and FRep consistent;
we are not aware of any other CG software, in which the genetic evolution and
creature visualization is tractable [6].

3 Evolution of Ant-Mating Mechanism

After the GA developed in the previous section illustrated the advantages of
FRep in simulated animal evolution, here we develop a simulation of realistic
ant species, namely the fungus-growing ants [1]. Variations of the body parts
sizes are negligible except for the accessory male organs related to reproduction.
The size of body parts is practically frozen; on the other hand, two more objects,
accessory glands and accessory testes are added to the GA.
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Fig. 4. Random ant creatures in GA evolution

Fig. 5. Single-point optimal GA evolution of ant species

The two physiological modes are represented in the population as the ratio
of singe-queen mating and multiple-queen mating drones, fi and 1 − fi for a
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Fig. 6. Single-mating ratio for ants under the various GA scenarios

colony, and f =
∑

i fi and 1 − f for the entire population. The GA models a
two-stage reproductive cycle, which requires the queens to undertake investment
into mating or feeding of the first ant generation, and selection of single-mating
or multiple-mating female offsprings. Both decisions are gene-encoded and eval-
uated by the environment. Single-mating mode is preferred in the environment
when the multiple-mating mode is inflating and vice versa. This is expressed in
the model fitness function of the ant colony i,

Φi(t) = (a−si(t))(b+si(t)[fi(t)
∑

i fi(t)si(t)∑
i fi(t−)si(t−)

+(1−fi(t))
∑

i(1 − fi(t))si(t)∑
i fi(t−)si(t−)

]),

where t− denotes the previous half-life generation, and a and b are certain pa-
rameters. Through the minority-enhanced mating, the ant colonies are coupled
in effect; this represents a resource-limited environment. Except for the addi-
tional genes and the above fitness function, the GA employed is the same as in
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Fig. 7. Histogram the for data distributions from Fig. 6

the previous section. In order to study the dynamics of queen mating modes,
we selected three values of the mutation probability, pm = 0.001, pm = 0.01,
and pm = 0.05. Unlike from the natural evolution, both the GA simulation with
and without crossover operator were performed in 4,000 evolutionary steps. The
behavior of a typical single-queen mating ratio in all cases is shown in Fig. 6, and
the histograms of the six distributions are given in Fig. 7. Whether the crossover
is included in the set of GA operators or not, it is clear from Fig. 6 that an
increased value of mutation probability increases the frequency of mating cycle
oscillations; their amplitude decreases to non-specific 50% at the same time. In
addition, the inclusion of the crossover in accordance with the natural evolution
stabilizes fluctuations of the mating cycle in case of the (biologically plausible)
low values of mutation probability. The histograms in Fig. 7 clearly shows that
the entire space of mating mechanisms is best screened in an crossover-including
reproduction cycle with a low incidence of mutations.

4 Conclusion

In this paper, we have developed a functional representation approach to the
simulated evolution and visualization of ant species. Within a restricted-resource
environment, it was found that low values of mutation probability in conjunction
with the genetic crossover operator support interleaving periods of dominance
among the single-queen and multiple-queen mating mechanisms. As the value of
the mutation probability increases, the oscillations in mating behavior become
less profound. At present, this finding is particular to the computer simulation,
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since the ant species cannot be easily followed on sufficiently long time-scale
in the experiment, similar to other computer science studies of ant behavior
[7]. The functional representation framework to evolution developed here is also
considered useful for various applications in educational software.

Acknowledgements

The authors acknowledge a partial support by a JSPS Grant-in-Aid and the
Academic Frontier Program of MEXT.

References

1. B. Baer and J. J. Boomsma, Male reproductive investment and queen mating-
frequency in fungus-frowing ants, Behavioral Ecology 15 (3) 426-432 (2004).

2. A. Pasko, V. Adzhiev, A. Sourin, V. Savchenko, “Function representation in geomet-
ric modeling: concepts, implementation and applications,” The Visual Computer 11
(8) 429–446 (1995).

3. Pasko, Alexander A., “HyperFun Project”, http://cis.k.hosei.ac.jp/∼F-rep/
HF proj.html, Hosei University, Japan, 2006.

4. K. Masato, An instance of HyperFun ant, http://cis.k.hosei.ac.jp/∼F-rep/HF ant.
html

5. Goldberg, David E., “Genetic Algorithms in Search, Optimization, and Machine
Learning”, Addison-Wesley Publishing Company, Third Edition, 1989.

6. Y. Shimizu and L. Pichl, HF-parameterized ant model, http://cpu.icu.ac.
jp/∼lukas/hfant/ant1.c.

7. J. A. R. Marshall, T. Kovacs, A. R. Dornhaus, N. R. Franks, “Simulating the evolu-
tion of ant behaviour in evaluating nest sites.” In: W. Banzhaf et al. (eds.) Advances
in Artificial Life (ECAL 2003), Lecture Notes in Artificial Intelligence 2801 Springer
Verlag, Heidelberg (2003).



The Dynamics of Network Minority Game

Bing-Hong Wang

Department of Modern Physics, University of Science and Technology of China,
Hefei, 230026 China
bhwang@ustc.edu.cn

Shanghai Academy of System Science, Shanghai 200093 China

Abstract. The evolutionary dynamics of minority games based on three
generic networks havebeen investigated :Kauffman’sNKnetworks (Kauff-
man nets), growing directed networks (GDNets), and growing directed
networkswith a small fraction of link reversals (GDRNets). We show that
the dynamics and the associated phase structure of the game depend cru-
cially on the structure of the underlying network. The dynamics on
GDNets is very stable for all values of the connection number K, in con-
trast to the dynamics on Kauffman’s NK networks, which becomes chaotic
when K > Kc = 2. The dynamics of GDRNets, on the other hand,
is near critical. Under a simple evolutionary scheme, the network system
with a “near” critical dynamics evolves to a high level of global coordina-
tion among its agents; this suggests that criticality leads to the best per-
formance. For Kauffman nets with K > 3, the evolutionary scheme has no
effect on the dynamics (it remains chaotic) and the performance of the MG
resembles that of a random choice game (RCG).

1 Introduction

Complex networks have attracted immense interest in recent years, due to their
great capability and flexibility in describing a wide range of natural and so-
cial systems. The study of the organization of complex networks has attracted
intensive research interest [1,2,3] ever since the seminal works of Strogatz on
small-world networks [4] and Barabási and Albert [5] on scale-free networks.
The power law or scale-free degree distributions have been established in many
real-world complex networks [4,5].

The dynamics of a complex network can be studied in the context of a system
of interactive elements (agents) on the network; it depends on how the network
is organized and how the elements interact. Here we study a network version
of the minority game (MG) model proposed by Challet and Zhang [6], which is
a simplification of Arthur’s El Farol bar attendance model [7]. The MG model
serves as an interesting paradigm for a system of adaptive agents competing for
limited resources. The phase structures of the original MG [8] and the evolu-
tionary version of the game [9,10,11,12] have been well understood. Note that in
the MG models, the agents are not directly linked to one another, but they are
influenced by the global environment created by the collective action of all the
agents.

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 664–671, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The study of network dynamics is pioneered by Kauffman [13,14] who intro-
duced NK random networks and studied its Boolean dynamics. Recently there
are quite a number of studies on different aspects of network dynamics. Aldana
and Cluzel demonstrated that the scale-free network favors robust dynamics[15].
Paczuski et al [16] considered the MG model on a random network to study
the self-organized process which leads to a stationary but intermittent state.
Galstyan [17] studied a network MG, focusing on how the change of the mean
connectivity K of a random network affects the global coordination of the sys-
tem of different capacities. Anghel et al [18] used the MG model to investigate
how interagent’s communications across a network lead to a formation of an
influence network. Here we address the question of how different network or-
ganizations affect the dynamics of the system in the context of the network
MG. In particular we would like to know 1) how the dynamics and phase struc-
ture of the network minority game depend on the network organization, and
2) how evolution affects the dynamics and phase structure of the game. We
will consider three types of rather generic networks: Kauffman’s NK random
networks (Kauffman nets), growing directed networks (GDNets), and growing
directed networks with a fraction of link reversals (GDRNets) as described in
Ref. [20].

2 Network Minority Game Model

We consider two types of dynamics of minority game based on the networks.
(A) MG of network agents: The network minority game model is defined in a

similar way as the original MG model [6], except for the input for the strategy of
an agent (node). In the original MG, the input for each agent’s strategies at time
t is a vector of the winning decisions of the game in the previous M time steps.
In the network (local) MG, however, the input for each agent’s strategies at time
t is a vector consisting of the decisions of the K agents she connects to at the
previous time step t−1. Specifically, the network based MG model consists of N
(odd number) agents described by the state variables si = {0, 1}, i = 1, 2, ..., N ,
each connected to another K agents, i1, i2, ..., iK . Each agent has S strategies
which are the mapping functions specifying a binary output state (0 or 1) for
each possible input vector consisting of the states of her K connected agents.
The state or decision of the ith agent at the current time step t is determined
by the states/decisions of the K agents it connects to at the previous time step
t − 1, i.e.

si(t) = F j
i (si1(t − 1), si2(t − 1), ..., siK (t − 1)) (1)

where sik
(k = 1, 2, ..., K) is the state of the kth agent that is connected to agent

i, and F j
i , j = 1, .., S are S Boolean functions (strategies) taken from the strategy

space consisting of 22K

strategies. As in the standard minority game, each agent
keeps a record of the cumulative wealth Wi(t) as well as the cumulative (pseudo)
scores, Qs

i (t), i = 1, 2, ..., N, s = 1, 2, .., S, for each of her S strategies. Before
the game starts each agent selects at random one of her S strategies, and the
cumulative wealth Wi(t) and strategy scores Qs

i (t) are initialized to zero. At
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each time step, each agent decides which of the two groups (0 or 1) to join
based on the best-scoring strategy (the strategy that would have made the most
winning predictions in the past) among her S strategies. The agent gains (loses)
one point in her cumulative wealth for her winning (losing) decision and each
strategy gains (loses) one pseudo-point for its winning (losing) prediction. The
agents who are among the minority win; those among the majority lose. Let A(t)
be the number of agents choosing 1 at time step t. Then a standard measure of
utilization of the limited resources (system performance) can be defined as the
variance of A(t) over a time period T :

σ2 =
1
T

t0+T∑
t=t0

(A(t) − Ā)2 (2)

where Ā = 1
T

∑t0+T
t=t0

A(t) ∼ N/2 is the mean number of agents choosing 1.
Clearly σ2 measures the global coordination among agents. The optimal (small-
est) value of variance σ2 is 0.25, where the number of winning agents reaches its
optimal value, (N − 1)/2, in every time step. For a random choice game (RCG),
where each agent makes decision by coin-tossing, the value of the variance σ2

is 0.25N . The game is adaptive as each agent has S strategies to choose from,
attempting to increase her chance of winning.

The key difference between the network MG and the original MG is that the
agents in the original MG use global information while the agents in the network
MG use local information. The evolution of the original MG is based on the M
time-step history of global information while the network MG employs a one-step
forward dynamics.

(B) Evolutionary Minority Game: We first investigate the adaptive MG mod-
els and used the results as a basis for comparison with the evolutionary MG
model, which is our main interest. In an evolutionary dynamics, the quenched
strategies can be changed and more generic behaviors emerge. We use the stan-
dard evolutionary dynamics described in Refs. [9,12]. In this evolutionary scheme,
each agent is required to change her S strategies (by choosing S new strate-
gies randomly) whenever her cumulative wealth Wi(t) is below a pre-specified
bankruptcy threshold, −Wc(Wc > 0). The bankrupted agents re-set their wealth
and strategy pseudo-scores to zero, and the game continues. The network con-
nection, however, does not evolve. We have found that this evolutionary scheme
is much more effective than other scheme used for studying MGs [16], in which
the evolution happens at the end of every epoch of specified duration (say 10, 000
time steps), and only the worst performer is required to change her strategies
after each epoch.

The dynamics of the game depends crucially on the network organization.
Here we consider three types of rather generic networks for studying network
dynamics. To study the dynamics, we need to specify input-output relationship
among the nodes; this naturally leads to a directed network, in which the direc-
tion of a link indicates an input from the node at the other end of the link. The
first directed network we consider is the well-known Kauffman net [13], in which
the inputs to a node are randomly selected. The Kauffman net is thus a random
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directed network. The second one is a growing directed network, in which the
new nodes are controlled by the old ones, but not vice versa. This is an extreme
case. In many real networks, there is a strong degree of hierarchical dependence;
in most cases the older nodes (the nodes at the higher hierarchy) influence the
newer nodes (the ones at the lower hierarchy). But there bound to be excep-
tions. This lead to the third class of networks: a growing directed network with
a fraction of link reversals. Below we describe in details these networks. Note
that in our model, the network connection, once generated, remain fixed.

The Kauffman NK random network (Kauffman net). The Kauffman
net is generated by specifying N agents first, and then connecting each agent
randomly to K other agents, whose decisions serve as the input to its strategies.

Growing directed network (GDNet). A growing directed network is gen-
erated according to the description given in Ref. [20]. We start with an initial
cluster of K + 1 agents, which are mutually connected (two directed links be-
tween each pair of agents). At each stage, we add a new agent and connect it
to K other agents already present in the network. The link is directed from the
new agent to the existing ones, meaning that the strategies of the new (younger)
agent are based on the states of the existing (older) ones. We assume that the
probability of connecting a new agent to an existing one with degree kin is pro-
portional to kα

in +1, where kin is the number of incoming links from the existing
agent. The constant 1 is added to give a nonzero starting weight to the agents
that have not been connected to. For α = 0, we have a growing directed random
network which we refer to as GDNet I. For α > 0, we have preferential at-
tachment. The special case of α = 1 corresponds to a scale-free directed network
which we refer to as GDNet II. In this network, the out-degree is K for all
the agents, but the in-degree follows a power law distribution. The undirected
version of this model corresponds to the well-known Barabási-Albert scale-free
network [1]. In the growing networks (random or scale-free), the younger agents
are influenced by the older ones, except for the initial K + 1 agents who are
mutually influenced.

Growing directed network with a fraction of link reversals (GDRNet).
This network is based on the above growing network, but we introduce a small
fraction of link reversals. Let p be the probability that each agent has a link
reversal: when each new agent is connected to other K agents already present in
the network, each link has a probability of q = p/K to have its direction reversed.
We consider two GDRNets: GDRNet I with α = 0 and GDRNet II with
α = 1. GDRNet is the general case of a generic class of directed networks.
Kauffman’s net and GDNet are two extreme cases, corresponding to q = 0.5
and q = 1 with respectively.

There are two new features for GDRNets:

1) Some agents may have more than K strategy inputs, while others may have
fewer than K inputs; but the mean number of inputs for an agent remains as K.
2) Some younger agents can influence the older agents.
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3 Numerical Results and Analysis

Let’s first examine the performance of MG on the Kauffman net. The simulation
results show that when K = 2, the variance σ2 has very large fluctuations (four
orders of magnitude for N = 401 and five orders of magnitude for N = 901);
different initial conditions give rise to very different σ2. This reflects the fact
that the system dynamics is critical for K = 2. For K ≥ 3 the system performs
like a random choice game. The observation we obtained is consistent with the
well-known result for the Boolean dynamics on Kauffman nets: when K = 2 the
system is at the “edge of chaos” and for K ≥ 3 the system is chaotic [13,21].

The dynamics in the original MG depends on two variables: N , the system
size and M , the memory size of the agents. There are three different phases for
different memory value M , described by a Savit curve [8]. The critical value for
an optimal global coordination is Mc ∼ ln(N), which depends on N . For the
network MG on the Kauffman net, however, the three phases of the dynamics
are: stable for K = 1, critical for K = 2, and chaotic for K ≥ 3. The critical value
is fixed at Kc = 2, which does not depend on N . So the dynamics of network
MG depends on only one variable, K, and the chaotic regime dominates.

Now let’s check how the game performs when the simple evolution scheme
described above is applied. The simulation results show that evolution helps
dramatically improve the system performance when the connection number K is
small (K ≤ 3), but has virtually no effect for larger K(> 4). This means that for
K ≤ 3 the system is at stable or “critical” state, but for K ≥ 4 it is chaotic. Note
that evolution has shifted the critical point from K = 2 to K = 3, suggesting
that it is more powerful than adaptation (modeled by strategy switching) in
bring out order in complex systems.

Let’s now examine the performance of MG on growing directed networks. Two
limiting cases of the growing directed networks are checked: 1) GDNet I, the
growing random directed network (α = 0); 2) GDNet II, the growing directed
network with a linear preferential attachment (α = 1).

We have the following observations for the MG dynamics from simulation re-
sults: 1) there are large fluctuations in the values of the variance σ2; 2) there
seems to be no significant difference in the MG dynamics for the two growing
network models. So in terms of a simple (non-evolutionary) dynamical process,
all growing networks (irrespective of its value of preferential attachment expo-
nent α ∈ [0, 1]) have similar dynamics and the scale-free network is not special.
The stability of the dynamics is due to the construction process of growing net-
works, which leads to a maximum state cycle length of 2K+1 as was pointed out
in Ref. [20], irrespective of the value of α.

Comparing the dynamics of growing networks with that of the Kauffman
net, we see a lot of differences. In the Kauffman net, the dynamics is stable or
critical for K ≤ 2. In growing networks, however, the dynamics is stable for all
the values of K, on both GDNet I and GDNet II. Thus non-growing and
growing networks have very different network dynamics.

The results of system performance for the EMG on GDNets show that evo-
lution helps reduce the variance σ2 dramatically (by more than two orders of
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magnitude). Although the fluctuations in the variance is still large, the values
are all below the value of the variance corresponding to RCG. We can also see
that the EMG on GDNet I performs better than the EMG on GDNet II,
but the difference is small. This is not surprising as the essential property of all
these growing directed networks are the same: the younger agents are always
influenced by the older ones; this gives rise to stable dynamics.

By comparing the results for growing networks with the results for the Kauff-
man net, we see that the dynamics of these two types of networks are very
different. This is due to the differences in network construction process. For the
Kauffman net, each agent chooses, at random, other K agents for inputs to her
strategies. Any given agent has a potential to influence many other agents. It is
not surprising that, for large enough K (K ≥ 3), the system is virtually chaotic.
However, for GDNets, the dynamics is driven by the initial cluster of K + 1
agents; this results in a stable dynamics in which the maximum cycle of length
is 2K+1.

We now examine the performance of the MG on growing networks with link
reversals, GDRNet I and GDRNet II. The results show that, without evolu-
tion, the MG on GDRNets produces similar results as the MG on GDNets.
However, the EMG on GDRNets produces significantly better results than
the EMG on GDNets. GDRNet II, in particular, gives the best performance
among all the network models. These observations suggest that MG dynamics is
not very sensitive to different attachment algorithm in a growing directed net-
work. But the attachment algorithm makes some difference in the performance
of the EMG. If we examine the results more carefully, we see that for GDRNet
II, the EMG performance is so good that the variance σ2 is below 1 most of
the time. This means that the difference between the attendance numbers in the
majority group and the minority group is less than 2 on average, which is very
close to the theoretical bound where the difference is 1 at every time step. This
result is generic for small p (we have checked a number of values for p < 0.1).

An earlier paper [20] has shown that, the general Boolean dynamics on GDR-
Nets is close to critical, in the sense that the distribution of the state cycle
lengths is close to a power law. Our result suggests that, under an evolutionary
dynamics, criticality makes the system more efficient.

4 Discussion and Conclusion

We have presented an extensive numerical investigation on the dynamics of the
MG on three general classes of networks, and we have found a few generic dynam-
ics features of the network MG. The dynamics of the network MG is significantly
different from that of the original MG. In the original MG, the critical value for
an optimal global coordination is Mc ∼ ln(N), so the dynamics depends on two
variables: N , the system size and M , the memory size of the agents. In the net-
work MG, however, the dynamics depends on K only. The MG on the Kauffman
net exhibits three phases: stable for K = 1, critical for K = 2, and chaotic when
K ≥ 3; this is consistent with Kauffman’s Boolean dynamics. We have studied
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the dynamics of the EMG on the Kauffman net, and we have found that, the
critical value of K shifts to Kc = 3, different from the critical value Kc = 2 for
the non-evolutionary MG. Evolution makes a significant difference.

The dynamics of network MGs depend crucially on the organization of the
underlying network structures. Besides Kauffman’s net, we have also investigated
the dynamics of the MG on a generic class of growing directed networks. For
the extreme case of no link reversal (GDNet), we show that, the dynamics is
stable on these growing networks, and it is very different from the dynamics
on the Kauffman NK random network. This is due to the way the network is
constructed. There is no critical K value, beyond which the dynamics is chaotic.
In the Kauffman net all the agents are treated equally; every agent has an equal
probability to influence others. This results in a very large “influence network” of
a given agent, particularly for large K. However, in growing directed networks,
the initial cluster of agents dictate the dynamics of the system; the “junior”
agents have no influence on the “senior” ones.

We have also studied the MG dynamics on a modified growing directed net-
work model which allows a small fraction of link reversals. Our numerical results
show that the best system coordination and performance emerges for the EMG
on the scale-free network with link reversals (GDRNet II); the variance σ2 in
the EMG on GDRNet II reaches to such a low level that it’s close to the the-
oretical bound most of the time. As the dynamics on GDRNet II for small p
is nearly critical and the network is scale-free, our results suggest that evolution
makes the agents best coordinated on critical scale-free networks.
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Abstract. In this piece of research, genetic algorithms are put forward for 
solving the HIP game. The proposed parallel approach manipulates candidate 
solutions via selection and mutation; no crossover has been employed.  The 
population is limited to one candidate solution per generation, thus keeping the 
computational complexity of the approach to a minimum.  It is shown that the 
proposed approach is superior to the approaches reported in the literature: 
solutions are more speedily provided while the frequency of finding a solution 
is significantly higher. 

1   Introduction 

Game theory [10] constitutes a branch of applied mathematics that studies the 
complex pattern of interactions among agents.  Its capability of modeling problems 
whose outcome depends not only on the problem constraints (e.g. the market 
conditions) but also on the strategies of all the agents involved (e.g. the various 
overlapping and perhaps even conflicting business plans) has rendered game theory a 
convenient tool for solving problems in a variety of fields (e.g. economics; operations 
research; psychology, sociology and political science; international relations and 
military strategy; evolutionary biology; logic and computer science).  Game-
theoretical solutions aim at increasing/decreasing the gain/loss of each agent at each 
game such that maximization/minimization of the overall gain/loss (subject to a 
balance of the individual gains/losses) is also attained. 

The family of HIP games [3-4] is played on a checkerboard of dimensions nxn 
by a number of players sharing n2 counters.  Counter placement is performed at 
vacant locations of the checkerboard in such a manner that no four counters of the 
same player form a square; once a square is created the corresponding player  
loses the game.  In a HIP game, a tie is sought, i.e. placement of all the counters of 
all the players at distinct locations of the checkerboard such that no squares are 
formed.    

In this piece of research, a genetic algorithm [5-6,9] is put forward for providing 
ties to the family of HIP games.  The proposed parallel approach manipulates 
candidate solutions via selection and mutation; no crossover has been employed.  The 
population is limited to one candidate solution per generation, thus keeping the 
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computational complexity of the solution to a minimum.  It is shown that, even for 
this limited population size and the simplicity of the evolution scheme, the proposed 
approach is superior to the existing approaches: ties are more speedily provided while 
the frequency of finding a tie is significantly higher. 

2   The Family of HIP Games 

The HIP family comprises: 

• The original version HIP1.  This involves a checkerboard of dimensions nxn (n 
even), two players and n2/2 counters per player, where the counters of the two 
players are distinguishable (e.g. by colour).  The game is played by the placement 
of the counters of the two players at vacant locations of the checkerboard in such 
a manner that no four counters of the same player form a square on the 
checkerboard; once a square is created the corresponding player loses the game 
and the opponent wins.  In order for a tie to be reached, placement of all the 
counters of all the players at distinct locations of the checkerboard is sought such 
that no squares are formed.   A tie is possible for n=4 and 6, while no ties exist 
for larger values of n.   

• The variant HIP2.  This was introduced in order to investigate the potential and 
efficiency (i.e. the scalability) of the various tie-seeking approaches to 
increasingly complex instances of the HIP family.  HIP2 involves a checkerboard 
of dimensions nxn (n any even number greater than 4), n/2 players and 2n 
distinguishable counters per player; the manner and aim of counter placement are 
the same as for HIP1, while a tie is possible for all values of n.    

Table 1. Efficiency and accuracy results of the GA-based and the ANN approaches concerning 
HIP1 for n=4 (a) and n=6 (b)  

Accuracy/efficiency 
n=4 

Average number  
of iterations 

% success 

GA 1.33 100 
ANN 25.6 85 

          (a)
     

Accuracy/efficiency 
n=6 

Average number  
of iterations 

% success 

GA 39.41 100 
ANN 85.2 27 

          (b) 
 

Serial [3-4,8] as well as parallel [2] approaches to the HIP games appear in the 
literature.  A tie may be hard to find serially since counter placement alternates 
between players and the first player is at a strong advantage of winning the game; by 
contrast, and owing to the synchronized counter placement by all players, parallel 
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approaches are more adept at finding ties.  The only systematic results (concerning 
efficiency and accuracy) have been reported for the parallel approach of Funabiki & 
Takefuji [2].  This employs an energy-driven artificial neural network (ANN) of the 
Hopfield & Tank architecture [7] for providing ties to both HIP1 (n=4 and 6) and 
HIP2 (n=6, 8, 10 and 12) games.  The average number of iterations required until a tie 
is reached as well as the frequency of finding a tie are shown in the last rows of 
Tables 1(a-b) and 2(a-d) for the aforementioned instances of HIP1 and HIP2, 
respectively.  The lower than 100% success rate is due to the purely monotonic 
decrease in energy, according to which it is possible for a local rather than a global1 
energy minimum to be settled upon. 

3   Genetic Algorithms 

Genetic algorithms (GAs) [5-6,9] are heuristics that employ biologically-derived 
evolution techniques (natural selection, crossover and mutation) in order to rapidly 
find optimal or near-optimal solutions to hard-to-solve problems; such problems are 
characterized by complex quality-of-solution landscapes, i.e. problem spaces where 
similar/distinct candidate solutions may have a significantly different/very similar 
quality of solution. 

GAs operate in terms of: 

• Chromosomes, i.e. candidate solutions encoded as sets of genes; binary 
encodings are the norm but non-binary encodings are also possible. 

• A fitness function, which must be appropriately devised so that the fitness of each 
chromosome tallies with the quality of the corresponding candidate solution.  A 
chromosome of maximum fitness corresponds to a globally optimal solution of 
the problem. 

• A population, i.e. an ensemble of chromosomes that are simultaneously 
considered in order to concurrently investigate the problem space and guide the 
GA towards a chromosome of maximum fitness (i.e. a globally optimal solution). 

• Generations of evolution.  At the beginning of GA operation, an initial population 
of chromosomes is created via random gene assignment; owing to their means of 
construction, the initial chromosomes tend to be of low fitness.  At each 
generation, a new population is derived by collectively evolving the current 
population; the new population constitutes the current population of the next 
generation.  Evolution is performed via: 

(a) Selection, i.e. the creation of a new population by choosing either exclusively 
among the new chromosomes or among both the fittest chromosomes of the 
current population and the new chromosomes.  

(b) Crossover, i.e. the creation of two new chromosomes by globally modifying 
(i.e. exchanging sets of homologous genes between) a pair of chromosomes 
of the current population. 

(c) Mutation, i.e. the local modification of the new chromosomes by randomly 
changing the values of their genes with a small probability. 

                                                           
1 A small number of squares created by either/both players rather than a tie. 
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Selection, crossover and mutation create populations of progressively higher 
average fitness at each subsequent generation2.  Generations succeed one another until 
either a chromosome of maximum fitness is found or some other termination criterion 
(e.g. maximum allowable number of generations) is satisfied. 

4   The Proposed GA-Based Approach 

4.1   GA-Based Approach for HIP1  

The GA-based approach for providing ties to HIP1 involves the following 
construction and operation characteristics:  

• Each chromosome is encoded as a binary nxn matrix such that (i) the 
chromosome structure directly corresponds to the nxn checkerboard, and (ii) 
the binary value assigned to each gene encodes the player whose counter is 
placed at the corresponding location of the checkerboard. 

• The fitness function counts the difference between the maximum number of 

squares 
12

24 nn −  that can be formed on the nxn checkerboard and the total 

number of squares created by the genes of the nxn binary chromosome.  The 

fitness value ranges in the interval of integers [0,
12

24 nn − ], where the maximum 

fitness value of 
12

24 nn −  denotes that a tie has been found. 

• Small populations (of 1, 2,…, n chromosomes per generation) have been 
examined in order to keep the computational complexity of the GA low.   

• Two ways of constructing the initial chromosomes have been investigated: 
(a) Non-directed (random) construction; this ensures that a valid number of 

counters are placed on the checkerboard per player and also implements 
Templeton’s strategy3, which obliterates the creation of squares that are 
symmetrical to the centre of the checkerboard.    

(b) Directed construction; this ensures that a valid number of counters are 
placed on the checkerboard per player, enforces Templeton’s strategy, 
and also limits – if possible - the formation of squares4 that are not 
symmetrical to the centre of the checkerboard.   

                                                           
2 The fitness of a given chromosome of the population is not necessarily higher than the average 

fitness of the chromosomes of the previous population; in other words, the change in fitness 
between the individual chromosomes of different populations is not always monotonic. 

3 Templeton's strategy accomplishes a four-fold reduction of the problem space by necessitating (a) 
that the two players place their counters on the nxn checkerboard at locations rotated by 90o 

relative to each other (e.g. locations (i,j) against (j,n+1-i), i,j ≤ n) and, subsequently, (b) that each 
player places pairs of counters at symmetrical locations (rotated by 180o relative to the centre of the 

checkerboard (e.g.  locations (i,j) and (n+1-i,n+1-j), i,j ≤ n). 
4 This is implemented by checking for such squares during construction and attempting to locally 

rearrange the counters (binary values) involved. 
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Table 2. Efficiency and accuracy results of the GA-based and the ANN approaches concerning 
HIP2 for n=6 (a); n=8 (b); n=10 (c); n=12 (d) 

Accuracy/efficiency 
n=6 

Average number  
of iterations 

% success 

GA 10.69 100 
ANN 65.8 87 

          (a)
     

Accuracy/efficiency 
n=8 

Average number  
of iterations 

% success 

GA 18.82 99 
ANN 128.7 75 

          (b) 
  

Accuracy/efficiency 
n=10 

Average number  
of iterations 

% success 

GA 34.67 98 
ANN 147.5 30 

          (c)
     

Accuracy/efficiency 
n=12 

Average number  
of iterations 

% success 

GA 35.37 97 
ANN 234.1 10 

          (d) 
 

During each generation of evolution, no crossover is performed5 and four-fold 
mutation is employed: a gene (i,j) , i,j ≤ n,  of the nxn chromosome is selected 
(either randomly or via roulette-wheel, i.e. such that genes forming more/less 
squares have larger/smaller probabilities of being selected) and its value, together 
with the values of genes (n+1-i,n+1-j), (j,n+1-i) and (n+1-j,i) are swapped6.  
Selection of the new chromosomes to be included in the next generation involves 
either choosing the fittest chromosomes or applying roulette-wheel.  GA operation 
is terminated once a chromosome of maximum fitness is found in the population; in 
case 300 generations of evolution have been completed and no chromosome of 
maximum fitness has been found, it is assumed that the GA has failed to find a 
solution to HIP17.   

                                                           
5
 The lack of crossover does not constitute an exceptional GA practice: the earliest GAs relied on 
mutation alone, while a non-negligible number of problems have been tackled by crossover-free 
GAs (e.g. ANN structural and weight training by mutation only [1]). 

6 While respecting the placement of exactly n2/2 counters per player as well as the enforcement of 
Templeton’s strategy, four-fold mutation aims at reducing the number of squares formed by the 
new chromosome. 

7 Although stringent, this limit has been set in order to significantly restrict the computational 
complexity of the GA. 
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4.2   GA-Based Approach for HIP2 

The GA-based approach for solving (providing ties to) HIP2 is similar to that of 
HIP1.  The following modifications have been performed in order to accommodate 
the larger number of players:  

• As for HIP1, each chromosome constitutes an nxn matrix, directly expressing 
the nxn checkerboard.  Here, however, a transparent non-binary representation 
has been opted for; each gene is assigned values 1, 2,…, or n/2, denoting the 
player (player1, player2,… or playern/2, respectively) whose counter is placed at 
the corresponding location of the checkerboard.   

• Initial chromosome construction (either non-directed or directed) is similar to 
that of HIP1, but has been formulated for n/2 players. 

Both the generations of evolution and the termination criterion are implemented as 
for HIP1.  The only difference concerns four-fold mutation: the values of genes (i,j) 
and (n+1-i,n+1-j) can be exchanged with those of genes (i',j’) and (n+1-i',n+1-j’) in 
the nxn chromosome only if the two non-symmetrical genes (i,j) and (i',j’), i,j,i',j’ ≤ n, 
correspond to counters of different players.   

5   Results - Comparisons 

5.1   Tests for HIP1  

The tests performed for HIP1 aim at investigating the potential of the GA approach in 
providing ties to the basic HIP game.  Although the HIP1 instances (n=4, 6) are of 
relatively low computational complexity, they impart significant insights on the 
efficiency and accuracy of the GA approach in solving the HIP game.   

The following combinations of GA construction and operation factors have been 
investigated: 

(i) Population sizes ranging from 1 to n (n possibilities). 
(ii) Random and directed construction of the initial chromosomes (2 possibilities). 
(iii) Random and roulette-wheel selection of the gene to be subjected to four-fold 

mutation (2 possibilities). 
(iv) Single application of mutation per chromosome of the population, whereby the 

new chromosome(s) constitute the population of the next generation; double 
application of mutation per chromosome, whereby either the fittest new 
chromosome(s) constitute the population of the next generation or roulette-
wheel selection is applied to the new chromosomes (3 possibilities). 

Five hundred tests have been performed for each of the 12n combinations of the 
aforementioned factors for the two HIP1 instances (48 and 72 combinations for n=4 
and 6, respectively).  The most successful (computationally efficient as well as 
accurate) GA-based approach for HIP1 involves: 

(a) a population size of 1,  
(b) directed construction of the initial chromosome,  
(c) selection of the fittest new chromosome to constitute the new population,  
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(d) two independent applications of four-fold mutation to the chromosome of the 
current population, resulting in two new chromosomes; for the creation of 
each new chromosome, the gene to be subjected to mutation has been 
selected via roulette-wheel. 

The first rows of Tables 1(a-b) illustrate the results of the GA-based approach for 
the two instances of HIP1 for n=4 and 6, respectively.  It can be seen that the GA-
based approach is superior to the ANN approach (last rows of the same Tables), both 
in terms of the average number of iterations required until a tie is found and in terms 
of accuracy8; a 100% success rate is demonstrated by the GA-based approach, i.e. a 
tie is always found in less than 300 generations of evolution.  It should be mentioned 
that a variety of ties are produced, even when the generations of evolution start from 
the same initial chromosome.  The reduced success rate of the ANN approach is 
attributed to the purely monotonic descent in terms of energy. 

5.2   Tests for HIP2  

The tests performed for HIP2 aim at investigating the scalability of the GA-based 
approach in providing ties to the HIP game.  The same GA-based approach as for 
HIP1 (points (a)-(d) of section 5.1) has been implemented.  The first line of Tables 
2(a-d) illustrates the cumulative results of 100 tests performed by the GA-based 
approach for increasing values of n up to 12 (values for which results of the ANN 
approach are available [2]).  An especially gradual form of graceful degradation is 
observed by the GA-based approach, resulting in a clear superiority over the ANN 
approach both in terms of the average number of iterations required until a tie is found 
and in terms of accuracy.   

6   Conclusions 

The HIP game constitutes an interesting example of game theory, where a tie is 
sought.  HIP is played on a checkerboard of dimensions nxn by a number of players 
sharing n2 counters.  Counter placement is performed at vacant locations of the 
checkerboard in such a manner that no four counters of the same player form a 
square; once a square is created the corresponding player loses the game.  In the 
family of HIP games, a tie is equivalent to placement of all the counters of all the 
players at distinct locations of the checkerboard such that no squares are formed.   
Serial as well as parallel approaches to the HIP games have been reported in the 
literature.  A tie may be hard to find serially since counter placement alternates 
between players and the first player is at a strong advantage of winning the game; by 
contrast, and owing to the synchronized counter placement by all players, parallel 
approaches are more adept at finding ties. 

In this piece of research, genetic algorithms have been put forward for providing 
ties to the family of HIP games. Following transparent construction of the 
chromosomes (such that they directly represent the candidate solutions) and the 
                                                           
8 For the ANN approach, the proportion of unsuccessful games amounts to tests where a globally 

optimal solution is never found (i.e. not after 300 iterations, as for the GA-based approach). 
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design of an appropriate fitness function, the proposed parallel approach manipulates 
candidate solutions via selection and mutation only.  The population has been limited 
to one chromosome per generation of evolution, thus keeping the computational 
complexity of the solution to a minimum.  It has been found essential to restrict the 
formation of squares (via directed construction) of the initial chromosome in order to 
further reduce the computational complexity of the approach.   

Despite the limited population size and the simplicity of the evolution scheme, the 
proposed approach has been found superior to the existing approaches: ties are more 
speedily provided while the frequency of finding a tie is significantly higher.  Future 
research will focus upon determining the limits of the proposed approach, namely the 
maximum complexity (in terms of n values) of HIP2 that can be successfully solved.   
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Abstract. We studied the evolution of cooperation on social networks
based on personal reputation using random pairing rule. Small-world
networks and scale-free networks are used as practical network model.
The iterated prisoner’s dilemma game are adopted as theorotical tool in
which players are paired according to the network structure to play the
ONE-SHOT prisoner’s dilemma game. Computer simulation shows that
TIT-FOR-TAT-like strategy pattern will emerge from initial enviroments
and cooperation can be maintained even in social networks when players
have little chance to play continuous repeated games.

1 Introduction

Many researchers in different fields, such as economics, physics and biology,
have been inspired by the evolution of cooperation with great interest. Recent
research shows that the most prominant mechanisms of cooperation might be
direct reciprocity[1][2], indirect reciprocity[3][4], voluntary participation[5][6][7]
and spatial structures[8][9][10].

Current work on spatial structures mainly concertrate on modeling spatially
structured populations by confining players to lattice sites. The performance
of a player is determined by the payoffs accumulated in his interactions with
his neighbors. As we know, social networks exhibit many new statistical prop-
erties, such as large cluster coefficient, short average shortest path and power-
law degree distribution[11]. Many real networks, especially social networks, have
small-world and scale-free properties. People live in societies so that people live
on social networks which makes it necessary to study the cooperation in network
structured populations.

Another motivation of this research is that randomicity of interactions in real
world has not got much attention yet. Communication and transportation tech-
nologies have been changing people’s life in every respect and the likelihood of
interaction between people seperated here and there has been increased greatly.
This has changed the conditions of iterated games[12].

The work of this paper has two distinctness with previous research in that:

1. We consider the cooperation mechanisms on social networks in which in-
teractions between players are constrained by network structures.

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 680–687, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2. We also introduce randomicity into the model proposed in this paper which
means: (I) If two players meet they just play ONE-SHOT game and (II) The
probability that they meet at different generations is independent.

The analysis to our model shows that cooperation is possible and the com-
puter simulation comfirms the analysis with certain TIT-FOR-TAT-like strategy
emerging from initial neutral states under determinate conditions.

This paper is organized as follows. In Section. 2, the game model on so-
cial networks considering randomicity based on reputation is proposed. In Sect-
ion 3, computer simulation and experimental results are presented. Discussion
and conclusion is presented in Section 4.

2 Game Model

There are N players in the game population and the relations between these N
players form certain network structure in it. We aims to study the effect of static
social networks on cooperation emergence so that two network models, small-
world network and scale-free network, are utilized as the networks in the game
model. Here we assume that the interaction relationship between all players in
the population form certain network structure in which players are considered
as nodes and relationship as edges.

When two players meet they play the ONE-SHOT prisoner’s dilemma game.
In the prisoner’s dilemma game, for mutual cooperation both players will obtain
the reward R, but only P for mutual defection. If one player defects and the
other cooperates, the defector receives the highest payoff T while the sucker
gets the lowest payoff S[2]. Note that the practical values of payoff must satisfy
T > R > P > S. When extended to iterated cases the additional requirement of
R > (S + T )/2 is necessary.

In the proposed model the game will be played infinite generation and at
each generation N players will propose a game one by one as so-called proposer.
When a player becomes the proposer, he randomly selects one of his neighbors in
current network to be the responder. The payoffs one player gets are accumulated
to evaluate the performance of this player.

2.1 Definition of Reputation

In reciprocal altruism personal reputation contributes great to the cooperation.
Modern technology makes it possible to record and access personal information
more and more easily thus people’s actions or records in modern society could
be seen as public information. It is also known that this public information could
not be obtained completely due to economical cost. So we use one player’s latest
three actions in games to present his or her reputation.

Definition 1. Let A be game population which keeps N players. ith player is
denoted by Ai, for all i ∈ [1, N ].

Definition 2. Let Hi(t), i ∈ [1, N ] and t ∈ (0, ∞), be Ai’s all historical actions.
So Hi(t), Hi(t − 1) and Hi(t − 2) are supposed to be accessed freely at time t.
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2.2 Strategy Operators

Because each action in prisoner’s dilemma has two operations, Cooperation(C)
or Defection(D), there are 8 accessable states in historical state space, each
representing one kind of reputation. To each reputation every player has two
operators, named Cooperator and Defector. Each operator has a property of
weight and the ratio of them denotes which operator is predominant when meet-
ing other player with corresponding reputation. When two players interact at
some generation, each one decides his action based on his opponent’s reputation
and his own operators matching that reputation. The Roullte Wheel Selection
method is adopted based on their weights to decide which operator will be used.

In this paper each player’s reputation is made up of his latest three actions
and his operators denote corresponding strategy to deal with certain reputation.
As explained above, each action has two possibilities so that reputation has 8
states and each player possess 16 operators. For example, operator CCCC will
take Cooperation when facing players with reputation CCC.

The operators’s weights are to be adjusted according to the payoffs they get
in interactions. The weight will be increased when the operator gets more payoff
while decreased when less. The regulation obeys the equation below:

Wi,j,t+1 = β ∗ Wi,j,t +
Pi,t

γ ∗ M
, 1 ≤ i ≤ N, 1 ≤ j ≤ 16, 0 < β < 1, γ > 0; (1)

Here, Wi,j,t denotes the weight of player i’s operator j at time t. Pi,t denotes
the payoff player i gets at time t and M denotes the largest possible payoff in
the prisoner’s dilemma game in this paper. γ is used to adjust the increasing
step of weight and β denotes the attenuation coefficient.

2.3 Analysis of Dynamics

In this section analysis of dynamics will be given out. According to equation (1)
the weight regulation of player i has four cases:

Wi,j,t+1 = β ∗ Wi,j,t +
S

γ ∗ M
; (2)

Wi,j,t+1 = β ∗ Wi,j,t +
R

γ ∗ M
; (3)

Wi,j,t+1 = β ∗ Wi,j,t +
P

γ ∗ M
; (4)

Wi,j,t+1 = β ∗ Wi,j,t +
T

γ ∗ M
; (5)

Here, equation (3) means mutual cooperations and equation (4) mutual defec-
tions. Equation (2)means player i cooperateswhile the opponent defects and equa-
tion (5) player i defects while the opponent cooperates. Fig. 1 shows the sample of
this regulation. There are four parallel lines denoting equation (2) to (5). The dot
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Fig. 1. Sketch Map of Model Analysis

line denotes the equationY = X which intersects equation (2) at point O, equation
(3) at point B, equation (4) at point A and equation (5) at point C.

The weight regulation of equation (2) will make Wi,j,t+1 move to point O
while equation (3) will make Wi,j,t+1 move to point B. So in equilibrium state
the weight of cooperators will be in (XO,XB). The same induction holds true for
equation (4) and (5) that the equilibria weight of defectors will be in (XA,XC).
Thus in (XA, XB) the cooperators might have the advantage over defectors so
that the cooperation is possible in the model proposed in this paper. This analysis
also holds true to other operators. In addition, as long as the payoff matrix
satisfies the condition of prisoner’s dilemma game, cooperation becomes possible.

3 Computer Simulation

For all experiments presented in this paper, the population size is 65535, β =
0.999 and γ = 2.5. All results are the average of 10 repeated trials and each trial
has 100 generations. The values of T=8, R=7, P=3, S=0 if no extra statement.

Two network models are used as the static network structure for the iterated
prisone’s games which are small-world networks and scale-free networks. We use
the algorithm in [13] to generate the small-world network and the algorithm in
[14] for scale-free network.

The initial weights of players’ operators are set according to the parameter
ICD(initialcooperationdegree) ∈ (0, 2), which determines the initial probability
for each player to take which operator(C or D). With ICD increasing the player
will have more initial possibility to take operator C.

3.1 Emergence of Cooperation

Whether cooperation can emerge or not is the main topic in evolutionary game
theory. Fig. 1 shows the numerical results of cooperation evolution on social
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networks. It is obvious that certain cooperative strategy DOES evolve from initial
conditions. We notice that different strategy emerges with different conditions

Fig. 2. Ratio of Cooperation/Defection on Social networks. Subgraph on left side is on
Scale-free networks and right side is Small-world networks. ICD increases from 0.1 to
1.9 with step=0.1.

and the evolution result is closely related with different initial coopration de-
gree. For example, when ICD=1.9, initial average ratio of all C/D=19 but the
final average values of ratio are: CCC=17.6362, CCD=14.0591, CDC=14.8232,
CDD=4.2007, DCC=14.8777, DCD=3.5331, DDC=4.1192, DDD=0.3096.
These eight ratio under different ICD stand for the strategy of the whole pop-
ulation. We point out that the strategy evolved under ICD=1.9 is similar with
TIT-FOR-TAT:

1. ratio of CCC=17.6362 means that one will cooperate when his opponent’s
reputation is excellent, in Axelrod’s words, do not break the boat first.

2. ratio of DDD=0.3096 means that one player will punish those whose rep-
utation is bad by taking defection.

3. ratio of CDC=14.8232, DCC=14.8777 and DDC=4.1192 means that play-
ers hold room for forgiving others with one or two defection records.

In addition, the strategy evolved possesses the ability which TIT-FOR-TAT
does not have. The strategy can correct and avoid unmeant mistakes or inatten-
tions that lead to defection action. The simulation results in Fig. 1 show that
networks model affect little on the final evolution of strategy.

3.2 Influence of Game Generations

The generations of games has notable effect on the evolutionary results. Extreme
example is that in ONE-SHOT prisoner’s dilemma game the mutual defections
of both players becomes the Nash Equilibria. Fig. 3 shows the influence of gen-
erations on the ratio of weights with ICD=1.8(left side) and 1.0(right side).

First of all, a remarkable conclusion is that the ratios of each kind of reputation
evolve with generations and finally converge to certain equilirium values. But
the equilibrium values differ with the ICD. In the case of ICD=1.8, all the ratio
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Fig. 3. Ratio of Weights ( Cooperation / Defection ) with Generation Increasing on
Scale-free networks

Fig. 4. Equilibrium Ratio of Cooperation / Defection on Social Networks

equal 9 at initial generation but evolve along different curves. After about 80
generations the ratios become steady. Similar evolution also happens to the case
of ICD=1.0 except that the steady values of ratios are quite different.

3.3 Influence of Cooperation Cost

Players are all rational in the proposed game model that they choose their ac-
tions only according to the calculation of payoff they will get. We import a
variable factor X ∈ (0, 1), called cooperation cost, into the payoff matrix so
that the values of T=1+X , R=1, P=0 and S= -X . X is called as cooperation
cost just because when one takes C he might suffer the potential lost X if his
opponent takes D. It is obvious that this payoff still satisfies the condition of
prisoner’s dilemma game. Fig.4 shows the typical influence of cost on coopera-
tion emergence on scale-free networks when ICD = 1.7 and two trends can be
summarize:
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1. All weight ratios(C/D) of these eight reputations decreases with the in-
crease of X . It is natural that when cooperation cost is quite low, players are
more prone to cooperate with others otherwise the motivity of cooperating will
fall down. With X very close to 0 the strategy evolved will even cooperate with
players with DDD reputation just because there are little difference between
cooperation and defection.

2. More importantly, the diversification of X do not change the cooperation
essence of equilibrium strategies. When facing players with reputation CCC the
cooperators are always dominant over defectors, although the cooperative degree
are weakened as the cooperation cost grows.

Such trends are also true when using small-world networks and the simulation
result are ommitted for saving sapce.

4 Conclusions

The influence of population structure turns out to be important for the evolution
of cooperation. We introduce the social network structures and randomicity of
interactions into iterated prisoner’s dilemma game to meet the new development
of real world. The model takes players’ partial, if not all, information of previ-
ous actions as personal reputation which decide the actual action along with
the weights of the corresponding operators. Theoretical analysis prove that the
evolution of cooperation are possible in the game model proposed and computer
simulation results show that the strategy evolved are cooperative and forgiving
under certain conditions.

The presented model and computer simulation put forward a new viewpoint
on the evolution of cooperation among players located in social networks. De-
fection are not the only equilibrium on social networks even when playing ONE-
SHOT prisoner’s dilemma game if initial cooperation degree are quite high.
Although not proved, we believe that there exists one critical value of ICD that
cooperation will emerge and maintain if ICD is larger than it.
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Abstract. In this study, we utilize the genetic algorithm (GA) to select high 
quality stocks with investment value. Given the fundamental financial and price 
information of stocks trading, we attempt to use GA to identify stocks that are 
likely to outperform the market by having excess returns. To evaluate the effi-
ciency of the GA for stock selection, the return of equally weighted portfolio 
formed by the stocks selected by GA is used as evaluation criterion. Experiment 
results reveal that the proposed GA for stock selection provides a very flexible 
and useful tool to assist the investors in selecting valuable stocks.  

1   Introduction 

In the stock market, investors are often faced with a large number of stocks. A crucial 
work of their investment decision process is the selection of stocks. From a data-
mining perspective, the problem of stock selection is to identify good quality stocks 
that are potential to outperform the market by having excess return in the future. 
Given the fundamental accounting and price information of stock trading, it is a pre-
diction problem that involves discovering useful patterns or relationship in the data, 
and applying that information to identify whether a stock is good quality. 

Obviously, it is not an easy task for many investors when they faced with enor-
mous amount of stocks in the market. With focus on the business computing, applying 
artificial intelligence to portfolio selection and optimization is one way to meet the 
challenge. Some research has presented to solve asset selection problem. Levin [1] 
applied artificial neural network to select valuable stocks. Chu [2] used fuzzy multiple 
attribute decision analysis to select stocks for portfolio. Similarly, Zargham [3] used a 
fuzzy rule-based system to evaluate the listed stocks and realize stock selection. Re-
cently, Fan [4] utilized support vector machine to train universal feedforward neural 
networks to perform stock selection. 

However, these approaches have some drawbacks in solving the stock selection 
problem. For example, fuzzy approach [2-3] usually lacks learning ability, while 
neural network approach [1, 4] has overfitting problem and is often easy to trap into 
local minima. In order to overcome these shortcomings, GA is used to perform this 
task. Some related typical literature can be referred to [5-7] for more details. 
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The main aim of this study is to select some valuable stocks using GA and to test 
the efficiency of the GA for stock selection. The rest of the study is organized as fol-
lows. Section 2 describes the selection process based on the genetic algorithm in de-
tail. Section 3 presents a simulation experiment. And Section 4 concludes. 

2   GA-Based Stock Selection Process 

Generally, GA imitates the natural selection process in biological evolution with se-
lection, crossover and mutation, and the sequence of the different operations of a 
genetic algorithm is shown in the left part of Fig. 1. That is, GA is procedures mod-
eled after genetics and evolution. Genetics provide the chromosomal representation to 
encode the solution space of the problem while evolutionary procedures are designed 
to efficiently search for attractive solutions to large and complex problem. Usually, 
GA is based on the survival-of-the-fittest fashion by gradually manipulating the po-
tential problem solutions to obtain the more superior solutions in population. Optimi-
zation is performed in the representation rather than in the problem space directly. To 
date, GA has become a popular optimization method as they often succeed in finding 
the best optimum by global search in contrast to most common optimization algo-
rithms. Interested readers can be referred to [8-9] for more details. 

The aim of this study is to identify the quality of each stock using GA so that in-
vestors can choose some good ones for investment. Here we use stock ranking to 
determine the quality of stock. The stocks with a high rank are regarded as good qual-
ity stock. In this study, some financial indicators of the listed companies are employed 
to determine and identify the quality of each stock. That is, the financial indicators of 
the companies are used as input variables while a score is given to rate the stocks. The 
output variable is stock ranking. Throughout the study, four important financial indi-
cators, return on capital employed (ROCE), price/earnings ratio (P/E Ratio), earning 
per share (EPS) and liquidity ratio are utilized in this study.  

ROCE is an indicator of a company's profitability related to the total financing, 
which is calculated as 

ROCE = (Profit)/(Shareholder’s equity)×100% (1) 

The higher the indicator (ROCE), the better is the company’s performance in terms 
of how efficient the company utilizes shareholder’s capital to produce revenue. 

P/E Ratio measures the multiple of earnings per share at which the stock is traded 
on the stock exchange. The higher the ratio, the stronger is the company’s earning 
power. The calculation of this ratio is computed by 

P/E ratio = (stock price)/(earnings per share) ×100% (2) 

EPS is a performance indicator that expresses a company’s net income in relation 
to the number of ordinary shares issued. Generally, the higher the indicator, the 
better is the company’s investment value. The calculation of the indicator can be 
represented as 

Earnings per share = (Net income)/(The number of ordinary shares) (3) 
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Liquidity ratio measures the extent to which a company can quickly liquidate as-
sets to cover short-term liabilities. It is calculated as follows: 

Liquidity Ratio = (Current Assets)/(Current Liabilities) ×100% (4) 

If the liquidity ratio is too high, company performance is not good due to too much 
cash or stock on hand. When the ratio is too low, the company does not have suffi-
cient cash to settle short-term debt. 

When the input variables are determined, we can use GA to distinguish and iden-
tify the quality of each stock, as illustrated in Fig. 1. The detailed procedure is illus-
trated as follows. 

 

Fig. 1. Stock selection with genetic algorithm 

First of all, a population, which consists of a given number of chromosomes, is ini-
tially created by randomly assigning “1” and “0” to all genes. In the case of stock 
ranking, a gene contains only a single bit string for the status of input variable. The 
top right part of Figure 1 shows a population with four chromosomes, each chromo-
some includes different genes. In this study, the initial population of the GA is gener-
ated by encoding four input variables. For the testing case of ROCE, we design 8 
statuses representing different qualities in terms of different interval, varying from 0 
(Extremely poor) to 7 (very good). An example of encoding ROCE is shown in Table 
1. Other input variables are encoded by the same principle. That is, the binary string 
of a gene consists of three single bits, as illustrated by Fig. 1. 
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Table 1. An example of encoding ROCE 

ROCE value Status Encoding 
(- , -30%] 0 000 

(-30%, -20%] 1 001 
(-20%,-10%] 2 010 
(-10%,0%] 3 011 
(0%, 10%] 4 100 

(10%, 20%] 5 101 
(20%, 30%] 6 110 
(30%,+ ) 7 111 

Note that 3-digit encoding is used for simplicity in this study. Of course, 4-digit 
encoding is also adopted, but the computations will be rather complexity. 

The subsequent work is to evaluate the chromosomes generated by previous opera-
tion by a so-called fitness function, while the design of the fitness function is a crucial 
point in using GA, which determines what a GA should optimize. Since the output is 
some estimated stock ranking of designated testing companies, some actual stock 
ranking should be defined in advance for designing fitness function. Here we use 
annual price return (APR) to rank the listed stock and the APR is represented as 

1
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where APRn is the annual price return for year n, ASPn is the annual stock price for 
year n. Usually, the stocks with a high annual price return are regarded as good 
stocks. With the value of APR evaluated for each of the N trading stocks, they will be 
assigned for a ranking r ranged from 1 and N, where 1 is the highest value of the APR 
while N is the lowest. For convenience of comparison, the stock’s rank r should be 
mapped linearly into stock ranking ranged from 0 to 7 with the following equation: 
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Thus, the fitness function can be designed to minimize the root mean square error 
(RMSE) of the difference between the financial indicator derived ranking and the next 
year’s actual ranking of all the listed companies for a particular chromosome, repre-
senting by 
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m
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After evolving the fitness of the population, the best chromosomes with the highest 
fitness value are selected by means of the roulette wheel. Thereby, the chromosomes 
are allocated space on a roulette wheel proportional to their fitness and thus the fittest 
chromosomes are more likely selected. In the following crossover step, offspring 
chromosomes are created by some crossover techniques. A so-called one-point cross-
over technique is employed, which randomly selects a crossover point within the 
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chromosome. Then two parent chromosomes are interchanged at this point to produce 
two new offspring. After that, the chromosomes are mutated with a probability of 
0.005 per gene by randomly changing genes from “0” to “1” and vice versa. The mu-
tation prevents the GA from converging too quickly in a small area of the search 
space. Finally, the final generation will be judged. If yes, then the optimized results 
are obtained. If no, then the evaluation and reproduction steps are repeated until a 
certain number of generations, until a defined fitness or until a convergence criterion 
of the population are reached. In the ideal case, all chromosomes of the last genera-
tion have the same genes representing the optimal solution. 

Through the process of GA optimization, the stocks are ranked according to the 
fundamental financial information and price return. Investors can select the top n 
stocks to construct a portfolio. 

3   Experiment Analysis 

The daily data used in this study is stock closing price obtained from Shanghai Stock 
Exchange (SSE) (http://www.sse.com.cn). The sample data span the period from 
January 2, 2002 to December 31, 2004. Monthly and yearly data in this study are 
obtained by daily data computation. For simulation, 100 stocks are randomly selected. 
In this study, we select 100 stocks from Shanghai A share, and their stock codes vary 
from 600000 to 600100. 

First of all, the company financial information as the input variables is fed into the 
GA to obtain the derived company ranking. This output is compared with the actual 
stock ranking in terms of APR, as indicated by Equations (5) and (6). In the process 
of GA optimization, the RMSE between the derived and the actual ranking of each 
stock is calculated and served as the evaluation function of the GA process. The best 
chromosome obtained is used to rank the stocks and the top n stocks are chosen for 
the portfolio. For experiment purpose, the top 10 and 20 stocks are chosen for testing 
according to the ranking of stock quality using GA. The top 10 and 20 stocks selected 
by GA can construct a portfolio. For convenience, equally weighted portfolios are 
built for comparison purpose. 

In order to evaluate the usefulness of the GA optimization, we compared the net 
accumulated return generated by the selected stock from GA with a benchmark. The 
benchmark return is determined by an equally weighted portfolio of all the stocks 
available in the experiment. Fig. 2 reveals the results for different portfolios. 

From Fig. 2, we can find that the net accumulated return of the equally weighted 
portfolio formed by the stocks selected by GA is significantly outperformed the 
benchmark. In addition, the performance of the portfolio of the 10 stocks is better that 
of the 20 stocks. As we know, portfolio does not only focus on the expected return but 
also on risk minimization. The larger the number of stocks in the portfolio is, the 
more flexible for the portfolio to make the best composition to avoid risk. However, 
selecting good quality stocks is the prerequisite of obtaining a good portfolio. That is, 
although the portfolio with the large number of stocks can lower the risk to some 
extent, some bad quality stocks may include into the portfolio, which influences the 
portfolio performance. Meantime, this result also demonstrates that the portfolio with 
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Fig. 2. Accumulated return for different portfolios 

the large number of stocks does not necessary outperform the portfolio with the small 
number of stocks if the investors select good quality stocks. Therefore it is wise for 
investors to select a limit number of good quality stocks for constructing a portfolio. 

4   Conclusions 

This study uses genetic optimization algorithm to perform stocks selection for portfo-
lio. Experiment results reveal that the GA optimization approach has shown to be 
useful to the problem of stock selection, which can help investors select the most 
valuable stocks for portfolio. 
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Abstract. The reinforcement learning paradigm is ideally suited for
dealing with the requirements posed by a recent approach to economic
modeling called Agent-based Computational Economics (ACE): the ap-
plication of Holland’s Complex Adaptive Systems (CAS) paradigm to
economics. In this approach, economic phenomena emerge from the de-
centralized interactions among autonomous, heterogenous, boundedly ra-
tional, adaptive economic agents, rather than from idealized interactions
among ‘representative agents’ or equilibrium analysis over the heads of
the agents involved.

In this paper, we study an industrial goods market, where buyers
need to decide between making and buying components. Traditionally,
Transaction Cost Economics (TCE) has been used to analyze these types
of situations. However, a number of criticisms of TCE have been raised,
which the ACE approach allows us to resolve. Our resulting Agent-based
Computational Transaction Cost Economics (ACTCE) approach allows
us to study systems of interacting agents both at the level with which
TCE deals (allowing comparison and verification), as well as at the level
of individual agents, allowing extension of the theory’s predictive power.

1 Introduction

A Complex Adaptive System (CAS) [1] “is a complex system containing adap-
tive agents, networked so that the environment of each adaptive agent includes
other agents in the system” [2, p. 365]. The application of this paradigm to eco-
nomics is called Agent-based Comptutational Economics (ACE) [3,4],1 which
is the computational study of economies modeled as evolving systems of au-
tonomous interacting agents. As compared to earlier approaches to economies
as self-organizing and evolving systems, ACE uses powerful new computational
tools to permit “the constructive grounding of economic theories in the thinking
and interactions of automous agents” [3, p. 283].

In the current paper, we employ an ACE perspective to the study of inter-
firm relations on intermediate goods markets. These are typically studied using
Transaction Cost Economics (TCE) [5,6], which takes the ‘transaction’ as its
basic unit of analysis, and analyzes which structural forms should be used for

� Corresponding author.
1 For a wide variety of materials related to ACE, see Leigh Tesfatsion’s ACE website

at http://www.econ.iastate.edu/tesfatsi/ace.htm

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 695–702, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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organizing transactions. [6, p. 1]: “A transaction occurs when a good or service
is transferred across a technologically separable interface. One stage of activ-
ity terminates and another begins.” If activities (or ‘stages of production’) are
thought of as nodes, and transactions as directed edges between nodes (spec-
ifying how the outputs of certain activities are inputs to others) then TCE is
concerned with the mapping of transactions to organizational forms: simplisti-
cally, the question of which nodes (and consequently, the transactions between
them) should be organized within firms (the ‘make’ alternative), or on the mar-
ket, i.e. across firm boundaries (the ‘buy’ alternative). TCE then proceeds to
analyze which organizational structure is most suited (i.e. ‘economic’) for orga-
nizing a transaction given its characteristics (frequency, uncertainty, and asset
specificity—see Sect. 2.1), and to hypothesize that in reality, only (transaction
cost) economic structural forms are actually used to organize transactions.

Nothwithstanding the value and validity of Transaction Cost Economic reason-
ing and its results, the theory seems limited in certain ways. Speficically, a number
of criticisms of TCE have been raised [7,8], similar to the more general criticisms of
economics that spawned the emergence of the ACE approach. In general, TCE has
been acknowledged to disregard the role of learning, adaptation and innnovation,
including trust (see [8] for a more complete discussion). For example, Williamson
admitted that “the study of economic organization in a regime of rapid technolog-
ical innovation poses much more difficult issues than those addressed here” [6, p.
143]. Furthermore, as Ronald Coase, the founding father of TCE admits [9], “[t]he
analysis cannot be confined to what happens within a single firm. The costs of co-
ordination within a firm and the level of transaction costs that it faces are affected
by its ability to purchase inputs from other firms, and their ability to supply these
inputs depends in part on their costs of co-ordination and the level of transaction
costs that they facewhichare similarly affectedbywhat these are in still otherfirms.
What we are dealing with is a complex interrelated structure.”

The CAS paradigm of course, is ideally suited for dealing with such a complex
interrelated structure. Applying the CAS paradigm to the TCE domain in what
we call Agent-basedComputationalTransactionCostEconomics (ACTCE),we let
the distribution of economic activity across different organizational forms emerge
from processes of interaction between autonomous boundedly rational agents, as
they adapt future decisions to past experiences (cf. [4]). The systemmay ormaynot
settle down and if it does, the resulting equilibrium may or may not be transaction
cost economic (rational). In any case, “[i]t is the process of becoming rather than
the never-reached end points that we must study if we are to gain insight” [1, p. 19].

