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Abstract. One of the main difficuties to map an embedded application onto a 
multiprocessor architecture is that there are multiple ways of this mapping due 
to several constraints. In this paper, we present an Integer Linear Programming 
based framework that maps a given application (represented as a task graph) 
onto a Heterogeneous Chip Multiprocessor architecture. Our framework can be 
used with several objective functions such as energy, performance, and 
fallibility (opposite of reliability). We use Dynamic Voltage Scaling (DVS) for 
reducing energy consumption while we employ task duplication to minimize 
fallibility. Our experimental results show that over 50% improvements on 
energy consumption are possible by using DVS, and the fully task duplicated 
schedules can be achieved under tight performance and energy bounds.   

Keywords: Reliability, duplication, energy minimization, DVS, heterogeneous 
chip multiprocessors. 

1   Introduction 

Increasing complexity of embedded applications and their large dataset sizes make it 
imperative to consider novel embedded architectures that are efficient from both 
performance and power angles. Heterogeneous Chip Multiprocessors (HCM) are one 
such example where multiple processor cores are placed into the same die. While it is 
possible to put together multiple processor cores, interconnect and necessary memory 
components and build an HCM architecture, programming it in an effective manner is 
an entirely different matter. 

The main difficulty comes from the fact that there are typically multiple ways of 
mapping a given embedded application to HCM. Favoring one way over the other  
is not easy, as it depends strongly on the constraints to be met and the objective 
function to be optimized. In particular, a typical real-time execution environment may 
demand proper balancing among different metrics such performance, power/energy, 
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code/ memory size, and reliability/fault tolerance. Therefore, software optimizers and 
other automated tools can be of great help in such situations since they can optimize 
the input code automatically under multiple criteria and a given objective function. 
Unfortunately, with a couple of exceptions, most of the previously proposed 
optimization frameworks in the literature exclusively target at minimizing the 
execution cycles of the application code. The power, code/data size, and reliability 
aspects of doing so have received relatively less attention.  

In this paper, our goal is to map a given real-time embedded application 
(represented as a task graph) onto an HCM architecture. This mapping is implemented 
within a publicly available ILP (integer linear programming) tool [1] and operates 
under an objective function and multiple criteria (constraints). The objective function 
to be optimized and constraints to be satisfied can be functions of energy, 
performance or fallibility (opposite of reliability). Therefore, our framework can be 
used for three different purposes: (1) maximizing performance under energy and 
fallibility constraints; (2) minimizing energy under performance and fallibility 
constraints; and (3) minimizing fallibility under performance and energy constraints. 

What makes this problem even more interesting is the fact that each processor in 
the HCM architecture can have different characteristics from the others in terms of 
maximum clock speed, available voltage/frequency levels (that could be used for 
reducing energy consumption), attached memory capacity, etc.. We use Dynamic 
Voltage Scaling (DVS) for reducing energy consumption while we employ task 
duplication to minimize fallibility. Our experimental evaluation shows that, with a 
small increase in energy consumption or a small decrease in performance, we can 
have designs with zero fallibility (i.e., all tasks are duplicated). In addition, by 
employing voltage scaling, we reduce the energy consumption over 50% as compared 
to the case where no voltage scaling is used. 

The remaining of this paper is organized as follows. In the next section, we review 
related work. In Section 3, we explain performance, energy, and fallibility metrics and 
describe our task graph model and our target architecture. In Section 3, we give our 
ILP formulation and objective functions. We discuss the experimental results in 
Section 4. Finally, we conclude the paper in Section 5. 

2   Related Work 

Dynamic Voltage Scaling (DVS) has been a promising energy reduction technique 
since Weiser et al. [2] introduced the idea to the community. Exploiting the 
availability of the processors that run on multiple voltages, most of the prior work 
focused on using voltage scaling as the primary energy reduction technique. While 
some researchers used ILP for voltage selection [3], others employed heuristic 
approaches to find the solutions faster [4]. However, such studies do not take 
reliability related issues into account. There are also several research efforts at the 
system level focusing on reliability-aware high-level synthesis [5] and hardware/ 
software co-design [6], [7]. In [7], for example, Xie et al. employs duplication to 
improve the reliability of the design. However, they do not consider the energy 
consumption introduced by adding new tasks to the system.  We reported the 
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preliminary version of this work in [8]. Our work differs from the prior studies in at 
least two aspects. First, we embed the energy consumption and the fallibility 
(reliability) metrics at the same time into the scheduling problem unlike above 
mentioned efforts.  Second, our approach is flexible in that it can optimize any of 
several objective metrics, such as the fallibility, energy consumption, and/or 
performance, based on a set of constraints. To the best of our knowledge, this is the 
first study that integrates all these three important parameters in a framework that 
targets heterogeneous chip multiprocessors. 

