
Efficient Algorithms for Alternating Pushdown

Systems with an Application to the
Computation of Certificate Chains�

Dejvuth Suwimonteerabuth, Stefan Schwoon, and Javier Esparza

Institut für Formale Methoden der Informatik, Universität Stuttgart,
Universitätsstr. 38, 70569 Stuttgart, Germany

{suwimodh,schwoosn,esparza}@informatik.uni-stuttgart.de

Abstract. Motivated by recent applications of pushdown systems to
computer security problems, we present an efficient algorithm for the
reachability problem of alternating pushdown systems. Although the al-
gorithm is exponential, a careful analysis reveals that the exponent is
usually small in typical applications. We show that the algorithm can be
used to compute winning regions in pushdown games. In a second con-
tribution, we observe that the algorithm runs in polynomial time for a
certain subproblem, and show that the computation of certificate chains
with threshold certificates in the SPKI/SDSI authorization framework
can be reduced to this subproblem. We present a detailed complexity
analysis of the algorithm and its application, and report on experimen-
tal results obtained with a prototype implementation.

1 Introduction

Pushdown systems are a concept from formal-language theory that has turned
out to be useful in computer-aided verification. They naturally model the be-
haviour of programs with possibly recursive procedures, and therefore model-
checking for pushdown systems has been the subject of recent research. Burkhard
and Steffen [1] and Walukiewicz [2] have studied the problem for the modal μ-
calculus. Other papers [3,4,5] have investigated specialised algorithms for LTL
model checking and both forward and backward reachability on pushdown sys-
tems. Concrete algorithms for these tasks with a precise complexity analysis were
proposed in [5] and subsequently implemented in the Moped tool. Moreover, [3]
has shown that a similar approach can be used to solve the backward reacha-
bility problem in alternating pushdown systems. This can be used to solve the
model-checking problem for the alternation-free μ-calculus on (non-alternating)
pushdown systems.

More recently, pushdown systems have also been applied in the field of com-
puter security. In the authorization framework SPKI/SDSI [6], certificates are
used to assign permissions to groups of principals, which are defined using local,
� This work was partially supported by the DFG project Algorithms for Software

Model Checking and SFB 627 Nexus, Project A6.

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 141–153, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

142 D. Suwimonteerabuth, S. Schwoon, and J. Esparza

hierarchical namespaces. In order to prove that a principal may access a certain
resource, he/she needs to produce a chain of certificates that, taken together,
provide a proof of authorisation. Jha and Reps [7] showed that a set of cer-
tificates can be seen as a pushdown system, and that certificate-chain discovery
reduces to pushdown reachability. The SPKI/SDSI specification also provides for
so-called threshold certificates, allowing specifications whereby a principal can be
granted access to a resource if he/she can produce authorisations from multiple
sources. We observe that this extension reduces to reachability on alternating
pushdown systems.

Motivated by the applications in verification and authorisation, we study
reachability algorithms for alternating pushdown systems (APDS) in more de-
tail. The algorithm proposed in [3] is abstract (i.e. only the saturation rule is
given), and its complexity is given as “exponential”, without further details.
Here, we provide a concrete algorithm for solving the problem together with a
precise complexity analysis. Moreover, inspired by the work of [7], we show that
the algorithm is very efficient for a special class of instances. Then, we consider
two applications. The first one is straightforward: We show that the algorithm
immediately leads to a procedure for computing winning regions in pushdown
reachability games, and derive a complexity bound improving a previous analysis
by [8]. The second application is perhaps more interesting. In [7], Jha and Reps
observed that, for a restricted form of threshold certificates, the certificate-chain-
discovery problem can be solved in polynomial, rather than exponential time. We
prove this result again by showing that the existence of certificate chains can be
reduced to the special class of instances of the reachability problem that we have
identified. We perform a detailed complexity analysis, and report on a prototype
implementation on top of the Nexus platform for context-aware systems [9].

We proceed as follows: Section 2 introduces alternating pushdown systems
and other concepts used in the paper. Section 3 presents an algorithm for solv-
ing the reachability problem on APDS and analyzes its complexity. Section 4
studies the special class of instances mentioned above. Section 5 presents new
upper bounds for computing winning regions in reachability pushdown games.
Section 6 presents our application to certificate-chain discovery, and Section 7
reports experimental results.

Due to lack of space, all proofs have been omitted from this paper. A complete
version that contains all the proofs has been published as a technical report [10].

