


Lecture Notes in Computer Science 4218
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Susanne Graf Wenhui Zhang (Eds.)

AutomatedTechnology
for Verification
and Analysis

4th International Symposium, ATVA 2006
Beijing, China, October 23-26, 2006
Proceedings

13



Volume Editors

Susanne Graf
VERIMAG
Centre Equation - 2, Avenue de Vignate
F-38610 Gieres, France
E-mail: Susanne.Graf@imag.fr

Wenhui Zhang
Chinese Academy of Sciences
Institute of Software
P.O. Box 8718, Beijing, China
E-mail: zwh@ios.ac.cn

Library of Congress Control Number: 2006934115

CR Subject Classification (1998): B.1.2, B.5.2, B.6, B.7.2, C.2, C.3, D.2, D.3, F.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-47237-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-47237-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11901914 06/3142 5 4 3 2 1 0



Preface

The Automated Technology for Verification and Analysis (ATVA) international
symposium series was initiated in 2003, responding to a growing interest in
formal verification spurred by the booming IT industry, particularly hardware
design and manufacturing in East Asia. Its purpose is to promote research on
automated verification and analysis in the region by providing a forum for inter-
action between the regional and the international research/industrial communi-
ties of the field. ATVA 2006, the fourth of the ATVA series, was held in Beijing,
China, October 23-26, 2006. The main topics of the symposium include theo-
ries useful for providing designers with automated support for obtaining correct
software or hardware systems, as well as the implementation of such theories in
tools or their application.

This year, we received a record number of papers: a total of 137 submissions
from 27 countries. Each submission was assigned to three Program Commit-
tee members, who could request help from subreviewers, for rigorous and fair
evaluation. The final deliberation by the Program Committee was conducted
through Springer’s Online Conference Service for a duration of about 10 days
after nearly all review reports had been collected. In the end, 35 papers were
selected for inclusion in the program.

ATVA 2006 had three keynote speeches given respectively by Thomas Ball,
Jin Yang, and Mihalis Yannakakis. The main symposium was preceded by a
tutorial day, consisting of three two-hour lectures given by the keynote speakers.

ATVA 2006 was supported by the National Natural Science Foundation of
China and the Institute of Software of the Chinese Academy of Sciences. Their
generous sponsorships are gratefully acknowledged. We would like to thank the
Program Committee members and their subreviewers for their hard work in
evaluating the submissions and selecting the program. We thank the keynote
speakers for their extra effort in delivering the tutorials. We thank the Steering
Committee for their advice, particularly Farn Wang, who also served as program
chair of the first two ATVA symposia, for providing valuable suggestions.

For the administrative support, we thank the Laboratory of Computer Sci-
ence at the Institute of Software of the Chinese Academy of Sciences. We also
thank Martin Karusseit from Metaframe for his help with the online conference
server.

October 2006 Susanne Graf
Wenhui Zhang



Organization

Steering Committee

E. Allen Emerson University of Texas at Austin
Oscar H. Ibarra University of California at Santa Barbara
Insup Lee University of Pennsylvania
Doron A. Peled University of Warwick
Farn Wang National Taiwan University
Hsu-Chun Yen National Taiwan University

General Chair

Huimin Lin Chinese Academy of Sciences

Sponsoring Organizations

National Natural Science Foundation of China
Institute of Software of the Chinese Academy of Sciences

Program Committee

Rajeev Alur University of Pennsylvania
Christel Baier University of Bonn
Jonathan Billington University of South Australia
Sung-Deok Cha Korea Advanced Inst. of Sci. and Techn.
Shing-Chi Cheung Hong Kong Univ. of Sci. and Techn.
Ching-Tsun Chou Intel
Jin Song Dong National University of Singapore
E. Allen Emerson University of Texas at Austin
Masahiro Fujita University of Tokyo
Susanne Graf VERIMAG
Wolfgang Grieskamp Microsoft research
Teruo Higashino Osaka University
Pei-Hsin Ho Synopsys
Oscar H. Ibarra University of California at Santa Barbara
Orna Kupferman Hebrew University
Robert P. Kurshan Cadence
Insup Lee University of Pennsylvania
Xuandong Li Nanjing University



VIII Organisation

Shaoying Liu Hosei University
Zhiming Liu IIST/United Nations University
Mila E. Majster-Cederbaum University of Mannheim
Olaf Owe University of Oslo
Doron A. Peled University of Warwick
Zhong Shao Yale University
Xiaoyu Song Portland State University
Yih-Kuen Tsay National Taiwan University
Irek Ulidowski Leicester University
Bow-Yaw Wang Academia Sinica
Farn Wang National Taiwan University
Ji Wang National U. of Techn. of China
Yi Wang Uppsala University
Baowen Xu Southeast University of China
Hsu-Chun Yen National Taiwan University
Tomohiro Yoneda Tokyo Institute of Technology
Wenhui Zhang Chinese Academy of Sciences
Lenore Zuck University of Illinois at Chicago

Local Organization Chair

Naijun Zhan Chinese Academy of Sciences

Reviewers

Hasan Amjad
Madhukar Anand
Dave Arney
Louise Avila
Ittai Balaban
Frederic Beal
Ritwik Bhattacharya
Howard Bowman
Marius Bozga
Victor Braberman
Thomas Brihaye
Lin-Zan Cai
Meeyoung Cha
Wen-Chin Chan
Chien-Liang Chen
Chunqing Chen
Liqian Chen
Xiaofang Chen
Yu-Fang Chen

Zhenbang Chen
Zhenyu Chen
Chih-Hong Cheng
Rance Cleaveland
Gavin Cox
Zhe Dang
Stephane Demri
Yuxin Deng
Jyotirmoy Deshmukh
Johan Dovland
Claude Dutheillet
Karsten Ehrig
Edith Elkind
Colin Fidge
Sebastian Fischmeister
Joern Freiheit
Felix Freiling
Xiang Fu
Guy Gallasch

Vijay Gehlot
Stephen Gorton
Zonghua Gu
Arie Gurfinkel
Ping Hao
Chris Hawblitzel
Holger Hermanns
Geng-Dian Huang
Samuel Hym
John H̊akansson
Mengluo Ji
Li Jiao
Einar Broch Johnsen
Ferhat Khendek
Taeho Kim
Piotr Kosiuczenko
Maciej Kounty
Lars Kristensen
Sava Krstic



Organisation IX

Georgios Lajios
Charles Lakos
François Laroussinie
Heungkyu Lee
Wenjun Lee
Tim Leonard
Guangyuan Li
Wenjun Li
Nimrod Lilith
Yih-Kai Lin
Zhi-Wei Lin
Lin Liu
Wanwei Liu
Yang Liu
Alessio Lomuscio
Bozena Wozna
Jih-Shien Lu
Yi Lu
Michael Luttenberger
Chammika Mannakkara
Moritz Martens
Michael May
Christoph Minnameier
Anders Moen
Armaghan Naik

Akio Nakata
Dinesh Nikhil
Carl I. Colombo Nilsen
Kozo Okano
Peter Ølveczky
Rotem Oshman
Joel Ouaknine
Chun Ouyang
Robert Palmer
Jun Pang
Bo-Yuan Peng
Paul Petterson
Nir Piterman
Amir Pnueli
Zdenek Sawa
Sven Schewe
Tzay-Farn Shih
Jeremy Sproston
Volker Stolz
Jun Sun
Jinsong Tan
Arild Torjusen
Gerardo Schneider
Ralf Treinen
Ming-Hsien Tsai

Emilio Tuosto
Somsak Vanit-Anunchai
Thomas Wahl
Jun Wei
Verena Wolf
Bozena Wozna
Baohua Wu
Kang-Nien Wu
Ke-Ren Wu
Gaoyan Xie
Chang Xu
Jin Yang
Tuba Yavuz-Khaveci
Chunyang Ye
Xiaodong Yi
Hong Qing Yu
Ingrid Chieh Yu
Lien-Po Yu
Naijun Zhan
Tian Zhang
Jianhua Zhao
Liang Zhao
Conghua Zhou
Xiaocong Zhou



Table of Contents

Keynote Speeches

Analysis of Recursive Probabilistic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Mihalis Yannakakis

Verification Challenges and Opportunities in the New Era
of Microprocessor Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Jin Yang

Automated Abstraction of Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Thomas Ball

Regular Papers

Symmetry Reduction for Probabilistic Model Checking Using Generic
Representatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Alastair F. Donaldson, Alice Miller

Eager Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Parosh Aziz Abdulla, Noomene Ben Henda, Richard Mayr,
Sven Sandberg

A Probabilistic Learning Approach for Counterexample Guided
Abstraction Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Fei He, Xiaoyu Song, Ming Gu, Jiaguang Sun

A Fine-Grained Fullness-Guided Chaining Heuristic for Symbolic
Reachability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Ming-Ying Chung, Gianfranco Ciardo, Andy Jinqing Yu

Model Checking Timed Systems with Urgencies . . . . . . . . . . . . . . . . . . . . . . . 67
Pao-Ann Hsiung, Shang-Wei Lin, Yean-Ru Chen,
Chun-Hsian Huang, Jia-Jen Yeh, Hong-Yu Sun, Chao-Sheng Lin,
Hsiao-Win Liao

Whodunit? Causal Analysis for Counterexamples . . . . . . . . . . . . . . . . . . . . . 82
Chao Wang, Zijiang Yang, Franjo Ivančić, Aarti Gupta



XII Table of Contents

On the Membership Problem for Visibly Pushdown Languages . . . . . . . . . . 96
Salvatore La Torre, Margherita Napoli, Mimmo Parente

On the Construction of Fine Automata for Safety Properties . . . . . . . . . . . 110
Orna Kupferman, Robby Lampert

On the Succinctness of Nondeterminism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Benjamin Aminof, Orna Kupferman

Efficient Algorithms for Alternating Pushdown Systems
with an Application to the Computation of Certificate Chains . . . . . . . . . . 141

Dejvuth Suwimonteerabuth, Stefan Schwoon, Javier Esparza

Compositional Reasoning for Hardware/Software Co-verification . . . . . . . 154
Fei Xie, Guowu Yang, Xiaoyu Song

Learning-Based Symbolic Assume-Guarantee Reasoning
with Automatic Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Wonhong Nam, Rajeev Alur

On the Satisfiability of Modular Arithmetic Formulae . . . . . . . . . . . . . . . . . 186
Bow-Yaw Wang

Selective Approaches for Solving Weak Games . . . . . . . . . . . . . . . . . . . . . . . . 200
Malte Helmert, Robert Mattmüller, Sven Schewe

Controller Synthesis and Ordinal Automata . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Thierry Cachat

Effective Contraction of Timed STGs for Decomposition Based Timed
Circuit Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Tomohiro Yoneda, Chris J. Myers

Synthesis for Probabilistic Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Sven Schewe

Branching-Time Property Preservation Between Real-Time Systems . . . . . 260
Jinfeng Huang, Marc Geilen, Jeroen Voeten, Henk Corporaal

Automatic Verification of Hybrid Systems with Large Discrete
State Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Werner Damm, Stefan Disch, Hardi Hungar, Jun Pang,
Florian Pigorsch, Christoph Scholl, Uwe Waldmann, Boris Wirtz

Timed Unfoldings for Networks of Timed Automata . . . . . . . . . . . . . . . . . . . 292
Patricia Bouyer, Serge Haddad, Pierre-Alain Reynier



Table of Contents XIII

Symbolic Unfoldings for Networks of Timed Automata . . . . . . . . . . . . . . . . . 307
Franck Cassez, Thomas Chatain, Claude Jard

Ranked Predicate Abstraction for Branching Time: Complete,
Incremental, and Precise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

Harald Fecher, Michael Huth

Timed Temporal Logics for Abstracting Transient States . . . . . . . . . . . . . . . 337
Houda Bel Mokadem, Béatrice Bérard, Patricia Bouyer,
François Laroussinie

Predicate Abstraction of Programs with Non-linear Computation . . . . . . . 352
Songtao Xia, Ben Di Vito, Cesar Munoz

A Fresh Look at Testing for Asynchronous Communication . . . . . . . . . . . . . 369
Puneet Bhateja, Paul Gastin, Madhavan Mukund

Proactive Leader Election in Asynchronous Shared Memory Systems . . . . 384
M.C. Dharmadeep, K. Gopinath

A Semantic Framework for Test Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
Laura Brandán Briones, Ed Brinksma, Mariëlle Stoelinga

Monotonic Set-Extended Prefix Rewriting and Verification of Recursive
Ping-Pong Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

Giorgio Delzanno, Javier Esparza, Jǐŕı Srba

Analyzing Security Protocols in Hierarchical Networks . . . . . . . . . . . . . . . . . 430
Ye Zhang, Hanne Riis Nielson

Functional Analysis of a Real-Time Protocol for Networked Control
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

Colin Fidge, Yu-Chu Tian

Symbolic Semantics for the Verification of Security Properties of Mobile
Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

Fernando Rosa-Velardo, David de Frutos-Escrig

Sigref – A Symbolic Bisimulation Tool Box . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
Ralf Wimmer, Marc Herbstritt, Holger Hermanns, Kelley Strampp,
Bernd Becker

Towards a Model-Checker for Counter Systems . . . . . . . . . . . . . . . . . . . . . . . 493
Stephane Demri, Alain Finkel, Valentin Goranko,
Govert van Drimmelen



XIV Table of Contents

The Implementation of Mazurkiewicz Traces in POEM . . . . . . . . . . . . . . . . 508
Peter Niebert, Hongyang Qu

Model-Based Tool-Chain Infrastructure for Automated Analysis
of Embedded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

Hang Su, Graham Hemingway, Kai Chen, T. John Koo

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539



Analysis of Recursive Probabilistic Models

Mihalis Yannakakis

Department of Computer Science, Columbia University
mihalis@cs.columbia.edu

In this talk we will discuss recent work on the modeling and analysis of systems
that involve recursion and probability. Both, recursion and probability, are fun-
damental constructs that arise in a wide variety of settings in computer science
and other disciplines.

There has been extensive work over the years in the verification community on
the algorithmic analysis of finite state probabilistic models and their properties
(eg. [10,11,13,30,33,36,43]). Markov chains serve as the standard basic model for
systems that evolve probabilistically in a wide variety of domains, including in
particular, as a model for (finite-state abstractions of) probabilistic programs.
The probabilities of the transitions may either reflect randomizing steps of the
program or the system under study; or they may reflect statistical assumptions
on the branching of the program or the evolution of the system. Markov Decision
Processes (MDP) and Stochastic Games (SG) model systems that contain both
probabilistic and nonprobabilistic actions that are controlled by one agent (en-
tity) or by two (or more) agents respectively; these models serve in particular to
capture open systems that interact with their environment. In the case of games
(among two or more agents), a distinction is usually made between turn-based
(or simple) games where the agents take turns, i.e. only one agent acts at a time,
and the more general case of concurrent games where several agents may act at
the same time.

Another line of verification research has extended finite-state model checking
methods to models that correspond to (abstractions of) recursive programs with
procedures ([2,3,14]. Recursive State Machines (RSM) and Pushdown Systems
(PDS) are two equivalent models for this purpose. Informally, a RSM is a fi-
nite collection of finite-state machines that can call each other in a potentially
recursive manner (similar to a recursive program); a PDS is a machine with a
finite control equipped with a pushdown store (a stack). The two models are
expressively and computationally equivalent, but they represent somewhat dif-
ferent views as modeling formalisms. Their relation is analogous to the relation
between a program that is written as a set of procedures that call each other,
and a nonrecursive (single-procedure) program that uses a stack to perform an
equivalent computation. Hierarchical State Machines (HSM) form a subclass of
Recursive State Machines, in which the calling relation between the component
machines is acyclic (hierarchical); they are useful in modularizing and represent-
ing succinctly larger finite state systems.

In the last few years there has been a lot of activity in the study of sys-
tems that involve both recursion and probability [4,5,6,15,16,17,18,19,20,21,22].

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 1–5, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 M. Yannakakis

The primary motivation comes from the analysis of probabilistic programs with
procedures, but such systems have arisen also in various other domains. In the
presence of recursive procedures, a natural model for (purely) probabilistic pro-
grams is Recursive Markov Chains (RMCs): Informally, a RMC consists of a
collection of finite state component Markov chains that can call each other in a
potentially recursive manner [17]. An equivalent model is Probabilistic Pushdown
Automata (pPDA) [15]. These models are essentially a succinct, finite represen-
tation of an infinite state Markov chain, which captures the global evolution of
the system.

More generally, if some steps of the program/system are probabilistic while
other steps are not, but rather are controllable by the system or the environment,
then such a system can be naturally modeled by a Recursive Markov Decision
Process (RMDP) or a Recursive Stochastic Game (RSG)[19,22]. In a RMDP all
the nonprobabilistic actions are controlled by the same agent (the controller, or
the environment), while in a RSG (simple or concurrent), different nonproba-
bilistic actions are controlled by two opposing agents (eg. some by the designer
and some by the environment).

Recursive Markov chains encompass as special cases several other basic
stochastic models that have been studied in various other domains. Branching
processes are an important class of stochastic processes [29], introduced first by
Galton and Watson in the 19th century to study population dynamics, and gen-
eralized later on in the mid 20th century to the multitype case by Kolmogorov
and Sevastyanov [32,40]. A branching process specifies the probability distribu-
tions of the set of offsprings of each species (type) from one generation to the
next. They have been applied in a wide variety of contexts such as population
genetics [28], biology[31], and nuclear chain reactions [23]. Another related model
is that of stochastic context-free grammars which have been studied extensively
since the 1970’s especially in the Natural Language Processing community (see
eg. [34]), and in other contexts (for example, RNA modeling [39]). In a cer-
tain formal sense, (multitype) branching processes and stochastic context-free
grammars correspond to a subclass of recursive Markov chains, namely the class
of “1-exit RMCs”, where each component Markov chain has a single exit state
where it can terminate and return control to the component that called it. An-
other example that is also included in the subclass of 1-exit RMCS is a model of
web-surfing, called “Markov chain with back-button”, that was introduced and
analyzed thoroughly by [24].

Recursive Markov chains, and their extension to Recursive Markov Decision
Processes and Stochastic Games, have a rich theory and pose a lot of challenging
problems. Even in the 1-exit case, recursive Markov chains introduce several
difficulties not encountered in the case of standard finite Markov chains. For
example, in the case of standard Markov chains, qualitative questions concerning
events holding with probability 1 or 0, such as, “starting at state s will we reach
state t almost surely?’, or “does a given temporal logic property hold a.s. in
an execution?” do not depend on the actual values of the probabilities on the
edges, but only on which transitions are present (have nonzero probability). This



Analysis of Recursive Probabilistic Models 3

is not true anymore in the case of recursive Markov chains: the actual values of
the probabilities matter. Furthermore, in a finite Markov chain with rational
transition probabilities, the probabilities of the events that we are interested in
(for example, the probability that a trajectory satisfies a given LTL property)
are also rational, and moreover have polynomially bounded complexity in the
size of the Markov chain and can be computed efficiently. In recursive Markov
chains this is not true any more: the probability of simple events (eg. termination,
reachability) can be irrational and thus cannot be computed exactly.

The analysis of recursive probabilistic models involves combinatorial, alge-
braic, and numerical aspects. There are connections to various areas, such as
the existential theory of the reals [8,38,7], multidimensional Newton’s method,
matrix theory, and many others. There are connections also with several well-
known open problems, such as the square root sum problem [27,42] (a 30-year
old intriguing, simple problem that arises often in the numerical complexity of
geometric computations, and which is known to be in PSPACE, but it is not
known even whether it is in NP), and the value of simple stochastic games [9]
and related games (parity game etc.), which are in NP∩coNP, but it is not known
whether they are in P.

In this talk we will present some of this theory, and the related algorithmic
results and methods.

Acknowledgement. Work partially supported by NSF Grant CCF-04-30946.

References

1. R. Alur, M. Yannakakis. Model checking of hierarchical state machines. ACM
Trans. Prog. Lang. Sys., 23(3), pp. 273-303, 2001.

2. R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. W. Reps, and M. Yannakakis.
Analysis of recursive state machines. In ACM Trans. Progr. Lang. Sys., 27, pp.
786-818, 2005.

3. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Applications to model checking. In Proc. CONCUR’97, pages 135–150,
1997.

4. T. Brázdil, V. Brozek, V. Forejt, A. Kučera. Reachability in recursive Markov
decision processes. Proc. CONCUR, 2006.

5. T. Brázdil, A. Kučera, and J. Esparza. Analysis and prediction of the long-run
behavior of probabilistic sequential programs with recursion. In Proc. of FOCS’05,
pp. 521-530, 2005.

6. T. Brázdil, A. Kučera, and O. Stražovský. Decidability of temporal properties of
probabilistic pushdown automata. In Proc. of STACS’05, 2005.

7. S. Basu, R. Pollack, and M. F. Roy. On the combinatorial and algebraic complexity
of quantifier elimination. J. ACM, 43(6):1002–1045, 1996.

8. J. Canny. Some algebraic and geometric computations in PSPACE. In Prof. of
20th ACM STOC, pages 460–467, 1988.

9. A. Condon. The complexity of stochastic games. Inf. & Comp., 96(2):203–224,
1992.

10. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
Journal of the ACM, 42(4):857–907, 1995.



4 M. Yannakakis

11. C. Courcoubetis and M. Yannakakis. Markov decision processes and regular events.
IEEE Trans. on Automatic Control, 43(10):1399–1418, 1998.

12. L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic
model checking of probabilistic processes using MTBDDs and the kronecker rep-
resentation. In Proc. of 6th TACAS, pages 395–410, 2000.

13. L. de Alfaro, R. Majumdar. Quantitative solution of omega-regular games. J.
Comp. Sys. Sc., 68(2), pp. 374-397, 2004.

14. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for
model checking pushdown systems. In Proc. 12th CAV, volume 1855, pp. 232–247.
Springer, 2000.

15. J. Esparza, A. Kučera, and R. Mayr. Model checking probabilistic pushdown
automata. In Proc. of 19th IEEE LICS’04, 2004. Full version in Logical Methods
in Computer Science 2(1), 2006.

16. J. Esparza, A. Kučera, and R. Mayr. Quantitative analysis of probabilistic push-
down automata: expectations and variances. Proc. of 20th IEEE LICS, 2005.

17. K. Etessami and M. Yannakakis. Recursive Markov chains, stochas-
tic grammars, and monotone systems of non-linear equations. Proc. of
22nd STACS’05. Springer, 2005. Full, expanded version available from
http://homepages.inf.ed.ac.uk/kousha/bib index.html.

18. K. Etessami and M. Yannakakis. Algorithmic verification of recursive probabilistic
state machines. In Proc. 11th TACAS, vol. 3440 of LNCS, 2005.

19. K. Etessami and M. Yannakakis. Recursive Markov Decision Processes and Recur-
sive Stochastic Games. In Proc. 32nd ICALP, pp. 891-903, Springer, 2005.

20. K. Etessami and M. Yannakakis. Checking LTL Properties of Recursive Markov
Chains. In Proc. 2nd Intl. Conf. on Quantitative Evaluation of Systems, IEEE,
2005.

21. K. Etessami and M. Yannakakis. Efficient Analysis of Classes of Recursive Markov
Decision Processes and Stochastic Games. Proc. 23rd STACS, pp. 634-645, 2006.

22. K. Etessami and M. Yannakakis. Recursive concurrent stochastic games. Proc.
33rd ICALP, vol. 2, pp. 324-335, 2006.

23. C. J. Everett and S. Ulam. Multiplicative systems, part i., ii, and iii. Technical
Report 683,690,707, Los Alamos Scientific Laboratory, 1948.

24. R. Fagin, A. Karlin, J. Kleinberg, P. Raghavan, S. Rajagopalan, R. Rubinfeld,
M. Sudan, and A. Tomkins. Random walks with “back buttons” (extended ab-
stract). In ACM Symp. on Theory of Computing, pages 484–493, 2000.

25. E. Feinberg and A. Shwartz, editors. Handbook of Markov Decision Processes.
Kluwer, 2002.

26. J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1997.
27. M. R. Garey, R. L. Graham, and D. S. Johnson. Some NP-complete geometric

problems. In 8th ACM Symp. on Theory of Computing, pages 10–22, 1976.
28. P. Haccou, P. Jagers, and V. A. Vatutin. Branching Processes: Variation, Growth,

and Extinction of Populations. Cambridge U. Press, 2005.
29. T. E. Harris. The Theory of Branching Processes. Springer-Verlag, 1963.
30. A. Hinton, M. Z. Kwiatkowska, G. Norman, D. Parker. PRISM: A tool for auto-

matic verification of probabilistic systems. Proc. TACAS, pp. 441-444, 2006.
31. P. Jagers. Branching Processes with Biological Applications. Wiley, 1975.
32. A. N. Kolmogorov and B. A. Sevastyanov. The calculation of final probabilities for

branching random processes. Dokl. Akad. Nauk SSSR, 56:783–786, 1947. (Russian).
33. M. Kwiatkowska. Model checking for probability and time: from theory to practice.

In 18th IEEE LICS, pages 351–360, 2003.



Analysis of Recursive Probabilistic Models 5

34. C. Manning and H. Schütze. Foundations of Statistical Natural Language Process-
ing. MIT Press, 1999.

35. A. Paz. Introduction to Probabilistic Automata. Academic Press, 1971.
36. A. Pnueli and L. D. Zuck. Probabilistic verification. Inf. and Comp., 103(1):1–29,

1993.
37. M. L. Puterman. Markov Decision Processes. Wiley, 1994.
38. J. Renegar. On the computational complexity and geometry of the first-order

theory of the reals, parts I-III. J. Symb. Comp., 13(3):255–352, 1992.
39. Y. Sakakibara, M. Brown, R Hughey, I.S. Mian, K. Sjolander, R. Underwood, and

D. Haussler. Stochastic context-free grammars for tRNA modeling. Nucleic Acids
Research, 22(23):5112–5120, 1994.

40. B. A. Sevastyanov. The theory of branching processes. Uspehi Mathemat. Nauk,
6:47–99, 1951. (Russian).

41. L.S. Shapley. Stochastic games. Proc. Nat. Acad. Sci., 39:1095–1100, 1953.
42. P. Tiwari. A problem that is easier to solve on the unit-cost algebraic ram. Journal

of Complexity, pages 393–397, 1992.
43. M. Vardi. Automatic verification of probabilistic concurrent finite-state programs.

In Proc. of 26th IEEE FOCS, pages 327–338, 1985.