3   Preliminaries  

Dynamic voltage scaling (DVS) is one of the most commonly used techniques to 
reduce the energy consumption of the tasks in the design. Its attraction comes from 
the fact that tasks consume less energy (proportional to the square of the supply 
voltage) when they run under low supply voltages. However, the drawback is that 
they also take more time (proportional to the supply voltage) to execute. When a task 
executes on a lower voltage, its WCET increases at a rate which is proportional to the 
following expression: 
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where CL is the output load capacitance of the circuit, k  is a constant that depends on 
the process technology employed and gate size, vt is the threshold voltage, and α is a 
variable that ranges between 1.2 and 2. In this paper, we assume α is 2 and vt is 0.6V 
for our numerical evaluations.  Consequently, if the WCET and energy consumption 
of a task when using a high voltage vh is known, its corresponding WCET and energy 
consumption on a lower voltage vj can be determined by the following expressions: 
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In this work, we assume that we know the worst case execution times and energy 
consumptions of the tasks when using the highest voltage/frequency level available 
for each processor in our HCM.  

Our next concern in this paper is to minimize the fallibility (maximize the 
reliability) of the design. To do this, we introduce duplication to the task graph. The 
duplicated tasks in our designs can be the exact copy of the primary tasks or the 
scaled down versions of them (as a result of voltage scaling). When a task is 
duplicated, we also add a checker circuitry to check the correctness of the 
computation. As our reliability metric, we use the percentage of duplicated tasks in 
the design. The fallibility of the design is the opposite of the reliability value, which is 
the number of tasks that are not duplicated.     

We use a task graph to represent the given embedded application. Task graph is a 
directed-acyclic graph where vertices (nodes) represent the tasks and edges represent 
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the dependencies among these tasks. An example task graph is given in Figure 1(a). 
For a given task graph, we add source (t0) and sink (tn-1) tasks to make our scheduling 
formulations simpler. In Figure 1(a), tasks 0 and 4 are the source and sink tasks, 
respectively. The deadline is the maximum allowed time that a task should finish its 
execution. While each task in the graph may have its own deadline, in this work, we 
use a single deadline for the entire task graph, though our approach can be extended to 
handle the case where multiple nodes have their own deadlines. A fully duplicated 
task graph example is shown in Figure 1(b).   

The target architecture has an important role in our framework. Its configuration 
affects the resulting design in many aspects such as performance, cost, and energy 
consumption. In our target architecture, each processor has its own memory and the 
communication between processors (tasks) is conducted via shared bus. In fact, the 
mapping of each task onto a processor may result in different memory area 
consumption and communication overhead. These problems (minimizing the memory 
cost and communication overhead) have been studied extensively in the literature, and 
they are beyond the scope of this work. In Figure 1(c), we illustrate a possible 
mapping of fully duplicated task graph (shown in Figure 1(b)) onto our target 
architecture. In this figure, we assume that we have only two processors, each 
differing in clock speed/frequency, energy/power consumption, and memory 
consumption (cost). As can be seen from this figure, we may map the primary task 
and its duplicate onto the same processor or onto the different processors to minimize 
our objective function. However, mapping the primary task and its duplicate onto the 
same processor may cause a problem if that processor (specifically, its data path) is 
faulty. This is because; the results of a task and its duplicate on a faulty processor will 
be the same and faulty. However, these faulty results will be passed as correct results, 
since both the faulty results will be the same as far as the checker circuitry is 
concerned. This can be avoided by forcing the duplicate of a task to be executed on a 
different processor, which brings extra energy consumption since the duplicate of the 
task will not be mapped to its best alternative.  