2 Preliminaries

An alternating pushdown system (APDS) is a triplet P = (P, Γ, Δ), where
P is a finite set of control locations, Γ is a finite stack alphabet, and Δ ⊆
(P × Γ) × 2(P×Γ∗) is a set of transition rules. A configuration of P is a pair
〈p, w〉, where p ∈ P is a control location and w ∈ Γ ∗ is a stack content. If
((p, γ), {(p1, w1), . . . , (pn, wn)}) ∈ Δ, we write 〈p, γ〉 ↪→ {〈p1, w1〉, . . . , 〈pn, wn〉}
instead. We call a rule alternating if n > 1, or non-alternating otherwise. We also
write 〈p, γ〉 ↪→ 〈p1, w1〉 (braces omitted) for a non-alternating rule. Moreover,

Efficient Algorithms for Alternating Pushdown Systems 143

for every w ∈ Γ ∗, the configuration 〈p, γw〉 is an immediate predecessor of the
set {〈p1, w1w〉, . . . , 〈pn, wnw〉}.

A computation tree of P is a directed tree whose nodes are labelled by configu-
rations and where every node n is either a leaf or an internal node labelled with c
such that n has one outgoing hyperedge whose set of target nodes is labelled with
configurations C = {c1, . . . , cn}, where c is an immediate predecessor of C. We
define the reachability relation ⇒ as c ⇒ C if there exists a computation tree
such that c labels the root and C is the set of labels of the leaves. If c ⇒ C,
then C is reachable from c. Given a set of configurations C, we define the set of
predecessors, pre∗(C) = {c | ∃C′ ⊆ C : c ⇒ C′}, as the set of configurations that
are reachable backwards from subsets of C via the reachability relation.

Let us fix an APDS P = (P, Γ, Δ). An alternating P-automaton is a quintuple
A = (Q, Γ, δ, P, F), where Q ⊇ P is a finite set of states, F ⊆ Q is the set of
final states, and δ ⊆ Q×Γ ×2Q is a set of transitions. The initial states of A are
the control locations of P . We define the transition relation → ⊆ Q × Γ ∗ × 2Q

as the smallest relation satisfying:

– q
ε−→ {q} for every q ∈ Q,

– if (q, γ, Q′) ∈ δ then q
γ−→ Q′, and

– if q
w−−→ {q1, . . . , qm} and qi

γ−→ Qi for each 1 ≤ i ≤ m, then q
wγ−−→

(Q1 ∪ . . . ∪ Qm).

A accepts or recognizes a configuration 〈p, w〉 if p w−−→ Q′ for some Q′ ⊆ F . The
set of configurations recognized by A is denoted by L(A).

In [3], it has been shown that given a set of configurations C of P , recognized
by an alternating automaton A, we can construct another automaton Apre∗ such
that L(Apre∗) = pre∗(C).

The procedure of [3] assumes w.l.o.g. that A has no transition leading to an
initial state. Apre∗ is computed by means of a saturation procedure, which adds
new transitions to A, according to the following rule:

If 〈p, γ〉 ↪→ {〈p1, w1〉, . . . , 〈pm, wm〉} ∈ Δ and p1
w1−−→ P1,. . . , pm

wm−−−→
Pm holds, then add p

γ−→ (P1 ∪ . . . ∪ Pm).

3 An Implementation for pre∗

In this section we present an implementation, as shown in Fig. 1, of the abstract
algorithm from Sect. 2. Without loss of generality, the algorithm imposes two
restrictions on every rule 〈p, γ〉 ↪→ R in Δ:

(R1) if R = {〈p′, w′〉}, then |w′| ≤ 2, and
(R2) if |R| > 1, then |R| = 2 and ∀〈p′, w′〉 ∈ R : |w′| = 1.

Note that any APDS can be converted into an equivalent one that satisfies
(R1) and (R2) with only a linear increase in size (i.e. the converted automaton
executes the same sequences of actions, modulo the fact that one step may be
refined into a sequence of steps).

In the rest of the paper we conduct a careful analysis in terms of certain
parameters of the input, which are listed below:

144 D. Suwimonteerabuth, S. Schwoon, and J. Esparza

– Δa, Δ0, Δ1, Δ2 denote the sets of alternating rules and non-alternating rules
with 0, 1, 2 stack symbols in their right-hand side, respectively.

– The set of pop control locations, denoted by Pε, is the set of control locations
p1 ∈ P such that Δ0 contains some rule 〈p, γ〉 ↪→ 〈p1, ε〉.

– Given an alternating automaton, we define Qni as the set of its non-initial
states, i.e., Qni = Q \ P .