Verification Challenges and Opportunities

in the New Era of Microprocessor Design

Jin Yang, Ph.D.,
Principal Research Scientist

Validation Research Lab., Intel Corporation
jin.yang@intel.com

Microprocessor design continues to be driven by the economics of Moore’s Law.
Each new process generation doubles the number of transistors available to mi-
croprocessor architects and designers. Design complexity continues to increase,
and so does verification complexity, in order to keep microprocessor performance
scaling up with Moore’s Law. Moving forward, we are facing even tougher chal-
lenges associated with the power scaling and reliability issues of future transistor
devices. To build high performance, power efficient, reliable microprocessors us-
ing unreliable devices, we have to take a holistic approach, and deliver innovative
technology solutions across the entire stack: circuit, micro-architecture, architec-
ture, platform, and embedded software. Here we examine several future design
trends and their implications on verification.

Multi-Core System-On-Chip Design. It is no longer possible to sorely rely
on exploring micro-architectural level parallelism to maintain performance scal-
ing without breaking the power wall. We need to explore architectural level
parallelism by introducing multi-cores and advanced cache/memory hierarchy,
and at the same time balance architectural and micro-architectural level par-
allelisms on a single chip. We need to have sophisticated embedded software
to manage hardware resources to enable system and application softwares to
keep Moore’s Law alive for performance. We need to have a vertically integrated
power management scheme to maintain power and energy efficiency. Because
of this paradigm shift, there will be a much stronger emphasis on system-level
verification such as software and hardware co-verification, protocol verification,
embedded software verification, and feature integration verification.

High Level Design. Today, hardware design is done at the RTL level. RTL
model complexity also scales roughly according to Moore’s Law. Study shows
that the number of bugs in a RTL model is proportional to the size of the model.
This cannot be good news. Another closely related problem is that today we do
not have a rigorous approach to capture architectural and micro-architectural
designs and ensure their correctness. This creates a verification gap that is very
hard to bridge with existing formal technologies. Architectural bugs are much
more difficult and costly to detect and fix late in the design cycle. In order to
turn the trend around, we need to raise the level of design abstraction. We need
to strive hard to formally specify and verify architectural design, and tightly

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 6–7, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Verification Challenges and Opportunities in the New Era 7

integrate verification into the design flow to enable correct-by-construction and
a bug-free implementation. Last but not least, we need to make design cleaner
and simpler.

IP Reuse. Another promising approach to combat design complexity is through
IP reuse. This not only requires formally specifying the interface behavior of an
IP component and verifying that it is implemented correctly, but also requires
formally specifying the usage model of the component and verifying that other
components in the system interact with this component in a compliant way. Sys-
tem level verification also needs to comprehend IP components. Furthermore, a
true IP reuse in microprocessor design often requires the treatment of an IP
component as a gray box rather than a black box, as the introduction of a new
technology feature may cut across a large portion of the design hierarchy, includ-
ing the IP component. Therefore, the reusable IP component needs to be made
customizable and extensible without compromising its correctness promise.

DFx, Reliability and Fault Tolerance. Due to the underlying device physics,
a functionally correct design is far from ensuring a correctly-functioning chip.
The reliability of transistor devices will get worse in the future due to the contin-
uous scaling of device size into the deep sub-micron world. There will be more
manufacturing defects due to process variation, and more circuit marginality
problems and soft errors due to their increasing sensitivity to the changes in op-
eration conditions. At the same time, the human resource and equipment cost for
post-silicon validation, debug and bug fix and debug is skyrocketing. Even more,
the increasingly worse device aging problem will make a chip more likely to fail
on the field during its lifetime, even though the chip has been fully verified in the
factory. These challenges call for DFx features (design for test, design for veri-
fication, and design for debug, etc.) and unconventional post-silicon verification
technologies to keep the cost down. They also call for technology innovations
to build a reliable, fault tolerant system using unreliable components, i.e., to
build sophisticated runtime verification and recovery mechanism across the en-
tire system to ensure that a chip will function correctly on the field even if some
devices fail. These DFx and reliability features must be verified against their
specifications to make sure they work correctly as promised.

In summary, to keep Moore’s Law alive in the new era of microprocessor
design requires disruptive thinkings, and innovations in design and verification
technologies and methodologies. We are entering an exciting period full of chal-
lenges and opportunities.



Automated Abstraction of Software

Thomas Ball

Software Reliability Research, Microsoft Research
tball@microsoft.com

Automatically proving that a program has some property requires the discovery
of appropriate abstractions. Such abstractions simplify the proof task and make
it tractable. One approach is for a human to identify an appropriate abstraction.
Another approach is to use the computer to search for an appropriate abstrac-
tion, based on the program and property under consideration. I will explain how
the techniques of predicate abstraction and analysis of spurious error paths can
guide the search for appropriate abstractions. These techniques are embedded in
the SLAM analysis engine, which forms the core of a recently released Microsoft
tool for checking Windows device drivers, called Static Driver Verifier.

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, p. 8, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Symmetry Reduction for Probabilistic Model

Checking Using Generic Representatives

Alastair F. Donaldson� and Alice Miller

Department of Computing Science
University of Glasgow

Glasgow, Scotland
{ally,alice}@dcs.gla.ac.uk

Abstract. Generic representatives have been proposed for the effective
combination of symmetry reduction and symbolic representation with
BDDs in non-probabilistic model checking. This approach involves the
translation of a symmetric source program into a reduced program, in
which counters are used to generically represent states of the original
model. Symmetric properties of the original program can also be trans-
lated, and checked directly over the reduced program. We extend this
approach to apply to probabilistic systems with Markov decision process
or discrete time Markov chain semantics, represented as MTBDDs. We
have implemented a prototype tool, GRIP, which converts a symmetric
PRISM program and PCTL property into reduced form. Model checking
results for the original program can then be inferred by applying PRISM,
unchanged, to the smaller model underlying the reduced program. We
present encouraging experimental results for two case studies.

1 Introduction

Symmetry reduction techniques can be effective at combatting the state space
explosion problem for model checking [4,5,9,12,13,22]. Replication in the struc-
ture of a distributed system can give rise to symmetries, or automorphisms, of
a Kripke structure modelling the system: bijections of the states of the struc-
ture which preserve its transition relation. The most common type of Kripke
structure automorphisms are component symmetries – permutations of the set
of component identifiers which preserve the transition relation when applied to
all states. A group of automorphisms gives rise to a partition of the states of a
structure into equivalence classes, or orbits, and a quotient Kripke structure can
be constructed by choosing a single representative from each orbit. If the group
is non-trivial this structure is smaller than the original, and they are bisimilar.
Thus temporal logic properties which are symmetrically invariant can be checked
over the smaller quotient structure.

The obvious approach to combining symmetry reduction techniques with sym-
bolic representation is to represent the quotient Kripke structure using a binary

� Supported by the Carnegie Trust for the Universities of Scotland.

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 9–23, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



10 A.F. Donaldson and A. Miller

decision diagram (BDD). However, this approach requires a BDD to be con-
structed for the orbit relation — for a symmetry group G this is the set of
pairs of symmetrically equivalent states under G. It has been shown that for
a large class of commonly occurring symmetry groups construction of such a
BDD representation is intractable [6]. A promising approach which avoids com-
puting the orbit relation for the case of full component symmetry uses generic
representatives [12]. Here an equivalence class of states is represented by a state
which counts the number of components in each local state, ignoring the spe-
cific component identities. This state is a generic representative. Using mutual
exclusion as a canonical example, if the local state of a component belongs to
{N,T,C} (Non-critical, Trying and Critical), the global states for a 4-component
model include (N,T,N,C), (C, T,N,N) and (N,C,N, T ), which are symmetri-
cally equivalent and are all represented generically by (2N, 1T, 1C). The attrac-
tion of this approach is that symmetry can be exploited at the source code level:
a fully symmetric source program and fully symmetric property can be trans-
lated into a reduced program and property. The Kripke structure for the reduced
program is isomorphic to the quotient structure of the original under full sym-
metry, and the generic property is equivalent to the original. Thus the benefits
of symmetry reduction can be obtained by applying standard symbolic model
checking algorithms to the reduced program.

Recently there has been much interest in probabilistic model checking
[1,18,25], and some work on extending symmetry reduction techniques to a prob-
abilistic setting [8,20]. In this paper we extend the generic representatives ap-
proach to apply to symbolic model checking of probabilistic systems. We define
a symmetric subset of the PRISM modelling language, SP, and show how SP
programs with Markov decision process (MDP) or discrete time Markov chain
(DTMC) semantics, together with symmetric PCTL properties, can be trans-
lated into a reduced form. As in the non-probabilistic case, the time complexity
of this translation is polynomial in the size of the input program. We describe
a software tool, GRIP, which automates the translation of an SP program to
generic form, and illustrate our approach using two case studies.

2 Background

2.1 Symmetry Reduction for Non-probabilistic Model Checking

We use a simple model to represent the computation of a system comprised of n
communicating components, interleaving concurrently [11]. Let I = {1, 2, . . . , n}
be the set of component identifiers, and for some k ≥ 0, let L = {0, 1, 2, . . . , k}
denote the possible local states of the components. A Kripke structure is a pair
K = (S,R), where S ⊆ Ln, is a non-empty set of states, and R ⊆ S×S is a total
transition relation. The usual lexicographical ordering of vectors provides a total
ordering on S. If s = (l1, l2, . . . , ln) ∈ S then we use s(i) to denote li, the local
state of component i. Communication between components is via inspection of
local states.



Symmetry Reduction for Probabilistic Model Checking 11

The set of all permutations of I forms a group under composition of mappings,
denoted Sn (the symmetric group on n points). Let K = (S,R) be a Kripke
structure, and let α ∈ Sn. Then α acts on a state s = (l1, l2, . . . , ln) ∈ S in the
following way: α(s) = (lα−1(1), lα−1(2), . . . , lα−1(n)). If (α(s), α(t)) ∈ R ∀ (s, t) ∈
R, α is an automorphism of K. The set of all automorphisms of K forms a group
Aut(K) ≤ Sn under composition of mappings.

A subgroup G of Aut(K) induces an equivalence relation θ = {(s, α(s)) : s ∈
S, α ∈ G} on the states of K. The equivalence class under θ of a state s ∈ S,
denoted [s], is called the orbit of s under the action of G, and θ is the orbit
relation. The smallest element of [s] under the total ordering described above is
denoted min[s]. The quotient Kripke structure for K with respect to G is a pair
K = (S,R) where S = {min[s] : s ∈ S}, and R = {(min[s],min[t]) : (s, t) ∈ R}.
If G is non-trivial K is a smaller structure than K, but K and K are equivalent
in the sense that they satisfy the same set of temporal logic properties which
are invariant under the group G. Thus by choosing a suitable symmetry group
G, model checking can be performed over K instead of K, potentially resulting
in considerable savings in memory and verification time.

2.2 Symmetry Reduction and Symbolic Representation

Our definition of a quotient structure in the previous section involves the selec-
tion of the smallest state of an equivalence class as a representative. However, any
representative function which maps all elements of a class on to the same unique
representative could be used. Symmetry reduction techniques can in principle be
combined with symbolic representation by constructing a BDD for such a rep-
resentative function, and applying the function during fixpoint iterations. This
is described in detail in [6], and summarised in [12]. Unfortunately, constructing
the representative function requires a BDD for the orbit relation which, for many
commonly occurring symmetry groups, has size exponential in min(k+1, n) [6].

Several alternative approaches to combining symmetry reduction and sym-
bolic model checking have been proposed, including the use of multiple repre-
sentatives [5]; under-approximation [3]; dynamic symmetry reduction [13]; and
generic representatives [11,12,14]. Summaries of these approaches can be found
in [20,22]. In this paper, we restrict our attention to the generic representatives
approach, which we now describe.

In order to avoid constructing a BDD for the orbit relation when exploiting full
component symmetry, a fully symmetric source program can be translated into a
reduced program, which can be checked using standard symbolic model checking
algorithms and has a state space isomorphic to the symmetric quotient structure
of the model underlying the original program. A program with n components
and k + 1 local states per component is translated into a program with k + 1
counter variables, each with domain I∪{0} [11]. A state of this program indicates
how many processes are in each local state of the original program, but does not
refer to individual processes (see the mutual exclusion example in Section 1).
This approach is extended [12] to include systems with global shared variables.
The translation of a program into reduced form is polynomial in the length of



12 A.F. Donaldson and A. Miller

the program and the approach compares well to those using unique or multiple
representatives.

Details of the translation of a fully symmetric program into reduced form can
be found in [12], and the approach is similar to the one we present for fully
symmetric PRISM programs with MDP semantics in Section 5. The approach
is limited as it only applies to fully symmetric systems and requires a somewhat
restrictive input language. However, full component symmetry is the most com-
mon kind of symmetry in model checking problems, and promises the best state
space reduction of any kind of symmetry.

3 Symmetry Reduction for Probabilistic Models

We now consider systems comprised of n stochastic components which interleave
concurrently. Once again, communication between components is achieved by in-
spection of local states. Let I and L be as before. A Markov decision process
(MDP) is a pair M = (S, Steps), where S ⊆ Ln, and Steps : S → 2Dist(S)

maps each state s to a finite, non-empty set of probability distributions over S.
A discrete time Markov chain (DTMC) is a pair D = (S, P ) where S is as for
an MDP, and P : S × S → [0, 1] is a transition probability matrix. An MDP can
model systems which exhibit both nondeterminism and probabilistic behaviour
(e.g. nondeterministic scheduling of processes in a randomised distributed algo-
rithm), whereas DTMCs can be used to model purely probabilistic systems.

For either type of model, a total ordering on states is provided as before by
the usual lexicographic ordering on vectors, and the action of a permutation
α ∈ Sn on states is the same as that described in Section 2.1. Recall that
Kripke structure automorphisms preserve the transition relation of the structure.
Automorphisms of probabilistic structures preserve the probabilistic transition
relation. The following definitions are adapted from [20].

Definition 1. Let M = (S, Steps) and M′ = (S′, Steps′) be MDPs, and let
α : S → S′ be a bijection. Suppose that for all s ∈ S and for all µ ∈ Steps(s),
there exists µ′ ∈ Steps(α(s)) such that, for all t ∈ S, µ(t) = µ′(α(t)). Then α is
an isomorphism from M to M′, and M and M′ are said to be isomorphic. If
M = M′, α is an automorphism of M.

Definition 2. Let D = (S, P ) and D′ = (S′, P ′) be DTMCs, and let α : S → S′

be a bijection. Suppose that for all s, t ∈ S, P (s, t) = P ′(α(s), α(t)). Then α
is an isomorphism from D to D′, and D and D′ are said to be isomorphic. If
D = D′, α is an automorphism of D.

In both cases, the set of all automorphisms forms a group under composition,
denoted Aut(D) or Aut(M), and a subgroup of this group induces orbits on the
state space as before. Taking the minimum element of each orbit as a representa-
tive, a quotient DTMC/MDP can be defined analogously to the non-probabilistic
case [20].

The quotient DTMC D = (S, P ) is defined by S = {min[s] : s ∈ S}, and
P (min[s],min[t]) =

∑
x∈[t] P (min[s], x). For a quotient MDP M = (S, Steps),



Symmetry Reduction for Probabilistic Model Checking 13

S is defined similarly and, if min[s] ∈ S then µ ∈ Steps(min[s]) iff there is some
µ ∈ Steps(min[s]) such that, for all min[t] ∈ S, µ(min[t]) =

∑
x∈[t] µ(x). It is

easy to show using results on probabilistic bisimulation [21,26] that, as in the
non-probabilistic case, the quotient models preserve the truth of temporal prop-
erties which are invariant under symmetry. This means that for each maximal
propositional subformula f of a property φ, and for all α ∈ G, s |= f ⇔ α(s) |= f .
To express properties of MDPs or DTMCs we use PCTL (Probabilistic Com-
putation Tree Logic) [17].

Theorem 1. Let φ be a PCTL property which is invariant under G. Then, for
all s ∈ S,

M, s |= φ⇔ M,min[s] |= φ.

Formulas in the sub-logic SPCTL, described in Section 4.1, are invariant under
full symmetry.

The following theorem establishes a correspondence between properties of
isomorphic MDPs under an appropriate transformation of atomic propositions.
We omit the proof, which is straightforward using induction on the structure of
PCTL formulas.

Theorem 2. Let M = (S, Steps) and M′ = (S′, Steps′) be MDPs, F and
F ′ sets of propositions over the local states of components of M and M′ re-
spectively, and γ : F → F ′ a bijection. For a PCTL formula φ with maximal
propositional subformulas taken from F , γ(φ) is the PCTL formula with maxi-
mal propositional subformulas taken from F ′, obtained from φ by replacing every
subformula f with γ(f). Let δ be an isomorphism from M to M′ such that, for
all s ∈ S and f ∈ F , s |= f ⇔ δ(s) |= γ(f). Then for any PCTL formula φ
over F and s ∈ S,

M, s |= φ⇔ M′, δ(s) |= γ(φ).

Analogous versions of Theorems 1 and 2 hold for DTMCs.
As with non-probabilistic symbolic model checking, construction of a quotient

model as a multi-terminal BDD (MTBDD) is intractable for commonly occurring
symmetry groups. We now define a subset of the PRISM modelling language for
specification of fully symmetric MDP or DTMC models. In Section 5 we show
how the generic representatives approach of [11,12] can be extended to exploit
the symmetry inherent in these models.

4 Symmetric PRISM

We now define an input language for specifying fully symmetric programs. The
language defined is a subset of the PRISM modelling language, which we call
Symmetric PRISM (SP). An SP program consists of a module process1, and
n − 1 renamed copies of this module, denoted process2,. . . , processn. Each
module has a single variable, si, which has domain L and is initialised to 0. For
ease of presentation, we sometimes refer to si rather than si. Every statement
of a module consists of a compound guard, followed by a probabilistic choice of



14 A.F. Donaldson and A. Miller

spec ::= nondeterministic main module other modules |
probabilistic main module other modules

main module ::= module process1

s1 : [0..k] init l; statements
endmodule (l ∈ L)

statements ::= statement | statement statements
statement ::= [] local guard & guard -> stochastic update;
local guard ::= s1=j (j ∈ L)

stochastic update ::= λ1:(s1’=j1) + λ2:(s1’=j2) + . . . + λv:(s1’=jv)

(v > 0, λi ∈ [0, 1], ji ∈ L)
other modules ::= module process2 = process1 [s1=s2, s2=s1] endmodule

...
module processn = process1 [s1=sn, sn=s1] endmodule

Fig. 1. Syntax of Symmetric PRISM

updates to si (a stochastic update). The compound guard is a conjunction of a
local guard, which has the form si=j, for some j ∈ L, and an optional guard over
the variables s1,s2,. . . ,sn.

The core grammar of SP is given in Figure 1, while the form of optional guards
is presented in Table 1. The generic form column of Table 1 will be explained in
Section 5. For conciseness, the quantifiers ∀ and ∃ are used to denote conjunctions
and disjunctions over all (or all but one) components. For example, the guard
(s1=j & s2=j & . . .& sn=j) is denoted by ∀i si=j in the table. The last four forms
of guard in Table 1, together with module renaming, allow conditions on just the
state of other modules than that in which the guard appears. This extends the
form of guards allowed in [11,12], and requires more complex rules for translation
into generic form (see Section 5). In Figure 1, the keywords nondeterministic
and probabilistic indicate that the underlying model is an MDP or DTMC
respectively, and we say that P is a nondeterministic or probabilistic program,
using M(P)/D(P) to denote the model. Each statement in an SP program
consists of a guard followed by a stochastic update. The stochastic update is a
probabilistic choice over local updates of the form λi:(s1’=ji), where λi ∈ [0, 1]
is the probability of this local update being chosen, and

∑v
i=1 λi = 1. Note that

SP programs cannot include multiple local variables in modules, multiple module
types, or communication by synchronisation.

We illustrate the syntax of SP by modelling a minimum space shared memory
leader election protocol [7]. The protocol is carried out by a set of n proces-
sors, each with a single-writer multi-reader binary register (the leader register).
Eventually, all of these registers apart from one will be set to zero (the elec-
tion condition will be satisfied). The process for whom the associated register is
non zero is chosen as the leader. At each stage of the protocol, if the election
condition is not satisfied then for each processor Pi such that Pi has associated
register value 1, or Pi has register value 0 and every other processor also has
register value 0, Pi updates its register to 0 or 1 with equal probability.



Symmetry Reduction for Probabilistic Model Checking 15

Table 1. Forms of guard, with their generic versions, where the associated SP state-
ment has local guard s1=i (for some i ∈ L)

guard ::= generic form ĝuard

(guard) (ĝuard)

!guard !ĝuard

guard1 & guard2 ĝuard1 & ĝuard2

guard1 | guard2 ĝuard1 | ĝuard2

∀i si=j no j=n
∀i si!=j no j=0
∃i si=j no j > 0
∃i si!=j no j <n

∃i (si=j & (∀k �=i sk!=j)) no j=1

j = i j �= i

∀i>1 si=j no j=n no j =n − 1
∀i>1 si!=j no j=1 no j=0
∃i>1 si=j no j >1 no j >0
∃i>1 si!=j no j <n no j <n − 1

To model all possible initial configurations, in our specification processors
start in default state 2, from which they move to state 0 or 1 nondeterministically.
The protocol begins once all processors have state 0 or 1. Below we give the SP
specification for a system of 3 processors.

nondeterministic
module process1
s1 : [0..2] init 2;
[] s1=2 -> 1:(s1’=0);
[] s1=2 -> 1:(s1’=1);
[] s1=0 & (s1!=2 & s2!=2 & s3!=2) & (s1=0 & s2=0 & s3=0) ->

0.5:(s1’=0) + 0.5:(s1’=1);
[] s1=0 & (s1!=2 & s2!=2 & s3!=2) & (s2=1 | s3=1) -> 1:(s1’=0);
[] s1=1 & (s1!=2 & s2!=2 & s3!=2) & (s2=1 | s3=1) ->

0.5:(s1’=0) + 0.5:(s1’=1);
[] s1=1 & (s1!=2 & s2!=2 & s3!=2) & (s2=0 & s3=0) -> 1:(s1’=1);

endmodule

module process2 = process1 [ s1 = s2, s2 = s1 ] endmodule
module process3 = process1 [ s1 = s3, s3 = s1 ] endmodule

We now show that if M(P) is the MDP associated with a nondeterministic SP
program P then any permutation of components is an automorphism of M(P)
when lifted to states. Note that if t ∈ S then t(i) is the value of variable si.
The proof of the following lemma (which applies to both MDPs and DTMCs)
is straightforward, using structural induction on the form of guards given in
Table 1.



16 A.F. Donaldson and A. Miller

Lemma 1. Let σ be a statement in module processi of an SP program P (1 ≤
i ≤ n), let t be a state in the associated MDP or DTMC and let α ∈ Sn. If σ′

is the corresponding statement in module processα(i) then σ is executable in
t⇔ σ′ is executable in α(t).

Theorem 3. Let P be a nondeterministic SP program. Then Aut(M(P)) = Sn.

Proof. By definition, Aut(M(P)) ⊆ Sn. Let α ∈ Sn and µ ∈ Steps(t) for some
t ∈ S. By the definition of an MDP automorphism (Definition 1), we must show
that α(t) ∈ S, and there exists µ′ ∈ Steps(α(t)) such that µ(u) = µ′(α(u)) for
all u ∈ S. Suppose first that t = t0, the initial state of M(P). Since each variable
si is initialised to l for some 0 ≤ l ≤ k, t0 = (l, l, . . . , l), so clearly α(t0) = t0.

Now let t be arbitrary in S, and suppose that α(t) ∈ S. The distribution µ
arises from the stochastic update of a statement, σ say, in module processi,
for some i ∈ I, in which the value of si is updated. Module processα(i) is
a renaming of processi where si and sα(i) are interchanged, so processα(i)
has a corresponding statement σ′ in which sα(i) is updated. By Lemma 1, σ′ is
executable in α(t).

Let µ′ ∈ Steps(α(t)) be the probability distribution associated with σ′. Since
σ only updates si, for any u ∈ S, if t(j) �= u(j) for some i �= j then µ(u) = 0.
As α(t)(j) �= α(u)(j), by a similar argument µ′(α(u)) = 0. Now suppose that
t(j) = u(j) for all j �= i. Suppose u(i) = k ∈ L. Then µ(u) is the probability of
updating si to k in σ, and µ′(u) is the probability of updating sα(i) to k in σ′.
Thus µ(u) = µ′(α(u)).

Finally, for any t ∈ S, we must have α(t) ∈ S, since if t0, t1, . . . , t is a path
from the initial state to t, by the above argument there is a corresponding path
t0 = α(t0), α(t1), . . . , α(t) from the initial state to α(t).

The proof of the analogous result for probabilistic SP programs is similar.

Theorem 4. Let P be a probabilistic SP program. Then Aut(D(P)) = Sn.

4.1 Symmetric PCTL

The temporal logic PCTL (probabilistic computation tree logic), presented in
detail in [25], can be used to specify properties of MDP and DTMC models
which can be verified using the PRISM model checker.

We define SPCTL, a subset of PCTL for reasoning about SP programs. A
symmetric guard is a guard of the form described in Table 1 which does not
include sub-expressions of the last four forms in the table. A symmetric guard g
has the property that, if α ∈ Sn, the guard α(g) obtained by replacing si with
sα(i) is identical to g (modulo order of operands to commutative operators). A
PCTL property φ is in SPCTL iff every maximal propositional subformula of φ
is a symmetric guard. Formulas of SPCTL are, by construction, invariant under
full symmetry.

For the leader election example, the property

P≥1 [ true U(((s1=1 & s2!=1 & s3!=1) | (s2=1 & s1!=1 & s3!=1) | (1)
(s3=1 & s1!=1 & s2!=1)) & (s1!=2 & s2!=2 & s3!=2)) ]



Symmetry Reduction for Probabilistic Model Checking 17

is in SPCTL, and asserts that with probability 1 a leader will eventually be
elected.

5 Symmetry Reduction by Counter Abstraction

We now show how a nondeterministic SP program P can be translated into a
reduced program P̂ and an SPCTL formula φ into a reduced formula φ̂. The
translation process is polynomial in the size of P . We then show that M(P) and
M(P̂) are isomorphic, and apply Theorem 2 to show that SPCTL properties
of M(P) can be inferred by checking reduced properties of M(P̂). As M(P)
and M(P) are bisimilar (Theorem 1), PCTL properties of the original model
can be inferred in this way. As M(P) and M(P̂) are isomorphic, the state space
reduction associated with model checking over M(P̂) is the same as that gained
by building a quotient structure.

5.1 Translating SP into Generic Form

Let P be an SP program. The corresponding reduced program P̂ consists of a
single module, generic process. Recall that each module processi of P has
a local variable si with domain L = {0, 1, . . . , k}, for some k ≥ 0. The module
generic process has k+1 local variables, no 0, no 1,. . . ,no k, each with domain
I ∪ {0}, where no j indicates the number of components of the original system
which are in local state j ∈ L. For any j ∈ L, no j is initialised to n if j is the
initial value of the variable s1 in the original program, and to 0 otherwise.

