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Abstract. We address the problem of model checking hybrid systems
which exhibit nontrivial discrete behavior and thus cannot be treated by
considering the discrete states one by one, as most currently available
verification tools do. Our procedure relies on a deep integration of sev-
eral techniques and tools. An extension of AND-Inverter-Graphs (AIGs)
with first-order constraints serves as a compact representation format
for sets of configurations which are composed of continuous regions and
discrete states. Boolean reasoning on the AIGs is complemented by first-
order reasoning in various forms and on various levels. These include
implication checks for simple constraints, test vector generation for fast
inequality checks of boolean combinations of constraints, and an exact
subsumption check for representations of two configurations.

These techniques are integrated within a model checker for universal
CTL. Technically, it deals with discrete-time hybrid systems with linear
differentials. The paper presents the approach, its prototype implemen-
tation, and first experimental data.

1 Introduction

The analysis of hybrid systems faces the difficulty of having to address not only
the continuous dynamics of mechanical, electrical and other physical phenom-
ena, but also the intricacies of discrete switching. Both of these two constituents
of hybrid systems alone often pose a major challenge for verification approaches,
and their combination is of course by no means simpler. For instance, the be-
havior of a car or airplane is usually beyond the scope of mathematically precise
assessment, even if attention is restricted to only one particular aspect like the
functioning of a braking assistant. Even though the continuous behavior might
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in such a case be rather simple – at least after it has been simplified by introduc-
ing worst-case assumptions to focus on the safety-critical aspects –, through the
interaction with discrete-state control the result is in most cases unmanageable
by present-day techniques.

In this work, we address the analysis of hybrid systems with a focus on the
discrete part. Systems with non-trivial discrete state spaces arise naturally in
application classes where the overall control of system dynamics rests with a
finite-state supervisory control, and states represent knowledge about the global
system status. Examples of such global information encoded in states are phases
of a cooperation protocol in inter-vehicle communication (such as in platooning
maneuvers or in collision-avoidance protocols), knowledge about global system
states (e. g., on-ground, initial ascent, ascent, cruising, . . . for an aircraft), and/or
information about the degree of system degradation (e. g., due to occurrence of
failures). States of the control determine the selection of appropriate continuous
maneuvers, and conditions on the continuous state (reached thresholds, for in-
stance) trigger changes in the control. But while there might be tens or hundreds
of boolean state variables, often there are only very few different maneuvers and
continuous trigger conditions, so that much of the discrete switching happens
independently of the continuous evolution.

In our approach, we intend to profit from the independence of the supervi-
sory control and the continuous sections, using adequate techniques for each of
the two constituents in a hybrid procedure. We do so by representing discrete
states symbolically, as in symbolic model checking [5], and combine this with a
first-order logic representation of the continuous part. In that way, unnecessary
distinctions between discrete states can be avoided and efficiency gained.

This idea, which has already been pursued in a different setting in [14,3],
can be seen as combining symbolic model checking with Hoare’s program logic
[13]. The discrete part of the state is encoded in bit vectors of fixed length. Sets
of discrete states are represented in an efficient format for boolean functions,
in our case functionally reduced AND-Inverter graphs (FRAIGs) [15]. The state
vectors are extended by additional components referring to linear (first-order)
constraints. Model checking works essentially as in [5,17] on the discrete part,
while in parallel for the continuous part a Hoare-like calculus is applied. An
important detail is that the set of constraints is dynamic: computing the effect
of a system step usually entails the creation of new constraints. So it is not just
model checking a finite-state encoding of the hybrid verification problem.

To make an automatic proof procedure out of this, we add diverse reasoning
procedures for the first-order constraints. Of central importance is the ability
to perform a subsumption check on our hybrid state-set representation in order
to detect whether a fixpoint has been reached during model checking. HySAT
[9] is one of the tools we use for that purpose. However, a key point of our ap-
proach is the idea to avoid expensive applications of decision procedures as much
as possible. Test vector generation for fast inequality checks of boolean combi-
nations of constraints, implication checks for linear constraints, and advanced
boolean reasoning are examples for methods which provide some lightweight and
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inexpensive reasoning and are used both in the context of subsumption checks
and for keeping state set representations as compact as possible.

In its current form, our approach is applicable to checking universal temporal
logic in discrete-time hybrid systems, where conditions and transitions contain
linear terms over the continuous variables. These correspond to a time discretiza-
tion of systems whose evolution is governed by linear differential equations, of
which the linear hybrid automata from [11] form a subset.

