
A. Levi et al. (Eds.): ISCIS 2006, LNCS 4263, pp. 267 – 276, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An ILP Formulation for Task Scheduling on
Heterogeneous Chip Multiprocessors

Suleyman Tosun1, Nazanin Mansouri2, Mahmut Kandemir3,
and Ozcan Ozturk3

1 Computer Engineering Department, Selcuk University, Konya, Turkey
stosun@selcuk.edu.tr

2 EECS Department, Syracuse University, Syracuse, NY, USA
namansou@ecs.syr.edu

3 Computer Science and Engineering Department, The Pennsylvania State University,
University Park, PA, USA

{kandemir, ozturk}@cse.psu.edu

Abstract. One of the main difficuties to map an embedded application onto a
multiprocessor architecture is that there are multiple ways of this mapping due
to several constraints. In this paper, we present an Integer Linear Programming
based framework that maps a given application (represented as a task graph)
onto a Heterogeneous Chip Multiprocessor architecture. Our framework can be
used with several objective functions such as energy, performance, and
fallibility (opposite of reliability). We use Dynamic Voltage Scaling (DVS) for
reducing energy consumption while we employ task duplication to minimize
fallibility. Our experimental results show that over 50% improvements on
energy consumption are possible by using DVS, and the fully task duplicated
schedules can be achieved under tight performance and energy bounds.

Keywords: Reliability, duplication, energy minimization, DVS, heterogeneous
chip multiprocessors.

1 Introduction

Increasing complexity of embedded applications and their large dataset sizes make it
imperative to consider novel embedded architectures that are efficient from both
performance and power angles. Heterogeneous Chip Multiprocessors (HCM) are one
such example where multiple processor cores are placed into the same die. While it is
possible to put together multiple processor cores, interconnect and necessary memory
components and build an HCM architecture, programming it in an effective manner is
an entirely different matter.

The main difficulty comes from the fact that there are typically multiple ways of
mapping a given embedded application to HCM. Favoring one way over the other
is not easy, as it depends strongly on the constraints to be met and the objective
function to be optimized. In particular, a typical real-time execution environment may
demand proper balancing among different metrics such performance, power/energy,

268 S. Tosun et al.

code/ memory size, and reliability/fault tolerance. Therefore, software optimizers and
other automated tools can be of great help in such situations since they can optimize
the input code automatically under multiple criteria and a given objective function.
Unfortunately, with a couple of exceptions, most of the previously proposed
optimization frameworks in the literature exclusively target at minimizing the
execution cycles of the application code. The power, code/data size, and reliability
aspects of doing so have received relatively less attention.

In this paper, our goal is to map a given real-time embedded application
(represented as a task graph) onto an HCM architecture. This mapping is implemented
within a publicly available ILP (integer linear programming) tool [1] and operates
under an objective function and multiple criteria (constraints). The objective function
to be optimized and constraints to be satisfied can be functions of energy,
performance or fallibility (opposite of reliability). Therefore, our framework can be
used for three different purposes: (1) maximizing performance under energy and
fallibility constraints; (2) minimizing energy under performance and fallibility
constraints; and (3) minimizing fallibility under performance and energy constraints.

What makes this problem even more interesting is the fact that each processor in
the HCM architecture can have different characteristics from the others in terms of
maximum clock speed, available voltage/frequency levels (that could be used for
reducing energy consumption), attached memory capacity, etc.. We use Dynamic
Voltage Scaling (DVS) for reducing energy consumption while we employ task
duplication to minimize fallibility. Our experimental evaluation shows that, with a
small increase in energy consumption or a small decrease in performance, we can
have designs with zero fallibility (i.e., all tasks are duplicated). In addition, by
employing voltage scaling, we reduce the energy consumption over 50% as compared
to the case where no voltage scaling is used.

The remaining of this paper is organized as follows. In the next section, we review
related work. In Section 3, we explain performance, energy, and fallibility metrics and
describe our task graph model and our target architecture. In Section 3, we give our
ILP formulation and objective functions. We discuss the experimental results in
Section 4. Finally, we conclude the paper in Section 5.