For nondeterministic programs, the generic process module has one state-
ment corresponding to each statement of process1 in P . Suppose a statement
of P has the following form:

[] s 1=j & guard -> λ1:(s1’=j1) + λ2:(s1’=j2) + . . . + (2)
λv:(s1’=jv);

where guard is a guard of the form specified in Table 1. Then the corresponding
statement of generic process is as follows:

[] no j>0 & ĝuard -> λ1:(no j’=no j-1)&(no j1’=no j1+1) (3)
+ λ2:(no j’=no j-1)&(no j2’=no j2+1)

...
+ λv:(no j’=no j-1)&(no jv’=no jv+1);

with the exception that if one of the ji in the original stochastic update equals
j, the corresponding component of the generic update is (no ji’=no ji) (other-
wise the update would be (no ji’=no ji-1)&(no ji’=no ji+1), which intuitively
should have the same effect, but is not legal in PRISM). The guard ĝuard in P̂
is the generic form of guard. Details of the translation of guards are given in the



18 A.F. Donaldson and A. Miller

generic form column of Table 1. Note that, for the last four forms of guard in
the table, the translation to generic form depends on the local guard associated
with the statement.

Translation of statements is less straightforward for probabilistic programs,
due to the absence of nondeterminism. Let update denote the right hand side of
-> in (3). The probability of some module executing their copy of statement (2)
in a given state is proportional to the number of modules for which this statement
is executable. Thus, in the reduced program, statement (2) is translated to n
statements as follows:

[] no j>0 & ĝuard -> update

[] no j>1 & ĝuard -> update
...

[] no j> n− 1 & ĝuard -> update

Thus if d modules can execute a statement equivalent to (2) in a given state
of the original model (0 ≤ d ≤ n), exactly d of the statements above will be
executable in the corresponding state of the reduced model.

Recall that the states of M(P)/D(P) are a subset of Ln. Clearly for the
MDP/DTMC M(P̂) = (Ŝ, Ŝteps)/D(P̂) = (Ŝ, P̂ ), we have Ŝ ⊆ Ik+1.

Below we give the generic form of the leader election example introduced in
Section 4.

nondeterministic module generic_process
no_0 : [0..3] init 0;
no_1 : [0..3] init 0;
no_2 : [0..3] init 3;
[] no_2>0 -> 1:(no_2’=no_2-1)&(no_0’=no_0+1);
[] no_2>0 -> 1:(no_2’=no_2-1)&(no_1’=no_1+1);
[] no_0>0 & no_2=0 & no_0=3 -> 0.5:(no_0’=no_0) +

0.5:(no_0’=no_0-1)&(no_1’=no_1+1);
[] no_0>0 & no_2=0 & no_1>0 -> 1:(no_0’=no_0);
[] no_1>0 & no_2=0 & no_1>1 -> 0.5:(no_1’=no_1-1)&(no_0’=no_0+1)

+ 0.5:(no_1’=no_1);
[] no_1>0 & no_2=0 & no_0=2 -> 1:(no_1’=no_1);

endmodule

5.2 Translation of SPCTL Properties

Since the states of M(P)/D(P) relate to the local states of components, whereas
those of M(P̂)/D(P̂) relate to how many components are in each local state, it
is necessary to convert an SPCTL formula φ into a reduced form.

Let φ be an SPCTL formula. Recall from Section 4.1 that the maximal propo-
sitional subformulas of φ are symmetric guards. The reduced form of φ, denoted



Symmetry Reduction for Probabilistic Model Checking 19

φ̂, is identical to φ except that every maximal propositional formula g occurring
in φ is replaced with ĝ, using the translation rules of Table 1.

The generic form of the election property (property (1) in Section 4.1) is

P≥1 [ true U(no 1=1 & no 2=0) ].

Note that this concise property is independent of the number of processors par-
ticipating in the protocol, whereas in the unreduced program, a variant of (1) is
required for every protocol configuration.

5.3 Relationship Between M(P) and M(P̂)

Recall that S = {min[s] : s ∈ S}. Since components of P are fully interchange-
able, S = {s ∈ S : i < j ⇒ s(i) ≤ s(j)}. Then a state s ∈ S has the form

s = (0, 0, . . . , 0︸ ︷︷ ︸
m0

, 1, 1, . . . , 1︸ ︷︷ ︸
m1

, . . . , k, k, . . . , k︸ ︷︷ ︸
mk

),

where mi denotes the number of entries equal to i, and
∑k

i=0mi = n. With
s ∈ S as above, define a mapping δ : S → Ŝ by δ(s) = (m0,m1, . . . ,mk).

Lemma 2. The mapping δ is an isomorphism from M(P) to M(P̂).

Let SG be the set of all symmetric guards. The translation rules of Table 1 define
a bijection ̂ : SG → SG′, where SG′ is the set of reduced forms of symmetric
guards.

Lemma 3. Let g ∈ SG be a symmetric guard. Then, for all s ∈ S, s |= g ⇔
δ(s) |= ĝ.

Proof. Suppose g =(s1=d & s2=d & . . . & sn=d) for some d ∈ L. Then ĝ =
no d=n. Clearly g only holds at the state t = (d, d, . . . , d), and ĝ only holds at
the state

δ(t) = (0, 0, . . . , 0︸ ︷︷ ︸
d

, n, 0, . . . , 0︸ ︷︷ ︸
k−(d+1)

).

The other base cases are similar, and the result follows by structural induction
on the form of symmetric guards.

We can now apply Theorem 2 to deduce:

Theorem 5. For any SPCTL property φ and s ∈ s,

M, s |= φ⇔ M(P̂), δ(s) |= φ̂.

Further, combining Theorem 1 and Theorem 5 we get

Corollary 1. For any SPCTL property φ and s ∈ S,

M, s |= φ⇔ M,min[s] |= φ⇔ M(P̂), δ(min[s]) |= φ̂.

It is thus possible to infer SPCTL properties ofM(P) by checking corresponding
reduced properties of M(P̂). Analogous results to those in this section hold for
probabilistic programs.



20 A.F. Donaldson and A. Miller

6 Experimental Results for Case Studies

We have implemented GRIP (Generic Representatives In PRISM), a Java tool
which takes an SP program as input, and outputs the corresponding reduced
version. A parser for SP was generated using SableCC [15]. In this section we
present experimental results for two case studies – the leader election protocol
from [7] which we have used as a running example within this paper, and a
probabilistic mutual exclusion protocol adapted from a case study supplied with
the PRISM distribution [23], and analysed in [24].

Proving property (1) of Section 4.1 for the leader election example requires the
imposition of fairness constraints. It is well known for non-probabilistic model
checking that fairness and symmetry reductions cannot be directly combined
since the path of an individual process cannot be traced in the quotient structure
[10]. Thus for this example we use PRISM to prove that the maximum probability
of a leader being elected is 1, using the original specification and its generic form.
Expressing the mutual exclusion protocol in SP required some straightforward
syntactic modifications to the original PRISM code. The property here is that
the maximum probability of the critical section becoming clear once occupied
approaches 1.

Table 2. Experimental results for various configurations of the leader election (leader)
and mutual exclusion (mutex) protocols

original reduced

system states nodes build check states nodes build check

leader 20 3.5×109 5300 0.4 1 231 1144 0.1 0.04

leader 40 1.2×1019 20240 2 26 861 2563 0.2 0.2

leader 60 4.2×1028 44780 4 109 1891 3735 0.4 0.2

leader 80 1.5×1038 78920 10 669 3321 5706 0.7 0.5

leader 100 5.2×1047 122660 19 2754 5151 7054 1 0.7

leader 120 1.8×1057 176888 30 o/m 7381 8378 1 1

leader 140 6.3×1066 238940 53 o/m 10011 11133 2 2

mutex 4 26600 3591 0.7 0.2 1691 4069 1 0.2

mutex 12 4.9×1012 40687 22 14 892542 25670 5 2

mutex 20 7.1×1020 114647 137 86 3.3×107 59202 18 7

mutex 28 9.4×1028 225471 552 499 4.2×108 90381 64 20

mutex 36 1.2×1037 373159 14,003 3262 3.1×109 138006 322 44

mutex 44 - - o/t - 1.6×1010 175990 604 112

mutex 52 - - o/t - 6.3×1010 214045 1805 162

Table 2 shows, for various configurations of each case study, the number of
states (states) and MTBDD nodes (nodes) for each model. Time taken (in sec-
onds) for model building (build) and checking the associated SPCTL property
(check) are given for each case. Cases where PRISM did not complete model
building within 24 hours, and where our memory limit (500 Mb) was exceeded,



Symmetry Reduction for Probabilistic Model Checking 21

are denoted by o/t and o/m respectively. All experiments were performed us-
ing a PC with a 2.4 GHz Intel Pentium 4 processor, running PRISM version
3.0.beta1 under Red Hat Linux.

Symmetry reduction with generic representatives works particularly well for
the leader election example, with significant reductions in both state space and
MTBDD sizes, and much shorter times for model building and checking. This is
expected, as the approach has been shown to work well in the non-probabilistic
case when there are a small number of local states. Here there are 3 local states,
and the number of reachable states is reduced from 3n to 1

2 (n+ 1)(n+ 2) – the
theoretical maximum factor of reduction.

Results for the mutual exclusion case study show a saving in MTBDD nodes
for larger configurations, but the original model for 4 processes actually requires
fewer nodes than the generic version (there are 16 process local states so the
generic program always uses 16 variables, whereas a configuration with 4 pro-
cesses only uses 4 variables). It is unsurprising that the benefit of symmetry
reduction is not as striking here as there are more local states. Nevertheless,
larger configurations exhibit an encouraging reduction in time for both model
building and checking, and GRIP enabled us to verify configurations which were
previously intractable.

GRIP, together with PERL scripts to generate SP programs and SPCTL
properties for both case studies, can be downloaded from our website [16].

7 Related Work

Generic representatives and fully symmetric program transformations were first
proposed in [11]. This approach is extended to programs which include global
variables [12] and optimised using techniques from compiler optimisation (static
reachability analysis and dead variable elimination) in [14], where a prototype
generic model checker, UTOOL is described. Preliminary results on extending
these ideas to probabilistic model checking were presented in [8].

Another approach to combining symmetry reduction with symbolic represen-
tation is proposed in [13], where representative states are determined dynami-
cally during fixpoint iterations. This approach has some advantages over using
generic representatives (including fewer restrictions on the form of of input pro-
grams), but requires significant modifications to a symbolic model checking algo-
rithm. A related approach has been used for symmetry reduction in the PRISM
model checker [20]. Here the state space explosion problem is partially avoided:
construction of an MTBDD for the full model is still required, but probabilistic
temporal properties can be checked over a quotient structure. This approach is
useful as, in many cases, it is possible to represent a very large model as an
MTBDD, but not to check properties of this model. The problem of combin-
ing symmetry reduction with fairness assumptions is discussed in [10], where
an automata theoretic approach applicable to explicit state model checking is
presented. To our knowledge, the problem of combining symmetry, fairness and
symbolic representation has not been investigated.



22 A.F. Donaldson and A. Miller

Other methods for combining symmetry reduction with non-probabilistic sym-
bolic model checking are given in [3,6]. Numerous approaches for exploiting sym-
metry in non-probabilistic explicit state model checking have been proposed (see
[22] for a recent survey), but the application of these techniques to probabilistic
explicit state model checking [1] has not been investigated.

8 Conclusions and Future Work

We have shown that an approach to symmetry reduction for non-probabilistic
symbolic model checking, based on generic representatives, can be applied in
the probabilistic setting. Our techniques are applicable to symmetric PRISM
programs with MDP or DTMC semantics, and the translation of an SP program
to its reduced form is implemented by the GRIP tool. Experimental results for
two protocol case studies – minimum space leader election and mutual exclusion
– show that the technique can be effective.

Future work includes extending the approach to allow model checking of CSL
properties over continuous time Markov chain models, and using techniques pro-
posed in [14] to allow a less restrictive input language for symmetric programs.
It will also be useful to carry out an experimental comparison with alternative
symmetry reduction techniques for PRISM [20] based on dynamic symmetry
reduction [13].

Acknowledgements. The authors would like to thank Douglas Graham for
many useful discussions relating to this work, and Dave Parker for providing an
advance copy of [20].

References

1. C. Baier, F. Ciesinski and M. Größer. ProbMela and verification of Markov decision
processes. SIGMETRICS Performance Evaluation Review, 32(4): 22-27, 2005.

2. C. Baier, M. Kwiatkowska. Model checking for a probabilistic branching time logic
with fairness. Distributed Computing, 11:125–155, 1998.

3. S. Barner and O. Grumberg. Combining symmetry reduction and under-
approximation for symbolic model checking. Formal Methods in System Design,
27(1–2):29–66, 2005.

4. D. Bosnacki, D. Dams, and L. Holenderski. Symmetric spin. International Journal
on Software Tools for Technology Transfer, 4(1):65–80, 2002.

5. E.M. Clarke, E.A. Emerson, S. Jha, and A.P. Sistla. Symmetry reductions in model
checking. In CAV’98, LNCS 1427, pages 147–158. Springer, 1998.

6. E.M. Clarke, R. Enders, T. Filkhorn, and S. Jha. Exploiting symmetry in temporal
logic model checking. Formal Methods in System Design, 9(1–2):77–104, 1996.

7. S. Dolev, A. Israeli and S. Moran. Analysing expected time by scheduler-luck
games. IEEE Transactions on Software Engineering, 21(5):429–439, 1995.

8. A.F. Donaldson and A. Miller Symmetry reduction for probabilistic systems. In
Proc. 12th Workshop on Automated Reasoning, pages 17–18, 2005.



Symmetry Reduction for Probabilistic Model Checking 23

9. A.F. Donaldson and A. Miller Exact and approximate strategies for symmetry
reduction in model checking. In FM’06, LNCS 4085, pages 541–556. Springer,
2006.

10. E.A. Emerson and A.P. Sistla. Utilizing symmetry when model-checking under
fairness assumptions: an automata-theoretic approach. ACM Transactions on Pro-
gramming Languages and Systems, 19(4):617–638, 1997.

11. E.A. Emerson and R.J. Trefler. From asymmetry to full symmetry: new techniques
for symmetry reduction in model checking. In CHARME’99, LNCS 1703, pages
142–156. Springer, 1999.

12. E.A. Emerson and T. Wahl. On combining symmetry reduction and symbolic
representation for efficient model checking. In CHARME’03, LNCS 2860, pages
216–230. Springer, 2003.

13. E.A. Emerson and T. Wahl. Dynamic symmetry reduction. In TACAS’05, LNCS
3440, pages 382–396. Springer, 2005.

14. E.A. Emerson and T. Wahl. Efficient reduction techniques for systems with many
components. Electronic Notes in Theoretical Computer Science, 130:379–399, 2005.

15. E. Gagnon and L. J. Hendren. SableCC, an object-oriented compiler framework.
In TOOLS’98, pages 140–154. IEEE Computer Society Press, 1998.

16. GRIP website. http://www.dcs.gla.ac.uk/people/personal/ally/grip/.
17. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal

Aspects of Computing, 6(4):512–535, 1994.
18. A. Hinton, M. Kwiatkowska, G. Norman and D. Parker. PRISM: a tool for au-

tomatic verification of probabilistic systems. In TACAS’06, LNCS 3920, pages
441–444. Springer, 2006.

19. C.N. Ip and D.L. Dill. Better verification through symmetry. Formal Methods in
System Design, 9(1/2): 41–75, 1996.

20. M. Kwiatkowska, G. Norman and D. Parker. Symmetry reduction for probabilistic
model checking. To appear in CAV’06, LNCS. Springer, 2006.

21. K. Larsen and A. Skou. Bisimulation through probabilistic testing. Information
and Computation, 94: 1–28, 1991.

22. A. Miller, A. Donaldson and M. Calder. Symmetry in temporal logic model check-
ing. To appear in Computing Surveys, 2006.

23. PRISM website. http://www.cs.bham.ac.uk/∼dxp/prism/.
24. A. Pnueli and L. Zuck. Verification of multiprocess probabilistic protocols. Dis-

tributed Computing, 1(1):53–72, 1986.
25. J.J.M.M. Rutten, M. Kwiatkowska, G. Norman and D. Parker. Mathematical

Techniques for Analyzing Concurrent and Probabilistic Systems. CRM Monograph
Series 23. American Mathematical Society 2004.

26. R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes.
Nordic Journal of Computing, 2(2):250–273, 1995.



Eager Markov Chains

Parosh Aziz Abdulla1, Noomene Ben Henda1, Richard Mayr2, and Sven Sandberg1

1 Uppsala University, Sweden
parosh@it.uu.se, Noomene.BenHenda@it.uu.se, svens@it.uu.se

2 NC State University, USA
mayr@csc.ncsu.edu

Abstract. We consider infinite-state discrete Markov chains which are eager:
the probability of avoiding a defined set of final states for more than n steps is
bounded by some exponentially decreasing function f(n). We prove that eager
Markov chains include those induced by Probabilistic Lossy Channel Systems,
Probabilistic Vector Addition Systems with States, and Noisy Turing Machines,
and that the bounding function f(n) can be effectively constructed for them.
Furthermore, we study the problem of computing the expected reward (or cost)
of runs until reaching the final states, where rewards are assigned to individual
runs by computable reward functions. For eager Markov chains, an effective path
exploration scheme, based on forward reachability analysis, can be used to ap-
proximate the expected reward up-to an arbitrarily small error.

1 Introduction

A lot of research effort has been devoted to developing methods for specification and
analysis of stochastic programs [28,25,16,31]. The motivation is to capture the behav-
iors of systems with uncertainty, such as programs with unreliable channels, random-
ized algorithms, and fault-tolerant systems; and to analyze quantitative aspects such as
performance and dependability. The underlying semantics of such a program is usu-
ally defined as a finite-state Markov chain. Then, techniques based on extensions of
finite-state model checking can be used to carry out verification [17,8,12,27].

One limitation of such methods is the fact that many systems that arise in com-
puter applications can only be faithfully modeled as Markov chains which have infi-
nite state spaces. A number of recent works have therefore considered the challenge
of extending model checking to systems which induce infinite-state Markov chains.
Examples include probabilistic pushdown automata (recursive state machines) which
are natural models for probabilistic sequential programs with recursive procedures
[19,20,22,21,18,23]; and probabilistic lossy channel systems which consist of finite-
state processes communicating through unreliable and unbounded channels in which
messages are lost with a certain probability [1,6,9,10,13,26,29].

In a recent paper [3], we considered a class of infinite-state Markov chains with the
property that any computation from which the set F of final states is always reachable,
will almost certainly reach F . We presented generic algorithms for analyzing both qual-
itative properties (checking whetherF is reached with probability one), and quantitative
properties (approximating the probability by which F is reached from a given state).

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 24–38, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Eager Markov Chains 25

A central problem in quantitative analysis is to compute the expectations, variances
and higher moments of random variables, e.g., the reward (or cost) for runs until they
reach F . We address this problem for the subclass of eager Markov chains, where the
probability of avoiding F for n or more steps is bounded by some exponentially de-
creasing function f(n). In other words, computations that reach F are likely to do so in
“few” steps. Thus, eagerness is a strengthening of the properties of the Markov chains
considered in [3].

Eagerness trivially holds for all finite state Markov chains, but also for several classes
of infinite-state ones. Our main result (see Section 4 and 5) is that the following classes
of infinite-state systems induce eager Markov chains and that the bounding function
f(n) can be effectively constructed.

– Markov chains which contain a finite eager attractor. An attractor is a set of states
which is reached with probability one from each state in the Markov chain. An at-
tractor is eager, if the probability of returning to it in more than n steps decreases
exponentially with n. Examples of such Markov chains are those induced by proba-
bilistic lossy channel systems (PLCS). This is shown in two steps. First, we consider
systems that contain GR-attractors, defined as generalizations of the classical gam-
bler’s ruin problem, and show that each GR-attractor is eager. Then, we show that
each PLCS induces a Markov chain which contains a GR-attractor.

– Markov chains which are boundedly coarse: there is aK such that if F is reachable
then F will be reached within K steps with a probability which is bounded from
below. We give two examples of boundedly coarse Markov chains, namely those
induced by Probabilistic Vector Addition Systems with States (PVASS) and Noisy
Turing Machines (NTM).

Decidability of the eagerness property is not a meaningful question: for finite MC the
answer is always yes, and for infinite MC the instance is not finitely given, unless one
restricts to a special subclass like PLCS, PVASS or NTM.

For any eager Markov chain, and any computable reward function, one can effec-
tively approximate the expectation of the reward gained before a state in F is reached.
In Section 3 we present an exploration scheme, based on forward reachability analysis,
to approximate the expected reward up-to an arbitrarily small error ε > 0. We show that
the scheme is guaranteed to terminate in the case of eager Markov chains.

Related Work. There has been an extensive work on model checking of finite-state
Markov chains [17,11,8,12,27].

Recently, several works have considered probabilistic pushdown automata and prob-
abilistic recursive state machines [19,20,22,21,18,23]. However, all the decidability re-
sults in these papers are based on translating the relevant properties into formulas in the
first-order theory of reals. Using results from [3], it is straightforward to show that such
a translation is impossible to achieve for the classes of Markov chains we consider.

The works in [1,6,10,13,29,9] consider model checking of PLCS. In particular, [3]
gives a generic theory for verification of infinite-state Markov chains including PLCS
and PVASS. However, all these works concentrate on computing probabilities, and do
not give algorithms for analysis of expectation properties.

The work closest to ours is a recent paper by Brázdil and Kučera [14] which consid-
ers the problem of computing approximations of the accumulated reward (and gain) for



26 P.A. Abdulla et al.

some classes of infinite-state Markov chains which satisfy certain preconditions (e.g.,
PLCS). However, their technique is quite different from ours and their preconditions
are incomparable to our eagerness condition. The main idea in [14] is to approximate
an infinite-state Markov chain by a sequence of effectively constructible finite-state
Markov chains such that the obtained solutions for the finite-state Markov chains con-
verge toward the solution for the original infinite-state Markov chain. Their precondi-
tions [14] include one that ensures that this type of approximation converges, which is
not satisfied by, e.g., PVASS. Furthermore, they require decidability of model checking
for certain path formulas in the underlying transition system.

In contrast, our method is a converging path exploration scheme for infinite-state
Markov chains, which only requires the eagerness condition. It is applicable not only
to PLCS but also to other classes like PVASS and noisy Turing machines. We also do
not assume that reachability is decidable in the underlying transition system. Finally,
we solve a somewhat more general problem. We compute approximations for the con-
ditional expected reward, consider possibly infinite sets of final states (rather than just
a single final state) and our reward functions can be arbitrary (exponentially bounded)
functions on runs (instead of cumulative state-based linear-bounded functions in [14]).

In a recent paper [5], we extend the theory of Markov chains with eager attractors
and show that the steady state distribution and limiting average expected reward can
be approximated for them. This provides additional motivation for studying Markov
chains with eager attractors.

Proofs omitted due to space limitations can be found in [4].

2 Preliminaries

Transition Systems. A transition system is a triple T = (S,−→, F ) where S is a
countable set of states, −→⊆ S × S is the transition relation, and F ⊆ S is the set of
final states. We write s −→ s′ to denote that (s, s′) ∈−→. We assume that transition
systems are deadlock-free, i.e., each state has at least one successor. If this condition is
not satisfied, we add a self-loop to states without successors – this does not affect the
properties of transition systems considered in this paper.

A run ρ is an infinite sequence s0s1 . . . of states satisfying si −→ si+1 for all i ≥ 0.
We use ρ(i) to denote si and say that ρ is an s-run if ρ(0) = s. We assume familiarity
with the syntax and semantics of the temporal logic CTL∗ [15]. We use (s |= φ) to
denote the set of s-runs that satisfy the CTL∗ path-formula φ. For instance, (s |= ©F )
and (s |= �F ) are the sets of s-runs that visit F in the next state resp. eventually reach
F . For a natural number n, ©=nF denotes a formula which is satisfied by a run ρ iff
ρ(n) ∈ F . We use �=nF to denote a formula which is satisfied by ρ iff ρ reaches F
first in its nth step, i.e., ρ(n) ∈ F and ρ(i) �∈ F when 0 ≤ i < n. Similarly, for
∼∈ {<,≤,≥, >}, �∼nF holds for a run ρ if there is an m ∈ N with m ∼ n such that
�=mF holds.

A path π is a finite sequence s0, . . . , sn of states such that si −→ si+1 for all
i : 0 ≤ i < n. We let |π| := n denote the number of transitions in a path. Note that a
path is a prefix of a run. We use ρn for the path ρ(0)ρ(1) · · · ρ(n) and Path=n

F (s) for



Eager Markov Chains 27

the set {ρn| ρ ∈ (s |= �=nF )}. In other words, Path=n
F (s) is the set of paths of length

n starting from s and reaching F first in the last state.
A transition system T = (S,−→, F ) is said to be effective if it is finitely branching

and for each s ∈ S, we can explicitly compute all successors, and check if s ∈ F .

Reward Functions. A reward function (with respect to a state s) is a mapping f :
(s |= �F ) → R which assigns a reward f(ρ) to any s-run that visits F . A reward
function is tail-independent if its value only depends on the prefix of the run up-to the
first state in F , i.e., if ρ1, ρ2 ∈ (s |= �=nF ) and ρn

1 = ρn
2 then f(ρ1) = f(ρ2). In such

a case (abusing notation), we write f(π) to denote f(ρ) where π = ρn. We say that f
is computable if we can compute f(π).

We will place an exponential limit on the growth of reward functions: A reward
function is said to be exponentially bounded if there are α, k ∈ R>0 s.t. |f(ρ)| ≤ kαn

for all n ∈ N and ρ ∈ (s |= �=nF ). We call (α, k) the parameter of f .

Markov Chains. A Markov chain is a triple M = (S, P, F ) where S is a countable
set of states, P : S × S → [0, 1] is the probability distribution, satisfying ∀s ∈
S.
∑

s′∈S P (s, s′) = 1, and F ⊆ S is the set of final states.
A Markov chain induces a transition system, where the transition relation consists

of pairs of states related by a positive probability. Formally, the underlying transition
system of M is (S,−→, F ) where s1 −→ s2 iff P (s1, s2) > 0. In this manner, concepts
defined for transition systems can be lifted to Markov chains. For instance, a run or a
reward function in a Markov chain M is a run or reward function in the underlying
transition system, and M is effective, etc, if the underlying transition system is so.