We present our class of models formally in Section 2. Section 3 explains our
procedure on a semantical and logical level. The implementation is described in
Section 4, followed by a report on first experiments with our current prototype in
Section 5. Sections 6 and 7 discuss related work and possible future extensions.

2 System Model

2.1 Time Discretization

As mathematical model we use discrete-time hybrid automata, which in each
time step of fixed duration update a set of real-valued variables as determined
by assignments occurring as transition labels. Since assignments and transition
guards may use linear arithmetical expressions, this subsumes the capability
to describe the evolvement of plant variables by difference equations. Steps of
the automata are assumed to take a fixed time period (also called cycle-time),
intuitively corresponding to the sampling period of the control unit, and deter-
mine the new mode and new outputs (corresponding to actuators) based on the
sampled inputs (from sensors).

The decision to base our analysis on discrete-time models of hybrid systems is
motivated from an application perspective. Industrial design flows for embedded
control software typically entail a transition from continuous time models in early
analysis addressing control-law design, to discrete-time models in modeling tools
such as ScadeTM, ASCETTM, or Matlab/Simulink-StateFlowTM, as a basis for
subsequent autocode generation. We address the latter class of models, from
which the production code can be generated. Note that the discrete complexity
of our systems results mainly from the control logic, discretization of time only
adds one more dimension to the complexity.

In this paper, we analyze closed-loop systems with only discrete inputs, e. g.,
corresponding to discrete set points.

2.2 Formal Model

Our analysis is based on discrete-time models of hybrid systems. Time is modeled
implicitly, in that each step corresponds to a fixed unit delay δ, as motivated in
the previous section.

We assume that a hybrid system operates over two disjoint finite sets of vari-
ables D and C. The elements of D = {d1, . . . , dn, dn+1, . . . , dp} (n ≤ p) are dis-
crete variables, which are interpreted over finite domains; Din = {dn+1, . . . , dp}
⊆ D is a finite set of discrete inputs. The elements of C = {c1, . . . , cm} are
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continuous variables, which are interpreted over the reals R. Let D denote the
set of all valuations of D over the respective domains, C = R

m the set of all val-
uations of C. The state space of a hybrid system is presented by the set D × C;
a valuation (d, c) ∈ D × C is a state of the hybrid system.

A set of states of a hybrid system can be represented symbolically using a
suitable (quantifier-free) first-order logic formula over D and C. We assume
that the data structure for the discrete variables D is given by a signature
SD which introduces typed symbols for constants and functions, and by ID

which assigns a meaning to symbols. We denote by TD(D) the set of terms over
D, and by B(D) the set of boolean expressions over D. The first-order part
on continuous variables is restricted to linear arithmetic of R, which has the
signature {Q, +, −, ×, =, <, ≤}, where Q is the set of rational numbers appearing
as constants, {+, −, ×} is the set of function symbols, and {=, <, ≤} is the set
of predicate symbols. The interpretation IC assigns meanings to these symbols
as usual. We define

– TC(C) as the set of linear terms over C,
– L(C) as the set of linear constraints, with the syntax t ∼ 0, where ∼ ∈

{=, <, ≤} and t ∈ TC(C), and
– P(D, C), the set of first-order predicates, as boolean combinations of expres-

sions in B(D) and linear constraints.

We use φ(D, C), g(D), t(C), and �(C), possibly with subscripts, to denote first-
order predicates in P(D, C), terms in TD(D), terms in TC(C), and linear con-
straints in L(C), respectively; D and C may be omitted, if they are clear from
the context. We use ID,C � φ(d, c) to denote that φ is true under the valua-
tions d and c. Thus φ represents the sets of states of a hybrid system such that
{ (d, c) | ID,C � φ(d, c) }. Assignments to the variables D and C are given in the
form of (d1, . . . , dn) := (g1, . . . , gn) and (c1, . . . , cm) := (t1, . . . , tm); they may
leave some variables unchanged.

Definition 1. A discrete-time hybrid system DTHS contains four components:

– D = {d1, . . . , dn, dn+1, . . . , dp} (n ≤ p) is a finite set of discrete variables,
Din = {dn+1, . . . , dp} ⊆ D is a finite set of discrete inputs;

– C = {c1, . . . , cm} is a finite set of continuous variables;
– Init is a set of initial states, given in the form of φ0(D − Din, C);
– Trans is a union of a finite number of guarded assignments, each guarded

assignment gai (i = 1, . . . , k and k ≥ 1) is in the form of

φi(D, C) → (d1, . . . , dn) := (gi,1, . . . , gi,n); (c1, . . . , cm) := (ti,1, . . . , ti,m).