Algorithm 1 computes Apre∗ by implementing the saturation rule. The sets rel
and trans contain the transitions that are known to belong to Apre∗ ; rel contains
those that have already been examined. Lines 1–4 initialize the algorithm. The
rules 〈p, γ〉 ↪→ 〈p1, ε〉 are dealt with first, as in the pre∗ algorithm of the non-
alternating case [5]. All rules are copied to Δ′ (line 3), and the auxiliary function
F(r) is assigned to set of empty set for each rule r (line 4). The algorithm
then proceeds by iteratively removing transitions from trans (line 6), adding
them to rel if necessary (lines 7–8), and examining whether they generate other
transitions via the saturation rule (lines 9–22). The idea of the algorithm is to
avoid unnecessary operations. Imagine that the saturation rule allows to add
transition t if transitions t1 and t2 are already present. Now, if t1 is taken from
trans but t2 has not been added to Apre∗ , we do not put t1 back to trans but store
the following information instead: if t2 is added, then we can also add t. It turns
out that these implications can be stored in the form of “fake pushdown rules”
(like those added in line 18 or 21) and in the form of the auxiliary sets F(r).

Let us now look at the lines 9–22 in more detail. Lines 9–10 are as in [5]. Push
rules (lines 11–19) and alternating rules (lines 20–22), however, require a more
delicate treatment. At line 11 we know that q

γ−→ Q′ is a transition of Apre∗

(because it has been popped from trans) and that 〈p1, γ1〉 ↪→ 〈q, γγ2〉 is a rule
of the APDS. So we divide the states q′ ∈ Q′ into those for which there is some
rule q′ γ2−−→ Q′′ in rel and the rest. If there is no rest then we can add new rules
to trans (lines 14–15). Otherwise we add the “fake rule” of line 18. At line 20
we know that q

γ−→ Q′ is a transition of Apre∗ and 〈p1, γ1〉 ↪→ {〈q, γ〉} ∪ R is an
alternating rule. So we add the “fake rule” 〈p1, γ1〉 ↪→ R.

Note that the algorithm obviously runs with exponential time, since the num-
ber of transitions of Apre∗ can be exponential in the number of states. However,
a closer look at the complexity reveals that the algorithm is exponential only in
a proper subset of states, which can be small depending on the instance.

Lemma 1. Algorithm 1 takes O(|δ0|+ |Δ0|+ |Δ1|2n + (|Δ2|n + |Δa|)4n) time,
where n = |Pε| + |Qni|.
In typical applications, we start with a small automaton, i.e. δ0 and Qni will be
small. In that case, n will be dominated by |Pε|, therefore the complexity can
be simplified to O(|Δ0| + |Δ1|2|Pε| + (|Δ2||Pε| + |Δa|)4|Pε|)

Theorem 1. Let P = (P, Γ, Δ) be an alternating pushdown system and A =
(Q, Γ, δ0, P, F) be an alternating automaton. There exist an alternating automa-
ton Apre∗ that recognizes pre∗(L(A)). Moreover, if the restrictions R1 and R2
are met, Apre∗ can be constructed in O(|δ0|+ |Δ0|+ |Δ1|2n + (|Δ2|n + |Δa|)4n)
time, where n = |Pε| + |Qni|.

Efficient Algorithms for Alternating Pushdown Systems 145

Algorithm 1
Input: an APDS P = (P, Γ, Δ);

an alternating P-automaton A = (Q,Γ, δ0, P, F) without transitions into P
Output: the set of transitions of Apre∗

1 rel := ∅;
2 trans := δ0 ∪ { (p, γ, p′) | 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ Δ } ∪ { (p, γ, ∅) | 〈p, γ〉 ↪→ ∅ ∈ Δ };
3 Δ′ := Δ;
4 F := λx.{∅};
5 while trans �= ∅ do
6 pop t := (q, γ, Q′) from trans;
7 if t /∈ rel then
8 add t to rel ;
9 for all r := 〈p1, γ1〉 ↪→ 〈q, γ〉 ∈ Δ′ and Q′′ ∈ F(r) do

10 add (p1, γ1, Q
′ ∪ Q′′) to trans ;

11 for all 〈p1, γ1〉 ↪→ 〈q, γγ2〉 ∈ Δ′ do
12 S := { q′ ∈ Q′ | ∃Q′′ : (q′, γ2, Q

′′) ∈ rel };
13 Q1 := {⋃

q′∈S Qq′ | ∀q′ ∈ S : (q′, γ2, Qq′) ∈ rel };
14 if S = Q′ then
15 add {(p1, γ1, Q1) | Q1 ∈ Q1} to trans ;
16 else
17 r := 〈p1, γ1〉 ↪→ {〈q′, γ2〉 | q′ ∈ Q′ \ S};
18 add r to Δ′ ;
19 add Q1 to F(r) ;
20 for all r := 〈p1, γ1〉 ↪→ {〈q, γ〉} ∪ R ∈ Δ′ s.t. R �= ∅ do
21 add 〈p1, γ1〉 ↪→ R to Δ′ ;
22 add {Q′′ ∪ Q′ | Q′′ ∈ F(r)} to F(〈p1, γ1〉 ↪→ R) ;
23 return rel ;

Fig. 1. An algorithm for computing pre∗

Given an APDS P , a configuration c of P , and a set of configurations C, the
backward reachability problem for P , c, and C is to check whether c ∈ pre∗

P(C).
By Theorem 1, the problem is in EXPTIME. The following theorem shows a cor-
responding lower bound. It is a rather straightforward modification of a theorem
of [11].