A Markov chain M = (S, P, F ) and a state s induce a probability space on the set
of runs that start at s. The probability space (Ω,∆,PM) is defined as follows: Ω =
sSω is the set of all infinite sequences of states starting from s and ∆ is the σ-algebra
generated by the basic cylindric sets {Du = uSω : u ∈ sS∗}. The probability measure
PM is first defined on finite sequences of states u = s0 . . . sn ∈ sS∗ by PM(u) =∏n−1

i=0 P (si, si+1) and then extended to cylindric sets by PM(Du) = PM(u); it is
well-known that this measure is extended in a unique way to the entire σ-algebra. Let
PM (s |= φ) denote the measure of the set (s |= φ) (which is measurable by [31]).

Given a Markov chain M = (S, P, F ), a state s ∈ S, and a reward function f on
the underlying transition system, define the random variable Xf : Ω → R as follows:
Xf (ρ) = 0 if ρ /∈ (s |= �F ), and Xf (ρ) = f(ρ) if ρ ∈ (s |= �F ). Then E(Xf |s |=
�F ) is the conditional expectation of the reward from s to F , under the condition that
F is reached.

A Markov chain M is said to be eager with respect to s ∈ S if there are α < 1 and
k ∈ R>0 s.t. ∀n ∈ N.PM(s |= �≥nF ) ≤ kαn. Intuitively, M is eager with respect
to s if the probability of avoiding F in n or more steps (starting from the initial state s)
decreases exponentially with n. We call (α, k) the parameter of (M, s).

3 Approximating the Conditional Expectation

In this Section, we consider the approximate conditional expectation problem defined
as follows:



28 P.A. Abdulla et al.

APPROX EXPECT

Instance
– An effective Markov chain M = (S, P, F ), a state s ∈ S such that s |= ∃�F ,
M is eager w.r.t. s, and (M, s) has parameter (α1, k1).

– An exponentially bounded and computable tail-independent reward function f
with parameter (α2, k2) such that α1 · α2 < 1.

– An error tolerance ε ∈ R>0

Task Compute a number r ∈ R such that r ≤ E(Xf |s |= �F ) ≤ r + ε.

Note that the instance of the problem assumes that F is reachable from s. This is
because the expected value is undefined otherwise. We observe that the condition α1 ·
α2 < 1 can always be fulfilled if the reward function f is bounded by a polynomial,
since α2 > 1 can then be chosen arbitrarily close to 1. Many natural reward functions
are in fact polynomial. For instance, it is common to assign a reward g(s) to each
state and consider the reward of a run to be the sum of state rewards up to F : if ρ |=
�=nF then f(ρ) =

∑n
i=0 g(ρ(i)). If there is a bound on the state reward, i.e., ∃M ∈

R. ∀ρ. ∀i. |g(ρ(i))| < M , then such a reward function is linearly bounded in the length
of the run. Another important case is state rewards that depend on the “size” of the state
which can grow at most by a constant in every step, e.g., values of counters in a Petri
net (or VASS) or the number of messages in an unbounded communication channel. In
this case, the reward function is at most quadratic in the length of the run.

Remark. If α1 · αk
2 < 1, the kth moment Xk

f can also be approximated as it satisfies
the conditions above. In particular, all moments can be approximated for polynomially
bounded reward functions. Using the formula V (Xf ) = E(X2

f ) − E(Xf )2, we can
also approximate the variance. ��

Algorithm. We present a path enumeration algorithm (Algorithm 1) for solving AP-
PROX EXPECT (defined in the previous section), and then show that it terminates and
computes a correct value of r.

In Algorithm 1, since s |= ∃�F by assumption, we know that PM(s |= �F ) > 0,
and therefore:

E(Xf |s |= �F ) =
E(Xf )

PM(s |= �F )
=
E(Xf )
E(XR)

,

where R(ρ) = 1 if ρ ∈ (s |= �F ), and R(ρ) = 0 otherwise. The algorithm tries to
approximate the values of E(Xf ) and E(XR) based on the observation that E(Xf ) =∑∞

i=0

∑
π∈Path=i

F (s) PM(π) · f(π) and E(XR) =
∑∞

i=0

∑
π∈Path=i

F (s) PM(π).
The algorithm maintains four variables: Ef and ER which contain approximations

of the values of E(Xf ) and E(XR); and εf and εR which are bounds on the errors
in the current approximations. During the nth iteration, the values of Ef and ER are
modified by

∑
π∈Path=n

F (s) PM(π) · f(π) and
∑

π∈Path=n
F (s) PM(π). This maintains

the invariant that each time we arrive at line 7, we have

Ef =
n∑

i=0

∑
π∈Path=i

F (s)

PM(π) · f(π), ER =
n∑

i=0

∑
π∈Path=i

F (s)

PM(π). (1)



Eager Markov Chains 29

The algorithm terminates in case two conditions are satisfied:

– F is reached, i.e., ER > 0.
– The difference between the upper and lower bounds Ef+εf

ER
and Ef−εf

ER+εR
on the

conditional expectation (derived in the proof of Theorem 1), is below the error
tolerance ε.

Algorithm 1 – APPROX EXPECT

Input: An instance of the problem as described in Section 3.
Variables: Ef , ER, εf , εR: R
1. n ← 0, Ef ← 0, ER ← 0
2. repeat
3. Ef ← Ef +

∑
π∈Path=n

F
(s) PM(π) · f(π)

4. ER ← ER +
∑

π∈Path=n
F

(s) PM(π)

5. εf ← k1 · k2 · (α1 · α2)
n+1/(1 − α1 · α2)

6. εR ← k1 · αn+1
1 /(1 − α1)

7. n ← n + 1

8. until (ER > 0) ∧
(

Ef+εf

ER
− Ef−εf

ER+εR
< ε
)

9. return
(

Ef−εf

ER+εR

)
Observe that the parameters (α1, k1) and (α2, k2) are required by Algorithm 1, and

hence they should be computable for the Markov chains to be analyzed by the algorithm.
This is possible for the classes of Markov chains we consider in this paper.

Theorem 1. Algorithm 1 terminates and returns a correct value of r.

Proof. Clearly, each time the algorithm is about to execute line 7, the values of Ef and
ER are described by (1). The error in Ef as an approximation to E(Xf ) is thus

|E(Xf ) − Ef |=

∣∣∣∣∣∣
∞∑

i=n+1

∑
π∈Path=i

F (s)

PM(π)·f(π)

∣∣∣∣∣∣≤
∣∣∣∣∣∣

∞∑
i=n+1

k2 · αi
2

∑
π∈Path=i

F (s)

PM(π)

∣∣∣∣∣∣
≤
∣∣∣∣∣

∞∑
i=n+1

k1 · k2 · αi
1 · αi

2

∣∣∣∣∣=k1 · k2 · (α1 · α2)n+1/(1 − α1 · α2)=εf .

Here, the first equality follows by definition, and the inequalities follow from the fact
that f is exponentially bounded and M is eager.

The inequality |E(XR)−ER| ≤ εR is obtained similarly. By assumption, α1 ·α2 <
1 and α2 < 1, so limn→∞ εf = limn→∞ εR = 0. This implies that the algorithm
terminates.

Now, we show correctness of the algorithm. It is clear that 0 ≤ ER ≤ E(XR) since
ER increases each iteration. Hence, we have the two inequalities Ef − εf ≤ E(Xf ) ≤
Ef +εf andER ≤ E(XR) ≤ ER +εR. IfER > 0, we can invert the second inequality
and multiply it with the first to obtain

Ef − εf
ER + εR

≤ E(Xf )
E(XR)

≤ Ef + εf
ER

.

Hence, when the algorithm terminates, Ef−εf

ER+εR
is a correct value of r.



30 P.A. Abdulla et al.

Remark 1. If reachability is decidable in the underlying transition system (as for the
classes of Markov chains we consider in this paper), we can explicitly check whether
the condition s |= ∃�F is satisfied before running the algorithm. ��

Remark 2. When computing the sums over Path=n
F (s) on lines 3 and 4, the algorithm

can use either breadth-first search or depth-first search to find the paths in the transition
system. Breadth-first search has the advantage that it computes Path=n

F (s) explicitly,
which can be reused in the next iteration to compute Path=n+1

F (s). With depth-first
search, on the other hand, the search has to be restarted from s in each iteration, but it
only requires memory linear in n. ��

4 Eager Attractors

We consider Markov chains that contain a finite attractor, and prove that certain weak
conditions on the attractor imply eagerness of the Markov chain. Consider a Markov
chain M = (S, P, F ). A set A ⊆ S is said to be an attractor if PM(s |= �A) = 1 for
each s ∈ S. In other words, a run from any state will almost certainly return back to A.
We will only work with attractors that are finite; therefore we assume finiteness (even
when not explicitly mentioned) for all the attractors in the sequel.

Eager Attractors. We say that an attractor A ⊆ S is eager if there is a β < 1 and a
b ≥ 1 s.t. for each s ∈ A and n ≥ 0 it is the case that PM

(
s |= (

(
�≥nA

))
≤ bβn. In

other words, for every state s ∈ A, the probability of first returning to A in n + 1 (or
more) steps is exponentially bounded in n. We call (β, b) the parameters of A. Notice
that it is not a restriction to have β, b independent of s, since A is finite.

Theorem 2. Let M = (S, P, F ) be a Markov chain that contains an eager attractor
A ⊆ S with parameters (β, b). Then M is eager with respect to any s ∈ A and the
parameters (α, k) of M can be computed.

We devote the rest of this section to the proof of Theorem 2. Fix a state s ∈ A, let
n ≥ 1, and define

Us(n) := PM (s |= �=nF ) .

We will compute an upper bound on Us(n), where the upper bound decreases exponen-
tially with n. To do that, we partition the set of runs in (s |= �=nF ) into two subsets
R1 and R2, and show that both have “low” probability measures:

– R1: the set of runs that visit A “seldom” in the first n steps. Such runs are not
probable since A is eager. In our proof, we use the eagerness of A to compute an
upper bound U1

s (n) on the measure of R1, where U1
s (n) decreases exponentially

with n.
– R2: the set of runs that visit A “often” in the first n steps. Each time a run enters a

state in A, it will visit F with a probability, which is bounded from below, before it
returns back toA. The runs ofR2 are not probable, since the probability of avoiding
F between the “many” re-visits of A is low. We use this observation to compute an
upper boundU2

s (n) on the measure ofR2, that also decreases exponentially with n.



Eager Markov Chains 31

A crucial aspect here is to define the border between R1 and R2. We consider a run
to re-visit A often (i.e., belong to the set R2) if the number of re-visits is at least n/c,
where c is a constant, defined later, that only depends on (β, b).

To formalize the above reasoning, we need the following definition. For natural num-
bers n, t : 1 ≤ t ≤ n, we define the formula A#

n,t, which is satisfied by an s-run ρ iff
ρn contains exactly t occurrences of elements in A before the last state in ρn, i.e., the
very last state ρ(n) does not count toward t even if it is in A. Then:

Us(n) = PM (s |= �=nF ) =
n∑

t=1

PM
(
s |= �=nF ∧A#

n,t

)
= U1

s (n) + U2
s (n),

where

U1
s (n) :=

	n
c 
∑

t=1

PM
(
s |= �=nF ∧A#

n,t

)
, U2

s (n) :=
n∑

t=	n
c 
+1

PM
(
s |=�=nF ∧A#

n,t

)
.

Below, we derive our bounds on U1
s (n) and U2

s (n).

Bound on U1
s (n). The proof is based on the following idea. Each run ρ ∈ R1 makes

a number of visits (say t visits) to A before reaching F . We can thus partition ρ into t
segments, each representing a part of ρ between two re-visits of A. To reason about the
segments of ρ, we need a number of definitions.

For natural numbers 1 ≤ t ≤ n, let n ⊕ t be the set of vectors of positive natural
numbers of the form (x1, . . . , xt) such that x1+ · · ·+xt = n. Intuitively, the number xi

represents the length of the ith segment of ρ. Observe that the set n⊕ t contains
(
n−1
t−1

)
elements.

For paths π = s0s1 · · · sm and π′ = s′0s
′
1 · · · s′n with sm = s′0, let π • π′ denote the

path π = s0s1 · · · sms′1 · · · s′n. For a set A ⊆ S and v = (x1, . . . , xt) ∈ (n ⊕ t), a run
ρ satisfies A#

n,v if ρn = π1 • π2 • · · · • πt and for each i : 1 ≤ i ≤ t: (i) |πi| = xi, (ii)
πi(0) ∈ A, and (iii) πi(j) �∈ A, for each j : 0 < j < |πi|. Eagerness of M gives the
following bound on the measure of runs satisfying A#

n,v .

Lemma 1. For each n, t : 1 ≤ t ≤ n, v ∈ (n ⊕ t), and s ∈ A, it is the case that
PM

(
s |= A#

n,v

)
≤ btβn−t.

Recalling the definition of U1
s (n) and using Lemma 1: U1

s (n) ≤

� n
c
�∑

t=1

PM
(
s |=A#

n,t

)
=

�n
c
�∑

t=1

∑
v∈(n⊕t)

PM
(
s |=A#

n,v

)
≤

� n
c
�∑

t=1

∑
v∈(n⊕t)

btβn−t =

�n
c
�∑

t=1

(
n−1

t−1

)
btβn−t

To bound the last sum, we use the following lemma.

Lemma 2. For all n ≥ 2c, c ≥ 2 and b ≥ 1
�n/c�∑
t=1

(
n − 1

t − 1

)
btβn−t ≤

((
c

c − 1

)
(2c)1/c

(
1

c
+

b

β

)1/c

· β
)n

.



32 P.A. Abdulla et al.

Choose c > max
(
1 + 1

β−1/3−1
, 7, 9

log2 β
,
−3 log( 1

7+b/β)

log β

)
. Define α1 :=

(
c

c−1

)
·(2c)1/c ·(

1
c + b

β

)1/c

· β. It is not difficult to prove that we have β < α1 < 1. For n ≥ 2c,

Lemma 2 yields U1
s (n) ≤ αn

1 . For n < 2c we have U1
s (n) ≤ bβn−1 ≤ (b/β)βn ≤

(b/β)αn
1 . Let k1 := (b/β) > 1. We obtain, ∀n ∈ N. U1

s (n) ≤ k1αn
1 .

Bound on U2
s (n). Let B be the subset of A from which F is reachable, i.e., B :=

{s ∈ A| s |= ∃�F}. If s ∈ A − B then trivially U2
s (n) = 0. In the following we

consider the case when s ∈ B. Let w := |B|.
The bound on U2

s (n) is computed based on the observation that runs in R2 visit A
many times before reaching F . To formalize this, we need a definition. For a natural
number k and sets of states S1, S2, we define

(
s |= Sk

1 Before S2

)
to be the set of s-

runs ρ that make at least k visits to S1 before visiting S2 for the first time. Formally, an
s-run satisfies the formula if there are 0 ≤ i1 < i2 < · · · < ik ≤ n such that ρ(ij) ∈ S1

for each j : 1 ≤ j ≤ k, and ρ(i) �∈ S2 for each i : 0 ≤ i ≤ n. We write S1 Before S2

instead of S1
1 Before S2, Sk

1 Before s2 instead of Sk
1 Before {s2}, and sk1 Before S2

instead of {s1}k Before S2.

Notice that (s |= �=nF ∧A#
n,t) = (s |= �=nF ∧B#

n,t) ⊆ (s |= Bt Before F ). It
follows that U2

s (n) ≤
∑n

t=	n
c 
+1 PM

(
s |= Bt Before F

)
.

Any run from s that makes t visits to B before visiting F must have the following
property. By the Pigeonhole principle there exists at least one state sB ∈ B that is
visited at least �t/w� times before visiting F . This means that(

s |= Bt Before F
)
⊆

⋃
sB∈B

(
s |= s

�t/w�
B Before F

)
,

and hence

U2
s (n) ≤

n∑
t=	n

c 
+1

∑
sB∈B

PM
(
s |= s

�t/w�
B Before F

)
.

By cutting runs at the first occurrence of sB , we see that PM(s |= s
�t/w�
B Before F ) =

PM(s |= sB Before F ) · PM(sB |= s
�t/w�
B Before F ) and in particular PM(s |=

s
�t/w�
B Before F ) ≤ PM(sB |= s

�t/w�
B Before F ). Consider the runs in the set

(sB |= s
�t/w�
B Before F ). In such a run, there are �t/w� parts that go from sB to sB

and avoid F . The following lemma gives an upper bound on such runs. To capture this
upper bound, we introduce the parameter µ which is defined to be positive and smaller
than the minimal probability, when starting from some s ∈ B, of visiting F before
returning to s. In other words, 0 < µ ≤ mins∈B PM

(
s |= ((F Before s)

)
. Note that

µ is well-defined since F is reachable from all s ∈ B and µ > 0 since B is finite.

Lemma 3. PM
(
sB |= sxB Before F

)
≤ (1 − µ)x−1, for each sB ∈ B.

Since µ only needs to be a lower bound, we can assume µ < 1. From Lemma 3 it
follows that



Eager Markov Chains 33

U2
s (n) ≤

n∑
t=	n

c 
+1

∑
sB∈B

(1−µ)�t/w�−1 ≤ w

1 − µ ·
n∑

t=	n
c 
+1

(1 − µ)t/w

=
w

1−µ ·
(1−µ)(	

n
c 
+1)/w−(1−µ)(n+1)/w

1−(1−µ)1/w
<

w

(1−µ)(1−(1−µ)1/w)
·
(
(1−µ)

1
cw

)n
.

Let α2 := (1−µ)
1

cw < 1 and k2 := w
(1−µ)(1−(1−µ)1/w)

. Thus ∀n ∈ N. U2
s (n) ≤ k2α

n
2 .

Remark 3. The reason why we do not use equality in the definition of µ, i.e., define
µ = mins∈B PM

(
s |= ((F Before s)

)
, is that (as it will later be explained for PLCS)

it is in general hard to compute mins∈B PM
(
s |= ((F Before s)

)
exactly. However,

we can compute a non-zero lower bound, which is sufficient for the applicability of our
algorithm. ��

Eagerness of M with respect to s ∈ A. From the bounds on U1
s (n) and U2

s (n), we
derive the parameters (α, k) of (M, s) as follows. Let α3 := max(α1, α2) < 1 and
k3 := k1+k2. ThenUs(n) ≤ U1

s (n)+U2
s (n) ≤ k1αn

1 +k2αn
2 ≤ (k1+k2)αn

3 = k3α
n
3 .

Finally,

PM
(
s |= �≥nF

)
=

∞∑
i=n

Us(i) ≤ k3
αn

3

1 − α3

Choose α := α3 and k := k3/(1 − α3). It follows that ∀n ∈ N.PM
(
s |= �≥nF

)
≤

kαn. This concludes the proof of Theorem 2. ��

4.1 GR-Attractors

We define the class of gambler’s ruin-like attractors or GR-attractors for short, show
that any GR-attractor is also eager (Lemma 4), and that any PLCS contains a GR-
attractor (Lemma 7).

Let M = (S, P, F ) be a Markov chain that contains a finite attractorA ⊆ S. ThenA
is called a GR-attractor, if there exists a “distance” function h : S → N and a constant
q > 1/2 such that for any state s ∈ S the following conditions hold.

1. h(s) = 0 ⇐⇒ s ∈ A.
2.
∑
{s′ |h(s′)<h(s)} P (s, s′) ≥ q, for all s with h(s) ≥ 1.

3. P (s, s′) = 0, if h(s′) > h(s) + 1.

Let p := 1 − q. We call (p, q) the parameter of A. Intuitively, h describes the distance
fromA. This condition means that, in every step, the distance to A does not increase by
more than 1, and it decreases with probability uniformly > 1/2. In particular, this im-
plies that A is an attractor, i.e., ∀s ∈ S.PM(s |= �A) = 1, but not every attractor has
the distance function. As we will see below, a Markov chain with a GR-attractor gener-
alizes the classical “gambler’s ruin” problem [24], but converges at least as quickly. We
devote the rest of Section 4.1 to show the following Lemma.

Lemma 4. Let M be a Markov chain. Every finite GR-attractor with parameter (p, q)
is an eager attractor with parameters β =

√
4pq and b = 1.

To prove this, we need several auxiliary constructions.



34 P.A. Abdulla et al.

For a state s ∈ S with h(s) = k, we want to derive an upper bound for the probability
of reachingA in n or more steps. Formally, f(k, n) := suph(s)=k PM

(
s |= �≥nA

)
.

To obtain an upper bound on f(k, n), we relate our Markov chain M to the Markov
chain MG from the gambler’s ruin problem [24], defined as MG = (N, PG, {0}) with
PG(x, x − 1) = q, PG(x, x + 1) = p := 1 − q for x ≥ 1 and PG(0, 0) = 1. Let
g(k, n) := PMG

(
k |= �≥n 0

)
.

The following Lemma shows that f is bounded by g, so that any upper bound for the
gambler’s ruin problem also applies to a GR-attractor.

Lemma 5. If 0 ≤ k ≤ n then f(k, n) ≤ g(k, n).

Next, we give an upper bound for the gambler’s ruin problem.

Lemma 6. For all n ≥ 2, g(1, n) ≤ 3q√
π
(4pq)	

n
2 
.

Proof. (of Lemma 4) Let β :=
√

4pq. For n = 0, we have PM
(
s |= (

(
�≥nA

))
≤

1 = β0. For n = 1, we have PM
(
s |= (

(
�≥nA

))
≤ p ≤ β1. For n ≥ 2, Lemma 5

gives PM
(
s |= (

(
�≥nA

))
≤ p · g(1, n), so by Lemma 6, PM

(
s |= (

(
�≥nA

))
≤

3pq√
π

(4pq)	
n
2 
 = 3

4
√

π
(4pq)	

n
2 
+1 ≤ 3

4
√

π
(4pq)

n
2 ≤

(√
4pq
)n = βn.

4.2 Probabilistic Lossy Channel Systems

As an example of systems with finite GR-attractors, we consider Probabilistic lossy
channel systems (PLCS). These are probabilistic processes with a finite control unit and
a finite set of channels, each of which behaves as a FIFO buffer which is unbounded and
unreliable in the sense that it can spontaneously lose messages. There exist several vari-
ants of PLCS which differ in how many messages can be lost, with which probabilities,
and in which situations. We consider the relatively realistic PLCS model from [6,13,29]
where each message in transit independently has the probability λ > 0 of being lost in
every step, and the transitions themselves are subject to probabilistic choice.

Remark 4. The definition of PLCS in [6,13,29] assumes that messages can be lost only
after discrete steps, but not before them. Thus, since no messages can be lost before the
first discrete step, the set {s ∈ S : s |= ∃�F} of predecessors of a given set F of target
states is generally not upward closed. It is more realistic to assume that messages can be
lost before and after discrete steps, in which case {s ∈ S : s |= ∃�F} is upward closed.
However, for both versions of the definition, it follows easily from the results in [2] that
for any effectively representable set F , the set {s ∈ S : s |= ∃�F} is decidable. ��

In [6,13,9], it was shown that each Markov chain induced by a PLCS contains a finite
attractor. Here we show a stronger result.

Lemma 7. Each Markov chain induced by a PLCS contains a GR-attractor.

Proof. For any configuration c, let #c be the number of messages in transit in c. We
define the attractor A as the set of all configurations that contain at most m messages
in transit, for a sufficiently high number m (to be determined). A := {c | #c ≤
m}. Since there are only finitely many different messages and a finite number of



Eager Markov Chains 35

control-states, A is finite for every fixed m. The distance function h is defined by
h(c) := max{0, #c −m}. Now we show that h satisfies the requirements for a GR-
attractor. The first condition, h(c) = 0 ⇐⇒ c ∈ A, holds by definition of h and A.
The third condition holds, because, by definition of PLCS, at most one new message can
be added in every single step. Consider now a configuration c with at leastmmessages.
For the second condition it suffices to show that, for sufficiently largem, the probability
of losing at least two messages in transit is at least q > 1/2 (and thus the new config-
uration contains at least one message less than the previous one, since at most one new
message is added). The probability q of losing at least 2 messages (of at least m + 1)
satisfies q ≥ 1− ((1−λ)m+1 + (m+1)λ(1−λ)m) = 1− (1−λ)m(1+λm)). Since
λ > 0, we can choosem s.t. q > 1/2. It suffices to takem ≥ 2

λ .

Theorem 3. The problem APPROX EXPECT is computable for PLCS.

Proof. By Lemma 7 the Markov chain induced by a PLCS contains a GR-attractor,
which is an eager attractor by Lemma 4. Then, by Theorem 2 the Markov chain is eager
and Algorithm 1 can in principle solve the problem APPROX EXPECT. However, to
apply the algorithm, we first need to know (i.e., compute) the parameters (α, k), or at
least sufficient upper bounds on them.

Given the parameter λ for message loss in the PLCS, we choose the parameter m
and the GR-attractor A such that q > 1/2, as in the proof of Lemma 7. This attractor
is eager with parameters β =

√
4(1 − q)q < 1 and b = 1 by Lemma 4. For any

effectively representable set of target states F of a PLCS, the set {s ∈ S : s |= ∃�F}
is decidable by Remark 4. Thus we can compute B = A ∩ {s ∈ S : s |= ∃�F}
and obtain the parameter w = |B|. Since B is known and finite, we can compute an
appropriate µ, i.e., a µ such that 0 < µ ≤ mins∈B PM

(
s |= .(F Before s)

)
, by path

exploration. When A, w, µ, β and b are known, we can compute, in turn, c, α1, k1, α2,
k2, and finally α and k, according to Section 4.

Remark 5. Choosing a largerm (and thus larger attractor A) has advantages and disad-
vantages. The advantage is that a largerm yields a larger q and thus a smaller parameter
β =

√
4pq and thus possibly faster convergence. The disadvantage is that a larger at-

tractorA possibly yields a smaller parameter µ and a larger parameterw (see Section 4)
and both these effects cause slower convergence. ��

5 Bounded Coarseness

In this section, we consider the class of Markov chains that are boundedly coarse. We
first give definitions and a proof that boundedly coarse Markov chains are eager with
respect to any state, and then examples of models that are boundedly coarse.

A Markov chain M = (S, P, F ) is boundedly coarse with parameter (β,K) if, for
every state s, either s �|= ∃�F , or PM(s |= �≤KF ) ≥ β.

Lemma 8. If a Markov Chain M is boundedly coarse with parameter (β,K) then it is
eager with respect to all states inMand the eagerness parameter (α, k) can be computed.

Sufficient Condition. We give a sufficient condition for bounded coarseness. A state s
is said to be of coarseness β if, for each s′ ∈ S, P (s, s′) > 0 implies P (s, s′) ≥ β.
We say that M is of coarseness β if each state is of coarseness β, and M is coarse if



36 P.A. Abdulla et al.

it is of coarseness β, for some β > 0. Notice that if M is coarse then the underlying
transition system is finitely branching; however, the converse is not necessarily true.