With respect to modeling agents and adaptation, the most popular technique
employed in ACE is the Genetic Algorithm (GA) [10], a search heuristic based
on the theories of natural selection and genetics. Agent strategies are typically
encoded as chromosomes and evolved by means of genetic operators such as
selection and reproduction. However, as elaborated in [11], being a population-
based search heuristic, a GA may not be the most appropriate mechanism for
modeling individual agents’ adaptive behavior,2 to the extent that (1) it uses

2 A GA may, on the other hand, be used for searching the ‘never-reached end points’ in
the CAS of interest, to be used for benchmarking the adaptive agents’ performance.
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population-level information about agents’ relative fitness which will typically
not be available to individual (boundedly rational) agents, and (2) agents’ strate-
gies are evolved by recombining other agents’ strategies which may result in un-
realistic discontinuities in agents’ behavior, while on the other hand, agents are
more realistically assumed to be unable to perceive (and imitate) each other’s
strategies directly, but rather only their resulting behavior. Furthermore, an
agent in a CAS is defined as being ‘adaptive’ if “the actions of the agent in its
environment can be assigned a value (performance, utility, payoff, fitness, or the
like); and the agent behaves in such a way as to improve this value over time” [2,
p. 365]. Noting the similarity between this definition and the statement in [12,
p. 7], that “[a] reinforcement learning agent’s sole objective is to maximize the
total reward it receives in the long run,” we propose to model adaptive agents
in our ACTCE approach as reinforcement learning agents.

The next section (2) describes our model of adaptive agents in complex inter-
related systems of inter-firm relations. We performed computational ‘in silico’
experiments with our artificial economy, results from which are described in
Section 3. Section 4 concludes the paper.

2 The Model: Matching Adaptive Buyers and Suppliers

We model interactions between buyers and suppliers on an industrial market,
i.e. a market for an intermediate good.3 The buyers may buy this intermediate
good from a supplier (‘buy’) or produce the good themselves (‘make’). In any
case, the buyers use the intermediate good to produce a final good which they
sell to consumers on a final goods market.

Because we choose to model the mar-

1

2

3

4

1

2

3

4

Final-goods
Market

Suppliers Buyers

Fig. 1. Buyers are assigned to suppliers
or to themselves

ket as a complex interrelated system of
interacting agents, we can not rely on
economic theory’s standard anonymized
randomized matching device. A way of
performing a matching based on heteroge-
nous agents’ idiosyncratic preferences is
provided by the Deferred Choice and Re-
fusal (DCR) algorithm [13], a modifica-
tion of the original Deferred Acceptance
Algorithm [14]. The DCR algorithm
matches agents on two sides of a mar-
ket to each other, based on the prefer-
ences each agent has over all agents on
the other side of the market. In our model, the agents set preferences by cal-
culating each other’s ‘scores:’ expected payoffs obtained from transacting with
each other (see Sect. 2.1).
3 We will use the terms ‘buyer’ and ‘supplier’ to refer to the agents on the industrial

market, and the terms ‘seller’ and ‘consumer’ to refer to the agents on the final goods
market. A buyer on the industrial market is a seller on the final goods market.
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We will in turn make a slight modification to the DCR algorithm: since buyers
have the option ofmaking rather than buying, a buyer does notneed to bematched,
while a supplierwill always rather bematched to abuyer thannot bematched at all.
This consideration is implementedby letting eachbuyer also calculate his own score
for himself, and by letting all suppliers not scoring higher than his own score be ‘un-
acceptable’ for the buyer: he will rather be matched to (and make for) himself than
buy from an unacceptable supplier. This effectively endogenizes the buyers’ make-
or-buy decision in the matching algorithm. One final remark about the matching
algorithmconcerns quota: the buyers aswell as the suppliers have amaximumnum-
ber of matches each can be involved in at any one time. The buyers have an offer
quotum qo ≥ 1, and the suppliers have an acceptance quotum qa ≥ 1. (See [15] for
full details of the matching algorithm used.)

2.1 Scores: Profitability, Trust and Loyalty

On the final goods market, products may be heterogenous or differentiated, mean-
ing that theproductsof individual sellers are treatedasbeing to someextentunique:
theyare imperfect substitutes for eachother, givingsellersadegreeofmarketpower,
i.e. the ability to set their price independent of their competitors and make a profit.
We model this using an exogenous differentiation parameter, 0 ≤ d ≤ 1. The most
important of a transaction’s characteristics (see Sect. 1) is the specificity of the as-
sets invested in it. To the extent that assets are specific to a transaction, they can
not be used for another transaction. Since a heterogenous product implies that it is
different from competitors’ products, we assume a 1-to-1 correspondence between
the differentiation of a product and the assets required to produce it. TCE predicts
that as a transaction requiresmore specifically invested assets, choosing themarket
to organize it carries less advantages, as a supplier will more and more be producing
exclusively for the buyer: increasing differentiation will thus be expected to lead to
moremaking relative tobuying.Furthermore, if un-specific assets are invested inby
a supplier, she may accumulate them in the production for multiple buyers, and at-
tain economies in their increased scale.On the other hand, continous uninterrupted
use of assets specific for a particular buyer will, over time, generate economies due
to learning-by-doing.

These factors (differentiation, and economies of scale and of learning) deter-
mine the profit that can potentially be made in a transaction between a buyer
and a supplier, or between a buyer and himself. The ‘scores’ mentioned above,
on which the agents base their preference ranking of the agents on the other side
of the market, are essentially calculated as the expected profit in a transaction,
which is equal to potential profit multiplied with the probability of attaining it.
This probability is each agent’s subjective estimation of the partner’s reliability
or trustworthiness, i.e., the agent’s trust in the partner. Following [16], we as-
sume trust between partners to increase with longer sequences of transactions
and an agent’s trust in his partner to break down after the partner has broken
off the sequence. Trustworthiness is then the absence of opportunism, another
central concept in TCE. Because we want to also allow for the opposite of op-
portunism, we include loyalty in an agent’s score calculation, and let the agents
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adaptively learn to what extent they should be loyal. Finally, we want to allow
the agents to learn how they should weigh profitability vs. trust, so we change
the score calculation from a simple expected value calculation to a Cobb-Douglas
functional form:

scoreij = potential profitαi
ij · trust1−αi

ij + pij · τi, (1)

where αmin ≤ αi ≤ αmax is the weight agent i assigns to profit versus trust, and
τmin ≤ τi ≤ τmax is agent i’s loyalty: if agent j is agent i’s current partner, then
pij = 1 (otherwise pij = 0) and agent i adds τi to agent j’s score to express that
other agents scores have to be at least τi higher than agent j’s score in order for
agent i to prefer them to agent j.

2.2 Adaptively Learning α and τ

With these specifications in place, we can simulate the system. However, the
specification of the model at the level of individual agents allows us to also, and in
particular, specify agents’ adaptive learning, for which we employ reinforcement
learning (RL) methods [12], as explained in the Sect. 1. In the RL paradigm,
an agent’s policy determines its actions given the state of the environment. In
our model, the policy tells the agent, in each round of the simulation, which α-
and τ -values to use—these values are the actions the agent can take. A reward
function maps each state of the environment (or each combination of state and
action, if actions are tailored to states) to a reward, indicating the desirability
of that state. In our model, the reward is the profit the agent makes in a round
of the simulation, depending on the agent’s chosen action (α- and τ -values),
and on the other agents’ actions. Finally, a Value function tells the agent what
the long run accumulated reward of α- and τ -values are.4 Whereas rewards are
immediate, they can be used to estimate the long-run Value of each action.

In our model, the agents’ adaptive learning pertains to the values they use
for α and τ . For both α and τ , a number of possible values is entertained by
the agent. In each round of the simulation, the agents start by selecting a value
to use for both α and τ , giving preference to values with high estimated Value.
They use these α- and τ -values to calculate scores (see Eq. 1) and establish their
preference ranking. Then, the matching algorithm assigns buyers to suppliers or
to themselves. Next, all suppliers who are matched to buyers invest in assets
and produce for those buyers, possibly generating economies of scale and/or
learning-by-doing in the process. The price at which suppliers deliver to buyers
is set in such a way, that profits are shared equally between the agents involved:
the suppliers have now made their profit for this round. Buyers who are not
matched to a supplier produce for themselves, after which all buyers sell their
(differentiated) product on the final goods market and make their profit. Finally,
both buyers and suppliers use the profit made in the current round as the reward
with which to update their estimate of the Value of the particular values they
used for α and τ in the current round.
4 To avoid terminological confusion between the different values that α and τ can take

on the one hand, and the long run Value of actions (values for α or τ) on the other
hand, we call them α- and τ -values and (capitalized) Values, respectively.
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3 Numerical Experiments

3.1 Experimental Setup

We simulated a number of different market settings, varying both the degree of
product differentiation on the buyers’ final goods market and the ratio between
the number of buyers and suppliers (and their quota) on the industrial market.
First we describe some of the settings which were not changed during the exper-
iments. (Details of how economies of scale and learning-by-doing are calculated
and of how trust is updated, are omitted because of space restrictions, but can
be found in an early predecessor of the current paper [15].)

Each experimental run lasted for 500 timesteps, and was replicated 50 times.
Results are presented as averages across runs, buyers, suppliers, etc. as indicated.
Each of the agents (both buyers and suppliers) was given a total of 11 evenly
distributed α- and τ -values between 0 and 1 inclusive (.0, .1, .2, . . . , 1.0). The
Value estimates of each of these were initialized ‘realistically,’ i.e. at 0 (see [12, p.
39–41]). Subsequently, Values were estimated as the ‘sample average’ of previous
rewards, and action selection was done using an ε-greedy method with ε = .1,
meaning that the greedy action (the one with the highest current estimated
Value) was selected, but with a 10% probability a random action was selected.

By choosing these settings, we have selected a fairly standard implementation
of the RL paradigm. We would expect minor sensitivity of our results to changes
in this specification. The major challenge, of course, would be to implement
a psychologically more plausible ‘theory of mind’ to fill the agents’ black box
decision making modules, but this is left for future work.

3.2 Results

We ran all experiments for 2 different
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Fig. 2. Emergence of distribution of activ-
ities across firms and markets

values of product differentiation, 0.2
and 0.7. Given the specification of the
model, these represent 2 extreme sets
of circumstances. In the first set of
experiments, the suppliers are collec-
tively unable to meet all buyers’ de-
mand for intermediate goods (24 buy-
ers with qo = 1 and 6 suppliers with
qa = 2), and in the second set, the
situation is reversed (6 buyers with
qo = 1 and 12 suppliers with qa =
2). The resulting proportion of inter-
mediate goods that the buyers make
rather than buy is shown in Fig. 2, where the top 2 graphs are for experiment
1 and the bottom 2 are for experiment 2. In both cases, the lower graph is for
d = 0.2 and the upper graph is for d = 0.7: if differentiation is low then the
largest proportion is bought, since the low level of asset specificity means that
suppliers can generate economies of scale immediately. In addition, in the first
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Fig. 3. Weighted average α vs. weighted average τ for 1 supplier

experiment the results are bounded by the restricted capacity of the suppliers,
which is removed in the second experiment. In both cases, it takes longer for
the buyers to learn that it is still profitable to buy when differentiation is high,
since in that case, increased profits are due to economies-of-learning, which take
a while to build up, and trust also needs to grow first.

Fig. 3 shows combinations of weighted averages for α and τ for one of the sup-
pliers (calculated over all possible values and their Values); the first experiment
is on the left and the second on the right. These plots indicate which α- and
τ -values have the highest Value for the agent: which combinations this supplier
adaptively learns to use. In parcticular, the plots show the proportion of all 50
runs in which this particular supplier’s combination of weighted averages for α
and τ ended up in each of the 11 × 11 possible categories (note the different
scales in the graphs). Overall, there is a tendency for the supplier to use lower
values for α as well as τ : they learn to focus on their trust in a partner, rather
than their partner’s profit generating potential, but also to be quick to switch
to higher trusted partners. The effect is especially strong in the second exper-
iment, where competition among suppliers is high and a focus on trust makes
the supplier stick with his current buyer once she has one.
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4 Conclusion

We have argued for the application of reinforcement learning techniques when
building Agent-based Computational Economics models. As an example, we
presented a model of interacting adaptive agents on an industrial market, and
illustrated its usefulness through computational experiments. The distribution
of economic activity across different organizational forms emerges from the de-
centralized interactions among autnomous, boundedly rational adaptive agents,
in a way that confirms the predictions of Transaction Cost Economics. Further-
more, we have been able, in a very natural way, to incorporate more realistic
behavior at the agent level, including adaptive learning and trust. With our
model securely in place then, many more experiments are possible, extending
well beyond the reach of standard (transaction cost) economic theory.

References

1. Holland, J.H.: Complex adaptive systems. Daedalus 121 (1992) 17–30
2. Holland, J.H., Miller, J.H.: Artificial adaptive agents in economic theory. Am. Ec.

Rev. 81 (1991) 365–370
3. Tesfatsion, L.S.: Introduction to the special issue on Agent-based Computational

Economics. J. Ec. Dyn. & Control 25 (2001) 281–293
4. Epstein, J.M., Axtell, R.L.: Growing Artificial Societies: Social Science from the

Bottom Up. Brookings Institution Press/MIT Press (1996)
5. Coase, R.H.: The nature of the firm. Economica NS 4 (1937) 386–405
6. Williamson, O.E.: The Economic Institutions of Capitalism. Free Press (1985)
7. Nooteboom, B.: Towards a dynamic theory of transactions. J. Evol. Ec. 2 (1992)

281–299
8. Nooteboom, B., Klos, T.B., Jorna, R.J.: Adaptive trust and co-operation: An

agent-based simulation approach. In: Trust in Cyber-Societies. Volume 2246 of
Lecture Notes in AI. Springer (2001) 83–109

9. Coase, R.H.: The new institutional economics. Am. Ec. Rev. 88 (1998) 72–74
10. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press (1992)
11. Klos, T.B.: Decentralized interaction and co-adaptation in the repeated prisoner’s

dilemma. Computational & Mathematical Organization Theory 5 (1999) 147–165
12. Sutton, R.S., Barto, A.G.: Reinforcement Learning. MIT Press (1998)
13. Tesfatsion, L.S.: Structure, behavior, and market power in an evolutionary labor

market with adaptive search. J. Ec. Dyn. & Control 25 (2001) 419–457
14. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.

Math. Monthly 69 (1962) 9–15
15. Klos, T.B., Nooteboom, B.: Agent-based computational transaction cost eco-

nomics. J. Ec. Dyn. & Control 25 (2001) 503–526
16. Gulati, R.: Does familiarity breed trust? The implications of repeated ties for

contractual choice in alliances. Acad. Management J. 38 (1995) 85–112



T.-D. Wang et al. (Eds.): SEAL  2006, LNCS 4247, pp. 703 – 717, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Genetically Optimized Artificial Neural Network for 
Financial Time Series Data Mining 

Serge Hayward 

Department of Finance, Ecole Supérieure de Commerce de Dijon, France 
shayward@escdijon.com 

Abstract. This paper examines stock prices forecasting and trading strategies’ 
development with means of computational intelligence (CI), addressing the 
issue of an artificial neural network (ANN) topology dependency.   

Simulations reveal optimal network settings. Optimality of discovered ANN 
topologies’ is explained through their links with the ARMA processes, thus 
presenting identified structures as nonlinear generalizations of such processes. 
Optimal settings examination demonstrates the weak relationships between 
statistical and economic criteria. 

The research demonstrates that fine-tuning ANN settings is an important 
stage in the computational model set-up for results’ improvement and 
mechanism understanding. Genetic algorithm (GA) is proposed to be used for 
model discovery, making technical decisions less arbitrary and adding 
additional explanatory power to the analysis of economic systems with CI. 

The paper is a step towards the econometric foundation of CI in finance. The 
choice of evaluation criteria combining statistical and economic qualities is 
viewed as essential for an adequate analysis of economic systems.   

Keywords: Artificial Neural Network; Genetic Algorithm; Summary Statistics; 
Economic Profitability; Stock Trading Strategies. 

1   Introduction 

Computational or information based complexity is considered as intrinsic difficulty of 
obtaining approximate solutions to problems due to information being noisy, costly or 
partial. Given the characteristics of the existing data, we also aim to examine whether 
there exists optimal complexity for a model necessary to learn the underlying 
behavior. 

A significant part of financial research deals with identifying relationships between 
observed variables. Conventional financial modeling goes through deciding upon a 
mechanism and searching for parameters that give the best fit between observations 
and the model. Econometrics is supposed to direct the choice for the model’s 
functional form. At the same time, the density assumption rests as a controversial and 
problematic question. CI provides a general data mining structure, particularly 
suitable for complex non-liner relationships in financial data, without the need to 
make assumptions about the data generating mechanism and beliefs formation. 
However, CI tools are often viewed as the ‘black-box’ structures. Unlike the well-
established statistical foundation of econometrics, a search for the foundation of CI 
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tools in finance is in early stages. This paper is motivated by a search for the 
evolutionary artificial neural network (EANN) settings, founded statistically and in 
economic terms, for financial applications. 

2   Methodology 

For our experiment we build ANN forecasts and generate a posterior optimal rule. 
The rule, using future information to determine the best current trading action, returns 
a buy/sell signal (B/S) today if prices tomorrow have increased/decreased. A posterior 
optimal rule signal (PORS) is then modeled with ANN forecasts, generating a trading 
B/S signal. Combining a trading signal with a strategy warrants a position to be taken. 
We consider a number of market timing strategies, appropriate for different strengths 
of the B/S signal. If we have a buy (sell) signal on the basis of prices expected to 
increase (decrease) then we enter a long (short) position.  Note that our approach is 
different from standard B/S signal generation by a technical trading rule. In the latter 
it is only a signal from a technical trading rule that establishes that prices are expected 
to increase/decrease. In our model we collaborate the signal’s expectations of price 
change (given by PORS) with a time-series forecast.  

To apply our methodology we develop the dual network structure, presented in 
Figure 1. The forecasting network feeds into the action network, from which 
information set includes the output of the first network and PORS, as well as the 
inputs used for forecasting, in order to relate the forecast to the data upon which it 
was based.  

  fc ( Ct )      
           
     (1) h        
                                                             

(2) h                                     actions 
                                

  (Ct-i,..Ct)                                                    
 {B/S} & {Strategy}               

   P O R S 
 

Fig. 1. Dual ANN: (1) forecasting network; (2) acting network 

This structure is an effort to relate actions’ profitability to forecasting quality, 
examining this relationship in computational settings. The model is evolutionary in 
the sense it considers a population of networks (individual agents facing identical 
problems/instances) that generate different solutions, which are assessed and selected 
on the basis of their fitness. Backpropagation is used in the forecasting net to learn to 
approximate the unknown conditional expectation function (without the need to make 
assumptions about data generating mechanism and beliefs formation). It is also 
employed in the action net to learn the relationship between forecasts’ statistical and 
actions’ economic characteristics. Lastly, agents discover their optimal models with 
GA; applying it for ANN model discovery makes technical decisions less arbitrary. 
The structure seems to be intuitive and simple to generate results independent from a 
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chosen architecture.  The results produced are sufficiently general, being stable for 
multiple independent runs with different random seeds for a dual forecasting/action 
net and a single forecasting net. 

2.1   Generating Posterior Optimal Rule Signal 

PORS is a function of a trading strategy adopted and based on the amount of 
minimum profit and the number of samples into the future. Stepping forward one 
sample at a time, the potential profit is examined. If the profit expected is enough to 
clear the minimum profit after transaction costs (TC), a PORS is generated. The 
direction of PORS is governed by the direction of the price movement.  Normally, the 
strength of the signal reflects the size of underlying price changes, although, we also 
examine signals without this correlation to identify when profit generating conditions 
begin. Lastly, we consider PORS generated only at the points of highest profit to 
establish the maximum profit available. Since this type of signal is the most 
vulnerable to everyday noise in financial data, we add some random noise (up to 
10%) to help ANN prediction to overcome just dealing with a constant value of zero. 

3   Description of the Environment 

Let Y be a random variable defined on a probability space ( ,  , ).   is a space of 

outcomes,  is a -field and  is a probability measure.  For a space ( ,  , ) a 

conditional probability P[A| ] for a set A, defined with respect to a -field ,  is the 
conditional probability of the set A, being evaluated in light of the information 
available in the -field .  Suppose economic agents’ utility functions given by a 
general form:  

( ) ( , ( ))t s t s t sU W g Y fc+ + += δ  (1) 

According to (1), agents’ utility depends on: a target variable Yt+s; a 
decision/strategy variable, (fct+s), which is a function of the forecast, fct+s, where  
s  1 is a forecasting horizon. Setting the horizon equal to 1, we examine the next 
period forecast (when this simplification does not undermine the results for s 1). A 
reward variable Wt+s is sufficiently general to consider different types of economic 
agents and includes wealth, reputation, etc. wt+1(yt+1, fct+1) is the response function, 
stating that at time t+1 an agent’s reward wt+1 depends on the realization of the target 
variable yt+1 and on the accuracy of the target’s forecast, fct+1. Forecasting is regarded 
as a major factor of a decision rule, being close to the reality in financial markets. 
Also, it has a developed statistical foundation in econometrics allowing its application 
in evolutionary computation. 

Let fct+1= ’Xt to be a forecast of Yt+1 conditional on the information set t, where 

unknown m-vector of parameters,  χ , with  to be compact in k and observable 

at time t n-vector of variables, Xt. Xt are t-measurable and might include some  
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exogenous variables, indicators, lags of Yt, etc.  An optimal forecast does not exclude 
model misspecification, which can be due to the form of fct+1 or failure to include all 
relevant information in Xt.  With imperfect foresight, the response function and, 
therefore, the utility function are negatively correlated with forecast error, 

 ; 1 1 1 1 0t t t te y fc e+ + + +≡ − > . A mapping of the forecast into a strategy rule, (fct+1) 

(combined with elements of Xt) determines a predictive density gy, which establishes 
agents’ actions.   

In this setting, maximizing expected utility requires us to find an optimal forecast, 
fct+1 and to establish an optimal decision rule, (fct+1).  Note that optimality is with 
respect to a particular utility function, implemented through a loss function, in the 
sense that there is no loss for a correct decision and a positive loss for incorrect one. 
Given a utility function, expected utility maximization requires minimization of the 
expected value of a loss function, representing the relationship between the size of the 
forecast error and the economic loss incurred because of that error.  A strategy 
development (mapping of the forecast into a decision rule) is another way to minimize 
the expected value of a loss function.   

A loss function, L: δ +, related to some economic criteria or a statistical 
measure of accuracy, takes a general form:  

  ( , , ) [ (1 - 2 )1( 0)] pL p a e a a e e≡ + < , (2) 

where  is a coefficient of risk aversion; e is the forecast error;  χ [0,1] is the degree 

of asymmetry in the forecaster’s loss function.  L( , , e) is t-measurable.  It could 
also be presented as:  

  1 1 1 1( , , ) [ (1 - 2 )1( ( ) 0)] ( )
p

t t t tL p a a a Y fc Y fc+ + + +θ ≡ + − θ < − θ , (3) 

where  and  are shape parameters and a vector of unknown parameters,  χ .  For 

given values of  and  an agent’s optimal one-period forecast is  

     1 1 1min [ ( , , )] [ ( )] [ ( )]t t tE L E L Y fc E L e+ + +θ∈Θ
ρ α θ = − = . (4) 

Training EANN with different settings allows us to examine how models’ 
statistical and economic performances relate to their topology choices.  

4   Experimental Designs 

We use ANN with GA optimization for the building/evolution of price forecast and 
trading strategy development/evolution upon relevant forecast. The mechanism 
appears to be an intuitive way to deal with agents’ cognitive limits in forecasting 
and optimization, modeling the traders’ learning process to approximate the 
unknown conditional expectation function. It also provides a natural procedure to 
consider decisions’ heterogeneity by agents viewing similar information. GA 
facilitates an optimal choice of network settings and adds additional explanatory 
power to the analysis. 
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4.1   Learning Paradigm 

To learn a mapping  dδ  an input/output training set I ={ } 1
,

I

i i i
x y

=
is presented to 

the network. xi χ d is assumed to be drawn from continuous probability measure 

with compact support. Learning entails selecting a learning system  = { , }, 

where the set  is the learning model and A is a learning algorithm. From a collection 

of candidate functions,  (assumed to be continuous) a hypothesis function  is 

chosen by a learning algorithm  : I  δ  on the basis of a performance criterion. 
Learning law is a systematic way of changing the network parameters (weights) in 

an automated fashion, such that the loss function is minimized. One of the most 
common algorithms used in supervised learning is backpropagation. Being simple and 
computationally efficient, the search here, nevertheless, can get caught in local 
minima. Backpropagation is also often criticized for being noisy and slow to 
converge. To improve the original gradient learning, particularly its slowness of 
convergence, we examine a number of alternatives.     

Consider the vector,  as the weight space, we are searching for. The gradient 

descent is given by   
L

L
∂∇ =
∂ψ

.  Expanding the loss function L about the current point 

o gives: 

0 0 0 0 0
1( ) ( ) ( ) ( ) ( ) ...2L L L Hψ = + ψ − ψ ⋅ ∇ ψ + ψ − ψ ⋅ ⋅ ψ − ψ + , (5) 

where H is the second derivative Hessian matrix evaluated at o, 
2

ij
i j

L
H

∂=
∂ψ ∂ψ

. The 

gradient is obtained by differentiating (5): 

0 0( ) ( ) ( ) ...L L H∇ ψ = ∇ ψ + ⋅ ψ − ψ +  (6) 

For the optimization task the minimum L( ), where =L( )=0 need to be located. A 
common approach here is to set (6) to zero, disregarding the higher-order terms: 

0 0( ) ( ) ( ) 0L L H∇ ψ = ∇ ψ + ⋅ ψ − ψ = . (7) 

Solving (7) for  gives: 

1
0 0( )H L−ψ = ψ − ∇ ψ . (8) 

A popular minimization technique is to use the first derivative information (only) 
with line searches along selected directions.  If D is a direction, starting from o, 
staying on the line = o+ D,  is chosen to minimize L( ).   

In the Steepest Descent Method one chose D = – =L( o), repeating minimization 
along a line in the gradient direction and re-evaluating the gradient. Since all 
successive steps are perpendicular, the new gradient descent =Lnew is also 
perpendicular to the old direction Dold, giving zigzagging path after the line 
minimization, 
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00 ( )old old newL D D L
∂= ψ + α = ⋅∇

∂α
. (9) 

The step size,  determines how far the movement should go before obtaining 

another directional estimate. For one step (
1

)
N

n=

 the weight update with a step size,  

is given: 

( 1)i i inΔψ + = η ∇ψ . (10) 

With small steps it takes longer to reach the minimum, increasing the probability of 
getting caught in local minima. On the other hand, large steps may result in 
overshooting, causing the system to rattle/diverge. Starting with a large step size and 
decreasing it until the network becomes stable, one finds a value that solves the 
problem in fewer iterations. We utilize small step to fine-tune the convergence in the 
later stages of training.  

The momentum provides the gradient descent with some inertia, so that it tends to 
move along the average estimate direction.  The amount of inertia (the amount of the 
past to average over) is given by the parameter, .  For a given momentum  and the 
step size , the weight update is defined as: 

( 1) ( )i i i in nΔψ + = η ∇ψ + μΔψ  (11) 

The higher the momentum, the more it smoothes the gradient estimate and the less 
effect a single change in the gradient has on the weight change. It also helps to escape 
local minima, although oscillations may occur at the extreme. 

A second order method, the Conjugate Gradient uses the second derivatives of the 
performance surface to determine the weight update, unlike the steepest descent 
algorithm where only the local approximation of the slope of the performance surface 
is used to find the best direction for the weights’ movement. At each step a new 
conjugate direction is determined and movement goes along this direction to the 
minimum error. The new search direction includes the gradient direction and the 
previous search direction: 

new new oldD L D= −∇ + β , (12) 

where  is the choice parameter, determining the amount of past direction to mix with 
the gradient to form a new direction. 

The new search direction should not change (to first order) the component of the 
gradient along the old direction.  If  is a line search parameter, then: 

0( ) 0old newD L D⋅∇ ψ + α = . (13) 

Therefore, the vectors Dnew and Dold are conjugate in the following expression: 

0old newD H D⋅ ⋅ = . (14) 

 in (12) is chosen such that the new search direction maintains as best as possible  
the minimization that was achieved in the previous step, for example with the  
Polak-Ribiere rule: 
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2

( )

( )

new old new

old

L L L

L

∇ − ∇ ⋅∇
β =

∇
 (15) 

For the quadratic performance surface with information from the Hessian one can 
determine the exact position of the minimum along each direction, but for non-
quadratic surfaces, a line search is often used.  In theory, there are only N conjugate 
directions in a space of N dimensions, thus the algorithm is reset each N iterations. 
The advantage of conjugate gradient method is that there is no need to store, compute 
and invert the Hessian matrix. Updating the weights in a direction that is conjugate to 
all past movements in the gradient, the zigzagging of first order gradient descent 
methods could be avoided.  

The Scaled Conjugate Gradient method without real parameters is based on 
computing the Hessian times a vector, H* . An offset is added to the Hessian, H+ I 
to ensure that the Hessian is a positive definite, so that the denominator in the 
expression below is always positive.  For the step size  it could be expressed in the 
following way: 

2
( )

T

T

C G

C H I C C
α = −

+ δ + δ
, (16) 

where C is the direction vector and G the gradient vector.  The parameter  is set such 
that for low values the learning rate is large and it is small for high values.   adjusted 
in a way that if the performance surface is far from quadratic,  is increased, resulting 
in smaller step size.  To determine the closeness to quadratic performance surface,  
is used and is given by: 

2( ( ) ( ))
T

L L C

C G

ψ − ψ + αΛ =
α

. (17) 

For example for >0.75 (very quadratic)  is multiplied by 5; for <0.25,  is 
multiplied by 4; for <0, there is no change in weights.  By a first order 
approximation: 

'( ) '( )
( )

L C L
H I C C

ψ + σ − ψ+ δ ≈ + δ
σ

. (18) 

(18) implies that the Hessian calculations could be replaced with additional 
estimation of the gradients.  

Delta-Bar-Delta is an adaptive step-size procedure for searching a performance 
surface. The step size and momentum are adapted according to the previous values of 
the error. If the current and past weight updates are both of the same sign, the learning 
rate increases linearly. Different signs for the updates indicate that the weight has 
been moved too far and the learning rate decreases geometrically to avoid divergence. 
Therefore, the step size update is given: 

( 1) ( )

( ) ( ) ( 1) ( )

0

i i

i i i i

k S n n O

n n S n n O

otherwise

− ∇ψ >
Δη = −βη − ∇ψ < , (19) 
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with 

( ) (1 ) ( 1) ( 1)i i iS n n S n= − δ ∇ψ − + δ − , (20) 

where k is additive constant;  is multiplicative constant and  is smoothing factor. 
Considering how the data is fired through the network, synchronization in Static, 

Trajectory and Fixed Point modes are examined. Static learning assumes that the 
output of a network is strictly a function of its present input (the network topology is 
static). The gradients and sensitivities are only dependent on the error and activations 
from the current time step. Training a network in Trajectory mode assumes that each 
exemplar has a temporal dimension and that there exists some desired response for 
the network's output over the period. The network is first run forward in time over 
the entire period, during which an error is determined between the network's output 
and the desired response. Following that the network is run backwards for a 
prescribed number of samples to compute the gradients and sensitivities, completing 
a single exemplar. Fixed Point mode assumes that each exemplar represents a static 
pattern; that is to be embedded as a fixed point of a recurrent network. Here the 
terms forward samples and backward samples can be thought of as the forward 
relaxation period and backward relaxation period, respectively. All inputs are held 
constant while the network is repeatedly fired during its forward relaxation period. 
There are no guarantees that the forward activity of the network will relax to a fixed 
point, or even relax at all. After the network has relaxed, an error is determined and 
held as constant input to the backpropagation layer. Similarly, the error is 
backpropagated through the backpropagation plane for its backward relaxation 
period, completing a single exemplar.   

A feedforward network, where the response is obtained in one time step (an 
instantaneous mapper), can only be trained by fixed point learning. On the other hand, 
recurrent networks, can be trained either by fixed point learning or by trajectory 
learning. A static ANN makes decisions based on the present input only; it can not 
perform functions that involve knowledge about the history of the input signal. On the 
other hand, dynamic networks are able to process time varying signals. They posses 
an extended memory mechanism, which is capable to store past values of the input 
signal. In the time delay neural network the memory is a tap delay line, i.e. a set of 
memory locations that store the past of the input. 

It is possible to use self-recurrent connections as memory, like in Jordan/Elman 
Network context units. Considering, for example, the gamma memory as a structure 
with local feedback, it cascades self-recurrent connections and extends the context 
unit with more versatile storage. It accepts the tap delay line as a special case. A form 
of temporal learning must be used to adapt the gamma parameter (e.g. real time 
recurrent learning). The advantage of this structure in dynamic networks is that it 
provides a controllable memory with a predefined number of taps. Furthermore, as the 
network adapts the gamma parameter to minimize the output error, the best 
combination of depth and resolution can be achieved. 

4.2   ANN Topology 

Proposition: Given the characteristics of the data there exists an optimal network 
complexity, required to learn the underlying behavior. In this experiment popular 
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ANN models are considered and their performances for modeling and forecasting the 
financial time series dynamics are examined. 

Multilayer Perceptron (MLP) is the most basic of the ANN topologies for non-
linearly separable problems.  The data in a MLP follows a single path with no 
recursion or memory elements.  It is viewed that for static pattern classification, the 
MLP with two hidden layers is a universal pattern classifier.  The discriminant 
functions can take any shape, as required by the input data clusters.  In terms of 
mapping abilities, the MLP with a (non-polynomial) Tauber-Wiener transfer function 
is believed to be a universal approximator.   

We use three layers MLP for prediction and strategy development.  For instance, a 
one-period price forecast takes the following form: 

1 2 0 1 0 ,
1

( ) ( ( ))
J I

t j j i j t i t
j i O

Fc C h h C e+ −
= =

= ψ + ψ ψ + ψ + . (21) 

In (21) the input layer has I inputs, {ct-0,…, ct-I}; the hidden layer has J hidden 
nodes and the output layer has one output, Fc(Ct+1).  Layers are fully connected by 
weights, i,j; o and oj are biases. Transfer functions are represented by h1 and h2. 
We run experiments under two transfer functions, the hyperbolic tangent, 

2

2
( ) 1

1s x
h x

e−
= −

+
, with –1<hs(x)<+1 and the sigmoid, 

1
( )

1t x
h x
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+
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0<ht(x)<+1. 
Jordan and Elman Networks (J/E) networks based on the concept of context in 

their processing. A set of context units is a layer (or a part) that receives feedback 
signals. Unlike the forward propagation the feedback signal occurs with reference to 
time. A context for processing at time t comes from the network state at time t-1 
through the context units. Therefore, the state of the network at any time depends on 
an aggregate of previous states and the current input. It has been claimed that this 
type of ANN capable not only to recognize sequences, but also generate them in 
some cases. 

Jordan architecture [1, 2] differs from Elman architecture [3], primarily, by having 
the context units fed from the output layer and from themselves instead of the hidden 
layer. For the source of the feedback to the context units we consider four options: the 
input, the 1st hidden layer, the 2nd hidden layer and the output. In linear systems the 
use of the past of the input signal generates the moving average (MA) representation. 
They are particularly suited for signals that have a spectrum with sharp valleys and 
broad peaks. The use of the past of the output results in the autoregressive (AR) 
representations. They are supposed to model well signals with broad valleys and sharp 
spectral peaks. In the case of non-linear systems, these two topologies are considered 
as non-linear MA and AR (NMA and NAR). The Jordan net is viewed as a restricted 
case of NAR, while the configuration with context units fed by the input layer 
considered as a restricted case of NMA.  Elman’s net does not have a counterpart in 
linear systems.   

Different values of the context unit’s time-constant are considered in the 
experiment. It is expected to find a trade-off between extending the memory further 
back into the past and loosing sensitivity to details.  As a rule of thumb, the value of 
the time-constant should produce an exponential decay rate that matches the 
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characteristic time scale of the input sequence. Since we only control the time-
constant (i.e. the exponential decay) the weighting over time is inflexible. 
Furthermore, a small change in the context unit’s time-constant is reflected in a large 
change in the weighting (due to the exponential relationship between time-constant 
and amplitude).   

Time-Lag Recurrent Network (TLRN) is viewed as MLP’s extension with short 
term memory structures that have local recurrent connections. It has smaller network 
size required to learn temporal problems when compared to MLP that use extra inputs 
to represent the past samples. On the other hand the backpropagation through time 
adopted with TLRN requires a lot of memory. TLRN is characterized by low 
sensitivity to noise. The recurrence of the TLRN provides the advantage of an 
adaptive memory depth (it finds the best duration to represent the input signal’s past). 
In our experiment the following memory structures are considered: Time Delay 
Neural Network Memory (TDNN); Gamma memory (GM) and Laguarre memory 
(LM). With Focused topology only the past of the input is remembered.   

It is noted that using a TLRN with Focused TDNN memory has a similar effect to 
using multiple samples for the inputs to a basic MLP. The primary difference between 
the two methods is that, focused TDNN memory only allows for one memory depth to 
be used for all of the inputs, whereas the lag input settings allow us to specify various 
memory depths. 

Recurrent Network (RN) delays one or more of the processing values in the 
network so that they will be used in the calculation of the next output, rather than the 
current output. These are often combined with the memory elements found in TLRN. 
Fully RN does not include a non-recurrent feedforward processing path.  All data 
flows through the recurrent processing. On the other hand partially RN includes a 
non-recurrent feedforward processing path. RN contains multiple processing paths. 
Each processing path has potentials of specializing on a different aspect of the 
incoming data, allowing to consider multiple conditions. 

The support vector machine (SVM) is considered as a classifier capable to 
transform complex decision surfaces into simpler ones to apply linear discriminant 
functions. It uses only inputs that are near the decision surface as they provide the 
most information about the classification1. 

We consider that ANN architecture is an application-dependent.  Maximum 
information available about the problem needs to be built into the network to achieve 
good learning abilities (accuracy on training and predictability on testing data). At the 
same time for good generalization abilities parsimonious structure is required 
(possibly with a complexity penalty). We construct and modify architectures 
incrementally identifying optimal settings for modeling financial data. Furthermore, 
GA is used to search for optimal settings. 

4.3   Performance Surface 

The performance of ANN learning is monitored by observing how the cost changes 
over training iterations.  The learning curve presents the internal error over each 
epoch of training, comparing the output of the ANN to the desired output. In price 
                                                           
1 The support vector machine loss function is used to implement the large margin classifier 

segment of the SVM model and takes the following form: LSVM = I-1 (Yi - tanh I)
2. 
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forecasting, the target is the next day closing price, where in signal modeling, the 
target is the current strategy.  Achieving an accurate representation of the mapping 
between the input and the target might not necessarily lead to a forecast to be 
exploitable or a strategy using that forecast to be profitable.   

We consider that evaluation criteria should measure not so much absolute 
effectiveness of the model with respect to the environment but rather its relative 
effectiveness with respect to other models. Although we train ANN with the goal to 
minimize internal error function, we test and optimize its generalization ability by 
comparing its performance with the results of a benchmark, an efficient prediction 
(EP).  In forecasting prices, EP is the last known value.  For predicting strategies, it is 
the buy/hold (B/H) strategy. The degree of improvement over efficient prediction (IEP) 
is calculated as an error from a de-normalized value of the ANN and a desired output, 
then normalizing the result with the difference between the target and EP value.   

4.4   Profitability as Performance Measure 

To make the final goal meaningful in economic terms we use profitability as a 
measure of overall success. We examine the following forms of cumulative and 
individual trades return measures: non-realized simple aggregate return (r); profit/loss 
factor; average, maximum gain/loss. In addition we estimate exit efficiency, 
measuring whether trades may have been held too long, relative to the maximum 
amount of profit to be made, as well as the frequency and the length of trades, 
including out of market position. To assess risk exposure we adopt common 
‘primitive’ statistics, the Sharpe ratio2 (SR) and the maximum drawdown ( ). The 
latter, calculating the percentage loss relative to the initial investment for the date 
range, measures the size of losses occurred while achieving given gains. It 
demonstrates how prone a strategy is to losses. To overcome the Fisher effect we 
consider trading positions with a one-day delay.  

TC is assumed to be paid both when entering and exiting the market, as a 
percentage of the trade value. TC accounts for broker’s fees, taxes, liquidity cost (bid-
ask spread), as well as costs of collecting/analysis of information and opportunity 
costs. According to [4] large institutional investors achieve one-way TC about 0.1-
0.2%. Often TC in this range is used in computational models.  Since TC (defined 
above) would differ for heterogeneous agents, we report the break-even TC that 
offsets trading revenue with costs leading to zero profits.   

Thus, in this paper profitability is a function of return, risk and transaction costs. 
The classification of the ANN output as different types of B/S signals determines the 
capability of the model to detect the key turning points of price movement. Evaluating 
the mapping of a forecast into a strategy, (fct+1), assesses the success in establishing 
a predictive density, gy that determines agents’ actions.  

4.5   Time Horizons and Trading Strategies Styles 

Heterogeneous traders in the experiment use different lengths of past and forward 
time horizons to build their forecasts/strategies. We have run the experiment on  
stock indexes from a number of markets and found that ‘optimal’ length of 
                                                           
2 Given by the average return divided by the standard deviation of that return. 
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training/validation period is a function of specific market conditions. In this paper we 
adopt three memory time horizons, [6; 5; 2½] years.  We run the experiment with a 
one year testing horizon, as it seems to be reasonable from the actual trading 
strategies perspective and supported by similar experiments.   

Both long and short trades are allowed in the simulation.  Investing total funds for 
the first trade, subsequent trades (during a year) are made by re-investing all of the 
money returned from the previous trades.  If the account no longer has enough capital 
to cover TC, trading stops. 

4.6   Genetic Training Optimization 

In this research evolutionary computation is used for ANN model discovery, 
considering GA optimization for: network’s topology; performance surface; learning 
rules; number of neurons and memory taps; weight update; step size and momentum 
rate. GA tests various settings from different initial conditions (in the absence of a 
priori knowledge and to avoid symmetry that can trap the search algorithm).  Since 
the overall objective of financial forecasting is to make a trading decision, based on 
that forecast profitable, economic criteria rather than statistical qualities need to be 
employed for the final goal. We use GA optimization with the aim to minimize IEP 
value and profitability as a measure of overall success. 

5   Empirical Application 

5.1   Data 

We consider daily closing prices for the MTMS (Moscow Times) share index 
obtained from Yahoo Finance. The time period under investigation is 01/01/97 to 
23/01/04. There were altogether 1575 observations in the row data set. Examining the 
data graphically reveals that the stock prices exhibit a prominent upward, but non-
linear trend, with pronounced and persistent fluctuations about it, which increase in 
variability as the level of the series increases.  Asset prices look persistent and close 
to unit root or non-stationarity. Descriptive statistics confirm that the unit-root 
hypothesis cannot be rejected at any confidence level. The data also exhibits large and 
persistent price volatility with significant autocovarience even at high order lags.   

Changes in prices increase in amplitude and exhibit clustering volatility. The daily 
return displays excess kurtosis and the null of no skewness is rejected at 5% critical 
level. The tests statistics lead to rejection of the Gaussian hypothesis for the 
distribution of the series. It confirms that high-frequency stock returns follow a 
leptokurtic and skewed distribution incompatible with normality assumed often in the 
analytical literature. 

5.2   Experimental Results 

ANN with GA optimization was programmed with various topologies3. Altogether we 
have generated and considered 93 forecasting and 143 trading strategies’ settings. 
                                                           
3 Programs in Visual C++, v. 6.0 are available upon request. We have run tests on 

TradingSolutons, v. 2.1, NeuroSolutions v. 4.22 and Matlab v. 6. 
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Effectiveness of search algorithm was examined with multiple trials for each setting. 
92% of 10 individual runs produce identical results, confirming the replicability of 
our models. Efficiency of the search was assessed by the time it takes to find good 
results. The search with ANN unoptimized genetically took a few minutes, where the 
search with GA optimization lasted on average 120 minutes on a Pentium 4 processor. 

Over a one year testing period 19 trading strategies were able to outperform in 
economic terms the B/H strategy, with an investment of $10,000 and a TC of 2% of 
trade value.  The average return improvement over B/H strategy was 20%, with the 
first five outperforming the benchmark by 50% and the last three by 2%.  The primary 
strategy superiority over B/H strategy was 72%. 

For the five best performing strategies, the break-even TC was estimated to be 
2.75%, increasing to 3.5% for the first three and nearly 5% for the primary strategy. 
Thus, the break-even TC for at least the primary strategy appears to be high enough to 
exceed actual TC. Profitability produced by our simple architecture supports 
computational model development based on economic and statistical foundations.   

The examination of the performances of networks with different topologies has 
identified consistently the best results in economic terms for a one year testing period 
by a single hidden layer basic MLP and TLRN with Focus Laguarre memory (FLM); 
all with the hyperbolic tangent transfer function.  The seven most profitable strategies 
are represented by those ANN. They also have good performances in statistical terms. 
Although, there was no such a clear dominance as in economic performance. Among 
the ten most accurate predictions nine are basic MLP and TLRN with FLM. At the 
same time, the best accuracy was achieved by Jordan ANN with the output feedback 
to the context units. 

In price forecasting, among the ten most accurate networks, eight are basic MLP 
and TLRN with FLM, also sharing the first three positions. Among the five most 
accurate forecasting ANN are also Generalized Feedforward MLP, producing the 
accuracy that follow immediately the first three networks. 

GA model discovery reveals that MLP and TLRN with FLM, with neurons number 
in the hidden layer in the range [5, 12] and Conjugate Gradient learning rule generate 
the best performance in statistical and economic terms for forecasting and acting nets. 
It is noticed that Conjugate Gradient weight update took twice as long comparing with 
the Steepest Descent method.  GA optimization also establishes the batch training as 
optimal in most cases for static networks. 

We relate satisfactory performances of MLP and TLRN in financial data mining to 
their established links with ARMA processes.  MLP and TLRN could be considered 
as nonlinear generalizations of those models.  Having identified that MLP and TLRN 
are particularly appropriate for financial time series modeling, we investigate 
performances of those topologies. 

Table 1 presents statistical and economic characteristics of the primary (basic 
MLP) and secondary (TLRN-FLM) strategies models as well as the statistically best 
performer (JN).  All three models are trained on 6 years of data.  JN seems to be a 
very good directional model, where the primary and secondary strategies exhibit only 
week DA. Correlation of desired and ANN output show a right sign, but insignificant 
correlation for JN and a perverse sign correlation for the primary and secondary 
strategies. IEP shows a good improvement on a random chance for the primary and a 
satisfactory improvement for the secondary strategies, where the result for the most 
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accurate strategy was less adequate (although, IEP<1 was not expected for JN).  
These results confirm that statistical criteria, such as correlation and DA, have only 
weak relationships with economic criteria.  Robust links of IEP with annualized return 
support its fitness for a computational model’s performance surface setup, as well as 
makes it an appropriate evaluation criterion for an economic prediction. 

The complexity of the three networks, given by the number of a hidden layer 
neurons, shows that the profitable strategies have more parsimonious structures than 
JN. Inferior generalization of JN manifests itself in the model’s overspecialization on 
the training data and poor economic performance during the testing period. 
Parsimonious optimality is furthermore identified by GA optimization of TLRN, 
where a moderate optimal length of 16 bars was found for FLM   

Table 1. Primary and Secondary Strategies 

Measures 
/Topologies MLP TLRN JN 

Accuracy (%) 32.38 37.62 58.10 

Correlation -0.125 -0.049 0.0317 

IEP 0.852 0.929 0.956 
Hidden  Layer 
Neurons 14 10 22 
Return (%) 128.1 113.1 1.15 
Sharpe Ratio 0.17 0.16 0.01 
Profitable Trades 
(%) 

85.7 61.5 12.4 

MLP traded seven times during the test year with overall 85.7% of profitable 
trades. Four long trades generated 100% wins, where short trades produced 66.7% 
wins. Annualized return over testing period was 128.1%, significantly exceeding the 
comparable return of B/H strategy (74.69%). In terms of risk measures, the primary 
strategy seems to be less risky than B/H benchmark. In comparison TLRN traded 
more frequently: 13 trades for the test period with overall 61.5% of profitable trades. 
7 long trades generated 71.4% wins and 6 short trades produced 50% wins.  Although 
trading frequency of primary and secondary strategies differ by 86%, their annualized 
return and riskness are close to each other, supporting the idea that an optimal trading 
frequency is in the range [6, 12]. This conjecture is also confirmed by PORS trading 
frequency; 12 annual trades are required to generate the maximum profit available. 
On the other hand JN model produced merely 3 trades. Spending much of the time out 
of the market the strategy demonstrates consistently low return and high risk 
exposure. Poor economic performance of JN seems to be related to its notably high 
complexity and the training data over-fitting. Although, producing superior statistical 
performance the model has failed in economic terms.   

The above results demonstrate that the optimal network structure and complexity 
are determined by data characteristics. Networks complexity seems to be positively 
correlated with statistical performance. On the other hand superior economic 
performance is achieved by parsimonious structures with good generalization abilities. 
Profitable models might display inadequate characteristics, measured by conventional 



 Genetically Optimized Artificial Neural Network 717 

statistics.  A good model for financial time series is considered to be the one with valid 
statistical foundation, capable of learning the complex dynamics of a socio-economic 
system and fulfilling the final objective to be viable in economic terms.  

6   Conclusion 

The system considered in the paper is self-organized, given economic agents' abilities 
to learn and adapt to changes. The models examined are robust due to agents' ability 
to determine their future actions (form their expectations) using memory of their 
previous experiences. The primary strategy generated reveals good economic 
performance on out of sample data. The bootstrap method, used to test the 
significance of the profitability and predictive ability, produced p-values, 
demonstrating that the performance of the models in the experiment is statistically 
different from a random walk with drift. 

Optimal settings’ examination demonstrates weak relationships between statistical 
and economic criteria. A good model for financial time series forecasting is 
considered to be the one with valid statistical foundation, capable of learning complex 
dynamics of a socio-economic system and fulfilling the final objective to be viable in 
economic terms.  

This research demonstrates that fine-tuning of ANN settings is an important stage 
in computational model set-up.  GA is particularly appropriate for model discovery, 
making technical decisions less arbitrary and adding additional explanatory power to 
the analysis of economic systems with CI. 
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Abstract. In this research, an agent-based simulation model for price
competition in oligopolies is built and Genetic Algorithm is used to evolve
the oligopolies’ decisions of price while facing the competitors in markets.
The experimental results show two factors influencing the price compe-
tition situations and ‘given’ factor that competitor can not control leads
strong influence on their decision of price. Total cooperation (Collusion
to high prices) seems not to be achieved under the different parameter
settings while many competitors involving in the market and a limitation
of cooperation forms in which no effect forces the achievement of total
cooperation.

1 Introduction

In economics, researchers use game theory to explain competition situations.
Unlike other forms of market structure such as perfect competition and monop-
olies, oligopolies are notoriously unpredictable. Possible outcomes of oligopolistic
competition include implicit collusion through tacit recognition of standard in-
dustry practices, explicit collusion through the formation of a cartel, and cyclical
periods of intense price competition followed by price stability. One way of inves-
tigating competition among the few that is used by some researchers is in terms
of evolutionary methods, e.g., GAs (Genetic Algorithm) [5], based on the iterated
prisoner’s dilemma (IPD) [2]. In this approach, the behavior of the firms that
participate in the oligopoly is determined by the evolutionarily fittest strategy -
i.e. the strategy adapted to the competitive environment.

The IPD or NIPD (N-persons’ IPD) [4], [6] are ideal games to describe the
deci-sions made when humans meet a dilemma. However, economists have devel-
oped models of economic events based on the IPD, but these have not proved to
be successful. Therefore, some researchers suggested building other agent-based
models to fit the complex features of economic competition [1]. Chen and Ni
[3] built a 3-player model using economic concepts, i.e., profits, costs, market
shares, etc., to simulate a real competitive market. This model, which will be
described as the oligopoly game model, can be used as a base to build N-player
models in order to describe not only oligopoly competitions but also others. In
the oligopoly game model, cooperators will act together to increase their prices

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 718–725, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Simulation of Cooperation for Price Competition in Oligopolies 719

while defectors will try to gain customers by decreasing their prices. However,
realistically both will be trying to maximize their profits. It is assumed that
the agents, in this case the firms involved in competing, are rational, albeit with
limited information processing ability. There are a number of objective functions
which they could maximize, such as sales or market share, but we will make the
standard assumption which is made in economics, that the participant firms are
attempting to maximize profit.

In this experiment, we introduce Chen and Ni’s oligopoly game model and
use to analyze the importance for competitive cooperation of environmentally
‘given’ factors (such as the number of competitors or market growth), in contrast
with those factors which are under the firm’s control (i.e. price, cost and profit
margin).

2 Competition Game Model

The competition game model is based on the 3-players’ oligopoly game model
which was established by Chen and Ni [3]. We accept the hypothesis that Chen
assumed for the competition environments and extend the player numbers in the
game to investigate whether the oligopoly competition might shade into perfect
competition.

Different to Chen and Ni’s model, we model the change in customer loyalty
directly at the current round and this affects company profits immediately since
customers are actually very liable not to buy at the high price initially. However,
we still model that customers enter and leave the market at the next round as
they feel price changes prevail in the market.

Each company has the choice to set a high price (cooperating) or a low price
(defecting). If it defects, it will win market share from the other (high price set-
ting) companies though with a reduced profit margin. The profit of one player is,

Profit = (Price − Cost) ∗ Customer number (1)

A proportion of customers will move to other companies with a lower price
when one company chooses a high price. Potential customers will move into this
market at the next round attracted by low prices in the market and, on the other
hand, the current customers also may leave the market at next time because the
current prices are high. The factors we use for this game model are,

1. High price (Ph): The price when the company cooperates with others.
2. Low price (Pl): The price when the company defects against others.
3. Cost (C): The cost of one goods or service.
4. Market share loss (α): The percentage of customers that move away when a

company chooses a high price.
5. External customer influence (β): A function to modify the customers at-

tracted by this market or leaving this market by the price changes of these
companies.
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Therefore, the profit of one unit sale for one cooperating company owning
one customer is Ph − C and for a defecting one is Pl − C. This means the
subjective factors are the prices that the company can choose and the profit of
single sale is controlled by the company internally. However, the market share
loss and external customer influence will be determined by the environment that
the company cannot manage directly. When the environment changes, i.e., the
market share loss (α) or external customer influence changes (β); the company
should adopt strategies to meet this environment situation to maintain its total
profit in the market. We call these two parameters, α and β, objective factors
(or ‘givan’ factors).

The matrix to show the customers’ movement for the next phase of the com-
petition for the N-companies market is;

Mt =
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Where mt
ij denotes the proportion of the customers of firm i which will move to

firm j in the period t. Let nt
i be the number of customers of firm i at time t,

and Nt be the vector [nt
1, n

t
2, ....n

t
N ]T . The customer numbers at the period t+1

are as,

Nt+1 = Mt+1Nt (3)

When there are some defectors among the cooperators, the movement of cus-
tomers becomes complicated. Let there be m companies cooperating in this
N -companies’ market, i.e., there are m cooperators and (N − m) defectors and
N > m > 0. According to the definition of market share loss, when a company
chooses cooperation, it will lose a fixed proportion α of customers to other de-
fecting competitors no matter how many defectors unless there none and the
defecting companies will share the total customers flowing away from the coop-
erating companies. The cooperator will maintain (1 − α) customers in the next
round and a defector will gain m/(N − m) ∗ α in the next round.

If the total customer numbers in this market is fixed (the external customer
influence factor is 0 in a totally isolated competition environment), the customer
movement can be explained easily by the above. However, customers outwith the
market will be attracted by the decrease in prices and customers in this market
will give up buying anything at the next period due to an increase in prices.
The external customer influence parameter is used to describe the customer
movement into the market and out from it. The external customer influence is
concerned with the actions of all the competitors at the current round. Because
we assume the effects of the external customer influence for each company is the
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same, we set β to a constant value for all companies. Therefore, the customer
number vector at time t in this market, Nt+1 can be described as,

Nt+1 = Mt+1Nt(1 + βt) (4)

The profits that each company in this game can get are:

πt
i = (P t

i − C)nt
i (5)

Where i = 1, 2...., N , i.e., N players, and t is the period.

3 Implementation of Competition Game Model

This game is investigated with a simple GA with separate pool for each com-
pany. The values of each bit on the strategy chromosome for representation are
1 for cooperation (high price) and 0 for defection (low price). The first bit of
the chromosomes decides the actions at the first round of game and the follow-
ing bits represent the strategy with respect to the competition outcome at the
previous round, i.e., CN−1, CN−2, ...., C1, C0, D0, D1, ...., DN−2, and DN−1, here
C/D denotes player actions, cooperation/defection and number (0....N) denote
the number of cooperators of competitors in that round . Therefore, the length
of the strategy chromosome is 1 + 2N . Even though the number of players in-
creases, the chromosome is still short and the possibility of disrupting the schema
is small. For the game part, the parameters we set are,

1. High price (Ph > 1) for cooperator and low price (Pl > 1) for defector;
2. Cost of each goods or service (C = 1);
3. Total customer number at the first round, N = 1000;
4. The number of rounds in every game, r;
5. Internal market share loss (α),0 ≤ α ≤ 1;
6. And external customer influence (β). More cooperators in the competition

lead lower β value and −1 ≤ β ≤ 0 to describe the loss/gain of customers
for the whole market.

We are interested in the emergence of total cooperation, i.e., every competi-
tor choose high price in competitions, under the parameter settings influence.
Therefore, we run each game by each parameter settings and record the number
of competitions with each competition situation, e.g., all the players cooperate
with one another, at each generation to find if the total cooperation will be form
before 1000 generations of the evolution.

4 Comparative Experiments

According to the previous work [7] of oligopoly game model, we find that the
influence on the strategies of competitors dose not rely on the value of high
price and it of low price which the company adopt respectively but on relations
of high price and low price. Therefore, we simplify the three subjective factors,
high price, low price, and cost, as Profit Ratio= (Ph −C)/(Pl −C). Firstly, we
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try to simulate the influence of Market share loss (α) on cooperation so that the
β values are set as 0. The environment is set simple firstly in that the customer
movements are zero, i.e., /alpha = 0. Therefore, that the payoffs to cooperators
are more than those to defectors in every case. We can thus predict that the
result should tend to cooperation but also use this set to experiment the influence
of number of players in the game. The number of game with all cooperators is
shown in Table 1 and we can find that high profit ratio (Ph = 2.0, Pl = 1.2) leads
more cooperation outcomes but the difference between the influence of high and
low Profit ratios is not obvious when the cooperation is easy to achieve. More
competitors in the competition make the cooperation hard to be achieved. This
is very similar to common sense since the collusion become difficult in perfect
competition because of difficulty for checking all other competitors.

Table 1. The number of total cooperation after 1000 generations with total loyalty

Company Number Subjective Factors
Ph = 1.4, Pl = 1.2 Ph = 2.0, Pl = 1.2

5 943.99 943.99
6 931.00 943.99
7 917.69 943.99
8 907.80 943.99
9 890.93 943.99

10 884.54 943.99

Secondary, we find that the emergence of cooperation is similar under the
same profit ration even though the actual subjective factors (Ph and Pl) are
different. We check profit ration =2, 2.5, 3 5 while the market share loss as 0.2,
0.3, 0.5 and 0.7 and all the simulations here can conclude that the profit ratio
could replace Ph, Pl, and C to be a subjective factor.

We investigate the effect of changing the parameter determining the market
share loss. We run the 3-players game under the same profit ratio with different
market share loss values, 0.2, 0.3, 0.4, 0.5, and 0.7. Table 2 shows some exemplar
results. We find that the higher a value of the market share loss, the harder
for cooperation. When profit ratio=2, there is no α value which can ensure the
emergence of cooperation because the disadvantage of cooperation is too high.
However, at lower α values, the number of total defectors decreases. The similar
influence of market share loss on cooperation also appears under other values of
profit ratio. We can say that the higher the market share loss leads more difficult
to emerge cooperation. We also check which profit ratio affects cooperation at
which α in the 3- players game and find:

1. With a low α value(0.2), and profit ratio=3, 2-cooperators dominate.
2. When profit ratio=4, 2-cooperators and total cooperation have similar

likelihoods.
3. When profit ratio increases to 5, total cooperation dominates.
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Table 2. Profit ratio=2, the simulations of the different market share loss

Market share loss (α)All Defectors 1 Cooperator 2 Cooperators 3 Cooperators

0.2 499.13 290.55 182.16 28.14
0.3 903.95 67.16 22.90 5.98
0.4 994.03 37.84 14.15 3.98
0.5 966.54 20.99 11.50 0.96
0.7 981.47 13.73 3.97 0.83

However, there are still many simulations which cannot achieve total cooperation
and there are still many defectors in the games.

We may also investigate different values of α. With α = 0.3, profit ratio
must increase to 3.5 if we are to get cooperators surviving, at which time 2-
cooperators dominate. However, as the profit ratio increase to 5, we still cannot
make total coop-eration dominant but the number of 2-cooperators increases to
around 500. With α = 0.4, total defection dominates when profit ratio ≤ 4.
While profit ratio=5, there are many 1-cooperator and 2-cooperators situations
appearing in the games with α = 0.4. With α = 0.5, even if the profit ratio
increases to 5, there are still 80% of competition outcomes which show total
defection. At α = 0.7, the number of total defection outcomes is still more than
900 when profit ratio is increased to 6. There is no chance for cooperators to
survive in the competition when the market share loss is so high.

When α = 0.2, even when we set the Ph very high (profit ratio=5), there
are almost 45% of competition outcomes not achieving total cooperation. We
experiment in this competition environment with α = 0.2 with even higher profit
ratios to check if it is ever possible for total cooperation to break out (See Table
3). We find that the rate of change of increasing total cooperation becomes slow
when the profit ratio is set too high. This may suggest that there is a limitation
on the maximum possible value of total cooperation with these parameter values.
The best result is 70% of total cooperation and 24% of 2-cooperators co-existing
in the game.

We now investigate increasing the number of the players involved in the
competi-tion to 10. Here, to make comparisons simple, we set all the simula-
tions with =0.2 and change the profit ratio (1.5 to 5). We use 0.2 for the market
share loss since, with our experience of simulating the 3-players game, we know
that cooperation is hard to evolve when the market share is high. We investigate
the 2-players game initially. In the 2-players game, cooperation is easy to achieve.
We find that with profit ratio=2.5, total cooperation emerges and dominates.
When profit ratio=3, the number of total cooperators is around 800 and it is
870 when profit ratio=5.

In our investigation with the 4-players game, total defection is dominant when
the profit ratio< 2.5. Above 2.5, the dominant outcome is 2 cooperators even
when the profit ratio increases to 5. However, we also find that 3-cooperators
emerge when the profit ratio is set higher. Similar things happen in the 5-players
game but the dominant outcome is still 3 players. In the 6-players game, the
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Table 3. α=2, a comparison of the different profit ratio effects

Profit ratioAll Defectors 1 Cooperator 2 Cooperators 3 Cooperators

6 35.73 58.78 282.68 622.80
8 26.65 51.12 258.57 633.66

10 24.82 48.18 255.63 671.37
12 22.96 45.71 237.66 693.66
14 22.73 44.81 237.90 694.67
15 24.51 44.75 231.52 699.23

same dominant outcome, 3 cooperators, emerges when the profit ratio=2.5. The
number of 4 cooperators increases and the number of 2 cooperators decreases at
the same time when the profit ratio increases. The dominant outcomes in the
7-players and 8-players games are 4 cooperators and both appear when profit
ratio=2.5. In the 9-players game, 5 cooperators is dominant but the number of
6-cooperators is similar to the number of 5 cooperators when profit ratio=5.

The investigation of the 10-players game gives similar results to the 9-players
game. The dominant outcome is 5 cooperators but the number of 6 cooperators
increases when the Profit ratio increases. We also investigate if this stable domi-
nation can be changed. When profit ratio=15, number of 7 players is the highest
even though it is only around 250.

We also investigate the effect of competition by external customer influence
but there are not obvious finding to prove these factors affecting the emergence
of cooperation strongly.