 
         (a)                                       (b)                                                               (c)               

Fig. 1. (a) An example task graph, (b) its fully duplicated version, (c) a possible mapping of 
fully duplicated task graph onto the target architecture with two processors 
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4   Task Scheduling 

In this section, we give our ILP formulation for the task scheduling problem. First, we 
define a binary variable bi,j,v, which indicates whether task i is assigned to processor j 
that runs under voltage level v. The duplicates may not necessarily be assigned to a 
processor since we may not know if a node is duplicated or not. The duplication 
criterion depends on the energy, fallibility, and/or performance constraints. 
Expressions (3) and (4) capture this constraint. In these expressions, n, m, and o 
represent the number of tasks, processors, and voltage levels, respectively. 
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Next, we need to assign the most appropriate execution time di and energy 
consumption Ei values to the tasks and their duplicates. For each task, we have several 
alternatives for both the execution time and energy consumption values since these 
values can vary depending on the processor used. Additionally, these values will be 
different for each voltage level on a processor. We then assign these time and energy 
values to each task using the expressions below. In these expressions, ti,j,v and Ei,j,v are 
the WCET and energy consumption, respectively, of task i on processor j that runs 
under voltage level v. 
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Each task i and its duplicate must be assigned a start time si, an integer variable 
that we define as: 

:i∀ ii dls −≤≤0 ,                                                (6) 

where l is the deadline and di is the WCET of task i. 
In order to ensure the correct execution order for the tasks, the sequencing 

constraints must be satisfied. This means that a task can start its execution only after 
its predecessors have finished their executions (i.e., no task can start its execution 
unless all its input data are available). To express the sequencing constraints, we need 
to know when a task finishes its execution. As we mentioned earlier, some of the 
tasks may be duplicated. After each task and its duplicate, we need to insert a checker 
circuitry (an additional node in the task graph), which introduces some extra delay to 
the design. As a result, we should add the delay of the checker after the task and its 
duplicate complete their executions. To do this, we need to know which one finishes 
its execution later so that we add the delay of the checker circuitry to this task. 
Consequently, we define a binary variable ci,k, which is set 1 when task i finishes its 
execution later than its duplicate k (k=i+n-1). Expressions (7), (8), and (9) below are 
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used to capture this constraint, where eti is the finish time of a task, disregarding the 
checker circuitry: 

:i∀ iii dset += ,                                                                             (7) 
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We then define a binary variable ri, which is set to one if task i is duplicated: 
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We combine binary variables ci,k and ri from Expressions (8), (9), and (10) to 
obtain binary variable chi, given in Expression (11), which is set to 1 if task i is 
duplicated and it finishes its execution later than its duplicate. We then add the 
checker delay tch to the end time eti of the task i to find the exact end time ei of the 
task after checker insertion, if the task is duplicated. 

1, −+≥ ikii rcch , nii <≤∀ 0:                                                   (11) 

ichii chtete .+= , nii <≤∀ 0:                                                 (12) 
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Expressions (14) and (15) below ensure that the tasks and their duplicates start 
execution after their predecessor and predecessors’ duplicates complete. In these 
expressions, Edge represents the edge set, where the existence of an edge (i, k) in this 
set means task k is a direct successor of task i.  
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An additional timing constraint states that there cannot be two tasks on the same 
processor with overlapping time frames. We formulate this constraint by adopting an 
approach similar to that used in [9]. Specifically, we define a binary variable ai,k, 
which is set to one if tasks i and k are scheduled on the same processor. We use the 
following expression: 
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If task i starts its execution earlier than task k, then binary variable fi,k is set to 1:  

jki ,,∀ such that ji > ;   1).1( , −+≤− kiik flss ,                         (17) 

jki ,,∀ such that ji > ;    kiki fllss ,).1( +−≤− ,                        (18) 
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Finally, we adopt the following expressions from [9], which ensure that there will 
be no two tasks that are mapped onto the same processor and their execution times 
overlap with each other. 

jki ,,∀ such that ji >      lafets kikiik ).23( ,, −−−≥ ,                  (19) 
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As we explained in Section 2, the duplicate of a task may be forced to be mapped 
onto a different processor. The following expression captures this constraint. 
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Expressions (22), (23), and (24) below give the fallibility, performance, and energy 
consumption constraints of the design respectively. 
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In this paper, we focus on three different objective functions: 
Minimize energy under fallibility (Fs) and performance (l) constraints.  
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under Expressions (22) and (23). 

Minimize fallibility (i.e., maximize the number of duplicated tasks) under 
performance (l) and energy (Emax) constraints.  

MIN: ∑ ∑∑
−

= = =
−−

22

1 1
,,2

n

ni

m

j

o

v
vjibn under Expressions (23) and (24). 

Minimize execution time of the task graph (i.e., maximize performance) under 
energy and fallibility constraints. 

MIN: 1−ns under Expressions (22) and (23). 