The assignment of gai transforms a state (d, c) to (d′, c′). Moreover, such (d′, c′)
exists if and only if ID,C � φi(d, c).

We assume that the guards of the assignments defining the transition relation are
exclusive and exhaustive. This is no restriction of the set of systems we consider,
as nondetermism can be eliminated from the transition relation by introducing



280 W. Damm et al.

resolution variables R ⊆ D. These are discrete inputs which are used like r in
the following illustration of the case of two overlapping guards:

φ1 → assignment1
φ2 → assignment2

}
�

{
φ1 ∧ (¬φ2 ∨ r = 1) → assignment1
φ2 ∧ (¬φ1 ∨ r = 2) → assignment2

A trajectory of a DTHS is a discrete-time sequence (di, ci) satisfying the
conditions (i) (d0, c0) ∈ Init and (ii) ((di, ci), (di+1, ci+1)) ∈ Trans for all i ∈
{0, 1, . . .}. Given a DTHS, we define the reachable set of states to be the set
of all states that are reachable by a trajectory of the DTHS. The purpose of
verification is to determine whether all possible behaviors of a system satisfy
some property, which is specified as formula in a temporal logic.

3 Approach

3.1 Specification Logic

We sketch a model checker for a temporal logic over discrete and quantifier-free
first-order atoms. Though we could build, from our basic ingredients, a procedure
handling full CTL (or a linear-time logic), we restrict ourselves to its universal
fragment ACTL with the temporal operators AX · (next), A[· U ·] (until) and
A[· W ·] (unless), with AG · (globally) and AF · (finally) as derived operators.

In practice, we expect the valuations of continuous variables to come from
bounded subsets of R. In other words, for each c ∈ C we assume a lower and an
upper bound lc and uc. Such restrictions can be captured in global constraints
GC . With global constraints present, the formula operators are interpreted as
follows:

AGCXφ = ¬GC ∨ AX (φ ∨ ¬GC )
AGC [φ Wψ] = A[φ W (ψ ∨ ¬GC )]
AGC [φ Uψ] = A[φ U (ψ ∨ ¬GC )]

3.2 Logical Representation of State Sets

Our model-checking procedure operates on logical representations of state sets.
For ease of exposition we assume that discrete variables are encoded by sets
of boolean variables, i. e., we consider D as a set of boolean variables. Then, a
state-set representation is a boolean formula over D and L(C), the set of linear
constraints. To be able to use advanced data structures for boolean formulas,
we introduce a set of new (boolean) constraint variables Q as encodings for lin-
ear constraints, where each occurring � ∈ L(C) is represented by some q� ∈ Q.
Thus we arrive at boolean formulas over D ∪ Q, together with a mapping of Q
into L(C).

3.3 Step Computation

Our procedure works backwards, which means that it has to compute pre-images
of state sets. Since we are going to check ACTL, we compute
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pre(S) =df { s | ∀s′. s → s′ ⇒ s′ ∈ S } ,

which corresponds to the temporal operator AX (⇒ stands for logical impli-
cation, → for the transition relation). On the logical level, for the transitions
of our DTHSs consisting of conditions, assignments and input, this can be ex-
pressed by substitution for assignments and universal quantification for input,
see [3]. Since we have restricted ourselves to closed-loop systems, there are no
continuous inputs. Therefore, there is no need for first-order quantification, only
boolean quantification has to be performed. In the following, we describe in de-
tail how to compute pre for our state-set representations, given a DTHS. The
variables in D and Q are treated rather differently.

A discrete variable dj ∈ D − Din is updated according to the transitions in
the following set.

{ φi(D, C) → dj := gi,j(D) | i = 1, . . . k }

This translates to the (logical) update function:

pre(dj) =
k∧

i=1

(φi(D, C) ⇒ gi,j(D))

For the continuous part, we have to update the variables Q. The transitions

{ φi(D, C) → (c1, . . . , cm) := (ti,1(C), . . . , ti,m(C)) | i = 1, . . . k }

induce

pre(q�) =
k∧

i=1

(
φi(D, C) ⇒ q�[c1,...,cm/ti,1(C),...ti,m(C)]

)

as an update for a constraint variable q� occurring in the state-set description.
That is, each q� gets replaced by a boolean combinations of constraint variables.
In this formula, q�[c1,...,cm/ti,1(C),...,ti,m(C)] is a (possibly new) constraint variable
which represents the linear constraint resulting from � by replacing the variables
cj by the terms ti,j(C).