There are two interesting finding from these investigations:

1. Profit ratio=2.5 seems to be a critical point when α = 0.2. Smaller than
that, total defection is dominant no matter how many players are involved
in the competition. When the profit ratio 2.5, cooperation emerges and the
simulation will achieve the dominant outcomes. They may not achieve the
total cooperation but the cooperation does exist in the game.

2. When the number of players exceeds 3, we cannot achieve total cooperation
with the profit ratio≤ 5. The dominant outcome other than total defection
is near to N/2 cooperators which seems to be the result of a random search.
However, when the profit ratio increases, the more cooperation seems to
appear. We can conclude that, when N is too big, most of the simulations
which cannot achieve total cooperation fall into a random search but the
advantage of cooperation with a high profit ratio still exists.

5 Conclusion

The market competition game model is design to predict the emergence of coop-
eration for price competition under the market environment and the price set by
companies involving. From the experiment results, our first major finding is that
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the number of firms is not the sole determinant of the formation of a cartel (as is
usually taught in industrial economics). We have identified the profit ratio and
customers’ sensitivity to price ratio as being important factors in determining
whether a cartel will form: all other things being equal, we are more likely to
observe collusive behavior in commodities with low demand elasticity; secondly,
we are more liable to observe collusive behavior in an industry with high profit
differential than those with a low profit ratio. The objective factors affect the
results more than the subjective factor. This means that the environment of the
competition is the most important thing for competition no matter what the
company wants subjectively.

There seems to be a critical point in the profit ratio at profit ratio=2.5 when
α = 0.2. Under profit ratio=2.5, the best strategy is total defection no matter
how many competitors there are. Other values of α give other values of the
critical point but such values seem always to exist. Otherwise, with a fixed α, it
is rarely possible to force all simulations to evolve towards cooperation. We may
suggest that there is always the space for defection or cartel/collusion

External influence seems not to affect the results as strongly as internal fac-
tors. It is worth investigating more external influences on the market to realize
its influence on the decisions in the future research.
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Abstract. In this work, a method is presented for analysis of Markov chains
modeling evolutionary algorithms through use of a suitable quotient construc-
tion. Such a notion of quotient of a Markov chain is frequently referred to as
“coarse graining” in the evolutionary computation literature. We shall discuss
the construction of a quotient of an irreducible Markov chain with respect to an
arbitrary equivalence relation on the state space. The stationary distribution of
the quotient chain is “coherent” with the stationary distribution of the original
chain. Although the transition probabilities of the quotient chain depend on the
stationary distribution of the original chain, we can still exploit the quotient con-
struction to deduce some relevant properties of the stationary distribution of the
original chain. As one application, we shall establish inequalities that describe
how fast the stationary distribution of Markov chains modelling evolutionary al-
gorithms concentrates on the uniform populations as the mutation rate converges
to 0. Further applications are discussed.

1 Introduction

One of the aspects of the theoretical analysis of the evolutionary algorithms is studying
the properties of the Markov chains associated with these algorithms. Many research
articles in the field of evolutionary computing have been devoted to this subject (see,
for instance, [7], [8], [11] and [2] for a survey of known results and open questions).
One difficulty that arises with this approach is the fact that the number of states of
this Markov chain grows very fast with respect to the size of the search space and the
number of elements in a population. Indeed, if Ω denotes the search space, the num-
ber of sates of this Markov chain for a population of size m is |Ω|m. In the current
paper we introduce a construction which can be viewed as a “quotient” (or, according
to a commonly accepted evolutionary algorithm terminology, a “coarse graining”) of a
Markov chain with respect to an equivalence relation. This construction is applicable
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to all irreducible Markov chains (which is true of Markov chains modelling evolution-
ary algorithms with positive mutation rate: see, for instance, [11] or [2]). The “quotient
chain” will be shown to be irreducible as well and its unique stationary distribution
is coherent with that of the original chain. Although the transition probabilities of the
quotient chain depend on the stationary distribution of the original chain (which is the
subject of our investigation), we can still use the quotient construction to deduce some
interesting properties of the stationary distribution of both the quotient chain and the
original chain. To illustrate this technique, we establish inequalities that show how fast
the stationary distribution of a Markov chain modelling an evolutionary algorithm con-
centrates on the uniform populations (populations consisting of the repeated copies of
the same individual only) with respect to a decreasing mutation rate. This extends the re-
sults of [3] and [10] in the sense that it provides an estimate on the rates of concentration
of the stationary distribution apart from establishing the limits. Such information may
be helpful in deciding on the amount of fitness pressure and/or mutation rate which is
most appropriate for a given algorithm. It should be noted that an inequality analogous
to the one in corollary 10 has been obtained in [8] using entirely different methods. It
is worth mentioning that the method introduced in the current paper is very simple and
elementary unlike those in [7], [8], [3] and [10]. To the best of the authors’ knowledge,
the inequality in corollary 11 is new. This inequality establishes a connection between
the rate of concentration of the stationary distribution of the Markov chain modelling an
evolutionary algorithm on the uniform populations and the maximum expected waiting
time to reach a uniform population starting from any other population. Estimating such
expected waiting times for various recombination operators remains an open problem.
The authors of this work see its main contributions not so much being the results on
the rate of concentration of the stationary distribution on the uniform populations but
the innovative quotient of the Markov chain construction which allows for deduction
of known and new results in a rather elementary setting. The authors hope that this
technique will have further significant applications in future research.

2 Notation and Basic Framework

Let Ω be a finite set which shall be called the search space. Let f : Ω → (0, ∞)
be a function which shall be called the fitness function. The goal for an optimization
algorithm such as an evolutionary algorithm is to find a maximum of the function f .

Definition 1. A population P of size m is an element of Ωm. A population is called
uniform, if it is of the form (x, x, . . . , x) for some x ∈ Ω.

Remark 2. We note that there are two primary methods for representing populations:
the familiar multi-set representation as used, e.g., in [11] and ordered tuples as in def-
inition 1 above and, e.g., in [7,8]. Each has advantages, depending upon the particular
analytical goals. This work uses the ordered tuples method, which is perhaps the more
natural method, but may be less familiar to the reader.

In the current paper we shall be dealing with an evolutionary algorithm having a fixed
population size m and a fixed fitness landscape. The algorithm cycles through fitness-
proportional selection, recombination and mutation stages. A stage is a probabilistic
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rule which takes one population as an input and produces another population of the
same size as an output. For example, fitness-proportional selection is introduced below:

Definition 3. The stage of fitness-proportional selection takes a given population P =
(x1, x2, . . . , xm) with xi ∈ Ω as an input. A new population P ′ = (y1, y2, . . . , ym)T

is obtained where yi’s are chosen independently m times form the individuals of P and
yi = xj with probability f(xj)

Σm
l=1f(xl)

.

In our framework, recombination can be any stage which does not alter uniform popu-
lations in any way with probability 1.1

The main purpose of mutation is to ensure that the algorithm is ergodic in the sense
that every population is reached from every other population with some positive (al-
though rather small) probability. We shall therefore define mutation stage as follows:

Definition 4. Mutation is a stage which produces a population P ′ = (y1, y2, . . . , ym)
from a population P = (x1, x2, . . . , xm) in such a way that xi �= yi with probability
at most δ for some δ > 0 independent of P , P ′ and i. The greatest lower bound μ over
all such δ shall be called the mutation rate in the framework of the current paper. In
addition, we require that for every y ∈ Ω the probability that yi = y is bounded below
by Ω(μl) for some fixed l. We shell refer to the smallest such l as the generalized string
length. Finally, we require that the event yi = xi is independent of the event yj = xj

for i �= j.

The following fact is easy to verify:

Proposition 5. Consider a mutation stage M with mutation rate μ. If a population
P ′ = (y1, y2, . . . , ym) is an output of the population P = (x1, x2, . . . , xm) upon the
completion of M , then the probability that yi �= xi for fixed i is at most μ.

In [11], it has been pointed out that heuristic search algorithms give rise to the follow-
ing Markov process2 (see also [2]): The state space of this Markov process is the set
of all populations of a fixed size m. In our notation, this set, is simply Ωm. The transi-
tion probability pxy is simply the probability that the population y ∈ Ωm is obtained
from the population x upon the completion of fitness-proportional selection followed
by recombination and then followed by mutation. The aim of the current paper is to
illustrate a new technique introduced in the next section for studying, e.g, the rate of
concentration on uniform populations of the stationary distribution of a Markov chain
modelling an evolutionary algorithm.

3 Quotients of Irreducible Markov Chains

Throughout the current section we shall be dealing with an irreducible Markov chain
M over a finite state space X . {px,y} denotes the Markov transition matrix with the
convention that px,y is the probability of getting y in the next stage given x. Suppose

1 Most types of recombination used in practice are pure in the sense of [9] so that they preserve
the uniform populations.

2 Recall that in the current paper, we use the m-tuple representation.
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we are given an equivalence relation ∼ partitioning the state space X . The main idea
of the current section is to construct an irreducible Markov chain over the equivalence
classes under ∼ (i.e. over the set X/∼) whose stationary distribution is compatible with
that of M. This construction is a slight generalization of the construction in [1]:

Definition 6. Given an irreducible Markov chain M over a finite state space X deter-
mined by the transition matrix {px,y} and an equivalence relation ∼ on X , let π denote
the unique stationary distribution of the Markov chain M. Define the quotient Markov
chain M/∼ over the state space X/∼ of equivalence classes via ∼ to be determined
by the transition matrix {p̃U ,V}U ,V∈X/∼ given as

p̃U ,V =
1

π(U)

∑
x∈U

π(x) · px,V =
1

π(U)

∑
x∈U

∑
y∈V

π(x) · px,y.

Here px,V denotes the transition probability of getting somewhere inside of V given x.
Since V =

⋃
y∈V{y} it follows that px,V =

∑
y∈V px,y and hence the equation above

holds.

Intuitively, the quotient Markov chain M/∼ is obtained by running the original chain
M starting with the stationary distribution and computing the transition probabilities
conditioned with respect to the stationary input. If one starts with an arbitrary distribu-
tion and runs the process for a long period of time then the transition probabilities in
definition 6 serve as a good approximation to the transition probabilities induced by the
corresponding stochastic process. Thus, the following fact should not be a surprise:

Theorem 7. Let π denote the stationary distribution of an irreducible Markov chain M
determined by the transition matrix {px,y}x,y∈X . Suppose we are given an equivalence
relation ∼ partitioning the state space X . Then the quotient Markov chain M/∼ is
irreducible and its unique stationary distribution π̃ is compatible with π in the sense
that for every O ∈ X/∼, we have π̃({O}) = π(O).

Proof: Since the original chain M is assumed to be irreducible, it follows that there
exists an n ∈ N such that for all x, y ∈ X we have pn

x,y > 0 where pn
x,y denotes

the probability that y is reached from x after exactly n time steps. This, in turn, is
equivalent to saying that there exists a sequence of states x1 = x, x2, . . . ,xn = y such
that pxi, xi+1 > 0. Let Oi denote the equivalence class of xi under ∼. Now we see that

p̃Oi,Oi+1 =
1

π(Oi)

∑
x∈Oi

∑
z∈Oi+1

π(x) · px,z ≥ 1
π(Oi)

· π(xi) · pxi, xi+1 > 0.

This shows that p̃n
O1,On

> 0. Since the equivalence classes are nonempty and the
choices of x and y are arbitrary, it follows that p̃n

U ,V > 0 ∀ U , V ∈ X/∼. This shows
that the Markov chain M/∼ is irreducible and, hence, has a unique stationary distribu-
tion π̃. The fact that π̃({O}) = π(O) is the stationary distribution of M/∼ can now be
verified by direct computation. Indeed, we obtain

∑
O∈X/∼

π̃({O}) · p̃O,U =
∑

O∈X/∼
π(O) · 1

π(O)

∑
x∈O

∑
z∈U

π(x) · px,z =
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=
∑
x∈X

∑
z∈U

π(x)·px,z =
∑
z∈U

∑
x∈X

π(x)·px,z
by stationarity of π

=
∑
z∈U

π(z) = π(U) = π̃({U}).

This establishes the stationarity of π̃ and theorem 7 now follows.

Although theorem 7 is rather elementary it allows us to make useful observations of the
following type:

Corollary 8. Suppose we are given an irreducible Markov chain M over the state
space X , and let X = A ∪ B with A ∩ B = ∅. Suppose that for every a ∈ A we
have pa, B < μ while for every b ∈ B pb, A > κ. If π denotes the unique stationary
distribution of M, we have π(B) < μ/κ and π(A) > 1 − μ/κ. We also have π(A) ≥
(1 + μ/κ)−1.

Proof: Let ∼ denote the equivalence relation corresponding to the partition {A, B} of
X . Now consider the Markov chain M/∼. This is a Markov chain determined by the
2 × 2 transition matrix (

pA,A pB, A

pA,B pB, B

)
where pA,B = 1

π(A)

∑
a∈A π(a) · pa, B < 1

π(A)

∑
a∈A π(a) · μ = μ and, likewise,

pB,A = 1
π(B)

∑
b∈B π(b) · pb, A > 1

π(B)

∑
b∈B π(b) · κ = κ. According to theorem 7,

the Markov chain M/∼ is irreducible and its unique stationary distribution π̃ satisfies
π̃({A}) = π(A) and π̃({B}) = π(B). Moreover, by direct computation it is easy to see
that the stationary distribution of the Markov chain determined by the 2 × 2 transition
matrix above (i.e. of the Markov chain M/∼) is π̃({A}) = pB,A

pA,B+pB,A
and π̃({B}) =

pA,B

pA,B+pB,A
. We finally obtain the desired inequalities π(B) = π̃({B}) = pA,B

pA,B+pB,A
<

μ
κ and π(A) = 1 − π(B) > 1 − μ

κ . Likewise, writing π(A) = pB,A

pB,A+pA,B
= 1

1+
pA,B
pB,A

and using our previous bounds on pA,B and pB,A we obtain the last assertion.

Corollary 8 can be somewhat strengthened by observing that any power of a Markov
transition matrix determining an irreducible Markov chain also determines an irre-
ducible Markov chain having the same stationary distribution as the original one. Ap-
plying corollary 8 to every power of a Markov transition matrix then gives us the fol-
lowing fact:

Corollary 9. Suppose we are given an irreducible Markov chain M over the state
space X , and let X = A∪B with A∩B = ∅. Suppose for every a ∈ A we have pn

a, B <
μn while for every b ∈ B pn

b, A > κn. Then, if π denotes the unique stationary distribu-
tion of M, we have π(B) < inf{μn/κn | n ∈ N} and π(A) > 1−inf{μn/κn | n ∈ N}.

Corollary 9 readily implies some basic observations about the rate of concentration of
the stationary distribution of Markov chains modelling EAs. Our bounds apply to a
rather wide class of evolutionary algorithms as described in section 2.

4 Applications of the Quotient Construction

First, let us recall a well-known fact that a Markov chain modelling an evolutionary
algorithm described in section 2 is irreducible thanks to the ergodicity of mutation (see
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for instance [2] and [11]). The main idea of what follows is to apply corollaries 8 and 9
to the subset H ⊆ Ωm of the uniform populations and its complement in Ωm.

Corollary 10. Suppose we are given an evolutionary algorithm A with mutation rate
μ. Let π denote the unique stationary distribution of the Markov chain associated to the
algorithm A. Then we have π(H) ≥ 1 − mm+1(1 − μ)−mμ.

Proof: This is an immediate application of corollary 8. Indeed, the event of destroy-
ing a given uniform population is equivalent to the event of applying the nonidentity
transformation to either one of the elements of that population and so is a union of
events happening with probability μ each. Hence the probability of destroying a given
uniform population is bounded above by mμ. The probability of passing from a non-
uniform population to a uniform one is at least as large as the probability of consecutive
m independent drawings of the most fit individual. The probability of picking the most
fit individual in a population is bounded below by the probability of picking a given
individual form a population where all the individuals have the same fitness, which is
1/m. Doing so consecutively and independently m times is m−m. Afterwards, with
probability (1 − μ)m everyone stays the same. The desired equation now follows im-
mediately from corollary 8

The bound in corollary 10 is a rather weak one. This is not too surprising the more so
that it applies to a wide class of algorithms. One should be able to improve the bound
in corollary 10 for specific types of algorithms using corollary 9 instead of corollary 8.

Corollary 11. Suppose we are given an evolutionary algorithm A with mutation rate
μ. Let T (x) denote the random variable measuring the number of steps it takes for
an EA to reach a uniform population starting with the population x. Let π denote the
unique stationary distribution of the Markov chain associated to the algorithm A. Then
we have π(H) ≥ 1 − α(1 − μ)−αμ, where α = 2m · max{E(T (x)) | x ∈ Ωm − H}.

Proof: First note that

∀x ∈ Ωm − H, we have pL
x,H ≥ P (T (x) < L) · (1 − μ)Lm.

By Markov’s inequality we have

P (T (x) < L) ≥ 1 − E(T (x))
L

≥ 1
2

for L ≥ 2E(T (x)).

We then deduce that

pβ
y,H ≥ 1

2
(1 − μ)α ∀ y ∈ Ωm − H

where β = 2 max{E(T (x)) | x ∈ Ωm − H} = α/m. Just like in the proof of corol-
lary 10, we have

pβ
y,Ωm−H ≤ m · max{E(T (x)) | x ∈ Ωm − H}μ

which finally gives π(H) ≥ 1 − α(1 − μ)−αμ.
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We end this paper with one more application of corollary 8 to a question which has
been extensively studied in [3], [7] and in [8] and in [10]. Hopefully the reader will
appreciate the simplicity and explicitness of the argument presented below comparing to
the technique introduced in [3]. Also unlike the methods in [3] and in [10], the argument
below provides an estimate on the convergence rates. See also [7] and [8] in this regard.
The authors hope that the method of the current paper can be useful in the future for
deriving similar interesting results. Throughout the following we shall assume for the
simplicity of presentation that there is only a unique fittest individual in our search
space, Ω.3 We shall need the following notion of the selection pressure first:

Definition 12. We define selection pressure t to be any positive parameter which
changes fitness in the order preserving manner so that if f(t) is the minimal probability
of going from a population containing a copy of the fittest individual x to the uniform
population consisting of a single copy of x only after fitness-proportional selection then
f(t) → 1 as t → ∞.

Corollary 13. Consider a parameterized family of algorithms with common general-
ized string length l, {A(μ, t)}μ∈(0, 1), t>0 where μ is the mutation rate and t is the
selection pressure of the algorithm A(μ, t). Denote by πμ, t the stationary distribution
of the Markov chain associated to the algorithm A(μ, t). Suppose m > l. Then we
have limμ→0 limp→∞ πμ, t(u) = 1 where u denotes the uniform population consisting
of the unique fittest individual only.

Proof: Let A denote the set of all populations of size m containing at least one copy
of the unique fittest individual x, and let B denote the set consisting of the rest of the
populations of size m. (i. e. is the set of these populations which do not contain x).
Now, for every small mutation rate μ > 0 select the selection pressure p large enough
so that 1 − f(p) < μm. Now observe that for every a ∈ A after selection we end up
with u with probability f(p) (close to 1). Notice that we used the uniqueness of the
fittest individual here. Provided this is the case, recombination does not alter anything
and we end up with u again. The only way to get out from A after mutation is only to
mutate at least one bit in every individual of u which happens with probability O(μm)
(since there are m individuals, the probability of mutating an individual is bounded
above by O(μ) and individuals are mutated independently). The only other way to get
out from A is to avoid getting u upon completion of the selection stage which hap-
pens with probability 1 − f(p) < μm by the choice of p. Therefore we have ∀ a ∈ A
pa→B ≤ f(p)O(μm) + (1 − f(p)) < f(p)μm + μm = O(μm). Likewise, observe
that for any given population b ∈ B it suffices to mutate some individual in b into
the fittest individual x to obtain a population in A after mutation. According to defini-
tion 4 this happens with probability Ω(μl). Now, applying corollary 8, we conclude that
πμ, t(A) ≥ (1 + O(εN )/Ω(εl))−1 = 1/(1 + O(μm−l)) → 1 as μ → 0 as long as p is
chosen so that 1 − f(p) < μm (notice that choosing p so that 1 − f(p) < μκ for κ > l
would suffice as well, but would give slower convergence rate) and so it follows that
limμ→0 limp→∞ πμ, t(A) = 1. The desired conclusion now follows by combining this
fact with corollary 10, carefully noting that the bound in corollary 10 is independent of
the selection pressure.

3 This assumption can be relaxed by requiring that the set of fittest individuals is closed under
recombination. The proof presented below goes through with only minor modifications.
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5 Conclusion

In the present paper, we constructed a quotient (or, in the language used by the evolu-
tionary computation community, a “coarse graining”) of an irreducible Markov chain
with respect to an arbitrary equivalence relation on the search space. As an illustration
of how this simple construction can be applied, we established some inequalities that
show how fast the stationary distribution of a Markov chain modelling an evolution-
ary algorithm concentrates on the uniform populations (populations consisting of the
repeated copies of a single individual only). It was shown (see corollary 8 and 9 that
the stationary distribution value of the set of uniform populations is bounded below
by 1 − kμ where μ is the mutation rate and k is a multiplicative constant depending
on the population size.4 In addition, we presented a new estimate in Corollary 9 for
the expected time it takes for an evolutionary algorithm to reach a uniform population
starting with the population x. These results based upon our new method show that the
two bounds and estimates mentioned above are closely related.
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Abstract. Many important fitness functions in Evolutionary Computa-
tion (EC) have high degree of neutrality i.e. large regions of the search
space with identical fitness. However, the impact of neutrality on the
runtime of Evolutionary Algorithms (EAs) is not fully understood. This
work analyses the impact of the accessibility between neutral networks on
the runtime of a simple randomised search heuristic. The runtime anal-
ysis uses a connection between random walks on graphs and electrical
resistive networks.

1 Introduction

Evolutionary algorithms are successful on a wide range of problems, but often
notoriously hard to analyse. The classical metaphor of populations climbing to-
wards higher points in a fitness landscape is often insufficient for explaining
the types of evolutionary dynamics experienced in practice. In the late sixties,
Kimura proposed an alternative view termed neutral evolution [1]. He argued
that most of the mutations in biological organisms are neutral. Hence, popula-
tions are randomly drifting on so-called neutral networks (or plateaus) until a
port to a more fit neutral network is found.

Fitness functions may often exhibit some form of neutrality. Naturally, one
may ask if neutrality is beneficial in EC. However, there is no clear answer in the
literature. Some experimental evidence suggests that neutrality may be benefi-
cial [2], but the results are not consistent [3]. It seems that very large neutral net-
works i.e. Needle [4] cause an exponential increase in runtime. However neutral
networks with other shapes i.e. polynomially long paths, are easy to overcome
[5]. A further complicating factor is that neutral networks of different shapes
and sizes may occur within the same fitness function or genotype-phenotype
mapping [6].

Theoretical research on neutrality raise the question on which mathematical
formalism to use. For example, in a fitness function with neutrality, it has been
shown that the use of a distance metric to measure the progress rate of an EA
has important limitations [5].

An alternative approach is a new formalism called accessibility [7]. Informally,
the accessibility from a neutral network X into another neutral network Y is the

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 734–741, 2006.
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fraction of the border of network X which falls within network Y . Accessibility
between neutral networks is not necessarily symmetric. Ideas for calculating ac-
cessibilities in indirect genotype-phenotype mappings were discussed in [8]. This
paper looks at the use of accessibility for characterising which neutral networks
are hard to overcome for a simple randomised search heuristic.

The analysis uses standard notation e.g. O and Θ for asymptotic growth of
functions. The symbol Hn =

∑n
i=1 1/i denotes the harmonic series; symbol Σ

denotes a finite alphabet, and Σn the set of strings of length n over Σ. The
Hamming distance between strings x and y is denoted d(x, y) and the symbol Γ
denotes the neighbourhood relation over graphs and strings.

Definition 1 (Accessibility). Given two subsets X, Y ⊂ S, the accessibility
from X to Y is defined as A(Y ← X) := |∂X ∩ Y |/|∂X |, where the border ∂X
is defined as ∂X := {b ∈ S \ X | ∃x ∈ X st. b ∈ Γ (x)}.

Definition 2 (Convexity). A subset X of Σn is called convex if [x, y] ⊆ X
for all x, y ∈ X, where [x, y] := {z ∈ Σn | d(x, z) + d(z, y) = d(x, y)}. If X is
convex, then there exist sets Xi ⊆ Σ such that X = X1 × · · · × Xn [8].

The iterations of an EA running on a highly neutral problem can be divided
into time epochs [9]. An epoch starts when the population has entered a neutral
network and ends when the population has found another, higher fit neutral
network. During an epoch, the population drifts randomly on the neutral network
and the fitness of the population remains constant. The duration of an epoch
depends partly on characteristics of the current neutral network, and that of its
neighbouring networks. The goal of this paper is to better understand how one
such characteristic, accessibility, influences the duration of a single epoch.

In order to focus on a single epoch a simple fitness function called TwoNets
is defined, consisting of two neutral networks X and Y . The optimum is any
point on network Y and the points on network X are local optima, and it is
assumed that the EA has found network X and needs to find network Y .

Definition 3 (TwoNets). Given a search space S and two non-empty subsets
X and Y of this space, the fitness function is defined as TwoNetsX,Y (s) := 2
if s ∈ Y , TwoNetsX,Y (s) := 1 if s ∈ X, and TwoNetsX,Y (s) := 0 otherwise.

This work considers two types of search spaces for TwoNets, the two-dimen-
sional integer lattice ZZ × ZZ, and the set of strings Σn.

The goal is to understand how a standard genetic algorithm behaves on
TwoNets. However, investigations herein, are conducted using a simple algo-
rithm called Random Local Search (RLS). RLS works similar to a hill climber.
A randomly chosen search point is selected. In each iteration, a randomly cho-
sen neighbour is selected and replaces the current search point if its fitness is
equal or better than the current search point. Here, it is assumed that the initial
search point belongs to network X . RLS on TwoNets will, therefore, behave as
a random walk on network X , only accepting search points on network X , until
a point on network Y is found.
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2 Random Walks and Electrical Resistive Networks

A simple random walk on an undirected graph G = (V, E) is a discrete time
stochastic process W1, W2, ... with the node set V of the graph as state space.
Given the state Wt = u of the process at time t, the next state Wt+1 is sampled
uniformly at random from the set of neighbour nodes Γ (u) of node u. Given a
cost function c : E → IR on the edge set, a simple random walk can be generalised
into a general random walk with state transition probabilities Prob(Wt+1 = v |
Wt = u) = c(u, v)/

∑
w∈Γ (u) c(u, w). The hitting time hxy between nodes x and

y is the expected number of time steps to reach node y starting from node x.
Hitting times are not necessarily symmetrical i.e. hxy �= hyx.

Problems in random walks are mathematically connected to the theory of
electrical resistive networks [10,11]. A graph G = (V, E) is transformed into
a resistive network by replacing each edge with a resistor with unit resistance.
Given two nodes, the effective resistance Rxy is defined as the resistance between
node x and node y when one ampere current is inserted in node x and removed
from node y. Tetali showed [12] that the hitting time hxy can be calculated as

hxy =
1
2

∑
z∈V

d(z)(Rxy + Ryz − Rxz), (1)

where d(z) is the degree of node z. The connection is also valid for for general
random walks. Given a cost function c, each edge (u, v) is replaced with a resistor
with resistance ruv = 1/c(u, v). The hitting time hxy can now be calculated for
general random walks by replacing the degree d(z) in Eq. (1) with the generalised
degree c(z) =

∑
v∈Γ (z) 1/rzv.

Finding these effective resistances is not always trivial, so one is interested
in techniques that can be used to give good estimates. A simple technique,
called Rayleigh’s principle [10] is to either remove edges from the network, thus
increasing the effective resistance in the network, or short-circuiting nodes thus
decreasing the effective resistance in the network. An alternative technique called
Thompson’s principle can be applied by defining a flow on the network [11]. A
flow is a function f : E → IR defined on the edges which satisfies f(u, v) =
−f(u, v). The net flow out of a node is defined as f(u) :=

∑
v∈Γ (u) f(u, v). The

power of a flow f is defined as P (f) :=
∑

{u,v}∈E ru,v · f(u, v)2. If the flow is
defined such that the net flows are f(x) = 1, f(y) = −1, and f(z) = 0 for all
z �= x, y, then the effective resistance can be upper bounded by Rxy ≤ P (f). In
such flows, node x is called the source and node y is called the sink.

3 Runtime on Integer Lattice

In the two-dimensional integer lattice ZZ × ZZ, convex neutral networks are
rectangles, and neighbouring neutral networks can therefore only touch each
other on one of the four sides. To simplify further, it is assumed that neutral
network X is a square of size n × n, spanning the area between point (1, 1) and
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point (n, n). Furthermore, assume that network Y neighbours network X along
a part of the right side of X . With these assumptions, network X and Y have
minimal accessibility of A(Y ← X) = 1/4n when they touch each other only in
one corner and maximal accessibility of A(Y ← X) = 1/4 when an entire side
of network X neighbours network Y as in Fig. 1.

The objective is to find the expected runtime RLS needs to find a node in
network Y . To find the expected runtime on the worst case scenario, it is assumed
that the initial search point is the point x = (1, 1), which is the point in network
X furthest away from network Y . All the nodes in network Y are combined into
a single node labelled y as the particular node found in network Y is not relevant.
Nodes at the edges of network X that neighbours nodes outside network Y have
self-loops because search points outside networks X and Y have inferior fitness
and will never be accepted as the new search point. RLS will behave similar to a
random walk on the graphs shown in Fig. 1 (left and centre), and the expected
runtime of RLS on TwoNets equals the hitting time hxy.

y′

y

x

Min. accessibility.

y

x

Max. accessibility.

yx

Fig. 1. Graphs for integer lattice

Proposition 1. Let X be a convex neutral network in ZZ × ZZ of size n × n,
and let Y be a convex neutral network which neighbours network X such that
they have maximal accessibility A(Y ← X) = 1/4. Then the expected runtime of
RLS on TwoNetsX,Y is 2n2 + O(n).

Proof. In this case, all nodes (n, j), for 1 ≤ j ≤ n neighbour node y. The vertical
position in the lattice is therefore not essential, and the graph can be simplified
as shown in Fig. 1 (right).

hxy =
1
2

∑
z

d(z)(Rxy + Ryz − Rxz) =
1
2
Rxy

∑
z

d(z) +
1
2

∑
z

d(z)(Ryz − Rxz) (2)

=
1
2
Rxy

∑
z

d(z) =
1
2
Rxy(4n + 1). (3)

The effective resistance Rxy in the simplified graph is n, hence the asymptotic
hitting time is hxy = 2n2 + O(n).

Proposition 2. Let X be a convex neutral network in ZZ × ZZ of size n × n,
and let Y be a convex neutral network which neighbours network X such that
they have minimal accessibility A(Y ← X) = 1/4n. Then the expected runtime
of RLS on TwoNetsX,Y is Θ(n2 lnn).
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Proof. From Fig. 1 (left), it is easy to see that Ryz = Ryy′ + Ry′z for all nodes
z in X .

hxy =
1
2

∑
z

d(z)(Rxy + Ryz − Rxz) =
1
2
d(y)(Rxy + Ryy − Rxy) (4)

+
1
2

∑
z �=y

d(z)(Rxy′ + Ry′y + Ryy′ + Ry′z − Rxz) (5)

=
1
2
(Rxy′ + 2Ryy′) ·

∑
z �=y

d(z). (6)

The effective resistance Ryy′ is 1, so it is only necessary to calculate bounds
for Rxy′ . The lower bound is calculated using Rayleigh’s principle, and the up-
per bound is calculated using Thompson’s principle. To find a lower bound of
resistance Rxy′ , diagonal nodes are short-circuited. For example, nodes (1,2)
and (2,1) are short-circuited, nodes (1,3), (2,2) and (3,1) are short-circuited etc.
Short-circuiting nodes can only decrease the resistance in the network. There
are 2i resistors in parallel between diagonal i − 1 and i for 1 < i ≤ n. Using the
rule for resistors in parallel, a lower bound for the effective resistance is therefore
Rxy′ ≥ 2

∑n−1
k=1 1/2k = Hn−1 ≥ ln(n − 1).

To find an upper bound of resistance Rxy′ , Thompson’s principle is applied
by defining a flow f on the network, similarly to in [11]. For all nodes (i, j) with
2 ≤ i + j ≤ n, define a function f as f((i, j), (i + 1, j)) = −f((i + 1, j), (i, j)) :=

i
(i+j)(i+j−1) and f((i, j), (i, j + 1)) = −f((i, j + 1), (i, j)) := j

(i+j)(i+j−1) . For all
nodes (i, j) with n + 1 ≤ i + j ≤ 2n − 1, the flows are defined symmetrically
along the diagonal line from point (1, n) to point (n, 1), for example, f((n −
1, n), (n, n)) = f((1, 1), (1, 2)). It can easily be verified that function f is a flow
with source (1, 1) and sink (n, n). Furthermore, the flow out of any node (i, j) is
f((i, j), (i + 1, j)) + f((i, j), (i, j + 1)) = 1/(i + j − 1). Therefore, the flow along
any single edge incident on a node (i, j) at distance d = i+ j−2 from node (1, 1)
is never more than 1/(i + j − 1) = 1/(d + 1). Furthermore, there are 2(d + 1)
edges out of nodes at distance d ≤ n − 2 from node (1, 1). Resistance Rxy′ can
now be bounded by the power of flow f which is calculated along the diagonals.

Rxy′ ≤ P (f) = 2
n−2∑
d=0

·
∑

i+j=d+2

f((i, j), (i + 1, j))2 + f((i, j), (i, j + 1))2 (7)

≤ 2
n−2∑
d=0

2(d + 1) · 1
(d + 1)2

= 4Hn−1 = O(ln(n − 1)). (8)

Asymptotically, the effective resistance Rxy′ is Θ(ln n). Hence, the asymptotic
hitting time is hxy = 1

2 (Rxy′ + 2Ryy′) · ∑z �=y d(z) = 1
2 (Θ(ln n) + 2) · Θ(n2) =

Θ(n2 ln n).

4 Runtime on Hypercube

The graph GXY of the general random walk for the hypercube is defined as
follows: If X = X1 × · · · × Xn and Y = Y1 × · · · × Yn are neighbouring, convex
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neutral networks, then there exists an index i∗ such Xi∗ ∩Yi∗ = ∅, and Xj∩Yj �= ∅
for all other indices j �= i∗ [8]. For notational convenience, assume that the
sets are configured such that Xj �⊂ Yj for all j, 1 ≤ j ≤ �, Xj ⊂ Yj for all
j, � + 1 ≤ j ≤ n − 1, and Xn ∩ Yn = ∅. For any bit string u ∈ {0, 1}�, define
Xu := Xu

1 × · · · × Xu
� × X�+1 × · · · × Xn, where for all i, 1 ≤ i ≤ �, set Xu

is defined as Xu
i := Xi \ Yi if ui = 0, and Xu

i := Xi ∩ Yi if ui = 1. Clearly,
Xu ∩ Xv = ∅ for all u �= v, and X =

⋃
u∈{0,1}� Xu, so {Xu}u∈{0,1}� is a set

partition of X . The graph GXY = (V, E) is now defined with nodes V := {Xu |
u ∈ {0, 1}�} ∪ {∂X ∩ Y }, and edges E := {{Xu, Xv} | u, v ∈ {0, 1}�, d(u, v) ≤
1} ∪{{X1, ∂X ∩Y }}, where 1 = 1�. The graph is essentially a binary hypercube
of dimension �, with the node ∂X ∩Y attached to it. Furthermore, define a cost
function c over the edges as c(Xu, Xv) := |Xu| · |Xv

i | for all u, v ∈ {0, 1}�,
with d(u, v) = 1 and ui �= vi. On edges {Xu, Xu}, the cost function is defined
as c(Xu, Xu) := |Xu| · n · (m − 1) − ∑

Z∈Γ (Xu)\Xu c(Xu, Z), and finally for
the last edge, c(X1, ∂X ∩ Y ) := |X1| · |Yi∗ |. The generalised degree c(Xu) of
a node in the graph is now c(Xu) =

∑
Z∈Γ (Xu) c(Xu, Z) = |Xu| · n · (m − 1).

Hence, the transition probabilities in a general random walk over GXY becomes
Prob(Wt+1 = Xv | Wt = Xu) = |Xv

i |/(n·(m−1)). This is exactly the probability
that RLS moves to a search point in set Xv, given that the current search point
belongs to set Xu. The expected runtime of RLS on TwoNetsX,Y is therefore
hxy, where x = X0 and y = ∂X ∩ Y .

For the integer lattice, the behaviour of RLS corresponded to a simple random
walk with identical transition probabilities. Calculation of the hitting time hxy in
Eq. (6) exploited the fact that the term

∑
z �=y d(z)(Ry′z − Rxz) vanishes, which

does not hold for the general random walk used in the hypercube. The expression
for the hitting time in the hypercube therefore becomes more complicated. In the
following, let x = X0, y′ = X1 and y = ∂X ∩Y and note that Rzy = Rzy′ +Ry′y
for any z �= y.

hxy =
1
2

∑
z

c(z)(Rxy + Ryz − Rxz) =
1
2
c(y)(Rxy + Ryy − Rxy) (9)

+
1
2

∑
z �=y

c(z)(Rxy′ + Ry′y + Ryy′ + Ry′z − Rxz) (10)

= Ryy′
∑
z �=y

c(z) +
1
2

∑
z �=y

c(z)(Rxy′ + Ry′z − Rxz) (11)

= Ryy′ · n · (m − 1) · |X| + hxy′ . (12)

The value of Ryy′ is known, so the main difficulty in the expression above is the
term hxy′ . This term vanishes in the case of maximal accessibility, allowing the
hitting time to be calculated easily for this case.

Proposition 3. Let X and Y be two convex neutral networks in Σn, |Σ| = m
having maximal accessibility A(Y ← X) = 1. Then the expected runtime Tn of
RLS on TwoNetsX,Y is bounded by n ≤ Tn ≤ n · (m − 1).



740 P.K. Lehre and P.C. Haddow

Proof. The accessibility A(Y ← X) has the maximal value of 1 for configurations
of X and Y satisfying Xi = Yi = Σ for all i, 1 ≤ i ≤ n − 1, Xn ∪ Yn = Σ and
Xn ∩ Yn = ∅. In such configurations, X = X1, hence the graph corresponding
to the network consists of only two nodes, X and ∂X ∩ Y . Therefore x = y′ and
the term hxy′ in Eq. (12) vanishes. The resistance Ryy′ = c(X1, ∂X ∩ Y )−1 is
1/(|X |·|Yn|), so the hitting time hxy is therefore at least n and at most n·(m−1).

Omitting the second term hxy′ in Eq. (12) gives a lower bound on the hitting time
hxy. This lower bound can in turn be shown to be dependant on the accessibility,
giving the main result of this work.

Theorem 1. Let X and Y be two convex neutral networks in Σn, |Σ| = m.
Then the expected runtime Tn of RLS on TwoNetsX,Y is bounded from below
by Tn ≥ 1

(m−1) · A(Y ← X)−1.

Proof. The expected runtime of RLS on the problem is given by the hitting
time hxy of the general random walk in the graph GXY defined above. First
note that the cardinality of ∂X is given by |∂X | =

∑n
i=1 |X1| · · · |Xi| · · · |Xn| =

|X |∑n
i=1 |X i|/|Xi|. The fraction |X i|/|Xi| is at most (m−1) for all i, 1 ≤ i ≤ n,

therefore the cardinality of the border is bounded from above by |∂X | ≤ n ·(m−
1) · |X |. Combining this with Eq. (12) now yields the desired result

hxy ≥ Ryy′ · n · (m − 1) · |X| =
n · (m − 1) · |X|
c(X1, ∂X ∩ Y )

=
n · (m − 1) · |X|
c(∂X ∩ Y, X1)

(13)

≥ |∂X|
|∂X ∩ Y | · |Xn| ≥ 1

m − 1
· A(Y ← X)−1. (14)

The following corollary to Theorem 1 complements the result in Proposition 3
with the case of minimal accessibility.

Corollary 1. Let X and Y be two convex neutral networks in Σn, |Σ| = m
having minimal accessibility A(Y ← X). Then the expected runtime Tn of RLS
on TwoNetsX,Y is bounded from below by Tn ≥ mn−1.

Proof. The accessibility A(Y ← X) has the minimal value for configurations
of networks X and Y satisfying |Yj | = 1 for all 1 ≤ j ≤ n, |Xn| = 1 and
|Xj | = m for 1 ≤ j ≤ n − 1. For such networks, the accessibility is A(Y ← X) =
1/(mn−1 · (m − 1)), which by Theorem 1 gives a lower bound of mn−1 on the
expected runtime of RLS.

5 Conclusion

This paper analysed the runtime of a simple search heuristic called RLS on
TwoNets, a simple problem with two neutral networks. The objective was to
determine the importance of the accessibility between the networks. The anal-
ysis used a connection between random walks on graphs and electrical resistive
networks. Two different search spaces were considered, the two-dimensional in-
teger lattice and the set of strings over a general alphabet, i.e. the hypercube.
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For square convex networks in the two-dimensional integer lattice, changing the
accessibility from maximal to minimal value only increases the runtime by an
ln n-factor. For convex neutral networks in the hypercube, changing the acces-
sibility from maximal to minimal value increases the runtime from linear to
exponential time in the length of the string. Furthermore, in the hypercube, the
accessibility value can be used to give a lower bound on the runtime of RLS on
the problem. These results show that accessibility can be useful to understand
evolutionary dynamics in neutral search spaces.
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Abstract. The Iterated Prisoners Dilemma (IPD) has received much
attention because of its ability to demonstrate altruistic behavior. How-
ever, most studies focus on the synchronous case, where players make
their decisions simultaneously. As this is implausible in most biological
contexts, a more generalized approach is required to study the emergence
of altruistic behavior in an evolutionary context. Here, we take previous
results and present a generalized Markov model for asynchronous IPD,
where both, one, or neither player can make a decision at a given time
step. We show that the type of asynchronous timing introduced into the
model influences the strategy that dominates. The framework presented
here is a more biologically plausible scenario through which to investigate
altruistic behavior.

1 Introduction

Throughout the animal kingdom, individuals frequently show altruistic cooper-
ative behavior in situations where it would seem, on cursory examination, to be
more beneficial to act in an egocentric way. Many of these scenarios can be mod-
eled as a game in which two players interact, and each elects to either cooperate
(i.e. play C) or defect (i.e. play D). If both players choose to co-operate, both
earn a payoff or “reward” R, which is larger than the “punishment” payoff P ,
that is received if both players defect. Should the players choose different strate-
gies, the player who defects receives the maximum payoff T “temptation”, while
the player who cooperates receives the “suckers” payoff S. The payoff must also
satisfy the following conditions: T > R > P > S and 2R > (T + S). From this,
the dilemma becomes apparent: regardless of the player’s choice, an individual
is better off defecting in a game consisting of a single round. Formally, this game
is known as the Prisoners Dilemma, and has been used as the canonical exam-
ple studying the cooperation behavior in political, social, ethical and biological
contexts [1,2].

Should the game be repeated an unknown number of times, however, mutual
cooperation becomes a realistic option. This is known as the iterated Prisoner’s
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Dilemma (IPD). The most successful strategy is no longer Always Defect (ad),
but belongs to a family of less egocentric strategies, of which Tit-For-Tat (tft) is
the most renowned [1,2]. Others such as Win-Stay-Lose-Shift (wsls) and Firm-
But-Fair (fbf) belong to this family and can even outperform tft [7].

One of the underlying assumptions of IPD is that players move in synchrony.
That is, both players must decide on a strategy for the next round at exactly
the same time: neither player is allowed to evaluate the other’s strategy for the
next round. However, as we have shown in [3], asynchrony can lead to a diverse
range of behaviors even in very simple environments. The results of that work
suggest that the relative timing of decision making can have a huge impact
on the resulting behavior. While several accounts have investigated alternative
timing schemes in IPD [4,7,8], we will investigate the effect of more generalized
asynchronous timing schemes on the emergence of cooperation in this model.

In this account, we develop a generalized Markov model for describing the
moves in the asynchronous IPD. As an initial study of the effect of asynchrony
on the evolution of cooperation, we study three simple cases. These cases show
that while cooperation seems inevitable, how players respond to defections differs
depending upon the timing involved. Biological systems are unlikely to employ
strict relative timing of decisions, and so our experiments provide a more realistic
scenario under which to investigate the evolution of cooperation.

2 Prisoner’s Dilemma

In this study we use the approach outlined in [7]. A player’s strategy p is de-
fined by a set of four parameters p1, p2, p3, and p4, these being the player’s
probabilities of cooperating based on the joint behaviors on the previous move
CC, CD, DC and DD respectively (the first letter refers to the players own
behavior, while the second letter refers to their opponents behavior). The value
pi ∈ [0.001, 0.999] denotes the probability of playing C on the next round given
the outcome of the previous moves. Limiting the range of values that pi can
take, means the system contains no perfect strategies. This approach takes into
account errors in implementing a strategy, which is almost unavoidable in any bi-
ological context [5]. If a player p meets a player with strategy p′i = (p′1, p′2, p′3, p′4),
then the transition from one round to the text is given by the Markov chain:⎛

⎜⎜⎝
p1p

′
1 p1(1 − p′1) (1 − p1)p′1 (1 − p1)(1 − p′1)

p2p
′
3 p2(1 − p′3) (1 − p2)p′3 (1 − p2)(1 − p′3)

p3p
′
2 p3(1 − p′2) (1 − p3)p′2 (1 − p3)(1 − p′2)

p4p
′
4 p4(1 − p′4) (1 − p4)p′4 (1 − p4)(1 − p′4)

⎞
⎟⎟⎠ . (1)

Given the values pi and p′i are positive, then matrix 1 has a unique left eigen-
vector S = (s1, s2, s3, s4) associated with the eigenvalue 1. The asymptotic fre-
quency of outcome i is then given by si so that the payoff for the p-player in the
PD, i.e. the limit of the mean payoff per round, is simply given by

s1R + s2S + s3T + s4P. (2)
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Throughout the remainder of this paper the Alexrod payoff values R = 3, S = 0,
T = 5 and P = 1 are used.

2.1 Asynchronous Moves

The Markov matrix in eqn. 1 depicts the transition matrix for the synchronous
case. We need to define a a generalized Markov model that describes the chances
of taking a given transition. To do this we need to treat four cases: (1) When
both players simultaneously move; (2) When p moves, and p′ does not; (3) When
p′ moves, and p does not; and (4) When neither player moves.

Let q1, q2, q3, and q4 be the probability of the four cases occurring (for case
1, 2, 3 and 4, respectively), such that

∑
(qi) = 1. For each case there is also a

corresponding Markov matrix, Q1, Q2, Q3, and Q4, which describes the system
state transition. Markov matrix Q1 is the synchronous case and is equivalent to
eqn. 1.

Cases 2 and 3, are the situations where one player moves, while the other does
not. The Markov matrix Q2 is therefore:⎛

⎜⎜⎝
p1 0 (1 − p1) 0
0 p2 0 (1 − p2)
p3 0 (1 − p3) 0
0 p4 0 (1 − p4)

⎞
⎟⎟⎠ , (3)

and Q3 is: ⎛
⎜⎜⎝

p′1 (1 − p′1) 0 0
p′3 (1 − p′3) 0 0
0 0 p′2 (1 − p′2)
0 0 p′4 (1 − p′4)

⎞
⎟⎟⎠ . (4)

Finally case 4, where neither player moves, Q4 = I (identity matrix). The
general case is given by:

q1.Q1 + q2.Q2 + q3.Q3 + q4.Q4, (5)

With this result, we now briefly mention the special cases covered in [4,8]:

– The synchronous case: Here qi = (1, 0, 0, 0). The general Markov model re-
duces to Q1. This is represented in Fig.1A.

– The strict alternating case [7]: Here the Markov model alternates between
qi = (0, 1, 0, 0) and (0, 0, 1, 0) so the model becomes either Q2.Q3 or Q3.Q2,
depending on who moves first.

– The asynchronous random alternating case [4]: Here, qi = (0, 0.5, 0.5, 0), for
one round, then becomes (0, 1, 0, 0) or (0, 0, 1, 0) depending on the previous
outcome, so the model becomes 1

2 (Q2.Q3 + Q3.Q2). This is represented in
Fig.1B.

– The asynchronous random with replacement case: Here, qi = (0, 0.5, 0.5, 0),
and the model converges to the same result as the asynchronous random
alternating case, and the model is effectively Q2.Q3. This is represented in
Fig.1C.
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Fig. 1. Different methods for updating game state. A. In the Synchronous case, both
players take a turn (make their decision regarding their next state) at exactly the same
time. B. In the Asynchronous Random Alternating case, each player take exactly one
turn in every 2 time steps. Although the order may change, each player gets exactly
the same number of turns. C. In the Asynchronous Random with Replacement case,
players take turns according to a uniform distribution of four equally likely possibilities:
at t− 3, t, and t+ 1 both players take turns together; at t+ 2 Player I takes a turn; at
t− 2 Player II takes a turn; and at t− 1 neither player takes a turn. Although there is
no guarantee that either player will receive any given number of turns, the expectation
is that each player will take a turn every two time steps.

Our model is capable of reproducing the systems already studied in the lit-
erature, however our approach provides a much more flexible approach to the
analysis of asynchrony.

2.2 Evolutionary Dynamics

To place the game in an evolutionary context, payoff is equated with fitness.
Simulations are initially seeded with a single strategy of (0.5, 0.5, 0.5, 0.5), and
we keep track of relative proportion of strategies rather than the number of in-
dividuals. At each time step, all strategies play one another. The proportion of
the population that a strategy occupies is adjusted in accordance with dynamics
outlined in [7]. At each generation there is a 1% chance that a mutant strategy
occupying 0.11% of the population will attempt to invade the pool. Those strate-
gies occupying less than 0.1% of the population are deemed to be non-viable, and
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are removed from the pool. The space occupied by strategy i is calculated as per
[6], with fitness determined by eqn. 2 and 5. Mutant strategies are drawn from
a U-shaped distribution [πx(1 − x)]

1
2 , to get bias as strategies such as ad, tft,

fbf, wsls are located toward the boundary of the four dimensional space [8].

3 Experiments and Results

We tested three examples: qi =(1,0,0,0); qi = (0, 0.5, 0.5, 0); and qi = (0.25, 0.25,
0.25, 0.25). Each experiment was run 100 times for 106 generations. We measured
the number of strategies occurring in the population, the average payoff, and the
average values of the four pi parameters. Results are presented in Figures 2–4.
All graphs represent the average from 100 runs.

Figure 2 shows the behavior of the model for qi = (1, 0, 0, 0), which corresponds
to the Synchronous case. The average values of pi settled at (1, 0.1, 0, 0.8), indicat-
ing dominance of the Win Stay Lose Shift strategy in the population. Our results
for the Synchronous case validate our model by obtaining very similar results to
those of [8]. This position was reached after a large transition at approximately
t = 300, 000, accompanied by a temporary rise in the number of strategies appear-
ing in the simulation, and a large increase in the average payoff.
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Fig. 3. Evolution of the Asynchronous case, qi = (0, 0.5, 0.5, 0)

Figure 3 shows the behavior of the model for qi = (0, 0.5, 0.5, 0), the Asyn-
chronous Random with Replacement case. The model settles down relatively
quickly to final values of pi = (1, 0.1, 0.9, 0.8), indicating dominance of the fbf
strategy. Note that this cannot be compared with the result in [8] for their
asynchronous case, as they took a very different approach.

Figure 4 shows the behavior of the model for qi = (0.25, 0.25, 0.25, 0.25),
which is asynchronous, but with the possibility of both players choosing their
strategy together every fourth time step, on average. The model appears to settle
at the values pi = (1, 0, 0.7, 1), which again suggests a dominance by the fbf
strategy. However, transient behavior lasts longer, and alternate strategies were
being examined later in time (around t = 800, 000), when compared to the two
cases examined above. It is interesting to note that the fbf strategy is probably
dominating at around t = 600, 000, but alternatives were examined after this
time. These long transients suggest chaotic behavior, which may confer a degree
of adaptability upon the model: individuals may be able to quickly adapt to new
strategies of their opponents.

4 Discussion and Conclusion

In this work, we have presented, for the first time, a generalized Markovian
model of the asynchronous iterated prisoners’ dilemma. Using this model, we
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Fig. 4. Evolution of the model using qi = (0.25, 0.25, 0.25, 0.25)

have shown that the synchronous IPD is a special case, and our results agree
with previously published analysis. We have then shown how our model may be
used under a spectrum of assumptions about the relative timing of decisions in
the asynchronous IPD, where this spectrum is given by the parameter space qi.
This enables researchers to experiment with a wider range of scenarios, which
could include more biologically realistic models of emerging altruism.

Comparing the three cases we examined, we have shown that the timing strat-
egy has a big impact upon the behavior of the model. The implication is that
the pursuit of a biologically unrealistic model (such as assuming that organisms
in an evolutionary context make decisions in synchrony) could produce lower
confidence in results obtained, depending on the context and objectives of the
model.

We also conclude that cooperation seems to be inevitable in an iterated game,
regardless of the timing used. In all three cases examined, the average payoff
approached 3, indicating cooperation, in contrast to ad, which would produce a
payoff of 1. In all three cases, the average payoff began at 1, and increased to 3
during evolution of the model. This suggests a clear evolutionary advantage of
altruistic over egocentric behavior.

However, there are marked differences in the three cases we examined. The
second case, (3), showed the fastest dominance of one strategy over the others.
This is surprising, since one would expect that a synchronous game (proceeding
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in a more controlled, orderly fashion) would resolve the problem of strategy
choice more quickly. The second case also seems to have maintained the most
diversity in the population, examining a peak of 15 strategies at t = 50, 000,
compared to 8 for the Synchronous case, and 10 for the third case examined. In
addition, the number of strategies remained relatively high right up to the end
of the simulation.

In future work, we plan to consider more cases, and also to expand our work to
examine asynchrony in other games such as hawk-dove, battle of the sexes, and
the stag hunt game. Each of these games have different Nash and dominating
equilibria, suggesting that asynchrony may lead to novel cooperative dynamics.

The main contribution of this work is a generalized model that provides a
wider range of possible scenarios, in order to prepare models of cooperation that
can be more biologically realistic. In providing this generalized model, we have
shown that asynchrony is associated with greater cooperation between players.
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Abstract. Two independent component analysis (ICA) algorithms are
applied for blind source separation (BSS) in a synthetic, multi-sensor
situation, within a non-destructive pipeline test. CumICA is based in
the computation of the cross-cumulants of the mixtures and needs the
aid of a digital high-pass filter to achieve the same SNR (up to −40
dB) as Fast-ICA. Acoustic Emission (AE) sequences were acquired by a
wide frequency range transducer (100-800 kHz) and digitalized by a 2.5
MHz, 8-bit ADC. Four common sources in AE testing are linearly mixed,
involving real AE sequences, impulses and parasitic signals modelling
human activity.

1 Introduction

AE and vibratory signal processing usually deals with separation of multiple
events which sequentially occur in several measurement points during a non-
destructive test. In most situations, the test involves the study of the behavior of
secondary events, or reflections, resulting from an excitation (the main event).
These echoes carry information related with the medium through which they
propagate, as well as surfaces where they reflect [1].

But, in almost every measurement scenario, an acquired sequence contains
information regarding not only the AE under study, but also additive noise
processes (mainly from the measurement equipment) and other parasitic signals,
e.g. originated by human activity or machinery vibrations. As a consequence, in
non-favorable SNR cases, BSS should be accomplished before characterization
[2], in order to obtain the most reliable fingerprint of the AE event.

The purpose of this paper is twofold. First we show how two ICA algorithms
separate the true signal from the parasitic ones taking a multi-sensor array of
inputs (SNR=−40). Secondly, we compare performances of Cum-ICA and Fast-
ICA, resulting that Cum-ICA needs the aid of a post high-pass filter to achieve
the same SNR as Fast-ICA. This comparison could be interesting for a future
implementation of the code in an automatic analysis system.
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The paper is structured as follows: in Section 2 we make a brief progress report
on the characterization of vibratory emissions. Section 3 summarizes the ICA
model and outlines its properties. Results are displayed in section 4. Finally,
conclusions and achievements are drawn in section 5.

2 Acoustic Emission Signal Processing

Elastic energy travels through the material as a stress wave and is typically
detected using a piezoelectric transducer, which converts the surface displace-
ment (vibrations) to an electrical signal. AE signal processing is used for the
detection and characterization of failures in non-destructive testing and identifi-
cation of low-level biological signals [2]. Most AE signals are non-stationary and
they consist of overlapping bursts with unknown amplitude and arrival time.
These characteristics can be described by modelling the signal by means of neu-
ral networks, and using wavelet transforms [1]. These second-order techniques
have been applied in an automatic analysis context of the estimation of the time
and amplitude of the bursts. Multiresolution has proven good performance in
de-noising (up to SNR=-30 dB, with modelled signals) and estimation of time
instances, due to the selectivity of the wavelets filters banks [3].

Higher order statistics (HOS) have enhanced characterization in analyzing
biological signals due to the capability for rejecting noise [4]. This is the reason
whereby HOS could be used as part of an ICA algorithm.

3 The ICA Model and Algorithms

3.1 Outline of ICA

BSS by ICA is receiving attention because of its applications in many fields such
as speech recognition, medicine and telecommunications [5]. Statistical meth-
ods in BSS are based in the probability distributions and the cumulants of the
mixtures. The recovered signals (the source estimators) have to satisfy a condi-
tion which is modelled by a contrast function. The underlying assumptions are
the mutual independence among sources and the non-singularity of the mixing
matrix [2],[6].

Let s(t) = [s1(t), s2(t), . . . , sm(t)]T be the transposed vector of sources (sta-
tistically independent). The mixture of the sources is modelled via

x(t) = A · s(t) (1)

where x(t) = [x1(t), x2(t), . . . , xm(t)]T is the available vector of observations and
A = [aij ] ∈ �m×n is the unknown mixing matrix, modelling the environment in
which signals are mixed, transmitted and measured [7]. We assume that A is a
non-singular n×n square matrix. The goal of ICA is to find a non-singular n×m
separating matrix B such that extracts sources via

ŝ(t) = y(t) = B · x(t) = B · A · s(t) (2)
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where y(t) = [y1(t), y2(t), . . . , ym(t)]T is an estimator of the sources. The separat-
ing matrix has a scaling freedom on each row because the relative amplitudes of
sources in s(t) and columns of A are unknown [6]. The transfer matrix G ≡ BA
relates the vector of independent (original) signals to its estimators.

3.2 CumICA

High order statistics, known as cumulants, are used to infer new properties about
the data of non-Gaussian processes. Before, such processes had to be treated as if
they were Gaussian, but second order statistics are phase-blind. The relationship
among the cumulant of r stochastic signals and their moments of order p, p ≤ r,
can be calculated by using the Leonov-Shiryayev formula [8]:

Cum(x1, ..., xr) =
∑

(−1)k · (k − 1)! · E{
∏
i∈v1

xi}

· E{
∏
j∈v2

xj} · · ·E{
∏

k∈vp

xk}
(3)

where the addition operator is extended over all the set of vi (1 ≤ i ≤ p ≤ r)
and vi compose a partition of 1,. . . ,r.

A set of random variables are statistically independent if their cross-cumulants
are zero. This is used to define a contrast function, by minimizing the distance
between the cumulants of the sources s(t) and the outputs y(t). As sources are
unknown, it is necessary to involve the observed signals. Separation is developed
using the following contrast function based on the entropy of the outputs [2]:

H(z) = H(s) + log[det(G)] −
∑ C1+β,yi

1 + β
(4)

where C1+β,yi is the 1 + βth-order cumulant of the ith output, z is a non-linear
function of the outputs yi, s is the source vector, G is the global transfer matrix
of the ICA model and β > 1 is an integer verifying that β + 1-order cumulants
are non-zero.

Using equation 4, the separating matrix can be obtained by means of the
following recurrent equation [7]

B(h+1) = [I + μ(h)(C1,β
y,yS

β
y − I)]B(h) (5)

where Sβ
y is the matrix of the signs of the output cumulants. Equation 5 is inter-

preted as a quasi-Newton algorithm of the cumulant matrix C1,β
y,y . The learning

rate parameters μ(h) and η are related by:

μ(h) = min(
2η

1 + ηβ
,

η

1 + η‖C1,β
y,y‖p

) (6)

with η < 1 to avoid B(h+1) being singular; ‖.‖p denotes de p-norm of a matrix.
The adaptative equation 5 converges, if the matrix C1,β

y,yS
β
y tends to the identity.
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3.3 FastICA

One of the independent components is estimated by y = bTx. The goal of
FastICA is to take the vector b that maximizes the non-Gaussianity (indepen-
dence)of y, by finding the maxima of its negentropy [6]. The algorithm scheme is
an approximative Newton iteration, resulting from the application of the Kuhn-
Tucker conditions. This leads to the equation 7

E{xg(bTx) − βb = 0} (7)

where g is a non-quadratic function and β is an iteration parameter.
Provided with the mathematical foundations the experimental results are

outlined.

4 Experimental Results

The sensor is attached to the outer surface of the pipeline, under mechanical
excitation. Each sequence comprises 2502 points (sampling frequency of 2.5 MHz
and 8 bits of resolution), and assembles the main AE event and the subsequent
reflections (echoes). Four sources have been considered and linearly mixed. A
real AE event, an uniform white noise (SNR = −40 dB), a damped sine wave
and an impulse-like event. The damping sine wave models a mechanical vibration
which may occur, i.e. as a consequence of a maintenance action. It has a damping
factor of 2000 and a frequency of 8000 Hz. Finally, the impulse is included as a
very common signal registered in vibration monitoring.
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Fig. 1. Estimated and filtered sources via CumICA (ICs; Independent Components).
Left column: AE event, noise, damping sine wave plus impulse, idem. Right column:
filtered signals.
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Fig. 2. Estimated and filtered sources via FastICA. Right column (very similar to the
left) top to bottom: impulse, noise, AE event, noise. Post-filtering is not necessary to
recover the AE event and the impulse.

The results of CumICA are depicted in Fig. 1. The damping sinusoid is con-
sidered as a frequency component of the impulse-like event because IC3 and IC4
are almost the same. The final independent components are obtained filtering
the independent components by a 5th-order Butterworth high-pass digital filter
(20000 kHz). A typical result from FastICA been included in Fig. 2.

Finally, the independence of the independent components have been per-
formed by getting the joint distributions. These results lead us to conclude about
the use of the algorithms.

5 Conclusions and Future Work

ICA is far different from traditional methods, as power spectrum, which obtain
an energy diagram of the different frequency components, with the risk that
low-level sounds could be masked. This experience shows that the algorithm
is able to separate the sources with small energy levels in comparison to the
background noise. This is explained away by statistical independence basis of
ICA, regardless of the energy associated to each frequency component. The post
filtering action let us work with very low SNR signals. FastICA maximizes the
non-Gaussianity, so it is not necessary a filter stage. The next step is oriented in
a double direction. First, a stage involving four real mixtures will be developed.
Second, and simultaneously, the computational complexity of the algorithms
have to be reduced to perform an implementation.
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Abstract. In high bit rate optical fiber communication systems, Polarization 
mode dispersion (PMD) is one of the main factors to signal distortion and needs 
to be compensated. Because PMD possesses the time-varying and statistical 
properties, to establish an effective control algorithm for adaptive or automatic 
PMD compensation is a challenging task. Widely used control algorithms are 
the gradient-based peak search methods, whose main drawbacks are easy being 
locked into local sub-optima for compensation and no ability to resist noise.  In 
this paper, we introduce a new evolutionary approach, particle swarm optimiza-
tion (PSO), into automatic PMD compensation as feedback control algorithm. 
The experiment results showed that PSO-based control algorithm had unique 
features of rapid convergence to the global optimum without being trapped in 
local sub-optima and good robustness to noise in the transmission line that had 
never been achieved in PMD compensation before. 