A transition system is of spanK if for each s ∈ S, either s �|= ∃�F or s |= ∃�≤KF ,
i.e., either F is unreachable or it is reachable in at mostK steps. A transition system is
finitely spanning if it is of spanK for someK and a Markov chain is finitely spanning
(of spanK) if its underlying transition system is so. The following result is immediate.

Lemma 9. If a Markov chain is coarse (of coarseness β), and finitely spanning (of span
K), then it is boundedly coarse with parameter (βK ,K).

Probabilistic VASS. A Probabilistic Vector Addition System with States (PVASS) (see
[3] for details) is an extended finite-state automaton which operates on a finite set of
variables ranging over the natural numbers. The variables behave as weak counters
(weak in the sense that they are not compared for equality with 0). Furthermore, each
transition has a weight defined by a natural number. A PVASS V induces an (infinite-
state) Markov chain M in a natural way where the states of M are configurations of V
(the local state of the automaton together with the counter values), and the probability
of performing a transition from a given configuration is defined by the weight of the
transition relative to the weights of other transitions enabled in the same configuration.

It was shown in [3] that each Markov chain induced by a PVASS where the set F
is upward closed (with respect to the standard ordering on configurations) is effective,
coarse, and finitely spanning (with the span being computable). This, together with
Lemmas 9 and 8, yields the following theorem.

Theorem 4. APPROX EXPECT is solvable for PVASS with an upward closed set of
final configurations.

Noisy Turing Machines. Noisy Turing Machines (NTMs) were recently introduced by
Asarin and Collins [7]. They study NTMs from a theoretical point of view, considering
the computational power as the noise level tends to zero, but motivate them by practi-
cal applications such as computers operating in a hostile environment where arbitrary
memory bits can change with some small probability. We show that NTMs with a fixed
noise level are boundedly coarse, so by Lemma 8, they induce eager Markov chains.

An NTM is like an M -tape Turing Machine (with a finite control part and a given
final control state), except that prior to a transition, for each cell on each tape, with
probability λ it is subjected to noise. In this case, it changes to one of the symbols in
the alphabet (possibly the same as before) uniformly at random.

An NTM induces a Markov chain M = (S, P, F ) as follows. A state in S is a triple:
the current time, the current control state, and an M -tuple of tape configurations. A
tape configuration is represented as a triple: the head position; a finite word w over the
alphabet representing the contents of all cells visited by the head so far; and a |w|-tuple
of natural numbers, each representing the last point in time when the head visited the
corresponding cell.

These last-visit times allow us to add noise “lazily”: cells not under the head are not
modified. Since it is known when the head last visited each cell, we compensate for the
missing noise by a higher noise probability for the cell under the head. If the cell was



Eager Markov Chains 37

last visited k time units ago, we increase the probability of noise to 1− (1−λ)k, which
is the probability that the cell is subject to noise in any of k steps. Then the last-visit
time for the cell under the head is updated to contain the current time, and the next
configuration is selected according to the behavior of the control part. The final states
F are those where the control state is final.

Lemma 10. The Markov chain induced by a Noisy Turing Machine is coarse and
finitely spanning.

By Lemmas 8, 9, and 10, NTMs are eager, and we have:

Theorem 5. APPROX EXPECT is solvable for NTMs.

Remark 6. A somewhat simpler way to generate a Markov chain from an NTM avoids
the need for a counter per tape cell. Instead, all cells ever visited by a head are subject
to noise in each step. When a cell is visited for the first time, say after k steps, the
probability of noise is increased to 1 − (1 − λ)k. This is an example of a Markov
chain that is boundedly coarse but not coarse (the probability of a successor obtained
by changing n tape cells is λn). ��

6 Conclusion, Discussion, and Future Work

We have described a class of discrete Markov chains, called eager Markov chains, for
which the probability of avoiding a defined set of final states F for more than n steps is
bounded by some exponentially decreasing function f(n). Finite-state Markov chains
are trivially eager for any set of final states F .

Our main result is that several well-studied classes of infinite-state Markov chains
are also eager, including PLCS, PVASS, and NTM. Furthermore, the bounding function
f(n) is effectively constructible for Markov chains in these classes.

We have presented a path exploration algorithm for approximating the conditional
expected reward (defined via computable reward functions) up-to an arbitrarily small
error. This algorithm is guaranteed to terminate for any eager Markov chain.

Directions for future work include extending our results to Markov decision pro-
cesses and stochastic games.

References

1. P. A. Abdulla, C. Baier, P. Iyer, and B. Jonsson. Reasoning about probabilistic lossy channel
systems. In Proc. CONCUR 2000, 2000.

2. P. A. Abdulla, K. Čerāns, B. Jonsson, and T. Yih-Kuen. Algorithmic analysis of programs
with well quasi-ordered domains. Information and Computation, 160:109–127, 2000.

3. P. A. Abdulla, N. B. Henda, and R. Mayr. Verifying infinite Markov chains with a finite
attractor or the global coarseness property. In Proc. LICS ’05, pp. 127–136, 2005.

4. P. A. Abdulla, N. B. Henda, R. Mayr, and S. Sandberg. Eager Markov chains. Technical
Report 2006-009, Department of Information Technology, Uppsala University, 2006.

5. P. A. Abdulla, N. B. Henda, R. Mayr, and S. Sandberg. Limiting behavior of Markov chains
with eager attractors. In Proc. QEST ’06. IEEE Computer Society Press, 2006. To appear.

6. P. A. Abdulla and A. Rabinovich. Verification of probabilistic systems with faulty commu-
nication. In Proc. FOSSACS ’03, vol. 2620 of LNCS, pp. 39–53, 2003.

7. E. Asarin and P. Collins. Noisy Turing machines. In Proc. ICALP ’05, pp. 1031–1042, 2005.



38 P.A. Abdulla et al.

8. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model-checking continuous-time Markov
chains. ACM Trans. on Computational Logic, 1(1):162–170, 2000.

9. C. Baier, N. Bertrand, and P. Schnoebelen. A note on the attractor-property of infinite-state
Markov chains. Information Processing Letters, 97(2):58–63, 2006.

10. C. Baier and B. Engelen. Establishing qualitative properties for probabilistic lossy channel
systems. In Katoen, editor, ARTS ’99, Formal Methods for Real-Time and Probabilistic
Systems, 5th Int. AMAST Workshop, vol. 1601 of LNCS, pp. 34–52. Springer Verlag, 1999.

11. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model checking meets performance
evaluation. ACM Performance Evaluation Review, 32(2):10–15, 2005.

12. C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. Automated performance and
dependability evaluation using model checking. In Proc. Performance 2002, pp. 261–289,
2002.

13. N. Bertrand and P. Schnoebelen. Model checking lossy channels systems is probably decid-
able. In Proc. FOSSACS03, vol. 2620 of LNCS, pp. 120–135, 2003.

14. T. Brázdil and A. Kučera. Computing the expected accumulated reward and gain for a subclass
of infinite Markov chains. In Proc. FSTTCS ’05, vol. 3821 of LNCS, pp. 372–383, 2005.

15. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, Dec. 1999.
16. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. Journal

of the ACM, 42(4):857–907, 1995.
17. L. de Alfaro, M. Z. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic model

checking of probabilistic processes using mtbdds and the Kronecker representation. In Proc.
TACAS ’00, vol. 1785 of LNCS, pp. 123–137, 2000.

18. J. Esparza and K. Etessami. Verifying probabilistic procedural programs. In Proc. FSTTCS
’04, pp. 16–31, 2004.

19. J. Esparza, A. Kučera, and R. Mayr. Model checking probabilistic pushdown automata. In
Proc. LICS ’04, pp. 12–21, 2004.

20. J. Esparza, A. Kučera, and R. Mayr. Quantitative analysis of probabilistic pushdown au-
tomata: Expectations and variances. In Proc. LICS ’05, pp. 117–126, 2005.

21. K. Etessami and M. Yannakakis. Algorithmic verification of recursive probabilistic state
machines. In Proc. TACAS ’05, vol. 3440 of LNCS, pp. 253–270, 2005.

22. K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars, and mono-
tone systems of non-linear equations. In Proc. STACS ’05, vol. 2996 of LNCS, pp. 340–352,
2005.

23. K. Etessami and M. Yannakakis. Recursive Markov decision processes and recursive stochas-
tic games. In Proc. ICALP ’05, vol. 3580 of LNCS, pp. 891–903, 2005.

24. W. Feller. An Introduction to Probability Theory and Its Applications, vol. 1. Wiley & Sons,
second edition, 1966.

25. S. Hart and M. Sharir. Probabilistic temporal logics for finite and bounded models. In Proc.
STOC ’84, pp. 1–13, 1984.

26. P. Iyer and M. Narasimha. Probabilistic lossy channel systems. In TAPSOFT ’97: Theory
and Practice of Software Development, vol. 1214 of LNCS, pp. 667–681, 1997.

27. M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic model checking in practice: Case
studies with PRISM. ACM Performance Evaluation Review, 32(2):16–21, 2005.

28. D. Lehmann and S. Shelah. Reasoning with time and chance. Information and Control,
53:165–198, 1982.

29. A. Rabinovich. Quantitative analysis of probabilistic lossy channel systems. In Proc. ICALP
’03, vol. 2719 of LNCS, pp. 1008–1021, 2003.

30. P. Stǎnicǎ. Good lower and upper bounds on binomial coefficients. Journal of Inequalities
in Pure and Applied Mathematics, 2(3), 2001.

31. M. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In Proc.
FOCS ’85, pp. 327–338, 1985.



A Probabilistic Learning Approach for

Counterexample Guided Abstraction
Refinement�

Fei He1,2, Xiaoyu Song3, Ming Gu2, and Jiaguang Sun2

1 Dept. Computer Science & Technology, Tsinghua University, Beijing, China
hef02@mails.tsinghua.edu.cn

2 School of Software, Tsinghua University, Beijing, China
3 Dept. ECE, Portland State University, Oregon, USA

Abstract. The paper presents a novel probabilistic learning approach
to state separation problem which occurs in the counterexample guided
abstraction refinement. The method is based on the sample learning
technique, evolutionary algorithm and effective probabilistic heuristics.
Compared with the previous work by the sampling decision tree learn-
ing solver, the proposed method outperforms 2 to 4 orders of magnitude
faster and the size of the separation set is 76% smaller on average.

1 Introduction

Abstraction is one of the most important techniques when applying model check-
ing to large scale systems. The hypostasis of abstraction is to eliminate the ir-
relevant information to reduce the system model. The counterexample-guided
abstraction refinement (CEGAR) [1] is an effective strategy in application of ab-
straction. In CEGAR, the verification is performed in an abstract-check-refine
fashion, and the refinement is guided by counterexamples. The counterexample
contains the critical clues about the cause of the violation. If there exists a real
path in the concrete model that simulates the counterexample, one can find a
real bug, otherwise the counterexample is spurious and one has to refine the
abstract model to eliminate such a spurious path.

Many counterexample-guided abstraction refinement strategies have been pro-
posed [2, 3, 4, 5, 6, 7]. Some recent methods on automatic abstraction [8, 6, 9, 10]
employ the unsatisfiable core saved in the SAT solver, and the abstraction
is based on the proofs provided by the SAT solver, but not on refuting the
counterexamples. In [3], the abstraction is performed by making a set of state
variables invisible. If the counterexample is spurious, we need to refine the
abstract model. State separation problem poses the main hurdle during the
refinement.

� This work was supported in part by the Chinese National 973 Plan under grant No.
2004CB719406 and NSF of China under grant No. 60553002.

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 39–50, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



40 F. He et al.

In this paper, we propose a novel probabilistic learning approach to state
separation problem (SSP) which occurs in the abstraction refinement. Our ap-
proach incorporates sample learning technique, evolutionary algorithm and ef-
fective heuristics in a synergistic way. Experimental results demonstrate the
promising performance of our approach. In comparison with the previous work
by the sampling decision tree learning solver [3], the proposed method outper-
forms 2 to 4 orders of magnitude faster and the size of the separation set is 76%
smaller on average.

The remainder of the paper is organized as follows. In Section 2, we introduce
some preliminaries. In Section 3, we formally define the problem. In Section
4, we present our probabilistic learning approach. The experimental results are
reported in Section 5. Finally, Section 6 concludes the paper.

2 Preliminaries

We use state transition systems to model systems. Given a non-empty set of
atomic propositions AP , let M = 〈S, S0, R, L〉 be a transition system where

– S is the set of states.
– S0 ⊆ S is the set of initial states.
– R ⊆ S × S is the transition relation.
– L : S → 2AP is the labeling function.

Let V = {v1, v2, . . . v|V |} be the universal domain of system variables. We
assume that the variables in V range over a finite set D. A valuation for V
corresponds to a state in S.

As in [3], we think of V as two parts: the set of visible variables (denoted as VS)
and the set of invisible variables (denoted as VN ). Invisible variables are those
that we will ignore when build the model. For example, consider a digital system
with latches. The subset of the latches in which we are interested is considered
as visible variables, while the remaining latches are regarded as invisible.

In the original (non-abstracted) model, all system variables are visible. The
abstraction process is essentially equivalent to selecting and setting some of the
visible variables as invisible. Oppositely, the refinement process is to make some
of the invisible variables as visible.

Let M be the original model. We use M̃ = 〈S̃, S̃0, R̃, L̃〉 to denote the abstract
model, where the definitions of S̃, S̃0 R̃ and L̃ follow those in M .

Notice that we require our abstraction to be conservative, that is: R̃(s̃1, s̃2)
holds if and only if there exist s1 in h−1(s̃1) and s2 in h−1(s̃2), such that R(s1, s2)
holds, where h is the abstract function from S to S̃. Such a conservative trans-
lation may introduce additional behaviors into the abstract model. Consider the
example shown in Fig. 1, after mapping the concrete states 7, 8, 9 to III, and
10 to IV, respectively, the additional transitions 7 → 10, 8 → 10 are added
implicitly to the abstract model.

Given an abstract path P̃ = 〈s̃1, s̃2, . . . s̃m〉 in M̃ and a concrete path P =
〈s1, s2, . . . sm〉 in M , we define the simulation relation ∼ as follows:



A Probabilistic Learning Approach for CEGAR 41

I II III IV

1

2

3 4
5

6
7

8

9
10

Cut line

Abstract

Concrete

Fig. 1. A spurious counterexample

P ∼ P̃ ⇐⇒ s1 ∈ S0 and s1 ∈ h−1(s̃1), s2 ∈ h−1(s̃2), . . . sm ∈ h−1(s̃m). (1)

In the counterexample-guided approach, if we find a counterexample P̃ in the
abstract model, we check if there is a concrete path P in M such that P ∼ P̃ .
If it is true, we find a real bug. Otherwise, the counterexample is spurious. In
the case of the spurious counterexample, we need to compute the failure index
iF , i.e. the maximal index iF , iF < m, such that there exists a concrete path
in M which simulates the iF prefix of P̃ . With the failure index, we define the
failure states to be the group of concrete states F = {s|s ∈ h−1( ˜siF )} in M .
Consider the example in Fig. 1, the failure index is III, and the failure states are
7, 8 and 9.

The failure states can be partitioned into three sets.

1. the set of deadend states Fd: s ∈ Fd if and only if
– s ∈ F ;
– there exists a concrete path to s which simulates the iF prefix of P̃ .

2. the set of bad states Fb: s ∈ Fb if and only if
– s ∈ F ;
– there exists no concrete path to s which simulates the iF prefix of P̃ ;
– there exists a transition from s to some states in h−1(siF +1).

3. F − Fd − Fb.

3 State Separation Problem

The State Separation Problem (SSP) [3] is to find a subset Λ of the invisible
variables in VN such that

∀si ∈ Fd, ∀tj ∈ Fb, ∃vr ∈ Λ, si(vr) �= tj(vr). (2)

The set Λ is named as separation set. We usually want the separation set to
be as minimal as possible so that the corresponding refined model is minimal.
This problem is known as the minimal state separation problem (MSSP).

Consider the abstract counterexample P̂ = 〈I, II, III, IV〉 shown in Fig. 1.
It is spurious since there is no corresponding path in the concrete model. For



42 F. He et al.

this instance, the failure states are 7, 8 and 9. To eliminate the counterexample,
we need to make some variables visible to distinguish the sets of states {7, 8}
and {9}.

In realistic systems, the size of failure states is usually very large. Moreover,
since the state separation problem is embedded in the abstract-check-refine it-
eration, each time a spurious counterexample is found, a solution to the SSP
needs to be provided. Thus, there is a strong demand for the effectiveness of
SSP solvers in terms of time and memory.

In [3], an integer linear programming (ILP) model for the minimal state sep-
aration problem (MSSP) has been presented, and both an ILP solver and a
decision tree learning (DTL) solver are employed for solving this problem. The
general ILP solver attempts to enumerate the solution space to find the opti-
mal solution for the state separation problem. However, since the minimal state
separation problem is NP-hard, it is infeasible for the ILP solver to find the
solution when the problem size is large. Note that we do not necessarily need
the solution to be minimal. An approximate optimum may still good enough
for the refinement process, nevertheless, the resulting refined model may be
slightly bigger. In [3], an improved solver was proposed, which is based on the
decision tree learning. The DTL algorithm trains the decision tree based on
the input examples. It utilizes the well-trained decision tree to classify data.
With some adjustments on the parameters, the DTL algorithm is used to solve
the state separation problem, and the structure of its decision tree just gives a
possible solution. Obviously, the DTL approach is an approximate method. Its
solution precision relies on the number of input examples. If there are a suf-
ficient number of examples, the solution could be guaranteed. However, if the
input examples are too many, the time cost is extremely high. Thus, there is
a trade-off between the solution precision and the solving cost. Furthermore,
in coping with the large problem size, an efficient sampling technique has been
applied to the DTL solver. Experimental results show that DTL solver with
efficient sampling technique (for short, SDTL) outperforms the ordinary DTL
solver [2].

3.1 Problem Formulation

In this section, we first prove the NP-hardness of MSSP by reducing it to the
set covering problem. Then we present a new mathematical model for MSSP.

Definition 1. Given a pair of states 〈s, t〉, s ∈ Fd, t ∈ Fb, if there exists a
variable v, such that s(v) �= t(v), we say that the state pair 〈s, t〉 is covered by
the variable v.

Proposition 1. The MSSP is reducible to the set covering problem.

Proof. Consider Fd × Fb as the universal set. Obviously, each variable in VN

covers a subset of elements in Fd ×Fb, i.e. each variable corresponds to a subset
of Fd × Fb. Then according to the definition, the MSSP is essentially to find a
minimal collection of subsets of Fd×Fb such to cover all the elements in Fd×Fb.
Obviously, it is a set covering problem. ��



A Probabilistic Learning Approach for CEGAR 43

Given a MSSP instance, assume there are n invisible variables and m state
pairs. For simplicity, we use pj , 1 ≤ j ≤ m, to denote a state pair in Fd ×Fb, i.e.
Fd × Fb = {p1, p2, . . . , pm}. We define the decision variables as follows:

xi =

{
1, if vi ∈ Λ,
0, else.

Assume pj = 〈spj , tpj 〉, where

spj = 〈spj

1 , s
pj

2 , . . . , s
pj
n 〉

and
tpj = 〈tpj

1 , t
pj

2 , . . . , t
pj
n 〉.

According to (2), pj must be covered by certain variable in the separation set,
i.e.

∃i ∈ Λ, spj

i �= t
pj

i .

It is equivalent to: ∑
i=1 to n

(spj

i ⊕ tpj

i ) · xi ≥ 1, (3)

where ⊕ is the exclusive or operator, and xi the decision variable of vi.
Let A = {aij}m×n be a coefficient matrix where

aij = s
pj

i ⊕ tpj

i , for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Obviously, aij equals 1 if and only if the state pair pj is covered by the variable
vi. Then the MSSP can be formulated as:

min
n∑

i=1

xi, where

n∑
i=1

aijxi ≥ 1, j = 1, . . . ,m (4)

xi = {0, 1}, i = 1, . . . , n (5)

where equations (4) and (5) characterize the feasible solutions.

4 Our Approach

In the verification process, note that we do not necessarily need the solutions of
SSP to be minimal. Thus, it is possible for us to use some approximate method
to solve this problem. In [3], a decision tree learning solver is proposed. In this
paper, we present a novel learning approach based on the sample learning tech-
nique, evolutionary algorithm and efficient heuristics. Experimental results show
the better performance of our solver.



44 F. He et al.

4.1 Sample Learning Technique

In practice, the number of failure states of SSP is very large. It is not easy to
determine the separation set for large scale systems. In [3], an idea of inferring
the separation set by learning from some selected samples, instead of the entire
sets, was introduced.

The main procedure of our Sample Learning Approach (SLA) is shown in
Alg. 1.. The method avoids the complexity of SSP by considering only samples
of the set of state pairs. This algorithm is iterative. By adjusting the parameters
MAX ITER and MAX SAM, we set the maximal number of iterations and the
maximal number of samples picked in every iteration. A sample here is a pair
of states 〈s, t〉 ∈ Fd × Fb. The algorithm randomly picks MAX SAM samples in
every iteration, among which only those that are not covered by the present sep-
aration set (we call them efficient samples) can be added into the set SAMPLE.
The REQ SIZE is a preassigned parameter. When there are enough efficient
samples generated, the set of samples will be renewed, and then the separation
set is computed.

Note that we use the covering concept to judge the validity of the given
samples. The samples that are already covered by the present separation set
will be directly discarded. Given an appropriate value to the REQ SIZE, many
samples will be discarded directly according to their coverage to the present
separation set, and thus the number of invoking EA solver will be greatly
reduced.

Let Aj = 〈a0j , a1j , . . . , anj〉 be the coefficient vector corresponding to pj .
According to (3), it is not difficult to determine the coverage of pj to the present
separation set Λ. It is equivalent to testing true value of the following formula:∑

i=1 to n

aij · xi ≥ 1.

4.2 Probabilistic Evolutionary Algorithm

Evolutionary algorithm (EA) [11] is a powerful search and optimization
paradigm. It utilizes the principles of natural evolution and “survival of the
fittest”. The EA elaborates on many solutions at the same time. The main char-
acteristic of an evolutionary algorithm is population-based. Starting with a set of
initial solutions, evolutionary algorithms explore the solution space through the
simulated evolution. Solutions are evaluated by their fitness. The more suitable
they are, the more chances they have to survive and be reproduced.

There are many studies on applying evolutionary algorithms to the set cover-
ing problem [12,13,14,15]. The experimental results listed in the above literatures
show the good performance of applying EA to the set covering problem. However,
we cannot apply EA directly to the SSP, since the huge number of failure states.
Essentially, SSP is a special case of set covering problem, where the number of
constraints is much more than the number of variables. By applying the sample
learning technique, we avoid the complexity of such huge number of constraints.



A Probabilistic Learning Approach for CEGAR 45

Algorithm 1. Outline of the sample learning algorithm
Λ := φ
SAMPLE := φ
NEWSAMPLE := φ
for i := 1 to MAX ITER do

for i := 1 to MAX SAM do
randomly pick 〈s, t〉 from Fd × Fb

if 〈s, t〉 cannot be covered by Λ then
NEWSAMPLE := NEWSAMPLE ∪〈s, t〉

end if
end for
if sizeof(NEWSAMPLE) ≥ REQ SIZE then

SAMPLE := SAMPLE ∪ NEWSAMPLE
call solver to compute Λ based on SAMPLE
NEWSAMPLE := φ

end if
end for

Algorithm 2. Evolutionary algorithm
1: Generate a initial population
2: while not (terminal condition) do
3: Update the chromosomes by crossover and mutation operations
4: Evaluate the fitness of each chromosome
5: Select chromosomes to form a new population
6: end while

We use EA as the central solver embedded in the learning structure and used
for computing the separation set. The EA procedure is shown in Alg. 2..

We reinforce the basic EA in a way such that problem-specific knowledge is
incorporated. We observe following properties in SSP, which derive the effective
heuristics:

1. For a state pair, there may be multiple variables that can cover it.
2. If the variables in a separation set cover all state pairs in Fd × Fb, then the

corresponding solution is already a feasible solution.

In order to get a feasible solution more quickly, an effective strategy is to
assign larger probabilities to the variables which cover more state pairs. Denote
EV (v) as the number of state pairs covered by variable v. Based on the statistic
analysis on the sets of states Fd and Fb, the EV (v) values for all variables can
be evaluated easily in advance of the execution of our algorithm.

Probabilistic Initialization. We use a n-bit binary string as the chromosome
structure where n is the number of invisible variables. A value of 1 for the i-th
bit implies that the variable vi is selected into the separation set.

We generate pop size chromosomes to initialize the population. To obtain a
random chromosome, the involved method acts as follows:



46 F. He et al.

1. randomly generate an integer e (0 ≤ e ≤ n), and use it as the size of the
separation set.

2. randomly select e variables into the separation set.
3. the probability of each variable to be selected is proportional to the number

of state pairs it covers.

Probabilistic Mutation. Let Pm be the probability of mutation. We adopt the
two-point mutation. For a traditional two-point mutation, it randomly selects
two points r1 and r2 in the chromosome, and then replaces the value of every
character between sites r1 and r2 with a random value (0 or 1).

In our probabilistic two-point mutation, the mutation sites r1 and r2 are
selected similarly, however, the value of each character between site r1 and r2
are replaced in a heuristic way as follows:

1. randomly generate a integer e (0 ≤ e < r2 − r1).
2. randomly select e genes between sites r1 and r2 into the separation set.
3. the probability of each gene between sites r1 and r2 to be chosen is propor-

tional to the number of state pairs it covers.

Probabilistic Crossover. We let Pc be the probability of crossover. We adopt
the uniform crossover operator. It is claimed that the uniform crossover has
a better recombination potential to combine smaller building blocks into larger
ones [16,17]. The uniform crossover works with a crossover mask which is created
at random. The mask has the same length as the chromosome structure, and the
parity of the bits indicates the corresponding parent.

We follow the probabilistic crossover operator defined in [12]. Empirical stud-
ies show that this crossover operator is suitable for the set covering problem.
Probabilistic crossover is derived from the standard uniform crossover. For the
probabilistic crossover operator, the probability of a parent to be chosen for
contributing its variable to the offspring is proportional to its fitness value. For-
mally, given parents P = 〈P1P2 . . . Pn〉 and Q = 〈Q1Q2 . . . Qn〉, the crossover
mask M = 〈M1M2 . . .Mn〉 is generated as follows:

Mi = 0 with the probability p =
fitness(Q)

fitness(P ) + fitness(Q)
Mi = 1 with the probability 1 − p

Solution Improvement. When applying evolutionary operators to the chro-
mosomes, the resulting solutions are no longer guaranteed to be feasible. We
implemented two strategies to deal with infeasible solutions.