2 Related Work

Dynamic Voltage Scaling (DVS) has been a promising energy reduction technique
since Weiser et al. [2] introduced the idea to the community. Exploiting the
availability of the processors that run on multiple voltages, most of the prior work
focused on using voltage scaling as the primary energy reduction technique. While
some researchers used ILP for voltage selection [3], others employed heuristic
approaches to find the solutions faster [4]. However, such studies do not take
reliability related issues into account. There are also several research efforts at the
system level focusing on reliability-aware high-level synthesis [5] and hardware/
software co-design [6], [7]. In [7], for example, Xie et al. employs duplication to
improve the reliability of the design. However, they do not consider the energy
consumption introduced by adding new tasks to the system. We reported the

 An ILP Formulation for Task Scheduling on Heterogeneous Chip Multiprocessors 269

preliminary version of this work in [8]. Our work differs from the prior studies in at
least two aspects. First, we embed the energy consumption and the fallibility
(reliability) metrics at the same time into the scheduling problem unlike above
mentioned efforts. Second, our approach is flexible in that it can optimize any of
several objective metrics, such as the fallibility, energy consumption, and/or
performance, based on a set of constraints. To the best of our knowledge, this is the
first study that integrates all these three important parameters in a framework that
targets heterogeneous chip multiprocessors.

3 Preliminaries

Dynamic voltage scaling (DVS) is one of the most commonly used techniques to
reduce the energy consumption of the tasks in the design. Its attraction comes from
the fact that tasks consume less energy (proportional to the square of the supply
voltage) when they run under low supply voltages. However, the drawback is that
they also take more time (proportional to the supply voltage) to execute. When a task
executes on a lower voltage, its WCET increases at a rate which is proportional to the
following expression:

α).(

.

t

L

vvk

vC
t

−
= , (1)

where CL is the output load capacitance of the circuit, k is a constant that depends on
the process technology employed and gate size, vt is the threshold voltage, and α is a
variable that ranges between 1.2 and 2. In this paper, we assume α is 2 and vt is 0.6V
for our numerical evaluations. Consequently, if the WCET and energy consumption
of a task when using a high voltage vh is known, its corresponding WCET and energy
consumption on a lower voltage vj can be determined by the following expressions:

2

.. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
tl

th

h

l
vv

vv

vv

v

v
tt

hl
 and

2

. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

h

l
vv

v

v
EE

hl
 (2)

In this work, we assume that we know the worst case execution times and energy
consumptions of the tasks when using the highest voltage/frequency level available
for each processor in our HCM.

Our next concern in this paper is to minimize the fallibility (maximize the
reliability) of the design. To do this, we introduce duplication to the task graph. The
duplicated tasks in our designs can be the exact copy of the primary tasks or the
scaled down versions of them (as a result of voltage scaling). When a task is
duplicated, we also add a checker circuitry to check the correctness of the
computation. As our reliability metric, we use the percentage of duplicated tasks in
the design. The fallibility of the design is the opposite of the reliability value, which is
the number of tasks that are not duplicated.

We use a task graph to represent the given embedded application. Task graph is a
directed-acyclic graph where vertices (nodes) represent the tasks and edges represent

270 S. Tosun et al.

the dependencies among these tasks. An example task graph is given in Figure 1(a).
For a given task graph, we add source (t0) and sink (tn-1) tasks to make our scheduling
formulations simpler. In Figure 1(a), tasks 0 and 4 are the source and sink tasks,
respectively. The deadline is the maximum allowed time that a task should finish its
execution. While each task in the graph may have its own deadline, in this work, we
use a single deadline for the entire task graph, though our approach can be extended to
handle the case where multiple nodes have their own deadlines. A fully duplicated
task graph example is shown in Figure 1(b).

The target architecture has an important role in our framework. Its configuration
affects the resulting design in many aspects such as performance, cost, and energy
consumption. In our target architecture, each processor has its own memory and the
communication between processors (tasks) is conducted via shared bus. In fact, the
mapping of each task onto a processor may result in different memory area
consumption and communication overhead. These problems (minimizing the memory
cost and communication overhead) have been studied extensively in the literature, and
they are beyond the scope of this work. In Figure 1(c), we illustrate a possible
mapping of fully duplicated task graph (shown in Figure 1(b)) onto our target
architecture. In this figure, we assume that we have only two processors, each
differing in clock speed/frequency, energy/power consumption, and memory
consumption (cost). As can be seen from this figure, we may map the primary task
and its duplicate onto the same processor or onto the different processors to minimize
our objective function. However, mapping the primary task and its duplicate onto the
same processor may cause a problem if that processor (specifically, its data path) is
faulty. This is because; the results of a task and its duplicate on a faulty processor will
be the same and faulty. However, these faulty results will be passed as correct results,
since both the faulty results will be the same as far as the checker circuitry is
concerned. This can be avoided by forcing the duplicate of a task to be executed on a
different processor, which brings extra energy consumption since the duplicate of the
task will not be mapped to its best alternative.