1   Introduction 

In high bit rate optical fiber communication systems, when bit rate is beyond 10Gb/s, 
polarization mode dispersion (PMD) has become one of the main limiting factors 
preventing capacity increase, because of PMD induced signal distortion. So PMD 
compensation has become one of hot topics in recent years [1~2]. An ordinary feed-
back type automatic PMD compensator can be divided into three subparts: the PMD 
monitoring unit, the compensation unit, and the logic control unit. The details of the 
three subparts will be discussed in Section 2.1. Roughly speaking, the procedure of 
automatic feedback controlled PMD compensation is that: the PMD monitoring unit 
detects the PMD correlated information as feedback signal. The logic control unit 
automatically controls the compensation unit by an intelligent and rapid control algo-
rithm through analyzing the feedback signal, and the compensation completes as 
result. In [1] and [2] the algorithm used as the control part of a PMD compensator 
employed gradient based peak search methods. However, we found that as the  



 An Application of Intelligent PSO Algorithm to Adaptive Compensation 757 

numbers of control parameters increased, the gradient based algorithm often became 
locked into local sub-optima, rather than the global-optimum. Besides, it would be 
less effective for a system with a relatively high noise level in the PMD monitor, 
because the gradient information between neighboring signals would be submerged in 
noise. We introduced the particle swarm optimization (PSO) into logic control unit for 
the adaptive PMD compensator for the first time, and realized a series of compensa-
tion experiments. With PSO algorithm we give some of the feasible and effective 
solutions for some critical problems that have been headaches in the field of PMD 
compensation for a long time.  

2   A Brief Introduction to Polarization Mode Dispersion and PMD 
Compensation 

2.1   Polarization Mode Dispersion 

Polarization mode dispersion has its origins in optical birefringence [3]. In a single 
mode fiber, an optical wave traveling in the fiber can be represented as the linear 
superposition of two orthogonal polarized HE11 modes. In an ideal fiber, with a per-
fect circular symmetric cross-section, the two modes 11HE x  and 11HE y  are indistin-

guishable (degenerate) with the same time group delay. However, real fibers have 
some amount of asymmetry due to imperfections in manufacturing process or me-
chanical stress on the fiber after manufacture as shown in Fig. 1. The asymmetry 
breaks the degeneracy of the 11HE x  and 11HE y  modes, resulting in birefringence with a 

difference in the phase and group velocities of two modes. 

 
 
 
 
 
 
 
 
 

Fig. 1. Asymmetry of a real fiber and degeneracy of two orthogonal HE11 modes 

If a pulsed optical wave that is linearly polarized at 45° to the birefringence axis is 
launched into a birefringent fiber, the pulse will be splitted and separated at output 
end of the fiber due to the different group velocities of two HE11 modes, as shown in 
Fig. 2, resulting in a signal distortion in optical transmission system. The time separa-
tion between two modes is defined as differential group delay (DGD) Δτ. Roughly 
speaking, the fast and slow axis is called principal states of polarization. This phe-
nomenon is called polarization mode dispersion. 
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Fig. 2. Pulse splitting due to birefringence 

2.2   The Configuration of Automatic PMD Compensator 

Polarization mode dispersion can be divided into first-order and high-order PMD 
according to its Taylor-series expansion with frequency deviation Δω from the carrier 
frequency ω . The first-order and second-order PMD are the two dominant impair-
ment factors to the optical fiber transmission systems. 

    
(a)     (b) 

Fig. 3. The configuration of one-stage and two-stage compensators 

There are two compensation schemes, pre-compensation and post-compensation. 
As mentioned in the section of Introduction, for the scheme of optical feedback 
post-compensation, the compensator has three subparts: the PMD motoring unit, the 
compensation unit, and the logic control unit. It is widely believed that the one-
stage compensators are able to compensate PMD to the first-order. For the one-
stage compensator, the compensation unit is composed of a polarization controller 
(PC) whose function is to transform the state of polarization (SOP) of input optical 
wave into output state, and a differential group delay (DGD) line with the purpose 
of eliminating the DGD of the input optical signals (Fig. 3 (a)). One-stage compen-
sator have 3 or 4 control parameters (or degrees of freedom (DOF)), three for PC 
and one for DGD line, to be controlled depending on whether the DGD line is fixed 
or varied. The two-stage compensators, composed of two segments of PC+DGD, 
can compensate the PMD up to the second-order [4]. They have two compensation 
units and 6 or 7 control parameters (or DOF) to be controlled depending on whether 
the second delay line is fixed or varied (Fig. 3 (b)). 

The automatic PMD compensation is a process for a control algorithm to find an 
optimal combination of control parameters, in order for the feedback signal (PMD 
motoring signal) to reach a global optimum, in an intelligent, fast, and reliable man-
ner. In our experiment, the degree of polarization (DOP), obtained by an in-line po-
larimeter in the PMD monitoring unit, was used as feedback signal.  The DOP of light 
wave is defined as follows using Stokes parameters S0, S1, S2, S3. 
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The DOP of any light wave varies in the range of 0 to 1. The optical pulses at the 
receiving end have a DOP of 1 when there is no PMD in the fiber link, and the DOP 
value decreases as PMD increases [2]. The polarization controller used in the com-
pensation unit is the electrically controlled whose three cells were adjusted by con-
trolling voltages in the experiment. In our experiment, fixed delay line was adopted. 
Therefore the control parameters for the one-stage compensator were 3 voltages (V1, 
V2, V3) of PC, and the control parameters for the two-stage compensator were 6 volt-
ages (V1, V2, V3, V4, V5, V6) of PC1 and PC2. 

The procedure of the PMD compensation is: the control algorithm in logic control 
unit automatically adjusts 6 voltages (V1, V2, V3, V4, V5, V6) of PC1 and PC2 until the 
feedback signal DOP reaches its maximum. 

3   Automatic PMD Compensation Using PSO Algorithm 

3.1   The Theory of PSO-Based Control Algorithm 

As mentioned in Section 2.2, the DOP value that is taken as the feedback signal de-
creases as PMD in the fiber link increases. In the feedback post-compensator, the task 
of the control algorithm in logic control unit is automatically searching for global 
maximum DOP through adjusting the multi-voltages of the polarization controllers 
(PCs) in the compensation unit, in an intelligent, fast, and reliable manner, which can 
be described mathematically as: 

1 2 3, ,
MAX (DOP)

V V V
 (2) 

There is no simple method to predict DOP function in (2) in an automatic compensa-
tion system. A good algorithm is, therefore, required to solve problem (2), which is 
the problem of searching for the global maximum of DOP in a multi-dimensional 
hyperspace. The number of parameters (or degree of freedom) is the number of di-
mensions of the hyperspace, and is 3 for our one-stage compensator and 6 for our 
two-stage compensator. 

Generally, more degrees of freedom result in more sub-maxima existing, which 
will increase the hard task of the searching algorithm. Unfortunately there exist sev-
eral DOP sub-maxima in the compensation process. Fig. 4 is a typical DOP surface 
map for our PMD compensation system.We can see in Fig. 4 that, there are several 
sub-maxima beside a global maximum in the searching space. We can also find that, 
the DOP surface is not smooth because of the noise in the fiber link. 

In most of the related literature, the adopted control algorithms have not been ex-
plicitly characterized. In [1] and [2] the algorithm used employed gradient based peak 
search methods. However, with the numbers of control parameters increasing, the 
gradient based algorithm often became locked into local sub-maxima, rather than the 
global-maximum. Besides, it would be less effective for a system with a relatively 
high noise level as shown in Fig.4, because the gradient information between 
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neighboring signals would be submerged in noise. Therefore finding a practical feed-
back control algorithm with the desirable features is still a challenging task. A com-
petitive searching algorithm in PMD compensation should at least satisfy following 
features: (1) rapid convergence to the global optimum rather than being trapped in 
local sub-optima; (2) good robustness to noise. 

 
 
 
 
 
 
 
 
 
 

Fig. 4. The DOP surface map in the PMD compensation system 

The PSO algorithm, proposed by Kennedy and Eberhart [5], has proved to be very 
effective in solving global optimization for multi-dimensional problems in static, 
noisy, and continuously changing environments [6]. We introduced for the first time 
the PSO technique into automatic PMD compensation in a series of experiments [7]. 

At the beginning, the PSO algorithm randomly initializes a population (called 
swarm) of individuals (called particles). Each particle represents a single intersection 
of multi-dimensional hyperspace. The position of the i-th particle is represented by 
the position vector 1 2( , , , )i i i iDX x x x= . In the D-dimensional-DOF PMD compensa-

tion scheme depicted in Fig.3, the components of the i-th particle are represented by 
the combination of D voltages (V1, V2, …, VD). The particles evaluate their position 
relative to a goal at every iteration. In each iteration every particle adjusts its trajec-
tory (by its velocity 1 2( , , , )i i i iDV v v v= ) toward its own previous best position, and 

toward the previous best position attained by any member of its topological neighbor-
hood. If any particle’s position is close enough to the goal function, it is considered as 
having found the global optimum and the recurrence is ended.  

Generally, there are two kinds of topological neighborhood structures: global 
neighborhood structure, corresponding to the global version of PSO (GPSO), and 
local neighborhood structure, corresponding to the local version of PSO (LPSO). For 
the global neighborhood structure the whole swarm is considered as the neighborhood 
(Fig.5 (a)), while for the local neighborhood structure some smaller number of adja-
cent members in sub-swarm is taken as the neighborhood [8] (Fig.5 (b)). The detail of 
process for implementing the global version of PSO can be found in [9]. In the global 
neighborhood structure, each particle’s search is influenced by the best position found 
by any member of the entire population. In contrast, each particle in the local 
neighborhood structure is influenced only by parts of the adjacent members. There-
fore, the local version of PSO (LPSO) has fewer opportunities to be trapped in sub-
optima than the global version of PSO (GPSO). 
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(a)                                 (b)  

Fig. 5. One of two topologic structures for (a) global neighborhood and (b) local neighborhood 

In our experiment 20 particles are used either in GPSO or LPSO, which is a bal-
ance between the accuracy required in searching for the global optimum and time 
consumed. For LPSO neighborhood, it is found that having 5 neighbors for every 
particle gives the highest success rate in finding the global optimum [8] (Fig.5 (b)). 
The relationship for structure of LPSO we adopted is shown in Fig. 5 (b). 

3.2   The Results of the Automatic PMD Compensation Using PSO 

We will describe here the results of one of experiments we have done, the automatic 
second-order PMD compensation using two-stage compensator in 40Gb/s time-
division-multiplexing (OTDM) transmission system by using PSO algorithm. We 
employed both GPSO and LPSO as the control algorithm respectively, in order to 
make a comparison of effectiveness of them. 

We conducted 18 times of compensation by controlling 6 voltages of PC1 and PC2 
shown in Fig.3 (b) through the GPSO and LPSO algorithms, respectively. We ran-
domly selected the 18 different initial PMD states of the PMD emulator (corresponds 
to 18 different initial DOP values) for 18 different experiments. The function of PMD 
emulator is to emulate PMD as same as in real fiber. In every process of global DOP 
maximum searching, we recorded the variation of best DOP values in each iteration 
and, with the maximum iteration number set to 50, the results are shown in Fig. 6. 

            

 (a)                                                                  (b) 

Fig. 6. The best DOP vs. iteration recorded in 6-DOF second-order PMD compensation using 
LPSO (a) and GPSO algorithm (b) 
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Fig. 7. Eye diagrams to show the procedure of automatic PMD compensation in 40Gb/s OTDM 
optical transmission system. (a) Back-to-back 40Gb/s OTDM signal. (b) Back-to-back demulti-
plexed 10Gb/s signal. (c) 40Gb/s signal without PMD compensation. (d) Demultiplexed 10Gb/s 
signal without PMD compensation. (e) 40Gb/s signal with PMD compensation. (f) Four demul-
tiplexed 10Gb/s signals with PMD compensation. 

Because of more local sub-maxima and relative high level noise in 6-DOF system, 
for the GPSO case there are some initial PMD states for which DOP only achieves the 
value of 0.7 (Fig. 6(a)), corresponding to being trapped in local sub-maxima and fail-
ure of compensation. In contrast, for the LPSO case all final searched DOP values 
exceed 0.9, no matter what the initial PMD state is (Fig. 6(b)). Furthermore, if we set 
DOP value of 0.9 as the criterion which is considered to achieve the compensation, all 
the DOP values reach that criterion within about 25 iterations. We can draw the con-
clusion that LPSO can better undertake the task of solving multi-dimensional prob-
lems, and that it is a better searching algorithm for adaptive PMD compensation up to 
high-order. 

Fig. 7 shows the eye diagrams displayed on the screen of the oscilloscope at re-
ceiver end, in the whole procedure of automatic PMD compensation in 40Gb/s 
OTDM optical transmission system. The eye diagrams in left column of Fig. 7 are the 
40Gb/s OTDM signals in situations of back-to-back, before and after PMD compen-
sation. The eye diagrams in right column are the 10Gb/s demultiplexed signals with 
the same meaning. When we adjusted the PMD emulator with the result that the eyes 
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were closed, implying severe PMD induced signal distortion with DOP = 0.23. After 
switching on the compensator, the eyes opened and DOP reached close to 1 within 
about 500 milliseconds through optimum searching by LPSO algorithm. 

3.3  The PSO Technique Used in Tracking Process of the Control Algorithm 

The algorithm for real-time adaptive PMD compensation should include two stages. 
First, the searching algorithm finds the global optimum from any initial PMD condi-
tion. Then the tracking algorithm starts to track the changed optimum, because the 
PMD in the real fiber link always randomly changes, due to changes in the environ-
ment such as temperature fluctuations etc. 

 

Fig. 8. Location drifting of global DOP maximum from (a) to (c) indicating the PMD changes 
with time 

 

Fig. 9. The dithering solution for tracking the varied DOP maximum 

When the PMD in the fiber link changes, the global DOP maximum just drifts 
away from the previous location as shown in Fig. 8. A natural thought of solution is 
a tracking method of slight disturbances or dithering around the previous DOP maxi-
mum as shown Fig. 9, which was adopted in [2]. This was also gradient-based con-
trol algorithm which would not adequate for the systems with a relatively high noise 
level in the PMD monitoring unit. Furthermore, for a one-DOF control system, there 
are two directions (positive and negative) for dithering. For a two-DOF system, there 
will be 8 directions (east, west, south, north, southeast, southwest, northeast, north-
west), and for D-DOF, 3D-1 directions. In conclusion, for multi-DOF systems the 
amount of calculation will become comparatively large, making it unsuitable for 
real-time tracking. 

Because of its good performance in the presence of noise, and its multi-
dimensional searching capability, we used the PSO searching technique in the smaller 
6-dimensional local space around the previous optimum location to achieve the goal 
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of tracking changing optimum. After the global optimum search process is completed, 
the tracking algorithm starts to work according to the DOP values. When the DOP in 
the fiber link is higher than 98% of that obtained for the previous optimum, the algo-
rithm does nothing. Otherwise, as long as the DOP is lower than this criterion, local 
space searching is initiated. The size of the local searching space is adjusted with time 
according to the deviation from the criterion DOP, which is set to 0.9×98%=0.88 for 
the experiment. For the tracking algorithm, 5 particles and GPSO were adopted be-
cause of the faster speed needed for tracking and the smaller space in which to search. 
The flow chart of the control program is shown in Fig. 10. 

 

Fig. 10. The flow chart of the control program based on PSO 

 

Fig. 11. The performance of the tracking algorithm for tracking the changed optimum DOP. 
(a)In relative long time, there are some sudden disturbances by sudden rotating the PC of emu-
lator. (b)Details of sudden disturbance . 

In the experiment, the tracking algorithm worked well when the PMD in the fiber 
link varied slowly and smoothly with the environment. The eye diagrams are nearly 
unchanged. Fig.11 shows the tracking results with small vibration of DOP values 
around the criterion (0.88). But if there is a sharp disturbance in the fiber link, the 
tracking algorithm will force the system rapidly to recover to the condition beyond 
criterion. 
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4   Conclusions 

For the fist time, we have introduced the particle swarm optimization into automatic 
polarization mode dispersion compensation. The experiment showed that PSO exhib-
ited the desirable features for automatic PMD compensation of rapid convergence to 
the global compensation optimum searching without being trapped in local sub-
optima that corresponded to the failure of compensation, and good robustness to noise 
in the transmission line. However, all these problems that PSO can solve have been 
headaches in the field of PMD compensation for a long time. By comparison of global 
version of PSO (GPSO) and local version of PSO (LPSO), it was shown that LPSO is 
better solution for automatic PMD compensation. 

Acknowledgements 

This work was supported by the National Natural Science Foundation of China under 
Grant 60577064, and the National “863” High Technology Project of China under 
Grant 2001AA122041. 

References 

1. Noé, R., Sandel, D., Yoshida-Dierolf, M., Hinz, S., Mirvoda, V., Schöpflin, A., Glingener, 
C., Gottwald, E., Scheerer, C., Fischer, G. Weyrauch, T., Haase, W.: Polarization Mode 
Dispersion Compensation at 10, 20, and 40Gb/s with Various Optical Equaliziers. J. Light-
wave Technol. 17 (1999) 1602-1616 

2. Rasmussen, J. C.: Automatic PMD and Chromatic Dispersion Compensation in High Ca-
pacity Transmission. In: 2003 Digest of the LEOS Summer Topical Meetings, (2003) 47-48.  

3. Kogelnik, H., Jopson, R. M., Nelson, L.: Polarization-Mode Dispersion, In: Kaminow, I. P., 
Li, T. (eds): Optical Fiber Telecommunications, IV B. Academic Press, San Diego San 
Francisco New York Boston London Sydney Tokyo, (2002) 725-861 

4. Kim, S.: Schemes for Complete Compensation for Polarization Mode Dispersion up to Sec-
ond Order. Opt. Lett. 27 (2002) 577-579 

5. Kennedy, J., Eberhart, R. C.: Paticle Swarm Optimization. In: Proc. of IEEE International 
Conference on Neural Networks. Piscataway, NJ, USA, (1995) 1942-1948 

6. Laskari, E. C., Parsopoulos, K. E., Vrahatis, M. N.: Particle Swarm Optimization for Mini-
max Problems,” In: Proc. of the 2002 Congress on Evolutionary Computation. Vol.2. 
(2002) 1576-1581 

7. Zhang, X. G., Yu, L., Zheng, Y., Shen, Y., Zhou, G. T., Chen, L., Xi, L. X., Yuan, T. C., 
Zhang, J. Z.,  Yang, B. J.: Two-Stage Adaptive PMD Compensation in 40Gb/s OTDM Op-
tical Communication System Using PSO Algorithm. Opt. Quantum Electron. 36 (2004) 
1089-1104 

8. Kennedy, J., Mendes, R.: Population Structure and Particle Swarm Performance. In: Proc. 
of the 2002 Congress on Evolutionary Computation. Vol.2. (2002) 1671-1676 

9. Eberhart, R. C., Kennedy, J.: A New Optimizer Using Particle Swarm Theory. In: Proc. of 
the Sixth International Symposium on Micro Machine and Human Science. (1995) 39-43 



T.-D. Wang et al. (Eds.): SEAL  2006, LNCS 4247, pp. 766 – 773, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Coordinated Resource Allocation by Mutual Outsourcing 
in Decentralized Supply Chain 

Kung-Jeng Wang1, H.M. Wee2, Jonas Yu3, and K.Y. Kung4 

1 Department of Industrial Management, National Taiwan University of Science and  
Technology, Taipei, Taiwan, R.O.C.  
kjwang@mail.ndhu.edu.tw 

2 Department of Industrial Engineering Chung Yuan Christian University, Chungli, Taiwan  
3 Logisitcs Management Department, Takming College, Taipei, Taiwan 

4 Department of Mechanical Engineering, Nanya Institute of Technology, Chungli, Taiwan 

Abstract. Lumpy demand forces capacity planners to maximize the profit of 
individual factories as well as simultaneously take advantage of outsourcing 
from its supply chain and even competitors. This study examines a capacity 
planning business model in which consists of many profit-centered factories 
(autonomous agents). We propose an ant algorithm to solve a set of non-linear 
mixed integer programming models with different economic objectives and 
constraints. The proposed method allows a mutually acceptable capacity plan 
for a set of customer tasks to be allocated by the negotiating parties, each with 
information on company objectives, cost and price. Experiment results reveal 
that near optimal solutions for both isolated (a single factory) and negotiation-
based (between factories) environments are obtained. 

1   Introduction 

Lumpy demand forces capacity planners to maximize the profit of an individual fac-
tory as well as taking advantage of outsourcing to its supply chain’s partners and even 
competitors. Although a competitive situation exists among those companies, a col-
laborative integration for resource and demand sharing is highly attractive to those 
industries.  

Unfortunately, conventional capacity models only deal with the capacity planning 
problem for a single factory. It fails to match the capacity and order-sharing decision-
making requirement among companies. Asymmetric information (i.e., resource capac-
ity and order status) further results in inefficiency on capacity utilization and poor 
profitability for individual factory. As a result, the excess or insufficient resource 
capacity will lead to extra cost or customer service reduction. 

In order to trade off between low production cost and high level of service, it is 
critical for managers to plan resource capacity from a broader perspective through 
mutual outsourcing. Such a capacity and order sharing strategy has been found in 
many industries such as transportation industry with shared carriers, semiconductor 
manufacturing industry with shared machines, and food production industry with 
shared outlets.  
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This study proposed an inter-factories capacity planning model and the correspond-
ing negotiation in resource capacity coping procedure. The following issues are the 
focuses of this study. (i) What is the best cost-effectiveness portfolio and allocation of 
resources to fulfill orders?  (ii) How to develop a mutually acceptable resource alloca-
tion plan for individual factory under the information asymmetry? (iii) How is the per-
formance of the proposed algorithm for solving this inter-factories capacity problem? 

Focusing on capacity requirement planning instead of scheduling, this study will 
propose an inter-factories capacity negotiation framework and solve the capacity 
planning problem by an ant algorithm.  

2   Literature Survey 

Modeling technology-economy trade-off to decide the best capacity planning of a 
single factory is a basis in dealing with this type of problems. Only limited studies 
proposed strategic concepts (Hsu 1998, Mayer 1993). Rajagopalan (1994) presented a 
mix integer linear programming (MILP) model to handle capacity planning of a single 
product. Wang and Lin (2002) developed a capacity planning model for two simulta-
neous resources.  

The research of cooperative based resource planning usually focuses on equilib-
rium of the system instead of optimality of individuals. There are several studies in 
the literature directly dealing with capacity trading through autonomous coordination 
and negotiation among factories. Cachon and Zipkin (1999) addressed competitive 
and cooperative relationships of factories and their effects in a two-stage supply chain 
from the perspective of inventory policies. Jiang (2000) proposed a methodology of 
capacity trading for solving short-term capacity shortage incurred in wafer foundries. 
Chang (2001) developed a simple Internet-based auction scheme to sell foundry ca-
pacity.  Their system acts as a capacity manager of a foundry that automatically nego-
tiated with customers. Huang (2002) proposed a capacity adjustment method to build 
an agent-based order exchange system.  

Due to trade-off between efficiency and solution quality, soft-computing based 
methods emerge rapidly to solve the resources allocation and expansion problem. One 
of recently developed, population-based, heuristic algorithms is the Ant Algorithm. 
Ant algorithms are popular because of their capability to solve discrete NP-hard com-
binational optimization problems in quickly. Many ant algorithms are inspired by ant 
colony optimization (ACO) meta-heuristics such as the Ant-Solver, the ant colony 
system (ACS) (Dorigo and Di Caro, 1999), and the MAX-MIN ant system (MMAS) 
(Dorigo and Stützle 2000). In many industrial situations, ACO algorithm has been 
shown to offer successful solution strategies for large and complex problems of pro-
duction systems. For instance, Ying and Liao (2003) presented an ant colony system 
approach for scheduling problems.  

3   Modeling the Coordinated Resource Allocation Problem 

The proposed model considers a single factory capacity planning problem and an 
inter-factories capacity issue. Several economic models with individual factories and 
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an inter-factories capacity negotiation model are considered to improve resources 
utilization among factories by sharing excess capacity. 

In order to illustrate the framework, three economic models are presented, i.e., a 
capacity planning model with excess capacity, a capacity planning model with excess 
orders and an inter-factories capacity planning model. 

The notations of the capacity planning models are defined as following: :tja  Con-

figuration relationship between orders and working cells. }1,0{∈tja ; 1 if working 

cell t, t ={1, 2, …,v}, can manufacture order type j, j ={1, 2, …,n}, 0 otherwise. :kjd  

Demand quantity (in pieces) of order j in planning period k, k = {1, 2, …,p}. :tjμ  

Throughput of working cell t when used to produce order type j (in pieces per period). 

W: Working hours of each period of time. :ktu  Target utilization of working cell t in 

period k. :ktc  Costs of purchasing working cell t in period k. I: Capital interest rate. 
'
tC : Unit price of selling capacity of remaining working cells t of a capacity seller. 

Ctj: Capacity seller’s unit price of working cell t to produce capacity buyer’s order j 
(or, equivalently, the unit cost of resource usage of the capacity buyer). CC: Upper 
bound of initial budget. R : Adjustable parameter of price of resource capacity. Pj : 
Unit profit of order j. 

Decision variables in the models are as follows: :ktN  Number of working cell t in 

period k. :ktjx  Quantity produced by working cell t to meet order type j in period k.  

:ktδ  Increment (or decrement) number of working cell t from period k-1 to period k. 
'
ktN : Number of remaining working cell t in period k. :'kjd  Number of remaining 

quantities of order j in period k after task allocation of an individual factory is done. 
:kjd ′′  Number of remaining quantities of order j in period k after task allocation is 

done by an inter-factories capacity negotiation model. 
A set of MILP models, each with individual objectives to formulate the resource 

portfolio problem is presented below. Two typical models are developed—one is for a 
factory with excess resources capacity and the other is for a factory with extra order 
capacity. Finally, an inter-factories negotiation model is developed. 

3.1   Individual Factory Capacity Planning Model (Capacity over Demand)  

This model assumes all demands must be satisfied with additional reserve capacity. 
Investment in new resources is allowed using a finite budget. The goal is to maximize 
profit of the working cells. The model is denoted as follows:  
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Constraint (2) is a capacity balancing equation specifying the allocated quantity to 
each type of cells should be equal to the capacity required by the orders. Constraint 
(3) confines the upper bound of budget. Constraint (4) specifies the capacity limit of 
working cells used in each period. Constraint (5) computes the remanding capacity of 
working cells. Constraint (6) states the change in the number of machines of type t 
from period k-1 to period k, due to resource replacement. 

Note that although new purchased resources may have higher efficiency than exist-
ing resources, they are also more expensive. A capacity planner thus must determine 
how to trade-off between investing in new resources and deploying existing ones to 
meet delivery dates of orders. 

3.2   Individual Factory Capacity Planning Model (Capacity of Resources 
Provided by a Factory with Demand over Capacity) 

This model assumes that orders will not be fulfilled except they are profitable. Work-
ing cells may not have enough capacity and require outsourcing for extra capacity of 
resources. Besides, a factory can invest in resources using a finite budget, and phase 
out old ones. The goal is to maximize the profit by fulfilling orders. The model is 
denoted as Model II. 
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Constraints (8) are the capacity balancing equation ensuring the capacity allocated 
to each type of working cell not larger than that required by the orders. The remaining 
constraints are the same as (7). 

3.3   Inter-factories Capacity Planning Model 

The third model is formulated to solve an inter-factories, supply-demand negotiation 
problem. A mediator considers both the excess capacity and excess orders of two 
factories. The goal of the mediator is to maximize the net profit by completing excess 
orders using excess capacity of the factories. The model is denoted as follows:  
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The meaning of the other constraints is the same as the ones in (1)~(11). In this 

model, the two individual factories may bargain (i.e., the price of resources, tjC ) to 

reach a deal.  

4   Solving the Problem by Ant Algorithm  

Due to the complexity of problems, this study proposes an ant heuristic algorithm to 
find an efficient resource portfolio plan in which the resource investment decision, 
capital usage plan, resource configuration, and task allocation are determined simul-
taneously. The algorithm not only reduces the total cost of producing all orders but 
also improves total profit in a factory level as well as the system level. 

The proposed modified ant algorithm (called MAA) follows the classical ACO al-
gorithmic scheme and improves its efficiency by incorporating a constraint propaga-
tion procedure for solving the problem as follows: 

MAA ranks variables xjs by the constrained variable rule. The ant searching strat-
egy begins with the repair mechanism that allows an artificial ant to construct a com-

plete non-violated assignment of values from )( jxD (the domain of variable jx ) to 

variables xjs.  
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Procedure: Modified Ant Algorithm (MAA) 
Begin 
Set parameters and initialize pheromone trails 
Sort variables by the most constrained variable rule. 
Repeat  
     For c  from 1 to MaxCycle 

        For n from 1 to antsN  

           φ←A  
          While |A|<|X| Do 
Select a variable Xx j ∈  that is not assigned in A 

Choose a value v ∈ )( jxD with probability ),( >< vxP jA
 using 

the repair mechanism to guarantee all solutions are 
feasible; 

A← A∪{< jx , >} 

     End While 
   End For 
Update pheromone trails using the best ant of cycles 
(the cycle best) {

kA } 

If (several cycles pass by) then reinforce pheromone 
trails using the best ant trail (the global best) {

lA } 

End For 
Until max trials reached  
End 

The proposed constraint propagation procedure together with the ant algorithm 
fixes the value domains of the variables that have not yet been searched. Hence, each 
artificial ant walks in the search space of feasible solution regions. The procedure 

uses formulas (2), (8) and (13) to confine values assigned to ktjx . After the end of a 

cycle, each ktjx  is assigned a value and ktN  is computed using the ceiling integer of 

the right hand side of formula (15) as: 
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5   Experiments  

A case with ten types of machines, ten types of orders and ten periods of production 
horizon problems are considered to verify the performance of proposed MAA algo-
rithm. The parameters of the proposed MAA algorithm were carefully investigated 
and tuned in a sensitivity analysis. Major parameters include the evaporation rate 

( , )=(0.01,0.01), the number of artificial ant ( antsN =75), the number of reinforce-

ment cycles (RF=25) and the number of cycles in a trial (C=1,000). JAVA language 
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is used to develop the code of the proposed ant algorithm run on a P4 CPU with 
256MB RAM.  

The first case is presented for illustrating model I. The available operational time 
of each working cell, W, is 1,800 hours for each period of time. The target utilization 
of each kind of working cells is 100%. The interest rate is 6% in all periods. The up-
per bound of budget, CC, is 7 million USD. The initial number of working cells is 

0N =(4,4,4,4,4,4,3,3,3,3) in which each column represents the number of machine in 

a cell. The unit price of selling capacity of remaining working cells t of a capacity 

seller, '
tC , is set to 1250, 1975, 775, 1350, 2700, 1325, 2350, 2450, 2375, 11,200 

respectively in this case.  
The problem is highly complex. ILOG OPL optimization software (2005) was ap-

plied but failed to solve the case in 32 hours. The best solutions obtained by MAA (in 
5000 CPU seconds) are 3.920 x105.  

The other case is presented for illustrating model II. The initial portfolio of work-
ing cells is (1,1,1,1,1,1,1,1,1,1). The unit profits of orders are 
(20,30,40,20,30,40,20,30,40,40) respectively. The available operational time, target 
utilization, interest rate, budget are the same as those in case I. The best solutions 
obtained by MAA (in 2000 seconds) are 7.379 x107.  

The remaining capacity of the working cells obtained in the first case and the re-
maining orders obtained in the second case are used. It is assumed that the capacity 

unit price (Ctj) at the capacity seller is proportional to tjμ  by multiplying a ratio R. 

Note that R=0 imply that resources are free. The other parameters are the same as the 
ones in case I.  

The algorithms can solve the problem in a few CPU seconds. Figure 1 depicts the 
cost-profit structure for different resource outsourcing cost (in a ratio of R). The gross 
profit of the capacity buyer decreases as the price of the required capacity price in-
creases. When R=1.4 the gross profit converges to zero, which means no deal is 
reached. Note that when R= 0.6, the system will reach balance when two factories 
have equal profit. 
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Fig. 1. Cost-profit structure for different resource outsourcing cost (in a ratio of R) 
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6   Conclusions  

This study develops a negotiation-based supply-demand framework where the issues 
of coordinated resource allocation between factories tasks can be resolved economi-
cally. Experiments reveal that the proposed ant algorithm derive good solutions in 
both of isolated (a single factory level) and negotiation-based (at a mediator level) 
environments. 

Further researches can be done for semiconductor manufacturing and testing, alter-
native means of acquiring resources, purchasing new facilities, renting from competi-
tors, transferring from other plants and selling equipment. Beside the proposed ant 
algorithm, one can incorporate local search methods to improve further the solution 
efficiency. 
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Abstract. A central question in cell and developmental biology is how 
signaling pathways maintain specificity and avoid erroneous cross-talk so that 
distinct signals produce the appropriate changes. In this paper, a model system 
of the yeast mating, invasive growth and stress-responsive mitogen activated 
protein kinase (MAPK) cascades for scaffolding-mediated is developed. 
Optimization with respect to the mutual specificity of this model system is 
performed by a high performance multi-objective evolutionary algorithm 
(HPMOEA) based on the principles of the minimal free energy in 
thermodynamics. The results are good agreement with published experimental 
data. (1) Scaffold proteins can enhance specificity in cell signaling when 
different pathways share common components; (2) The mutual specificity could 
be accomplished by a selectively-activated scaffold that had a relatively high 
value of dissociation constant and reasonably small values of leakage rates; (3) 
When Pareto-optimal mutual specificity is achieved, the coefficients, 
deactivation rates reach fastest, association and leakage rates reach slowest. 

1   Introduction 

Cells respond to a plethora of signals using a limited set of intracellular signal 
transduction components. Surprisingly, pathways that transduce distinct signals can 
share protein components, yet avoid erroneous cross-talks. An important unsolved 
problem in cell biology is to understand how specificity from signal to cellular 
response is maintained between different signal transduction pathways that share 
similar (or identical) components, particularly when this occurs in the same cell[1-3]. 

A quantitative analysis of intracellular signal processing will substantially increase 
our understanding of biological systems and may provide insight into how diseases 
are initiated and treated. A major obstacle to this goal, however, is the challenge of 
obtaining a broad and integrated appreciation of the mechanisms that promote 
signaling specificity. Numerous publications attempted to address this issue. 
However, at least in part due to lack of strict or unified definition of pathway 
specificity, no firm conclusion has been drawn and the mechanism of specificity 
                                                           
* Corresponding author. 



 Modeling and Optimization of the Specificity in Cell Signaling Pathways 775 

 

maintenance remains elusive. Very recently, a precise mathematical definition of 
specificity in interconnected biochemical pathways was developed [2], and the 
mechanisms enhancing or diminishing specificity by considering in detail the roles of 
crosstalk, compartmentalization, scaffolds in steady state were analyzed in a 
quantitative and rather general way.  

This paper is an extension to these works. We choose MAPK cascade signaling in 
the yeast as a model system and investigate how reaction rates for the scaffold and its 
complexes influence the specificity. We were particularly interested in the optimal 
design principles that we can identify from the point of view of the specificity. Hence, 
in this paper, we focus on searching the optimal specificity of this nonlinear system 
by using a high performance multi-objective evolutionary algorithm (HPMOEA) 
based on the principle of the minimal free energy in thermodynamics. In section 2, we 
will use the recent experimental data on yeast MAPK cascades to develop a more 
complicated scaffolding-mediated model containing conservation law. In section 3, we 
will define the specificity and mutual specificity for the two cascades, which closely 
follow those discussed in ref [2], and describe the HPMOEA for optimizing 
specificity of model system. In section 4, numerical experiments are conducted. 
Finally, some conclusions and future work are addressed in section 5.  

2   Modeling of Yeast MAPK Cascade Signaling 

MAPK cascades exist in all animals, plants and fungi, where they participate in the 
regulation of normal and pathological aspects of cell growth, division, differentiation, 
and death [4]. In yeast, elements of the same MAPK cascade regulate three distinct 
processes in the same cell: mating, filamentous invasive growth, and the response to 
osmotic stress. Mating and haploid invasive growth use the same MAPKs, Fus3 and 
Kss1, the same MAPK kinase (MKK, or MEK) Ste7, and the same MEK kinase 
(MEKK), Ste11. Ste11 also activates the Pbs2 MEK and the Hog1 MAPK in response 
to osmotic stress (Fig. 1A). These three pathways react to different stimuli 
(pheromone, nutrient status, and osmotic stress, respectively) and regulate distinct 
endpoints (mating, invasive growth, and glycerol production, respectively). Both Fus3 
and Kss1 are activated during mating, while Kss1 is preferentially activated during 
invasive growth, and Hog1 only by stress; these patterns make sense given the distinct 
functions of these MAPKs. How is selective MAPK activation achieved when distinct 
signals get funneled through a common set of components? In yeast, Ste5, the 
prototypical MAPK scaffold protein, is thought to enhance specificity via multiple 
mechanisms. First, by concentrating the components of a single pathway, Ste5 may 
selectively channel within-pathway signaling (Fig. 1B). For example, Ste5 is thought 
to promote Ste11 activation of Ste7, but not of Pbs2, because Ste5 binds Ste7 but not 
Pbs2. Second, by holding on tightly to bound, activated components, Ste5 and other 
scaffolds may sequester these components, preventing them from straying into other 
pathways (Fig. 1B). Third, again by sequestering bound components, scaffolds may 
isolate and protect them from misdirected signals when other pathways are active 
(Fig. 1C). These models are thought to be relevant to many other scaffold proteins in 
many organisms. To our best knowledge, none of these popular models of scaffold 
function have been mathematically modeled before.  
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ï

Fig. 1. (A) Shared MAPK cascade components signal to three distinct endpoints. (B) and (C) 
Models for how the Ste5 scaffold protein may promote signaling specificity (Copyright by [4]). 

 

Fig. 2. Scaffold Model 

To capture some key features of the experimental data, we takes account of several 
processes essential for scaffolding and model 2 of 3 yeast pathways(specific mating 
pheromone signaling pathway with input x0(t) and the invasive growth pathway with 
input y0(t)). Hence we modify the previous scaffold model [2] to include two forms of 
the scaffold: inactive scaffold and active scaffold, shown in Fig. 2. Let us suppose that 

species 1
ix (the inactive form of 1x ) can form a complex with another species (the 

scaffold), which we term iW  (here i stands for ``inactive''). The rate of this process 

may depend on the signal 0x , so we call it 0[ ]G x . The complex iW  can release free 

inactive 1
ix with the rate j. The complex iW can be activated with a rate defined by 

the presence of signal 0x , 0[ ]R x . The active form of W gives rise to the final product 

of the X cascade, 2x . It can also release free active 1x with the rate outD ; the reverse 

of this reaction, that is, the binding of activated 1x with the scaffold, happens at the 

rate inD . In other words, outD  is the dissociation constant for the movement of x1 

out/off of the scaffold, and inD  is a first-order association constant for the binding of 
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x1 into the scaffold complex. On the other hand, for the Y cascade, 1x can be activated 

in its free form by the presence of input signal 0y  with the rate 1b , and 1x in turn 

activates 2y . By using the Mass Action or Michelis-Menton formulations, the system 

of equations about these dynamics is described in equations(1) . 
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 (1) 

 

Suppose that [ ]0 0 1( )G x gx t h= + , [ ]0 0 2( )R x rx t h= + , where 1 2,h h  are 

leakage rates. The solution of equations (1) is determined by 13 coefficients, which 
affect the specificity of pathway or mutual specificity of this network. From real 
biological phenomena, higher specificity means a better and more stable biochemical 
network, so the problem is converted into the following multi-objective optimization 
problem:ï

(P) For each biochemical network, find the optimal combination of the on/off rates 

and the length of the cascade that maximizes the specificity xS , yS  for input x0, y0.  

3   Description of the HPMOEA 

3.1   The Two Objective Functions 

First, let us denote by 
0 00, 00

( )f x yx X x t dt
∞

> ==  the total amount of the final 

product fx  when the cell is exposed to signal 0x  but not to signal 0y .  Similarly, 

|y X denotes the total amount of fy  under the action of signal 0x . Then we can 

define the signal specificity of cascade X as the ratio 

x

x X
S

y X
=  (2) 

Thus, if pathway X is activated by a given signal and this does not affect the output 
from pathway Y, the specificity of X with respect to Y in response to that signal is 
infinite, or complete.  However, if there are some cross-talks between the pathways, 
then activation of Y will result in some output from X, and the specificity will be 
finite.  Similarly, we define the specificity of cascade Y as 
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y

y Y
S

x Y
=

 
(3) 

A pathway is called “has specificity” if S > 1, and “has specificity of degree k” if 
S > k for some real number k > 1. A network is called “has Mutual specificity” if 
both of the two pathways with specificities greater than 1 [2]. Therefore, Sx, Sy are the 
two objective functions in our algorithm.  

3.2   The Fitness Assignment Strategy 

Based on the principles of the minimal free energy in thermodynamics, HPMOEA 
was proposed to solve multi-objective optimization problems [5]. We combined the 
rank value ( )R i  calculated by Pareto-dominance relation with Gibbs entropy ( )S i , 

and the crowding distance ( )d i to assign a new fitness ( )F i  for each individual i  in 

the population, that is  

( ) ( )( ) ( )F i R i TS i d i= − −
 

(4) 

Where ( )R i  is the rank value of individual i , which is equal to the number of 

solution in  that dominates solution i  (see [6] for details). The rank values can be 

computed as follows. 

||)( iiR Ω= , where },1,|{ ijNjxxx ijji ≠≤≤=Ω  (5) 

In this way, R(i) = 0 corresponds to a nondominated individual, whereas a high 
R(i) value means that i is dominated by many individuals. 

( ) ( ) log ( )T TS i p i p i= − , where ( ) (1/ )exp( ( ) / )Tp i Z R i T= −  is the analog of 

the Gibbs distribution, 
1
exp( ( ) / )

N

i
Z R i T

=
= − ,T is a parameter called the 

temperature, N is the population size, and d(i) is calculated by using a density 
estimation technique (which proposed by Deb et al[7]) . 

In HPMOEA, the fitness values are sorted in increasing order. The individual in 
the population which the fitness value is smallest is called “the best individual”, and 
the individual in population which the fitness value is largest is called “the worst 
individual”. The structures of HPMOEA and RANK are described as follows: 

Procedure1 HPMOEA 
Step1: t=0, generate randomly an initial population P(t); 
Step2: Calculate the rank values of all individuals in 
P(t)by using Procedure RANK; 
Step3: Save the individuals whose rank values are zero; 
Step4: Calculate the fitness of all individuals according 
to equation (4),and sort them in increasing order; 
Step5: Repeatedly execute step6 to step11 until the 
termination conditions are satisfied; 
Step6: t=t+1; 
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Step7:Randomly select m
1
 individuals to do multi-parent 

crossover and m
2
 individuals to mutate, and to generate n 

new individuals; 
Step8:Compare the new individuals with the worst 
individuals, and accept new individuals; 
Step9: Calculate the rank values of all individuals in 
new population P(t) by using Procedure RANK; 
Step10: Save the individuals whose rank values are zero; 
Step11: Calculate the fitness of all individuals 
according to equation (4), sort them in increasing order, 
and record the worst individuals; 
Step12: Output the all results. 
 
Procedure2 RANK 
Step1: Use four-order Runge-Kutta method to solve 
equatioins(1) for given parameters and inputs; 
Step2: Use Composite trapezoid rule in numerical 
integration to obtain two objective values Sx,Sy; 
Step3: Calculate the Rank values of each individual 
according to equation(5) 

4   The Numerical Results 

In our model system, there are 13 coefficients: 2 2 2 2 1 1, , , , , , , , ,x y
out ina d b d b D d D g  

1 2, , ,j r h h . According to the biological experimental data in yeast, the coefficients 

are arranged as following: 2 2, [2,10]a b ∈ 2 2, [0.001,2]x yd d ∈ , other coefficients 

belong to [0.001,10]. The algorithm has been coded in C language and implemented 
on a Pentium PC 700MHz in double precision arithmetic. The main parameter setting 
is: population size N=30, temperature T=10000. We run the program 10 different  
 

 
Fig. 3. Pareto-optimal mutual specificity for running 500 generations 
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Fig. 4. The relationship between Dout and Sx,Sy in last generation 

times for 500 generations, the results of three of 10 different times are showed in 
Fig.3, where X-axis is the specificity of X cascade Sx, Y-axis is the specificity of Y 
cascade Sy. The above results indicate that HPMOEA can be used to obtain stable 
Pareto-optimal fronts in all runs. 

As can be seen from the results: (1) In the initial stages of searching, mutual 
specificity could be achieved by a selectively-activated scaffold that had relatively 
high values of Dout and Din, and a reasonably small value of h. In fact, this is situation 
is quite close to that suggested by recent experiments [4]. (2) It is obvious that 
increasing the deactivation rate d1 and decreasing the leakage rates h1, h2, together 
with decreasing Din will lead to high degrees of mutual specificity. (3) In last 
generation for running HPMOEA, that is, when Pareto-optimal mutual specificity is 
achieved, the coefficients Din, h1, h2 are very close to the lower bound 0.001, and d1 
are close to the upper bound 10 in the setting of coefficients. The relationship between 
dissociation constant Dout and mutual specificity Sx,Sy are depicted in Fig4. This 
result makes sense: SX is relatively increasing with decreasing Dout (so that very little 
x1 leaks out by bound scaffold). Conversely, SY is increasing with increasing Dout. 

5   Conclusions and Future Work 

The maintenance of specificity is a critical factor in the evolution of signaling 
networks. By duplication and divergence of preexisting parts, a new pathway emerged 
Therefore, the requirement for specificity has undoubtedly shaped the design logic of 
biochemical networks. A quantitative description of signaling specificity is also 
important in understanding tumorigenesis because a breakdown in specificity often 
leads to the initiation or progression of cancer . 

In this paper, we presented a more accurate model of scaffold-mediated MAKP 
cascades on the basis of scaffold model described in [2]. By using numerical 
techniques and HPMOEA, we find that for scaffolds to effectively promote specificity 
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by sequestration, deactivation rates must be fast. Furthermore, scaffold binding rate 
must be slow, which is likely to constrain signal speed and amplification. Our results 
provide insight into the regulatory roles of the signaling components and may help to 
explain the optimal design of pathways from the viewpoint of specificity. 

Our future work will include examining specificity and fidelity simultaneously in 
complex biochemical networks and trade-offs between specificity and signal 
amplitude, rate and duration. 
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Abstract. Elastic image registration plays an important role in medical image 
registration. For elastic image registration based on landmarks of sub-images, 
optimization algorithm is applied to extract landmarks. But local maxima of 
similarity measure make optimization difficult to convergence to global maxi-
mum. The registration error will lead to location error of landmarks and lead to 
unexpected elastic transformation results. In this paper, an elastic image regis-
tration method using attractive and repulsive particle swarm optimization 
(ARPSO) is proposed. For each subimage, rigid registration is done using 
ARPSO. In attractive phase, particles converge to promise regions in the search 
space. In repulsive phase, particles are repelled each other along opposition di-
rections and new particles are created, which might avoid premature greatly. 
Next, thin plate spline transformation is used for the elastic interpolation be-
tween landmarks. Experiments show that our method does well in the elastic 
image registration experiments.  

1   Introduction 

Image registration is the process of overlaying two or more images of the same scene 
to achieve biological, anatomical or functional correspondence. Elastic registration is 
a process for aligning spatial correspondence of two images within the constraints of 
an image deformation model. One principal approach to elastic image registration is 
based on point landmarks, whose advantage is the transformation can be stated in 
analytic form and lead to efficient computational schemes [1-4]. Landmark-based 
schemes first extract landmarks from images and then compute a transformation 
based on these features [1]. Because the precision of landmarks affects the effective-
ness of the registration greatly, extraction of corresponding points in two images plays 
an important role in image registration. Likar [2] combined prior and floating infor-
mation on the joint probability to improve the subdivided local registration. Maintz 
[3] proposed to use a global joint histogram based on optimized mutual information 
combined with a local registration measure to enable local elastic registration.  
                                                           
* Sponsored by: National Natural Science Funds(No. 60572101) and Guangdong Natura 

Science Funds (No. 31789). 
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No matter what similarity measure used, the optimization plays an important role 
in searching for the registration parameters of subimages and extraction of landmarks. 
When optimization algorithm converges to the local maxima, mis-registration pa-
rameters of subimages are obtained. Correspondingly, landmarks extracted are incor-
rect and result to registration error in elastic transformation. Powell’s method is a 
popular optimization method in multimodality image registration. However, Powell’s 
method could run into local maxima and reach local optimal results easily. Particle 
Swarm Optimization (PSO) is another form of Evolutionary Computation introduced 
by Eberhart and Kennedy[5], which has been applied to registration [6].  A major 
problem with PSO is premature convergence (PC), which results in great performance 
loss and sub-optimal solutions. In this paper, we propose an elastic image registration 
method using attractive and repulsive particle swarm optimization. In our method, 
images are divided into subimages and rigid registration is done using feature effi-
ciency coefficient as the similarity measure. Attractive and repulsive particle swarm 
optimization (ARPSO) is applied to obtain rigid registration parameters of each subi-
mage. Landmarks are extracted as the center of each rigid registered subimage pairs. 
Finally, thin plate spline transformation is applied to deform the float image. ARPSO 
performs optimization using attractive phase and repulsive phase. In attractive phase, 
particles converge to promise regions in the search space, which is like basic PSO. In 
repulsive phase, particles are repelled each other along opposition directions and new 
particles are created. Premature might be avoided by new particles. ARPSO could get 
away from local maxima easily than basic PSO and converge to global maxima.  

2   Similarity Measure of Sub-images 

In our method, image is partitioned into sub-images in same size, such as 32×32. In 
order to extract point landmarks, each subimage is registered rigidly by translation 
and rotation transformation. The most important process in our method is choosing a 
similarity measure of sub-images, which is the objective function of optimization.  

Mutual information has been widely used to measure image similarity in recent 
years [10, 11]. However, its application on sub-images with small samples is ques-
tionable, as many local maximums might happen, or the global maximum might be 
away from the actual max. The feature efficiency coefficient defined by Butz[7] is a 
general concept to qualify image features based on information theoretical frame-
work. Mutual information, Normalized entropy and overlap-invariant entropy can be 
seen as a particular case of the feature efficiency coefficient with order n [7].  

( ) ( )
( )

[ ]1

,
, 0,1

,

n

n

I X Y
e X Y n

H X Y
−= ∈  (1) 

where ( ),I X Y  is the mutual information of random variables X and Y. ( ),H X Y  is 

the joint entropy. n is the order. The feature efficiency coefficient is derived from the 
thought that features that best capture the relationship between the two random  
variables it is necessary to chose those with the highest mutual information. But  
simply maximizing the mutual information is dangerous to add superfluous informa-
tion, which increases the joint entropy ( ),H X Y [7]. Maximize the feature efficiency 
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coefficient is to select features which are highly related with less information. Butz 
pointed out that feature pairs which carry information that is present in both signals 
(large mutual information), but only information that is present in both signals (low 
joint entropy), are the most adapted features for multimodal image registration [9]. 

When the order n chose appropriately, the feature efficiency coefficient will do 
well in medical image registration [7,8,11]. For sub-images with small samples, the 
feature efficiency coefficient with order n can be used to register images. In our 
method, we choose the feature efficiency coefficient with 2 3n =  as the similarity 

measure of sub-images. 

3   Attractive and Repulsive PSO 

Particle Swarm Optimization (PSO) has been applied to image registration [6]. It 
differs from other evolution motivated evolutionary computation techniques in that it 
is motivated from the simulation of social behavior [5]. PSO is another form of evolu-
tionary computation and is stochastic in nature much like Genetic Algorithms. In a 
PSO system, particles fly around in a multidimensional search space. During flight, 
each particle adjusts its position according to its own experience, and according to the 
experience of a neighboring particle, making use of the best position encountered by 
itself and its neighbor. A minimization (or maximization) of the problem topology is 
found both by a particle remembering its own past best position  (pbest) and the com-
panions’ best overall position (gbest).  

In PSO the particle simulates a bird’s behavior where social sharing of information 
takes place and individuals can profit from the discoveries and previous experience of 
all other companions during the search for food. Each particle in the population flies 
over the search space in order to find promising regions in the search space. The par-
ticle swarm optimization concept consists of, at each time step, changing the velocity 
of each particle toward its pbest. Acceleration is weighted by a random term, with 
separate random numbers being generated for acceleration toward pbest.  

In PSO, the ith particle 
ix , 1, ,i N=  moves by addition of a velocity vector 

iv , 

which is a function of the best position found by the particle and of the best position 
found so far among all particles.  

( ) ( ) ( ) ( )( ) ( )( )1 1 2 21i i i i i i iv k k v k p x k G x kφ α γ α γ+ = + − + −
 

(2) 

( ) ( ) ( )1 1i i ix k x k v k+ = + +
 

(3) 

where, i is particle index, k is iteration index, ( )kφ  is the inertial weight. iv is the 

velocity of i th particle, x is the position of i th particle, ip  is the best position found 

by ith particle, G is the best position found by swarm, 1,2γ  is the random numbers on 

the interval [0,1] applied to i th particle, 1,2α  is acceleration constants. In order to 

perform PSO, we set inertial weights ( )kφ  be monotonically decreasing function of 

the iterations index. The iteration number is up to 250. The population size is 20 and 
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acceleration constants are 
1 2 2α α= = . Our search space is three dimensions, one 

rotation and two translations. ( ), ,i x yx t t θ= , where xt  and yt  are translation parame-

ter, θ  is rotation parameter. 
A major problem with PSO is premature convergence (PC), which results in great 

performance loss and sub-optimal solutions. The main reason for premature conver-
gence is a too high selection pressure or a too high gene flow between population 
individuals [13], such as decreasing of diversity in search space that leads to a total 
implosion and ultimately fitness stagnation of the swarm. 

Riget et.al [12] defined the attractive and repulsive PSO (ARPSO) to overcome the 
premature convergence by modifying the diversity of particles in the search space. 
When the particles diversity is high, the particles will attract each other just as the 
basic PSO algorithm. The information of good solutions will flow between particles. 
When the particles diversity is low, that means all particles are similar to each other, 
the particles are no longer attracted to but instead repelled by the best known particle 
position and its own previous best position. The velocity-update formula is modified 
by multiplying the direction coefficient dir, which decides directly whether the parti-
cles attract or repel each other [12].  

( ) ( ) ( ) ( )( ) ( )( ){ }1 1 2 21i i i i i i iv k k v k dir p x k G x kφ α γ α γ+ = + − + −  (4) 

The direction coefficient dir is set as:  

dir dir if diversity dLow or diversity dHigh= − < >  (5) 

where dLow and dHigh are the lower bound and the up bound of the diversity alterna-
tively. The initial value of dir is 1. Equation (5) means that when dir is set to be 1, the 
swarm is contracting and consequently the diversity decreases. Particles are attracted 
each other to find promising regions in the search space. When the diversity drops 
below a lower bound, it switches to the repulsion phase, dir is set to be -1 where par-
ticles are repelled to increase the diversity of population, in which the swarm expands 
gradually. When the diversity of dhigh is reached, it switches back to the attraction 
phase. In ARPSO, the repulsive phase plays an important role. When all particles are 
similar to each other, the diversity of population could be increased using repulsive 
phase, which means potential particles are created and premature convergence might 
be avoided greatly using these new particles. 

The diversity measure of the swarm is set as fellow [12],  

( ) ( )2

1 1

1 S N

ij j
i j

diversity S p p
S L = =

= −
⋅

 (6) 

where S  is the particle set, S  is the swarm size, L  is the length of longest the di-

agonal in the search space, N is the dimensionality of the problem, 
ijp  is the jth value 

of the ith particle and 
jp  is the jth average value of 

jp .  

For elastic medical image registration, image is partitioned into 32×32 sub-images. 
Each subimage is registered rigidly by translation and rotation transformation using 
ARPSO, where the feature efficiency coefficient is the objective function. For each 
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sub-image pair, the center points are extracted as the point landmarks pair. Next, Thin 
plate spline transformation is applied to deform the float image to obtain the elastic 
registration result. 

4   Thin Plate Spline Transformation (TPS) 

TPS models the deformations by interpolating displacements between source and 
target points [4]. Given two images: the source image (S) and the target image (T), 
one set of n landmark pairs ( ){ }0 : , , , 1, ,i i i iP p q p S q T i n∈ ∈ = , TPS transformation 

( , )f x y has the form 

1
1

( , ) ( , ) ( , ) ( )
n

s s x y i i
i

f x y x y R x y a a x a y U rω
=

= Φ + = + + +  (7) 

where 2 2( ) logi i iU r r r= , 2 2| ( , ) | ( ) ( )i i i ir p x y x x y y= − = − + − .It consists of two parts: 

the affine part ( , )s x yΦ , a sum of polynomials with coefficients 1( , , )x ya a a a= , and 

the elastic parts ( , )sR x y , a sum of radial basis functions (RBFs) with coefficients 

1 2( , , , )nω ω ω ω= . It fulfills the interpolation conditions ( ) ( ), 1, ,i i if x y q i n= =  and 

minimizes the bending energy ( )TPSE f : 

2 2 22 2 2

2 2
( )TPS

f f f
E f dxdy

x x y y

∂ ∂ ∂= + +
∂ ∂ ∂ ∂

 (8) 

Only need to solve the linear system for TPS coefficients: 

T

K Pa v

P O

ω
ω
+ =

=
 (9) 

where ( )ij ijK U r= the ith row of P is (1, , )i i iP x y= , O  is a 3×3 matrix of zeros, 

1( , , )x yA a a a= , 
1( , , )nv q q= . 

5   Experiments 

We will show several examples for medical image registration which show the 
method validity for deformation images. In our method, the diversity parameters 
dlow and dhigh were set at 0.02 and 0.25 respectively. 

In order to illustrate the registration precision of our method, artifical images are 
used to do registration. At first, an artifical image (circle) is created as the reference 
image (figure 1 (a)). The reference image is deformed in manual to be the float image 
(figure 1 (b)). Point landmarks are extracted and marked (figure 1 (c)) by our method. 
TPS is applied to transform the float image based on extracted landmarks. The elastic 
registered image is display in figure 1 (d). It can be seen that the registration precision 
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of our method is satisfied because of accurateness of landmarks using ARPSO. Figure 
2 is another example of artifical image (rectangle) elastic registration. The elastic 
registration results of our method are satisfied also.  

We used synthetic MR-scans from the BrainWeb database to represent the quality 
of elastic registration results of our method. The results for T2-PD registration are 
shown in Fig.3. Figure 3 (a) is a T2 image, which is the reference image. The float 
image PD is deformed in manual. The corresponding point landmarks are labeled in 
figure 3 (c) also. The elastic registered image is display in figure 3 (d). In order to 
show the elastic registration results of our method, edge differences of the reference 
image and elastic registered image are displayed in figure 3(e). It can be seen that the 
registration precision of our method is satisfied. Figure 4 is the elastic registration 
results of PD-T1, where elastic deformation appeared on the float image T1. Figure 5  

 

     
(a)                       (b)                       (c)                        (d)                       (e) 

Fig. 1. Elastic registration of an artifical image. (a) reference image, (b) float image, (c) ex-
tracted landmark pairs, (d) deformed image of our method, (e) edge error of reference image 
and deformed image. 

     
(a)                       (b)                       (c)                        (d)                       (e) 

Fig. 2. Elastic registration of an artifical image. (a) reference image, (b) float image, (c) ex-
tracted landmark pairs, (d) deformed image of our method, (e) edge error of reference image 
and deformed image. 

     
(a)                       (b)                       (c)                        (d)                       (e) 

Fig. 3. Elastic registration of T2-PD. (a) reference image T2, (b) float image PD, (c) extracted 
landmark pairs, (d) deformed image of our method, (e) edge error of reference image and de-
formed image. 
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(a)                       (b)                       (c)                        (d)                       (e) 

Fig. 4. Elastic registration of PD-T1. (a) reference image PD, (b) float image T1, (c) extracted 
landmark pairs, (d) deformed image of our method, (e) edge error of reference image and de-
formed image. 

     

Fig. 5. Elastic registration of T1-T2. (a) reference image T1, (b) float image T2, (c) extracted 
landmark pairs, (d) deformed image of our method, (e) edge error of reference image and de-
formed image. 

is the elastic registration results of T1-T2, where elastic deformation appeared on the 
float image T2. It can be seen from figure 3, figure 4 and figure 5 that the deformed 
images of our method matched the reference image well, which means the similarity 
measure of subimage illustrated the alignment degree. Moreover, ARPSO converges 
to the global maximum and avoids premature easily. 

6   Conclusion 

In multimodal medical image elastic registration, optimization algorithm plays an 
important role in extracting point landmarks of subimage pairs. In this paper, an elas-
tic image registration method using attractive and repulsive particle swarm optimiza-
tion is presented. ARPSO performs optimization using attractive phase and repulsive 
phase. When the particles diversity is high, the particles will attract each other just as 
the basic PSO algorithm. The information of good solutions will flow between parti-
cles. When the particles diversity is low, it turns to repulsive phase, particles are no 
longer attracted to but instead repelled each other along opposition directions and new 
potential particles are created. Premature convergence might be avoided by new po-
tential particles. Moreover, feature efficiency coefficient is applied to be the objective 
function of optimization. Experiments of artifical images and multimodal medical 
images show that our method is feasible and robust.  
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Abstract. Immune Clonal Selection Algorithm (ICSA) is a new intelligent 
algorithm that can effectively overcome the prematurity and has fast conver-
gence speed. An Immune Clonal Selection Scheduling Algorithm (ICSSA) is 
proposed by applying ICSA to the input-queued packet switch scheduling in 
this paper. ICSSA is compared with other previous algorithms about two 
performance measures: the average delay and the maximum throughput of the 
switch. Closed-form expressions for these measures are derived under uniform 
i.i.d. Bernoulli, diagonal and bursty traffic model. The experimental results 
show that better performances can be obtained by ICSSA, and 100% throughput 
can be guaranteed for these traffic models.  

1   Introduction 

The commercial machines popular today utilize iterative round-robin matching with 
slip (iSLIP) algorithm widely [1]. The main characteristic of iSLIP is its simplicity: it 
is readily implemented in hardware and can operate at high speed. For uniform i.i.d. 
Bernoulli arrivals, iSLIP has the appealing property that it is stable for any admissible 
load. iSLIP, however, can become unstable for admissible nonuniform traffic and 
bursty traffic[2]. 

Researchers have proposed several other good switch scheduling algorithms, such 
as Dual Round-Robin Matching (DRRM)[3], Exhaustive Service Dual Round-Robin 
Matching (EDRRM) algorithm [4], iterative longest queue first (iLQF)[5], reservation 
with preemption and acknowledgment (RPA)[6], and matrix unit cell scheduler 
(MUCS)[7]. With centralized implementations, the runtime of these algorithms is 

2( )O N or more. But by adopting parallelism and pipelining (which means adding 
spatial complexity in hardware) these algorithms can considerably reduce their time 
complexity. However, under non-uniform input traffic the performance of these 
algorithms is poor compared to MWM: They induce long delays, and their throughput 
can be less than 100 percent. Furthermore, solutions that intrinsically possess a 

2( )O N  runtime complexity are unlikely to scale for implementation in high-speed and 
large-sized switches.  

The maximum weight matching (MWM) algorithm delivers a throughput of up to 
100 percent [8][9] and provides low delays by keeping queue sizes small. However, it 
is too complex to implement because it requires 3( )O N iterations in the worst case.   
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Noticing the existing disadvantages of iterative scheduling algorithms and MWM, 
we studied a novel genetic algorithm based on immune [10], a multi-agent genetic 
algorithm for global numerical optimization [11], a multiagent evolutionary algorithm 
for constraint satisfaction problems [12] and an artificial immune system [13][14]. In 
the end, we introduced, describe and evaluate a novel approach, the Immune Clonal 
Selection Algorithm (ICSA) to approximate maximum matchings for bipartite graphs. 
In this paper we quantitatively evaluate ICSSA approximating maximum size 
matching and maximum weight matching for scheduling cells in an input-queued 
switch. In particular, we compare the performance of ICSSA to RRM and iSLIP. We 
also compare ICSSA against iLQF and MWM. The experiment results have shown 
that better performance can be obtained by ICSSA for different traffic models. 

2   Basic Idea of Immune Clonal Selection Algorithm 

The basic process of immune clonal selection algorithm is denoted as follows [13]: 

)(1 kA )(2 kA )(kAn)(kAi

1A 1A 2A 2A nAiA iA nA

1A′ 1A 2A′ 2A′ iA′ iA′ nA′ nA′

1q 2q nqiq

Antibody 
Population

Antibody Population
after clone

Antibody Population after 
Immune Genic  Operating

Clonal Operating

Immune Genic  
Operating

Clonal Selection 
Operating

)1( +kAn)1( +′ kAi
New Antibody 

Population
)1(1 +kA )1(2 +kA

 

Fig. 1. Basic process of  the immune clonal selection algorithm 

Clonal Operating C
cT : 

T
1 2 n( A  (k ))= [   (A (k )),  (A (k )), ,  (A (k ))]  C C C C

c c c cT T T T  (1) 

where ( ( )) ( )C
c i i iT A k I A k= ∗ , i 1 ,2 , ..., n= ;

iI  is a
iq dimension row vector 

whose elements are all 1 

i c iq ( k ) g ( n , f ( A ( k ) ))=  (2) 

                          
where cn n is a given integer relating to clone size, 

if ( A ( k ) ) is the affinity 

function. 