Theorem 2. The backward reachability problem for alternating pushdown sys-
tems is EXPTIME-complete, even if C is a singleton.

4 A Special Case

Recall the saturation rule of the abstract algorithm for the computation of
pre∗: for every transition rule 〈p, γ〉 ↪→ {〈p1, w1〉, . . . , 〈pm, wm〉} and every set
p1

w1−−→ P1, . . . , pm
wm−−−→ Pm, add a new transition p

γ−→ (P1 ∪ . . . ∪ Pm). The
exponential complexity of the algorithm is due to the fact that the target of the
new transition can be an arbitrary set of states, and so we may have to add an
exponential number of new rules in the worst case. We now consider a special

146 D. Suwimonteerabuth, S. Schwoon, and J. Esparza

class of instances in which a new transition p
γ−→ Q need only be added if Q is a

singleton, and show that a suitable modification of Algorithm 1 has polynomial
running time.

Definition 1. Let P = (P, Γ, Δ) be an APDS, and let R ⊆ PΓ ∗ be a set of
configurations. We say that (P , R) is a good instance for the computation of
pre∗ if for every 〈p, d〉 ↪→ {〈p1, w1〉, . . . , 〈pn, wn〉} ∈ Δ with n ≥ 2 and for every
i ∈ {1, . . . , n}: piwiw ∈ pre∗(R) implies w = ε.

I.e., if the set R can be reached from piwi, then it cannot be reached from any
piwiw, where w is a nonempty word. As mentioned above, we introduce the
following modification to the saturation rule: a new transition p

γ−→ Q is added
only if Q is a singleton.

Theorem 3. Let P = (P, Γ, Δ) and R be a good instance, and let A be a non-
deterministic automaton recognizing R. Assume w.l.o.g. that A has one single
final state. Then, the modified saturation procedure produces a nondeterministic
automaton recognizing the same language as Apre∗ .

Algorithm 1 implements the modified procedure after the following change to
line 9: for all r := 〈p1, γ1〉 ↪→ 〈q, γ〉 ∈ Δ′ and Q′′ ∈ F(r) ∩ {∅, Q′} do.

Lemma 2. The modified Algorithm 1 takes O(|δ0| + |Δ0| + (|Δ1| + |Δa|)n +
|Δ2|n2) time, where n = |Pε| + |Qni|, when applied to a good instance.

Note that Algorithm 1, when applied to a non-alternating PDS (i.e. one with
Δa = ∅), has the same complexity as the algorithm from [5] that was specially
designed for non-alternating PDS.

5 Computing Attractors in Pushdown Games

In [8] Cachat provided an algorithm for computing the winning positions of a
player in a pushdown reachability game. It is straightforward to reformulate the
algorithm in terms of pre∗ computations for alternating pushdown automata. We
do this, and apply the results of Sect. 3 to provide very precise upper bounds
for the complexity of these problems.

A pushdown game system (PGS) is a tuple G = (P, Γ, ΔG , P0, P1), where
(P, Γ, ΔG) is a PDS and P0, P1 is a partition of P . A PGS defines a pushdown
game graph GG = (V,→) where V = PΓ ∗ is the set of all configurations, and
pγv → qwv for every v ∈ Γ ∗ iff (p, γ, q, w) ∈ ΔG . P0 and P1 induce a partition
V0 = P0Γ

∗ and V1 = P1Γ
∗ on V . Intuititively, V0 and V1 are the nodes at which

players 0 and 1 choose a move, repectively. Given a start configuration π0 ∈ V ,
a play is a maximal (possibly infinite) path π0π1π2 . . . of GG ; the transitions of
the path are called moves; a move πi → πi+1 is made by player 0 if πi ∈ V0;
otherwise it is made by player 1.

The winning condition of a reachability game is a regular goal set of configu-
rations R ⊆ PΓ ∗. Player 0 wins those plays that visit some configuration of the

Efficient Algorithms for Alternating Pushdown Systems 147

goal set and also those that reach a deadlock for player 1. Player 1 wins the rest.
We wish to compute the winning region for player 0, denoted by Attr0(R), i.e.
the set of nodes from which player 0 can always force a visit to R or a deadlock
for player 1. Formally [8]:

Attr0
0(R) = R ,

Attri+1
0 (R) = Attri

0(R) ∪ {u ∈ V0 | ∃v : u → v, v ∈ Attri
0(R)}

∪ {u ∈ V1 | ∀v : u → v ⇒ v ∈ Attri
0(R)} ,

Attr0(R) =
⋃

i∈N
Attri

0(R) .