 (a) (b) (c)

Fig. 1. (a) An example task graph, (b) its fully duplicated version, (c) a possible mapping of
fully duplicated task graph onto the target architecture with two processors

 An ILP Formulation for Task Scheduling on Heterogeneous Chip Multiprocessors 271

4 Task Scheduling

In this section, we give our ILP formulation for the task scheduling problem. First, we
define a binary variable bi,j,v, which indicates whether task i is assigned to processor j
that runs under voltage level v. The duplicates may not necessarily be assigned to a
processor since we may not know if a node is duplicated or not. The duplication
criterion depends on the energy, fallibility, and/or performance constraints.
Expressions (3) and (4) capture this constraint. In these expressions, n, m, and o
represent the number of tasks, processors, and voltage levels, respectively.

∑∑
= =

=
m

j

o

v
vjib

1 1
,, 1 , nii <≤∀ 0: (3)

∑∑
= =

≤
m

j

o

v
vjib

1 1
,, 1, 22: −<≤∀ nini (4)

Next, we need to assign the most appropriate execution time di and energy
consumption Ei values to the tasks and their duplicates. For each task, we have several
alternatives for both the execution time and energy consumption values since these
values can vary depending on the processor used. Additionally, these values will be
different for each voltage level on a processor. We then assign these time and energy
values to each task using the expressions below. In these expressions, ti,j,v and Ei,j,v are
the WCET and energy consumption, respectively, of task i on processor j that runs
under voltage level v.

:i∀ ∑∑
= =

=
m

j

o

v
vjivjii btd

1 1
,,,, . and ∑∑

= =
=

m

j

o

v
vjivjii bEE

1 1
,,,, . (5)

Each task i and its duplicate must be assigned a start time si, an integer variable
that we define as:

:i∀ ii dls −≤≤0 , (6)

where l is the deadline and di is the WCET of task i.
In order to ensure the correct execution order for the tasks, the sequencing

constraints must be satisfied. This means that a task can start its execution only after
its predecessors have finished their executions (i.e., no task can start its execution
unless all its input data are available). To express the sequencing constraints, we need
to know when a task finishes its execution. As we mentioned earlier, some of the
tasks may be duplicated. After each task and its duplicate, we need to insert a checker
circuitry (an additional node in the task graph), which introduces some extra delay to
the design. As a result, we should add the delay of the checker after the task and its
duplicate complete their executions. To do this, we need to know which one finishes
its execution later so that we add the delay of the checker circuitry to this task.
Consequently, we define a binary variable ci,k, which is set 1 when task i finishes its
execution later than its duplicate k (k=i+n-1). Expressions (7), (8), and (9) below are

272 S. Tosun et al.

used to capture this constraint, where eti is the finish time of a task, disregarding the
checker circuitry:

:i∀ iii dset += , (7)

1).1(, −+≤− kiki cletet , nii <≤∀ 0: (8)

kiik clletet ,).1(+−≤− , nii <≤∀ 0: (9)

We then define a binary variable ri, which is set to one if task i is duplicated:

∑∑
= =

=
m

j

o

v
vjii br

1 1
,, , 22: −<≤∀ nini (10)

We combine binary variables ci,k and ri from Expressions (8), (9), and (10) to
obtain binary variable chi, given in Expression (11), which is set to 1 if task i is
duplicated and it finishes its execution later than its duplicate. We then add the
checker delay tch to the end time eti of the task i to find the exact end time ei of the
task after checker insertion, if the task is duplicated.

1, −+≥ ikii rcch , nii <≤∀ 0: (11)

ichii chtete .+= , nii <≤∀ 0: (12)

)1.(,1 inichii ctete +−−+= , 22: −<≤∀ nini (13)

Expressions (14) and (15) below ensure that the tasks and their duplicates start
execution after their predecessor and predecessors’ duplicates complete. In these
expressions, Edge represents the edge set, where the existence of an edge (i, k) in this
set means task k is a direct successor of task i.