Finally, the pre-image of a set of states S is computed by substituting in
parallel the pre-images for the respective variables, and afterwards universally
quantifying over the discrete inputs.

pre(S) =
∀Din. S[d1, . . . , dn, q�1 , . . . , q�v / pre(d1), . . . , pre(dn), pre(q�1), . . . , pre(q�v)]

Note that the pre-image of a boolean variable is described by a quantifier-free for-
mula which does not change during model checking – it can be computed once and
for all. The same holds for each single constraint variable: The right-hand side re-
mains constant. But the RHS may contain a constraint not already present in the
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formula. This necessitates to add constraint variables to the state representations
during model checking, and also to add corresponding components to the step func-
tion.This corresponds to the semantical viewofmodel-checker steps: Semantically,
an occurring constraint is a hyperplane serving as a bound to define a polyhedron
in the continuous state space. The pre-image of the polyhedron then is bounded by
other hyperplanes, whose descriptions are derived via substitution from the exist-
ing bounding conditions.

3.4 Model Checking

The computation of the effect of a step is one main ingredient of CTL model
checking. Besides that, one needs the ability to check whether two sets of states
are equal, to detect that a fixpoint has been reached. In explicit or symbolic
model checking, the criterion is simple: Two successive approximations must
be the same. Here, where constraints enter the state-set descriptions, one has
to check for semantical equality. Since our constraints are linear, this problem
is decidable. This check for implication between two state-set representation
completes the model-checking procedure.

In the following section we will present how we realized the conceptual pro-
cedure of this section, explaining the concrete representation format, how we
perform logical operations and test for semantical implication.

Remark 2. Note the procedure described above can be applied to a broad class
of systems. The logical treatment of the step function permits arbitrary linear
terms on the right-hand sides of assignments, like c1 := α1c1 + α2c2 + α0. Dis-
cretization of the linear hybrid automata from [11] yields the more restricted
format c := c + α.

4 Realization

In order to implement the approach described in the previous section, we use
a new data structure for representing sets of states, the so-called First-Order
AND-Inverter-Graphs (FO-AIGs) (see Fig. 1 for an illustration).

Using efficient methods for keeping this representation as compact as possible
is a key point for our approach. This goal is achieved by a rather complex
interaction of various methods. In the following we give some more details on
these concepts. The methods are divided into three classes:

– methods dealing with the boolean part,
– methods dealing with the first-order part, and
– methods dealing with the interaction of the boolean and the first-order part.

Note that to implement the model-checking algorithm we need only boolean
operations, substitution and first-order implication. Our description focuses on
the the first-order part and on how to keep our data structures small.
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4.1 Methods Dealing with the Boolean Part

...

...

...

...

dp

c1 cm

φ1 φk

q1 qj

d1

mapping between
first-order conditions
and bool. variables

boolean domain variables

continuous domain variables

Represented first-order
predicates

FO conditions

AIG

Fig. 1. The FO-AIG structure

In FO-AIGs boolean formulas
are represented by Functionally
Reduced AND-Inverter Graphs
(FRAIGs) [15,17]. FRAIGs are
basically boolean circuits consist-
ing only of AND gates and in-
verters. In contrast to BDDs as
used in [3], they are not a canon-
ical representation for boolean
functions, but they are “semi-
canonical” in the sense that every
node in the FRAIG represents
a unique boolean function. To
achieve this goal several tech-
niques like structural hashing,
simulation and SAT solving are
used:

First, simple local transformation rules are used for node minimization. For in-
stance, we apply structural hashing for identifying isomorphic AND nodes which
have the same pairs of inputs.

Moreover, we maintain the so-called “functional reduction property”: Each
node in the FRAIG represents a unique boolean function (up to complementa-
tion). We use a SAT solver to check for equivalent nodes while constructing a
FRAIG and to merge equivalent nodes immediately.

Of course, checking each possible pair of nodes would be quite inefficient.
However, simulation using test vectors of boolean values restricts the number of
candidates for SAT check to a great extent: If for a given pair of nodes simulation
is already able to prove non-equivalence (i. e., the simulated values are different
for at least one test vector), the more time consuming SAT checks are not needed.
The simulation vectors are initially random, but they are updated using feedback
from satisfied SAT instances (i. e., from proofs of non-equivalence).