Given a PGS G = (P, Γ, ΔG , P0, P1), we define an APDS P = (P, Γ, Δ) as follows.
For every p ∈ P and γ ∈ Γ : if p ∈ P0, then for every rule 〈p, γ〉 ↪→ 〈q, w〉 of ΔG
add the rule 〈p, γ〉 ↪→ {〈q, w〉} to Δ; if p ∈ P1 and S is the set of right-hand-side
configurations of rules with 〈p, γ〉 as left-hand-side, then add 〈p, γ〉 ↪→ S to Δ. It
follows immediately from the definitions that Attr0(R) = pre∗P(R) (intuitively,
if c ∈ pre∗

P(R) then c ⇒ C for some C ⊆ R, and so player 0 can force the play
into the set C). So we can use Algorithm 1 to compute Attr0(R). To derive the
complexity bound, we apply Lemma 1:

Theorem 4. Let G = (P, Γ, ΔG , P0, P1) be a PGS and a goal set R recognized
by an alternating automaton AR = (Q, Γ, δ0, P, F). An alternating automaton
accepting the winning region can be computed in O(|δ0|+|Δ0|+|Δ1|2n+(|Δ2|n+
|Δa|)4n) time, where n = |Pε| + |Qni|.

In [8] an upper bound of O(|Δ| · 2c·|Q|2) is given. Our algorithm runs in O(|Δ| ·
2c·|Q|) time, and in fact Theorem 4 further reduces the exponent c · |Q| to |Pε|+
|Qni|. Typically, |Pε|+ |Qni| is much smaller than |Q|. First, recall that, because
of the definition of P-automaton, we have P ⊆ Q. Moreover, goal sets often take
the form p1Γ

∗ ∪ . . . ∪ pnΓ ∗, i.e., player 0 wins if the play hits one of the control
states p1, . . . , pn. In this case we can construct AR with |Qni| = 1. Since |Pε| is
typically much smaller than |P |, the parameter n is much smaller than |Q|.

6 Computing Certificate Trees in SPKI/SDSI

In access control of shared resources, authorization systems allow to specify a
security policy that assigns permissions to principals in the system. The autho-
rization problem is, given a security policy, should a principal be allowed access
to a specific resource? In frameworks such as SPKI/SDSI [6] and RT0 [12], the
security policy is expressed as a set of certificates, and the authorization problem
reduces to discovering a subset of certificates proving that a given principal is
allowed to access a given resource.

The SPKI/SDSI standard provides for so-called threshold certificates. Jha and
Reps already observed in [7] that the authorization problem in the presence of
such certificates can be reduced to the APDS reachability problem, and that a
special case had polynomial complexity. In this paper, we observe that the special

148 D. Suwimonteerabuth, S. Schwoon, and J. Esparza

case corresponds to good instances of APDS reachability, as defined in Sect. 4,
and provide a detailed complexity analysis. Moreover, we report on experimental
results for a prototype implementation of the algorithm as an extension of the
Nexus platform [9] with distributed access control.

The expressiveness of RT0 is very similar to that of SPKI/SDSI and also
allows for role intersection. We note, therefore, that the authorization problem
for RT0 also reduces to APDS reachability. In [12], a specialised certificate-
chain-discovery algorithm for RT0 was proposed to which our solution provides
an alternative. A comparison between the two algorithms is a little involved,
however, and can be found in [10].

We proceed in two steps. First, we consider “simple” SPKI/SDSI, a subset
of SPKI/SDSI that has been considered in most of the work on this topic. Sim-
ple SPKI/SDSI does not handle threshold certificates, which we present in the
second part.

6.1 Simple SPKI/SDSI

In this paper, we introduce only the basic notations that are required to under-
stand SPKI/SDSI and its connections with alternating PDS. A more thorough
explanation can be found in [7].

In SPKI/SDSI, the principals (individuals, resources, or any other entities)
are represented by their public keys. We denote by K the set of public keys (or
principals), specific keys are denoted by K, KA, K ′, etc. An identifier is a word
over some alphabet Σ (usually denoted by typewriter font such as A, B, . . .).
The set of identifiers is denoted by A. A local name is of the form K A, where
K ∈ K and A ∈ A. For example, KX Customer is a local name. A term is a key
followed by zero or more identifiers. For example, K Area Customer is a term.
SPKI/SDSI has two types of certificates, or “certs”:

Name Certificates. A name cert provides a definition of a local name in the
issuer’s local name space. Simply speaking, it can be understood as a rewrite
rule of the form K A → S, where K A is a local name and and S is a term.
Intuitively, this defines a meaning for A in the local name space of principal K,
and only K may issue and sign such a cert.