1−+≥∧≥ nikik eses , (14)

111 .. −+−+−+ ≥−+∧≥−+ niknkiknk erllserlls , (15)

 Edgekinkiki ∈<<∀),(;,0:,

An additional timing constraint states that there cannot be two tasks on the same
processor with overlapping time frames. We formulate this constraint by adopting an
approach similar to that used in [9]. Specifically, we define a binary variable ai,k,
which is set to one if tasks i and k are scheduled on the same processor. We use the
following expression:

jki ,,∀ such that ji > ; ∑ ∑
= =

−+≥
o

v

o

v
vjkvjiki bba

1 1
,,,,, 1 . (16)

If task i starts its execution earlier than task k, then binary variable fi,k is set to 1:

jki ,,∀ such that ji > ; 1).1(, −+≤− kiik flss , (17)

jki ,,∀ such that ji > ; kiki fllss ,).1(+−≤− , (18)

 An ILP Formulation for Task Scheduling on Heterogeneous Chip Multiprocessors 273

Finally, we adopt the following expressions from [9], which ensure that there will
be no two tasks that are mapped onto the same processor and their execution times
overlap with each other.

jki ,,∀ such that ji > lafets kikiik).23(,, −−−≥ , (19)

jki ,,∀ such that ji > lafets kikiki).22(,, +−−≥ , (20)

As we explained in Section 2, the duplicate of a task may be forced to be mapped
onto a different processor. The following expression captures this constraint.

:, ji∀ 1)(,,1
1

,, ≤+ +−
=
∑ vjin

o

v
vji bb (21)

Expressions (22), (23), and (24) below give the fallibility, performance, and energy
consumption constraints of the design respectively.

∑ ∑∑
−

= = =
−−≥

22

1 1
,,2

n

ni

m

j

o

v
vjis bnF (22)

 lsn ≤−1 (23)

 max
2

1

EETE
n

i
i ≤=∑

=
 (24)

In this paper, we focus on three different objective functions:
Minimize energy under fallibility (Fs) and performance (l) constraints.

MIN: ∑
=

=
n

i
iETE

2

1
under Expressions (22) and (23).

Minimize fallibility (i.e., maximize the number of duplicated tasks) under
performance (l) and energy (Emax) constraints.

MIN: ∑ ∑∑
−

= = =
−−

22

1 1
,,2

n

ni

m

j

o

v
vjibn under Expressions (23) and (24).

Minimize execution time of the task graph (i.e., maximize performance) under
energy and fallibility constraints.

MIN: 1−ns under Expressions (22) and (23).

5 Experimental Results

In this section, we test the impact of our approach through two sets of experiments,
each having a different objective function and a different set of constraints to be

274 S. Tosun et al.

satisfied. In our experiments, we use task graphs extracted from embedded appli
cations; namely, G721decode and G721encode from Mediabench, Mismatch_test
from Trimaran GUI, and a custom task graph tg01. Since a uniprocessor system is a
special case of an HCM, we consider HCMs from two to five heterogeneous
processors in our experiments. For each processor, we employ five different levels of
supply voltages. These voltage levels range from 2.0V to 3.3V (specifically, 2.0V,
2.4V, 2.7V, 3.0V, and 3.3V). We tested our approach on randomly generated task
graphs as well. However, due to lack of space, we report only one of the experiments
(Experiment 2) here.

Experiment 1: In our first set of experiments, we study the impact of voltage scaling
on energy reduction. We also show how fallibility affects the energy improvement
brought by voltage scaling. To do this, we scheduled three benchmarks (G721encode,
G721decode, and Mismatch_test) under a fixed performance constraint. We assume
that we have three processors and three voltage levels (2.0V, 2.7V, and 3.3V) in our
target architecture. Then, we change the percentage of duplicated tasks from 0% to
100%. Note that under given performance constraints, we may not be able to fully
duplicate the given task graph.

In Figures 2(a), 2(b), and 2(c), we give the comparisons of energy consumptions
with and without dynamic voltage scaling (DVS) under a fixed performance cons
traint for G721encode, G721decode, and Mismatch_test benchmarks, respectively. In
Figure 2(d), we summarize the percentage energy improvements brought by our
approach over a scheme that does not use DVS. As can be seen from this bar-chart,
when we increase the number of duplicated tasks in the design the energy
improvement reduces. This is because when we add more duplicated task to the
design, we may not scale down all the tasks to meet the performance bound, resulting
in less energy improvement (i.e., our energy consumption will be closer to the energy
consumption of the scheme without DVS when we decrease fallibility).