The first strategy is to apply penalty function to deteriorate the optimality of
an infeasible solution by adding a penalty cost to its objective function. In our
approach, after the penalty function applied, the optimization model becomes:

Minimize
n∑

i=1

xi +
m∑

j=1

f(
n∑

i=1

aijxj ≥ 1),



A Probabilistic Learning Approach for CEGAR 47

where f(·) is the penalty function for unsatisfying the constraints (4). The
penalty function has a strong influence on the performance of the whole al-
gorithm. In our approach, we implement a simple and efficient penalty function
as follows:

f(x) =

{
0, if x is true,
BIGVALUE, otherwise.

The second strategy way is to apply a heuristic operator to transform the in-
feasible solution into feasible solution. We implemented the heuristic feasibility
operator proposed in [12] with minor modifications. By applying this heuris-
tic operator, not only can the infeasible solutions be transformed into feasible
solutions, but also the feasible solutions can be improved by eliminating the
redundant variables. Algorithm 3. gives the framework of the operator.

Algorithm 3. Heuristic feasibility operator
1: for each Aj , compute the number of variables that are in the separation set and

can cover this row, i.e.

nj =
n∑

i=1

aijxi, for 1 ≤ j ≤ m.

2: while (∃j ∈ [1, m], nj = 0) do
3: find the best variable v∗ which is not in the separation set and can cover maximal

number of uncovered rows, i.e.

n
max
i=1

{
m∑

j=1

(ni = 0) ∧ (xj = 0) ∧ (aij = 1)

}
.

4: add v∗ into the solution and renew nj for each Aj .
5: eliminate the redundant variables, i.e. the variables satisfying:

∀j ∈ [1, m], (aij = 1) ∧ (xi = 1) → nj ≥ 2.

6: end while

5 Experimental Results

To validate our approach, we implemented our probabilistic learning approach
using C++ language and ran on a PC with Intel� Celeron� 2.4GHz CPU and
512M RAM. All benchmarks are created using a random generator. The param-
eters are set as: pop size = 40, MaxIter = 1000, Pm = 0.25, Pc = 0.5, where
pop size is the size of the population, MaxIter is the maximal number of gener-
ations, Pm and Pc are the probabilities of mutation and crossover, respectively.

The experiment compares the performance of our solver to the latest pub-
lished sampling decision tree learning (SDTL) solver [2,3]. The results are listed



48 F. He et al.

Table 1. Our solver vs. SDTL

Our solver SDTL
Benchmark

time |SepSet| time |SepSet|
ran k10 m150 n120 0.141 7 15.954 10
ran k20 m150 n120 0.422 7 30.594 20
ran k30 m150 n120 0.594 6 35.891 28
ran k40 m150 n120 0.656 7 51.813 31
ran k50 m150 n120 2.953 6 53.312 38

ran k20 m500 n300 0.515 7 1197.562 20
ran k30 m500 n300 1.281 7 1836.203 30
ran k40 m500 n300 1.454 7 2664.453 40
ran k50 m500 n300 3.907 7 3476.797 46
ran k60 m500 n300 2.89 7 4360.484 55

ran k30 m150 n200 0.719 6 78.485 29
ran k30 m500 n1000 1.985 8 4028.937 30
ran k30 m3000 n4000 3.813 8 timeout
ran k30 m5000 n4000 3.922 8 timeout

ran k40 m200 n250 1.735 7 470.078 36
ran k40 m1000 n2000 4.703 8 timeout
ran k40 m2000 n5000 5.734 8 timeout
ran k40 m8000 n7000 8.859 8 timeout

ran k50 m200 n300 1.891 7 1026.672 43
ran k50 m1000 n2000 8.672 7 timeout
ran k50 m2000 n5000 12.687 8 timeout
ran k50 m8000 n7000 23.515 9 timeout

ran k60 m200 n300 1.125 6 1595.594 47
ran k60 m1000 n2000 7.578 8 timeout
ran k60 m2000 n5000 11.625 8 timeout

in Table 1. Benchmark is the name of the tested benchmark. The benchmark’s
name implies the parameters. For example, the name “ran k30 m500 n300” in-
dicates that the number of invisible variables is 30, the number of deadend states
is 500, and the number of bad states is 300, respectively. The time column lists
the runtime in seconds, and the |SepSet| column gives the size of the resulting
separation set. We evaluate the efficiency of the solver by its runtime, and the
solution quality by the size of the separation set. In order to force termination,
we impose a limit of two hours on the running time. We denote by ‘timeout’ in
the time column the examples that could not be solved in this time limit.

The results in Table 1 are arranged into six groups. In the former two groups,
we let the numbers of deadend states and bad states be fixed, and let the number
of invisible variables increase, we observed that all the solvers’ run times increase
in most of cases. In the latter four groups, we fixed the number of invisible
variables, and let the number of deadend states and bad states increase, we
observed that the SDTL solver quickly blows up, whereas our solver still works
well. Even for the benchmarks that are solvable by both the solvers, the runtime
of our solver are 2 to 4 orders of magnitude smaller than that of the SDTL



A Probabilistic Learning Approach for CEGAR 49

solver. Regarding the separation set size, the separation set found by our solver
is smaller 76% than that by the SDTL solver on average.

6 Conclusion

We investigated the state separation problem in this paper. A novel probabilistic
learning approach was presented for solving this problem. Experimental results
showed the efficiency and power of our approach. Compared with the latest work
using the sampling decision tree learning (SDTL) solver, the proposed approach
outperforms 2 to 4 orders of magnitude faster and the size of the separation set
is 76% smaller on average.

References

1. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Computer Aided Verification. (2000) 154–169

2. Clarke, E.M., Gupta, A., Kukula, J.H., Strichman, O.: SAT based abstraction-
refinement using ILP and machine learning techniques. In: CAV. (2002) 265–279

3. Clarke, E., Gupta, A., Strichman, O.: SAT based counterexample-guided
abstraction-refinement. IEEE Transactions on Computer Aided Design 23(7)
(2004) 1113–1123

4. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Sym-
posium on Principles of Programming Languages. (2002) 58–70

5. Glusman, M., Kamhi, G., Mador-Haim, S., Fraer, R., Vardi, M.Y.: Multiple-
counterexample guided iterative abstraction refinement: an industrial evaluation.
In: TACAS. (2003) 176–191

6. Gupta, A., Strichman, O.: Abstraction refinement for bounded model checking.
In: Computer Aided Verification. (2005) 112–124

7. Govindaraju, S.G., Dill, D.L.: Counterexample-guided choice of projections in
approximate symbolic model checking. In: ICCAD. (2000) 115–119

8. McMillan, K.L., Amla, N.: Automatic abstraction without counterexamples. In:
TACAS. (2003) 2–17

9. Gupta, A., Ganai, M.K., Yang, Z., Ashar, P.: Iterative abstraction using SAT-based
BMC with proof analysis. In: ICCAD. (2003) 416–423

10. Wang, C., Jin, H., Hachtel, G.D., Somenzi, F.: Refining the SAT decision ordering
for bounded model checking. In: DAC. (2004) 535–538

11. Dumitrescu, D., Lazzerini, B., Jain, L., Dumitrescu, A.: Evolutionary Computa-
tion. CRC Press (2000)

12. Beasley, J., Chu, P.: A genetic algorithm for the set covering problem. European
Journal of Operational Research 94 (1996) 392–404

13. Sen, S.: Minimal cost set covering using probabilistic methods. In: Proceedings of
the 1993 ACM/SIGAPP symposium on Applied computing, Indianapolis, Indiana,
United States, ACM Press (1993) 157–164

14. Aickelin, U.: An indirect genetic algorithm for set covering problems. Journal of
the Operational Research Society 53(10) (2002) 1118–1126

15. Marchiori, E., Steenbeek, A.: An evolutionary algorithm for large scale set covering
problems with application to airline crew scheduling. In: EvoWorkshops. Volume
1803 of Lecture Notes in Computer Science., Springer (2000) 367–381



50 F. He et al.

16. Syswerda, G.: Uniform crossover in genetic algorithms. In: Proceedings of the
3rd International Conference on Genetic Algorithms, San Mateo, California, USA,
Morgan Kaufmann Publishers Inc. (1989) 2–9

17. Spears, W.M., De Jong, K.A.: On the virtues of parameterized uniform crossover.
In Belew, R., Booker, L., eds.: Proceedings of the Fourth International Conference
on Genetic Algorithms, San Mateo, CA, Morgan Kaufman (1991) 230–236



A Fine-Grained Fullness-Guided Chaining

Heuristic for Symbolic Reachability Analysis�

Ming-Ying Chung, Gianfranco Ciardo, and Andy Jinqing Yu

Department of Computer Science and Engineering
University of California, Riverside

{chung, ciardo, jqyu}@cs.ucr.edu

Abstract. Chaining can reduce the number of iterations required for
symbolic state-space generation and model-checking, especially in Petri
nets and similar asynchronous systems, but requires considerable insight
and is limited to a static ordering of the events in the high-level model.
We introduce a two-step approach that is instead fine-grained and dy-
namically applied to the decision diagrams nodes. The first step, based
on a precedence relation, is guaranteed to improve convergence, while
the second one, based on a notion of node fullness, is heuristic. We ap-
ply our approach to traditional breadth-first and saturation state-space
generation, and show that it is effective in both cases.

1 Introduction

BDD-based symbolic model checking [17] is one of the most successful techniques
to verify industrial hardware and embedded software systems, and symbolic
reachability analysis is a fundamental step in symbolic model checking. It is
well-known that the peak number of BDD nodes is often much larger than the
final number of BDD nodes for symbolic reachability analysis. In this paper, we
propose a new chaining technique to reduce this peak number.

For asynchronous concurrent systems, such as distributed software, network
protocols, and various classes of Petri nets, chaining [22] can reduce the peak
memory usage and speed-up symbolic state-space generation by exploring events
in a particularly favorable order. Chaining is normally applied as a modification
of a strict breadth-first search (BFS), but it is also one of the factors behind
the efficiency of the saturation algorithm [6]. As introduced, however, chaining
is limited to finding a good order in which to apply the high-level model events
during the symbolic iterations.

In this paper, we propose a general and effective heuristic that uses a partial-
order relation and the concept of decision diagram node fullness to guide the
chaining order, independent of the high-level formalism used to model the sys-
tem. Our definition of node fullness is related to, but different from, the BDD
node density defined in [20]. A detailed comparison can be found in Sect. 6.

� Work supported in part by the National Science Foundation under grants CNS-
0501747 and CNS-0501748.

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 51–66, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



52 M.-Y. Chung, G. Ciardo, and A.J. Yu

Sect. 2 gives background on structured models, decision diagrams, BFS-based
and saturation-based symbolic state-space generation, and chaining. Sect. 3 de-
tails our main contribution, where a fine-grained chaining is applied dynamically
using the current structure of the decision diagram, rather than the model events.
Sect. 4 describes the modified symbolic state-space generation algorithms incor-
porating our heuristic and gives implementation details. Sect. 5 provides numer-
ical results on a suite of models showing that our heuristic reduces the runtime
and memory requirements of both BFS-based and saturation-based algorithms.
Sect. 6 compares the newly proposed chaining heuristics with some related work.
Finally, Sect. 7 concludes with directions for future research.

2 Preliminaries

We consider a discrete-state model (Ŝ,Sinit,R), where Ŝ is a finite set of states,
Sinit ⊆ Ŝ are the initial states, and R ⊆ Ŝ×Ŝ is a transition relation. We assume
the (global) model state to be a tuple of K local state variables, (xK , ..., x1),
where, for K ≥ l≥ 1, xl ∈ Sl = {0, 1, ..., nl−1}, with nl > 0, is the the lth local
state variable. Thus, Ŝ = SK×· · ·×S1 and we write R(i[K], ..., i[1], j[K], ..., j[1]),
or R(i, j), if the model can move from current state i to next state j in one step.

2.1 Symbolic Encoding of State Space and Transition Relation

State-space generation consists of building the smallest set of states S ⊆ Ŝ
satisfying S ⊇ Sinit and S ⊇ Img(S,R), where the image computation function
gives the set of successor states: Img(S,R) = {j : ∃i ∈ S,R(i, j)}. Most symbolic
approaches to store the state space encode xl using �lognl� boolean variables
and a set of states Z using a BDD with

∑
K≥l≥1�lognl� levels.

We prefer to discuss our approach in terms of ordered multi-way decision
diagrams (MDDs) [14], where each variable xl is directly encoded in a single
level, using a node with nl outgoing edges. MDDs can be implemented directly,
the approach taken in our tool SmArT [3], or as an interface to BDDs [25].

Definition 1. An MDD over Ŝ is an acyclic edge-labeled multi-graph where:
– Each node p belongs to a level in {K, ..., 1, 0}, denoted p.lvl.
– There is a single root node r�.
– Level 0 can contain only the terminal nodes, 0 and 1.
– A node p at level l > 0 has nl outgoing edges, labeled from 0 to nl − 1. The

edge labeled by i ∈ Sl points to node q, with p.lvl > q.lvl; we write p[i] = q.

Then, to ensure canonicity, duplicate nodes are forbidden:
– Given nodes p and q at level l, if p[i] = q[i] for all i ∈ Sl, then p = q,

and we must use either the fully-reduced rule [1] that forbids redundant nodes:
– No node p at level l can exist such that, p[i] = q for all i ∈ Sl,

or the quasi-reduced rule [15] that restricts arcs spanning multiple levels:
– The root is at level K.
– Given a node p at level l, p[i].lvl is either l− 1 or 0, for all i ∈ Sl. �



A Fine-Grained Fullness-Guided Chaining Heuristic 53

Definition 2. The set encoded by MDD node p at level k w.r.t. level l≥ k is
B(l, p) = Sl ×· · ·×Sk+1×

(⋃
i∈Sk

{i}×B(k− 1, p[i])
)
, where ∀X ⊆ Sl ×· · ·×S1,

X×B(0,0)=∅ and X×B(0,1)=X . If l=k, we write B(p) instead of B(k, p). �

MDDs vs. BDDs. We use MDDs to implicitly encode the state space S and
transition relation R, instead of using �log2 Sl� bits for the local state variable
xl, and encoding S and R with BDDs. Compared with BDDs, MDDs have the
disadvantage of resulting in larger and less shareable nodes when the variable
domains Sl are very large (which is however not the case in our applications). On
the other hand, MDDs have also advantages. First, many real-world models (e.g.,
non-safe Petri nets and software protocols) have variable domains with a priori
unknown or very large upper bounds. These bounds must then be discovered “on
the fly” during the symbolic iterations [10], and MDDs are preferable to BDDs
when using this approach, due to the ease with which MDD nodes and variable
domains can be extended. A second advantage, related to the present paper, is
that our chaining heuristics applied to the MDD state variables more closely
reflect structural information of the model behavior, which is instead spread on
multiple levels in a BDD.

Most symbolic model checkers, e.g., NuSMV [11], generate the state space with
BFS iterations, each consisting of an image computation. Set X [0] is initialized
to Sinit and, after the dth iteration, set X [d] contains all the states at distance
up to d from Sinit. When using MDDs, X [d] is encoded as a K-level MDD
and R as a 2K-level MDD whose current and next state variables are normally
interleaved for efficiency. We use this order too. Also, the transition relation is
often conjunctively partitioned into a set of conjuncts or disjunctively partitioned
into a set of disjuncts [2], stored as a set of MDDs that can share nodes instead
of a single monolithic MDD. Heuristically, these partitionings have been shown
to be effective for both synchronous and asynchronous systems.

In the following, we use the data-types mdd and mdd2 to indicate quasi-
reduced MDDs encodings sets and relations, respectively, and, for readability,
we let X indicate both a set and the root of the MDD encoding that set.

2.2 Disjunctive Partition of R and Chaining

Both asynchronous and synchronous behaviors may be present in many sys-
tems. We focus on globally-asynchronous locally-synchronous behaviors. Thus,
we assume the high-level model specifies a set of asynchronous events E , where
each event α ∈ E can be further specified as a set of small synchronous
components.

For example, a guarded command language model specifies a set of commands
of the form “guard → assignment1 ‖ assignment2 ‖ · · · ‖ assignmentm”, where,
whenever the boolean predicate guard evaluates to true, the m parallel atomic
assignments can be executed concurrently (synchronously). Each command is an
asynchronous events in the system and for each command, each assignment of
the parallel assignments is a synchronous component of the event. Similarly, for
Petri net models, the set of transitions in the net are the asynchronous events



54 M.-Y. Chung, G. Ciardo, and A.J. Yu

in the system and the firing of a transition synchronously updates all the places
connected to it. We use extended Petri nets as the input formalism in SmArT [3].

We encode the transition relation as R ≡
∨

α∈E Dα, where each disjunct
Dα corresponds to an asynchronous event α. Each Dα is further conjunctively
partitioned, where each conjunct Cα,l represents a synchronous component of α,
thus we can write R ≡

∨
α∈E Dα ≡

∨
α∈E(

∧
l Cα,l).

Chaining [22] was introduced to speed up symbolic BFS-based state-space
generation and similar symbolic fixed-point computations for asynchronous sys-
tems. The idea of chaining is based on the observation that the number of sym-
bolic iterations might be reduced if the effect of exploring various events on a
given set of states is compounded sequentially. More precisely, in a strict BFS
symbolic iteration, the set X [d] of states at distance up to d from Sinit is built
in exactly d iterations starting from X [0] = Sinit. The dth iteration applies the
monolithic R, or each disjunct Dα corresponding to a distinct event α, to the
set of states X [d−1] reachable in up to d− 1 steps. However, when we have
the individual disjuncts Dα at our disposal, we can instead apply them in an
incremental fashion. If the event set is E = {α1, α2, ..., αm} and Y [d−1] is the set
of states found at the end of iteration d−1 with chaining, this approach computes

• Y [d;1] ← Y [d−1] ∪ Img(Y [d−1],Dα1),
• Y [d;2] ← Y [d;1] ∪ Img(Y [d;1],Dα2), and so on, until
• Y [d;m] ← Y [d;m−1] ∪ Img(Y [d;m−1],Dαm), which becomes our next Y [d].

Clearly, this will not discover states in strict BFS order, but it guarantees
that the set of states discovered with chaining at the dth (outer) iteration is at
least as large as those discovered in strict BFS order: Y [d] ⊇ X [d]. Thus, chaining
may reach the fixed point, i.e., compute S, in fewer iterations. Of course, the
efficiency of state-space generation is determined not just by the number of
symbolic iterations, but also by their cost, which is strictly related to the number
of nodes in the decision diagrams being manipulated. While chaining could in
principle result in larger intermediate decision diagrams and even slow down the
computation, in practice. the opposite is often true: chaining has been shown to
be quite effective in many asynchronous models.

To maximize the effectiveness of chaining, however, we must employ some
heuristic to decide the order in which events should be explored. For example,
[22] uses a topological sort on the gates of a circuit modeled as a Petri net.
The intuition is that, if firing Petri net transition α adds tokens to a place that
is input to another Petri net transition β, then the corresponding disjunct Dα

should be applied before Dβ within each iteration, as this increases the chances
that β will be enabled, thus discover more states, in the larger set of states
obtained by considering also the effect of α. If the Petri net has cycles, they
need to be “opened” by arbitrarily picking one transition in the cycle to fire
first, and then firing the remaining transitions in order.

A different, not model-based, chaining order heuristic can also be employed.
Given an event α, define VM (α) = {xl : ∃i, j ∈ Ŝ,Dα(i, j) ∧ i[l] �= j[l]}, and



A Fine-Grained Fullness-Guided Chaining Heuristic 55

mdd BfsChaining( )

1 S ← Sinit;
2 repeat
3 for l = 1 to K do
4 foreach α ∈ El do
5 S ← Union(S , Image(S ,Dα))
6 until S does not change;
7 return S ;

Fig. 1. Symbolic BFS-based state-space generation with chaining

VD(α) = {xl : ∃i, i′ ∈ Ŝ, ∀k �= l, i[k] = i′[k] ∧ ∃j∈ Ŝ,Dα(i, j)∧ � ∃j′ ∈ Ŝ,Dα(i′, j′)},
the variables that can be modified by α, or can disable, α, respectively. Letting

Top(α) = max{l : xl ∈ VM (α)∪VD(α)},Bot(α) = min{l : xl ∈ VM (α)∪VD(α)},

we can then partition the events according to the value of Top, by defining the
subsets of events El = {α : Top(α) = l}, for K ≥ l ≥ 1 (some of these sets can
be empty, of course). In [7] we observed that a chaining order that applies these
subsets to the MDD in bottom-up fashion, as shown in Fig. 1, results in good
speedups with respect to a strict BFS symbolic state-space generation.

Recognizing this event locality also lets us store Dα with an MDD over just
the current and next state variables having index k, for Top(α) ≥ k ≥ Bot(α).
Then, when computing the image of event α with Top(α) = l, statement 5 in
BfsChaining requires to access only MDD nodes at level l or below and to modify
in-place [5] only MDD nodes at level l, without having to traverse the MDD from
the root. Exploiting identity transformations in Dα for variables strictly between
Top(α) and Bot(α) is not as critical for the efficiency of the saturation approach,
and therefore we do not discuss it in the rest of the paper, for simplicity’s sake.
However, it does contribute to the experimental results in Sect. 5.

2.3 Saturation Algorithm

An MDD node p at level l is said to be saturated [6] if it encodes a fixed point:

∀α ∈ E ,Top(α) ≤ l, B(K, p) ⊇ Img(B(K, p),Dα).

To saturate node p once its descendants are saturated, we compute the effect of
firing α on p for each α such that Top(α) = l, recursively saturating any nodes
at lower levels that might be created in the process, and add the result to B(p)
using in-place updates. One advantage of this approach is that it stores only
saturated nodes in the cache and unique table; these are the only “potentially
useful” nodes, since nodes in the MDD encoding S are saturated by definition.

Fig. 2 shows the saturation algorithm in its most general form, as presented in
[10]. Its fixed-point iterations constitute an extreme form of chaining. Saturation
has been shown to reduce memory and runtime requirements by several orders of
magnitude with respect to BFS-based algorithms when applied to asynchronous
systems, for both state-space generation and CTL model-checking [8].



56 M.-Y. Chung, G. Ciardo, and A.J. Yu

void Saturation( )

1 for l = 1 to K do
2 foreach node p at level l in the MDD Sinit do
3 Saturate(p); •Bottom-up sub-fixpoint computation by DD node

void Saturate( mdd p )

1 l ← p.lvl;
2 repeat
3 choose α ∈ El, i ∈ Sl, j ∈ Sl s.t. p[i] �= 0 and Dα[i][j] �= 0;
4 p[j] ← Union(p[j], ImageSat(p[i],Dα[i][j]));
5 until p does not change;

mdd ImageSat( mdd q, mdd2 f )

1 if q = 0 or f = 0 then return 0;
2 k ← q.lvl; •given our quasi-reduced form, f.lvl = k as well
3 s ← a new MDD node at level k with all edges set to 0;
4 foreach i ∈ Sk, j ∈ Sk s.t. q[i] �= 0 and f [i][j] �= 0 do
5 s[j] ← Union(s[j], ImageSat(q[i], f [i][j]));
6 Saturate(s);
7 return s.

Fig. 2. Saturation-based state-space generation

As an example, Fig. 3 shows a Petri net, and its equivalent guarded command
language expression, modeling a gated-service queue with a limited pool of cus-
tomers. New arrivals wait at the gate until it is opened, then all the waiting
customers enter the service queue. Customers return to the pool after service.
A state of the model can be represented as an evaluation of the integer variable
vector (p, w, i), where p stands for pool, w for wait and i for in-service. Assuming
a pool of two customers, the model has an initial state (2, 0, 0) and six reachable
states: S = {(2, 0, 0), (1, 1, 0), (0, 2, 0), (1, 0, 1), (0, 0, 2), (0, 1, 1)}. Fig. 4 shows the
execution of the saturation algorithm on this example. We use a for arrive, g
for gate, and s for service to denote the transitions.

In Fig. 4, snapshot (a) shows the 2K-level MDDs encoding the disjunctively
partitioned transition relation. Snapshots from (b) to (k) show the evolution of
the encoding of the state space, from the initial state to the final state space,
where the key procedure calls are shown. For readability, node edges leading to
terminal 0 are omitted. We denote each MDD node encoding the state space with
a capital letter (A to I in the example), and color a node black after it becomes
saturated. Not all procedure calls are shown, e.g., ImageSat(C[1],Ds[1][2]) is
called in snapshot (k) before node C becomes saturated, but it is not shown
since no new nodes (states) are generated from the call.

3 Node-Wise Fine-Grained Chaining

Previously introduced chaining heuristics are event-based, thus coarse-grained
(they define an order in which to explore the model-level events) and static (the
order is derived from the high-level model prior to state-space generation). Our



A Fine-Grained Fullness-Guided Chaining Heuristic 57

Petri net model Guarded command language model

arrive wait gate in-service serve
pool

#(wait)

2

#(wait) initial state: p = 2 ∧ w = 0 ∧ i = 0;
Da : p≥1→{p′=p−1∧w′ =w+1∧i′ = i};
Ds : i≥1→{p′=p+1∧w′ =w∧i′ = i−1};
Dg : w≥1→{p′=p∧w′=0∧i′ = i+w};

Fig. 3. A limited-arrival gated-service model with marking-dependent arc cardinalities

(a) Transition relation

p

w

i

p’

w’

i’

aD sD gD

2

1

0

1

1

2

1

0

1

0

0

1

1

0

2

1

1

2

2

0

0 1

2

00 1 2

0

0

1

1

2

2

(b) Initial state space

2

0

0

B

A

Cp

w

i

(c) Saturate(C)

ImageSat(C[2],Da[2][1]):

1

0

0

2

1

p

w

i

B

A

C

D

(d) Saturate(D)

ImageSat(D[1],Dg[1][0]):

0

0

10

1

p

w

i

1 2

B

A

C

D

E

(e) Saturate(E)

and Saturate(D):

0

0

10

1

p

w

i

1 2

B

A

C

D

E

(f) Continue Saturate(C)

ImageSat(C[1],Da[1][0]):

0

0

10

1

1

p

w

i

1 20

B

A

C

D

E

F

(g) Saturate(F )

ImageSat(F [1],Dg[1][0]):

0

0

10

1

1

2

0

1 20p

w

i

B

A

C

D

E

F

G

(h) Saturate(G)

and Saturate(F ):

0

0

10

1

1

2

0

p

w

i

1 20

B

A

C

D

E

F

G

(i) Continue Saturate(C)

ImageSat(C[1],Da[1][0]):

0

0

10

1

1

2

0 2

p

w

i

1 20

B

A

C

D

E

F

G

H

(j) Saturate(H)

ImageSat(H[2],Dg [2][0]):

0

0

10

1

1

2

0 20

p

w

i

1 20

B

A

C

D

E

F

G

H

(k) I = Union(F, H)

0

0

10

1

1

2

0 2

p

w

i

10 2

B

A

C

D

E

I

G

Fig. 4. Saturation applied to the limited-arrival gate-service model

heuristic is instead decision-diagram-node-based, thus fine-grained (it defines the
order of descent for the decision diagram nodes during image computation) and
dynamic (the order is decided on a per-node basis during state-space genera-
tion). Such a dynamic policy has the potential to be more flexible and efficient
than a static policy, but also the risk of higher runtime costs. In fact, Sect. 5
shows that our heuristic can achieve substantial improvements and has small
overhead.