5   Experimental Results 

In this section, we test the impact of our approach through two sets of experiments, 
each having a different objective function and a different set of constraints to be  
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satisfied. In our experiments, we use task graphs extracted from embedded appli 
cations; namely, G721decode and G721encode from Mediabench, Mismatch_test 
from Trimaran GUI, and a custom task graph tg01. Since a uniprocessor system is a 
special case of an HCM, we consider HCMs from two to five heterogeneous 
processors in our experiments. For each processor, we employ five different levels of 
supply voltages. These voltage levels range from 2.0V to 3.3V (specifically, 2.0V, 
2.4V, 2.7V, 3.0V, and 3.3V).  We tested our approach on randomly generated task 
graphs as well. However, due to lack of space, we report only one of the experiments 
(Experiment 2) here. 

 

Experiment 1: In our first set of experiments, we study the impact of voltage scaling 
on energy reduction. We also show how fallibility affects the energy improvement 
brought by voltage scaling. To do this, we scheduled three benchmarks (G721encode, 
G721decode, and Mismatch_test) under a fixed performance constraint. We assume 
that we have three processors and three voltage levels (2.0V, 2.7V, and 3.3V) in our 
target architecture. Then, we change the percentage of duplicated tasks from 0% to 
100%. Note that under given performance constraints, we may not be able to fully 
duplicate the given task graph. 

In Figures 2(a), 2(b), and 2(c), we give the comparisons of energy consumptions 
with and without dynamic voltage scaling (DVS) under a fixed performance cons 
traint for G721encode, G721decode, and Mismatch_test benchmarks, respectively. In 
Figure 2(d), we summarize the percentage energy improvements brought by our 
approach over a scheme that does not use DVS. As can be seen from this bar-chart, 
when we increase the number of duplicated tasks in the design the energy 
improvement reduces. This is because when we add more duplicated task to the 
design, we may not scale down all the tasks to meet the performance bound, resulting 
in less energy improvement (i.e., our energy consumption will be closer to the energy 
consumption of the scheme without DVS when we decrease fallibility). 

Experiment 2: In this set of experiments, we schedule the task graph tg01 under 
different performance and energy bounds, with the objective of minimizing fallibility. 
For the target architecture, we assume that we have three processors that can use three 
different supply voltages. In Figure 3, we show how the percentage of duplicated tasks 
changes as a function of the different energy and performance bounds. As can be seen 
from this bar-chart, a very small energy and/or performance bound relaxation allows us 
to duplicate more tasks. Beyond certain performance and energy bounds, however, 
increasing the bounds further does not bring any additional improvements on fallibility 
since the application reaches its maximum energy savings under the given deadline, 
and the fallibility is minimized to zero (i.e., the task graph is 100% duplicated). 

Our experiments show how the proposed ILP-based approach can be used 
effectively for scheduling a real-time embedded application on an HCM under several 
constraints, and for optimizing the desired cost function. It can be observed that our 
approach is flexible in the sense that it can be employed for several scheduling 
problems from simple schedules that do not consider fault-tolerance and/or power to 
very complex schedules that involve all three metrics in some fashion. 
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Fig. 2. Energy consumptions under different percentage of duplicated tasks with and without 
DVS for (a) G721encode, (b) G721decode, and (c) Mismatch_test benchmarks, and (d) the 
percentage energy improvements brought by our approach 

 

Fig. 3. Maximum percentage values of duplicated tasks with respect to energy and performance 
bounds for tg01 

One of the concerns for ILP based approaches is the solution time required for the 
given problem, depending highly on its complexity. When the complexity increases, 
producing an output using an ILP can become too time-consuming, sometimes even 
impossible in a reasonable amount of time. In our experiments, the CPU time of the 
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solutions ranges from one (1) second to 140 minutes. However, most of the solution 
times were less than 10 minutes. In fact, we calculated the average CPU time for all 
the experiments as 15 minutes. We believe that these solution times are not excessive. 
Moreover, in our experiments, we use a UNIX machine with a sparcv9 processor 
operates at 360 MHz, and its memory size is 128 MegaBytes. Using a faster processor 
and a better solver can further reduce these solution times. 

6   Conclusions 

In this paper, we presented an ILP (Integer Linear Programming) based framework 
that maps a given application (represented as a task graph) onto an HCM 
(Heterogeneous Chip Multiprocessor) architecture. We showed how our framework 
can be used in conjunction with several objective functions, namely, energy, 
performance, and fallibility. We illustrated the effectiveness of our approach on 
several benchmarks. 
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