Immune Genic Operating C
gT : We apply the Gauss mutation here. Mutate the 

population clone operated with the probability mp  



792 L. Fang and Z. Jing 

C
gA (k)= T (A (k))   ′  (3) 

Clonal Selection Operating C
sT : 1, 2 , ...,i n∀ = , exit the mutated antibody 

' '{ ( ) m a x ( ) , 1, 2 , . . . , 1}i j i j iB A k f A j q= = − , then B replaces the antibody 
_ _

( ) ( )iA k A k∈ in the original population by the possibility
sp . 

1

0

i

i
s i

i

f (A ( k )) f ( B )

f ( A ( k )) f ( B )
p exp( ) f ( A ( k )) f ( B )andA (k) is the best antibody in the population  

f ( A( k )) f ( B )andA (k) is not the best antibody in the population
α

<
−= − ≥

≥

 (4) 

where 0α >  is a value related to the population diversity. So the antibody population 
is updated, and the information exchanging among the antibody population is 
realized. 

3   The Immune Clonal Selection Scheduling Algorithm 

Consider an input-queued switch with m inputs and n outputs, ICSSA described in 
this thesis attempt to match the set of inputs I, of an input-queued switch, to the set of 
outputs J. An efficient algorithm is one that serves as many input-queues as possible. 
This bipartite graph matching problem can be regarded as an optimization problem, 
thus try to find a matching M with maximum total size or total weight. 

3.1   Encoding  

For applying immune clonal selection algorithm to maximum size matching problem, 
a particular encoding form is required to represent a feasible solution of this problem. 

An antibody code is a string with finite length 1 2 lA α α α= , where iα s gene code 

and l is the length of genes. We will assume that the number of input ports equals the 
number of output ports, i.e., I J N= = , where N is the number of ports. For our 

application, l=N, and iα is the input port which is selected by output i. In order to 

obtain a conflict-free match M between the set of inputs and outputs, an antibody is a 
permutation of input port index from 1 to N. This measure assures that every antibody 
generated in this way indicate a valid solution of matching problem. 

3.2   Decoding and Affinity Function 

As discussed before, the maximum size matching problem can be translated to an 
optimization problem: ( )( ){ }1m ax f e A : A I− ∈ , where ( )1e A−  is the decoding of 

antibody A; set I is antibody space, and f is a positive real function which is called 
antibody-antigen affinity function. Antibody-antigen affinity function indicates the 
objective function value of candidate solution. Gene code iα  of antibody A means, of 
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this solution, input port iα have been chosen by output port i . For maximum size 

matching problem, if there is a request of input port iα  for forwarding packet to 

output port i, size of this edge ( ) 1
i ,is tα = , else ( ) 0

i ,is tα = . Size of matching: 

( )
1

i

N

,i
i

S s tα
=

= , i.e., affinity function: ( )( ) ( )1

1
i

N

,i
i

f e A s tα
−

=

= . For maximum 

weight match, we adopted the LQF strategy:  preferential service is given to input 
queues that are more heavily occupied. This is achieved by defining weight of 
edge ( ),i iw tα  to be equal to the queue occupancy ( ),i iL tα

, therefore total weight of the 

match ( ) ( ), ,
1 1

i i

N N

i i
i i

W w t L tα α
= =

= = , i.e., affinity function ( )( ) ( )1
,

1
i

N

i
i

f e A L tα
−

=

= . 

3.3   Mutation Operating 

For every antibody representing a valid solution, mutation operation is expected to 
avoid destroying the validity of antibody. Therefore we designed a proper mutation 
approach, to exchange the value of two genes that are randomly selected from the 
antibody.  

3.4   Description of Algorithm 

Step 1. Set population scale, clone population scale parameter 
cn  and mutation  

   probability
mp ; 

Step 2.   Randomly generate initial antibody population ( 0 )A and initialize k = 0; 

Step 3.   Calculate affinity function value of antibody population; 
Step 4.   Each antibody in the antibody population is reproduced according to formula 

   (1), clonal scale of each antibody is determined by formula (6): 
 

i

i

( ( ))
( ) * ,i=1,2, ,popscale

( ( ))
ii c popscale

j 1

f A k
q k Int n

f A k

θ

=

= ∗  (5) 

where ( )In t x  indicates the minimum integer which is bigger than x , 
cn n> is a 

given integer relating to clonal scale. 
iθ  is a value which indicates the affinity 

between antibody i and other antibody. It is defined as formula (6): 

{ }i jm in ex p ( ) , ; , 1, 2 , ...,i A A i j i j nθ = − ≠ =    (6) 

where *  is a arbitrary norm, commonly adopt Euclidean distance between the two 

antibodies, at the same time ∗  should be normalized, i.e. 0 ∗ 1. 



794 L. Fang and Z. Jing 

Step 6. Clonal mutation is used to the clone population operated with the  

probability mp ; 

Step 7. The clonal selection operator is performed to generate the new antibody 
population according to the formula (4); 

Step 8.    k=k+1; 
Step 9.  If the termination condition is met, the calculation is terminated; otherwise, 

   return to step 3. 

The computational complexity to identify the scheduling algorithm is ( )O g n×  for 

a N N× switch, where g is the number of generations and n  is the scale of antibody 

population. Since the ICSSA algorithm described above requires the computation of 
the affinity function value of each antibody, it can be done in parallel by n modules. 
Once the algorithm is identified, its on-line computational complexity is ( )O g . 

4   Experiment Results and Analyses 

To validate the performance of ICSSA, an exhaustive simulation is done under 
various traffic modes including uniform i.i.d. Bernoulli, nonuniform diagonal and 
bursty traffic. 

4.1   Bernoulli Traffic 

We consider first the case where cells arrive as a Bernoulli process with cell 
destinations distributed uniformly over all outputs. In Fig. 2, the results were obtained 
using the simulation for a 8 8× switch. Fig. 2(a) shows the average cell latency 
(measured in cells) versus the average offered load for ICSSA with FIFO, RRM, 
iSLIP, iLQF and MWM. 

This is the case: Because of HOL blocking, FIFO queuing achieves maximum 
offered load slightly more than 58%.  For an offered load of just 63% the round-robin 
algorithm becomes unstable. The iSLIP algorithm is a variation on RRM designed to 
reduce the synchronization of the output arbiters, then achieve 100% throughput. 
Under low load, the performance of maximum-size ICSSA (the curve labeled 
msICSSA) is almost identical to iSLIP: arriving cells usually find empty input queues, 
and on average there are only a small number of inputs requesting a given output. As 
the load increases, the number of input queues that keep cells increases, leading to a 
large sized match. In fact, under uniform 100% offered load the maximum-size -
ICSSA providing a better match and 100% throughput. Meanwhile, the curve labeled 
mwICSSA indicates maximum-weight ICSSA is the only algorithm able to 
approximate MWM wonderfully.  

4.2   Diagonal Traffic 

Diagonal traffic is a kind of nonuniform traffic mode. All inputs are equally loaded on 
a normalized scale, and ( 0 ,1)ρ ∈  denote the normalized load. The arrival process is 

Bernoulli i.i.d.. Let ( mod )k k N= . 2 / 3ii Nλ ρ= , 
1 / 3i i Nλ ρ+ = . i∀ , 
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and 0i jλ = for all other i and j. This is a very skewed loading, in the sense that input i 

has packets only for outputs i and 1i + . It is more difficult to schedule than uniform 

loading. 
Fig. 2(b) shows the average cell latency (measured in cells) versus the average 

offered load for ICSSA with other algorithms under diagonal traffic mode. It is 
observed that under load lower than 75%, the performance of ICSSA is almost 
identical to that of iterative scheduling algorithms. When the load keeps on 
increasing, ICSSA shows better performance. Especially, the maximum-weight 
ICSSA is the only algorithm that can achieve throughout up to 100% under non-
uniform traffic mode, for the curve approximate MWM wonderfully. 

4.3   “Bursty” Traffic 

Real network traffic is highly correlated from cell to cell [15] and so in practice, cells 
tend to arrive in bursts, corresponding perhaps to a packet that has been segmented or 
a packetized video frame. 
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(a)                                                                  (b) 

Fig. 2. Performance of ICSSA compared with FIFO, RRM, iSLIP , iLQF, MWM for i.i.d. 
Bernoulli arrivals (a) and for nonuniform diagonal arrivals (b) 
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Fig. 3. The performance of ICSSA (a) and the performance of ICSSA compared with FIFO, 
RRM, iSLIP, iLQF and MWM (b) under 2-state Markov-modulated Bernoulli arrivals  
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We illustrate the effect of burstiness on ICSSA using an on-off arrival process 
modulated by a 2-state Markov-chain. The source alternately produces a burst of full 
cells (all with the same destination) followed by an idle period of empty cells. The 
bursts and idle periods contain a geometrically distributed number of cells. 

Fig. 3(a) shows the performance of ICSSA under this arrival process for a 8 8×  
switch, comparing it with the performance under uniform i.i.d. Bernoulli arrivals. As 
we would expect, the increased burst size leads to a higher queuing delay. In fact, the 
average latency is proportional to the expected burst length. 

As Fig. 3(b) shows, we compared the performance of ICSSA with other algorithms 
under this traffic model. The default of bust length is 10. Burstiness tends to 
concentrate the conflicts on outputs rather than inputs: each burst contains cells 
destined for the same output and each input dominated by a single burst at a time. As 
a result, the performance is limited by output contention. The experimental results 
show that ICSSA performs better than other algorithms under bursty traffic. 

5   Conclusion 

ICSA is a new intelligent algorithm intended to integrate the local searching with the 
global and the probability evolution searching with the stochastic searching [14].  

Compared to iterative algorithms using “round-robin” arbitration, the novel ICSSA 
has the following properties: (1) No request is needed to send between inputs and 
outputs, as a result the communication load is reduced. (2) More importantly, it needs 
only iteration per time slot, regardless of the size of the switch. (3) ICSSA converges 
approximately to maximum match leading to a better throughput, whereas algorithms 
using “round-robin” arbitration like iSLIP usually find, at best, a maximal match: the 
largest size match without removing connections made in earlier iterations. (4) Once 
implemented in hardware, antibodies of one generation can compute in parallel, 
which leads to good compromise between low on-line computational complexity and 
goodness of throughput and delay performance. 
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Abstract. A new approach was proposed as a prototyping direction optimization 
of points data. Based on perspective theory, a curve surface was built up on the 
peak point of the produced point lattice of an entity. A lattice grid was used to 
represent the represent volume of the entity, which was employed in rapidly 
calculating the represent volume in real time. After analyzing the optimal object 
functions and strategy, authors adopted the genetic algorithm on selection of 
operators, cross breeding operators, mutation operators, iteration termination 
condition and colony scales, etc. The optimization program was set up using 
Matlab and the optimization was obtained for prototyping direction. At the end of 
the paper, the aforementioned approach was verified using an actual example, 
which was further validated on the rapid prototyping machine. The simulation 
results show that a three-dimensional reconstruction was not necessary based on 
this proposed points data prototyping direction optimization. The results also 
indicate that a perfect optimization has been achieved for real time optimization 
in a space with 360 degree. On the basis of the aforementioned optimization 
approach, the best position of an entity can be located for rapid prototyping, 
which can increase prototyping efficiency and reduce the time spending on 
prototyping. It then can lower the cost. 

Keywords: points data, prototyping direction, genetic algorithm, optimization. 

1   Introduction 

Large amount of manufactures need representing volume in order to utilize rapid 
prototyping technologies, such as FDM (Fused Deposition Modeling), SLA 
(Stereolithography Apparatus), SDM (Shape Deposition Manufacturing) and RFP 
(Rapid Freezing Prototyping), etc. In general, representing volume can be produced 
during the process of original shape manufacturing. Such representing volume not only 
impacts the manufacturing accuracy of the original shape and lengthening in duration, 
but also increase manufacturing cost. Therefore, during the rapid prototyping, the 
necessary representing volume is expected to be reduced as much as possible in 
addition to ensure prototyping quality. At present, during rapid prototyping 
                                                           
* The Project Supported by Zhejiang Provincial Natural Science Foundation of China: 502140. 
  The Project Supported by Ningbo City Youth Foundation of China: 2003A62021. 
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manufacturing, most of the approaches of prototyping-oriented optimization are based 
on the CAD models of entity[1]. The actually steps include set-up of an CAD model of 
the entity based on the points data, selection of a specific angle, then calculation of the 
representing volume. After comparison of multiple scenarios, one of the best scenarios 
was picked up as the best prototyping angle.  Based on the approach proposed in this 
study, no three-dimensional model of re-construction is necessary. The points data was 
directly processed and the optimization of entity prototyping is achieved in a direction 
of 360 degree in space[2]. The actual steps can be described as follows: 

Acquiring points data of entity  setting up points data three-dimensional lattice  
 setting up mathematical model of the representing volume and doing calculation  
 prototyping direction optimization using genetic algorithm. 

2   Relationship Between Transmitting Illumination Model and 
Lattice of Entity 

2.1   Transmitting Illumination Model 

At first, points data is supposed being surrounded by a surrounding box. Then this 
surrounding box is gradually divided into smaller three-dimensional grid. Such 
three-dimensional grid is then traced using light ray. Surrounding box is a kind of 
closing surface of points data, such as cuboid surface. Within the scenario, a piece of 
light ray will not intersect with the surface of an entity if this piece of ray does not 
intersect with the surrounding box. If this piece of ray does intersect with the 
surrounding box, then this intersection can be calculated between the ray and the 
surface. Because of the simplicity of describing a surrounding box, the testing of  
the above mentioned intersection is such a comparatively simple method that reduce 
large amount of complicated intersection calculation[3]. 

The piece of light ray can be expressed by: 
                      O= Q + E, t [0, ]                                              (1) 

where, 

Q=[xQ,yQ,zQ]T starting point of the ray; 
E=[xE,yE,zE]T unit vector, representing the direction of the ray; 
O=[x,y,z]T random point along the ray. 

Assuming the length of a three-dimensional grid as , then its six surface can be 
expressed by x=i , x=(i+1) , y=j , y=(j+1) z=k , z=(k+1) . If the ray intersects 
with this three-dimensional grid, in general, two intersection points can be obtained, 
which are inputting point of Pin, and outgoing point of Pout. These two points is 
possible overlapped as one point under specific situation. Based on the ray direction, 
the six surface of the three-dimensional grid can be divided into two groups. One group 
is a starting surface, the other one is an end surface. When xE>0, x=i  is the starting 
surface and x=(i+1)  is the end surface. The other surfaces can be treated similarly. 
The intersection of the light ray and the starting surface is Pin  while the intersection 
with the end surface is Pout. The location of Pout determines which next 
three-dimensional grid the light ray will locate after outgoing from the previous grid. 
Now the end surface is set up as x=(i+1) , y=j , z=(k+1) , then: 
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If Pout is located on the x=(i+1)  surface, the next three-dimensional grid will be  
(i+1, j, k); If Pout is located on the y=(j+1)  surface, the next three-dimensional grid 
will be(i, j-1, k); If Pout is located on the z=(k+1)  surface, the next three-dimensional 
grid will be (I, j, k+1). 

In order to determine which surface Pout is going to locate, inputting equation (1) 
into the formulas of the above three end surfaces and the following three parameters 
was obtained, including: 

Q Q Q
1 2 3

E E E

(i 1) x j y (k 1) z
t , t , t

x y z

+ Δ − Δ − + Δ −
= = =           (2) 

Then, Pout should be located on the end surface having the smallest parameter. 
The light ray from the source will firstly intersect with the front surface of a specific 

three-dimensional grid. If there is no data within this grid, the value of zero will 
represent this grid. If there is data in the grid, the value should be 1. The light ray then 
goes into the next grid. The above procedures will repeat. At the end, all the obtained 
data can be represented as a lattice.  

2.2   Expression of Three-Dimensional Entity Using Lattice 

During prototyping optimization, the calculation of representing volume is difficult 
because of the complication of the entity shape and the variation of representing 
volume at various positions. It is therefore necessary searching for an approach with 
which the representing volume can be computed rapidly in an increasing in efficiency. 
The purpose of expressing points data in a format of lattice is for calculating the 
representing volume. 

Setting up of a three-dimensional mesh. The scanned points data of an entity firstly is 
represented in a format of matrix. Based on the order of points data, the matrix is also 
presented in the same order of x y z. 

The maximum and minimum values of points data can be found in the matrix and 
can be expressed as xmax xmin ymax ymin zmax zmin. A surface normal to x axis can 
be obtained through points of xmax xmin. A surface normal to y axis can be obtained 
through points of ymax ymin. A surface normal to z axis can be obtained through points 
of zmax zmin. A surround box is set up by these six normal surfaces. The points data is 
included within this box.  

Based on the scanning step length of x y z and the size of the surrounding 
box, the structure of the three dimensional lattice of the points data can be determined. 
The scanning step length can be input during set-up of scanning. It can also be obtained 
within the points data.  Xnum Ynum Znum can be computed by equation (3) as follows: 

max min
num

max min
num

max min
num

x x
x 1

x
y y

y 1
y

z z
z 1

z

−= +
Δ
−= +

Δ
−= +

Δ

                                             (3) 
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Within a surrounding box, a surface normal to x axis was set up on the layer of 
(Xnum-1), a surface normal to y axis was set up on the layer of (Ynum-1), and a surface 
normal to z axis was set up on the layer of (Znum-1). The above three layers constitute a 
three dimensional grid of Xnum×Ynum×Znum, and the area of each grid can be expressed 
as x× y× z. 

Setting up of 01 point lattice. The coordinates of (i, j, k) within the three dimensional 
grid can be determined by the point coordinates of (x, y, z) within the matrix by 
including the data of matrix into the created three-dimensional grid. Such created 
three-dimensional grid is then processed using transmitting illumination model. Based 
on the above method, 01 lattice can be created, and the entity can be represented by 01 
point lattice rather than coordinates. 

Large amount of unnecessary data are available within the points data and some of 
which have similar coordinate values. During the process of creating point lattice, it is 
possible that these kinds of data are transferred into one small grid and can be processed 
as one data. The size of the data is then naturally compressed. If the space between grids 
is big enough, the compressed data will not impact the calculation accuracy.  

3   Calculation of Represent Volume 

Within laser scanning system, its original coordinate does not coincide with the center 
of working platform of the machine. The X-Y-Z coordinate system of the scanning 
machine is Cartesian Coordinate System. The model of scanning system for this study 
is 3DFAMILY. The value range of unit vector (a, b, c) can be expressed by a unit 
spherical of a2+b2+c2=1. Representing volume of V (a, b, c) has no linear relationship 
because of the various shape of processed entity. Such volume can also be expressed by 
a convex function. Therefore, prototyping direction optimization of an entity can focus 
on solving the non-linear problem of the following single function of: 

min z=f(x1,x2,…, xn) 
        s.t. hi(x1,x2,…, xn) 0    i=1,2,…,m                                    (4) 

                                     gi(x1,x2,…, xn)=0         j=1,2,…, p 
                                     (x1,x2,…,xn) Rn 

During prototyping process, the representing volume will be treated as an objective 
function. The prototyping direction with the smallest representing volume is the best 
prototyping direction. As described, an entity can be represented as a 01 lattice. 
Therefore, the representing volume can be obtained based on computing the amount of 
grids of points data. A program was set up using Matlab language for computing the 
representing volumes corresponding to various locations of the entity.  

4   Optimization Based on Genetic Algorithm 

Prototyping direction optimization is a comparatively complicated optimization 
problem. Its objective function can be expressed as non-convex, non-linear, multiple 
waves and noisy format. Analysis method is improper for this kind of problem. 
Traditional optimization methods will also have many difficulties for solving this 
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problem. The best optimization maybe obtained within specific range but not the whole 
range[4]. Therefore, it is necessary to find a new and more stable optimization method 
for solving such prototyping direction problems of entity. 

Genetic algorithm is established on the basis of natural choice and group random 
genetic theory. Such algorithm has features of random, iteration and evolution, and also 
flexible and extensive. So it is suitable for solving non-convex objective functions of 
prototyping direction optimization problems[5].  

Selection

Mixture

Variation

Representing Volume

New Population gen= gen+1 

3-D Lattice Output

Population Initializing 

Representing Volume

gen= gen+1 

Printing 

End

Scanning Files 

YN

gen< Max. Algebra

 
 

Fig. 1. Main program flow 

Coding of real number has features of high accuracy and easy searching. So such 
coding method has high efficiency for solving function optimization problem.  It can 
keep better population diversity. At the same time, the topology structure of real 
number coding remains the same as that of representing space, which can make it easy 
to find effective hereditary operators based on traditional optimization methods. 
Therefore, real number coding was used limiting optimization problem in this study 
for. In order to randomly produce initial population, the required equation can be 
expressed as a2+b2+c2=1. So, every individual in initial population was located within 
feasible region formed as a unit sphere. Standard geometry distribution was used in 
selecting operators and also corrected arithmetic hybrid. Variation operator adopts 
uneven variation. The non-changed variation parameters was randomly determined 
between a, b and c. Then, changed parameters were also determined.  Variation 
direction (upward or downward) was randomly determined. Variation quantity was 
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produced randomly. Then the c value was adjusted according to unit vector, 
2 2c 1 a b= − − , c symbol does not change. 

The main program can repeat multi-processing genetic algorithm. The users should 
input different parameters before running the main program each time. After running, 
the statistical results relating the evolution process were input into the output data files. 
The first step is to initialize, including acquiring algorithm parameters, distribution of 
data space, initialization of random number producing machine as well as producing 
initial population, and exporting statistical information of each generation, etc. Then 
the evolution of each generation is calculated. The main program flow chart is shows 
on Fig.1. 

5   Prototyping Direction Optimization Actual Example 

In this section, the proposed prototyping direction optimization was proved using the 
points data of a vase as an example. A 3600 revolving scanning method was used in the 
vase sampling. Because the height of the entity exceeded that of the scanner, the whole 
scanning process was divided into several phases. The data of the final scanning was 
synthesis, which resulted in the points data of the revolving vase, as shown on Fig.2. 
The sampling span is 0.5 mm along X direction, Y direction and Z direction. Based on 
3600 revolving of the vase, the sampling was carried out every 20. After sampling, a 01 
lattice was set up based on the points data. The required representing volume of the 
entity was calculated along various prototyping direction. Finally, optimization 
program of genetic algorithm was used in prototyping direction optimization, which 
located the best position of the entity. Such obtained best position was verified by the 
calculating result of prototyping machine. 

During transferring points data into 01 lattice, the division of 3-D grid kept 
consistent with the sampling span. Based on the maximum size of the entity, a 01 lattice 
was obtained with 97 mm long, 97 mm wide and 83 mm high. The height was 
corresponding to the Z direction of scanner. The length was corresponding to the Y 
direction of scanner. The width was corresponding to the X direction of scanner. The 
prototyping direction was represented by the angels between unit vectors of a, b and c 
and X axle positive direction, Y axle positive direction, and Z axle positive direction. 
The final results were expressed in a format of angle. 

 

 
 

Sampling condition: 3600 spins, data sampling every 20,  
Sampling span along X Y, Z direction is 0.5 mm 

Fig. 2. Points data of vase scanning 
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Population Number=80, Hybrid Number=18, 
Population Generation=16, b=1/3, q=0.05 
Variation Number=18 

Population Number=40, Hybrid Number=8, 
Population Generation=16, b=5.0e-001,  
q=0.05, Variation Number=8
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Fig. 3. The change of the most optimization values and its averaged values 
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Fig. 4. Vase prototyping direction optimization record of each generation 

The output results should include most updated optimization records, optimization 
record of each generation, the best position of the entity during prototyping, the number 
of objective function of V (a, b, c), as well as running time.  

Variance analysis was carried out. Fig.3 presents the optimization values of all 
revolving scanning generations and the average values development. Based on the 
presented curves, increasing operating algebra resulted in a gradually closing of these 
two curves, which indicates an approaching of the best solution. The output files 
certified the above results. Fig.4 shows the maximum optimization change of each 
generation during prototyping direction optimization. According to the curves, 
increasing the population generations resulted in the averaged values closing to the 
objective value. On the basis of the analysis to the multiple running results and also 
consideration of the possible errors, the prototyping direction was determined based on 



 Prototyping Direction Optimization of Points Data Oriented Rapid Prototyping 805 

the averaged values of the multiple running results. Therefore, the prototyping direction 
optimization of the vase is: 

The angles between the normal direction of the entity and the axis of X, Y and Z are 
900, 900, 1800, respectively. This conclusion was verified by the rapidly prototyping 
process result. So it is practical to do points data prototyping direction optimization 
using genetic algorithm. Such optimization result has important meaning for fast 
prototyping technology. 
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Abstract. This study generates a large variety of 3-dimensional maze (3-D 
maze) problems with a range of through-path lengths by a genetic algorithm. 
The 3-D mazes consist of 27 cubes containing a T-shaped cavity stacked into a 
3×3×3 cube. When the cubes are stacked with the appropriate orientations, a 3-
D maze is formed by the cavities. About 2,000 3-D maze problems with 
through-path lengths from 18 to 54 segments (two segments per cube) were 
generated by the genetic algorithm using two evaluation functions generating 
long and short path lengths respectively. 

1   Introduction 

The purpose of this study is to generate a large variety of 3-dimensional maze (3-D 
maze) problems using a genetic algorithm (GA), and in particular, to generate 3-D 
maze problems with different path lengths from the entrance to the exit. 

The 3-D maze that is the object of this study is an educational toy recently devel-
oped by the educational–industrial complex program of REC (Ryukoku Extension 
Center) at Ryukoku University. The 3-
D maze consists of 27 small transparent 
plastic cubes with a T-shaped cavity  
(T-hole) through each cube, called a "T-
cube". The cubes stack to form a larger 
3×3×3 cube called an “M-cube”, and 
are packed in a transparent plastic case 
as shown in Fig. 1. The entrance is set 
at a corner cube and the exit is located 
at the corner cube diagonally opposite 
the entrance cube. When the 27 T-cubes 
are stacked with appropriate orienta-
tions, a path (T-path) from the entrance 
to the exit is formed in the M-cube Fig. 1. 3-D maze (M-cube) and T-cubes 
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connecting the T-holes of the T-cubes. A wide variety of 3-D maze problems can be 
generated, depending on the directions of the T-cube placements. 

The 3-D maze problem is played by putting a small ball bearing into the entrance 
hole and moving the ball towards the exit through the paths of the maze by slanting 
and turning the M-cube by hand. When the ball reaches the exit of the maze, the prob-
lem is solved.  

To generate a variety of 3-D maze problems, sequences of the directions of the 27 
T-cubes can be evolved as chromosomes by a genetic algorithm under two evaluation 
functions. One evaluation function generates maze problems with long through-paths 
and the other generates maze problems with short paths. 

Bentley has classified evolutionary design by computers into four types[1,2]: evo-
lutionary design optimization, creative evolutionary design, evolutionary art and evo-
lutionary artificial life-forms. However, this 3-D maze application does not precisely 
belong to any of the four types; it is considered to lie between design optimization[3] 
and creative evolutionary design[4,5], because this application is to generate a wide 
variety of 3-D maze problems with the diversity and emergency of GAs.  

2   Graphical Expression of 3-D Maze (M-cube) 

In order to evaluate the direction sequences of the T-cubes in an M-cube using a GA, 
the 3-D maze (M-cube) is expressed by a graph. A T-cube has seven nodes, one in the 
center of the T-cube and one at each the centers of the six surfaces of the cube. It also 
has three edges that correspond to the three holes from the center of the T-cube to 
three of its surfaces, as shown in Fig. 2(a). When the T-cubes are stacked as an M-
cube, the two nodes on the face-to-face surfaces of adjacent T-cubes are unified as 
one node, as shown in Fig. 2(b).  Therefore, an M-cube can be expressed by a graph 
(M-graph) with 135 nodes and 
27 × 3 = 81 edges.  

There are 12 possible direc-
tions for T-cube placement, as 
shown in Fig. 3. By numbering 
these directions, the connections 
between the nodes by the edges 
in the M-graph can be deter-
mined for a given sequence of 
directions of the 27 T-cubes in 
an M-cube. The connections in 
the M-graph can then be ex-
pressed as an adjacent matrix A 
with 135×135 elements, With 
each element of A showing 
whether or not a connection 
between a pair of nodes exists 
by “1” or “0” respectively. 

 (a)                                    (b) 

Fig. 2. Graphical expression of T-cube 

Fig. 3. 12 directions of T-cube placement 
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2.1   Detecting a Through-Path and Its Length 

The method for detecting a T-path and its length from A is as follows.  
The k-th power of A is expressed as Ak. The normal matrix product is used for the 

product operation of adjacent matrices. In Ak that is shown in Fig.4, the start row 
vector is defined as STk, corresponding to the starting node that is the entrance of the 
3-D maze and indicates the number of paths with length k that can reach each node 
from the starting node. The goal row vector 
is defined as GLk, corresponding to the goal 
node that is the exit of the 3-D maze and 
indicates the number of paths that can reach 
each node from the goal node with length k. 
Therefore, a T-path from the starting node to 
the goal node exists when nonzero elements 
appear at the same position in both STk and 
GLk. Such a path with the smallest value of k 
is considered to be the T-path. The length of 
the T-path is 2k when the length of an edge 
is assumed to be 1; k shows the number of 
T-cubes that the T-path passes through. 

2.2   Reach Length and Connectivity 

When a T-path does not exist, the S-reach is defined as the length of the longest path 
without duplicate nodes that reaches from the start node to each node in the sub-graph 
(S-graph) connected to the start node. The G-reach is defined similarly to the S-reach 
starting from the goal node. The sum of STk (k = 1 to m) is expressed as SSTm and the 
sum of GLk (k = 1 to m) is expressed as SGLm:  

SSTm = STk

k=1

m

,        
=

=
m

k
km GLSGL

1

. 

The numbers of non-zero elements in SSTm and SGLm are defined as NZS(m) and 
NZG(m). The smallest M1 and M2 that satisfy NZS(M1) = NZS(M1+1) and NZG(M2) = 
NZG(M2+1) give the S-reach and G-reach, respectively, i.e. the S-reach is M1 and the 
G-reach is M2. The sum of the S-reach and G-reach is the SG-reach. Furthermore, the 
number of non-zero elements in the vector sum of SSTm and SGLm at the position 
corresponding to the center nodes of the T-cubes is defined as NZSG(m). NZSG(M) 
for the minimum M that satisfies NZSG(M) = NZSG(M+1) gives the number of center 
nodes that are reached from the start node or goal node and is defined as the connect 
number of the 3-D maze. When NZSG(M) is 27, all the T-cubes are reached from the 
start node or the goal node and the variable con is set to 1; otherwise con is set to 0. 

3   Generation of 3-D Maze Problems by GA 

To generate 3-D maze problems with GA, chromosomes (individuals) and evaluation 
functions are first prepared. 

Fig. 4. Adjacent matrix and  start and 
goal vectors 
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3.1   Chromosome  

A chromosome is comprised of a sequence of the direction numbers of the 27 T-
cubes. The 12 directions of T-cube placement, as shown in Fig. 3, must be coded as 
four-bit binary numbers. Therefore, a chromosome consists of a binary sequence of 
108 (27×4) bits. 

In coding the placement directions, the 12 directions are assigned codes from 0 to 
11 and four directions are picked at random without duplications and assigned the 
codes from 12 to 15 in each experiment. This coding method emphasizes the diversity 
of genetic algorithms. 

3.2   Evaluation Functions 

Two evaluation functions for generating a large variety of 3-D mazes with different 
T-path lengths are prepared as follows 
 
Evaluation Function A: 
This evaluation function generates 3-D mazes with long T-path lengths and is defined 
as follows. 

 
If (T-path does not exist),  
    Fitness = SG-reach + NZSG(M), 
else if (T-path exists) 
    Fitness = TP-length + NZSG(M) + 27 *con. 
 
When a T-path does not exist, this evaluation function accelerates the formation of 
a T-path by expanding the S-reach and G-reach and increasing the number of con-
nected T-cubes.  

When a T-path exists, it facilitates the extension of the T-path and increases the 
number of connected T-cubes, preserving complete maze problems. A complete 
maze problem is one for which the M-cube graph has a T-path and in which the 
center nodes of all the T-cubes are connected to the start node. 

 
Evaluation Function B: 
This evaluation function generates 3-D mazes with short T-path lengths and is defined 
as follows. 

 
If (T-path does not exist and SG-reach < 14),  
    Fitness = 40 + SG-reach + NZSG(M), 
else if (T-path does not exist and 14 <= SG-reach < 54) 
   Fitness = 68 - SG-reach + NZSG(M), 
else if (T-path exists ) 
    Fitness = 68 - TP-length + NZSG(M) + 27 *con. 
 
When a T-path does not exist, this function has a peak at SG-search = 14. The 
function facilitates the appearance of the shortest T-path. 
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When a T-path exists, a higher fitness is assigned for a shorter T-path in the M-
graph. This makes it easy for a T-path to shorten towards the shortest T-path. It 
also works to increase the number of T-cubes connected to the start node increase 
and preserves complete maze problems. 

4   Empirical Results 

Experiments generating 3-D maze problems with a GA were conducted using the two 
evaluation functions above under the following parameters. 

  Number of experiments: 10 
  Maximum number of trials: 100,000 
  Seeds of random numbers: variable for each experiment  
  Population: 400 
  Length of chromosome: 4 × 27 = 108 
  Crossover: 2-point crossover 
  Crossover rate: 1.0 
  Mutation: bit flip 
  Mutation rate: 0.01 
  Selection method: ranking method for mixed populations of parents and children [6,7] 
   
The experimental results 
are shown in Table 1. In 
this table, TPL is the T-
path length in the M-
cube graph and the num-
ber of T-cubes that the 
T-path passes through 
is denoted by TPL/2. TP 
is the number of gener-
ated 3-D maze problems 
with different T-paths, 
and CMP is the number 
of different complete 
maze problems gener-
ated by the GA. 

T-paths are differenti-
ated by the number se-
quence of the T-cubes 
that the T-path passes 
through. In the results, however, the directions of the T-cube placements are disre-
garded. Complete maze problems are also discriminated by the direction sequence of 
the 27 T-cubes. 

The data of Table 1 is aggregated through 10 experiments by the following  
procedure. 

(1) Whenever a complete maze problem is newly generated in the evolutionary  
process, its chromosome information is converted into a direction code sequence 

Table 1.  Number of generated 3-D maze problems 

Evaluation Function A Evaluation Function B 

TPL TP CMP TPL TP CMP

14 0 0 14 0 0
18 1 1 18 141 114396
22 7 20 22 126 14660
26 63 150 26 97 9031
30 159 1657 30 47 276
34 244 3509 34 5 13
38 327 4876 38 1 1
42 375 9365 42 0 0
46 283 17216 46 0 0
50 136 76935 50 0 0
54 20 129169 54 0 0

Total 1615 239389 Total 417 138377
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(DC-sequence) of the 27 T-cubes and the number sequence of the T-cubes (TP-
sequence) that the T-path passes through. 

(2) The direction code sequence of a new complete maze problem is compared with 
each direction code sequence already stored in the complete maze problem pool  
(CMP-pool). If a complete maze problem with the same direction code sequence 
is found, the new complete maze problem is discarded. Otherwise, the DC-
sequence and TP-sequence of the new complete maze problem are stored in the 
CMP-pool and the CMP count is increased for the TPL of the new complete maze 
problem. 

(3) After 10 experiments, the CMP-pool is sorted by TP-sequence. The number of 
different TP-sequences for each TPL is counted in the CMP-pool.  

For evaluation function A, the value of CMP increases as TPL increases. However, 
the value of TP decreases after a peak at TPL = 42. When TPL = 54, that is, when the 
T-path passes through all the T-cubes, CMP is very large compared with TP. This is 
because when a T-cube is used as an I-type aisle in the T-path, there are four T-cube 
placement directions and when a T-cube is used as an L-type aisle, there are two di-
rections. Namely, there are many combinatorial variations of directions for the place-
ment of the T-cubes. Evaluation function A gives the same value for complete maze 
problems with the same TPL, because NZSG(M) is constant. Therefore, the power of 
evolution is consumed in changing the placement directions for the same T-path and 
hence it is hard to change the T-path length. This prevents the evolution of chromo-
somes towards longer T-paths. 

For evaluation function B, both TP and CMP increase for decreasing TPL. CMP 
increases more than TP for the same reason as for evaluation function A. In the ex-
periments, no complete maze problem with a shortest TLP of 14 was generated. It is 
considered that the shortest T-path is formed at an early stage of evolution but the 
value of the evaluation function is small because NZSG(M) is small at that stage and 
hence it is selected out. 

In order to generate only complete maze problems with a shortest TLP, other type 
of evaluation functions defined as follows are tried. 
 

If (T-path does not exist),  
    Fitness = LN - a (| 14 - SG-reach | ) 

p
 - b  (27 - NZSG(M) ) 

p
, 

else if (T-path exists) 
    Fitness = LN - a (| 14 - SG-reach | ) 

p
 - b (27 - NZSG(M) ) 

p 
 +  c. 

 
Where LN is a large value enough to makes the Fitness positive, p is 0.5 or 2.0, and 
a, b, c are coefficients for weight and reward.  

However, the shortest complete maze problem has not been generated for the ex-
periments with various combinations of parameters, because the fitness value is 
trapped in local optimums such as (SG-reach, NZSG(M)) = (14, 23) or (18, 27). 

Three examples of 3-D maze problems that have T-path with shorter length, mid-
dle length or longer length are shown in Fig. 5, respectively.  In Fig. 5, a  mark 
shows the up-ward connection and a  mark shows the down-ward connection. 
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(a) Problem with 
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Fig. 5. examples of 3-D maze problems 

5   Conclusion 

In this study, about 2,000 3-D maze problems with different T-path lengths were 
generated by a GA using two evaluation functions, one for long T-path lengths and 
one for short T-path lengths. However, no 3-D maze problems with the shortest T-
path length were generated.  

Future work will attempt to elucidate why no 3-D maze problems with the shortest 
T-path length were generated and improve the evaluation functions to make it possi-
ble to generate such problems. A further challenge is to generate 3-D maze problems 
that consist of 4×4×4 M-cubes. 
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Abstract. Network random delays directly cause the degradations of networked 
control systems. A methodology based on model predictive control (MPC) is 
proposed to overcome the non-deterministic delays in data communication of the 
network. The general algorithm of dynamic matrix control (DMC) has been 
improved to make it suitable for network condition. When data packets can not 
arrive at target nodes in sequence, the predictive value of the system output can 
be used to take the place of the actual measure value by the controller, and the 
predictive value of control input will be acted as the required control value which 
coordinate the whole control system. The experiment results based on Motor 
Ethernet Control Open Platform (MECOP) show the effectiveness of the 
real-time networked control strategy. 

1   Introduction 

Networked control system (NCS) which takes advantages of simple structure, distrib-
uted control and low cost, will be applied more in remote control systems [1]. NCS also 
shows disadvantages in some applications, especially in motor speed control applica-
tion. In NCS, sensors, controllers and other nodes share the limited network bandwidth, 
which causes queuing, frame collision and network-induced delay. Network random 
delay degrades system performance, even destabilizes the system. 

In order to solve the problems above, various methodologies have been formulated 
to treat the problems. Luck and Ray developed a queuing methodology, which can be 
used to reshape random network delay to deterministic delay [2]. Nilsson proposed the 
optimal stochastic control methodology [3]. The sampling time scheduling method-
ology was developed by Hong, in which a sampling period is appropriately selected to 
keep the system stable [4]. 

Besides above methodologies, many researchers have shown interest in applying 
model predictive control (MPC) for NCS. Model predictive control has already shown 
reliability and availability on petrochemical industry, electrical power and aerospace 
[5]. This paper proposes an improved model predictive control methodology for  
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network condition, in which moving optimization and feedback compensation are used 
to deal with the negative effect caused by network random delay. 

2   Analysis of Network Induced Delay 

In a typical networked control system as shown in Fig. 1, there are sensor- to-controller 
delay scτ , controller-to-actuator delays caτ  and controller calculation delay cτ . All 
these delays are non-deterministic. Usually the calculation delay cτ  is negligibly small 
compared with scτ  and caτ . 

In order to deal with network random delay, some assumption may be required: (a) 
The sampling time skew between nodes is assumed to be a negligibly small value, so 
that all the nodes can be assumed synchronized. (b) The data packet carrying meas-
urement includes a time-stamp of when the sensor takes sample of the plant output. (c) 
The data packet carrying control signal includes a time-stamp of when the controller 
sends the packet. Timing diagram of NCS is shown in Fig. 2. 

 

Fig. 1. The Structure of Networked Control System 

 

Fig. 2. Timing Diagram of Networked Control System 

If scτ  and caτ  are both less than sampling period T , the control process from 
sensor’s sending plant output to control signal’s showing effect on plant costs T3 , as 
the process starting at kT  in Fig. 2. If scτ  is greater than T , during the sampling 
interval starting from Tk )1( +  in Fig. 2, controller can not receive any measurement, 
and during one interval later there may be more than one measurement getting to  
controller. It is similar when caτ  is greater than T . 
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3   The Improved DMC Algorithm 

The general Dynamic Matrix Control (DMC) algorithm has been improved to make it 
suitable for the network condition. Similar to the general DMC algorithm, controller 
must store the future trend vector [ ]TN kNkykkyky )|1(ˆ)|(ˆ)(ˆ 111 −+= . 
Here, the vector )(ˆ 1 kyN  starts with )|(ˆ1 kky , which is the predictive value of sys-
tem output for sampling point kT , and estimated at sampling point kT . 

As shown in Fig. 2, at Tk )1( + , controller obtain the adjusting error 

)|(ˆ)()( 1 kkykyke −= . (1) 

Then 
)(ˆ 1 kyN  can be corrected with the adjusting error and shifted to be the future 

trend vector without control input as 

[ ])1|(ˆ)1|1(ˆ

))()(ˆ()1(ˆ

00

10

++++=
+=+

kNkykky
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where h  is the correcting vector, and =

100

1

00

010

S  is the shift matrix. 

The objective function for sampling point Tk )1( +  is following: 
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where P  is prediction horizon, and M  is control horizon. PPQ ×  and MMR ×  are 

weight matrix. 
Tk

P Pkwkwkw ])2()3([)1(3 +++=++
 is the setpoint. 

And 
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PM  is the future trend vector if 

all the control inputs in )1( +Δ kuM  are moved in sequentially, in which 
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, and MPA ×  is 

dynamic matrix. So the optimal control input vector can be calculated as 
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The controller gain matrix F  can be calculated off-line. Controller sends the whole 
control vector to actuator instead of )1( +Δ ku . Then the future trend vector should be 
updated for the calculation of the snext sampling point, 

)1(]00[)1(ˆ)1(ˆ 2101 +Δ++=+ − kuaakyky T
NNN , (5) 

where 
}{ ia

 are the step response coefficients. 

At sampling point Tk )2( +  in Fig. 2, actuator stores )1( +Δ kuM  into internal 
registers, and selects )1( +Δ ku  in the first register unit as the input of plant. 

In the case of either scτ  or caτ  being greater than T , the algorithm should be im-
proved further. When scτ  is greater than T , for example in Fig. 2, in the sampling 
interval from Tk )1( +  to Tk )2( + , controller does not receive the measurement, 
instead, it selects )1|1(ˆ1 ++ kky  from )1(ˆ 1 +kyN  to replace the actual measure-
ment )1( +ky , and then performs the calculation normally. When controller receives 
more than one measurement in one sampling interval, scτ s can be obtained by sub-
tracting time-stamp from current instant, then the measurement whose scτ  is less than 
T  is used for calculation. 

The algorithm of actuator is similar to that of controller. For example in Fig. 2, dur-
ing the sampling interval between Tk )3( +  and Tk )4( + , actuator does not receive 

)3( +Δ kuM , then it loads )2( +Δ kuM  which is stored at Tk )3( + , and shifts it 
to be )2()3(

~ +Δ⋅=+Δ kuSku MM . Then value in the first register is selected as 
the input to plant at sampling time Tk )4( + . If more than one control vector arrives at 
actuator, the latest vector is stored into registers and selected to plant. 

4   Experiment Study 

In order to verify the effectiveness of the improved DMC algorithm, a Motor Ethernet 
Control Open Platform (MECOP) has been implemented. In MECOP, a 3-phase 
PMSM, is driven by a module which is equipped with TI’s TMS320LF2407A-16-bit 
fixed point DSP, RTL8019AS, and Mitsubishi’s PM20CSJ060 IPM. And a PC is used  

 

Fig. 3. The structure of MECOP 



818 K. Zhang, H. Huang, and J. Zhang 

as the master controller. A monitor based on Labview is constituted on another PC, to 
display the real-time speed of the motor and the network delay. In addition, lots of 
disturbing nodes are set up to access the shared transmission medium, to causes random 
delay. These components are all connected to a hub, and the communication between 
these nodes is based on UDP/IP. The structure of MECOP is shown in Fig. 3. 

In the application of the improved DMC algorithm, the sampling period is set to be 
10ms. With parameters chosen suitably, the controller gain matrix is computed off-line 
and stored. In the experiments, the setpoint is a square wave, and its period is 5s, its 
amplitude is from 500rpm to 1000rpm. The network delay becomes greater, when the 
number of disturbing nodes increases. 

In order to compare the control performance, three different algorithms: PID, DMC 
and the improved DMC have been applied under three network conditions: (a) there is 
no disturbing node, (b) there are a few disturbing nodes to access the shared bus, (c) 
there are lots of disturbing nodes. The control performances of the three algorithms are 
shown in Fig. 4, Fig. 5 and Fig. 6. In every figure, the three curves above indicate the 
speed of motor, and the below indicate the loop delays.  

As shown in all figures, when there is no disturbing node, the control performances 
of the three algorithms are all satisfying. If a few disturbing nodes are connected to the 

 

Fig. 4. The Control Performance of the PID Algorithm 

 

Fig. 5. The Control Performance of the General DMC Algorithm 
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Fig. 6. The Control Performance of the Improved DMC Algorithm 

network, the delays become to 20~160ms. The increased delays degrade the per-
formances of PID and DMC, while the improved DMC remains satisfying. When the 
number of disturbing nodes increases, the delays are ranging between 80 and 200ms. 
The maximum overshoot and settling time of PID become larger and longer, and the 
output curve of DMC fails to follow the track of the setpoint. While the performance of 
the improved DMC still shows good tracking capacity. 

5   Conclusions 

An improved DMC algorithm has been proposed to deal with the control performance 
degradation caused by network-induced delay. In the improved DMC algorithm, the 
moving optimization and feedback compensation have been adjusted to be suitable for 
network condition, and the predictive value of system output is used to take place of the 
unreached measurement, and the control vector is shifted to take place of the unreached 
control vector. The result of the experiments based on MECOP has shown the effec-
tiveness of the improved DMC algorithm. And compared with the PID and the general 
DMC algorithms, the improved DMC algorithm maintains good tracking capacity and 
satisfying performance, when the delay increases. 

Acknowledgements 

This work was supported by the National Natural Science Foundation of China No. 
60421002. 

References 

1. Yodyium Tipsuwan, Mo-Yuen Chow. Control methodologies in networked control systems. 
Control engineering practice. 2003, 11(10): 1099-1111 

2. Luck R & Ray A. An observer-based compensator for distributed delays. Automatica. 1990, 
26(5): 903-908 



820 K. Zhang, H. Huang, and J. Zhang 

3. Nilsson, J. Real-time control systems with delays. Ph.D.dissertation, Lund Institute of 
Technology. 1998 

4. Hong. Scheduling algorithm of data sampling times in the integrated communication and 
control systems. IEEE Transactions on Control Systems Technology. 1995, 3(2): 225-230 

5. Cutler, C. R., & Ramaker, B. L. Dynamic matrix control——a computer control algorithm. 
AICHE national meeting, Houston, TX, April 1979 



A Dynamic Clonal Selection Algorithm for Project
Optimization Scheduling

Xiaoying Pan, Fang Liu, and Licheng Jiao

Institute of Intelligent Information Processing, Xidian University, Xi’an, China, 710071
xiaoying pan@163.com

Abstract. A Dynamic Clonal Selection Algorithm for the Resource-Constrained
Project Scheduling Problem (RCPSP-DCSA) is proposed in this paper. Based on
the mechanism of nature immune system and characteristic of project scheduling,
the encoding of solution, some operators (including crossover, mutation, deriving
and death) and the function of affinity are given. Through a thorough compu-
tational study for a standard set of project instances in PSPLIB, the impact of
the parameters on the performance of algorithm are analyzed. Experimental re-
sults show RCPSP-DCSA has a good performance and it can reach near-optimal
solutions in reasonable time.

1 Introduction

The Resource-Constrained Project Scheduling Problem (RCPSP) is a very important
problem in manufacture project and project manage. RCPSP is to schedule the ac-
tivities such that precedence and resource-constrained are satisfied while optimizing
some managerial objective. Being an NP-hard problem, RCPSP is an interesting re-
search area and many mathematical models have been used to tackle this problem, such
as Integer Programming, Implicit Enumeration and Branch-and-cut[1], etc. Certainly,
some heuristic procedures were proposed. They involve simulated annealing[2], ant
colony[3],genetic algorithm and its improved algorithm[4][5][6]. Kolisch[8] summarized
past work and gave some new directions. From his work, we can see some
GA-based heuristic approaches have a good performance. Considering a good char-
acteristic of clonal selection algorithm for the optimized problem, this paper proposes a
dynamic clone selection algorithm for the precedence and resource-constrained single-
mode project optimization scheduling whose objective is project makespan.

2 Problem Formulation

Assume the non-preemptable activities in a project are numbered from 1 to J, where
the dummy activities 1 and J respectively mark the beginning and the ending of the
project. The duration of an activity j is denoted by d j where duration is zero for dummy
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activities (d1 0 dJ) and non-zero for others (d j 0 j 2 J 1). The start time
of each activity is denoted by S j(1 j J). There are K renewable resource types,
with r jk(1 j J 1 k K) being the resource requirements of activity j with respect
to resource k. Rk(1 k K) is the constant availability of resource k throughout the
project duration. We denote the set of immediate predecessors of an activity j by P j.

Based on the above definitions of the variables, the mathematical model of RCPSP
can be formulated as equation (1):

min S J (a)
s t S j S i di i P j (b)

j At

r jk Rk (c)

t 1 2 S J ; k 1 2 K (d)

(1)

The objective function (a) minimizes the project duration determined by the com-
pletion time. Constraints (b) and (c) ensure the precedence and resource constraints.

3 A Dynamic Clonal Selection Algorithm for Project Optimization
Scheduling

Based on the mechanism of nature immune system, a dynamic clonal selection algo-
rithm for project optimization scheduling is designed. It designs the affinity to testing
the antibody’s performance, crossover and mutation operators to generate new antibody,
deriving operator to simulate the mature B-cell in marrow, and death operator to remove
the aging units.

3.1 Antibody Encoding

In general, encoding has two types. In direct representation, a chromosome represents a
solution of the original problem. But it is too complicated to represent and manipulate.
In indirect representation, binary system to represent a solution is adopted. The immune
genic operation of which is very simple, but it is difficult to find an appropriate encod-
ing. This paper adopts the scheduling sequence and the start time of each activity as the
antibody. An additional gene F to represent the direction of the parallel scheduling.

I
J
S

F
j1 j2 jJ

s j1 s j2 s jJ

F (2)

The J in the first part is a valid sequence of activities. S is the corresponding start
time of each activity by forward(F 1) or backward(F 0) parallel scheduling[5]. So,
every antibody here expresses an only scheduling I.

3.2 Affinity

In resource-constrained project scheduling problem, antibody-antigen affinity describes
the performance of scheduling (i.e. the duration of the project). We will find the project
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makespan, so the shorter the duration, the higher the Ab-Ag affinity. The affinity f (i) to
the antibody i is defined as (3).

f (i) Fmax F(i) 1 (3)

where Fmax is the longest duration in current population. F(i) is the duration of antibody
i, i.e. the start time of work J, F(i) S J(i).

The similarity of two antibodies is considered in the affinity of them. To keep the di-
versity in population and make the antibodies distributing uniformly, the same antibody
must be deleted. The affinity si j between antibody i and antibody j is defined as (4).

si j
1 if Ii I j

0 else
(4)

If and only if two antibodies are identical, the affinity is equal to 1, else is 0.

3.3 Initial Population

To ensure the antibodies contain good antibody and distributing in the solution area as
equably as possible, priority rule based generation and random selecting are adopted.

A priority rule based algorithm generally consists of a schedule generation scheme
and a priority rule. The scheduling generation scheme determines what tasks are eligible
to be added to the partial schedule. A priority rule is used to determine the best task to
be added to the partial schedule.In general, the parallel method saves computational
effort relative to the serial method. In fact, no priority rule is absolutely good. So in this
paper, parallel generation scheme and shortest process time rule are adopted to generate
scheduling sequences.

3.4 Crossover and Mutation

In the process of clone crossover, roulette was adopted to select parents. Several
crossover operators that preserve precedence relationships have been developed, such
namely one-point, two-point and multi-point operator.

One-Point Operator:
Randomly generate an integer r, 1 r n
For i [1 r], c[i] p1[i]
For j [1 n], if p2[ j] c then r r 1 and c[r] p2[ j]
Interchanging p1 and p2 produces another child.

Two-Point Operator:
Randomly generate two integers r1 and r2, 1 r1 r2 n
For i [1 r1] and i [r2 1 n], c[i] p1[i]
For j [1 n], if p2[ j] c then r1 r1 1 and c[r1] p2[ j]
Again, interchanging p1 and p2 produces another child.

Multi-Point Operator:
This operator is effected by randomly dividing each parent into R sections R 2.

Starting with the first, each section of the child inherits all its tasks and their order from
one of the parents alternately, ignoring the tasks already chosen.
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Since the crossover operators described preceding valid children from valid parents,
it follows that they all preserve any subsequences common to both parents. For this
reason, relying on these operators alone is likely to lead to convergence too quickly.
There is need, therefore, to develop an effective mutation operator that can reintroduce
diversity.

Choose a task v at random by a defined probability and move it to a possible position
randomly without violating any precedence constraint. In the same time, change the
direction of parallel scheduling.

3.5 Deriving Operator and Clone Death

In immune system, to keep the diversity of whole system, the mature B-cells in marrow
enter into the antibody colony. To simulate this function, deriving operator is adopted.
After clone selection, some new antibodies generated randomly enter the existing anti-
body colony as the next generation’s antibodies.

Similarity, the aging B-cells will died step by step in immune system. To keep the
antibodies distributing uniformly, the similar antibodies will died by clone death. Anti-
body i removed when si j 1.

3.6 End Criteria

To achieve a good result, several different criteria are proposed.
1 Stop iterating after a pre-defined number of steps.
2 Stop the iterative process when the duration is equal to the optimal.
3 When the number of search sequences reach predefined number.

3.7 Algorithm RCPSP-ADPCSA

RCPSP-ADPCSA works as follows:

1. k 0, select forward or backward direction by p 0 5 and generate initial schedul-
ing sequences A(0). In the same time, antibody b(k) is generated by priority rule
based approach.

2. Determine its affinity f (i) to all the individuals. f (i) Fmax F(i) 1. And Select
30% highest affinity individuals and b(k) to M(k), others to Ab(k).

3. Mutation probability pM
m , pAb

m and clone size ncM, ncAb are initialized by affinity.
4. Clonal operation. Population Y(k) is obtained.
5. Crossover operation and generate B(k). Mutation and produce population C(k).
6. Apply clone selection to B(k) C(k) A(k) and deriving operator is introduced.

Generate new sequences randomly. Put these sequences to population and get Z(k).
7. Determine si j of all the antibodies in Z(k). If si j 1, clone death is applied. Delete

the antibody i from Z(k). A new population A(k 1) is gained. and b(k 1) is the
best individual in the iteration k.

8. Judge whether it satisfied stop criteria or not, if satisfied then stop, else go to 2.
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4 Experimental Results

4.1 Benchmark Problem

To testing the performance of RCPSP-DCSA, the single-mode resource-constrained
project scheduling problems in PSPLIB[9] were selected. Testing problems can be di-
vided to four groups by the task’s number in project. Using a full factorial design of
the parameters NC, RF and RS in Table 1, with ten replications for each combination,
a total of 3 4 4 10 480 test problems can be generated. If three levels for the
number of tasks are selected at 30, 60 and 90 for the J30, J60 and J90 problem sets
respectively. The J120 problem sets is generated with the parameters shown in table 1
and comprises 3 4 5 10 600 instances.

Table 1. Parameter settings for factorial design

Benchmark Set NC RF RS
J30, J60, J90 {1.5, 1.8, 2.1} {0.25, 0.5, 0.75, 1.0} {0.2, 0.5, 0.7, 1.0}

J120 {1.5, 1.8, 2.1} {0.25, 0.5, 0.75, 1.0} {0.1, 0.2, 0.3, 0.4, 0.5}

All the J30 instances have been solved optimally and the optimal solutions are avail-
able for comparison. Some of the J60, J90 and J120 instances have been solved opti-
mally, but for most, only upper and lower bounds are available. It is important to note
that these upper bounds have been complied from the results achieved by different re-
searchers using a variety of different algorithms, i.e., there is no single method that can
achieve all the best solutions.

4.2 Comparison Criteria

In view of the randomized nature of the algorithm, all experiments involve a certain
number of replications (for example 20). In order to evaluation to be comprehensive,
the following criteria have been used:
1 Average Error Rate AveErr%:

AveErr%
all( solution makespan best known makespan

best known makespan 100%)

the number o f problems
(5)

2 Maximum Error Rate MaxErr%: the largest error rate of all the problems.
3 Average Deviation AveDeviation:

AveDeviation
all(solution makespan best known makespan)

the number o f problems
(6)

4 Optimal Proportion OptPro%:

OptPro%
the number o f optimal solution

the number o f testing instances replication s time
(7)
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4.3 Preliminary Experiments

Experimental result can be influenced by the type of crossover. The testing data involve
6 groups, J30 3, J30 13, J30 42, J120 7, J120 33 and J120 45. Every group consists
of 10 instances. The 10 instances of J30 13 will average spend 1469 08 seconds to find
optimal solutions. J30 13 is the group which spend most time in J30 and the average
spend time in J30 is only 28 97 seconds. J120 7 and J120 33 are groups which can not
find optimal solution at present. Others are selected randomly.

In algorithm RCPSP-DCSA, deriving operator and clone death are adopted. So the
initial population size has little effect on the results. The number of activities in a project
as the initial population size here. In addition, the clone size is relation to the affin-
ity. A general experience value pi 3 is used. The experimental results for different
crossover types are shown in table 2 (PM

m 1 J, PAb
m 0 6). When the number of search

sequences reached 1000, the iteration stop.

Table 2. Results for different crossover

measure crossover J30 3 J30 13 J30 42 J120 7 J120 33 J120 55
one-point 0.11 0.79 0.14 5.01 3.73 1.24

AveErr% two-point 0.00 0.45 0.03 4.76 3.36 1.01
multi-point 0.08 0.62 0.07 4.84 3.41 1.53
one-point 4.17 3.77 3.19 18.33 13.99 9.89

MaxErr% two point 0.00 3.45 1.22 17.56 13.99 7.77
multi-point 3.22 3.95 2.38 17.56 14.26 9.89
one-point 0.06 0.58 0.13 8.92 5.61 1.30

Avedeviation two-point 0.00 0.33 0.02 5.17 4.97 1.06
multi-point 0.05 0.46 0.06 5.21 5.36 1.61
one-point 95.00 61.00 90.50 42.50 47.00 68.50

OptPro% two-point 100.0 76.00 97.50 47.50 51.50 72.50
multi-point 96.00 68.00 94.50 46.00 49.00 65.00

From table 2, we know the result can reach optimal when adopts two-point crossover.
This type will reduce the average error rate and increase the optimal proportion as much
as possible. In the latter experiments, two-point crossover is adopted.

In clone selection algorithm, mutation is the main immune genic operation. So the
mutation probability has many impact on the results. As to the memory unit which save
the near-optimal individuals, it requires a little mutation probability to complete local

Table 3. Results of different mutation probability

mutation probability
measure

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
AveErr% 1.16 1.07 0.93 0.84 1.10 1.10 0.99 1.00
MaxErr% 6.00 6.67 6.00 4.67 6.67 5.33 5.33 5.33

AveDeviation 1.23 1.13 0.98 0.89 1.17 1.17 1.04 1.05
OptPro% 81.00 85.50 84.50 87.50 80.50 86.50 87.50 82.00
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search and pM
m 1 J. To individuals in the general unit, a much more mutation prob-

ability was required to complete randomly search. To determine the value of mutation
probability, J60 23 was selected at random in J60. Its parameters are NC 1 80, RF
0 50 and RS 0 70 respectively. Table 3 shows the results. (Initial population size is
the number of tasks, two-point crossover, pAb

m 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 0, the
number of search sequences is 1000)

As table 3 is shown, the performance of this algorithm is good when pAb
m 0 6. All

the rest experiments adopt this value.

4.4 Main Experiment Results

Kolisch[8] proposed that when testing the benchmark instances in PSPLIB, the iteration
can stop with the search sequences reached 1 000 or 5 000. The testing in here consist
of 4 groups, J30, J60, J90 and J120 respectively. The experimental results are shown
in table 4. In this table, the results of J30 were compared with optimal solutions and the
others were compared with near-optimal solutions which solved by heuristic methods.

From table 4, we can make a conclusion that the RCPSP-DCSA has a good per-
formance on solving the single mode resource-constrained project scheduling prob-
lem. To the J30 which involves 32 works, the percentage of find optimal solutions
achieves 98 73%; And the average deviation is only 0 09 to that instances which fail to
find optimal solutions. It is important that the best-known solutions for these instances
have been contributed by several authors and several methods, which suggests that no

Table 4. Testing results of benchmark instances

J30 J60 J90 J120
measure

1,000 5,000 1,000 5,000 1,000 5,000 1,000 5,000
AveErr% 0.12 0.10 0.86 0.78 1.89 1.63 4.27 3.75
MaxErr% 2.73 2.73 4.28 3.25 5.24 4.63 8.63 7.29

AveDeviation 0.11 0.09 1.23 1.07 2.36 2.18 3.96 3.65
OptPro% 98.67 98.73 88.63 88.92 82.67 83.02 69.65 70.30

Table 5. Compare results with other algorithms

algorithm reference set AveErr% AveDeviation OptPro%
J30 0.239 0.208 92.29

SGA [4](2002) J60 0.987 1.079 80.21
J120 4.173 4.648 54.83
J30 0.187 0.170 93.96

BPGA [5](2005) J60 1.025 1.145 81.88
J120 3.968 3.429 62.33
J30 0.146 0.165 93.18

FBSP GA [6](2005) J60 1.037 1.167 81.54
J120 3.853 3.989 63.25
J30 0.102 0.092 98.73

RCPSP-DCSA / J60 0.781 1.073 88.92
J120 3.753 3.654 70.30
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algorithm has been able to generate an overwhelming proportion of these solutions. The
algorithm RCPSP-DCSA can suit most instances and can find near-optimal solutions.
In addition, this algorithm also has a good performance for J60, J90 and J120. It can
find good solutions in reasonable time.

To verify the performance of RCPSP-DCSA further, some approaches are compared.
The results are shown in table 5. And Compared with these good heuristic approaches,
RCPSP-DCSA also has some advantages.

5 Conclusions

An immune clone selection algorithm for solving the single-project, single-mode,
resource-constrained project scheduling problem has been presented. This problem is
characterized by the presence of precedence relationships among the works, as well
as resource capacity constraints. By design the encoding, operators and affinity func-
tion according to the characteristic of problems, it can solve problem successfully. The
experimental results show RCPSP-DCSA has a good performance and it can solves
problems include different number works.