For the pure boolean case, enhanced with other techniques such as quantifier
scheduling, node selection heuristics and BDD sweeping, FRAIGs proved to be a
promising alternative to BDDs in the context of CTL model checking, avoiding in
many cases the well-known memory explosion problem which may occur during
BDD-based symbolic model checking [17].

4.2 Methods Dealing with the First-Order Part

The second component of FO-AIGs is a representation of linear constraints �
connected to the boolean part by constraint variables q�. These constraints are
of the form

∑n
i=1 αici + α0 ∼ 0 with rational constants αj , real variables ci,

and ∼ ∈ {=, <, ≤}. When new linear constraints are computed by substitution
during the step computation (see Sect. 3), we avoid introducing linear constraints
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which are equivalent to existing constraints. The restriction to linear constraints
makes this task simple, since it reduces to the application of (straightforward)
normalization rules.

4.3 Methods Dealing with the Interaction of the Boolean and the
First-Order Part

Of course, a strict separation between the boolean part and the first-order part
of FO-AIGs gives us usually not enough information, for instance when we have
to check whether two sets of states are equivalent during the fixpoint check of
the model checking procedure. As a simple example consider the two predicates
φ1 = (c < 5) and φ2 = (c < 10) ∧ (c < 5). If c < 5 is represented by the boolean
constraint variable q1 and c < 10 by variable q2, then the corresponding boolean
formulas q1 and q1 ∧ q2 are not equivalent, whereas φ1 and φ2 are certainly
equivalent. Both as a means for further compaction of our representations and
as a means for detecting fixpoints we need methods for transferring knowledge
from the first-order part to the boolean part. (In the example above this may be
the information that q1 = 1 and q2 = 0 can not be true at the same time or that
φ1 and φ2 are equivalent when replacing boolean variables by their first-order
interpretations.)

Computing Implications Between Linear Constraints. In our first
method we consider dependencies between linear constraints that are easy to de-
tect a priori and transfer them to the boolean part. It is not known initially, which
dependencies are actually needed in the rest of the computation; for this reason
we restrict to two simple cases: First, we compute unconditional implications be-
tween linear constraints α1c1+. . .+αncn+α0 ≤ 0 and α1c1+. . .+αncn+α′

0 ≤ 0,
where α0 > α′

0 (and analogously implications involving negations of linear con-
straints). Second, we use a sound but incomplete method to detect implications
modulo global constraints, where a linear constraint α′

1c1 + . . . + α′
ncn + α′

0 ≤ 0
follows from α1c1 + . . . + αncn + α0 ≤ 0 and the global lower and upper bounds
li ≤ ci ≤ ui for the first-order variables.

Using Implications Between Linear Constraints. Suppose we have found
a pair of linear constraints �1 and �2 with �1 ⇒ �2, and in the boolean part �1
is represented by the constraint variable q1, �2 by variable q2. Then we know
that the combination of values q1 = 1 and q2 = 0 is inconsistent w. r. t. the
first-order part, i. e., it will never be applied to inputs q1 and q2 of the boolean
part. We transfer this knowledge to the boolean part by a modified behavior
of the FRAIG package: First we adjust our test vectors, such that they become
consistent with the found implications (potentially leading to the fact that proofs
of non-equivalence by simulation will not hold any longer for certain pairs of
nodes) and second we introduce the implication q1 ⇒ q2 as an additional clause
in every SAT problem checking equivalence of two nodes depending on q1 and q2.
In that way non-equivalences of AIG nodes which are only caused by differences
w. r. t. inconsistent input value combinations with q1 = 1 and q2 = 0 will be
turned into equivalences, removing redundant nodes in the AIG.
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Using a Decision Procedure for Deciding Equivalence. In addition to
the eager dependency check for linear constraints above, we use HySAT [9] as a
decision procedure for the equivalence of nodes in FO-AIGs (representing boolean
combinations of linear constraints). If two nodes are proven to be equivalent
(taking the linear constraints into account), then these nodes can be merged,
leading to a compaction of the representation or leading to the detection of a
fixpoint in the model checking computation.

In principle, we could use HySAT in an eager manner every time when a new
node is inserted into the FO-AIG representation, just like SAT (together with
simulation) is used in the FRAIG representation of the boolean part. This would
lead to a FO-AIG representation where different nodes in the FRAIG part always
represent different first-order predicates. However, we decided to use HySAT only
in a lazy manner in order to avoid too many potentially expensive applications of
HySAT (taking the linear constraints into account): In our first implementation
HySAT is only invoked by explicit equivalence checks and fixpoint checks of the
model checking procedure.