Experiment 2: In this set of experiments, we schedule the task graph tg01 under
different performance and energy bounds, with the objective of minimizing fallibility.
For the target architecture, we assume that we have three processors that can use three
different supply voltages. In Figure 3, we show how the percentage of duplicated tasks
changes as a function of the different energy and performance bounds. As can be seen
from this bar-chart, a very small energy and/or performance bound relaxation allows us
to duplicate more tasks. Beyond certain performance and energy bounds, however,
increasing the bounds further does not bring any additional improvements on fallibility
since the application reaches its maximum energy savings under the given deadline,
and the fallibility is minimized to zero (i.e., the task graph is 100% duplicated).

Our experiments show how the proposed ILP-based approach can be used
effectively for scheduling a real-time embedded application on an HCM under several
constraints, and for optimizing the desired cost function. It can be observed that our
approach is flexible in the sense that it can be employed for several scheduling
problems from simple schedules that do not consider fault-tolerance and/or power to
very complex schedules that involve all three metrics in some fashion.

 An ILP Formulation for Task Scheduling on Heterogeneous Chip Multiprocessors 275

Fig. 2. Energy consumptions under different percentage of duplicated tasks with and without
DVS for (a) G721encode, (b) G721decode, and (c) Mismatch_test benchmarks, and (d) the
percentage energy improvements brought by our approach

Fig. 3. Maximum percentage values of duplicated tasks with respect to energy and performance
bounds for tg01

One of the concerns for ILP based approaches is the solution time required for the
given problem, depending highly on its complexity. When the complexity increases,
producing an output using an ILP can become too time-consuming, sometimes even
impossible in a reasonable amount of time. In our experiments, the CPU time of the

276 S. Tosun et al.

solutions ranges from one (1) second to 140 minutes. However, most of the solution
times were less than 10 minutes. In fact, we calculated the average CPU time for all
the experiments as 15 minutes. We believe that these solution times are not excessive.
Moreover, in our experiments, we use a UNIX machine with a sparcv9 processor
operates at 360 MHz, and its memory size is 128 MegaBytes. Using a faster processor
and a better solver can further reduce these solution times.

6 Conclusions

In this paper, we presented an ILP (Integer Linear Programming) based framework
that maps a given application (represented as a task graph) onto an HCM
(Heterogeneous Chip Multiprocessor) architecture. We showed how our framework
can be used in conjunction with several objective functions, namely, energy,
performance, and fallibility. We illustrated the effectiveness of our approach on
several benchmarks.

References

1. M. Berkelaar, K. Eikland, and P. Notebaert, “lp_solve: Open source (Mixed-Integer) Linear
Programming system”, Version 5.0.0.0. dated 1 May 2004.

2. M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for reduced CPU energy”,
In Proceedings of the 1st Symposium on Operating Systems Design and Implementation, 1994.

3. T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynamically variable voltage
processors”, Proc. of the 1998 International Symposium on Low Power Electronics and
Design, 1998.

4. J. Luo and N. K. Jha, “Power-Conscious Joint Scheduling of Periodic Task Graphs and
Aperiodic Tasks in Distributed Real-Time Embedded Systems”, ICCAD, 2000.

5. S. Tosun, N. Mansouri, E. Arvas, M. Kandemir, and Y. Xie, “Reliability-Centric High-
Level Synthesis”, Proceedings of the Design, Automation and Test in Europe (DATE'05), 2005.

6. C. Bolchini, L.Pomante, F.Salice and D.Sciuto, “A System Level Approach in Design Dual-
Duplex Fault Tolerant Embedded Systems,” Online Testing Workshop, 2002.

7. Y. Xie, L. Li, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin, "Reliability-Aware Co-
synthesis for Embedded Systems", in Proceedings of IEEE 15th International Conference on
Application-specific Systems, Architectures and Processors (ASAP'04), pp. 41-50,
September 2004.

8. S. Tosun, N. Mansouri, M. Kandemir, and O. Ozturk, “Constraint-Based Code Mapping for
Heterogeneous Chip Multiprocessors”, IEEE International SOC Conference (SOCC 2005),
Washington, D.C., September 2005.

9. S. Prakash and A. C. Parker, “SOS: Synthesis of Application-Specific Heterogeneous
Multiprocessor Systems'', Journal of Parallel and Distributed Computing, December 1992,
Vol. 16, pp. 338-351.

	Introduction
	Related Work
	Preliminaries
	Task Scheduling
	Experimental Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