Imagine, for instance, that X is a telecommunication company with multiple
divisions, including the mobile phone division Xm. Alice is a customer with the
mobile phone division. Consider the following certificates:

KXm customer→ KAlice (1)
KX customer→ KXm customer (2)

Here, (1) intuitively declares Alice to be a customer of Xm, while (2) says that
customers of Xm are also customers of the company X as a whole.

Authorization Certificates. An auth cert grants or delegates a specific authoriza-
tion from an issuer to a subject. It can be understood as a rewrite rule of the form

Efficient Algorithms for Alternating Pushdown Systems 149

KR � → S b, where b ∈ {�, �}. If KR is the owner of some resource R, then
this certificate grants access to R to all principals described by term S. Only KR

may issue such a certificate. If b = �, then authorized principals may delegate
this authorization to other principals, otherwise delegation is not permitted. The
following certificate grants access to resource R to all of X ’s customers, without
delegation:

KR � → KX customers � (3)

Certificate Chains. In order for Alice to prove that she has access to some
resource, she needs to provide a list of certificates that lead from the public key
to herself by applying left-prefix rewriting. Such a list of certificates is called a
certificate chain. In the example, Alice is granted authorisation to access R if
she can produce the certificate chain (3),(2),(1), because applying them (in this
order) shows that:

KR � (3)→ KX customers � (2)→ KXm customers � (1)→ KAlice �

Since this chain leads from KR � to KAlice �, Alice is authorised to access R,
the “�” indicating that she is unable to delegate that access further.

It was observed in [7] that a set of name and auth certs can be interpreted as a
pushdown system; therefore, the authorization problem reduces to the problem
of pushdown reachability and can be solved using the algorithms from [3,5].

6.2 SPKI/SDSI with Threshold Certificates

The SPKI/SDSI standard [6] provides for so-called threshold subjects. A thresh-
old subject is a pair (S, k) where S is a set of terms and k ≤ |S|. A threshold
certificate is a name or auth cert where the right-hand side is a threshold sub-
ject. If threshold certificates are involved, proofs of authorisation can no longer
be done purely by certificate chains. Instead, a proof of authorisation for Alice
to access resource R becomes a certificate tree, where the nodes are labelled with
terms and the edges are labelled with rewrite rules that can be applied to the
term labelling their source nodes. The root is KR �, and if K A → (S, k) is used
to rewrite a node n, then the children of n are the elements of S. The tree is
considered a valid proof of authorisation for Alice if at least k of the children
can be rewritten to KAlice b, where b ∈ {�, �}.

We observe that it is sufficient to consider threshold certificates with subject
(S, k) such that k = |S|. (Any certificate where k < |S| can be simulated by

(|S|
k

)

threshold certificates for each subset of S with exactly k elements.) Therefore,
we will omit the number k from now on, silently assuming that it is equal to the
cardinality of S.

It can now easily be seen that in the presence of threshold certificates, the
certificate set can be interpreted as an alternating pushdown system, and that
the authorisation problem reduces to APDS reachability. In other words, Alice is
granted access to resource R if she can prove that KR � ⇒ {KAlice �, KAlice �}.

150 D. Suwimonteerabuth, S. Schwoon, and J. Esparza

In [13,7] the use of threshold subjects is restricted to just authorization cer-
tificates, claiming that the use of threshold subjects in name certificates would
make the semantics “almost surely too convoluted”. Moreover, [7] observes that
under this restriction the authorisation problem can be solved without incurring
(asymptotic) run-time penalties for threshold subjects and gives an informal al-
gorithm. Within our framework, we note that the restriction of threshold subjects
to auth certs allows one to obtain a good instance and to apply the algorithm
from Sect. 4 to solve the authorisation problem.

Theorem 5. Let Ct, C0, C1, and C2 be sets of certificates, where Ct contains
the auth certs with threshold subjects, C0 contains the name certs in which terms
have zero identifiers, C1 contains the name and auth certs in which terms have
one and zero identifiers, respectively, and C2 consists of the rest. Let n be the
number of different terms in C0. The authorization problem can be solved in
O(|C0| + (|C1| + |Ct|)n + |C2|n2) time.

7 Implementation and Experiments

We have implemented a prototype of the pre∗ algorithm for APDS (in fact, a
dedicated version for good instances) inside the Nexus platform [9]. An applica-
tion can use Nexus “middleware” in order to obtain context data about mobile
objects registered at the platform, like the position of an object or whether it
enjoys a given relation to another object.