Using Test Vectors to Increase Efficiency. As in the boolean case (see
Sect. 4.1), we use simulation with test vectors as an incomplete but cheap method
to show the non-equivalence of FO-AIG nodes, thus reducing the number of
expensive calls to HySAT. However, note that the boolean simulation vectors
which we apply to the boolean variables corresponding to linear constraints must
now be consistent with respect to the linear constraints, since otherwise our proof
of non-equivalence could be incorrect. For this reason we use an appropriate set
of test vectors in terms of real variables such that we can compute consistent
boolean valuations of linear constraints based on the real valued test vectors.

Trying to find an optimal set of test vectors that allows us to distinguish be-
tween any two boolean combination of linear constraints is at least as hard as
solving our main problem, the implication check between such boolean combi-
nations, and therefore unpractical. On the other hand, if test vectors are picked
randomly with a uniform distribution over the polyhedron of permitted values,
a large number of them fall into “uninteresting regions” of this polyhedron.

Our solution is to choose test vectors randomly in the proximity of relevant
hyperplanes: Assume that every variable ci has a global lower and upper bound
li ≤ ci ≤ ui, so that the polyhedron of permitted values is P = {�c | �c =
(c1, . . . , cn), li ≤ ci ≤ ui }. For each linear constraint f(�c) ≤ 0 with f(�c) =
α1c1 + . . .+αncn +α0, we determine first the vertices �r and �s of P for which f is
maximal or minimal, respectively (without loss of generality, f(�r) > 0 > f(�s)).
Second, we compute random points �t ∈ P , and finally, for each of these random
points, we use linear interpolation between �t and �r (if f(�t) < 0) or �t and �s
(otherwise) to obtain a point on the straight line between �t and �r (or �t and �s)
that is close to the hyperplane defined by f(�c) = 0.

Satisfied HySAT instances (i. e., proofs of non-equivalence for boolean combi-
nations of linear constraints) are another source of boolean simulation vectors
which are consistent w. r. t. linear constraints. The satisfying assignments com-
puted by HySAT are guaranteed to be consistent w. r. t. linear constraints and
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they are able to separate at least the pair of nodes which are currently proven
to be non-equivalent. (Learning from HySAT corresponds to learning from SAT
in the pure Boolean case.)

5 Application

We implemented a prototype model checker based on the concepts mentioned
above and applied it both to several small examples and to a model derived from
an industrial case study. In this section we report on results for the case study.

5.1 The Case Study

Flap controller

Rest of Aircraft

Reasonable
Pilot Mechanism

Flap
c

f

v

�

Fig. 2. Components in the flap controller example

General Description. Our
sample application is de-
rived from a case study
for Airbus, a controller for
the flaps of an aircraft
[4]. The flaps are extended
during take-off and land-
ing to generate more lift at
low velocity. They are not
robust enough for high ve-
locity, so they must be re-
tracted for cruising period. It is the controller’s task to correct the pilot’s com-
mands if he endangers the flaps. However, the flap controller is not supposed
to guarantee safety under all circumstances, but only if the pilot acts “reason-
ably”. To enable manoeuvres risking aircraft integrity in critical situations, the
controller is limited to only modify the pilot’s command by one notch.

Model Structure. Our simplified system consists of four components to model,
i. e., the pilot behavior, the controller, the flap mechanism, and the rest of the
aircraft. It contains two continuous variables v (velocity) and f (flap angle), and
two discrete variables � (lever position set by the pilot) and c (corrected position,
set by the controller). For each lever position, there is a pre-defined flap position
and a pre-defined nominal velocity nominal(f).

Property. The property “safe” to establish for our model is the following: “For
the current flap setting f , the aircraft’s velocity v shall not exceed the nominal
velocity nominal (f) plus 7 knots”. Whether this requirement holds for our model
depends on a “race” between flap retraction and speed increase. The controller
is correct, if it initiates flap retraction (by correcting the pilot) early enough.

Model Details. The pilot component in our model ensures reasonable lever posi-
tions, by guaranteeing that the lever is at most one notch too high. The behavior
of the controller depends on both � and v: When the velocity is greater than the
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nominal max value (nominal (f) + 2.5 knots), the modification of the pilot be-
havior is activated (c = � − 1); when the velocity has changed to less than
the nominal min value (nominal (f) − 2.5 knots), the modification is turned off
(c = �). The flap mechanism controls the continuous variable f , and depends
on the discrete variable c. It models the mechatronic which adapts the physical
flap angle f to the position commanded by c. This is a process which takes time.
f has a range from 0 to 55.0. At each discrete time step (the sampling rate is
δ = 100 ms in this example), the flap angle may change by Δf = 0.15625. At
the same time, the rest of the aircraft might increase the velocity by 0.5 knots
within a range from 150.0 to 340.0 knots. This defines the “races” mentioned
above. Our specification of the model is simply AG safe.