Before presenting our heuristic, we rewrite the transition relation by grouping
the disjuncts according to the value of Top(α), i.e., R ≡

∨
K≥l≥1 Rl, where



58 M.-Y. Chung, G. Ciardo, and A.J. Yu

Rl ≡
∨

α∈El
Dα ≡

∨
α∈El

(
∧

j Cα,j). Thus, R is described by a set of K MDDs
where, for K ≥ l ≥ 1, the root r�l of the MDD encoding Rl is at level l (some of
these MDDs can be empty).

We then seek good chaining by determining an order for the exploration of
the children of a node p at level l and of r�l , when computing Image(p, r�l )
and using in-place updates. More precisely, we repeatedly choose a pair of local
states (i, j) ∈ Sl ×Sl, compute Image(p[i], r�l [i][j]), and use the result to update
p[j]. Intuitively, pair (i′, j′) is preferred over (i′′, j′′) if there is a chance that
updating j′ can eventually “benefit” i′′, i.e., increase B(p[i′′]), but no chance
that updating j′′ can benefit i′. Sect. 3.1 formalizes this concept by defining an
equivalence relation on Sl that implies a partial order on the equivalence classes.
This is the same rationale as for the original chaining heuristic, but at a much
finer level. To further refine the order within each equivalence class, we use the
“fullness” of the MDD nodes. Intuitively, if p[i] encodes more substates than
p[j], we want to compute Image(p[i], r�l [i][j]) and use it to update p[j] before
computing Image(p[j], r�l [j][i]) to update p[i]. The same is true if p[i] and p[j]
encode the same number of substates, but r�l [i][j] encodes more transitions than
r�l [j][i]. Sect. 3.2 formalizes this idea by assigning a score to each pair (i, j).
We stress that, while the first observation is based on logical conditions that
are guaranteed to improve chaining, i.e., the best (total) chaining order must
be compatible with the partial order, the second one is just a heuristic likely to
improve chaining.

3.1 Partial-Order-Based Chaining

Definition 3. Given node p at level l, K ≥ l≥ 1, its dynamic transition graph
is a directed graph Gp = (Sl, Tp), where Tp ={(i, j) : r�l [i][j] �=0 ∧ p[j] �=1}. �

An edge (i, j) ∈ Tp, if p[i] �= 0, corresponds to an Image(p[i], r�l [i][j]) that
must eventually be computed when applying r�l to p. Obviously, if p[i] = 0
or r�l [i][j] = 0, the image is 0, thus no computation is needed. Less obviously,
we can avoid computation also when p[j] = 1, i.e., when p[j] already encodes all
possible substates; this new optimization could have been used in our original
saturation algorithm [6], but was not (in other words, condition “p[j] �= 1”
should be added to the test in statement 3 of Saturate in Fig. 2).

Our heuristic chooses the pairs (i, j) respecting the partial order implied by
graph: (i′, j′) is chosen before (i′′, j′′) if there is a path from j′ to i′′ but not
from j′′ to i′, and p[i′] �= 0. Note that computing Image(p[i], r�l [i][j]) and using
it to update p[j] might change p[j] from 0 to some other node, or it may make
p[j] become 1 (in which case we remove any of its incoming edges).

This first part of our heuristic considers the strongly connected components
(SCCs) of the dynamic transition graph, and explores the edges according to
their position in the resulting quotient graph. However, to discriminate be-
tween edges within the same SCCs, we need to refine our heuristic, which we do
next.



A Fine-Grained Fullness-Guided Chaining Heuristic 59

3.2 Heuristic Node-Fullness-Guided Chaining

We define the fullness of a node as the ratio of the number of substates it encodes
over the maximum number of substates it could encode, nl:1 =df

∏
l≥k≥1 nk.

Definition 4. The fullness of the terminal nodes is φ(0)=0 and φ(1)=1. The
fullness of an MDD node p at level l > 0 is φ(p) = |B(p)|/nl:1. �

For models with boolean variables, the node fullness is the number of on-set
minterms of the boolean function encoded by the BDD node over all the possible
minterms. Our definition of node fullness is related to, but different from, the
concept of node density proposed in [20]. We compare the two in Sect. 6.

Given p at level l > 0, we have 1/nl:1 ≤ φ(p) ≤ 1. If we store the value of φ
with each node, or in a separate cache, we can compute it recursively bottom-
up as φ(p) =

∑
i∈Sl

φ(p[i])/nl. This definition can be applied also to the MDD
encoding the transition relation R or of the disjuncts Dα. In practice, φ(p) is
extremely small, and Sect. 4.1 addresses how to avoid floating point underflows.

To choose the next pair (i, j) to be explored when computing Image(p, r�l ) if
the partial order of Sect. 3.1 does not suffice, i.e., if there are edges (i′, j′) and
(i′′, j′′) in the dynamic transition graph, with p[i′] �= 0, p[i′′] �= 0, and paths from
j′ to i′′ and from j′′ to i′, for each MDD node, we assign a score corresponding
to each pair (i, j) and explore the pair with the highest score.

3.3 Scoring Function Based on Probability

In this section, we restrict ourselves to a particular SCC of the dynamic transition
graph. Using probabilistic arguments, we define the “score” of the pair (i, j) in
node p at level l as σ(p, i, j) = φ(p[i]) · φ(r�l [i][j]) · (1 − φ(p[j])). Then, in the
image computation, we choose to explore next the pair with the highest score.

Assume that, for any i and j, the sets B(p[i]), B(r�l [i][j]), and B(p[j]) are
independent and uniformly distributed random variables, i.e., that any of the
C
|B(p[i])|
nl−1:1 , C|B(r�

l [i][j])|
n2

l−1:1
, and C|B(p[j])|

nl−1:1 possible choices for them are equally likely.

The score of (i, j) could then be set to the expected fraction of new states
found (ignoring the effect of saturating newly created nodes at lower levels):
φnew = E [|B(Image(p[i], r�l [i][j])) \ B(p[j])|] /nl−1:1.

Consider the problem: given A∈Bn, R∈Bn×m, and B∈Bm, respectively with
a, r, and b ones, compute E[|{j|B[j]=0 ∧ ∃i, A[i]=1 ∧ R[i, j]=1}|]/m. Thanks
to linearity, we can write this as ρ(m− b)/m, where ρ is the probability that, for
a given j s.t. B[j] = 0, there is an i s.t. A[i] = 1 and R[i, j] = 1. We can compute
the complementary probability 1 − ρ by observing that, if A[i] = 0, R[i, j] can
be either 0 or 1 but, if A[i] = 1, R[i, j] must be 0. Thus, 1− ρ is the probability
that none of the ones in matrix R is in one of the “taboo” positions of column
j corresponding to A[i] = 1, i.e., 1 − ρ = Cr

nm−a/C
r
nm.

In our case, n = m = nl−1:1, a = |B(p[i])| = nφ(p[i]), r = |B(r�l [i][j])| =
n2φ(r�l [i][j]), b= |B(p[j])=nφ(p[j]), and φnew is given by[

1 −
Cr

nm−a

Cr
nm

]
m− b
m

=
[
1 − (n2 − nφ(p[i]))!(n2 − n2φ(r�l [i][j]))!

(n2)!(n2 − n2φ(r�l [i][j]) − nφ(p[i]))!

]
[1 − φ(p[j])].



60 M.-Y. Chung, G. Ciardo, and A.J. Yu

Let G = φ(p[i]), and H = φ(r�l [i][j]), then φnew can be written as:

φnew =
[
1 − (n2 − nG)!(n2 − n2H)!

(n2)!(n2 − n2H − nG)!

]
[1 − φ(p[j])]

=
[
1 − (n2 − n2H)! / (n2 − n2H − nG)!

(n2)! / (n2 − nG)!

]
[1 − φ(p[j])]

=
[
1 − n2−n2H

n2
· n

2−n2H−1
n2−1

· · · n
2−n2H−(nG−1)
n2−(nG−1)

]
[1 − φ(p[j])]

=
[
1 −

(
1−n

2H

n2

)
·
(

1− n2H

n2−1

)
· · ·
(

1− n2H

n2−(nG−1)

)]
[1 − φ(p[j])]

≈
[
1 − (1 −H)nG

]
[1 − φ(p[j])] (since nG−1 � n2)

≈ [1 − (1 − nGH + o(nGH))] [1 − φ(p[j])] (assuming nGH � 1)
≈ [nGH ] [1 − φ(p[j])] (ignoring the higher order terms).

We then use φnew/n, i.e., φ(p[i]) · φ(r�l [i][j]) · (1 − φ(p[j])), as the value of the
scoring function σ(p, i, j), since n is the same for all the nodes at level l. Observe
that, just as φnew, σ(p, i, j) lies between 0 and 1, increases with φ(p[i]) and
φ(r�l [i][j]), decreases with φ(p[j]), and evaluates to 0 when p[i] = 0, r�l [i][j] = 0,
or p[j] = 1, as it should be expected.

4 Fine-Grained Chaining Symbolic State-Space
Generation

Fig. 5 and 6 show the modified BFS-based and saturation-based symbolic state-
space generation algorithms with our fullness-guided chaining. Unlike the algo-
rithm of Fig. 1 that applies each event α with Top(α) = l, for l = 1, ...,K,
once, the one in Fig. 5 leaves level l only when further applications of Rl do not
add states. To distinguish between the different aggressiveness in chaining, we
indicate them as Top and Top�. The modified saturation-based algorithm is as
in Fig. 2, except that SaturateFineGrainedChaining replaces Saturate.

Both chaining algorithms use a dynamic transition graph (Sl, Tp) to repeatedly
explore transitions, corresponding to edges (i, j), until no new substates can be
added. The edges of the graph are marked if they need to be explored. Function
InitTransGraph(p, r�l ) initializes this graph according to Def. 3 and marks any
edge leaving a node i, if p[i] encodes some substates. Function
UpdateTransGraph(p, j, Tp) updates the set of edges according to Def. 3 after
p[j] has been modified, i.e., it removes any edge directed to node j, if p[j] = 1,
and marks the edges leaving node j, since they need to be explored.

The algorithms call a function ChooseEdge which, given an mdd p, an mdd2
r�l , and a set of edges Tp, returns the (marked) edge (i, j) to explore next, based
on the partial order and scoring function heuristics. The marking of edges is
essential since, once (i, j) has been explored, there is no need to explore it again
unless p[i] changes.



A Fine-Grained Fullness-Guided Chaining Heuristic 61

set of (int,int) InitTransGraph(mdd p, mdd2 r�
l )

1 Tp ← {(i, j) ∈ Sl × Sl : r�
l [i][j] �= 0 ∧ p[j] �= 1}; •Definition 3

2 mark edges {(i, j) ∈ Tp : p[i] �= 0}; •transitions to be explored
3 return Tp;

set of (int,int) UpdateTransGraph(mdd p, int j, set of (int,int) Tp)

1 mark edges {(j, h) ∈ Tp : p[h] �= 1}; •edges leaving j must be (re-)explored
2 if p[j] = 1 then •no new substates can be added to B(p[j])
3 Tp ← Tp \ Sl × {j}; •remove all edges directed toward node j
4 return Tp;

mdd BfsFineGrainedChaining( )

1 S ← Sinit;
2 repeat
3 for l = 1 to K do
4 foreach node p at level l in the MDD of S do
5 Tp ← InitTransGraph(p, r�

l ); •build graph (Sl, Tp) and mark its edges
6 while there is a marked edge in Tp do
7 (i, j) ← ChooseEdge(p, r�

l , Tp);
8 unmark edge (i, j);
9 u ← Union(p[j], Image(p[i], r�

l [i][j])); •image computation
10 if u �= p[j] then •new substates found
11 p[j] ← u; •in-place update p to add the new substates
12 Tp ← UpdateTransGraph (p, j, Tp);
13 until no node in the MDD encoding S has changed; •fixed-point computation
14 return S ; •the reachable state space

Fig. 5. Fine-grained chaining variant of BfsChaining

void SaturateFineGrainedChaining (mdd p)

1 l ← p.lvl;
2 Tp ← InitT ransGraph(p, r�

l ); •build graph (Sl, Tp) and mark its edges
3 while there is a marked edge in Tp do
4 (i, j) ← ChooseEdge(p, r�

l , Tp);
5 unmark edge (i, j);
6 u ← Union(p[j], ImageSat(p[i], r�

l [i][j])); •image computation
7 if u �= p[j] then •new substates found
8 p[j] ← u; •in-place update p to add the new substates
9 Tp ← UpdateTransGraph (p, j, Tp);

Fig. 6. Fine-grained chaining variant of Saturate for the algorithm in Fig. 2

The quotient graph and score computations for our heuristic can be
implemented efficiently. Using the execution profiler gprof on the benchmarks
described in the next section, we can experimentally conclude that the total
runtime overhead incurred by calling ChooseEdge is less than 1%. To achieve
this low overhead, we initially build a static transition graph (Sl, Tl) for each
level l, based on the information in r�l alone, and compute its quotient graph.
Then, when applying r�l to a node p during state-space generation, we build the
dynamic graph transition as a subgraph of the static one (removing edges to any



62 M.-Y. Chung, G. Ciardo, and A.J. Yu

node j such that p[j] = 1) and its quotient graph as a refinement of the static
one. We store the “marked” flag and the score in an adjacency matrix, restricted
to the current SCC for efficiency. After a call UpdateTransGraph(p, j, Tp), the
score of all edges incident to j is recomputed. The element with maximum score
in each row of the adjacency matrix is recorded, so that ChooseEdge can effi-
ciently find the maximum without searching the entire matrix.

4.1 Implementation Details

One interesting issue is how to recognize the condition φ(p[j]) = 1 appearing
in our heuristic. As presented so far, we simply need to test whether p[j] = 1
but, in the past, we have proposed symbolic state-space generation algorithms
where the actual ranges of the state variables are initially unknown, so that the
sets Sl, for K ≥ l ≥ 1, are built “on the fly” during the symbolic iterations [10].
In this case, only non-terminal nodes at level 1 can point to node 1, since the
meaning of B(l,1), and the value of φ(p), change every time one of the sets Sk,
for l ≥ k ≥ 1, changes. In this setting, it is best to store the absolute substate
count |B(p)| instead of φ(p). Our tool SmArT [3] provides an arbitrary precision
integer state counting capability, but this is relatively expensive in terms of
memory and time for large MDDs, so we store |B(p)| using a floating-point value,
appropriately scaled. Then, however, recognizing that p[j] encodes all (so far)
possible substates, i.e., that φ(p[j]) = 1, is feasible only if the value of |B(p[j])| is
stored with enough precision that the comparison |B(p[j])| = nl−1:1 is reliable.
Testing whether φ(p[i]) = 0 or φ(r�l [i][j]) = 0, instead, is always possible, since
it is equivalent to testing whether p[i] = 0 or r�l [i][j] = 0, respectively, and edges
to 0 from non-terminal nodes at any level can be present even if the variable
ranges are not known a priori.

5 Experimental Results

We now report results on a suite of asynchronous benchmarks parametrized by
an integer N . We compare three different fine-grained chaining orders applied
to the Top� and saturation algorithms: (1) a random order, (2) the order used
in [7], where set of edges to explore is initialized using the order in which local
states are discovered during symbolic state-space generation, then managed as
a FIFO queue, and (3) the proposed fullness-guided order, respectively denoted
Top�

r, Top�
d, Top�

g, Satr, Satd, Satg, and compare them with (4) pure BFS without
chaining and (5) Top, the coarse-grained chaining of Fig. 1. All algorithms are
implemented in our tool SmArT [3], run on a 3 Ghz Pentium IV workstation
with 1GB memory. In all our experimental benchmarks, we use the best MDD
variable order known to us, which is either obtained from the variable ordering
heuristic described in [23] or derived manually in the high-level model.

The columns of Table 1 report the value of the parameterN , the size |S| of the
state space, the runtime and peak number of MDD nodes for each approach, and
the final number of MDD nodes. For each benchmark, we provide the number



A Fine-Grained Fullness-Guided Chaining Heuristic 63

N
|S
|

R
u
n
ti
m

e
(s

ec
)

P
ea

k
N

o
d
es

(i
n

th
o
u
sa

n
d
s)

F
in

a
l

B
F
S

T
o
p

T
o
p

� r
T
o
p

� d
T
o
p

� g
S
at

r
S
at

d
S
at

g
B

F
S

T
o
p

T
o
p

� r
T
o
p

� d
T
o
p

� g
S
at

r
S
at

d
S
at

g
N

o
d
es

B
o
u
n
d
e
d

o
p
e
n

q
u
e
u
in

g
n
e
tw

o
rk

(B
Q

)
[1

2
]

N
is

th
e

n
u
m

b
er

o
f
cu

st
o
m

er
s

a
n
d

K
=

8

2
0

2
.3
·1

0
7

1
,8

6
5

1
,7

3
9

7
2

1
2
4

2
3

0
.2

2
0
.2

4
0
.0

9
4
6

1
6

1
0

1
2

7
6

7
2

8
8

3
0

2
.4
·1

0
7

-
-

9
9
6

1
,6

6
7

2
1
7

0
.7

0
.7

3
0
.2

8
-

-
2
4

3
0

1
8

1
3

1
5

5
1
2
8

2
0
0

1
.7
·1

0
1
3

-
-

-
-

-
2
5
7

2
2
0

6
5

-
-

-
-

-
5
3
7

6
4
6

1
6
8

8
0
8

A
lo

h
a

n
e
tw

o
rk

p
ro

to
c
o
l
(A

lo
h
a
)

[4
]

N
is

th
e

n
u
m

b
er

o
f
n
o
d
es

in
th

e
n
et

w
o
rk

a
n
d

K
=

N
+

3

1
8

2
.6
·1

0
6

2
1

2
0

1
0

2
0

9
0
.0

7
0
.0

9
0
.0

5
6

6
5

6
5

5
6

5
5
5
1

2
4

2
.1
·1

0
8

1
,6

6
9

1
,6

7
0

8
7
5

1
,6

6
6

7
3
5

0
.1

6
0
.2

2
0
.1

2
1
3

1
3

1
2

1
3

1
0

1
2

1
2

1
0

9
5
0

1
8
0

1
.4
·1

0
5
6

-
-

-
-

-
7
6

1
0
3

5
3

-
-

-
-

-
4
,4

1
0

4
,9

2
5

3
,9

5
4

4
9
,2

3
2

K
a
n
b
a
n

m
a
n
u
fa

c
tu

ri
n
g

sy
st

e
m

(K
a
n
b
a
n
)

[2
4
]

N
is

th
e

n
u
m

b
er

o
f
ea

ch
ty

p
e

o
f
p
a
rt

s
a
n
d

K
=

1
6

7
4
.1
·1

0
7

2
,0

1
6

8
9
9

3
4

3
0
.0

4
0
.0

3
0
.0

3
3
8

6
2

3
2

0
.9

4
1

0
.9

2
1
0
7

1
5

4
.7
·1

0
1
3

-
-

8
3
6

1
,0

2
0

5
3
5

0
.2

8
0
.1

6
0
.1

5
-

-
9

9
8

4
4

4
2
1
1

1
5
0

1
.4
·1

0
2
1

-
-

-
-

-
3
9
6

1
2
1

9
0

-
-

-
-

-
3
3
8

3
6
4

3
0
9

1
,9

6
6

L
e
a
d
e
r

e
le

c
ti

o
n

p
ro

to
c
o
l
(L

e
a
d
e
r)

[1
3
]

N
is

th
e

n
u
m

b
er

o
f
p
ro

ce
ss

o
rs

in
th

e
ri
n
g

a
n
d

K
=

1
1
N

5
5
.9
·1

0
5

2
1
8

1
3
9

4
8

4
6

4
5

3
3

2
1
,4

9
5

9
7
7

3
7
6

3
7
3

3
7
2

1
2
1

1
2
3

1
0
8

1
8
,4

0
1

6
9
.8
·1

0
6

-
-

1
,0

8
3

1
,0

6
7

1
,0

2
0

1
6

1
6

1
4

-
-

2
,3

9
0

2
,3

6
8

2
,3

5
2

6
3
1

6
6
1

5
5
7

6
6
,9

6
7

7
1
.3
·1

0
8

-
-

-
-

-
5
3

5
0

4
5

-
-

-
-

-
1
,8

9
5

1
,8

7
2

1
,5

9
4

1
4
2
,4

1
2

S
lo

tt
e
d

ri
n
g

n
e
tw

o
rk

p
ro

to
c
o
l
(S

lo
t)

[1
9
]

N
is

th
e

n
u
m

b
er

o
f
n
o
d
es

in
th

e
n
et

w
o
rk

a
n
d

K
=

N

7
6
.2
·1

0
6

3
6
7

1
3
2

3
4

3
0

3
0

0
.0

1
0
.0

1
0
.0

1
1
9

4
0
.3

8
0
.3

7
0
.3

7
0
.1

1
0
.1

0
.0

8
3
1

8
6
.8
·1

0
7

-
1
,6

2
2

3
7
8

3
4
7

3
4
7

0
.0

1
0
.0

1
0
.0

1
-

7
0
.9

5
0
.8

9
0
.8

9
0
.1

8
0
.2

0
.1

6
4
0

2
0
0

8
.4
·1

0
2
1
1

-
-

-
-

-
2
0
7

1
4
9

8
6

-
-

-
-

-
1
,6

9
2

1
,4

0
8

7
3
2

2
0
,2

0
0

D
is

tr
ib

u
te

d
m

u
tu

a
l
e
x
c
lu

si
o
n

c
ir

c
u
it

(D
M

E
)

[1
6
]

N
is

th
e

n
u
m

b
er

o
f
ce

ll
s

in
th

e
p
ro

to
co

l
a
n
d

K
=

1
8
N

4
7
.5
·1

0
4

3
0
9

1
1
3

3
3

3
0
.0

1
0
.0

1
0
.0

1
7
5
1

2
2
8

1
8

1
8

1
8

3
3

3
1
,4

2
2

5
8
.0
·1

0
5

-
-

3
4

3
6

3
4

0
.1

4
0
.1

4
0
.1

6
-

-
2
9

2
9

2
9

4
4

4
1
,9

5
5

3
5
0

8
.8
·1

0
3
2
4

-
-

-
-

-
1
5

1
5

1
6

-
-

-
-

-
3
9
1

3
9
1

3
9
1

1
8
5
,8

4
0

T
a
b
le

1
.
E

x
p
er

im
en

ta
l
re

su
lt
s

(“
-”

in
d
ic

a
te

s
th

a
t

th
e

ru
n
ti
m

e
is

ov
er

3
6
0
0

se
co

n
d
s)



64 M.-Y. Chung, G. Ciardo, and A.J. Yu

of state variables K as a function of the model parameter N , and give a refer-
ence where a detailed description of the model can be found. These benchmarks
include network protocols (Aloha, Leader, Slot), generalized queueing/Petri net
models (BQ, Kanban), and a speed-independent asynchronous circuit model
(DME) from the NuSMV [11] distribution.

From this table, we see a separation by several orders of magnitude in terms of
efficiency, with BFS at the lowest end, followed by Top, then Top�, and finally Sat.
Comparing different fine-grained chaining heuristics in the Top� and saturation
algorithms, the chaining heuristic has significant impact on five out of the six
benchmarks. In the DME benchmark, the “r”, “d”, and “g” orders result in
exactly the same peak MDD nodes; as the runtimes are similar, this confirms
that our fullness-guided heuristic has a small overhead.

Compared with random-order chaining, discovery-order chaining has worse
performance for Top� in three cases and similar performance in the remaining
four cases, while, for Sat, it has better performance in three cases, worse per-
formance in one case, and similar performance in four cases. Compared with
random-order or discovery-order chaining, the newly proposed fullness-guided
chaining heuristic achieves better (by a factor of up to four) or similar runtime
and memory consumption for both Top� and Sat in all benchmarks.

We conclude from our experiments that the newly proposed fullness-guided
chaining heuristic is more efficient and stable than both discovery chaining order
and random chaining order. In particular, the Satg algorithm is by far the most
efficient among the eight algorithms we considered.

6 Related Work

Ravi and Somenzi [20] defined the density of a BDD node p as the ratio of the
number of substates encoded by p over the number of BDD nodes reachable from
p, and used it to make decisions about which nodes to explore during state-space
generation, with the goal of reducing memory consumption. In particular, their
algorithm could ignore low-density nodes and explore just high-density ones, at
the price of computing a (hopefully good) under-approximation of the exact state
space. In contrast, our definition of node fullness does not take into account the
number of decision diagram nodes needed to encode the node’s function. Most
importantly, we use it for a fundamentally different purpose. Instead of exploring
only dense nodes and computing an under-approximation of the state space, we
look for asynchronous transition from high-fullness nodes to low-fullness nodes
with the goal of reducing the number of symbolic iterations required to reach
the exact fixed-point via chaining.

In another related work, hints [21] were proposed with the same intent to
guide the symbolic traversal of the state space and avoid intermediate BDD blow-
ups in symbolic invariance checking and model checking. Hints are constraints
which are added to the transition relation before the start of symbolic state-space
exploration, and later removed from the transition relation to compute the exact
solution, with the hope to avoid the peak memory consumption. However, this



A Fine-Grained Fullness-Guided Chaining Heuristic 65

is orthogonal to our approach, since hints were designed to be dependent on the
high-level model (as well as on the properties being verified), and either provided
by model checker users [21] or automatically generated from the input model
[26], while our approach lies in the symbolic back-end solver and is completely
independent of the high-level model.

7 Conclusion and Future Work

We introduced a new approach to exploit chaining during symbolic state-space
generation. Unlike previous heuristics that operate on a high-level model and
decide in which order to explore events, ours considers low-level information
extracted from the decision diagrams encoding the current state space and the
transition relation, thus it is applicable to any globally-asynchronous locally-
synchronous system, regardless of the formalism used to model it. We imple-
mented our heuristic in both BFS-based and saturation-based algorithms, and
experimentally demonstrated that runtimes and memory requirements can im-
prove by a factor up to four. Having established the soundness of the approach,
we plan in the future to investigate further refinements of the proposed heuristic.