Nexus is based on an Augmented World Model (AWM). AWM can contain
both real world objects (e.g. rooms or streets) and virtual objects (e.g. websites).
Furthermore, Nexus defines a language called Augmented World Modeling Lan-
guage (AWML). This XML-based language is used for exchanging Nexus objects
between the platform and data repositories.

Our prototype extends the AWM and AWML with name and authorization
relations, which can be viewed as name and authorization certificates in the
case of SPKI/SDSI, respectively. In other words, we model relations as virtual
objects in the Nexus context. Moreover, we extend the platform so that it can
serve applications querying relations between entities. Note that, normally, the
base information about objects is contained in a Nexus database (the so-called
context server) and returned in the form of AWML documents. Our prototype
is not yet connected to such a database; instead, all data is kept directly in
AWML.

7.1 A Scenario

Consider a scenario where company X takes part in a trade fair. The exhibition
center consists of 2 exhibitions. An exhibition’s area is a hierarchical structure
with 3 exhibition halls, divided into 4 floors with 5 booths each. The structure
can be written by pushdown rules as follows, given that 1 ≤ i ≤ 2, 1 ≤ j ≤ 3, 1 ≤
k ≤ 4, 1 ≤ l ≤ 5:

Efficient Algorithms for Alternating Pushdown Systems 151

Ei Area → Ei Hall Floor Booth (4)
Ei Hall → H[i,j] (5)
H[i,j] Floor → F[i,j,k] (6)
F[i,j,k] Booth → B[i,j,k,l] (7)

Now, company X launches a promotion for visitors of the exhibition center
to freely download ringtones for their mobile phones. The following visitors are
allowed to download: (1) customers of X who are currently in the area of exhi-
bition 1; (2) non-customers to whom the right has been delegated by one of X ’s
customers; (3) customers who are currently not in the area of exhibition 1, but
have received delegation from another visitor of exhibition 1. This is expressed
by the following rule:

KX � → {E1 Area Visitor �, KX Customer �} (8)

The facts that Alice is visiting a booth in exhibition 1, and that she delegates
her right to Bob, who is a customer of X , can be written as:

B[1,j,k,l] Visitor→ KAlice, for some j, k, l (9)
KAlice � → KBob � (10)
KX customer→ KBob (11)

When Bob wants to download a ringtone, we can efficiently compute the
set pre∗({〈KBob, �〉, 〈KBob, �〉}) by noting the fact that the rules (4)–(11) and
{〈KBob, �〉, 〈KBob, �〉} form a good instance. Bob’s request is granted in this
case because 〈X, �〉 ∈ pre∗({〈KBob, �〉, 〈KBob, �〉}). Note that Bob can only
download as long as Alice stays in booths in the exhibition 1. As soon as she
moves away (i.e. the rule (9) is removed), a request from Bob can no longer be
granted even though he is a customer of X .

7.2 Experiments

The scenario explained above is implemented as an application of the Nexus plat-
form.We report on the running time for someexperiments.The experiments should
give a rough idea of the size of problems that can be handled in reasonable time.

We randomly add visitors to the exhibition center, and let them randomly
issue certificates. We consider a base case with 1000 visitors in the exhibition
center, 100 of them are customers of the company X , and the visitors issue 1000
authorization certificates. The issuer of a certificate decides randomly whether
the right can be further delegated or not. The series were conducted on a 2GHz
PC with 256MB RAM.

7.3 Experiment 1

In the base case, 10% of visitors are customers of X , and a visitor issues one cer-
tificate on average. In our first experiment we keep these two ratios constant, and
increase the number of visitors (for example, if there are 2000 visitors, there will

152 D. Suwimonteerabuth, S. Schwoon, and J. Esparza

be 200 customers that authorize 2000 times). We ran the experiment five times
for each set of parameters. In each run 1000 random download requests are made.
Table 1 displays the average results for 1000, 2000, 5000, and 10000 visitors (V).
The table shows how often the request was granted (G) and rejected (R), the
average time of a certificate search (T), and average time for granted (T(G))
and rejected (T(R)) searches. All measurements are in milliseconds.

In a realistic scenario, solving the authorisation problem requires to query
databases (e.g. databases containing the positions of objects) and transmit data
over a network, which are comparatively expensive operations. We kept relations
of various types in different AWML files and whenever a piece of data was needed,
we retrieved it from there. Since opening and reading files is also a comparatively
expensive operation, this gives some insight as to the overhead such operations
would incur in practice. The table shows the number of times AWML files (F)
needed to be opened in average. For comparison, the numbers for granted (F(G))
and rejected (F(R)) requests are also displayed.