5.2 Experimental Results

Our prototype successfully model checked the flap controller with 3 lever posi-
tions, 220.0 ≤ v ≤ 340.0, and 0.0 ≤ f ≤ 20.0, showing that the system remains in
the safe region. Using all the concepts presented in Section 4 our model checking
run was completed after 46 steps within 4.7 minutes of CPU time.5
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In a first experiment we evaluated the effect of integrating knowledge of impli-
cations between linear constraints into the FO-AIG representation. We compared
two cases: Case no impl when no implications were computed and integrated and
case impl when implications were computed and integrated as described in Sec-
tion 4.3. Figure 3 depicts the number of AIG nodes used during the different steps
of the model checking procedure both for case no impl (dashed line) and case
impl (solid line). For case no impl the maximal number of active AIG nodes was
192, 630 whereas for case impl the maximal number was only 59, 372. This clearly
shows that integrating knowledge of linear constraints pays off in terms of node
counts: By using implications it was possible to simplify the representation to a
great extent, since AIG nodes were identified which were equivalent taking the

5 All experiments were performed on a dual Opteron 250, 2.4 GHz with 4 GB memory.
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linear constraints into account. Figure 4 shows that making use of implications
not only improves node counts, but run times as well: It presents the run times
needed for the different steps in both cases. The total run time for case no impl
was 37.9 CPU minutes whereas the total run time for case impl was 4.7 CPU
minutes. (The total number of implications between linear constraints computed
by our tool was 622 (implications due to transitivity not taken into account).)

In the following we will confine ourselves to case impl and we will perform
a more detailed analysis of the behavior of our representation of states con-
taining discrete and continuous variables. The efficiency of our FO-AIGs relies
both on efficient methods for boolean manipulations and on efficient methods
for integrating knowledge of linear constraints avoiding the application of more
expensive calls to a linear constraint solver as much as possible.

We could observe that the number of SAT checks divided by the total number
of attempts to insert a node into the FRAIG was only 0.24% in our experiment.
The fraction of SAT checks which led to the result that the compared nodes
were functionally equivalent was 59%. This means that – although we are always
maintaining the functional reduction property of FRAIGs – the assistance of SAT
by simulation and structural hashing as described in Sect. 4.1 assures that SAT
is applied only for a small fraction of all node insertions. Moreover, the high
percentage of SAT checks proving functional equivalence of two nodes shows the
effectiveness of simulation in avoiding unnecessary SAT checks for nodes which
are not equivalent.

In a last experiment we analyzed how often the application of calls to the linear
constraint solver HySAT was saved by incomplete (but inexpensive) methods. In
our method HySAT calls can be saved for two reasons:

1. The equivalence of two boolean combinations of linear constraints can be
proven just by considering the boolean part (without interpreting the vari-
ables representing linear constraints).

2. The non-equivalence of two boolean combinations of linear constraints can
be proven by simulation with test vectors as described in Section 4.3.

Our model checking run involved 5374 equivalence checks for boolean combi-
nations of linear constraints. However, for only 22 out of these 5374 checks it
turned out to be necessary to call the linear constraint solver in HySAT (i. e., in
0.41% of all cases). In 42.91% of all cases the call to HySAT could be avoided
due to reason (1) and in 56.68% of all cases due to reason (2).

Although we believe that the complex interaction of different methods in our
approach to first-order model checking still leaves room for improvement, our
first experiments provide promising results confirming our idea of increasing
efficiency by incomplete but inexpensive methods.

6 Related Work

We address hybrid systems consisting not only of a continuous part, but also of a
potentially complex discrete part. Tools like HyTech [12], d/dt [1], PHAver [10]
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based on the notion of hybrid automaton [11] fail when dealing with complex
hybrid controllers, since only the continuous part of the system is represented
symbolically, while the discrete states are represented explicitly. Thus, these tools
cannot take advantage of the breakthrough achieved for symbolic model checkers
[5]. In this section, we discuss those verification tools which can (potentially) deal
with hybrid systems with large discrete parts, and compare them with our work
in the end of this section.