References

1. Tamás Kis. A branch-and-cut algorithm for scheduling of projects with variable-intensity ac-
tivities. Mathematical Programming, 2005(103): 515-539

2. Paul R. Thomas, Said Salhi. A Tabu Search Approach for the Resource Constrained Project
Scheduling Problem. Journal of Heuristics, 2001(4): 123-139

3. Joaqułn Bautista, Jordi Pereira. Ant colonies for the RCPSP Problem. Topics in Artificial
Intelligence: 5th Catalonian Conference on AI, CCIA 2002, Castell’on, Spain, October 24-25,
2002: 257-268

4. Khalil S. Hindi, Hongbo Yang, Krzysztof Fleszar. An Evolutionary Algorithm for Resource-
Constrained Project Scheduling. IEEE Transactions on Evolutionary Computation, 2002(6):
512-518

5. Dieter Debels, Mario Vanhoucke. A Bi-population Based Genetic Algorithm for the Resource-
Constrained Project Scheduling Problem. Computational Science and Its Applications-ICCSA
2005: International Conference, Singapore, May 9-12, 2005, Proceedings, Part IV. Pages:
378-387

6. Hong Wang, Dan Lin. A Genetic Algorithm for Solving Resource-Constrained Project
Scheduling Problem. Advances in Natural Computation: First International Conference, ICNC
2005, Changsha, China, August 27-29, 2005, Proceedings, Part III, Pages: 185-193

7. Vicente Valls, Francisco Ballestłn. A Population-Based Approach to the Resource- Con-
strained Project Scheduling Problem. Annals of Operations Research, 2004(131): 305-324

8. Kolisch, R., Hartmann, S. Experimental Investigation of Heuristics for Resource-Constrained
Project Scheduling: An Update. European Journal of Operational Research, to appear (2005)

9. http://129.187.106.231/psplib/



Pareto Meta-heuristics for Generating Safe
Flight Trajectories Under Weather Hazards

Sameer Alam, Lam T. Bui, Hussein A. Abbass, and Michael Barlow

Defence and Security Applications Research Centre,
and The ARC Center for Complex Systems,

University of New South Wales at The Australian Defence Force Academy,
Canberra, ACT 2600, Australia

Abstract. This paper compares ant colony optimization (ACO) and
evolutionary multi-objective optimization (EMO) for the weather avoid-
ance in a free flight environment. The problem involves a number of
potentially conflicting objectives such as minimizing deviations, weather
avoidance, minimizing distance traveled and hard constraints like aircraft
performance. Therefore, we modeled the problem as a multi-objective
problem with the aim of finding a set of non dominated solutions. This
approach is expected to provide pilots the additional degree of freedom
necessary for self optimized route planning in Free Flight. Experiments
were conducted on a high fidelity air traffic simulator and results indi-
cate that the ACO approach is better suited for this problem, due to its
ability to generate solutions in early iterations as well as building better
quality non dominated solutions over time.

1 Introduction

Weather is identified as the single largest contributor to delay in the air traffic
control (ATC) system and is a major factor in aircraft safety incidents and ac-
cidents [1]. The future concept of Free Flight [2] air traffic management system,
the task of separation assurance and weather avoidance will move from air traf-
fic controllers to the pilots and airborne systems. Given the autonomous control
of aircraft to the pilots, safety is a major issue in Free Flight specially in haz-
ardous weather conditions. Efficient and robust weather avoidance algorithms
are needed to ensure safety and better fuel economics resulting from optimal
weather avoidance trajectories. We investigate the problem of finding weather
avoidance routes in the Free Flight as a multi objective optimization problem
and defined it in terms of Pareto optimality. Two classes of meta heuristic search
techniques were investigated for generating a set of non-dominated trajectories.

The first is evolutionary multi-objective optimization techniques (EMOs) [3].
EMOs, give decision makers more options to choose the best solution according
to post analysis preference information [4]. EMOs, offer a set of solutions, where
user preferences can be elicited afterwards to decide which solution to execute.

The second class is ant colony optimization techniques (ACOs) that has been
used for multi objective optimization problems as well [5,6]. We undertook recent

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 829–836, 2006.
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studies on the use of ACO for weather avoidance [7,8], where it was shown that
the ACO approach using A* heuristics as visibility parameter and pheromone
update based on solution quality gives high quality non dominated solutions.
However, there has not been any empirical evidence to prefer ACO over EMO
in this context; hence, this paper.

This paper is organized as follows, we briefly discuss weather hazardous in
aviation, and some avoidance algorithms in the literature, then we present our
design of the weather avoidance algorithms using the two techniques, followed
by experiments, results, some conclusions and future directions.

2 Aviation Weather Hazard

Weather disturbances can severely damage the airframe of an aircraft [9], and
can potentially damage the navigational and electronic equipment leading to
pilot’s loss of control and the endangerment of the life of passengers and crew
members. The NTSB (U.S. National Transport Safety Board) aviation accident
database [1] for data collected between 1991 to 2001 reveals that weather was
the contributing factor or cause in 21% of accidents. Clearly the availability of
onboard weather avoidance system and an auto generated optimized route capa-
bility can greatly enhance the safety and efficiency of a flight and its crew [10].

The problem of hazardous weather avoidance can be seen as optimal path
planning on a 3D grid, and several heuristic based approaches have been ap-
plied like A*, weighted regions, potential field etc. [11,12]. These approaches
have several drawbacks such as becoming trapped in local minima, high com-
putational cost and memory requirements as search space increases. In previous
studies of weather avoidance systems [7,11,13], the heuristic recommends a sin-
gle optimized route, leaving pilots with no choice but to execute the proposed
solution trajectory. In Free Flight, pilots will face complex situations and besides
weather avoidance they will have to optimize their routes on other objectives as
well. This makes previous approaches less attractive and thus the need arises for
an algorithm which can generate a set of optimal solutions to choose from, and
be able to search multiple routes in the presence of multiple airspace constraints
including bad weather. A Pareto approach may provide the pilots with flexibility
and speedy response, while also providing the industry with a generic approach
for weather avoidance system design.

3 Weather Avoidance Algorithm Design

3.1 Problem Definition

The problem of weather avoidance in a Free Flight environment is considered
in 3D which is approximated with grid cells in hyper-rectangular discrete space,
where hazardous weather cells are present in a distributed manner. We have
modeled bad weather as thunderstorm cells and used the broad classification
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of the US National Weather System (NWS) for assigning radar reflectivity and
corresponding weather information in different colors as follows:

Color Radar Reflectivity(dBZ) Weather Type
None I < 5 None
Blue 5 < I <20 Light
Green 20 < I <30 Moderate
Yellow 30 < I <40 Heavy
Red 40 < I Intense

The algorithm receives the following inputs:

1. x × y × z grid: Rectangular discrete space of 100nm × 100nm × 3000ft,
2. Start node in the grid: The start node is that mesh point of the search grid

which is closest from the current position of the aircraft,
3. End node in the grid: The end node is the point in the mesh which is closest

to the next trajectory change point,
4. Weather Cells: 6-12 distributed weather cells each of dimensions 10nm X

10nm X 3000ft(typical of a single thunderstorm cell dimension) with severity
in terms of radar reflectivity range 5dBZ - 50dBZ.

Given these grid points, the state space is enumerated. This state space is then
pre-processed by removing those states which violate hard constraints such as
aircraft performance parameters. This ensures that all the trajectories generated
are within aircraft safety parameters. The details of this pre-processing can be
found in [8].

The output of the algorithm is a non dominated set of routes which minimize
weather impact, heading changes, and distance traveled.

3.2 Algorithm Design

For ACO, we used our ACO algorithm for weather avoidance [8] with a cost func-
tion based on the A* algorithm and a dynamic weight allocation for obtaining
a non–dominated set of solutions.

For EMO we used NSGA2 which is an elitism EMO algorithm [3]. We modi-
fied the approach suggested by [14] for 3D path planning to encoding the path
in a bit string representation, by adding a penalty (distance remaining to des-
tination) term to an individual which failed to reach the destination node. For
generating a complete path from XY monotone path and XZ monotone path we
did interweaving based on the lower array bounds of the two paths.

The three objectives defined for EMO and ACO were:

1. Minimize changes in aircraft heading: This is the sum total of all heading
changes required to follow a particular route. Large value of heading change
indicates many turns leading to passengers discomfort and higher fuel burn.

2. Minimize distance traveled: The distance traveled by the aircraft in the
search grid to maneuver a particular route.

3. Minimize Weather cells severity measure: The sum total of all weather cells
severity which an aircraft encounters for a particular path.
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In EMO, if an individual fails to reach the exit point of the grid due to
violation of the search envelop or the maximum number of moves allowed then
the remaining distance is treated as a penalty. Any individual that violates the
aircraft performance parameter constraints, is eliminated from selection in future
generations. The penalty term is added to the distance and heading objectives.

Penalty value is scaled up by a factor of 5.0, and weather by a factor of
3.0 to balance the magnitude of the three objectives. If an individual reaches
the destination node, then the penalty distance will be zero, thus making the
objective function similar to the ACO objective function.

In ACO, an ant which fails to reach the exit point within a certain number of
moves is eliminated. Only those ants that successfully make it to the exit point of
the mesh are allowed to update the pheromone levels (based on solution quality)
on their respective paths. Ants work on a preprocessed state space which is free
of any transition move that may violate the aircraft’s performance parameters,
this eliminates the need for checking whether the path generated by an ant
violates aircraft performance constraints.

4 Experiments

For optimal parameter configuration for EMO we performed initial experiments
for a population size of 30 individuals and 300 generations with the following
combinations of crossover rate and mutation rate: Crossover Rate = {0.1,0.2,0.5,
0.8,1.0} and Mutation rate = {0.01,0.02,0.03,0.04,0.05}. The best combination
of crossover and mutation rates is Crossover Rate = 0.5 and Mutation Rate =
0.02. For ACO we used the parameter configurations suggested in our previous
work [8].

Results, averaged over 10 runs are presented here. Based on experimental data
we tried to answer the following questions to compare the two approaches.

1. How many solutions were generated by the two approaches over genera-
tions/iterations time?
Due to approach controller’s stringent time schedule for last trajectory change
point, sometimes pilots prefer quick solutions even if they are sub optimal
rather than wait a long time for an optimized solution to appear.

Figure 1, shows the number of solutions proposed by the two approaches
over 300 iterations. Solutions that are only complete (i.e starts from entry
point, ends at exit point and do not violate aircraft performance parameters)
were recorded. As can be seen from Figure 1, EMO can take as much as 30
generation before any complete solution is found, whereas ACO produces
solutions in the very first iteration. This can be attributed to the fact that
ACO works on a pre processed state space, which has only the valid space
to explore, so there are less pitfalls for ants whereas in EMO, any individual
that violates the constraints, doesn’t get selected in the next generation.

2. How many unique solutions(trajectories) were generated by both approaches?
Large number of solutions in terms of unique trajectories are desirable, since
they provide the system or pilots with more options based on the situation.
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Fig. 1. Set of solutions generated over iterations/generation, by the two approaches

As shown in Figure 2 (right), ACO generated a very high number of unique
solutions as compared to EMO. A high value for the exploration parame-
ter (0.9) makes the ants explore more space, resulting in diverse routes to
the destination. Whereas EMO follows an evolutionary approach to guide
the solutions towards the destination. The penalty function of EMO does
not let individuals explore more of the search space and is guided towards
routes that are complete and valid. However this advantage that ACO has,
may be eliminated by designing a better representation for the evolutionary
algorithm, which we leave for future work.

3. How many non dominated solutions(NDS) were generated by both approaches?
The non dominated set of solutions generated by each approach is investi-
gated to see if there is any advantage for ACO for being able to generate a
large number of unique solutions. As shown in Figure 2 (left), ACO despite
a finding high number of unique solutions, finds a few non dominated solu-
tions as compared to EMO. Whereas the EMO approach finds few unique
solutions but most of them are non dominated solutions.

Fig. 2. On left: Set of non dominated solutions generated by ACO and EMO; On right:
Set of unique solutions(trajectories) generated by ACO and EMO
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Fig. 3. Non dominated solutions on three objectives generated by ACO and EMO.
top left: distance traveled, Top right: heading change, bottom left: weather severity
encountered and bottom right:Air traffic simulator snapshot of a weather avoidance
trajectory.

4. How many non dominated solutions of EMO dominated ACO non dominated
solutions and vice versa?
When the non dominated solutions for the 10 runs were consolidated for
both the approaches and duplicate trajectories were eliminated, we found
that both approaches generated a total of 11 unique non dominated solu-
tions. However EMO dominated only one NDS solution generated by ACO,
whereas ACO dominated 7 NDS solutions of EMO. Figure 3 shows the
performance of both algorithms in terms of NDS on the three objectives
separately. It can be seen that ACO has advantage in terms of heading mini-
mization and distance travelled, however in terms of weather cells encounter
EMO proposes four solutions which have low weather impact whereas ACO
proposed only two. However this advantage of EMO comes at a heavy price
in terms of large deviation in trajectory resulting from frequent climbs and
descents maneuvers.

We further visualize the NDS trajectories generated by the two approaches.
It can be seen from Figure 4 top, EMO solutions involves a lot of climb and de-
scend maneuvers resulting in large heading changes and distance travelled, which
makes them less desirable for problem investigated as compared to
ACO.
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Fig. 4. 3D view of non dominated set of solution generated by ACO(Bottom) and
EMO(Top) algorithm.The arrow markers shows the direction of travel. Bad Weather
cells are shown as circles, however they do not indicate the weather cell severity, which
can be seen in the air traffic simulator snapshot.

5 Conclusions and Future Directions

We investigated two meta heuristic search techniques viz. ACO and EMO for
generating a non dominated set of routes in a weather constrained airspace. The
results indicate that the ACO approach can generate quick solutions (sub op-
timal initially) whereas EMO took several generations before any valid routes
was generated. This feature gives the ACO algorithm an advantage in the sense
that some times pilots prefer quick but suboptimal solutions due to time con-
straints. The ACO algorithm given proper tuning of exploration and exploitation
parameters, searches a large state space as compared to EMO this gives ACO
an increased likelihood of finding a better set of NDS. EMO generated a diverse
set of solutions, however many of them involved uneconomic maneuvers for the
aircraft. In the final set of NDS, ACO was able to dominate a larger number of
EMO based NDS, and generated better quality solution set. We are currently
conducting experiments on our Free Flight air traffic simulator for dynamic and
noisy weather environment and with multi aircraft scenario to study these two
approaches further.
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Abstract. The simulation of land combat operations is a complex task.
The space of possibilities is exponential and the performance criteria
are usually in conflict; thus finding a sweet spot in this complex search
space is a hard task. This paper focuses on the effect of population size
and mutation rate on the performance of NSGA–II, as the evolutionary
multiobjective optimization technique, to decide on the composition of
forces using a complex land combat multi-agent scenario planning tool.

1 Introduction

Land combat is a complex task. Identifying a suitable composition of forces -
in terms of size of each group in a mission, type of weapons and communica-
tion used by each group, and ammunition load - is normally planned by a team
of experts, human–based simulation, or computer simulation. Military has used
computer simulation for a long time as a cheap way for testing complex military
concepts. Recently, the use of agent–based simulation (ABS) is replacing tra-
ditional simulations. In an ABS, agents can be autonomous, grouped in teams,
have different capabilities and personalities, and use different strategies.

ABS has opened many opportunities for testing military concepts. However,
the search space of these black–box simulations is very complex. Moreover, the
success of a military operation is almost always determined through a set of
conflicting objectives. Thus, it is natural to look at the use of evolutionary mul-
tiobjective optimization (EMO) techniques to search these complex landscapes.
However, the performance of EMO, like other evolutionary computation tech-
niques, can be sensitive to parameters and the optimal set of parameters is
normally problem dependent [1]. In this paper, we investigate the effect of two
parameters, in particular, for NSGA–II [2].

In the following section, we present the experimental setup followed by the
results and analysis. Finally conclusion and future work are discussed.

2 Experimental Setup

2.1 The Land Combat Simulation System

We use the warfare intelligent system for dynamic optimization of missions
(WISDOM–II), which is based on the Network centric multi-agent architecture

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 837–844, 2006.
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(NCMAA) [3], as the multi–agent combat simulation engine. WISDOM has been
used in many experiments for capability planning. It has five distinct compo-
nents: the command, control, and communication (C3) component, the sensor
component, the engagement component, the visualization component and the
reasoning component.

Four agent-types are supported in WISDOM–II: combatant, group leader,
team leader and swarm commander. Agents are defined by their characteristics
and personalities. Each agent has nine types of characteristics: health, skill, prob-
ability to respect - thus follow - the command, visibility, vision, communication,
movement and engagement. The swarm commander can build plans and give
orders to combat groups. The personality in WISDOM–II is a defined by two
values: a magnitude and a direction vector representing the attraction–repulsion
direction and weight for each agent.

The movement of each agent is determined by its situation awareness and
personality vector. In each time step, the agent can only move to its neighbor
cells based on the overall influence of all perceived agents. A strategic decision is
made by the swarm leader of each force based on the common operating picture
(COP), which is the global view of the battle field for that force. For more details
of WISDOM-II, please refer to Yang et al.[3].

2.2 The Scenario Setup

The scenario used in this paper includes two forces - blue and red force - playing
against each others (Figure 1). The simulation environment is 30x30 cells and the
destination flag (each force has a goal to occupy an area) is located at the middle
of the environment. Both blue and red forces are composed of four groups, each
of which consists of a set of homogenous agents. The capability of the red force
is fixed during the simulation while that of the blue force is determined by the
evolutionary process as shown in the table 1. The fourth group in both forces
(R4 and B4) is for surveillance.

B2

B4 B3

B1

RHQ

R4

R3

R2

R1

BHQ

Blue target

Red target

Fig. 1. The combat scenario. BHQ and RHQ is the headquarter for the blue and red
force respectively.
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2.3 The Evolutionary Setup

A chromosome is composed of 4 parts, each part corresponds to the capability
of one group in the blue force. Each of the first three parts consists of eight
variables corresponding to vision, communication and weapon parameters. The
last part has four variables only because the surveillance agent does not have
weapons. The total number of variables in the chromosome is 28.

Table 1. The capability of forces

RED FORCE Group R1 Group R2 Group R3 Group R4
# of Agents 5 20 20 1
Vision Range 4 5 5 10

Range 5 5 5 10
Communication Lost Probability 0 0 0 0

Latency 0 0 0 0
Minimal Distance 3 0 0 -

Weapon Range 4 4 4 -
Strength 3 3 3 -
Radius 1 0 0 -

BLUE FORCE Group B1 Group B2 Group B3 Group B4
# of Agents 10 10 10 1
Vision Range 1 - 10

Range 1 - 10
Communication Lost Probability 0 - 0.5

Latency 0 - 2
Minimal Distance 1 - 8

Weapon Range 1 - 8
Strength 2 - 8
Radius 0 - 2

Yang et al. [4, 3] argued that taking a simple linear combination of the objec-
tives may hide some information which is crucial in understanding the dynamics
within a warfare simulation. Therefore, we explicitly represent the two objectives
in the problem and use the real variable mode of the non-dominated Sorting Ge-
netic Algorithm – II (NSGA–II) [2], a multi-objective optimization algorithm.
Two objectives are defined: minimizing the cost of the blue force and minimizing
the casualty of the blue force.

We run each experiment for 1000 generations, four different population sizes
- 20, 40, 80 and 100, and three different mutation probabilities - 0.01, 0.036
and 0.1, respectively. The reason for choosing 0.036 is to follow some literatures
which are suggesting the mutation rate to be the reciprocal of the number of
variables ( 1

28 ≈ 0.036) [6, 7, 8, 2, 9, 10, 11].
Therefore we have 12 different configurations. We fix the probability of

crossover to 0.9, distribution index for crossover to 15, and the distribution
index for mutation to 20 [2, 9, 10, 11]. Each individual is simulated 30 times with
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different seeds, each for 150 time steps. The fitness of each individual will be the
average of 30 simulations. Each configuration is repeated 10 times with different
seeds.

3 Results and Analysis

To compare the performances of different configurations, we adopt a statistical
comparison method proposed by Knowles and Corne [14] in 2000, which extended
the method introduced by Fonesca and Fleming in 1996 [13].

First, we try to understand the convergence during the search process by
comparing the performance of the pareto-optimal sets of generation n with that
of generation n − 50 to see when the improvement stops (see Figure 2).
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(a) Population size: 20
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(b) Population size: 40
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(c) Population size: 80
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(d) Population size: 100

Fig. 2. The percentage of the objective space where the pareto-optimal set of the
generation x outperforms that of the generation x − 50 within a single configuration

The figure shows that for different mutation probabilities, stagnation does not
occur over the 1000 generations for population size 20 while it occurs at around
generation 320, 220 and 280 for population sizes 40, 80 and 100 respectively.
One may also notice that the level of mutation probability does not influence
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Fig. 3. The percentage of the objective space where the non–dominated set of one
population size outperforms that of other population sizes at the same number of
objective evaluations. Form top to bottom, the mutation rates are: 0.010, 0.036, 0.10.

the convergence for population sizes except for population size 20, where there
are some insignificant differences.

Stagnation can be seen as an indication for the convergence of the algorithm.
However, it is not enough to know when it occurs. It is also important to know
the quality of each non–dominated set obtained by each setup as presented
in Figure 3. The sub–figures on left hand side represent a comparison among
all four setups with different population sizes. Each sub-figure corresponds to a
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(a) Population size: 20
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(c) Population size: 80
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(d) Population size: 100

Fig. 4. The percentage of the objective space where the pareto-optimal set from one
mutation probability outperforms that of any others
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different mutation level. Each comparison is done after 400 objective evaluations
(this is a common factor for the four population size). The non–dominated sets
achieved by each setup after each 400 objective evaluations are collected and
compared.

All figures show consistently that population size 80 has the best overall per-
formance. The sub–figures on the right hand side make a more precise comparison
between the two best performing population sizes: 80 and 100. One can see that
with mutation rate of 0.036, population size 80 is consistently better than 100.

We now turn our attention to comparing the different mutation rates. It seems
from Figure 4 that the performance of mutation probability 0.1 is better than any
of the other. This may suggest that a higher mutation probability is beneficial for
this problem. We thus test a mutation probability of 0.2 and 0.5 for population
size 80.

Figure 5 presents the performance with population size 80 at five different
mutation probabilities. We can now have more confident to suggest that a pop-
ulation size of 80 with mutation probability of 0.1 gives the best performance
for this scenario, and the convergence occurs at generation 220.

4 Conclusions and Future Work

In this paper, we tested the effect of population size and mutation probability on
the evolution of force compositions in a multi–objective setting. It was found that
population size 80 with mutation probability 0.1 gave us the best performance.

A key question in this work is how to generalize this result to other land com-
bat problems. Fortunately, the military usually has a small number of generic
scenarios to test different concepts (normally less than a dozen). Thus repeating
this process for each scenario is not a difficult task. However, once we can iden-
tify the parameter setting for each scenario, we can undertake more experiments
with different scenario setups. These setups may change the fitness landscape
in terms of signals, but from our previous experiments, they do not change the
characteristics of the landscape. In other words, the characteristics of the land-
scape vary from one scenario to another, but do not vary much when a scenario
is run with different settings. Thus, we expect that the parameter setting for
one scenario will continue to be useful when running this scenario with different
scenario parameters.

Our current work is focusing on studying approximation methods to reduce
the computationally very expensive task of evaluating on the actual simulator
which can be very time consuming.
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Abstract. The electroencephalogram (EEG) machine is the most influential tool 
in the diagnosis of epilepsy, which is one of the most common neurological 
disorders. In this paper, a new seizure detection approach, which combined the 
genetic algorithm (GA) and the support vector machine (SVM), is proposed to 
improve visual inspection of EEG recordings. Genetic operations are utilized to 
optimize the performance of SVM classifier, which includes three aspects: 
feature subset selection, channel subset selection and parameter optimization of 
SVM. These optimization operations are performed simultaneously during the 
training process. The epileptic EEG data acquired from hospital are divided into 
two parts of training set and testing set. The results from the test on EEG data 
show that the method may more effectively recognize the spike and sharp 
transients from the EEG recording of epileptic patients than those without using 
optimal operations. 

1   Introduction 

The electroencephalogram (EEG) signal, which is the recordings of the bioelectrical 
and biomechanical activities of brain, is widely used in clinical applications. It 
provides a great deal of valuable information for diagnosing, monitoring and 
managing of neurological disorders related to epilepsy. Traditionally, visual epilepsy 
evaluation of the EEG recordings is carried out by an experienced EEGer. This 
operation is time consuming and tedious, especially for long recordings. In addition, 
disagreement among readers of the same record is possible due to the subjective 
nature of the analysis [1]. Therefore, an automation or semiautomatic method for 
seizure detection must be developed to reduce doctor’s labor and improve the results 
of traditional visually analysis. 

Several Methods have been proposed for automatic detection of spikes or seizure 
occurrences. Weng and Khorasani [2] introduced an approach for adaptively adjusting 
the structure of a multi-layer back-propagation network for automatic seizure 
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detection. Subasi [3] proposed automatic seizure detection using discrete wavelet 
transform and ANN. Acir and Guzelis [1] proposed a two-stage procedure based on 
support vector machines (SVMs) for the automatic detection of epileptic spikes. 
These methods used all the available channels to evaluate features which serve as the 
input information of the classification. However, it is not necessary because some 
channels are redundancy and irrelevant. It is important to select optimal channels for 
improving the efficiency of seizure detection. 

Parameter optimization on SVM model is also plays a crucial role in real-world 
applications with high accuracy and stability. The parameters such as C and 2 
presented in the radial basis function (RBF) kernel can be determined during training 
process by using genetic algorithms (GAs). 

In this paper, a method based on the combination of genetic algorithm and support 
vector machine (termed GA-SVM) is proposed. The three aspects of optimization 
operation: optimal feature subsets, optimal channel subsets and optimal parameters 
are performed by using this hybrid method simultaneously. The application on the 
epileptic seizure detection has demonstrated its high potential as a powerful tool for 
the resolution of multi-criterion problem. 

2   Methods 

2.1   Data Preprocessing 

EEG data obtained from sampling equipment regularly contain certain artifacts that 
make it difficult to extract and interpret the interesting information efficiently. In an 
applicable system, the stage of data preprocessing is often required to improve the 
reliability of the classification. Our objective is to maximally distinguish the seizure 
signals from background noise and other potentials. In order to achieve this purpose, 
three preprocessing operations are applied. First, a band-pass filter is used for the 
reason that a meaningful phase is only given on narrowband signals. Second, EEG 
recordings are divided into sequential, non-overlapping, fixed length segments of 
1024 samples. The data quality assures it feasible to evaluate various features and 
preserves relatively stationary of waveform in one segment. Last, a part of segments 
must be selected and marked with labels for training classifier by specialist with rich 
clinical experience. 

2.2   Feature Extraction 

For general seizure detection systems, features are extracted to serve as the input 
information. So far many approaches for the extraction of quantitative features from 
EEG signal were introduced. The methods based on probabilistic and statistical 
theories are widely applied. Spectrum analysis is also a popular method which is used 
to extract frequentation-domain from time or space domain signals using transform 
methods such as fast Fourier transform (FFT). The application of nonlinear dynamics 
methods to the problem of the description of an EEG has got relatively successful 
results. In particular, some researches have shown strong indications of nonlinear 
deterministic and finite-dimensional structures in epileptic EEG signals [4]. 
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In this study, all these methods are used to extract distinct features. 20 statistical 
parameters are selected. Spectrum analysis parameter set consist 5 power values of 
frequency band. The permutation entropy (PE) [5], Hurst exponent (HE) [6], 
correlation dimension (CD) [7] and the largest Lyapunov exponent (LLE) are selected 
as the nonlinear features because of their well discriminative ability. These 29 
features compose a feature pool [8], from which the dominate features are selected for 
the classifier. 

2.3   Feature Selection 

There is a possibility that some features in the pool might be redundant or even 
irrelevant for seizure detection. Redundant features do not add significant information 
for class distinction. Similarly, irrelevant features do not participate in class 
distinction and even can mix up boundaries between classes. Therefore, in order to 
reduce computation time and enhance the detection accuracy, it is necessary to devise 
a method for selecting the most discriminatory features with few redundancy or 
irrelevancy. The procedure of feature selection is wrapped in GA-SVM seizure 
detection system in this study. In training phase, once the learning algorithm got the 
optimal resolution, the best feature subset is determined. 

2.4   Channel Selection 

The channels used to record EEG signals may contain redundant or irrelevant 
information. So it is also attractive to reduce the number of channels necessary for 
seizure detection without increasing detection error. Channel selection may not only 
reduce computation time of seizure detection, but also help surgeons localize the 
epileptogenic foci. In this study, the selection operation of optimal channels carrying 
significant information for detection purposes is processed during training phase. 

2.5   Support Vector Machines 

Support vector machines (SVMs) based on statistical learning theory are first 
introduced by Vapnik [9]. In the design of an SVM model, a proper kernel function 
must be selected. After a number of empirical experiments on the EEG data, the 
results indicated that Gaussian RBF kernel seemed to offer the better performance 
than others. So, the Gaussian RBF kernel is selected in our implementation. 

In order get the optimal performance of SVM, the process of parameter 
optimization plays an important roles. Here are two primary parameters, penalty 
parameter C and the kernel parameter 2, to be carefully determined. GA is utilized to 
search for optimal parameters of the SVM model with the minimum output errors. 

2.6   Evolutionary Algorithms 

Evolutionary algorithms (EAs) are a class of problem solving techniques based on the 
principles of natural selection in the biological world. Genetic algorithms (GAs) are 
popular evolutionary search methods that focus on optimizing general combinatorial 
problems. In the study, GAs are applied to searching for the global optimal solution 
containing the best feature subsets,  the optimal channels and the optimal parameter 
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values simultaneously in our study. Two important issues in the design of GA are the 
genetic coding used to define the problem and the evaluation function, called fitness. 

2.6.1    Encoding 
In our implementation, the popularly used binary encoding method is selected. The 
chromosome code is composed of four parts, i.e. features and channels and the two 
parameters C and 2. The code length is the sum of the lengths of the four parts (see 
Fig. 1). For the part of feature encoding, each binary gene code represents whether the 
corresponding feature is selected or not. For the part of channel encoding, 1 denotes 
the corresponding channel is active, whereas 0 means it is inactive. For the two 
parameters of SVM, the values are converted to the binary string, which is used as the 
corresponding codes. 

 

Fig. 1. Encoding structure of chromosome composed of channels, features and two parameters 

2.6.2    Fitness Function 
Fitness function, also called adaptation function, is another vital issue of the GA. It 
assesses the fitness ability of each individual and maps it to a fitness value. All 
individuals are ordered according their fitness ability, and the individuals with high 
fitness will have more opportunities to survive to the next generation during the 
operation of selection. 

In the study, we encounter a problem of multi-criterion optimization, which 
contains three sub problems for searching optimal solution, i.e. the optimizations of 
feature subset, channel subset and the parameters of SVM. The purpose of feature 
selection is to choose fewer features capturing the essential information of seizure 
activity. The target of channel selection is to select principle channels which associate 
to the epileptogenic foci. The parameter optimization aims to obtain the minimization 
of recognition error. Then, by a comprehensive consideration of these criteria, a 
simple fitness function is defined as a linear combination of them. It is given by 

unused incative correct

total total total

Feature Channel Seizure
Fitness ,

Featue Channel Seizrue
A B C= ⋅ + ⋅ + ⋅  (1) 

where A, B and C are constant coefficients. Here, we set A = B =1, C = 3 by some 
empirical experiments. 

2.6.3   Genetic Operation 
The GA uses three genetic operations (selection, crossover and mutation) to generate 
the next population from current one. The values of parameters settings for genetic 
operations use the results of previous researches for reference and are tuned 
appropriately by a number of experiments on the training data set. 
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2.6.3.1 Selection. The operation of selection chooses individuals of population for 
survival from existing population according to their fitness values. First, in order to 
keep the best chromosomes that may produce the fittest individuals during crossover 
and mutation operations, the selection rate is set to allow the simple duplication them 
to the next generation population. The standard roulette wheel random procedure, 
then, is employed as the selection mechanism. The individuals that survive to next 
generation are placed in a mating pool for following crossover and mutation 
operations. 

2.6.3.2 Crossover. The crossover operation combines two chromosomes with high 
fitness values to produce children with the intention to keep the good characteristics 
of their parents and to get rid of the bad characteristics. The single point crossover 
operation is applied to randomly paired individuals selected from the mating pool. 
Since the chromosome consists of four parts, each part is respectively performed and 
all crossover points are determined randomly.  Fig. 2 illustrates the crossover 
operation. 

 

Fig. 2. Single point crossover for each part of the chromosome with the random crossover point 
and the crossover rate of 0.8 

2.6.3.3 Mutation. The mutation operation is utilized to search for further solution 
space and to avoid local convergence of GA. In this study, a multi-point bit-flip 
mutation, based on a specified mutation probability of 0.01, is applied to the four 
parts of the chromosome. The locations of mutation are randomly determined every 
time mutation operator is performed. A simple example of mutation operation is 
shown in Fig. 3. 

 

Fig. 3. Multi-point bit-flip mutation for each part of the chromosome with the random mutation 
point and the mutation probability of 0.01 

2.7   Integration of GA and SVM 

As mentioned earlier, the integration of GA-SVM is proposed to optimize features 
selection, channel selection and parameters of SVM. The method searches for the best 
solution from a large and possibly multi-modal search space.  Traditional methods 
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widely use two major classes of optimization techniques, i.e. calculus-based 
techniques and enumerative techniques. The former methods use gradient-based 
search mechanisms. The latter ones may be implemented by dynamic programming 
[10]. In our study, a multi-criteria problem makes the common methods very difficult 
to achieve the expected targets or reach the solution with very high computational 
complexity. The GA provides a non-conventional nonlinear search algorithm to 
obtain fast results. Thus, it is very appropriate and required that the GA-based 
methods are applied to the multi-criteria problem.  

For the SVM model, parameter optimization is the crucial factor to determine its 
performance. The GA is utilized to achieve theses optimal values of features, 
channels and parameters simultaneously for epileptic seizure detection. The combined 
GA-SVM method use supervised learning mechanism.  

The architecture of the GA-SVM model is illustrated in Fig. 4. The EEG data are 
divided into two parts. One part is used to train GA-SVM, and the other part is used to 
test. The figure shows that the testing process only evaluates special features on 
optimal channels which are determined during training process. 

 

Fig. 4. Architecture of the GA-SVM model and its flow chart 

3   Materials and Results 

3.1   Data Acquisition 

The EEG data used in our study were collected from 12 epileptic patients who had 
been diagnosed epilepsy in hospital. The EEG signals were recorded using digital 
EEG equipment with the sample rate of 256Hz. 19 Ag/AgCl disk electrodes were 
placed using 10-20 international electrode placement system. Band-pass filter with 
cut-off frequencies of 0.5Hz and 45Hz was selected to preprocess these raw data. The 
length of each recording is beyond two hours. For each patient, data are separated for 
segments with length of 4 seconds. One-third segments ware randomly selected for 
training, and the remaining ones were used for testing. 
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The EEG recordings were inspected by the neurologists with experience in the 
clinical analysis of EEG signals, and seizure events were masked as labels in a new 
file. Then, these labels were revised by other experts to solve disagreements. 

3.2   Results 

The GA-SVM is trained and tested on each patient. Fig. 5 illustrates the curves of 
recognition accuracy versus patient for different optimization settings. It can be seen 
that the curve are higher by using optimal features and channels than others, and the 
recognition accuracy is lowest when no optimization operations are performed. 

Table 1 gives the results of the numeric values. When all channels and features are 
used, the recognition accuracy is 83.9%. It rises to 86.9% with all channels and 
optimal feature subset, and it is 87.7% with optimal channels and all features. When 
the two optimization operations are all performed, the recognition accuracy reaches 
the highest value, i.e. 91.3%. The table also gives the number of channels and the 
number of features which are selected to test at different optimization conditions. 

Table 2 gives the results of optimized SVM kernel parameters for every patient 
EEG data after training with GA-based method. 

 

Fig. 5. Curves of recognition accuracy versus patient for different optimization settings 

Table 1. Results of channel selection and feature selection and recognition accuracy 

 
All channels 
and all features 

Optimal channels 
and all features 

All channels and 
dominant features

Optimal channels and 
dominant features 

Average number of channels 19 3.8 19 4.7 
Average number of features 29 29 8.3 7.4 
Recognition accuracy 0.839 ± 0.034 0.869 ± 0.033 0.877 ± 0.042 0.913 ± 0.039 

Table 2. Values of SVM kernel parameter optimized by using GA-based method 

Patient 1 2 3 4 5 6 7 8 9 10 11 12 
C 863 630 1013 921 1105 586 739 419 1425 894 927 1179 

2 5.46 4.3 3.20 4.17 3.81 3.52 3.21 3.86 4.22 3.29 5.50 4.82 

3.3   Discussion 

According to the above results, it can be found that the recognition accuracy and the 
generalization ability of the SVM model can be significantly enhanced by GA-based 
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method. The performance of the SVM is influenced greatly by the optimization of 
kernel parameters. The GA model provides an error-feedback mechanism to 
adaptively adjust the kernel parameters. The recognition accuracy is also sensitive to 
the structure of the input information of SVM. Increasing the number of features can 
increase the flexibility of the model, but it also increase irrelevancy and redundancy 
of the input information. Reducing the useless information, the optimizations of 
features selection and channel selection increase both the recognition accuracy and 
computational performance for seizure detection with the trained model. 

4   Conclusion 

In this paper, we have proposed a method combined GA-SVM to detect the epileptic 
seizure. The optimal operations of feature selection, channel selection and kernel 
parameters of SVM are performed simultaneously to maximize the performance of 
the automatic seizure detection. The results show that the proposed method may more 
effectively recognize the spike and sharp transients from the EEG recording of 
epileptic patients. This method may be also employed to improve the visual 
inspection of EEG recordings and help the diagnosis of some other neural diseases. 
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Abstract. The tracking of articulated body in images sequences is a challenging 
problem due to complexity and high dimensionality of the configuration space. 
In this paper, we propose a new algorithm to combine Artificial Immune and 
particle filter for articulated body motion tracking, fusing the strengths of both 
approaches. Compared with previous optimization based particle filter, our 
method overcomes the disadvantages of inefficiency by incorporating artificial 
immune algorithm into particle filter. Evaluations on MOCAP dataset show that 
immune particle filter algorithm performs better than anneal particle filter. 

1   Introduction 

Articulated body tracking is currently one of the most active research topics in computer 
vision. It has various applications in human animation, human-computer interaction, 
video surveillance and sports video analysis.  

The previous optimization based particle filter algorithms [5][6] for articulated object 
motion tracking are not population based optimization algorithm, each particle per-
form its optimization procedure individually, and the computational resources is 
evenly allocated to each particle. 

In order to reach a good accuracy with sparse sampling and overcome the disad-
vantages of the previous optimization based particle filter algorithms, we propose a 
novel approach for body motion capture, called immune particle filter (IPF). In IPF, 
the optimization procedure is carried out by artificial immune algorithm. Artificial 
immune algorithm is a population-based algorithm. Compared to the formal non-
population based algorithms, IPF can efficiently eliminate the previous with low 
affinity by clone selection, and allocated more computational resources to more 
probable hypothesizes. Moreover, compare the other population based optimization 
algorithm, such as GA and SA etc., Artificial immune algorithm increases effi-
ciency by mutating inversely proportional to affinity. 

2   Related Works 

Particle filter applies a recursive Bayesian filter based on propagation of sample  
set over time, maintains multiple hypotheses at the same time and uses a stochastic 
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motion model to predict the position of the object. The state of the modeled object at 
time t  is denoted by 

tS , where },,,{ 21 tt sssS = , the measurement of the object at 

time t  is 
tZ , denotes all the observations },,,{ 21 tzzz up to time t . The process 

density )|( 1−tt ssp and observation density )|( tt Zsp  are not required to be Gaussian. 

Particle filtering is to approximate the probability distribution by a weighted sample 

set N
n

n
t

n
ts 1

)()( )},{( =π . Each sample )(n
ts  represents one hypothetical state of the object, 

with a corresponding discrete sampling probability )(n
tπ .  

In human body tracking problems, the dimensionality of the parameter space is far 
too high to represent accurately the true posterior distribution everywhere. Recent 
approaches to handling this problem can roughly be classified into two types: lower 
the dimensionality [1][2] or introduce particles with a more sophisticated behavior, 
which was named as ‘smart particles’ by Bray [4]. 

3   The Priori Knowledge of Human Body Motion 

The priori knowledge of human body motion includes human body model, model con-
straints and motion model etc. Human body model is a kind of structure model of  
human body based on the knowledge of anatomy human body, which it represents Ar-
ticulated model and pose express of human body, and also determines matching features 
in tracking process. The motion model (dynamic model) denotes the law of human body 
motion as mathematical formula. The motion constraints reflect constraints which hu-
man body motion model should follow, for example, limb rotation range, the constraints 
which one part of human body couldn’t penetrate through other parts etc. 

3.1   Human Body Model and Constraints 

We select a 3D articulated model in [11] as body model. The model use simple 3D 
ellipsoids and generalized cylinders to represent 10 rigid segment of human body, and 
those segment was organized as a kinematical tree, which consists of 15 joints (articu-
lations). The model has 31 degrees of freedom that include local joint angles, the 
position and orientation of the root of the kinematical tree, thus, Each pose can be 
represented by a 31-dimensional vector.  

3.2   Motion Model 

Sophisticated motion prior models learnt from training sets of 3D human motions 

have been proposed in [3][9][10], but in our case, for the generality of our approach, we 

choose first order derivative motion model  

wss tt += −1  (1) 

Where ts  is a 31-dimensional state vector of 3D articulated model at time t , w is the 

diffusion variable ),0( ΣNw Σ  is a diagonal matrix which learnt from training 

sets of 3D human motions. 
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          (a) 10 components of body                      (b) 15 articulations 

Fig. 1. Articulated model of human body, it use simple 3D ellipsoids and generalized 
cylinders to represent  rigid segment of human body 

4   Immune Particle Filter 

Fitting and tracking the articulated model to the detected humans in the video streams 
requires the definition of a observation model allowing to project this model onto the 
available image properties.  

Given an image observation tz , the likelihood measure for model hypothesis x  is  

))(exp()|( xExxzp t
tt −==  

(2) 

where the total model fit error )(xEt  consist of silhouettes fit error )(xE t
sihouette and 

edges fit error )(xEt
edge

, 
=

−+=
C

i

it
sihouette

it
edge

t xExExE
1

,, ))()1()(()( αα  ,  C is the number of 

cameras, and ,α  is a weight factor, 10 ≤≤ α . 
The framework of our immune particle filter algorithm is based on particle filter, 

and incorporates the immune optimization into the four steps of traditional particle 

filter( Resampling, Predict, Measure, Estimate),and it includes six steps: Resam-

ple, Predict, Feature extraction, Immune optimization, Measure, Estimate. The 

flow of immune particle filter is as follows. 

Algorithm: Immune Particle Filter 
Input: old sample-set N

n
n

t
n

t ws },{ )(
1

)(
1 −−  at time t-1. 

Output: new sample-set N
n

n
t

n
t ws },{ )()(  and pose estimate tŝ  for time t ,. 

begin 
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1
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1
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Predict  sample N
n

n
ts }{ )( from the dynamic model (5.1).  

Feature extraction , extract edge pixel map and silhouette pixel map from tz . 

Immune optimization, Optimization N
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End. 

The Feature extraction step before immune optimization is to increase efficiency. 
Next,we will describe the immune optimization procedure in detail. 

5    Experiments 

To evaluate our algorithm for human body motion capture, we use MOCAP [8], the 
dataset of the synchronized motion capture and image data for a walking human. A 
total of 530 frames are provided at 60 Hz. The length of body limbs, and radius  
parameters of 3D ellipsoids and generalized cylinders of body are estimated from  
 

Table 1. Comparison the performance results of anneal particle filter and immune particle filter 

Anneal Particle Filter Immune Particle Filter 

N 
Error 

(pt-pt/frame) 
Time 

(s) N 
Error 

(pt-pt/frame)
Time 

(s) 

100 49.01 23.14 20 54.45 21.16 

200 49.31 50.85 30 49.69 47.92 

300 47.10 73.20 40 44.37 75.18 

400 47.23 98.40 50 43.85 123.44 
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motion capture data of the first 50 frames of this dataset. The first 150 frames video 
data of four cameras is used for testing our algorithm, motion capture data from Vicon 
system as the ground truth data for quantitative evaluating our algorithms. 

Table 1 shows the comparison of anneal particle filter and immune particle filter. N 
is the number of particles. In immune particle filter, the maximum iteration number of 
immune optimization is set to 7, clone ratio is 0.4, clone multiplier 0.4 and mutation 
regulation factor is 0.08. As can be seen in Table 1 the performance of immune parti-
cle filter algorithm is better than anneal particle filter. 

6   Conclusion 

In order to reach a good accuracy with sparse sampling, we propose a modified parti-
cle filter based on artificial immune algorithm, and realize this algorithm for body 
motion capture. Compared to the formal non-population based algorithms, immune 
particle filter can efficiently eliminate the hypothesizes with low affinity by clone 
selection, and allocated more computational resources to more probable hypothesizes. 

The experiments on MOCAP dataset show that the performance of immune parti-
cle filter algorithm is better than anneal particle filter. 
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Abstract. In this paper, we proposed a Chaotic Genetic Algorithm (CGA) to 
cluster protein interaction data to find protein complexes. Compared with other 
computation methods, the main advantage of this method is that it can find as 
many potential protein complexes as possible. Application on the Yeast genomic 
data highlights the efficiency of our method. 

1   Introduction 

Proteomic research is a focus of current study. [1-3] mention that cellular systems 
depend on multi-protein complexes in which individual proteins assemble into 
functional modules, so it is meaningful to find the known and forecast still unknown 
protein complexes within a cell’s protein-protein interaction network. Gavin et al. have 
reported 257 novel protein complexes in the budding yeast through Affinity 
Purification-Mass Spectrometry this year [3].  

Mostly, the common wet experimental methods to distinguish protein complexes 
include X-ray crystallography [4-6] and multidimensional nuclear magnetic resonance 
(NMR) [7-8]. But such methods are expensive and time-consuming. Different with wet 
experimental methods, the computational methods predict protein complexes by 
theoretical analysis thus can quickly and conveniently supply useful clues of 
complexes. For examples, King et al. used the Tabu Search algorithm [9]; Bade and 
Hogue [10] made use of identification of k-cores; Pruzlj [11] employed the graph 
theory to the study of highly connected subgraphs. Although they used different 
computational methods, there are some common ideas that will also be used in our 
work: one is that protein complexes are distinguished from protein-protein interaction 
(PPI) data, another one is that protein complexes generally correspond to dense 
subgraphs. Regarding the PPI data as a graph, where the vertices are proteins and the 
edge between two vertices represents the interaction of them, then above computational 
methods are in fact to find the dense subgraphs from the graph. Since proteins within 
the complex are generally interacted with each other, the denser the subgraph, the 
higher the probability it is. The densest subgraph, usually called as clique, is a complete 
subgraph. So finding protein complexes from PPI data is equal to finding maximal 
cliques from the graph. However, finding maximal cliques is NP-hard, usually one can 
only find near maximal cliques. Most of the existed computational methods have some 
                                                           
* Corresponding author. 
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drawbacks when solving this problem, such as the suggested near maximal cliques are 
far from maximal; proteins of different protein complexes are disjoint, which is not true 
in reality, and so on. So such methods usually can only find small number of potential 
complexes. In this paper, we will use a new stochastic method, called as Chaotic 
Genetic Algorithm (CGA), to find as many potential complexes as possible. 

The chaos, a general phenomenon in non-linear system, has two special characters: 
acquiring all kinds of states in a self-rule in a certain range, and being sensitive to tiny 
change in initial condition. Based on above advantages, some chaos optimization 
algorithms can prevent local optimization and have a high efficiency. CGA, a 
combination of chaos optimization and Genetic Algorithm, is the inverse method of 
Simulated-Anneal Monte Carlo Genetic Algorithm. There are two differences between 
Simple Genetic Algorithm (SGA) and CGA: first, CGA uses chaotic variables in the 
initial process to increase the range of the initial populations as large as possible; 
second, CGA adds chaotic disturbance on the basis of simple genetic operation. In 
order to prevent good solutions of every generation from being disturbing, CGA puts 
the part of previous generation with highest fitness values into the next generation 
directly. Furthermore, we consider both clustering coefficient and effective length (the 
product of a graph’s vertex length and clustering coefficient) to design the fitness 
function. When used to analyze Saccharomyces cerevisiae data, CGA suggest 149 
protein complexes, some of them are still unknown up to now. 

The rest of this paper is organized as follows: section 2 describes the CGA in details, 
section 3 is the application of CGA to the Yeast data, and the last section gives the 
conclusions and future works.. 

2   Chaotic Genetic Algorithm 

2.1   Chromosome Representation 

We use a binary string to describe an operation on the exist edge of a graph. The length 
of the chromosome is the number of the graph’s original edges. Every edge’s position 
in the chromosome is fixed. The ‘0’ in our chromosome means that original edge 
remains in the new generation while ‘1’ discards. For example, in Fig. 1., there are 
seven vertex (1-7) and eight edges (a-h). If we only want to discard one edge “d” from 
the original graph, we use the string “00010000” to means the operation on the graph 
and to get the partition detailed in figure 1(b) and this chromosome means a partition 
with two subgraphs {1,2,3} and {4,5,6,7}. 
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Fig. 1. A simple protein-protein interaction network (a) and its one partition (b) 
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2.2   Fitness Evaluation 

We describe the fitness in the following way: 
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Where P is one partition of the original graph G, and l is the number of connected 
subgraphs in the partition P, '

iG  is a connected subgraph in the partition P, '
iV  and '

iE  

are the vertex set and edge set of '
iG , and || '

iV  is the length of '
iV , and || '

iE  is the length 

of '
iE , '

iρ Tρ  and λ  are empirical thresholds. In the formula (1), function )(Pf s  is used 

to calculate the maximal dot product (denoted as effective length) between vertex 

number and clustering coefficient. In the formula (2), )(Pf p  is designed for the 

maximal clustering coefficient.  

At first we only use the formula (4) as the fitness function to evaluate the population, 

and we find we get many local optimal solutions. Next, we add the factor |V`| in the 

function. But the adding leads to another problem: it is difficult to tell the difference 

between a small complete graph with smaller |V`| and a big sparse subgrah with larger 

|V`|. Next, when we want to use |V`| and ρ  to represent the uncompleted subgrah, we 

find that it is too discrete or too complicated to implement. Finally, we attach above two 

conditions to fitness function and get the formula (1-2). Furthermore, the clustering 

coefficient threshold 
Tρ  and vertex number threshold λ  make the function more 

flexible and practicable. If we increase the value of 
Tρ  and λ  in the program, the 

process will produce fewer local optimal solutions and converge more quickly. In 

addition, 
Tρ  and λ  can also be used to filter some random highly dense subgraph and 

to amend the inaccuracy of experimental data. 

2.3   Evolution of CGA 

The steps of genetic evolution are listed as following: 

Step 1: Set some parameters. The solution range is [0, 2n], n, the length of the 
chromosome, is the number of edges of the input graph. The generation size is 
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m=10*n. The maximal number of evolution generations is d=10*m. And the 
crossover probability is P1=P2=0.9, and mutation probability is Pm=0.01. 

Step 2: Set the initial population. We set (0)=0.2 and calculate the value of (1),…, (m) 

according to formula (u+1)= * (u)(1- (u)) Where (u) is a chaotic variable which 
corresponds to the uth chromosome in the population, u=1,…,m, 0 (u) 1, and the 
absorber  is often set as 4. 

Step 3: Compute the fitness values of the initial population. We code the first 
chromosome as the following formula (x1)10=2* (1). Next, we change the decimal 
number (x1)10 into binary string which means a partition of the original graph. 
Then we calculate two fitness of the first chromosome according to formula (1-4). 
Similarly, we calculate fitness of every chromosome in the population. 

Step 4: Produce the new population. We first choose 10% with longest effective lengths 
from the whole population to the next generation, and then we again choose 10% 
with largest cluster coefficients to the next generation. The remain 80% of the 
generation, has to undertake three operations: copy, crossover and mutation and to 
produce the 80% part of the new generation. 

Step 5: Calculate the difference of fitness among the chromosomes in one generation 
according to the following formula. 

=
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s xf
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Xf
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)(
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}m1,2,...,j   ),(max{)( max == xfXf s
j
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ε<− max)()( XfXf ss  (7) 

Where, ε  is a threshold. We use the formula (5) to calculate the average fitness of 

the generation, which is compared with the maximal fitness by the means of 

formula (6). If the difference between the maximal fitness and average fitness is 

smaller than the threshold ε  as in formula (7), we go to the step 7, otherwise go to 

following step 6. 

Step 6: Add the chaotic disturbance. Among the current generation, we keep the 10% 
with higher effective length fitness and 10% with higher clustering coefficient 
fitness, and we add the remaining 80% with chaotic disturbance. We add the 
chaotic disturbance through the following formula (8-9). 

m

k k

k −−= 1
1α  (8) 

)(*)( )1(
' u

kkkk
u

k δαδαδ +−=  (9) 

Where k is the No. of current iteratively computing generation, and m is the 
number of chromosomes. Where *

kδ  is the optimal chaotic vector of the kth 

generation and corresponds to the kth generation’s optimal solution ( )*
kx . )(u

kδ  is 

the chaotic vector of the uth chromosome in the generation after k times iteratively 
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computing. ')(u
kδ  is the corresponding chaotic vector of )(u

kδ  which is modified by 

random disturbance. 
kα  is a self-adjusting variable, set by (8). 

According to formula (9), we obtain the new chaotic variable '
kδ  corresponding 

to variable xj. After inverse mapping '
10

' *2)( k
n

jx δ= , we acquire the new value for the 

variable xj. Similarly, we can compute other variable’s new value. Then we 

re-compute the fitness of the generation, if the fitness matches the requirement of 

the formula (7), we go to next step 7, otherwise go to step 4. 

Step 7: Output the solutions and adjust the parameters 
Tρ  and λ . Different with 

traditional GAs, we continually decrease the input space to reduce the computing 

scope to process the large dataset. It is a kind of “Greedy” method. First, through 

the above steps, if we obtain some solutions which have vertex number greater 

than λ  and the clustering coefficient also greater than 
Tρ , we should store the 

solutions for further process (Which will be explained in the following part.), and 

at the same time, we delete the edges of the solutions from the input graph and use 

the decreased graph as the input graph. Next, we decrease the vertex number 

threshold λ  by one and also increase the clustering coefficient threshold by 5%. If 

the λ  is near 3, we should stop our program, otherwise we go to Step 1. 

2.4   Process on the Multiple Solutions 

In the optimal solution population, some solution have same subgraphs, some have no 

common subgraph and other have partly identical. If one subgraph is a true subset of 

another one, we should delete the former smaller one. If one subgraph has no common 

vertex with another one, we should keep the two. If one subgraph has part vertex 

similar with the other one, for example, the solution A has part C same as the solution 
B. If 

sAC ρ>||/|| , we delete solution A, where |A| is the number of A’s elements; if 

sBC ρ>||/|| , we delete the solution B but we do not delete the two solution A and B at 

the same time if 
sAC ρ>||/||  and

sBC ρ>||/|| . The constant 
sρ  is a prune share rate 

threshold which variables in different requirements. In the next Section, we will discuss 
the choice of 

sρ . 

3   Application on Yeast Genome 

The experiment was done on our web server which consisted of two Pentium 4 PCs 
with 4.8 GHZ CPU and 2G RAM. The Saccharomyces cerevisiae proteomic data [13] 
has 5321 proteins and 78390 interactions. Since the computation space is very large, we 
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used the greedy method to output the biggest clusters first and then removed its 
interaction edges from the input space. The parameters are detailed in Table 1. The last 
two rows of the Table 1 displays the numbers of found clusters before filtering by CGA 
and RNSC[9]. From Table 1, we see that CGA can find more clusters than RNSC as 
expected. 

During our found clusters, the biggest ones have 66 proteins and the average size is 
15.3. Table 2 listed the remain cluster number after filtering with different prune share 
rate thresholds. The 4240 clusters provide more cluster’s clique detail information, 
while the smallest 149 clusters with lowest sharing rate 0.05 more preferentially 
partition the input graph into separate, distinct cliques. 

We compared the 149 clusters with the MIPS [14] and found that 81 of 149  
are matched in the MIPS, which shows that our method can find the known  
protein complexes. Although some of our results are not matched with MIPS, they  
are potential protein complexes which need more focus by researchers. More  
details about the result are listed on the following site: ftp://202.114.70.19/pub/protein/ 
SuppCGAandProteinComplex.pdf 

Table 1. CGA and RNSC parameters on Saccharomyces cerevisiae proteomic data [13] 

Parameter Value Parameter Value 

CGA ε 0.001 CGA max. generation size 100 

 CGA Pm 0.01 CGA found total clusters (without filtering) 4240 

CGA P1,P2 0.8 RNSC found clusters (without filtering) 1811 

CGA max. iterate generations 5000   
 

Table 2. Different prune rate on the results 

sρ 1.0 0.95 0.75 0.5 0.05 

Cluster number 4240 2235 857 435 149 
 

4   Conclusions and Future Works 

In this paper, we present a new approach, CGA, to predict of the protein complexes. 
CGA introduce chaos into GA, thus can try more points in the search space in limited 
time. The application results show that our method can converge fast and can find more 
potential complexes than traditional methods. 

Although we have successfully applied CGA to the proteomic data, the thresholds in 
the algorithm seems a little subjective. Moreover, the simple undirected graph model to 
describe the complicated and intricate relationship among molecular proteins seems a 
little fragile. We may solve the problems in the near future. 
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Abstract. One of the key tasks in Hardware-Software Co-design is to optimally 
allocate, assign, and schedule resources to achieve a good balance among 
performance, cost, power consumption, etc. So it’s a typical multi-objective 
optimization problem. In this paper, a Multi-objective Q-bit coding genetic 
algorithm (MoQGA) is proposed to solve HW-SW co-synthesis problem in 
HW-SW co-design of embedded systems. The algorithm utilizes the Q-bit 
probability representation to model the promising area of solution space, uses 
multiple Q-bit models to perform search in a parallel manner, uses modified Q-
bit updating strategy and quantum crossover operator to implement the efficient 
global search, uses an archive to preserve and select pareto optima, uses Timed 
Task Graph to describe the system functions, introduces multi-PRI scheduling 
strategy and PE slot-filling strategy to improve the time performance of 
system. Experimental results show that the proposed algorithm can solve the 
multi-objective co-synthesis problem effectively and efficiently. 

1   Introduction 

With the development of IC technology, the traditional design methods that design 
hardware and software separately and mainly depend on the experience of designers 
cannot meet the design requirement of modern embedded systems any more. So, a 
novel method named hardware and software co-design is developed [1]. HW-SW co-
design uses automatic and optimized methods to help the designer process rapid 
prototype development and estimate the performances of the system at a high-level 
stage, thus to achieve a good balance among performance, cost, power consumption, 
etc. According to the granularity of the design, the methods of HW-SW co-design can 
be divided into two kinds[1]: one is called as HW-SW partitioning, which describes the 
system functions with Control Date Flow Graph(CDFG)[2]and its granularity is 
BSB(Basic Scheduling Block)level. Another one is called HW-SW co-synthesis, 
which uses the Task Graph(TG) to describe the system functions and its granularity is 
task level.  
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At present, typical algorithms of HW-SW co-synthesis for distributed 
heterogeneous multi-processor system can be classified into three kinds: the first one 
is heuristic multi-processor scheduling, such as [3]. These algorithms schedule the 
assigned tasks from the standpoint of parallel computation. The second one is linear 
programming or integer programming [4]. Since denoting the objective function and 
restriction is so difficult, and the computational complexity of algorithms increases 
exponentially with the scale of problems, it’s hard to use this kind of algorithm to 
solve large-scale problems. The third one is based on genetic algorithms [5]. This kind 
of algorithms have good performances due to the high exploration capacity of genetic 
algorithms, however, they still can be improved. Furthermore, there are several other 
algorithms [6]. 

HW-SW co-synthesis can also be treated as a kind of multi-objective optimization 
problem. In most cases the objectives (performance, cost, power consumption, etc.) 
are in conflict with each other and there is no single solution that is optimal for all 
objectives. In this situation, we can only get so called Pareto optimal or non-
dominated solutions.  

From early 1990s several Multi-Objective Evolutionary Algorithms(MOEAs) were 
proposed[7]~[11]. Of them, Knowles et. al’s PAES [8], T-Ray et. al.’s. Ray-Tai-Seow’s 
algorithm [9], Deb et. al’s NSGA-II [10] enjoyed more attention. Carlos A. Coello et al. 
also proposed a multi-objective particle swarm algorithm (MOPSO[11]). 

Q-bit coding evolutionary algorithm was first proposed by Han et al. as GQA[12], 
and later extended to QIEA[13]. Li et al. proposed a pair-wise quantum crossover to 
substitute the migration operation in QIEA to improve global search in GAQPR[14]. 
GAQPR has been used to solve various single objective optimization problems[14]. 
The experimental results show that the algorithm has a characteristic of keeping good 
balance between the convergence and diversity. This inspired us to adapt it to multi-
objective optimization problems. 

In this paper, a Multi-objective Q-bit coding Genetic Algorithm(MoQGA) for HW-
SW co-synthesis is proposed. The algorithm is testified on some hypothetical HW-
SW co-synthesis problems described with Timed Task Graph (TTG), experimental 
results show that the proposed algorithm is effective and efficient in solving multi-
object HW-SW co-synthesis problem. 

The remainder of this paper is organized as follows: section 2 focuses on the model 
and process for HW-SW co-synthesis. Section 3 proposes a MoQGA for HW-SW co-
synthesis. Section 4 provides the experiment result with analysis. Finally, section 5 
concludes the paper. 

2   Model for HW-SW Co-synthesis 

We describe the system functions with Timed Task Graph(TTG)(shown as Fig.1 
and Fig.2), which is a directed acyclic graph in which each node is associated with a 
task. Task graph can be denoted as G  (T E), where Ti denotes a task. The task 
set T  {T0,T1,…,Tn} denotes all functions of the system abstractly. The directed 
edge set E  {(Ti,Tj)|Ti,Tj T}denotes data communication between tasks Ti  
and Tj. 
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For co-synthesis problem, a task node can be denoted as Ti  
{tID tType pNum nNum sTime fTime,deadline}, Where tID denotes the task ID, 
tType denotes the task type, pNum and nNum denote the number of a task’s predecessor 
nodes and successor nodes, sTime and fTime denote the start time and the end time of 
the task, and deadline means the time by which the task associated with the node must 
complete its execution. 

System resource contains Processor Elements(PEs) and communication resources. 
A PE can be denoted as P = ( C , W ,T), where C denotes the cost, W denotes the 
power consumption, and T  {t1,t2,…t3}denotes the executing time of each type of 
task which executes on it.  

Communication resources include the system bus that links the PEs and 
independent linkage. A physical linkage can be denoted as ( Ti,Tj ) ( Q C W ), 
where Q denotes the amount of data transferring on it, C denotes the cost and W 
denotes the power consumption. 

The total cost of system can be denoted as : 
 

                                           Cost(S)= ( ) ( )i ip c b c+  .                     (1) 
 

The first part of equation (1) denotes the cost of PEs and the second part denotes 
the cost of communications. The power consumption of system can be denoted as 
fellows: 

 

Power(S)= ( ) ( )i ip w b w+  .                                  (2) 
 

The first part of equation (2) denotes the power consumption of PEs and the second 
part denotes the power consumption of communications. 

The HW-SW co-synthesis is a multi-objective optimization problem and can be 
depicted as follows: 

 

Min      Cost(S)
 

Min   Power(S)
object functions  .                     (3) 

T   Time(S) MAX ( )restriction S≤  .                                 (4) 
 

Where Time(S) is the time by which all the functions of system are realized. 

3   MoQGA for HW-SW Co-synthesis 

3.1   The Procedure of MoQGA 

Procedure MoQGA 

begin  
t 0 
1. generate N individuals represented by Q-bit probability amplitude to form the 

initial population ( )Q t ; 

2. sample every individual K times and get K deterministic solutions; if there is 
any solutions among the K that don’t violate any constraint, select a Pareto 
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optimal solution from such solutions as the individual’s current evolution target; 
if none of the K solutions satisfies all constraints, pick the one with the lowest 
constraint violation degree value as the current target of the individual; 

3. while (not termination-condition) do 
begin 

a)t t+1; 
b) For each individual in ( )Q t 1− , i.e. t 1

jq − , sample it once and get one 

deterministic solution; 
c) Compare the sampled solution with the current target of t 1

jq − , if the sampled 

solution dominates its current target, replace the current target with the 
sampled solution; if the sampled solution is dominated by its cur. Age rent 
target, keep the current target unchanged; otherwise, select one randomly 
from the two as the individual’s next evolutionary target. 

d) update individual according to its new target; 
e) Apply quantum crossover operator to the updated population and archive; 
f) if (re-initialization - condition)  

apply re-initialization strategy; 
end 

end 

For detailed description of Q-bit Coding, Initialization, Updating strategy of 
Individuals, and Crossover operator, please refer to literature [14].  