Table 1. Results of Experiment 1

V G R T T(G) T(R) F F(G) F(R)

1000 229.8 770.2 18.71 29.09 15.49 13.84 22.54 11.19
2000 195.6 804.4 19.23 28.76 16.92 13.14 21.25 11.16
5000 202.2 797.8 18.62 29.33 15.90 12.99 21.10 10.93

10000 199.4 800.6 24.90 38.25 21.60 13.00 22.00 10.77

This experiment allows to draw a first conclusion: The average time of a search
does not depend on the number of visitors per se. When a visitor requests a
download, the algorithm has to search for the issuers of its certificates. Since the
number of certificates is equal to the number of visitors, each visitor has one
certificate in average.

7.4 Experiment 2

In this experiment, we kept the number of visitors constant, and increased the
number of certificates they issue, shown in column C in Table 2. The other
columns are as in Experiment 1. Again, we ran the experiment five times for
each value of C. Each run consisted of 100 random requests.

Table 2. Results of Experiment 2

C G R T T(G) T(R) F F(G) F(R)

1000 23.0 77.0 18.71 29.09 15.49 13.84 22.54 11.19
2000 56.2 43.8 120.72 193.93 21.96 74.68 118.50 15.83
3000 86.4 13.6 1477.35 1704.21 33.66 625.41 721.69 12.91
4000 95.2 4.8 2279.13 2393.81 13.40 898.01 942.94 9.64

Efficient Algorithms for Alternating Pushdown Systems 153

We see that the running time grows rapidly with the number of certificates
issued. The explanation is the larger number of certificates received by each vis-
itor, which leads to many more certificate chains. Observe also that the number
of granted requests increases.

The overall conclusion of the two experiments is that the algorithm scales
well to realistic numbers of visitors and certificates. Notice that in the intended
application a user will be willing to wait for a few seconds.

8 Conclusions

We have provided an efficient implementation of the saturation algorithm of [3]
for the computation of pre∗ in alternating pushdown systems. Following [8], we
have applied the algorithm to the problem of determining the winning region in
reachability pushdown games, improving the complexity bound of [8]. We have
shown that the algorithm has very low complexity for certain good instances, and
provided an application: The computation of certificate chains with threshold
subjects in the SPKI/SDSI authorization framework can be reduced to these
instances. We have implemented the algorithm within the Nexus platform [9],
and shown that it scales up to realistic scenarios.

References

1. Burkart, O., Steffen, B.: Model checking the full modal mu-calculus for infinite
sequential processes. In: Proc. ICALP. LNCS 1256, Springer (1997) 419–429

2. Walukiewicz, I.: Pushdown processes: Games and model checking. In: Proc. CAV.
LNCS 1102 (1996) 62–74

3. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model-checking. In: Proc. CONCUR. LNCS 1243 (1997) 135–150

4. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking
pushdown systems. ENTCS 9 (1997)

5. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model
checking pushdown systems. In: Proc. CAV. LNCS 1855 (2000) 232–247

6. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylönen, T.: RFC
2693: SPKI Certificate Theory. The Internet Society. (1999)

7. Jha, S., Reps, T.: Model checking SPKI/SDSI. JCS 12(3–4) (2004) 317–353
8. Cachat, T.: Symbolic strategy synthesis for games on pushdown graphs. In: Proc.

ICALP. LNCS 2380 (2002) 704–715
9. Hohl, F., Kubach, U., Leonhardi, A., Rothermel, K., Schwehm, M.: Nexus - an open

global infrastructure for spatial-aware applications. Technical Report 1999/02,
Universität Stuttgart: SFB 627 (1999)

10. Suwimonteerabuth, D., Schwoon, S., Esparza, J.: Efficient algorithms for alternat-
ing pushdown systems: Application to certificate chain discovery with threshold
subjects. Technical report, Universität Stuttgart (2006)

11. Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. JACM 28(1) (1981) 114–133
12. Li, N., Winsborough, W., Mitchell, J.: Distributed credential chain discovery in

trust management. In: Proc. CCS, ACM Press (2001) 156–165
13. Clarke, D., Elien, J., Ellison, C., Fredette, M., Morcos, A., Rivest, R.: Certificate

chain discovery in SPKI/SDSI. At http://theory.lcs.mit.edu/~rivest/ (1999)

	Introduction
	Preliminaries
	An Implementation for $pre*$
	A Special Case
	Computing Attractors in Pushdown Games
	Computing Certificate Trees in SPKI/SDSI
	Simple SPKI/SDSI
	SPKI/SDSI with Threshold Certificates

	Implementation and Experiments
	A Scenario
	Experiments
	Experiment 1
	Experiment 2

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