CheckMate [19] is a Matlab-based tool for simulation and verification of
threshold-event driven hybrid systems (TEDHSs). A TEDHS has a clear separa-
tion between purely continuous blocks representing the dynamics in a given mode
and discrete controllers. The changes in the discrete state can occur only when
continuous state variables encounter specified thresholds. CheckMate converts
the TEDHS model into a polyhedral-invariant hybrid automaton [6], computes the
sets of reachable states for the continuous dynamics using flowpipe approxima-
tions [7], and performs search in a completely constructed approximate quotient
transition system. This approach was adapted for discrete-time controllers with
fixed sampling rate [18], where the sampled behavior only applies to conditions
for discrete-state transitions.

Separation of continuous dynamics and control by observing threshold pred-
icates as guards of transitions was also taken in [3,2], which extended symbolic
model checking with dynamically generated first-order predicates. Those pred-
icates express sets of valuations over large data domains like reals. BDDs are
used to encode discrete states, and specific variables within the BDDs are used
to represent those first-order formulas, which are maintained separately.

The SAL verification tool [16] for hybrid systems builds on a symbolic repre-
sentation of polynomial hybrid systems in PVS, the guards on discrete transitions
and the continuous flows in all modes can be specified using arbitrary polyno-
mial expressions over the continuous variables. SAL applies hybrid abstraction
[20] to construct a sound discrete approximation using a set of polynomial ex-
pressions to partition the continuous state space into sign-invariant zones. This
abstract discrete system is passed to a symbolic model checker. SAL also uses
other techniques like quantifier elimination and invariant generation.

HySAT [9] is a bounded model checker for linear hybrid systems. It combines
Davis-Putnam style SAT solving techniques with linear programming, and im-
plements state of the art optimizations such at nonchronological backjumping,
conflict driven learning and lazy clause evaluation.

HYSDEL [21] is a model language for describing discrete-time hybrid systems
by interconnections of linear dynamic systems, finite-state automata, if-then-else
and propositional logic rules. The description can be transformed into a Mixed
Logical Dynamical (MLD) system. HYSDEL uses mathematical programming to
perform reachability analysis for MLD systems. The algorithms determines the
reachable set by solving a mixed-integer optimization problem.

Both CheckMate and SAL construct a discrete approximation in order to
perform model checking. Our approach checks properties directly on a com-
puted reachable state space, which includes both discrete and continuous parts,
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without using any approximation. Moreover, instead of using BDDs as in [3,2],
we use FO-AIGs as symbolic representation of hybrid state spaces. Various tech-
niques like implication test and test vector generation are tightly integrated
to identify equivalent and non-equivalent linear constraints efficiently. This ap-
proach allows us to deal with large discrete state spaces, while smoothly incor-
porating reasoning about continuous variables (linear constraints). From this
perspective, our approach is different with all the aforementioned works. Un-
like bounded model checking in HySAT, we perform verification on a completely
constructed state space. Tools like CheckMate and SAL deal with continuous-
time hybrid systems. Our approach focuses on discrete-time hybrid systems as
HYSDEL, but the analysis procedure in HYSDEL is different from ours.

7 Conclusions and Future Work

In this paper, we have proposed an approach for model checking safety pro-
preties of discrete-time hybrid systems. It uses a first-order extension of AIGs as
a compact representation for sets of configurations, which are composed of both
continuous regions and discrete states. Several efficient methods for keeping this
representation as compact as possible have been tightly integrated. For instance,
we have implemented techniques to keep the discrete part functionally reduced,
to detect implications between linear constraints, to use a decision procedure to
perform equivalence checks on our hybrid state-set representation, to generate
test vectors to distinguish between any two boolean combination of linear con-
straints. The typical application domain of our approach is hybrid systems with
non-trivial discrete state spaces.

So far, the preliminary implementation of our approach has been used to
check an industrial case study with limited size and several small examples. In
the future we will apply our approach to more sophisticated examples for further
evaluation and for comparisons with other tools (see Sect. 6). Moreover, it seems
that an integration of predicate abstraction to derive a finite-state abstraction of
the hybrid system either on-the-fly or at a separate initial abstraction step (as in
[3,2]) can be achieved without much difficulties. We expect that for larger exam-
ples the exectution time of our approach will heavily rely on time discretization.
For this reason, currently techniques like acceleration to speed up step compu-
tation are under our investigation. We also plan to use counter-example guided
abstraction refinement, as it has been added to CheckMate [8] recently.
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