Different from [14], the crossover operator in step e) can also be performed on two 
individuals, one from the population and one from the Archive. The intuition behind 
is to evolve the individuals towards better solutions to accelerate convergence. 

The re-initialization operator in step f) is defined as follows: select some 
individuals randomly from the population after m generations, set them back to the 
initial state, then the evolution process of the new individuals starts afresh. 

3.2   The Archive and Constraint Management 

By setting archive, Pareto optimal solutions generated through the evolution process 
can be stored and selected. For a solution that doesn’t break any constraint, add the 
solution to archive if there is no solution in the archive dominating it and delete the 
solutions it dominates from the archive. 

The maximum size of the archive can be set in advance. When the number of 
solutions in the archive exceeds pre-set size, a “division” operation is performed. In 
this paper, liner division method is adopted as follows: for each objective, the 
minimum and the maximum value are found from the solutions in the archive and 
used as the lower and upper bound along the dimension respectively, then divide the 
space into n sub-space uniformly. Select the sub-space containing the most solutions 
and delete one solution from it randomly. The purpose of doing so is to maintain the 
diversity of the solutions. 

The concept violation degree R[10] is adopted to deal with constraints. Suppose 
there are n constraints: ( ) ( ) ( )1 2 ng x 0,g x 0, g x 0≤ ≤ ≤ , 

iR =0 if and only 

if ( ) 0ig A ≤  holds for i=1,2, ,n; 
iR = ( )ig A  if ( ) 0ig A > . The violation degree R of 
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individual A can be calculated using n

i
i 1

R R
=

= . According to the individual’s 

violation degree R, individuals that don’t violate any constraint dominate those that 
violate some constraints; individuals with smaller violation degree value dominate 
those with greater violation degree value.  

3.3   Multi-PRI Scheduling and PE Slot-Filling Strategy 

For a certain solution that associated with a scheme of assignment, the scheduling 
gives an optimal Time(S) of the scheme. A node whose predecessor nodes are all 
complete scheduled is called a ready node. When two or more ready nodes are 
assigned to the same PE, the competition happens, which complies with the Multi-
PRI shown as follows(ignore the deadline of node): 

1.  Instancy of node, MEFtimeMLFtimeInstancy −= , where MEFtime is the 

earliest finish time and MLFtime is the latest finish time of node. 
2.  Stime of node, the start time of node. 
3.  Ftime of node, the earliest finish time of node. 
4.  Rand priority. 

The above items are priority-ranked. Instancy of node well describes the position 
information in the TG of the node and it’s reasonable to be served as the first priority. 
The priority of Stime is to decrease the waiting time of PE. The priority of Ftime 
assures PE available early for another task to use. When the above priorities are same, 
take the random priority into account.  

In order to enhance the efficiency of PE, a PE slot-filling strategy is introduced as 
follows: in view of communication delay, the task that competes successfully will 
wait for a moment before execution and the PE is available synchronously. If the idle 
time can satisfy another ready task, let the ready task executed firstly. 

4   Experimental Results and Analysis 

To testify the performance of MoQGA, we use it to solve the four nodes and nine 
nodes tasks introduced in [4] firstly. 

Four-node system is shown as in Fig.1. In this system, a task doesn’t require all the 
inputs before starting its execution and it may produce some outputs even before 
completion. To express this possibility, each input ia,b has a parameter 
fR(ia,b)associated with it which specifies that up to fR(ia,b)fraction of the task can 
proceed with requiring the input ia,b. Similarly, each output oa,b has a parameter 
fA(oa,b)associated with it which specifies that the output oa,b becomes available when 
fA(oa,b)fraction of the task is completed. The available PE source of system is shown 
in Table 1. In nine-node system (Fig.2), a task would require all the inputs before 
starting its execution and none of the output would be available until the execution is 
over. The available PE source of system is shown in Table 2. In both four-node 
system and nine-node system, the kind of communication is point-to-point. The 
communication volume and the communication delay are both a unit and the cost of 
communication linkage is a unit too.  



870 W. Wen-long et al. 

 

Fig. 1. TG of four-node system             Fig. 2. TG of nine-node system 

   Table 1. PE sources of four-node system         Table 2. PE sources of nine-node system 

 
 
 
 
 
 

Table 3. Results of multi-object optimization of four and nine-node system(Point toPoint) 

Design MOGAC[5] MoQGA 
Task 

No. Restriction Cost 
Power 

consumption 
Execution 

time(s) 
Cost 

Power 
consumption 

Execution 
time(s) 

1 2.5 - - - 14 139.705 0.0840 

2 3 - - - 
13 
14 

152.140 
139.705 

0.0930 

3 4 
7 

15 
75.4 
64.2 

20.1 

7 
8 

10 
11 
14 

314.90 
276.90 
214.35 
141.60 

139.705 

0.1050 

4 
N 
O 
D 
E 
S 
 

4 7 
5 
7 

10 

44.4 
35.1 
21.5 

16.9 
5 

11 
14 

175.00 
141.60 

139.705 
0.1060 

1 8 
7 

12 
49.8 
40.0 17.2 

7 
8 
9 

11 
14 

431.10 
371.33 
355.20 
323.85 
311.13 

3.4983 9 
N 
O 
D 
E 
S 2 15 

5 
7 

12 

48.0 
26.8 
21.8 

22.4 

5 
8 
9 

11 
14 

375.00 
371.33 
355.20 
323.85 
311.13 

3.6027 

 

The algorithm is implemented in programming language C, and the results are 
obtained on the computer of 2.0G Pentium Pro CPU with 256MB of main memory. 
For four-node system, N=20, K=8, tuning pace of rotation angle is 0.08π , crossover 
adjustment angle is 0.04 π , m=200, crossover probability is 0.2, re-initialization 
probability is 0.5 and the termination number of generations is 100. For nine-node 

Execution time 
PE Cost

T1 T2 T3 T4 

P1 4 1 1  3 

P2 5 3 1 2 1 

P3 2  3 1  

 

Execution time 
PE Cost 

T1 T2 T3 T4 T5 T6 T7 T8 T9 

P1 4 2 2 1 1 1 1 3  1 

P2 5 3 1 1 3 1 2 1 2 1 

P3 2 1 1 2  3 1 4 1 3 
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system, N=100, the termination number of generations is 1000, and other parameters 
are the same as that for four-node system. The results of multi-object optimization of 
four and nine-node system is shown in Table 3. 

For parallel multi-task system, we use the examples introduced by Junwei Hou & 
Wayne Wolf in [6]. In [6], the authors perform clustering on TG before scheduling 
(see detail in [6]). The PE source is listed in Table 4. In this experiment, the cost of a 
communication linkage is 20 and unit transmit delay is 0.8, N=80, the termination 
number of generations is 2000, and other parameters are the same to four-node 
system.  

The working power-consumption values of P1, P2, P3 are 34.5, 25.0, 44.2 and the 
idle power-consumption values of P1, P2, P3 are 2.3, 1.25, 4.42. The results are listed 
in Table 3 and Table 5, and are compared with that of MOGAC[5]. For four and nine 
nodes system, our results are the same as the optimal results that are obtained by 
enumerating. From the comparison results, we can conclude that our algorithm can 
find the optimal solutions for each system and have highly efficiency. 

Table 4. PE sources of parallel multi-task system 

Execution time 
PE Cost 

A B C D E F G H I J 

P1 100 5 10 5 35 15 30 15 15 7 10 

P2 50 12 18 12 85 22 75 25 35 10 28 

P3 20 18 40 18 195 80 180 85 47 30 35 

Table 5. Results of multi-object optimization of parallel multi-task system(Point to Point) 

MOGAC[5] MoQGA 
Task 

Cost 
Power 

consumption 
Execution 

time(s) 
Cost 

Power 
consumption 

Execution 
time(s) 

Hou1&2(uc) 170 51.8 89.6 
170 
190 
290 

50.7583 
48.6583 
48.3333 

14.6558 

Hou1&2(c) 170 62.5 9.5 
170 
200 

58.2626 
53.1668 

5.9850 

Hou3&4(uc) 170 48.6 26.3 

170 
190 
210 
230 
250 

50.2105 
49.4947 
48.8789 
48.1447 
47.9158 

22.0810 

Hou3&4(c) 
 

170 
 

43.3 5.1 
150 
170 
200 

68.9092 
58.5606 
50.3686 

7.0418 

5   Conclusions  

The characteristic of Q-bit coding Genetic Algorithm that can keep good balance 
between convergence and diversity inspired us to adapt it to solve multi-objective 
HW-SW co-synthesis problems. A archive and associative operators are used to 
guarantee the quality of the final solution, Timed Task Graph is adopted to describe 
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the system functions, a multi-PRI scheduling strategy and PE slot-filling strategy are 
introduced to improve the time performance of system. Experiment results show that 
the algorithm is effective and efficient in solving multi-objective HW-SW co-
synthesis problem.  
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Abstract. Tolerance assignment is an important issue in product design and 
manufacturing. However, this problem is commonly formulated as nonlinear, 
multi-variable and high constrained model. Most of the heuristics for this prob-
lem are based on penalty function strategy which unfortunately suffers from in-
herent drawbacks. To overcome these drawbacks, this paper presented a new 
powerful tool-Particle Swarm Optimization algorithm (PSO) and meanwhile 
proposed a sophisticated constraints handling scheme suitable for the optimiza-
tion mechanism of PSO. An example involving simultaneously assigning both 
design and machining tolerances based on optimum total machining cost is em-
ployed to demonstrate the efficiency and effectiveness of the proposed ap-
proach. The experimental result based on the comparison between PSO and GA 
show that the new PSO model is a powerful tool. 

1   Introduction 

Tolerance assignment in product design and process planning (machining) affects 
both the quality and the cost of the overall product cycle.  It is a crucial issue to de-
termine how much the tolerance should be relaxed during the assignment process, 
since a tight tolerance implies a high manufacturing cost and a loose tolerance results 
in low manufacturing cost. Hence, during tolerance assignment, a balance between a 
reduction in quality loss and a reduction in manufacturing cost must be considered.  
Traditionally, in the two stages (product design and process planning) tolerances [1] 
are often conducted separately. This is probably due to the fact that they deal with 
different type of tolerances. Product design is concerned with related component 
tolerances, whereas process designing focus on the process tolerance according to the 
process specification. However, this separated approach in tolerance design always 
suffers from several drawbacks. Therefore, we need to develop a simultaneous toler-
ance design. Singh [2] utilized genetic algorithms and penalty function approach to 
solve the problem of simultaneous selection of design and manufacturing tolerances 
based on the minimization of the total manufacturing cost. Gao and Huang [3] utilized 
a nonlinear programming model for optimal process tolerance simultaneously based 
on the objective of total manufacturing cost with different weighting factors. Huang, 

                                                           
* This paper is supported by the National Basic Research Program of China (973 Program), 

No.2004CB719405 and the National Natural Science Foundation of China No. 50305008. 
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Zhong and Xu [4] proposed a robust optimum tolerance design method in a concur-
rent environment to balance the conflict design targets between manufacturing toler-
ances and product satisfaction. 

Doubtlessly, the tremendous achievement has been obtained in the simultaneous 
tolerance optimization in the concurrent engineering context.  However, this problem 
is characterized by nonlinear objective, multiple independent variables. Traditional 
operational research algorithms are successful in locating the optimal solution, but 
they are usually problem dependent and lack of generality. Some modern heuristic 
methods are relatively more robust and flexible to solve these complex problems, but 
they may risk being trapped to a local optimum and are usually slow in convergence 
and require heavy computational cost. In view of the above problems and the past 
successful applications of PSO in nonlinear optimization, maybe PSO is a potential 
remedy to these drawbacks. PSO is a novel population based heuristic, which utilizes 
the swarm intelligence generated by the cooperation and competition between the 
particles in a swarm [5][6]. Noorul Hap, et al [7] utilized PSO to achieve the multiple 
objective of minimum quality loss function and manufacturing cost for the machining 
tolerance allocation of the over running clutch assembly. The presented method out-
performs other methods such as GP and GA, but it considered only two dimensional 
tolerance allocation of clutch assembly consisting of three components. This paper 
attempts to solve more complex tolerance assignment problems by PSO with a so-
phisticated constraints handling strategy. 

This paper is organized as follows. In section 2, the problem of simultaneous de-
sign was described. The basic PSO algorithm was reviewed and the new sophisti-
cated constraints handling strategy corresponding to PSO was presented in Section 
3. Section 4 gave an example and the evaluation of the proposed technique is car-
ried out on the example. Some conclusions and further discussion are offered in 
Section 5. 

2   Simultaneous Design 

As mentioned before, design processes are commonly divided into two main stages: 
product design and process design. Dimensional tolerance analysis is very important 
in both product and process design. In product design stage, the functional and  
assembly tolerances should be appropriately distributed among the constituent dimen-
sions, this kind of tolerances are called design tolerances. In the meantime, each de-
sign tolerance for the single dimension should be subsequently refined to satisfy the 
requirement for process plans in machining a part. Such tolerances for the specified 
machining operation are called manufacturing tolerance. However, the traditional 
process of design and machining tolerance allocations based on experiences can not 
guarantee optimum tolerance for minimum production cost. This work aimed at se-
lecting the optimal tolerances sequences to achieve the minimum manufacturing cost 
considering the two types of tolerances simultaneously by a powerful global optimiza-
tion tool. This problem is formulated as follows. 
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2.1   Objective Function  

We take the manufacturing cost as the objective function. Generally, the processing 
of mechanical product is conducted in a series of process plans. Different process 
consumes different expense because different process is associated with different 
machining method. Therefore, the cost of manufacture of the product is the summa-
tion of all operation cost. In this work, a modified form of the exponential cost [2] 
function will be adopted. The manufacturing cost of the machining tolerance is 
formulated as equation (1). 

1 2( )
0 3( ) 1, ,a a

ij ijc a e a i nδδ − −= + =  (1) 

The total manufacturing cost of a product will be C, where: 

1 1

imn

ij
i j

C c
= =

=  (2) 

Where ( )ij ijc δ  and ijδ  is the manufacturing cost and the tolerance of the jth manufac-

turing operation associated with the ith dimension respectively. n is the number of the 
dimensions and mi is  number of operations corresponding to dimension i. The con-
stants a0, a1, a2, a3 sever as control parameters.  

2.2   Constraints  

Apart from the constraint of economical manufacturing ranges (process limits), the 
above objective is subjected to both the design and manufacturing tolerances. 

(1) The design tolerances are those on the principal design dimensions (usually as-
sembly dimensions) that relate to the functionality of the components. The princi-
pal design usually in turn relies on the other related dimensions which form a  
dimension chain. This results in a set of constraints on the principal design toler-
ances that should be suit for the optimal solution of the tolerance assignment. 
There are many approaches available to formulate the synthesized tolerance. 
They are different tradeoff between the tolerances and the manufacturing cost. 
Four commonly used approaches [2] were adopted in this work. 

(2) Manufacturing tolerances constraints are equivalent to stock allowance con-
straints. Stock allowance is associated with the stock removal, the layer to be re-
moved from the surface in the machining process. Due to the tolerances of the 
dimensions, the stock removal is also not fixed. This gives rise to another kind of 
tolerances, manufacturing tolerances, which can be formulated as follows: 

( 1)ij i j ijAδ δ −+ ≤ Δ  (3) 

where ijδ and ( 1)i jδ −  are the machining tolerances of process j and j-1 for part i re-

spectively. ijAΔ is the difference between the nominal and the minimum machining 

allowances for machining process j. 
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3   Particle Swarm Optimization 

3.1   Background  

The investigation and analysis on the biologic colony demonstrated that intelligence 
generated from complex activities such as cooperation and competition among 
individuals can provide efficient solutions for specific optimization problems [8]. 
Inspired by the social behavior of animals such as fish schooling and bird flocking, 
Kennedy and Eberhart designed the Particle Swarm Optimization (PSO) in  
1995 [9].  

This method is a kind of evolutionary computing technology based on swarm intel-
ligence. The basic idea of bird flocking can be depicted as follows: In a bird colony, 
each bird looks for its own food and in the meantime they cooperate with each other 
by sharing information among them. Therefore, each bird will explore next promising 
area by its own experience and experience from the others. Due to these attractive 
characteristics, i.e. memory and cooperation, PSO is widely applied in many research 
area and real-world engineering fields as a powerful optimization tool. 

3.2   Drawbacks of Traditional Constraints Handling Strategy  

Although PSO has successfully solved many research problems, the applications are 
mainly focused on unconstrained optimization problems. Some researchers attempt to 
solve the constrained problem by optimizing constrained problems indirectly using 
the traditional penalty function strategy.  

Penalty function is an effective auxiliary tool to deal with simple constrained prob-
lems and has been the most popular approach because of their simplicity and ease of 
implementation. Nevertheless, since the penalty function approach is generic, their 
performance is not always satisfactory. When combined with PSO, the above problem 
is more severe in that PSO has an inherent mechanism based on memory information. 
This mechanism can produce high efficiency and effectiveness, but also low the flexi-
bility for constrained optimization simultaneously. It is desirable to design a new 
constraint handling scheme suit for PSO to effectively solve numerous engineering 
problems and maintain high efficiency. 

3.3   Constraints Handling Strategy for PSO 

Taking account of the memory mechanism of PSO and penalty strategy, a new con-
straint-handling strategy is presented in Figure.1. 

The core characteristics of the proposed strategy can be described as follows:  

(1) Corresponding to the memory mechanism of PSO, a special notation-Particle has 
been Feasible (PF) is introduced, which is used to record whether the current par-
ticle has ever satisfied all the constraint conditions. This notation preserves his-
torical constrain status for each particle.  

(2) Each particle updates its individual best and neighborhood best according to the 
historical constraint information PF, the current constrain status (Current particle 
is Feasible, CF) and the objective function with the penalty term.  
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(3) The algorithm selects the velocity updating strategy according to the historical 
information PF.  

(4) When updating the personal and neighborhood best, the algorithm adopts the static 
penalty strategy instead of the dynamic and the adaptive ones to guarantee the 
fairness. The detailed procedure for updating the personal and neighborhood best 
values based on the above constrain handling strategy is presented in Figure.1. 

For Each Particle { 
   If PF true Then 

      If ( ) ( )f x f pi i≤  and CF= true Then 

         ip xi  

         If ( ) ( )f p f li i≤  Then 

           ip il  
         End if 
      End if 
   Else if PF false Then 
      If CF  true Then 

         ip xi  

         PF true 

         If ( ) ( )f p f li i≤  Then 

            ip il  

         End if 

      Else if ( ) ( )f x f pi i≤  Then 

         ip xi  
      End if 
  End if 

Fig. 1. The proposed constraint handling strategy for PSO 

Special attention should be paid that the PSO algorithm based on the proposed con-
straint handling strategy does not have to guarantee the existence of feasible solutions 
in the initial population. With the randomized initial velocity, the PSO itself has the 
ability to explore the feasible space. In addition, the penalty function imposed on the 
violated particles also direct the search of PSO towards the feasible region. According 
to the velocity updating formula, each particle will obtain updating information from 
its neighborhood best particle, so the corresponding particle would return to the feasi-
ble solution space immediately. 

4   Design Example 

To validate the effectiveness of the new proposed strategy and illustrate the applica-
tion of the concurrent design, the cylinder-piston assembly [2] is described. In this 
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example, the piston diameter is 50.8mm, the cylinder bore diameter is 50.856mm, and 
the clearance is 0.056 0.025± mm. The ranges of the principal machining tolerances 
for the piston and cylinder bore were the same as in the [2].  

In this problem, we have to consider totally 10 tolerances as follows. (1)The de-
sign tolerance parameters: 11dδ  for the piston and  21dδ  for the cylinder bore. Four 

stack-up conditions [2] (worst case, RSS, Spotts’ modified method and estimated 
mean shift criteria) are employed to formulate the corresponding constraints. (2)The 
machining tolerance parameters are: ijδ  where i=1,2 and j=1,2,3,4. Usually, the 

process tolerance for the final finishing operation is same as the design  
tolerance, i.e. 11 14dδ δ=  and 12 24dδ δ= . The machining tolerance constraints are 

formulated based on Equation 3. The manufacturing decision is the total  
machining cost and is determined by summing the machining cost-tolerance model 
as Equation 1 and Equation 2 subjecting to the constraints and ranges of the  
principal design and machining tolerances. The constant parameters are the same as 
in [2]. 

The proposed PSO algorithm with special constraints handling strategy was used to 
solve this problem. To validate its efficiency, this new approach was compared with 
GA in [2]. In the optimization process of HPSO, we set the population size pop-
size=80, the maximum iteration number itermax=600. These two parameters are the 
same as those in GA. The other parameters are set as the common used method. The 
inertial weight decreases from 0.9 to 0.4 linearly and the accelerated parameters 
c1=c2=2.  

 

Fig. 2. Variation of the minimum, maximum and average of the manufacturing costs with 
progress of the algorithm (Greenwood and Chase's unified, or estimated mean shift criteria) 
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Table 1. Optimal tolerances allocation using GA and PSO 

(a) Based on the worst case criteria 

GA PSO

Piston Cylinder Cost Time (s) Piston Cylinder Min Ave Max Time(s) 
0.0162 0.0162 0.0163 0.0163
0.0037 0.0038 0.0037 0.0037
0.0013 0.0012 0.0013 0.0013
0.0005 0.0005

66.85 350

0.0005 0.0005

66.74 66.74 66.74 83

(b) Based on the worst RSS criteria 

GA PSO

Piston Cylinder Cost Time (s) Piston Cylinder Min Ave Max Time(s) 
0.0161 0.0161 0.0161 0.0162
0.0039 0.0038 0.0039 0.0038
0.0011 0.0012 0.0011 0.0012
0.0007 0.0006

65.92 330

0.0007 0.0006

66.82 66.82 66.82 80

(c) Based on the worst Spotts' criteria 

GA PSO

Piston Cylinder Cost Time (s) Piston Cylinder Min Ave Max Time(s) 
0.0160 0.0159 0.0162 0.0162
0.0038 0.0038 0.0038 0.0038
0.0012 0.0012 0.0012 0.0012
0.0006 0.0005

66.23 330

0.0006 0.0006

65.93 65.93 65.93 78

(d) Based on the worst mean shift or Greenwood and Chase's unified criteria 

GA PSO

Piston Cylinder Cost Time (s) Piston Cylinder Min Ave Max Time(s) 
0.0162 0.0151 0.0161 0.0162
0.0037 0.0038 0.0039 0.0038
0.0012 0.0011 0.0011 0.0012
0.0006 0.0006

66.26 350

0.0006 0.0006

65.82 65.82 65.82 82

 
 
The optimal tolerance allocated using HPSO and GA based on the above four crite-

ria and the corresponding CPU time are listed in Table 1. The computational results 
clearly indicate that HPSO outperformed GA in the terms of solution quality as well 
as computational expense. In addition, HPSO is able to find the optimum in each trial. 
It is necessary to point out that one important merit of PSO algorithm is the high pre-
cision of the solutions. However, due to the limitation of display capacity of the ta-
bles, the entire data are rounded.  

The statistical results obtained under the Greenwood and Chase’s estimated mean 
shift criteria are demonstrated in Figure.2. Similar curves can be obtained for other 
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cases. Figure.2 reflects the general behavior about convergence of PSO algorithm. 
Sharply contrast with GA, the PSO algorithm has consistent convergence. The aver-
age and worst fitness are not fluctuant as in GA.  

5   Conclusion 

Tolerance assignment, especially the simultaneous assignment, is very important in 
product design and machining. However, the optimization task is usually difficult to 
tackle due to the nonlinear, multi-variable and high constrained characteristics. In 
view of the memory characteristics of PSO, a new constraints handling strategy suit 
for PSO is designed. This new strategy can adequately utilize the historical informa-
tion in PSO algorithm. The application on a cylinder-piston assembly example dem-
onstrates its high efficiency and effectiveness. However, when we attempt to extend 
the proposed approach to the constrained optimization with large number of complex 
equality constraints, subtle drawbacks emerged, as the constrained range is so narrow 
that the equality constraints are hard to satisfy. This problem reveals the new research 
direction, i.e., the effective equality constraint handling strategy desirable to develop 
for PSO based nonlinear programming. 

References 

1. Ngoi, B.K.A., Teck, O.C.: A tolerancing optimization method for product design. Vol. 13. 
International Journal of Advanced Manufacturing Technology (1997) 290-299 

2. Singh, P.K., Jain, P.K., Jain, S.C.: Simultaneous optimal selection of design and manufac-
tur-ing tolerances with different stack-up conditions using genetic algorithms. Vol.41. In-
terna-tional Journal of Production Research (2003) 2411-2429 

3. Gao, Y., Huang, M.: Optimal process tolerance balancing based on process capabilities. 
Vol.21.  International Journal of Advanced Manufacturing Technology (2003) 501–507 

4. Huang, M.F., Zhong, Y.R., Xu, Z.G.: Concurrent process tolerance design based on mini-
mum product manufacturing cost and quality loss. Vol.25. International Journal of Ad-
vanced Manufacturing Technology (2004) 714-722 

5. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE Interna-
tional Conference on Neutral Networks, Perth, Australia (1995) 1942-1948 

6. Shi, Y.H., Eberhart, R.C.: A modified particle swarm optimizer. In: Proceedings of IEEE 
Conference on Evolutionary Computation (1998) 69-73 

7. Noorul Hap, A., Sivakumar, K., Saravanan, R., Karthikeyan, K.: Particle swarm optimiza-
tion (PSO) algorithm for optimal machining allocation of clutch assembly. Vol.27. Interna-
tional Journal of Advanced Manufacturing Technology (2005) 865-869 

8. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufman, San Francisco 
(2001) 

9. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. Proceedings of IEEE Interna-
tional Conference on Neutral Networks, Perth, Australia (1995) 1942-1948 



A Method to Plan Group Tours with Joining and
Forking

Munenobu Nagata1, Yoshihiro Murata1, Naoki Shibata2, Keiichi Yasumoto1,
and Minoru Ito1

1 Nara Institute of Science Technology, Japan
2 Shiga University, Japan

Abstract. Group sightseeing has some advantages in terms of required
budget and so on. Some travel agents provide package tours of group
sightseeing, but participants have to follow a predetermined schedule
in tour, and thus there may be no plan which perfectly satisfies the
tourist’s expectation. In this paper, we formalize a problem to find group
sightseeing schedules for each user from given users’ preferences and time
restrictions corresponding to each destination. We also propose a Genetic
Algorithm-based algorithm to solve the problem. We implemented and
evaluated the method, and confirmed that our algorithm finds efficient
routes for group sightseeing.

1 Introduction

Personal navigation system guides its user through a mobile terminal such as
mobile phone or PDA. Until now, there has been a lot of researches on per-
sonal navigation system. For example, indoor route guidance system[2] and a
system which provides sightseeing information through mobile terminal[3] are
proposed. These personal navigation systems’ primary objective is to guide the
user towards single destination or to provide information, and they lack func-
tionality to guide the user through multiple destinations within limited time
period, which is common in sightseeing. We have already proposed a personal
navigation system P-Tour which guides user through multiple destinations. P-
Tour finds a route schedule to tour multiple sightseeing destinations considering
user’s preferences[9]. The previous P-Tour provides functionality to guide sin-
gle user only, but it is quite common that a group of members go sightseeing
together in order to save traveling cost by riding on the same vehicle. In this
paper, we propose an extension for P-Tour which finds a route schedule on group
sightseeing. On group sightseeing, the members would prefer (1) visiting each
destination with other members, (2) forking from other members and visiting
special destinations, (3) visiting each destination taking into account of all mem-
bers’ preferences, and (4) visiting each destination efficiently within limited time.
In order to achieve these objectives, we formalized the problem to find routes
for each user from user’s preferences and restrictions, designed and implemented
a GA-based algorithm to solve the problem. Then, we evaluated the method
through experiments, and confirmed that our algorithm finds efficient routes for
group sightseeing.

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 881–888, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Related Works

Genetic algorithm is a combinatorial optimization algorithm inspired from evo-
lution in nature, and it uses crossover, mutation, evaluation and selection oper-
ations. There are many applications of genetic algorithm including traditional
combinatorial optimization problems such as Knapsack problem[8], Traveling
Salesperson Problem [10], Set Coverage Problem[1], and so on. Besides them,
genetic algorithm can be used for solving engineering problems such as Job
Shop Scheduling Problems[7], and multiple processor scheduling problems[4].

We have also used Genetic Algorithm in our already proposed personal naviga-
tion system “P-Tour”[9]. P-Tour can plan schedule around multiple destinations
with many restrictions.

There are also problems to gain benefits of whole system (or all users) such
as group sightseeing schedule planning problem, explained below.

– Theme park problem[5]: A problem to reduce congestion and improve cus-
tomer’s satisfaction in theme park by adjusting presentation of information
and booking of each facilities.

– Delivery scheduling problem[6]: A problem to find the optimal delivery path
when there are many parcels with labels to deliver, and many vehicles with
limited maximum load. The objective is to minimize the total distance of
the path and improve customer’s satisfaction.

Since these existing studies do not handle forking and joining of passenger
groups, these methods are different from our study.

3 Route Scheduling for Group Sightseeing

In the proposed method, we find a sightseeing schedule in which members of
group sightseeing fork and join on the way, shown in Fig.1.

Finding an efficient group sightseeing schedule involves issues which does not
exist on scheduling for single person tour.

– Differences of preferences between members: Each member may have
different preferences for each destination. The system has to decide from:
(1) making members visit same destinations by ignoring part of members’

Departure
Point Arrive

Point

members

members

members

members

members

members members members

members

members
members

members

members
members

members

Fig. 1. Concept of group sightseeing schedule
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preferences, (2) making compromised route, or (3) making part of members
fork from other members.

– Differences between starting and ending points of the route of
each member: The system has to handle each member’s starting point
of the route. Besides it, part of members may start sightseeing later than
other members. Different time and locations of ending points should also be
considered.

4 Definition of the Problem

In this section, we first define the problem to find an efficient schedule for group
sightseeing. On group sightseeing, the members usually prefer visiting each des-
tination with other members. But, the members have different conditions regard-
ing to starting location, returning location, and preference of each destination.
The objective of the problem is to maximize users’ satisfaction which is eval-
uated by summing up each member’s satisfaction value which increases when
visiting each destination with other members, and when preferred destinations
are included in the route.

4.1 Input

The input of the problem is shown below.

– Map data, given as a directional graph G = (V, E). Each edge is assigned a
length. Minimum distance between two given vertices v1 and v2 is referred
as dist(v1, v2).

– Destination data D = {d1, ...}, each element is given as tuple of following
information.
1. Name of the destination(e.g. Horyu-ji Temple).
2. Corresponding vertex vh ∈ V .
3. rtij : The latest arrival time for member ui at destination dj . (for ex-

ample, if rtij = 12:00, member ui has to reach destination dj before
12:00).

4. durij : Restriction of staying time for member ui at destination dj .
5. preij : Preference value for member ui at destination dj .

– Participant data: each member has following five parameters.
• pdis ∈ D: Starting point of member ui.
• pdig ∈ D: Returning point of member ui.
• ptis, ptig: Time restriction for member ui at start / returning points.
• speedi: Speed of user ui.

4.2 Notations

The group sightseeing schedule is composed of schedules of each member. The
schedule for member ui is denoted as si = (Di, Stayi), where Di is a list of
destinations visited by member ui, defined as Di = 〈d′i1, d′i2, ..., d′ij , ..., d′i|Di|〉,
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and d′ij is member ui’s j-th destination. Stayi is the list of stay time for member
ui at each destination, defined as Stayi = 〈stayi1, stayi2, ..., stayi|Di|〉, and stayij

is the stay time for which member ui stays at destination dj . The arrival time
of member ui at destination d′ij is denoted as tij , and calculated as follows :

ti(j+1) = tij + stayij +
dist(d′

ij,d
′
i(j+1))

speedi
. Usually, stayij is equal to durij , but if

members have to join at the destination, and some members arrives earlier, other
members have to wait at the destination.

4.3 Evaluation Function

Evaluation function f is defined as follows:

f(S) =
|U|∑
i=1

{α

|Di|∑
j=1

preij · timeok(si, dij) · group(S, i, j)

−
|Di|−1∑

j=1

(
β · dist(dij , di(j+1)))

+γ · commonpath(S, i, j, j + 1)) − δ · timegoal(Si, pig)} (1)

α, β, γ and δ are constant values.
Function timeok(si, d

′
ij) returns 1 iff destination d′ij is included in route si

and both restrictions rtij and durij are satisfied.
Function group(S, i, j) returns the number of members who visit destination

dij together on the route S. By this term, evaluation value increases when many
members visit a destination together.

Function commonpath(S, i, j, j+1) returns the number of members who move
from dij to di(j+1) together on the route S. By this term, evaluation value
increases when many members move together.

Function timegoal(si, pig) returns an absolute value of difference between ar-
rival time and expected arrival time at destination si. Evaluation value decreases
when they arrive too early or too late.

the size of touring group between destinations.

4.4 Algorithm

In this section, we describe the GA-based scheduling algorithm for group tours.
Fig. 2 shows the routes of two members represented as a list of genes. One

chromosome consists of lists of genes for all members. Each gene in the list rep-
resents destination, and the traveling order is represented by the path from left
side to right side of the list, in the figure. Genes P11, . . . , P14 represent destina-
tions in the route for member u1, and genes P21, . . . , P24 represent destinations
in the route of member u2.

Pij is genes called normal gene. R11, R12, R21, R22, R23 are called reference
genes. Reference genes do not represent destinations directly, but points the
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1 12 R11 R12 R13 13 1

21 22 23 R21 24 R22

u1

u2

Fig. 2. Chromosome

1 12 R11 R12 R13 13 1

21 22 23 R21 24 R22

Calculate of arrival time and departure time

u1

u2

Fig. 3. Calculation of
arrival time and depar-
ture time

1 12 R11 R12 R13 13 1

21 22 23 R21 24 R22

Be able to refer

u1

u2

Fig. 4. Search for gene
that can be referred

1 12 R11 R12 R13 13 1

21 22 23 R21 24 R22

Refer to mutual

u1

u2

Fig. 5. Mutual refer-
ence

destinations visited by another member. Reference genes have three elements:
referred member, unique value, hidden gene.

Decoding of reference genes is performed as shown in Fig.3. At first, arrival
times and departure times of destinations represented by normal genes are cal-
culated until reference gene appears.

Next, referred gene is searched. Referred gene represents the destination such
that the referring member arrives at the destination represented by referred gene
before referred member (here, RA1 and RB1).

If destination represented by referred gene is included in referring members’
route, the hidden gene is activated. Hidden gene represents another destination
called hidden destination.

Reference gene may refer to another reference gene, and references between
genes can be cyclic(Fig.5). In this case, the unique values of reference genes are
compared each other. The hidden gene of the reference gene with the largest
unique value is activated.

GA operations are composed of generation of initial population, evaluation,
selection, crossover, and mutation. Let M denotes the number of members, N
denotes population size, and I denotes the number of generations.

1. Generation of initial population: N chromosomes are randomly generated as
initial population. Each chromosome represents candidate solution.

2. Evaluation: The evaluation values are calculated with evaluation function
described in section 3.3.

3. Selection: We use elite strategy and tournament selection.
4. Crossover: We use two point crossover. If there are redundant destinations,

they are deleted.
5. Mutation: we use random insertion, deletion, exchange, change of reference

and conversion.
6. One GA generation is step 2 to 5, and these steps are repeated until a good

solution is obtained.

5 Evaluation Experiments

To evaluate the proposed method, we conducted experiments to evaluate the
following two points.
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– Quality of obtained schedules
– Optimality of obtained schedules

In the experiments, we used the map of Nara prefecture (digital map 25000
issued by Geographical Survey Institute of Japan). We executed the proposed
algorithm on an ordinary PC with Pentium M 2.0GHz, 512M Memory, Windows
XP pro., Java 1.4.2. We assumed that tourists move by car and their speed is
40 km/h.

Also, we set parameter values from preliminary test as follows: N = 1000,
I = 200, W = 30, L = 20000, α = 50, β = 0.015, γ = 15 and δ = 10.

5.1 Quality of Obtained Schedules

We input data of 3 members shown in Table 1, 8 kinds of destination data and
evaluated the obtained schedule. Details of the values are as follows: if a user
wants to visit one of the destinations, its preference value is set to 5, and if not,
it is set to -10. Stay time is 60 minutes for all destinations.

Table 1. Data for 30 destinations

requested by all members none(∅)
Yakushi-ji temple(A1) NAIST(E1)

Todai-ji temple(A2) Taima temple(E2)

Horyu-ji temple(A3) Kongou shrine(E3)

Tamaki shrine(E4)

Akisino temple(E5)

Suijin tennoryou(E6)

requested by only u1 requested by only u2 requested by only u3

Kasuga-taisya shrine(B1) Zinmu tennoryou(C1) Syoumu tennoryou(D1)

Ishigami shrine(B2) Hase temple(C2) Torinoyama kofun(D2)

Tyougaku temple(B3) Dansan shrine(C3) Keikou tennoryou(D3)

Houzan temple(B4) Ishibutai kofun(C4) Sigi-moutain Nodoka villeage(D4)

requested by u1, u2 requested by u1, u3 requested by u2, u3

Mesuri-moutain kofun(F1) Kamotoba shrine(G1) Tennnouzan kofun(H1)

Yashikiyama kofun(F2) Oogami shrine(G2) Ruins of Fujiwarakyu (H2)

Oono temple(F3) Nukataryou(G3) Suidei kofun(H3)

Next, we evaluate paths obtained by our method. Calculation time for those
paths is about 1.3 minutes total. The obtained schedule is shown in Figure 6.
Figure 7 is all members’ paths overlapped.

Now, we give some explanations regarding to the obtained schedule. Member
u1 departures NAIST(E1) at 8:34, and tours 3 destinations (B3, G3, B1) alone
until 11:53. The member sets high preference values for these three destinations.
Member u2 departures Hozanji (B4), joins with u3, and they tour Tennozan
Kofun (H1) together. Member u2 waits from 9:43 to 11:09 for member u3 before
joining. After that, u1 joins them at Todaiji(A2), and tours 3 destinations (A2,
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Fig. 6. A time table of obtained schedule
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Fig. 7. An obtained path of group

Table 2. Comparison of obtained schedules with the optimal solutions

Number of destinations Number of combinations computation time computation time error rate

(search space) proposed method full search (%)

3 (21)3 about 10(sec.) about 2(min.) 0%
4 (142)3 about 13(sec.) about 18(hour) 0%
5 (12336)3 - - -

A1, A3) together. All three members set high preference values for these 3 des-
tinations. Also, member u2 and u3 have to wait from 11:38 to 11:45 for member
u1 to join. u1 forks after touring these 3 destinations, and arrives at his final des-
tination. After that, member u2 and u3 tour Shigi Nodoka village(D4) together.
Then, member u2 and u3 splits. Member u2 goes to his goal, and member u3
tours Torinoyama Kofun(D2) before reaching his final destination(Hasedera C2).
Member u3 sets a high preference value for Torinoyama Kofun (D2).

As shown above, our method can obtain schedule with joining and forking, and
this schedule includes destinations with high preference values for each member.

5.2 Optimality of Obtained Schedules

To evaluate optimality of the obtained schedule by the proposed method, we
compared the obtained schedules with the optimal schedules obtained by full
search. We set the parameters as follows: the number of members is 3, the number
of destination is 3 or 4. The results are shown in Table 2 These results are average
values of 10 trials.

In the cases of both 3 and 4 destinations, our method obtains the optimal sched-
ule. Also, our method was a lot faster than the full search algorithm. Since the cal-
culation time of the full search algorithm grows exponentially when the number of
destinations increases, we could not observe the case above 4 destinations.

Also, In order to evaluate effect of introducing reference genes, we compared
proposed method with and without reference genes.
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In the case without reference genes, our method with reference genes achieved
42.5% to 76.5% better fitness values than one without reference genes.

In the case without reference genes, members can join only if their schedules
happen to include the same point at the same time. Since members has different
starting points, it can find only few schedules with joining.

6 Conclusion

We proposed a method to find a schedule for group tour with different route for
each member. Each member of group sets own preference and restrictions. In
this paper, we formalized the scheduling problem on group sightseeing. And to
solve this problem, we designed scheduling algorithm based on GA. Moreover,
we evaluated the method through experiments by using the map data on the
northern part of Nara Prefecture, and confirmed that our algorithm finds efficient
routes for group sightseeing.

We are planning to improve the search efficiency by introducing the local
search method.

References

1. Al-Sultan, K.S., Hussain, M.F., Nizami, J.S., “A Genetic Algorithm for the Set
Covering Problem”, Journal of the Oper.Res. Society, Vol. 47, pp. 702–709, 1996.
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Abstract. Considering fault diagnosis is a small sample problem in real chemical 
process industry, Support Vector Machines (SVM) is adopted as classifier to dis-
criminate chemical process steady faults. To improve fault diagnosis performance, 
it is essential to reduce the dimensionality of collected data. This paper presents a 
modified discrete binary ant colony optimization (MDBACO) to optimize discrete 
combinational problems, and then further combines it with SVM to accomplish-
ing fault feature selection. The tests of optimizing benchmark functions show the 
developed MDBACO is valid and effective. The fault diagnosis results and com-
parisons of simulations based on Tennessee Eastman Process (TEP) prove the fea-
ture selection method based on MDBACO and SVM can find the essential fault 
variables quickly and exactly, and greatly increases the fault diagnosis correct 
rates as irrelevant variables are eliminated properly. 

1   Introduction 

It is a challenge to apply fault diagnosis to modern complex and large-scaled chemical 
process as large amounts of variables with noises need be monitored and fault data are 
deficient in the really productions. To improve the fault diagnosis performance, it is 
essential to preprocess the sampled data for reducing data dimension. There have been 
several approaches to preprocess data developed, applied and widely researched in 
fault diagnosis applications, such as Principal Component Analysis (PCA) [1] and 
Kernel PCA [2][3], which are well-known methods for feature extraction. But the 
extracted information by feature extraction methods is not related to the objective of 
fault diagnosis exclusively. So the number of selected components maybe is still large 
to contain enough information for diagnosing. Sometimes, even worse, the extracted 
data are not exactly acceptable for fault diagnosis because the resulting lower dimen-
sional space may contain little of the required faults information, which makes the 
feature extraction invalid for fault diagnosis.  

To make up for this shortage, feature selection method was proposed as an alterna-
tive to preprocess the collected data [4], [5], [6]. Feature selection is operated to di-
rectly select the essential fault variables and only the selected variables will be  
retained and used as inputs for fault diagnosis. As the irrelative variables are all re-
moved, the real-time capability and correct rates of fault diagnosis will be greatly 
improved [7].  

In this paper, we use SVM as classifier to diagnose the chemical process  
steady faults, owing to its remarkable characteristics such as good generalization 
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performance, the absence of local minimal, and fit for small samples [8], [9], [10]. In 
order to find the fault feature variables effectively and properly, a modified discrete 
binary ant colony optimization algorithm is proposed and combined with SVM to 
realize fault feature selection in the paper.  

The reminder of the paper is organized as follows. Section 2 presents the 
MDBACO algorithm and feature selection method based on MDBACO combined 
with SVM in detail. The numerical experiments are conducted in Section 3. Section 4 
describes the simulations of MDBACO-base feature selection and fault diagnosis. The 
comparisons with other methods are also presented in this section. Section 5 con-
cludes the results of simulations. 

2   Theory 

2.1   Modified Discrete Binary Ant Colony Optimization  

In the last decade, ACO algorithm [11], [12], [13] has been recognized that not only 
routing problems as the traveling salesperson problem, but also any other type of 
combinatorial optimization problems can be encoded as “best path” problems and 
solved using the ant colony metaphor. In this paper, we adjusted the classical ACO to 
tackle the discrete binary optimization problems. In the proposed MDBACO algo-
rithm, all bit sequences are represented as graph-ere nodes [14], with the edges be-
tween them denoting the choice of the bit, that is, a bit “1” means the corresponding 
bit is selected by the ant and a bit “0” represents this bit is not selected by the ant.  
Then the discrete binary optimization problem is transformed into an ant traversal 
through the graph. The selections of all bits by each ant are collected as a solution and 
coded as a binary sequence.  

The main steps of MDBACO are as follows: 

1. Initializing MDBACO algorithm parameters, such as the population of ant 
colony, a predetermined number of generations and initial pheromone. 

2. Each ant traveling from a random beginning bit and visiting all bits to build 
the solution completely.  
Firstly, a random number rand is generated and compared with the exploiting 
probability parameter Pe. If rand is greater than or equal to the parameter Pe, 
whether the bit j is selected or not by ant i is decided by the pheromone trails, 
that is, the selection of bit i is decided according to the two probability pa-
rameters ,0jτ  and ,1jτ . 
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where c is another random number and 0η is a constant, for instance, 0η =0.5. 
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3. Calculating the fitness of each ant according to its solution after all ant agents 
completing building solutions. 

4. Terminating if termination criteria are reached, else going on the next step. 
5. Updating the pheromone intensity of each feature as: 

 ,0 ,0(1 )i i k Qτ ρ τ ρ= − + ⋅ ⋅  

,1 ,1(1 )i i k Qτ ρ τ ρ= − + ⋅ ⋅ . 
(3) 

where ρ is the evaporation rate to avoid unlimited accumulation of phero-

mone, k and Q are both constants.  
6. Updating the global optimal solution and enhancing the pheromones intensi-

ties of its feature selections through ,0
k
iτΔ and ,1

k
iτΔ  as: 

        ,0 ,0(1 )i i k Qτ ρ τ ρ= − + ⋅ ⋅  if bit i not selected by optimal ant 

       ,1 ,1(1 )i i k Qτ ρ τ ρ= − + ⋅ ⋅  if bit i selected by optimal ant 
(4) 

7. Going to the step 2. 

2.3   Fitness Function 

To guide ACO algorithm to search feature correctly, a pre-defined fitness function is 
applied to evaluate the fitness. To remove the irrelative variables, the fitness function 
is defined as Eq. (5) 

all

c
id m

m
pidfxf ×−= )()( . (5) 

where f(xid) means the modified fitness function, f(id) represents the correct fault 
classification rate, mc is the number of variables chosen by the ant while mall is the 
dimension of data samples, p is an constant.  

2.4   Feature Selection Based on MDBACO 

In the proposed MDBACO-based feature selection method, features (i.e., variables of 
collected data samples) are represented as a binary sequence where a bit “1” denotes 
the corresponding feature is selected and a bit “0” means its corresponding feature is 
eliminated. The features selected by ants are taken as the input of SVM for discrimi-
nating faults, and then the correct classification rates are supplied to evaluate the 
fitness of each ant agent.  

The process of feature selection based on MDBACO is described as follows: 

1. MDBACO algorithm parameters initialization; 
2. Building solutions completely according to step 2 of MDBACO algorithm; 
3. Using the features selected by each ant to evaluate its fitness by the pre-

defined fitness function; 
4. Terminating if termination criteria are achieved, or going on the next step; 
5. Updating the pheromone intensity and the optimal in accordance with the step 

5 and step 6 of MDBACO algorithm; 
6. Going to the step 2.  
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3   Numerical Experiment 

In our experimental studies, a set of 6 benchmark optimization functions was em-
ployed to validate the feasibility of the proposed MDBACO algorithm and listed as 
follows: 

2 2 2
1 1 2 1100( ) (1 )         2.048 2.048iF x x x x= − + − − ≤ ≤ . (6) 

2 2 2
2 1 2 1 1 2 1 2 2

2 2 2
1 2 1 1 2 1 2 2

[1 1) (19 14 3 14 6 3 )]

      [30 (2 3 ) (18 32 12 48 36 27 )]    2 2i

F x x x x x x x x

x x x x x x x x x

= + + + ⋅ − + − + +

⋅ + − ⋅ − + + − + − ≤ ≤
. (7) 

2 2 0.25 2 2 2 0.1
3 1 2 1 2( ) [sin (50( ) ) 1.0]     100 100iF x x x x x= + + + − < < . (8) 
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2
1 2 2 2

[ 13 ((5 ) 2) ]

       [ 29 (( 1) 14) ]     10 10i

F x x x x

x x x x x

= − + + − ⋅ − ⋅

+ − + + + ⋅ − ⋅ − ≤ ≤
. (11) 

where F5 has the global maximum, others have the global minimum.  
To evaluate the performance of the proposed MDBACO algorithm, classical binary 

GA and classical discrete particle swarm optimization (DPSO) algorithm were used 
for comparisons. The parameters set of GA was: the mutation probability Pm=0.05, 
crossover probability Pc=0.7. The maximum velocity Vmax, minimum velocity Vmin, c1 
and c2 for discrete PSO were set at +8, -8, 2.0 and 2.0, respectively. A setting of ex-
ploiting probability Pe=0.1, 0.2 and 0.4 are adopted in MDBACO. All experiments  
 

Table 1. The experimental results of GA, DPSO, MDBACO with Pe=0.1,0.2 and 0.4 on 6 
benchmark functions 

 F1 F2 F3 F4 F5 F6 
Global optimal 0 3 0 0 1 0 

Vw 7.49 105.44 0.004 63.09 0.8824 72.89 GA 
Lt 20 20 20 20 20 20 
Vw 0.25 3.000026 0.087 10 0.9903 0.0013 

DPSO 
Lt 16 8 1 5 12 12 
Vw 0 3 0 0.279 1 0.364 MDBACO 

(Pe=0.1) Lt 0 0 0 2 0 3 
Vw 0 3 0 0 1 0 MDBACO 

(Pe=0.2) Lt 0 0 0 0 0 0 
Vw 0 3 0 2.8E-4 1 0.0072 MDBACO 

(Pe=0.4) Lt 0 0 0 7 0 6 
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were repeated for 20 runs, a fixed number of maximum generations 2500 was applied 
to all algorithms. The experimental results (i.e., the worst value Vw and the times of 
sticking in the local optima Lt,) are list in Table1. From Table 1, MDBACO 
outperformed the classical GA and discrete PSO algorithm for all the 6 benchmark 
functions. And MDBACO can escape from the local optimal effectively with the 
exploiting operator, but a improper setting of exploiting probability also spoil 
MDBACO search ability seriously. The search performance of all algorithms tested 
here can be ordered as MDBACO>DPSO>GA. 

4   Fault Diagnosis Simulation 

4.1   Tennessee Eastman Process 

The Tennessee Eastman is a well-known benchmark chemical process, which was 
firstly introduced by Downs and Vogel [15]. The TEP provides a realistic industrial 
process for evaluating process control and monitoring methods. Now, the TEP has 
been widely used for the process monitoring community as a source of data for com-
paring various approaches [16]. The TEP simulator, coded in Matlab, was used to 
generate normal data and fault data. The 3 faults researched in this paper are those 
with stable operating conditions before and after the faults occur, called Fault1, Fault2 
and Fault3 below. To make the results comparable, the data used for experiments are 
given at http://brahms.scs.uiuc.edu.  

4.2   Fault Feature Selection 

In the fault 1 case, all variables remains steady except the 51-th variable induced a 
change when the fault occurred. So the fault feature variable of fault1 is just variable 
51. Fault2 involves a step changes in variable 1and variable 44, and the other vari-
ables are all bothered. The change of variable 1 and variable 44 are so remarkable that 
any one of them can be taken as fault feature. Variable 45 has a noticeable step 
change when the fault3 is introduced into the process. And affected by it, other 34 
variables deviate significantly from their normal operation behavior and go aback to 
normal values later by the control of closed loop. In our experiments, 30 and 60 data 
samples were randomly selected from 3 fault simulations and composed the training 
and validation data set for running feature selection respectively. 

To evaluate and compare the developed algorithm, fault feature selection of three 
faults were iterated for 20 runs using MDBACO algorithm with Pe=0.2, DPSO algo-
rithm and GA. The maximum iteration was set at 50 times. The other parameters of 
all algorithms adopted the same settings used in numerical experiment.  

The features selected of 3 faults by all algorithms are shown in Fig1-3. From  
Fig.1-3, the proposed MDBACO selected the fault features of each fault correctly and 
properly. The performance of DPSO algorithm was better than GA, but both of them 
did not select the features exactly and were apt to be trapped by local minima and 
then stagnated. It is obvious that MDBACO algorithm outperforms DPSO and GA for 
feature selection. 
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Fig. 1.  Fault features of fault 1 selected by MDBACO, DPSO and GA 
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Fig. 2. Fault features of fault 2 selected by MDBACO, DPSO and GA 
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Fig. 3. Fault features of fault 3 selected by MDBACO, DPSO and GA 
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4.3   Fault Diagnosis Base on SVM with Fault Feature Selection 

To estimate the performance of fault diagnosis method based on SVM and 
MDBACO-based feature selection (MFS), we ran the fault diagnosis simulations with 
all the test data given by http://brahms.scs.uiuc.edu. Table 2 presents the results of 
fault diagnosis. To give a comparison, fault diagnosis methods based on SVM with 
the all collected data, data extracted by PCA and KPCA were tested with the same 
data set and the results of these three fault diagnosis methods are given the Table 2 as 
well.   

Table 2. The correct diagnosing rates of SVM with all variables, PCA, KPCA and feature 
selection based on MDBACO 

 All variables PCA  KPCA MFS 
Fault 1 61.3% 68.2% 74.5% 100% 
Fault 2 99.4% 99.5% 99.9% 100% 
Fault 3 51.8% 59.7% 71.2% 100% 

5   Results and Discussion  

In this paper, a modified discrete binary ant colony optimization algorithm has been 
proposed for optimizing the discrete combinational problems. A set of 6 benchmark 
functions has been used to test the proposed algorithm. The experimental results 
prove the MDBACO algorithm works better than the classical GA and discrete PSO.  

Based on the developed MDBACO algorithm, we further combined it with SVM to 
select fault features for diagnosing the steady faults in chemical process. The simula-
tion results show the developed MDBACO algorithm can find the essential fault fea-
ture exactly and MDBACO-based feature selection method greatly improves the fault 
diagnosis performance of SVM. Considering SVM is suitable for the limited data 
sample applications and MDBACO-based feature selection method can select fault 
feature quickly and properly, all of these excellent characteristics make the SVM 
combined with MDBACO-based feature selection fault diagnosis method noticeable 
and attractive in the chemical process fault diagnosis applications. 
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Abstract. This paper proposed an automatic recognition system of
shipping container identifiers using fuzzy-based noise removal method
and ART2-based self-organizing supervised learning algorithm. Gener-
ally, identifiers of a shipping container have a feature that the color of
characters is black or white. Considering such a feature, in a container
image, all areas excepting areas with black or white colors are regarded
as noises, and areas of identifiers and noises are discriminated by using a
fuzzy-based noise detection method. Noise areas are replaced with a mean
pixel value of the whole image and areas of identifiers are extracted by
applying the edge detection by Sobel masking operation and the vertical
and horizontal block extraction in turn to the noise-removed image. Ex-
tracted areas are binarized by using the iteration binarization algorithm,
and individual identifiers are extracted by applying 8-directional contour
tracking method. This paper proposed an ART2-based self-organizing
supervised learning algorithm for the identifier recognition, which cre-
ates nodes of the hidden layer by applying ART2 between the input and
the hidden layers and improves the performance of learning by applying
generalized delta learning and Delta-bar-Delta algorithm between the
hidden and the output layers. Experiments using many images of ship-
ping containers showed that the proposed identifier extraction method
and the ART2-based self-organizing supervised learning algorithm are
more improved compared with the methods previously proposed.

1 Introduction

Identifiers of shipping containers are given in accordance with the terms of ISO
standard, which consist of 4 code groups such as shipping company codes, con-
tainer serial codes, check digit codes and container type codes [1][2]. And, only
the first 11 identifier characters are prescribed in the ISO standard and shipping
containers are able to be discriminated by automatically recognizing the first 11
characters. But, other features such as the foreground and background colors,

T.-D. Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 897–904, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the font type and the size of container identifiers, etc., vary from one container
to another since the ISO standard doesn’t prescribes other features except code
type [2][3]. Since identifiers are printed on the surface of containers, shapes of
identifiers are often impaired by the environmental factors during the trans-
portation by sea. The damage to a container surface may lead to a distortion
of shapes of identifier characters in a container image. So, the variations in the
feature of container identifiers and noises make it quite difficult the extraction
and recognition of identifiers using simple information like color values [4].

Generally, container identifiers have another feature that the color of charac-
ters is black or white. Considering such a feature, in a container image, all areas
excepting areas with black or white colors are regarded as noises, and areas of
identifiers and noises are discriminated by using a fuzzy-based noise detection
method. Noise areas are replaced with a mean pixel value of the whole image
area, and areas of identifiers are extracted and binarized by applying the edge
detection by Sobel masking operation and the vertical and horizontal block ex-
traction to the conversed image one by one. In the extracted areas, the color of
identifiers is converted to black and one of background to white, and individual
identifiers are extracted by using 8-directional contour tacking algorithm. This
paper proposed an ART2-based self-organizing supervised learning algorithm for
the identifier recognition, which creates nodes of the hidden layer by applying
ART2 between the input layer and the hidden one and improves performance
of learning by applying generalized delta learning and the Delta-bar-Delta algo-
rithm [5]. Experiments using many images of shipping containers showed that the
proposed identifier extraction method and the ART2-based supervised learning
algorithm is more improved compared with the methods proposed previously.

2 A Proposed Container Identifier Recognition Method

2.1 Extraction of Container Identifier Areas

This paper detects edges of identifiers by applying Sobel masking operation to
a grayscale image of the original image and extracts areas of identifiers using
information on edges. Sobel masking operation is sensitive to noises so that it
detects noises by an external light as edges. To remove an effect of noises in the
edge detection, first, this paper detects noise pixels by using a fuzzy method
and replaces the pixels with a mean gray value. Next, Applying Sobel masking
to the noise-removed image, areas of container identifiers are separated from
background areas.

2.2 Fuzzy-Based Noise Detection

To remove noises by an external light, this paper convert an container image to
a grayscale one and apply the membership function like Fig. 1 to each pixel of
the grayscale image, deciding whether the pixel is a noise or not. In Fig. 1, C
and E are categories being likely to belong to an area of identifiers, and D is the
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Fig. 1. Membership function(G) for gray-level pixels

Table 1. Criterion to distinguish pixels of noise and non-noise

pixel of non-noise u(G) < 0.42
pixel of noise u(G) ≥ 0.42

category being likely to be a noise. The criterion to distinguish pixels of noise
and non-noise using the degree of membership in this paper is given in Table 1.

To observe the effectiveness of the fuzzy-based noise detection, results of edge
detection by Sobel masking were compared between the original image and the
noise-removed image by the proposed method. Fig. 2(a) is the original container
image, and Fig. 2(b) is the output image generated by applying only Sobel
masking to a grayscale image of Fig. 2(a). Fig. 2(c) is results of edge detec-
tion obtained by applying the fuzzy-based noise removal and Sobel masking to
Fig.2(a). First, the fuzzy-based noise detection method is applied to a grayscale
image of the original image and pixels detected as noises are replaced with a
mean gray value. Next, edges of container identifiers are detected by applying
Sobel masking to the noise-removed image. As shown in Fig. 2(c), noise removal
by the proposed fuzzy method generates more efficient results in the extraction
of areas of identifiers.

Fig. 2. (a) An original container image, (b) Result of edge detection by only Sobel
masking, (c) Result of edge detection by fuzzy-based noise-removal and Sobel masking

2.3 Binarization of Container Identifier Areas

Currently, the iterative binarization algorithm is mainly used in the preprocess-
ing of pattern recognition. The iterative binarization algorithm, first, roughly
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determines an initial threshold, divides an input image to two pixel groups us-
ing the threshold, calculates a mean value for each pixel group, and sets the
arithmetic mean of two mean values to a new threshold. And, the algorithm
repeats the above processing until there is no variation of threshold value and
sets the last value to the threshold value for binarization operation. In the case
of a noise-removed container image, since the difference of intensity between the
background and the identifiers is great, the iterative algorithm is able to provide
a good threshold value.

2.4 Extraction of Individual Identifiers

This paper extracts individual identifiers by applying 8-directional contour track-
ing method[6] to binarized areas of container identifiers. In the extraction pro-
cess, the extraction of individual identifiers is successful in the case that the
background color is a general color except white one like Fig. 3, and on the
other hand, the extraction is failed in the case with white background color as
shown in Fig. 4(a).

Fig. 3. Identifier area with a general color and successful results of edge extraction

Fig. 4. (a) Identifier area with white color and failed results of edge extraction, (b)
Reversed binarized area of Fig. 4(a) and successful result of edge detection

In the binarization process, background pixels of a bright intensity are con-
verted to black and identifier pixels of a dark intensity are converted to white.
Since the contour tracking method detects edges of an area with black color, it
cannot detect edges of identifiers from target areas with white background. This
paper, for identifier areas with white background, reverses a result of binariza-
tion process. That is, background pixels are converted to white and identifier
pixels to black. Fig. 4(b) shows that the pixel reversal lead to a success of edge
detection in an identifier area with white background presented in Fig. 4(a).

The procedure of extracting individual identifiers using 8-directional contour
tracking method is as follow: P r

i and P c
i are pixels of horizontal and vertical
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directions being currently scanned in the identifier area, respectively, and P r+1
i

and P c+1
i are pixels of the two directions being next scanned in the identifier

area. And P r
s and P c

s are pixels of horizontal and vertical directions in the first
mask of 8-directional contour tracking.

Step 1. Initialize with Eq. (1) in order to apply 8-neighborned contour tracking
algorithm to the identifier area, and find the pixel by applying tracking mask as
shown in Fig. 5.

P r−1
i = P r

i , P c−1
i = P c

i (1)

Step 2. When a black pixel is found after applying the tracking mask in the
current pixel, calculate the value of P r

i and P c
i as shown in Eq. (2)

P r
i =

7∑
i=0

P r+1
i , P c

i =
7∑

i=0

P c+1
i (2)

Step 3. For the 8 tracking masks, apply Eq. (3) to decide the next tracking
mask.

P r
i = P r+1

i and P c
i = P c+1

i then rotates counter-clockwise. (3)

Step 4. If P r
i and P c

i return to P r
s and P c

s , stop the contour tracking. Oth-
erwise, go to step 1. That is, if |P r

i − P r
s | ≤ 1 and |P c

i − P c
s | ≤ 1 then exit the

loop, else go to step 1.

Fig. 5. 8-diectional contour tracking masks

Fig.3 and Fig. 4(b) shows extraction results of individual identifiers by using
8-directional contour tracking method.

2.5 Recognition of Container Identifiers Using ART2-Based
Self-organizing Supervised Leaning Algorithm

This paper proposed an ART2-based self-organizing supervised learning algo-
rithm for the recognition of container identifiers. First, a new leaning structure
is applied between the input and the middle layers, which applies ART2 algo-
rithm between the two layers, select a node with maximum output value as a
winner node, and transmits the selected node to the middle layer. Next, general-
ized Delta learning algorithm and Delta-bar-Delta algorithm are applied in the
learning between the middle and the output layers, improving the performance
of learning. The proposed learning algorithm is summarized as follows:
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1. The connection structure between the input and the middle layers is like
ART2 algorithm and the output layer of ART2 becomes the middle layer of the
proposed learning algorithm.

2. Nodes of the middle layer mean individual classes. Therefore, while the
proposed algorithm has a fully-connected structure on the whole, it takes the
winner node method that compares target vectors and output vectors and back-
propagates a representative class and the connection weight.

3. The proposed algorithm performs the supervised learning by applying gen-
eralized Delta learning as the learning structure between the middle and the
output layers.

4. The proposed algorithm improves the performance of learning by applying
Delta-bar-Delta algorithm to generalized Delta learning for the dynamical ad-
justment of a learning rate. When defining the case that the difference between
the target vector and the output vector is less than 0.1 as an accuracy and the
opposite case as an inaccuracy, Delta-bar-Delta algorithm is applied restrictively
in the case that the number of accuracies is greater than or equal to inaccura-
cies with respect to total patterns. This prevents no progress or an oscillation
of learning keeping almost constant level of error by early premature situation
incurred by competition in the learning process.

The detailed description of ART2-based self-organizing supervised learning
algorithm is like Fig. 6.

3 Performance Evaluation

The proposed algorithm was implemented by using Microsoft Visual C++ 6.0 on
the IBM-compatible Pentium-IV PC for performance evaluation. 79 container
images with size of 640x480 were used in the experiments for extraction and
recognition of container identifiers. In the extraction of identifier areas, the pre-
viously proposed method fails to extract in images containing noises vertically
appearing by an external light and the rugged surface shape of containers. On
the other hand, the proposed extraction method detects and removes noises by
using a fuzzy method, improving the success rate of extraction compared with
the previously proposed. The comparison of the success rate of identifier area
extraction between the proposed in this paper and the previously proposed is
like Table 2.

Table 2. Comparison of the success rate of identifier area extraction

Previously-proposed method Proposed method in this paper
Success rate 55/79(69.6% ) 72/79(91.1% )

For the experiment of identifier recognition, applying 8-directional contour
tracking method to 72 identifier areas extracted by the proposed extraction al-
gorithm, 284 alphabetic characters and 500 numeric characters were extracted.
This paper performed the recognition experiments with the FCM-based RBF
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Fig. 6. ART2-based self-organizing supervised learning algorithm

Table 3. Evaluation of recognition performance

FCM-based RBF
network

ART2-base self-organizing
supervised learning algorithm

# of Epoch # of success # of Epoch # of success
Alphabetic characters(284) 236 240 (84.5% ) 221 280 (98.5% )
Numeric characters(500) 161 422 (84.4% ) 151 487 (97.4% )

network and the proposed ART2-based self-organizing supervised learning algo-
rithm using extracted identifier characters and compared the recognition perfor-
mance in Table 3.

In the experiment of identifier recognition, the learning rate and the momen-
tum were set to 0.4 and 0.3 for the two recognition algorithms, respectively.
And, for ART2 algorithm generating nodes of the middle layer in the proposed
algorithm, vigilance variables of two character types were set to 0.4.

When comparing the number of nodes of the middle layer between the two
algorithms, The proposed algorithm creates more nodes than FCM-based RBF
network, but via the comparison of the number of Epochs, it is known that the
number of iteration of learning in the proposed algorithm is less than
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FCM-based RBF network. That is, the proposed algorithm improves the per-
formance of learning. Also, Comparing the success rate of recognition, it is able
to be known that the proposed algorithm improves the performance of recog-
nition compared with FCM-based RBF network. Failures of recognition in the
proposed algorithm were incurred by the damage of shapes of individual identi-
fiers in original images and the information loss of identifiers in the binarization
process.

4 Conclusions

This paper proposed an automatic recognition system of shipping container iden-
tifiers using fuzzy-based noise removal method and ART2-based self-organizing
supervised learning algorithm. In this paper, after detecting and removing noises
from an original image by using a fuzzy method, areas of identifiers are extracted.
In detail, the performance of identifier area extraction is improved by removing
noises incurring errors using a fuzzy method based on the feature that the color
of container identifiers is white or black on the whole. And, individual identifiers
are extracted by applying 8-directional contour tracking method to extracted
areas of identifiers. This paper proposed an ART2-based self-organizing super-
vised learning algorithm and applied to the recognition of individual identifiers.
Experiments using 79 container images showed that 72 areas of identifiers and
784 individual identifiers were extracted successfully and 767 identifiers among
the extracted were recognized by the proposed recognition algorithm. Failures
of recognition in the proposed algorithm were incurred by the damage of shapes
of individual identifiers in original images and the information loss of identifiers
in the binarization process.

A Future work is the development of fuzzy association algorithm that may
recover damaged identifiers to improve the performance of extraction and recog-
nition of individual identifiers.
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Abstract. While code division multiple access (CDMA) is becoming a
promising cellular communication system, the design for a CDMA cellu-
lar system configuration has posed a practical challenge in optimisation.
The study in this paper proposes a hybrid estimation of distribution algo-
rithm (HyEDA) to optimize the design of a cellular system configuration.
HyEDA is a two-stage hybrid approach built on estimation of distribu-
tion algorithms (EDAs), coupled with a K-means clustering method and
a simple local search algorithm. Compared with the simulated annealing
method on some test instances, HyEDA has demonstrated its superiority
in terms of both the overall performance in optimisation and the number
of fitness evaluations required.

Keywords: CDMA cellular system configuration design, hybrid estima-
tion of distribution algorithm.

1 Introduction

In the last decade, code division multiple access (CDMA) has become a promis-
ing technology for the mobile communication [7]. The rapidly increasing demands
for cellular communication raise an important optimisation challenge for cellular
service providers. In the design of a cellular communication network, the quality
of service, the service coverage and the network cost are three most concerned
objectives among many others. The three objectives are largely influenced by
certain design parameters, such as the number of based stations (BSs), the lo-
cations of BSs, as well as the powers and antennae heights adopted in BSs.

The cellular system configuration problem in this study is taken from [12]:
Given a static, spatial distribution of customer demands, find a CDMA cellular
system configuration, i.e., the locations of BSs, their corresponding transmitting
powers and antennae heights, with the aim of optimizing call quality, service
coverage and total cost of system configuration. To simplify this configuration
design problem, Melachrinoudis and Rosyidi [12] have transformed this multi-
objective optimisation problem into a single objective optimisation problem by
aggregating three objectives with weights. In this way, the simulated annealing
(SA) method was adopted by [12] to search for optimal solutions.
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In this paper, we shall present a hybrid estimation of distribution algorithm
(HyEDA). We apply HyEDA to tackle the problem using the transformed single-
objective function given in [12]. HyEDA is a two-stage hybrid evolutionary ap-
proach, built on estimation of distribution algorithm [5]. It is incorporated with
the well-known K-means clustering and a simple local search algorithm. The
first stage aims to find optimal or near-optimal locations of BSs using the hy-
brid estimation of distribution algorithm (EDA). Given the locations of BSs
found in the first stage, the second stage is intended to find optimal or near-
optimal corresponding power and antennae height for each BS using a similar
simple local search method. Taking this two-stage optimisation is motivated by
the intuition that the locations of BSs plays a vital role in achieving good overall
performance of a cellular service network in terms of three objectives discussed
aforementioned. The effectiveness of this two-stage approach has been further
illustrated by our experimental results in this study, in comparison to SA.

The rest of the paper is organized as follows. Section 2 describes the mathe-
matical model of the cellular system configuration design problem proposed by
Melachrinoudis and Rosyidi [12]. In Section 3, we shall discuss HyEDA in more
detail. Experimental results of HyEDA on several test problems, in comparison
to that of the simulated annealing method, are given in Section 4. Section 5
concludes the paper.

2 Mathematical Model

In this section, we would like to describe, in details, some notations for the design
problem of a CDMA cellular system configuration, as well as, in brief, the final
transformed single-objective mathematical model. The concepts discussed below
are generally borrowed from the work done by Melachrinoudis and Rosyidi [12],
simply because their formulation is more close to the reality of the problem,
thereby suited to be taken for the application.

Given a service area, A, which is a two dimensional geographical region, we
could discretise A into a lattice of grid points, each of which, e.g., g(j, k), is
identified by their discrete coordinates (j, k), where 1 ≤ j ≤ M and 1 ≤ k ≤ K.
M and K are the maximum row and column of the lattice respectively, which are
set by service engineers. Grid points are used to denote the locations of potential
BSs. A cell i is defined as a set of grid points covered by BSi.

Suppose that for a cellular system, n BSs and the BSs’ corresponding powers
and antenna heights are going to be configured. The values of power and antenna
height can only take discrete values from P = [pmin, pmax] and H = [hmin, hmax]
with cardinalities |P | and |H |, respective. The overall performance of the system
configuration is measured by three objectives, i.e., call quality, service coverage
and the cost of system.

The call quality can be measured by the bit error rate (BER) at MSs in the
process of demodulation. The smaller the BER, the clearer the voice, and the
higher the call quality. The BER value of a MS depends on its location within
a cell. We denote the maximum (worst) BER value within a cell as a measure
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of that cell’s call quality, e.g., max(j,k)∈Si
BERjk for cell i. For the whole area

covered with all cells, optimizing call quality is transformed into minimizing the
maximum BER among all cells. In practice, the deviation value d+

1i from t1 (a
threshold for the BER) is defined to reflect the call quality of Cell i as follows:

d+
1i =

{
max(j,k)∈Si

BERjk − t1, if max(j,k)∈Si
BERjk ≥ t1;

0, otherwise. (1)

Similarly, for the measurement of the service coverage for Cell i, the deviation
d+
2i of uncovered service (UCS) from a threshold, t2 is defined as follows.

d+
2i =

{
UCSi − t2, if UCSi ≥ t2;
0, otherwise. (2)

The goal regarding service coverage is to minimize the max
i

d+
2i.

The total cost of the system configuration, denoted by TCsystem, includes
the cost of the base stations construction, their costs of powers and antennae
heights. A normalized figure, TC = TCsystem/TCsystem max, is used, where
TCsystem max is the maximum cost of of the whole system, which is defined as
the total cost of n BSs, built at the most expensive locations using the largest
possible size, the highest possible antenna. Note that the Tchebycheff distance
among grid points is used to calculate the evaluation factors for the system
configuration [12].

Eventually, the goal of the cellular system configuration design problem is to
minimize the following objective function Z:

Z = w1 max
i

d+
1i + w2 max

i
d+
2i + w3TC. (3)

with the locations of BSs, their corresponding powers and antenna heights as de-
cision variables. Readers please refer to [12] for details of the considered problem
and its formulation.

3 HyEDA

3.1 Algorithm Framework

HyEDA is built mainly on the hybrid estimation of distribution algorithms
(EDA) [1][2][9][5]. EDA is a type of evolutionary algorithm (EAs). EAs, such
as genetic algorithms (GAs), generate new offspring by using genetic operators
like crossover and mutation. Different from GAs, the main characteristic of EDA
is that new offspring is generated by sampling from a probabilistic distribution
model. EDA extracts global statistical information from visited promising solu-
tions to build the probabilistic distribution model. However, EDA alone cannot
efficiently search for optimal or near-optimal solutions of difficult optimisation
problems [5]. To improve the efficiency of EDAs, hill climibing algorithms and
other techniques can be incorporated [8]. In our previous work, we have hy-
bridized EDA with hill climbing algorithms and other techniques to solve some
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NP-hard optimisation problems, such as maximum clique problem [17], and the
routing and wavelength assignment problem under shared-risk-link-group con-
straints [16] arisen in the telecommuncation area, and continuous optimisation
problems [15][6].

The general template of the hybrid estimation of distribution algorithm is
summarized as follows.

Initialization. Initial the probability model p0(x), sample popsize feasible so-
lutions from it, apply local search algorithm to each solution. The resultant
solutions consists of the initial population P (0); Set t := 0;

While (stop criteria are not met), do :
1) Selection Select selsize solutions as the parent set Q(t);
2) Modeling Construct a probabilistic model pt(x) according to Q(t);
3) Sampling Sample cresize offspring from pt(x). Apply local search algorithm

to each sampled solution;
4) Replacement Replace partially the current population with the offspring

to constitute a new population P (t + 1); set t := t + 1;

The template consists of five major components, including the fitness definition,
the selection, the probability construction, the sampling and the replacement.
In the evolutionary process of the proposed first-stage algorithm for the cellular
system design problem, the Z value of a solution is defined as its fitness. The
truncation selection is adopted. At generation t, N solutions with the smallest
Z values are selected to constitute the parent set Q(t) (Step 1). We use the K-
means clustering to help the construction of the probability model pt(x) (Step
2). Details of Step 2 will be described in Section 3.3. The sampling operation
creates new offspring using the previously created probability model (step 3).
We take the “Accept-Reject” sampling method, which shall be described in Sec-
tion 3.3. Notably, a local search algorithm is incorporated into the template, in
order to tune each solution into local optimum after sampling both in popula-
tion initialization and in offspring generation. We shall describe the local search
algorithm in Section 3.4. To produce P (t + 1), the popsize solutions with the
smallest Z values are selected from the union of the sampled solutions so far and
the solutions in P (t).

3.2 Solution Representation and Probability Model Construction

A solution x of the cellular system configuration can be represented as a vector
[(x1, y1, p1, h1), ..., (xn, yn, pn, hn)], where (xi, yi) represents the location of BS i,
pi and hi are the power and antenna height of BS i, respectively. In the first stage
of HyEDA, for each BS, its power and antenna height values are randomly picked
from P and H . Those values are fixed over the whole process of optimisation.
In the second stage, given its location, (xi, yi) is found, we use a simple local
search algorithm to optimize (pi, hi) with respect to Function Z for each BS.

The construction of the probability model resorts to the K-means clustering.
In [4][11], the K-means clustering was used to help the construction of a Gaus-
sian distribution model for continuous optimisation problem. Here, the K-means
clustering method is used to cluster a set of grid points with discrete values.
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The value of pij indicates the probability that a BS is located in (i, j). Proba-
bility model defines the way of assigning a probability value to each grid at each
generation. At generation t, to construct the probability model from the parent
set Q(t), i.e., pt(x) (here, pt(x) = {pij}M K

i=1 j=1), we first cluster the totally N ×n
points distributed in the service area into n groups. Then we assign a probability
pij to each grid point (i, j) based on the results of clustering.

Suppose that the coordinates of the cluster centroid are {(x∗
k, y∗

k), 1 ≤ k ≤ n}
after clustering, and the corresponding standard deviation of distances between
points to the centroid of cluster is {σk, 1 ≤ k ≤ n}. Generally speaking, a larger
σk means a bigger uncertainty to locate base station k at (x∗

k, y∗
k). Whereas a

smaller σk means a smaller uncertainty, i.e., we have more confidence to set base
station k at the centroid (x∗

k, y∗
k). Let dl denote the Tchebycheff distance (The

Tchebycheff distance between two vectors a and b is defined as maxi |ai − bi|)
between the grid point (i, j) and the centroid (x∗

l , y
∗
l ) for 1 ≤ l ≤ n, and k =

argmin
l

dl, then pij is assigned as follows

pij =
{

ε + N ( dk

dk
max

; 0, σ2
k) for dk ≤ dk

max;
ε, otherwise.

(4)

where ε is a positive value to guarantee that all grid point has a probability to be
chosen; N is the normal probability density function (pdf); dk is the Tchebycheff
distance between (i, j) to its nearest centroid (xk, yk); and dk

max is the maximum
Tchebycheff distance among the points of cluster k to the centroid. Based on
Equation (4), it can be seen that the degree of variation in the values, pij ,
assigned to all grid points in a cluster k, would crucially depend on the size of
the value of σk. If σk were smaller, the resultant probability values would vary
to a greater extent. Otherwise, they are not much different.

3.3 Sampling Method

EDA employs the same sampling method for generating both an initial popula-
tion and a number of offspring populations over the generations during evolution.
For generating an initial population, probabilities of all M × K grid points are
each set to be 1/(M ∗ K). Whereas, in generating a population of offspring, the
pij for each grid point produced in Step 2 is taken.

The sampling process for an individual solution is as follows. To locate the
n grid points required for the solution, we select locations based on the proba-
bility model one by one. In each step, we employ the well-known roulette wheel
selection method to select a location from all available grid points based on their
probabilities. A grid point with a higher probability is more likely to be selected.
Once the grid point is picked as a BS location, its neighborhoods are not consid-
ered as the candidates for the next potential BS location any more. We achieve
this through setting the probabilities of its neighborhood to be zero. The neigh-
borhood set of the grid point gi is defined as D(gi) = {z : d(z, gi) ≤ dmin},
where dmin is a user-defined parameter and d(z, gi) is the Tchebycheff distance
between z and gi.
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3.4 Local Search

A local search algorithm has been used in the first stage of HyEDA, to tune
each solution after initialization and offspring generation. In the second stage,
HyEDA merely takes this local search method to find optimal or near-optimal
values of (p, h) for each BS. The only difference of the local method between two
stages lies in the definitions of neighborhood.

A solution z = [(x1, y1), · · · , (xn, yn)] = (g1, · · · , gn) represents the BS loca-
tions assigned in the first stage. For each location gi = (xi, yi), its neighborhood
N (gi) is defined as the other 8 grid points around gi, i.e., N (gi) = {u : d(u, gi) =
1.}. Whereas, for each pi (,hi), to be optimized in the second stage, its neighbor-
hood N (pi) (,N (hi)) is defined as all of other |P | − 1 (|H | − 1) possible values.
The local search algorithm starts from a randomly initialized solution, for each
component of the solution, the algorithm searches the component’s neighborhood
for the “best” component value, which minimize the current objective function
value. The best component value updates the current one to form a new solution.
The search continues until no better solution can be found.

4 Experimental Results

In [12], a case study for a cellular system configuration was conducted for the
service area of the city of Cambridge and its vicinity in Easter Massachusetts,
and SA was applied to solve the problem. For that case, the service area is divided
into 13 × 20 grid points, with n = 11 base stations supposed to be located for
the whole area, and the weights for the objectives set to be wi = 1/3, 1 ≤ i ≤ 3.
We denote this problem as problem 1. To our best knowledge from literature, we
are not aware of other algorithms which have been used to address the cellular
system configuration design problem, except for the simulated annealing (SA)
approach given in [12]. Therefore, our experimental comparison is carried out
only between the SA and HyEDA.

To make the comparison between SA and HyEDA more rigourously, apart
from the above problem 1, additional four problems, which are newly derived
by us based on problem 1, have also been used to compare effectiveness of both
algorithms. All 5 problems share the same settings of the service area and the
number of BSs required to be located, but have a different scalable setting in
resolutions of grid points, which determines how precisely 11 BSs can be located
in the area. In problem 2 to 5, the same area are divided into 20 × 30, 26 × 40,
39 × 60, and 65 × 100 grid points respectively. As a result, finding an optimal
locations turns to be even harder progressively from problem 1 to problem 5,
simply because of the enlarged search space. In our experiment, the dmin values
are set to 2 for the first two problems, 3 for problems 3 and 4, 4 for problem 5.
The population size is set to 10 for problems 1 and 2, 20 for the rest problems.
The algorithms will terminate if either the algorithm cannot find a better solu-
tion in successively 10 generations after 30 generations or a maximum 1,000,000
objective function evaluations are achieved.
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Table 1. Comparisons of SA and HyEDA in terms of the mean best objective function
values (Mean) and the number of function evaluations (Nfe)

problem SA HyEDA
instance Mean Nfe. Mean Nfe.

1 0.2414 157,893 0.2302 59,140
2 0.2440 451,120 0.2310 209,053
3 0.2491 618,278 0.2415 380,304
4 0.3167 1,000,000 0.2662 482,288
5 0.3618 1,000,000 0.3058 529,205

For each problem, we run both SA and HyEDA 10 times each. Listed in
Table 1 are the average fitness objective value and the average number of fitness
evaluations of 10 runs, produced by both methods on each problem. For each of
5 problems, the average fitness value produced by HyEDA is smaller than that
achieved by SA, whilst the number of objective funcation evaluations required
to achieve the results by HyEDA is less than that in SA. The results have
demonstrated that HyEDA outperforms SA in terms of both the solution quality
and the number of fitness evaluations that are required. In other words, HyEDA
is more likely to find better solutions than SA using a smaller number of fitness
evaluations in solving a cellular CDMA system configuration design problem.

5 Conclusion

In this paper, we proposed a two-stage hybrid estimation of distribution algo-
rithm, HyEDA, for solving the CDMA cellular system configuration design prob-
lem. HyEDA resorts to the K-means clustering method for probability model
construction, and a simple local search algorithm for solution quality improve-
ment. HyEDA has been applied to tackle a problem given in [12], as well as
some of its derived and more difficult cases. The experimental results have
demonstrated that the proposed algorithm outperforms the simulated anneal-
ing approach used in [12], in terms of the quality of the solutions found and the
quantity of function evaluations used.

In the future, HyEDA could be improved in several ways. Firstly, we would like
to carry out more experiments to thoroughly understand the effects of the compo-
nents of HyEDA including the two-stage framework, the clustering method, and
the Techebycheff distance metric. Secondly, we will try to improve HyEDA itself
for its convergence and robustness for solving optimisation problems. Thirdly, we
may enhance HyEDA by embedding multiobjective search engines [10], thereby
enabling itself to handle the inherently multiobjective optimisation in the CDMA
cellular system configuration design. Finally, we shall explore the principle of
HyEDA further in solving similar other optimisation problems, such as the ter-
minal assignment [13], the task assignment problem [14] and other optimisation
problems raised in telecommunication area.
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Abstract. In this paper, a new approach for motion generation and optimization 
of the flexible macro-micro manipulator system is proposed based on Estima-
tion of Distribution Algorithm (EDA). The macro-micro manipulator system is 
a redundant system, of which inverse kinematics remains challenging, with no 
generic solution to date. Here, the manipulator system configurations, or the op-
timal joint motions, are generated using the EDA algorithm base on Gaussian 
probability model. Compared with simple genetic algorithms (SGA), this ap-
proach uses fewer parameters and the time for motion optimization is remarka-
bly reduced. The proposed approach shows excellent performance on motion 
generation and optimization of a flexible macro-micro manipulator system, as 
demonstrated by the simulation results. 

1   Introduction 

A flexible macro-micro manipulator comprises a macro flexible manipulator and a 
micro rigid manipulator. The macro one moves in a large workspace but motion 
errors are also large due to the link flexibility. Conversely, the small rigid micro 
manipulator, which is attached to the tip of the macro manipulator, can move fast 
and precisely, and herein is used to compensate for the motion errors caused by the 
link deformations and vibrations of the macro manipulator. Usually, the joint  
numbers of a macro-micro manipulator system are more than the dimensions of its 
task space. Apparently, it is a redundant robot system. Moreover, flexibility causes 
large link deformations and vibrations when it moves rapidly. An optimal  
motion trajectory is thus critical for vibration suppression and trajectory tracking 
control of a flexible macro-micro manipulator system, as well as the tip error  
compensation. 

Less attention has been paid to motion generation of a flexible macro-micro ma-
nipulator system. Usually, the desired joint motion is given a priori for the controller 
design. Actually, there is no unique closed-form solution to the redundant manipulator 
systems. The system redundant degree of freedom is used in [1-4] for obstacle  
and singularity avoidances, control torque optimization, and dexterity improvement. 
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Cherif et al. [5] used a set of penalty functions to transform the constrained optimiza-
tion problem into an unconstrained problem, and then formulated a simple optimiza-
tion problem using neural network. But the expression of the search direction is com-
plex and difficult to derive.  

T. Yoshikawa, et al [6] first introduced the compensability concept for the flexible 
manipulators. The inverse kinematics problem is solved based on this concept. But 
this algorithm requires computing the inverse or pseudo-inverse Jacobian matrix and a 
lot of derivation are needed in advance. In our previous work [7], we presented a 
method to generate optimal motion for a flexible macro-micro manipulator, using 
genetic algorithms (GA). But the algorithm is time consuming because of the large 
search space. Moreover, the behavior of the algorithm depends on a large number of 
parameters such as crossover and mutation operators, crossover and mutation prob-
abilities, population size, and the number of generations, etc. 

On the basis of the previous research work, Estimation of Distribution Algorithm 
(EDA) is employed for the motion generation and optimization of flexible macro-
micro manipulator in this paper. EDAs [8] are non-deterministic, stochastic heuristic 
search strategies within the evolutionary computation approaches, which has recently 
become the hot research topic. The main characteristic of EDAs compared with other 
evolutionary search strategies is that the evolution from a generation to the next is 
done by estimating the probability distribution of the fittest individuals, and after-
wards by sampling the induced model. It has widely used in optimization problems. 
Hu et al. [9] used it to study the biped gait optimization problem. 

This paper is organized as follows. In section 2, we first formulate the kinematics 
and motion constraints of the flexible macro-micro manipulator system and then con-
vert the motion generation problem into the optimization problem. Section 3 the EDA 
algorithm is proposed and employed for the motion generation and optimization. The 
simulation results are given in section 4. Finally, conclusions are given in section 5.  

 

Fig. 1. A flexible macro-micro manipulator system 

2   Problem Statement 

2.1   Construction of Flexible Macro-micro Manipulator 

A flexible macro-micro manipulator system is shown in fig. 1. The macro part uses 
large, lightweight and slender links; therefore, the deformation and vibration are easily 

Macro 
manipulator  

Micro 
manipulator    
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induced. The micro part, which can move fast and precisely, is a small rigid manipu-
lator. Combining the two, wide and precise operation tasks are able to be realized. 

2.2   Kinematics Formulation 

Let N and n denote the degrees of freedom of macro manipulator and micro 
manipulator, respectively, and k the degrees of freedom of the link deformations of the 
macro manipulator. An inertial coordinate system xyzO − is defined for the flexible 

macro-micro manipulator. 1 2( , , )T
mp p p=P  ( mR∈ ) gives the tip position and orien-

tation of the manipulator system with respect to the inertial coordinate system 

O xyz− . T
nN ),,,,( m2m1mM2M1M θθθθθθ=  ( nNR +∈ ) is the joint variables 

vector. iM  ( NR∈ ) and im  ( nR∈ ) are the joint variables of the macro manipulator 

and of the micro manipulator, respectively. T
keee ),,( 21=E  ( kR∈ ) is the link 

deformation vector. 
P is a nonlinear function of joint variables and deformation E , that is 

),( EfP =  . (1) 

Differentiating the above equation, we have 

[ ]TTTt EJEfP ,/),( ⋅=∂∂=  , (2) 

where )( knNmR ++×∈J is the Jacobian matrix. 

2.3   Compensability of Flexible Macro-micro Manipulator Systems 

The compensability of flexible macro-micro manipulator systems is used to measure 
the capability of the micro manipulator of compensating for the tip motion errors 
induced by the macro manipulator while its configuration is fixed. The larger the 
compensability of the micro manipulator is, the less joint adjustment of the micro 
manipulator is needed for tip error compensation. 

Eq. (2) can be further rewritten as 

EJJJP Δ+Δ+Δ=Δ EmmMM  , (3) 

where the Jacobian matrices MJ , mJ and EJ are the functions of the joint variables 

and the link deformation E . MΔ , mΔ and EΔ are the infinitesimal displace-

ment of M m and E , respectively. 

The motion errors at the tip of the flexible macro-micro manipulator system are 
compensated by adjusting the motion of the micro manipulator. Therefore, the ad-

justment of joint variables of macro manipulator MΔ  is set to be zero. Since the tip 

errors will be eliminated, namely, 0=ΔP , then from Eq. (3) we have 
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0Emm =Δ+Δ EJJ   (4) 

and the compensation motion of the micro manipulator mΔ  is obtained as 

EJJ Δ⋅−=Δ +
Emm  . (5) 

In terms of the properties of matrix, we have the relationship of mΔ and EΔ , 

EJJEJJ Δ⋅⋅≤Δ⋅=Δ ++
EmEmm  . (6) 

Observing the above equation, we can see that, to ensure mΔ  be small enough 

when EΔ is fixed, Em JJ ⋅+  should be reduced as much as possible. So, now we 

define the compensability of the micro manipulator as 

1
Em )( −+ ⋅= JJC  . (7) 

Apparently, if C increases, the compensability of the micro manipulator will also 
increase, and vice versa. 

2.4   Optimization Problem Description  

Two factors should be considered to generate the joint motions. One is the joint mo-
tion limitations of the manipulator system, and the other is the compensability of the 
micro manipulator. The motion optimal problem can be further described as follows: 

1. The generated joint motion θ (k) should be in the allowed span of [-α, α]. 
2. The joint variation between two subsequent configurations should be as small as 
possible to reduce the energy consumption. That is 

1/ 2
2 2* * *

Mi Mi mi m
1 1

1 min ( ) ( 1) min ( ) ( 1) ( ) ( 1)
N n

i
i i

fitness k k k k k kθ θ θ θ
= =

= − − = − − + − −  . (8) 

3. The tip motion errors should be as small as possible, namely 

2 1/ 2
d d

1

2 min min( )
m

i i
i

fitness p p
=

= − = −P P  , (9) 

where T
mppp ),,( d2d1dd =P is the desired tip position and orientation. 

4. The compensability of the micro manipulator should be as large as possible. 

1
m E3 min minfitness C− += = ⋅J J  . (10) 

Fitness3 will decrease when compensability increases. Therefore, adding this factor 
into the objective function for motion generation and optimization will enhance the 
compensability of the solutions. 
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We synthesize the objective functions above and get the total fitness function as 
follows: 

321 321 fitnessfitnessfitnessfitness ⋅+⋅+⋅= λλλ  , (11) 

where, )3,2,1( =iiλ  is the weight for each objective function. 

3   EDA Approaches to Optimal Motion Generation 

EDAs is a class of novel stochastic optimization algorithms. Compared with the GA 
algorithms, in EDA algorithms there are no crossover and mutation operators. The 
new population of individuals is sampled with a probability distribution, which is 
estimated from a database of the selected individuals from the previous generation. 
This paper uses UMDAc, which is one of the EDAs with the Gaussian probability 
model [10], to solve the motion optimization problem. 

3.1   The Algorithm to Motion Generation and Optimization 

Let )(d tP be the desired tip position and orientation, and )(d kP  ( Nek ,2,1= ) be 

the value of )(d tP  at the instant of k. Ne is the number of sampling points. Then the 

inverse kinematics )(* k  can be solved with the optimal EDA algorithm. One of the 

main merits of this algorithm is that the previous information about the configuration 
is used to initialize the mean of the multivariate Gaussian distribution model which is 
used to get the initial population for the next motion configuration. The algorithm is 
given as follows, 

(1) Generate an initial population with M individuals. Let k=1. 
(2) Calculate the fitness value using Eq. (11). Select the best N individuals from the 

population. If the termination condition is met, )(* k is generated and go to step 

(6). Otherwise, go to the next step. 
(3) Update the mean kμ  and standard deviation kσ  of the multivariate Gaussian 

distribution using the best N individuals selected from the previous population. 
(4) Generate a population with M individuals by sampling from the current Gaus-

sian distribution model. 
(5) Go to step (2). 
(6) If Nek = , the algorithm is ended. Else, k=k+1.  
(7) The joint variable of the previous configuration is used to initialize 

mean kk =+1 . Set kσ = [0.1...0.1] T.  

(8) Go to step (2). 

and the flow chart of the algorithm is shown in fig. 2. 
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Fig. 2. Flow chart of optimal motion generation 

3.2   Generalize the Solutions by Neural Networks 

The solutions of inverse kinematics obtained by UMDAc are discrete, so we need to 
generalize the solutions by neural networks. The trained neural networks can generate 
the optimal motion of the manipulator in real time. 

The input of neural networks is the desired tip position and orientation )(d tP  

( mR∈ ). The output of neural networks is the joint displacement )(d t  ( nNR +∈ ). The 

forward neural network which contains one hidden layer is adopted in this paper.  

4   Simulation Results 

A robot system with 2-DOF flexible macro manipulator and 2-DOF rigid micro ma-
nipulator is used for simulation. The task is to track a circle using the tip of the ma-
nipulator based on EDA approaches. 

The simulation settings of UMDAc are as follows: population size is set 50, the 
number of selected individuals used to update probability model is 25, the selection 
method used is truncation, and the algorithm terminates in the condition that fitness 
value is less than 10-7. The algorithms run 10 times independently and the average 
performance is as follows. 

)...1)((* Nekk =θ generated by UMDAc is shown in Fig. 3 (a). The axis of ab-

scissa denotes the serial number of the sampling points. The axis of vertical denotes 

joint angle displacement )(),(),(),( *
2m

*
1m

*
2M

*
1M kkkk θθθθ . It is illustrated that the 

objects (1) and (2) of the solution to inverse kinematics are well satisfied. The joint 
variables are in the allowed span and the variation of the joint angle is small. 

The error between desired tip position and the tip position generated by UMDAc is 
shown in Fig. 3 (b). It is indicated that high precision is achieved in motion generation 
and optimization using UMDAc. 
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The forward neural network is adopted to generalize the discrete solutions of the 
inverse kinematics. Fig. 3 (c) illustrates the tip positions calculated by kinematics 
model of flexible macro-micro manipulator using the joint variables that generated by 
the trained neural network. 

 

 

Fig. 3. (a) * ( )kθ acquired by UMDAc; (b) Error of the tip position; (c) Output of the neural 
network 

In order to further verify the performance of the UMDAc, the paper compares it 
with SGA.  The simulation settings of SGA are as follows: population size is 20, 
crossover probability is set 0.80, mutation probability is 0.05, the selection method 
used is the proportional selection method, and the algorithm stops evolution when 
fitness value is less than 10-6. Both algorithms run 10 times independently and the 
average performance are shown in table 1. 

Table 1. The time used in motion generation and optimization using UMDAc and SGA 

 UMDAc SGA 
One point 0.0045 min 0.57 min 

One circle (628 points) 2.85 min 360 min 

The simulation shows that UMDAc has better performance than SGA in motion 
generation and optimization. The time used in motion generation and optimization 
using UMDAc and SGA is shown in table 1. The time used to search the optimal 
solution is remarkably reduced in this simulation. 

(a) (b) 

(c) 
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5   Conclusion 

In this paper, a new algorithm of motion generation and optimization for a flexible 
macro-micro manipulator system is introduced, based on UMDAc. Our method has 
two significant advantages. One is that it uses fewer parameters to select and adjust 
than our previous work [7]. Therefore, it is convenient to be applied. The other is that 
the previous information about the configuration of the manipulator system can be set 
as the initial mean of the multivariate Gaussian distribution model which is used to 
get the initial population for the next motion configuration. So the time for search of 
solutions is remarkably reduced. This approach is easy to implement, and simulation 
results show its effectiveness. 
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Abstract. A new interactive model for constructing a tactical global assets allo-
cation through integrating fuzzy scenarios clustering- based approaches (FSCA) 
with mean-variance (MV) is proposed. This serves as an alternative forecasting 
rebalance quantitative model to the popular global assets allocation, in which 
the portfolio is first being observed in contrast with major asset and sub-assets 
classes which possess upward and downward positive co-movement phenome-
non while considering the linkage of cross-market between different time-
zones. In addition, fuzzy scenarios clustering would be induced into the MV 
model so as to adjust the weighting of the risk-return structural matrices. It 
could further enhance the efficient frontier of a portfolio as well as obtaining 
opportunity of excess return. By means of global major market indices as the 
empirical evidences, it shows that the new approach can provide a more effi-
cient frontier for a portfolio and there would be less computational cost to solve 
MV model. 

Keywords: Fuzzy scenarios clustering- based approach, mean-variance model, 
tactical global assets allocation, portfolio efficient frontier, computational cost. 

1   Introduction 

Scenario-based [1], [2], [3], [4] and MV [5] are the most popular approaches to the 
portfolio optimization problems. The scenario-based method is based on the returns 
originated or expected utility optimization. Especially, the investment management 
professions have been devoted to the MV while expected utility is highly regarded in 
the academy. That caused the focus on the mean and variance (especially, the down-
side risk, skewness, kurtosis and the higher moments of portfolio returns). All the 
efforts are expected to improve the investment performance via MV model and tacti-
cal global assets allocation [6], [7], [8].  

For the assumptions presented based on the theory of the original mean-variance 
model, as long as its expected return and related coefficient of any portfolio asset can 
be estimated appropriately, then it is applicable to optimal allocation of local, regional 
and global arbitrary financial assets, including stock, bond, fixed income securities 
and exchange etc. However, in fact, the estimation on the related coefficients in port-
folios models between assets expected return and risks would be significantly affect 
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the overall performance of the MV relative model, such as multifactor model, single 
factor model, hedging model, style model or portfolios insurance model, etc [9]. How-
ever, most of them are lack of consistency performance because of the change of risk-
return structure of portfolios in maturity. Therefore, scenario analysis is necessary to 
be employed to fine tune the risk-return structure matrix while they are fed to the MV 
models with previous period observations. Besides, the scenario analysis also ought to 
take the fact into account that the boundary of scenario segmentations is fuzzy-style 
while clustering the various scenarios, which will affect the performance of model 
depend on the representative capacity, has not yet been considered. Therefore, in this 
research, the fuzzy scenarios clustering- based approach is utilized to revise the mean-
variance model so as to obtain better portfolio performance.  

This paper is based on the assets allocation of major country indices as the empiri-
cal cases of presented model. From the result of the empirical study it is discovered 
that FSCA has better profit-making capability.  

2   Scenarios-Based Portfolio Selection 

Through the probability allocation of incident scenario occurrence, scenario analysis 
procedure can determine the maximum effect.  The classical scenario method can be 
briefly described as follows:  To allow return allocation of portfolio assets M there are 
S types of possible return and its corresponding occurrence probability shall be Ps.  If 
final out-come scenario s occurs, then asset content will possess the total return n

S
r  

generated in the portfolio of that asset and the return of the portfolio asset M at end of 
period shall be M

S
R .  Therefore, under scenario s, the return of that portfolio assets M 

shall be: 
=

= m

n n

n

s

M

S
MrR

1
; If combination S is considered for all scenarios, then the 

return of portfolio assets shall be 
= =

= S

s

m

n n

n

s

M

S
MrR

1 1
.  To maximize the expected 

utility, that concave function can be best solved by the equation: 

=

− −
S

s
s

PMax
1

1 )1/( γγ γ , subject to: 0≥γ and 10 ≤≤ P , where, γ  denotes the pa-

rameter of risk aversion. 
The main problem of scenario analysis is the grasping of the type of scenario and 

the acquisition of corresponding probability allocation.  In practice, the main factors 
of the above two items most often will not be measured precisely so easily and there-
fore there will be many variances.  Furthermore, acquisition for the probability of 
scenario occurrence is time consuming. 

3   MV Model and Its Extensions 

In global assets allocation, mean-variance model is often utilized as the optimization 
procedure for the first stage so as to determine the optimal proportional allocation of 
various assets types of asset combination [10]. Generally speaking, execution of 
global investment can be conducted by portfolio formed by individual investment in 
individual shares listed in the market or by direct purchase of the main index of that 
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market.  If portfolio allocation is based on individual shares, then for setting of portfo-
lio content, if there are n item asset classes, and there are jth assets types then Lj will be 
formed by '

j
n  individual asset. Then under the designated expected return and through 

maximization of the risk model, the allocation of weighted equity amount of the m 
assets of xjm in Lj can be determined.  Firstly, the Indexj with higher similarity can be 
selected to represent Lj, so that Rj,(j = 1,…, n′ ) shall be the Indexj  return and if limit is set 
as no short sell, then that model can be written as the following formulae: 

][
1

′

=

n

j jj
xRVarMin , subject to: rxRE

n

j jj
=′

=
][

1
, 

′

=
′=≥=n

j jj
njxx

1
,...,1,0,1 . Out 

of this, E[•] and Var[•] shall respectively become the expected return and variance(or 
risk) of the portfolio. If it can be short sell, then delete the constrain 0≥

j
x  item in 

constrains. 
From this the optimal ratio xj of investment in Lj can be determined, and, the MV ef-

ficient frontier can be obtained by optimization method, the risk model is formed as 

[ rrxRVar
n

j jj
,)([

1

′

=
].  Using global fund as an example, fund manager can select effi-

cient frontier based on the effected optimization principle. After the completion of 
optimizing allocation of asset types, we proceed to the second stage: Let '

j
x be the 

optimal allocation of mth individual asset in asset type Lj  so that '

j
r must satisfy rela-

tions
′

=
′=n

j jj
rxr

1

' , then the optimal model of asset type content can be written as the 

equation: ][
1

′

=

jn

m jmjm
xRVarMin , subject to: rxRE jn

m jmjm
=

′

=
][

1
, 

′

=
==jn

m jjjm
nmxx

1

'' ,...,1, [11]. In the following section, the scenarios classification is 

embedded into the extended MV model. 

4   Scenarios Classification with an Upward/Downward Tendency  

The correlation behavior between cross-country financial asset markets is the most im
portant research topic for global assets. One of the important global assets allocation t
opics is the expectation to enhance the efficient frontier through cross-country portfoli
o content by means of diversifying the system risk of an individual local market [12]. 
Therefore in traditional tactical global asset allocation method, market with too high a
 relative correlation will often be eliminated from allocation combination or there will
 be limit setting on its allocation weight (or percentage) so as to avoid loss of the origi
nal intention of diversifying systematic risk.  

However, in fact, from this research, there are discoveries from the observation on 
the practical markets that the correlation behavior between major markets of different 
countries can be distinguished as the following three types based on scenario analysis: 
(1). complete dual direction correlation: that means assets price would have the phe-
nomenon of simultaneous rise and fall, which are formed with the fuzzy scenarios 
clustering- based approaches with MV model-type I (FSCA-I), and, fuzzy scenarios 
clustering- based mean variance model-type II (FSCA-II); (2). single direction correla-
tion: that means under a majority situation asset price will only have the phenomenon 
of simultaneous rise or there is only correlation during fall, which are also formed 
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with FSCA-I and FSCA-II; (3) no correlation relationship: the price change direction 
has no correlation relationship, which is modeled with MV model. In the above three 
scenarios, we utilize the upward/downward tendency correlation scenarios to extend 
MV model so that through consideration on the characteristics of that scenario to ob-
tain a higher payoff. Besides, the fuzzy scenarios clustering method is helpful to de-
marcate the scenarios segmentation more precisely for tuning the risk-return structural 
matrix of allocation. 

5   Fuzzy Scenarios Clustering-Based MV Model (FSCA) 

FSCA extracts the implied information to improve the risk-return structure in order to 
obtain excess return. The following is an explanation based on characteristics of 
FSCA and method of model construction respectively. Consider the leading-price 
asset S&P500 stock index and the lagging-price asset Nikkei 225 index in our multi-
national portfolio show as Fig. 1, in which the sliding window method was employed 
to sample the periodical interval observations of leading-pricing asset for calculating 
average return to determine the threshold value of corresponding period, so as to 
classify scenarios of lagging-price asset on previous-period. Assume the trend of asset 
price on next-period seems clearly estimating by time series model, and leading-price 
asset (S&P500 index in this case) trending toward rise on previous-period (see Fig. 1: 
U1 U2), also the linkage between lagging-price asset (Nikkei 225 index in this case) 
and leading-price asset exist on previous-period, we expect lagging-price asset will 
trend upward on next-period (see Fig. 1: U2 U3), on the other hand, If leading-price 
asset trending toward down on previous-period (see Fig. 1: D1 D2), we expect lag-
ging-price asset will trend downward on next-period (see Fig. 1: D2 D3).  
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Fig. 1. Sliding window for leading-price asset on previous-period (daily data in the period from 
1998 to 2001) 

Fuzzy scenarios clustering essentially deal with the task of partitioning a set of sce-
narios patterns into a number of homogeneous classes (or clusters) with respect to a 
suitable similarity measure. In our cases, the scenarios patterns belong to any one of 
the clusters are similar and the scenarios patterns of different scenarios clusters are as 
dissimilar as possible. In classical cluster analysis, the boundary of different clusters is 
crisp such that one pattern is assigned to exactly one cluster. In practice, the data are 
usually not well distributed; therefore the boundary may not be precisely defined. That 
is, a data point could belong to two or more clusters with different degrees of mem-
bership. Therefore, the partitions of a data set can be either hard as in the k-means 
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clustering algorithms [13], or fuzzy set as in the fuzzy c-means (FCM) algorithm [14]. 
FCM algorithm partitions a collection of n vectors (X={X1, X2, …, Xn} RP ) into c 
fuzzy groups such that the weighted within-groups sum of squared error objective 
function is minimized. The objective function for FCM is defined as 

)(2

1 1

ji

c

i

n

j

m

ij
m xduJ −=

= =

υ  with constrained conditions, in which, m

ij
u  is the membership 

of the jth data point in the ith cluster, i is the ith cluster center, and d( i , j) denotes the 
distance between i and j ).()(),(2

ji
T

jiji xAxxd −−= υυυ  The distance matrix A is cho-

sen depending on the geometric and statistical properties of the assets returns. The 
parameter m in Jm is the fuzzy exponent and m (1, ). The fuzzy exponent controls 
the amount of fuzziness in the classification process. In general, the larger m is, the 
fuzzier are the membership assignments of the clustering.  

By differentiating Jm with respect to i (for fixed Uij, i = 1, …, c, j=1, …, n) and Uij 

(for fixed i, i = 1, …, c), the necessary conditions for Jm to reach its minimum are:  
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Eqs. (1) and (2) are repeated until the objective function is no longer decreasing or 
within a pre-specified level of accuracy. After the cluster centers and the class mem-
berships are obtained, the fuzzy covariance matrix, Fi, is calculated 

as: .),)())(((
11

ciluxxuF
n

j

m

ij

n

j

T
jiji

m

ij
i ≤≤−−=

==
υυ , in which, the numerator is defined 

as the fuzzy scatter matrix for ith cluster. The standard deviation for each membership 
function is then expressed by taking the root of diagonal elements of Fi: 

pklFDiag iik ≤≤= ),(σ , where p is the dimensions of input vector. 

An important question for the FCM algorithm is how to determine the optimal 
number of scenarios clusters. Since there in no exact solution to this question, some 
measures of partitioning fuzziness have been used as synthetic indices to point out the 
most plausible number of clusters in the data set. Another important factor in the FCM 
algorithm is the fuzzy exponent m. The parameter m is selected according to the prob-
lem under consideration. When m  1, the fuzzy c-means converges to classical c-
means. When m  , all scenarios cluster centers tend towards the centroid of the 
data set. That is, the partition becomes fuzzier with increasing m. currently there is no 
theoretical basis for an optimal choice for the value of m. Here, we propose a heuristic 
strategy incorporated with FCM algorithm to classify upward/downward tendency 
scenarios into two types of clusters that implied the parameter, c, is setting to be 2 and 
summarize as Equ. (3): 
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where, s

t
S : fuzzy scenarios clusters; FSCA-I denotes the fuzzy scenarios clustering-

based approaches with MV model-type I; FSCA-II denotes fuzzy scenarios clustering-
-based mean variance model-type II; MV model denotes original MV model that apply 
previous-period risk matrix to be next-period risk matrix of portfolio; threshold value: 

)(
1

tN

L
Γ is determined by Fi, in which, N is the # of observations for leading-price asset 

of sampling by moving window on previous-period; L1 is the leading-price class of 
portfolio, in which j = 1, and if j = 2,…, n′ , then indicates lagging-price class of port-
folio. From Equ. (3), if trend estimation of asset seems stable on next-period, FSCA 
model begin to tuning the expected return and risk matrix of portfolio on current-
period with FSCA-I, FSCA-II and MV corresponding to upward, downward and fluc-
tuation market. We demonstrate the distribution interval of portfolio returns as Fig. 2. 

Under the risk matrix on previous-period, FSCA model integrated MV model with 
spirit of scenario approach to take into account the scenarios, for instance, trending 
upward or downward, from foreign market on previous-period and lagging time-
difference domestic market on current-period to modify the weights of asset allocated 
to take for the next-period. The notable difference is that we add scenarios classifica-
tion in MV approach between original MV model and FSCA that extend one more 
dimension besides risk and return dimensions shows as Fig. 2. We classify linkage 
scenarios into three types according to the FCM algorithms, that are: (1). linkage of 
bullish market: higher asset returns Rt,1 at time 1~ t on current-period were sieved out 
from observations to fit for FSCA-I; (2). linkage of bearish market: lower asset returns 
Rt,1 at time 1~ t on current-period were sieved out from observations to fit for FSCA-
II; (3). No exists linkage of asset price: regardless of trending upward, downward or 
fluctuation, no exists linkage of asset price. The asset returns Rt at time 1~ t on cur-
rent-period were sieved out from observations to fit for MV. Fig. 3 demonstrates the 
efficient frontier improvement that FSCA model plans to achieve in this paper.  

 

Fig. 2. Distribution allocation of corresponding 
three types asset returns for FSCA model 

Fig. 3. Improving the efficient frontier of 
tactical allocation with FSCA model 

6   Results and Analysis 

The summary of results obtained in table 1. It conducts comparison based on the two 
types of scenarios in FSCA model and MV model. Under the two types of limitation 
scenarios of permitted to short sell and not permitted to short sell, the Sharpe ratio is 
as the guiding index of portfolio performance evaluation. It is obtained from the table 
that FSCA Model-I possesses corresponding high Sharpe ratio; FSCA Model-II is in 
the second place; MV model is the least and this conforms to the observation inference 

FSCA-I  
FSCA-II  

MV 

 

FSCA-I 
 

FSCA-II 
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and model construction objective. The analytical conclusion is uniform with empirical 
study result. 

Table 1. Comparisons among original Markowitz’s MV Model, FSCA Model-I, & FSCA 
Model-II Model 

Panel A. 
Short sell not  available Short sell available E(Rp)=0.950

MV FSCA-I** FSCA-II* MV FSCA-I** FSCA-II*

E(Rp) 1.098370% 1.238475% 1.231364% 1.111204% 1.247085% 1.230121% 
Annualized E(Rp) 14.006563% 15.810160% 15.782246% 14.180357% 15.901826% 15.743847% 

Var(E(Rp)) 0.143980% 0.162741% 0.132176% 0.144658% 0.167126% 0.132135% 

Sharpe Ratio 43.995541% 51.739465%** 56.531782%* 49.618842% 52.417254%** 55.721324%*

Panel B. 
Short sell not  available Short sell available E(Rp)=1.015

MV FSCA-I** FSCA-II* MV FSCA-I** FSCA-II*

E(Rp) 1.098370% 1.238314% 1.231373% 1.111204% 1.247085% 1.230127% 
Annualized E(Rp) 14.006565% 15.810127% 15.782293% 14.180360% 15.901826% 15.749325% 

Var(E(Rp)) 0.143980% 0.162738% 0.132176% 0.144658% 0.167126% 0.132128% 
Sharpe Ratio 43.995579% 51.737182%** 56.532931%* 49.618932% 52.417254%** 55.721941%*

Panel C. 
Short sell not  available Short sell available E(Rp)=1.080

MV FSCA-I** FSCA-II* MV FSCA-I** FSCA-II*

E(Rp) 1.098373% 1.238318% 1.141762% 1.111205% 1.247088% 1.230116% 
Annualized E(Rp) 14.006602% 15.810129% 13.864215% 14.180362% 15.901899% 15.749300% 

Var(E(Rp)) 0.143981% 0.162738% 0.131274% 0.144658% 0.167126% 0.132128% 
Sharpe Ratio 43.996708% 51.737278%** 56.532941%* 49.619007% 52.417476%** 55.721115%*

*: representing corresponding maximum value 
**: representing secondary corresponding maximum value  

 
Fig. 4 is the sampling comparison diagram of efficient frontier interval of FSCA-I 

and FSCA Model-II. Dotted line is FSCA-I. In the diagram, efficient frontier section of 
FSCA-II including FSCA-I moves forward further and therefore it can generate a 
higher performance and its Sharpe ratio is more realistic. 

 

Fig. 4. The efficient frontier area sampling comparison between FSCA-I and FSCA-II 

7   Conclusion 

The result obtained from this research can amplify a result proposed by [15] in 2000, 
describing an “optimal frontier” as opposed to an underlying “efficient frontier”. Fur-
ther more, we obtain a more efficient frontier then original Markowitz’s optimal fron-
tier, through integrating the scenario-based approach with MV model into global assets 
allocation. 

We also shown how the scenarios-based approach integrated into the portfolio opti-
mization model through: (1) Form a portfolio , then produce major asset and sub-assets; 
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(2) Determine the pre-period expected return of major assets; (3) Performing the lead-
lag analysis via correlation analysis; (4) Incorporate special information from expected 
return, correlation matrix and variance-covariance matrix with a reasonable level of 
active risk and Sharpe ratio; (5) Scenario analysis and modeling; (6) Integrating the 
scenarios clustering and MV optimization; (6) Optimizing the assets allocation. 

The key to these results is the chosen of major asset and the expected return fore-
cast. That is the difference between non-scenarios forecast, MV, with the scenarios 
forecast, FSCA-I & FSCA-II. We also have contrasted the results using the scenarios-
based approach with MV optimization. Form the empirical study of global assets allo-
cation with MSCI contents; our conclusion is that when the two approached are put on 
together, the performance of global assets allocation would be better then original MV 
method. 
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Abstract. A joint source-channel coding (JSCC) scheme based on adaptive 
wavelet pretreatment for robust progressive image transmission over wireless 
fading channels using MIMO-OFDM was proposed. We pointed out that 
he peak signal to noise ratio (PSNR) of the reconstructed image degrades a little 
while the complexity decreases sharply when adding pretreatment block before 
DWT. On the other hand, OFDM can get good performance in the frequency 
selective fading channel. So in this paper, a JSCC scheme based on adaptive 
wavelet pretreatment for image transmission over MIMO-OFDM system was 
analyzed. What`s more, the wavelet pretreatment block is loaded adaptively ac-
cording to the channel condition. Simulation shows that: after adding the pre-
treatment block before DWT and post-treatment to the reconstructed image in 
good channel condition, the complexity of the SPIHT and the channel coder de-
creases sharply due to the compression ratio, but the PSNR of the receivedimage 
loses only a little; when the channel condition is getting worse ,the pretreatment 
block is deleted accordingly.  

1   Introduction 

JSCC has been proven to be very promising to provide reliable image transmission 
while maintaining high transmission efficiency [1][2]. An important means to achieve 
JSCC is to partition source information with different levels of significance so that 
different levels of error protection may be applied as just required [3]. Among these 
methods, the most attractive is the SPIHT based JSCC[4]. However, an image contains 
both low-frequency and high-frequency component. The high-frequency component is 
corresponding to the detail area of the image, which is not sensitive to human vision. If 
we can remove the high frequency component using smooth pretreatment before 
SPIHT code at the transmitter and post-process at the receiver, the data input to 
the SPIHT encoder and the channel encoder can decrease greatly. Hence the wavelet 
and SPIHT encoding complexity decrease also. On the other hand, for high bit-rate 
wireless communications, MIMO-OFDM [5][6] is an attractive technique to be used 
because of its simplicity in dealing with frequency-selective, time dispersive wireless 
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fading channels. So in this paper a JSCC scheme based adaptive wavelet pretreatment 
in connection with MIMO-OFDM is addressed. 

2   Wavelet Pretreatment Principle and the Method 

2.1   Principle of Wavelet Pretreatment 

Suppose the source set is X human vision spectrum is )( fF .In general )( fF is con-

sidered as a low-pass filter, 1F  is the threshold. When use DWT to source X . The 
result shows as follows [7]: 

)()()( 11 XHXLxW FF +=  (1) 

Where )(1 XLF is the low-frequency component, which is often used to estimate 

)(XW , denoted as )(XW . )(1 XH F  is the high-frequency component, which is not 

sensitive to human vision and often viewed as error, denoted as )(xε . If we can 

decrease the data amount of )(1 XH F , the complexity of the DWT and SPIHT encod-

ing will reduce too. 

2.2   The Method of Wavelet Pretreatment 

As we all know, the average operator can smooth an image decrease the high fre-
quency component . So in this paper we use the smooth arithmetic operators to smooth 
the image before DWT and SPIHT encoding. Here the smooth arithmetic operator 

=
11

11

2

1
D  

At the transmitter, smooth the image using smooth arithmetic operators D before 
DWT and SPIHT encoding. In practice operation, the first row and column of the 
image is unchanged, the rest of the image is operated by D , the result is the same as 
the fellows[8]: 

2/)],1(),([),( jiFjiFjiF −+= , 2/)]1,(),([),( −+= jiFjiFjiF  

Where   0< i <image Width, 0< j <image Height 

At the receiver, after SPIHT decoding and Inverse DWT, the opposite operation is 
used to clear the reconstructed image the operators are: 

−
−

=
21

21

2

1
1D  ,   

−−
=

22

11

2

1
2D  

The result can be explained as: 

),1(),(2),( jiFjiFjiF −−= , )1,(),(2),( −−= jiFjiFjiF  
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3   Performance of the JSCC Based on Adaptive Wavelet 
Pretreatment over MIMO-OFDM System 

3.1   The Structure of the Proposed Image Transmission System 

As can be seen from Fig 1, the original image is pretreated before the DWT encoding. 
After the pretreatment, the smoothed image is then put into DWT and SPIHT encoder, 
the progressive bit stream is then CRC encoded to gain protection and then put into 
RS encoder, STBC encoder and at last transmitted after OFDM modulation.  

Fig. 1. The structure of the proposed image transmission system 

3.2   Performance of JSCC Scheme Based on MIMO-OFDM Systems 

Now, the problem considered is as follows. The SPIHT encoded bit stream is to be 
transmitted over OFDM systems using ),( NM STBC encoding. Suppose the trans-

mission rate is SR bpp. There are SN  sub channels in the OFDM and each sub chan-

nel is modulated by a complex symbol from an M-ary modulation. The SPIHT stream 
is packed into L source-packets with iB  bits for packet i  ( i =1,2.. L ) , where L  is 

the total number of  OFDM blocks decided by SR : 

MN

HWR
L

S

S

2log
≤  (2) 

Where H and W  is the dimension of the image, M-ary is the constellation size for 
sub channels. Here we use the same code scheme as mentioned in [9], each sub chan-
nel source packets are CRC-16 outer coded first, CRC is outer code and RS is inner 
code. The resulted blocks of codeword are of equal size and are subsequently trans-
mitted over the channels as OFDM blocks.  

At the receiver, the image is reconstructed only from the decoded bit-stream up to 
the first packet that is error-detected. RS is used as inner code to combat the burst 
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error. Each OFDM block ib is a RS codeword over RS( N , iK ) over GF( m2 ) , where 

mMNN aryS /)log(( 2= is the total number of RS code symbols in each OFDM block, 

and mBK ii /= is the number of RS information symbols in OFDM block ib .We de-

note the error-correction failure probability of OFDM block Libi ...2,1, = as )( ie bP .  

If the first i source-packets are correctly received, the image can be reconstructed 

to a rate 
=

−=
i

j j HWmKR
1

/))16((( bpp. So the JSCC scheme is becoming the 

problem to find a source packet allocation scheme A 1 2{ , ... }LK K K  to maximize the 

PSNR of the reconstruction image [9]: 

∏
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Obviously, It is difficult to compute (3) in practice. An alternative criteria is to use 
the expected number of source bits correctly received as suggested in [10] The result 
is almost the same as the above function, but the complexity decrease greatly. So the 
above problem is re-written as:  
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          (4) 

The optimization solution * * *
1{ ,... }LA K m K m is used to pack the SPIHT bit stream 

and protected by *( , )iRS N K  over (2 )mGF  

The decoding failure probability of a OFDM block ( , )RS N K  over (2 )mGF under 

the assumption of mutual independence of OFDM sub channels is [9]: 

vN
s

v
s

KN

v
ie PP

v

N
bP

i
−

−

=

−−= )1(1)(
2/)(

0

 (5) 

Where SP  is the error probability of RS code symbol ( m  bits per RS code symbol), 

which is:   

/1 (1 )m b
s ceP P  (6) 

Where b  is the number of  bits for each sub-channel symbol, and /m b is the number 
of sub-channel symbols in a RS code symbol. The instantaneous SNR at receiver, 
denoted as cγ , is time-varying. Because the transmitter cannot know the cγ , the JSCC 
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scheme has to be designed for a single SNR, which we call target SNR and denote 
as Tγ . The target SNR is computed for a given probability BP such 

that BTc PP =≤ )( γγ  . By specifying a relatively small BP , the cγ is larger than Tγ  

with high probability and the system performance can be guaranteed. 
For an OFDM system using ( , )M N  STBC, the instant SNR cγ at sub channels 

with a known average receiver SNR cγ is 

=

=
NM

i
i

c
c C

NM
1

2γγ  (7) 

Where iC is the amplitude of complex zero-mean Gaussian random variable with 

variance 0.5 at each dimension. Let 
=

=
NM

i iCx
1

2 , then x  is a 2χ  random variable 

with 2NM-degree freedom. To find the target SNR Tγ  such that BTc PP =≤ )( γγ  

for a given BP , we only need to find a real value y such that BPyxP =≤ )( , then 

using (7) we have: 

NM

yc
T

γγ =  (8) 

After the target SNR Tγ  is obtained, the worst-case sub channel symbol error prob-

ability of Gray-mapped QPSK is: 

)( Tbce bQbPP γ==  (9) 

for a given Tγ at the receiver and a specified BP , the target SNR Tγ can be computed 

using (8), then the BER and sub channel symbol error rate ceP  can be given. By(6)and 

(5), the RS code symbol SER and OFDM block decoding failure probability is com-
puted. Then the optimization solution * * *

1{ ,... }LA K m K m is found using (4). At the 

receiver, the same compute process is used.  

3.3   Realization of Adaptive Wavelet Pretreatment 

From the above discussion, we find that the channel codewords are of equal length, 
the length of source packet in each codeword is different. So we can realize the UEP 
of the SPIHT bits according to the importance to reconstruction. This method is more 
suitable here because the length of the codewords is limited in block data transmission 
scheme for OFDM and RS block codes. 

SPIHT bit stream is progressive, the bit stream is arranged according to the impor-
tance to the image reconstruction. We suppose the importance of bit stream allocated 
to i sub channel is greater than these allocated to 1i sub channel. Eg, 

1 2( ) ( ).... ( )LL C L C L C . So the packet scheme A  is an indication of the channel 

condition. For example, When *
1K  is increasing obviously, this means that the channel 
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condition is getting poor. We should increase the high-frequency component, thus 
weaken the smooth operation. When *

1K  is decreasing, the opposite operation is 

needed. 
In this paper, we use the channel condition indicated by * * *

1 2( , ,..., )LK K K  to choose 

the wavelet pretreatment module, if the important source packet is increasing to a 
threshold, the pretreatment module is withdrawn, On the opposite, the smooth process 
is used to the original image. Here only the length of the most important source 
packet *

1K  is used for simplicity. 

4   Simulation Results 

In simulation, a two-ray channel model with delay spread from 0 to 40 sμ and Dop-

pler frequency from 10 Hz to 200 Hz is used. Two transmit antennas and two receive 
antennas are used for STBC encoding. The entire channel bandwidth, 800 kHz, is 
divided into 128 sub channels. To make the tones orthogonal to each other, the sym-
bol duration is 160 sμ . An additional 40 sμ guard interval is used to provide protec-

tion from ISI due to channel multipath delay spread. QPSK modulation and coherent 
estimation is used with the assumption of perfect channel information at receivers. 
The RS code over is GF( 82 ) used such that each OFDM block has RS code symbols. 
The transmit rate used for all the simulations is 0.5bpp, which is approximately 
equivalent to OFDM blocks. The 256× 256 gray image Lena is used. The simulation 
result is as fellows: 
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Fig. 2. PSNR comparison between different transmission scheme 

Fig 2 shows the PSNR of different transmission scheme. It is clear that: when the chan-
nel condition is good, the performance with wavelet pretreatment is almost the same as 
the scheme without pretreatment; when the channel condition is worse, the pretreat-
ment is removed adaptively to guarantee the PSNR of reconstructed image. Fig 3 and 
Table 1 give a example when Eb/N0 is 9dB, the PSNR lose is less than 3dB (from 
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37.33 to 34.72), but the Compression ratio increase greatly (from20.16% to 62.31%) 
when using the wavelet pretreatment. Fig 4 showed the performance of the JSCC 
scheme when the channel condition is worse (SNR=4dB). It is clear that the distortion 
of reconstructed image with pretreatment is too severe to accept. So the pretreatment 
should be removed adaptively. 

                  
    (a)original image          (b)JSCC without pretreatment     (c)JSCC with pretreatment 

Fig. 3. Received image of “Lena” when (Eb/N0=9dB) 

Table 1. Comparison of the received image form original image and the smoothed image 
(Eb/N0=9dB) 

 Compression ratio after 
SPIHT encoding (%) 

The PSNR of the 
received image 

Without pretreatment 20.16 37.33 
With pretreatment 62.31 34.72 

                                
         (a) JSCC without pretreatment                            (b) JSCC with pretreatment 
(Compression ratio: 21.54%, PSNR: 24.19)            (Compression ratio: 61.73%, PSNR: 16.35) 

Fig. 4. Received image of “Lena” when (Eb/N0=4dB) 

5   Conclusion 

In this paper, an adaptive joint source-channel code transmission scheme for SPIHT 
coded image over frequency selective fading channels is proposed. Space–time block 
coded MIMO-OFDM is used to combat a frequency-selective, time-dispersive wireless 
channel. An adaptive wavelet pretreatment is used before DWT and SPIHT coder 
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according to the channel condition. When the channel is in good condition, the system 
with wavelet pretreatment can get almost the same PSNR performance as the system 
with no wavelet pretreatment, but the compute complexity of the DWT and SPIHT 
reduce sharply; when the channel condition is poor, the wavelet pretreatment is 
omitted. What`s more, the change of the most important source packet size is used to 
indicate the channel condition. Simulation results show that this scheme is robust to 
different Doppler and multipath delay spread in wireless communications. 
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González de-la-Rosa, Juan-José 750
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