References

1. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comp., 35(8):677–691, Aug. 1986.

2. J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with parti-
tioned transition relations. Proc. Int. Conference on Very Large Scale Integration,
pages 49–58, Aug. 1991. IFIP Transactions, North-Holland.

3. G. Ciardo, R. L. Jones, A. S. Miner, and R. Siminiceanu. Logical and stochastic
modeling with SMART. Perf. Eval., 63:578-608, 2006.

4. G. Ciardo and Y. Lan. Faster discrete-event simulation through structural caching.
Proc. PMCCS, pages 11–14, Sept. 2003.

5. G. Ciardo, Lüttgen, Gerald and G. Ciardo, G. Lüttgen, and R. Siminiceanu. Effi-
cient symbolic state-space construction for asynchronous systems. Proc. ICATPN,
LNCS 1825, pages 103-122, Jun. 2000. springer.

6. G. Ciardo, G. Lüttgen, and R. Siminiceanu. Saturation: An efficient iteration
strategy for symbolic state space generation. Proc. TACAS, LNCS 2031, pages
328–342, Apr. 2001. Springer.

7. G. Ciardo, R. Marmorstein, and R. Siminiceanu. The saturation algorithm for
symbolic state space exploration. STTT, 8(1):4-25, Feb. 2006.

8. G. Ciardo and R. Siminiceanu. Structural symbolic CTL model checking of asyn-
chronous systems. Proc. CAV, LNCS 2725, pages 40–53, July 2003. Springer.

9. G. Ciardo and K. S. Trivedi. A decomposition approach for stochastic reward net
models. Perf. Eval., 18(1):37–59, 1993.

10. G. Ciardo and A. J. Yu. Saturation-based symbolic reachability analysis using
conjunctive and disjunctive partitioning. Proc. CHARME, LNCS 3725, pages 146–
161, Oct. 2005. Springer.

11. A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A new symbolic
model verifier. Proc. CAV, LNCS 1633, pages 495–499, 1999. Springer.



66 M.-Y. Chung, G. Ciardo, and A.J. Yu

12. P. Fernandes, B. Plateau, and W. J. Stewart. Efficient descriptor-vector multipli-
cation in stochastic automata networks. J. ACM, 45(3):381–414, 1998.

13. A. Itai and M. Rodeh. Symmetry breaking in distributed networks. Proc. FOCS,
pages 150–158. IEEE Comp. Soc. Press, Oct. 1981.

14. T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. Multi-valued deci-
sion diagrams: theory and applications. Multiple-Valued Logic, 4(1–2):9–62, 1998.

15. S. Kimura and E. M. Clarke. A parallel algorithm for constructing binary decision
diagrams. Proc. ICCD, pages 220–223, Sept. 1990. IEEE Comp. Soc. Press.

16. A. J. Martin. The design of a self-timed circuit for distributed mutual exclusion.
Proc. Chapel Hill Conference on VLSI, pages 245–260, 1985.

17. K. L. McMillan. Symbolic Model Checking. Kluwer, 1993.
18. A. S. Miner and G. Ciardo. Efficient reachability set generation and storage using

decision diagrams. Proc. ICATPN, LNCS 1639, pages 6–25, June 1999. Springer.
19. E. Pastor, O. Roig, J. Cortadella, and R. Badia. Petri net analysis using boolean

manipulation. Proc. ICATPN, LNCS 815, pages 416–435, June 1994. Springer.
20. K. Ravi and F. Somenzi. High-density reachability analysis. Proc. ICCAD, pages

154–158. IEEE Comp. Soc. Press, 1995.
21. K. Ravi and F. Somenzi. Hints to accelerate Symbolic Traversal. Proc. CHARME,

pages 250–264 , 1999.
22. O. Roig, J. Cortadella, and E. Pastor. Verification of asynchronous circuits by

BDD-based model checking of Petri nets. Proc. ICATPN, LNCS 935, pages 374–
391. Springer, June 1995.

23. R. Siminiceanu and G. Ciardo. New metrics for static variable ordering in decision
diagrams. Proc. TACAS, LNCS 2031, pages 328–342. Springer, March 2006.

24. M. Tilgner, Y. Takahashi, and G. Ciardo. SNS 1.0: Synchronized Network Solver.
Proc. 1st Int. Workshop on Manuf. and Petri Nets, pages 215–234, June 1996.

25. The VIS Group. VIS: A system for verification and synthesis. Proc. CAV, LNCS
1102, pages 428–432, Springer, July 1996.

26. D. Ward and F. Somenzi. Automatic Generation of Hints for Symbolic Traversal.
Proc. CHARME, pages 207–221 , 2005.



Model Checking Timed Systems with Urgencies

Pao-Ann Hsiung, Shang-Wei Lin, Yean-Ru Chen, Chun-Hsian Huang,
Jia-Jen Yeh, Hong-Yu Sun, Chao-Sheng Lin, and Hsiao-Win Liao

Department of Computer Science and Information Engineering,
National Chung Cheng University, Chiayi, Taiwan−621, ROC

hpa@computer.org

Abstract. Computation tree logic (CTL) model checkers either allow modeling
of only lazy semantics in the timed system model or consider at most a simple
as soon as possible semantics. However, the design of real-time systems requires
different types of urgencies, which have been modeled by several urgency vari-
ants of the timed automata model. Except for the IF toolset that model checks
timed automata with urgency against observers, the urgency variants of timed au-
tomata have not yet been used for verifying the satisfaction of CTL properties in
real-time systems. This work is targeted at proposing a zone-based urgency se-
mantics that is time-reactive and at model checking timed automata models that
have been extended with such urgency semantics for delayable and eager tran-
sition types. Interactions among these different types of transition urgencies are
also investigated. The proposed verification methods were implemented in the
SGM CTL model checker and applied to real-time and embedded systems. Sev-
eral experiments, comparing the state space sizes produced by SGM with that by
the IF toolset, show that SGM produces much smaller state-spaces.

1 Introduction

A popular model for real-time systems is Timed Automata (TA) [2], for which several
model checkers such as SGM [15], RED [14], UPPAAL [4], and Kronos [16] have
been developed. However, timed automata models assume a lazy semantics, that is,
an enabled state transition need not be taken as long as the invariant condition of the
state is not violated. Lazy transition semantics are too general to model the urgent be-
havior found in many real-world systems such as medical devices, home appliances,
robotics, and others. Thus, the TA model was extended with urgency semantics such as
the Timed Automata with Deadlines (TAD) [5], Timed Automata with Urgent Transi-
tions [3], Timed I/O Automata with Stopping Condition [11], and Timed I/O Automata
with Urgency [10]. These extended variants incorporate different syntax for accurately
modeling urgency. However, system verification using such extended variants have not
received as much attention in the area of Computation Tree Logic (CTL) model check-
ing [8] . This work focuses on proposing zone-based urgency semantics to a class of TA
with urgencies and how they can be model checked and how different types of urgencies
affect verification results.

Before urgency semantics were defined for timed automata, state invariants were
used to model urgent behavior by forcing a TA to transit to successor states before

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 67–81, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



68 P.-A. Hsiung et al.

the invariants are violated due to time elapse. However, the invariant-based method
was only applicable to hard deadlines, where the stopping of time due to urgency and
the non-existence of any transition to take when time is stopped resulted in a timelock.
Stopping conditions associated with timed I/O automata also result in similar timelocks.
Different methods were proposed to avoid timelocks such as associating a transition
with a deadline predicate [5], with an urgency predicate [10], or with a positive rational
parameter representing deadline [3]. However, there is very little research on how such
models with urgent semantics are to be verified using CTL model checking [8]. There
is also no CTL model checker that can directly model check these models. The IF
toolset [7] can model check timed automata with urgency against properties written as
observers, which are IF processes that monitor and guide simulation.

The expressivities of deadline predicates, urgency predicates, and deadline param-
eters are all same [10,3]. Further, it has also been shown that deadline predicates can
be simplified into urgency types, namely lazy, delayable, and eager. We thus decided
that we need only address the model checking of timed automata having transitions
associated with urgency types. We call this model as Urgent Timed Automata (UTA).
The major issue in this work is how do we restrict time progress so that the enabled
urgent transitions are taken as required by their semantics and the models can be model
checked.

Our major contribution in this work is the proposal of a method by which a con-
ventional TA model checker can be used to model check a system modeled by a set of
UTA. A novel zone capping operation is proposed for enforcing urgency. Other con-
tributions include the investigation of the interactions amongst different urgencies in
terms of model checking.

The remaining portion is organized as follows. Section 2 describes previous work
related to urgency modeling and verification. Basic definitions used in our work are
given in Section 3. Section 4 will formulate the solutions to solve the above described
issues in model checking urgent timed automata. Section 5 describes the algorithm and
implementation of the proposed method. The article is concluded and future research
directions are given in Section 6.

2 Related Work

The majority of work that has extended the timed automata model with urgency seman-
tics is focused on the modeling aspects [3,5,10] such as expressivity and compositional-
ity. Except for the IF toolset, little attention has been paid to the verification of systems
modeled by these urgency extended models.

Timed automata with deadlines (TAD) [5] proposed by Sifakis et al. were among
the first models that extended TA with urgency. An urgent transition was associated
with a deadline predicate, which represents the condition when time progress must
stop to allow for the urgent transition to be taken. Once the urgent transition is taken,
time progress can continue. TADs are time-reactive or timelock-free, that is, the system
never comes to a complete halt due to the violation of a deadline and some enabled
transition can always be taken when time progress is stopped. Semantically, a TAD
state s is associated with a time progress condition (TPC) cs = ¬

∨
i∈I di, where di



Model Checking Timed Systems with Urgencies 69

is the deadline predicate of transition i ∈ I and I is the set of all outgoing transitions
from state s [5]. However, TPC is not suitable for model checking because it results in
non-convex clock zones which require further post-processing such as zone partitioning
[12]. It was also shown that any TAD can be transformed into an equivalent TAD with
only eager and lazy transitions [5].

A recent extension is called Timed Automata with Urgent Transitions (TAUT) [3],
which associates a rational number deadline parameter, l ∈ Q+, with a TA such that
urgent transitions must be taken within l time units after they are enabled. The expres-
siveness of TAUT is the same as that of TAD, but TAUT allows shorter deadline spec-
ifications. Another improvement is that TAUT allows right-closed TPC, which cannot
be handled by TAD.

The deadline predicates have also been applied to Timed I/O Automata (TIOA) [11]
which orginally had only a stopping condition for specifying deadlines. As noted earlier,
similar to state invariants, stopping conditions may result in timelocks. This extension
of TIOA associated urgent transitions with an urgency predicate, which made them
time-reactive by construction and closed under composition. Invariant properties are
proved by constructing time progress predicates for each urgent transition and then tak-
ing the conjunction of these time progress predicates as the condition for time progress.
However, a time progress predicate is the negation of urgency predicate, which would
result in non-convex clock zones and thus make model checking difficult. The authors
of [10] remarked that by restricting the clock zones in urgency predicates one can avoid
non-convex time progress predicates, however this is too strict a restriction.

From the above descriptions, we can observe that TAD and TIOA with urgency use
time progress conditions (predicates) that can result in non-convex clock zones, while
TAUT adopts a TA transformation approach. Our work is similar to the transformation
approach of TAUT, however we do not need the deadline parameter l and our approach
is much simpler in terms of conformance with the original TA model and region seman-
tics. Similar to TAUT, we allow left-open transition enabling time intervals (zones),
which are not allowed by TAD and TIOA with urgency. Further, unlike all the other
models, TAD, TAUT, and TIOA with urgency, we separate prioritization from urgency,
which constitutes a more general and useful semantics. Our previous work on prioriti-
zation of TA transitions [12] is applicable to the UTA model in this work, so we do not
repeat them again here.

Support for modeling urgency in systems and verifying them has been incorporated
in tools such as IF [7] and UPPAAL [4]. The IF toolset is an environment for modeling
and validation of heterogeneous real-time systems using TAD. It consists of two parts:
a syntactic transformer, which provides language level access to IF descriptions and
has been used to implement static analysis and optimization techniques, and an open
exploration platform, which gives access to the graph of possible executions. IF has
been connected to some state-of-art model checkers and test-case generators. IF can
also model check directly using observers. UPPAAL uses urgent channels that are taken
as soon as they are enabled, however time constraints cannot be associated with urgent
channels. We pose no such restriction on urgent transitions.

Fig. 1 shows how an eager transition is enforced using invariants, TPC, and the newly
proposed zone capping. We find that only zone capping succeeds in associating the



70 P.-A. Hsiung et al.

 

 

(z ≥ 3)ε
z ≥ 3 

false 
z ≥ 5 ∧ z ≤ 3 

(z ≥ 3)ε 

z = 5 

An Urgent Transition Using Invariants Using Zone Capping 

z = 5 

z ≥ 3 

TPC: 
z < 3 

Using TPC 

z = 5 z = 5 z = 5 

Fig. 1. Enforcing Urgency using Different Methods

model with a correct and intuitive semantics. If a user specified an invariant of z ≤ 3
to enforce the eager transition with trigger z ≥ 3 to be taken as soon as enabled, then
we might end up with some runs being eliminated because if the mode clock zone is
z ≥ 5, then when conjuncted with the invariant z ≤ 3, would be false. Thus, invariants
fail to enforce correct urgency semantics. Since a TPC is constructed from the deadline
predicates in transition triggers, in this example, the TPC would be z < 3. However,
when time stops progressing at z = 3, the mode is not yet entered so there is a timelock.
Originally, TPC guaranteed time-reactivity only under the condition that when time
stops the transition is enabled. We have violated this assumption to produce a timelock.
Zone capping takes the mode clock zone z ≥ 5 also into consideration when stopping
time progress (bounding or capping the zone), thus no such assumption is required.
Zone capping thus provides a correct and intuitive urgency semantics.

3 Preliminaries

Given a set C of clock variables and a set D of discrete variables, the syntax of a mode
predicate η overC andD is defined as: η := false | x ∼ c | x−y ∼ c | d ∼ c | η1∧η2 |
¬β3, where x, y ∈ C, ∼ ∈ {≤, <,=,≥, >}, c ∈ N , the set of non-negative integers,
d ∈ D, η1, η2 are mode predicates, and β3 is a discrete variable constraint. A mode
predicate η can be expressed as a conjunction of a clock constraint ζ and a Boolean
condition β on the discrete variables, that is, η = ζ ∧ β, where the clock constraint is
also called a clock zone.

Definition 1. Urgent Timed Automaton
An Urgent Timed Automaton (UTA) is a tuple Ai = (Mi,m

0
i , Ci, Di, Li, χi, Ti, ψi, τi,

µi, ρi) such that: Mi is a finite set of modes.m0
i ∈M is the initial mode. Ci is a set of

clock variables. Di is a set of discrete variables. Li is a set of synchronization labels,
and α ∈ Li is a special label that represents asynchronous behavior (i.e. no need of
synchronization).χi : Mi  → B(Ci, Di) is an invariance function that labels each mode
with a condition true in that mode. Ti ⊆ Mi ×Mi is a set of transitions. ψi : Ti  → Li

associates a synchronization label with a transition. τi : Ti  → B(Ci, Di) defines the
transition triggering conditions, where τi(t) = ζτi(t) ∧ βτi(t) gives the clock zone and
the Boolean condition associated with the transition’s trigger, respectively. µi : Ti  →
{λ, δ, α} associates an urgency type with a transition, including lazy, delayable, and
eager, respectively, whose semantics are given in Section. 4.1. ρi : Ti  → 2Ci∪(Di×N )



Model Checking Timed Systems with Urgencies 71

is an assignment function that maps each transition to a set of assignments such as
resetting some clock variables and setting some discrete variables to integer values. ��

The semantics of a UTA can be defined by its state and computation run as follows.

Definition 2. State and Run
A pair s = (m, ν) is called a state of a UTA Ai = (Mi,m

0
i , Ci, Di, Li, χi, Ti, ψi, τi,

µi, ρi) if m ∈Mi is a mode and ν maps each clock from Ci and each discrete variable

fromDi to a real number in R. A sequence of state-transition pairs 〈s0
t0−→s1 . . . sn〉 is

called a computation run if si+1 is reachable from si either through a mode transition
ti ∈ Ti or a time transition. A time transition represents the elapse of time without
changing mode. A state s is said to be reachable if there exists a computation run

〈s0
t0−→s1 . . . s〉, where s0 = (m0

i , ν0) is an initial state of Ai. ��

States can be grouped into zones and the infinite number of states can be classified into
a finite number of regions as defined in the following.

Definition 3. Region
Let cmax be the largest constant integer that is compared with any clock. Two states
s = (m, ν) and s′ = (m, ν′) are said to be in the same region if either ν(x) > cmax

and ν′(x) > cmax for all x ∈ Ci or !ν(x)" = !ν′(x)" and (ν(x) − !ν(x)" > ν(y) −
!ν(y)") ⇐⇒ (ν′(x)−!ν′(x)" > ν′(y)−!ν′(y)"), ∀x, y ∈ Ci, and ν(d) = ν′(d), ∀d ∈
Di. We use the notation [s] to denote the region to which s belongs. ��

Definition 4. Clock Zone and Zone
A convex union of regions is called a clock zone. Given a mode m, a clock zone ζm,
and a Boolean constraint βm, the tuple (m, ζm, βm) is called a zone. A state s = (m, ν)
is in a zone z = (m, ζm, βm) if ζm → ν(Ci) and βm → ν(Di). ��

In most model checkers, the clock constraints are represented by Difference Bound
Matrices (DBM) [9]. Since our solutions for modeling transition urgencies focus on the
manipulation of clock zones, we give the definition of DBM as follows.

Definition 5. Difference Bound Matrix (DBM)
A clock zone ζ that represents a clock constraint on n clocks in Ci = {x1, x2, . . . , xn}
can be implemented as a (n+ 1)× (n+ 1) matrix∆, where∆(i, j) = (∼, c), ∼ ∈ {<
,≤}, c ∈ N ∪ {∞}, represents the constraint xi − xj ∼ c, 0 ≤ i, j ≤ n. x0 = 0. ��

Given a DBM ∆ representing a clock zone ζ, ∆(0, i) and ∆(i, 0) are respectively the
lower and upper bounds for clock xi. Given two DBM elements ∆(i, j) = (∼, c) and
∆(i′, j′) = (∼′, c′), we can compare them by saying ∆(i, j) < ∆(i′, j′) if either (1)
c < c′ or (2) c = c′ and ∼ is < and ∼′ is ≤. The other relational comparisons
between∆(i, j) and∆(i′, j′) can be similarly defined.

Given two lower bound DBM elements ∆(0, j) = (∼, c) and ∆′(0, j′) = (∼′, c′),
a difference operator between the two DBM elements can be defined as follows, where
the exponents + and − are used to represent infinitesimally larger and smaller numbers
than those in the brackets, respectively.



72 P.-A. Hsiung et al.

diff(∆(0, j), ∆′(0, j′)) =

⎧⎨⎩
c′ − c if ∼ and ∼′ are the same
(c′ − c)+ if ∼ ∈ {<},∼′ ∈ {≤}
(c′ − c)− if ∼ ∈ {≤},∼′ ∈ {<}

For an integer c, we have the following relation: c− < c < c+. Similarly, given two
upper bound DBM elements ∆(i, 0) = (∼, c) and ∆′(i′, 0) = (∼′, c′), a difference
operator can be defined as follows.

diff(∆(i, 0), ∆′(i′, 0)) =

⎧⎨⎩
c− c′ if ∼ and ∼′ are the same
(c− c′)+ if ∼ ∈ {≤},∼′ ∈ {<}
(c− c′)− if ∼ ∈ {<},∼′ ∈ {≤}

Intuitively, the difference operator between two lower bound DBM elements repre-
sents the time lag between entering the two zones represented by the DBMs and that
between two upper bound DBM elements represent the time lag between leaving the
two zones. The difference considers only a single clock at a time, so for actually entering
or leaving a zone, we need to define zone lag that considers all clocks. The difference
operator will be used to define zone lag in Definition 6.

Definition 6. Zone Entry Lag and Zone Exit Lag
Given two clock zones ζ1 and ζ2 for clocks in C, represented by DBMs ∆1 and ∆2,
respectively, the zone entry lag and zone exit lag between the two zones are denoted by
enlag(∆1, ∆2) and exlag(∆1, ∆2) as defined in the following.

enlag(∆1, ∆2) = max1≤j≤|C| {diff(∆1(0, j), ∆2(0, j))}
exlag(∆1, ∆2) = min1≤i≤|C| {diff(∆1(i, 0), ∆2(i, 0))} ��

When enlag(∆1, ∆2) is positive, it means ∆1 is entered later than ∆2; when zero, it
means they are entered at the same time; and when negative, it means ∆1 is entered
earlier than ∆2. When exlag(∆1, ∆2) is positive, it means ∆1 is exited later than ∆2;
when zero, it means they are exited at the same time; and when negative, it means ∆1

is exited earlier than∆2.
Given an urgent timed system S with n components modeled by UTA Ai =(Mi,m

0
i ,

Ci, Di, Li, χi, Ti, ψi, τi, µi, ρi), 1 ≤ i ≤ n, the system model is defined as a state graph
represented by A1 × . . . × An = AS = (M,m0, C,D,L, χ, T, ψ, τ, µ, ρ), where ×
is the parallel composition operator, such as the merge manipulator in SGM, except for
the urgency of synchronized transitions that is resolved as shown in Table 1.

Table 1. Urgency Resolution for Synchronized Transitions

µi(ei) λ λ δ λ δ ε
µj(ej) λ δ δ ε ε ε

µ(e) λ δ δ ε ε ε



Model Checking Timed Systems with Urgencies 73

tin tout
m

s0 s1 se

t0
stsk

t1 tin tk toutte

s0 s1 se

t0
sk

t1 tin tk
sd

te td

z = (m, m, m)

Ai

Fig. 2. Computation Runs

4 Model Checking Urgent Timed Systems

Our target problem is to model and verify urgent timed systems such as real-time em-
bedded systems. A set of urgent timed automata is used to model such a system and
model checking is used to verify if the urgent timed system state graph, obtained by
merging the set of UTA, satisfies user-given CTL properties.

4.1 Semantics of Urgent Timed Automata

The syntax of urgencies was given as symbols {λ, δ, ε} associated with transitions,
as defined by µi(t) in Definition 1. As shown in Figure 2, consider a non-initial mode
m ∈Mi of an urgent timed automatonAi = (Mi,m

0
i , Ci, Di, Li, χi, Ti, ψi, τi, µi, ρi),

which has an incoming mode transition tin and an outgoing mode transition tout. For
simplicity, we first assume thatm has a single incoming and a single outgoing transition.
From the two computation runs in Figure 2, we can make the following observations,
where each state sj = (mj , νj).

State sequence 〈s0, . . . , sk−1〉 leads to zone z = (m, ζm, βm). sk is the first reach-
able state in zone z, that is, mj �= m, ∀j, 0 ≤ j < k and mk = m. se is the first
reachable state in zone z in which transition tout is enabled. Transition tout may be
taken anytime starting from state se before it is disabled, as in run π′, and sd is the first
reachable state in zone z in which transition tout is disabled before it is taken, as in π.

In Figure 2, there are two kinds of computation runs π and π′ as follows. Transition
tout is enabled and then disabled, without being taken:

π = 〈s0
t0−→s1 . . .

tin−→sk
tk−→sk+1

tk+1
−→ . . . se

te−→se+1

te+1
−→ . . . sd

td−→sd+1

td+1
−→ . . .〉,

where starting from state sk, all states are in the zone z = (m, ζm, βm), that is,
ζm → νj(Ci) and βm → νj(Di) for all j ≥ k. Let Π be set of all such computation
runs π, where tout is never taken. Transition tout is enabled and is taken before be-

ing disabled: π′ = 〈s0
t0−→s1 . . .

tin−→sk
tk−→sk+1

tk+1
−→ . . . se

te−→se+1

te+1
−→ . . . st

tout−→ . . .〉,
where the states sk, . . . , st−1 are in the zone z = (m, ζm, βm). Let Π ′ be the set of all
such computation runs, where tout is enabled and taken before being disabled.

Since there are infinite number of states in which transition tout may be enabled
and taken, let us consider clock regions as defined in Definition 3. Given a region R,
let Π ′

R ⊆ Π ′ be the subset of computation runs where tout is taken in region R, that



74 P.-A. Hsiung et al.

is, st ∈ R. The semantics of the transition behavior differ according to the urgency
µi(tout) associated with the transition as follows.

– Lazy Transition (λ): If tout is a lazy transition, that is, µi(tout) = λ, then the set of
reachable computation runs that passes through modem isΠ(m, tout) = Π ∪Π ′,
which means all runs where tout after being enabled is either taken or not taken
before being disabled are reachable.

– Delayable Transition (δ): If tout is a delayable transition, that is, µi(tout) = δ, then
the set of runs through mode m is Π(m, tout) = Π ′, which means all runs where
tout after being enabled is taken latest before being disabled.

– Eager Transition (ε): If tout is an eager transition, that is, µi(tout) = ε, then the
set of reachable computation runs that passes through mode m is Π(m, tout) =⋃

RΠ
′
R, R = [se], where [se] is the region in which tout is enabled.

4.2 Capping Zones

When a system is in a zone z = (m, ζm, βm) such that the clock zone has no upper
bound, that is, ∆m(i, 0) = (<,∞) for some clock xi ∈ Ci, or the upper bound al-
lows the system to stay in the mode m beyond that allowed by a delayable or an eager
transition outgoing from the mode m, then we need to restrict the upper bound of the
zone, which we term as capping zones. By capping a zone, a system is forced to exit the
mode before the upper bound is violated due to time elapse, otherwise the behavior of
the system will be undefined. Before defining zone capping, since the upper bounds for
delayable and eager transitions are different, we need to first define the subzones that
will be used as upper bounds for zone capping.

Definition 7. Earliest Subzone
Given a clock zone ζ, represented by a DBM ∆, the earliest subzone ESub(ζ) is a
subspace of ζ such that the DBM ∆e representing ESub(ζ) is defined as follows.

∆e(i, 0) =
{

(≤,−c) if∆(0, i) = (≤, c)
(<,−c+ 1) if∆(0, i) = (<, c)

∆e(i, j) = ∆(i, j), j �= 0
��

Definition 8. Final Subzone
Given a clock zone ζ, represented by a DBM∆, the final subzone FSub(ζ) is a subspace
of ζ such that the DBM ∆f representing FSub(ζ) is defined as follows.

∆f (0, j) =

⎧⎨⎩
(≤,−c) if∆(j, 0) = (≤, c)
(<,−c+ 1) if∆(j, 0) = (<, c)
∆(0, j) if∆(j, 0) = (<,∞)

∆f (i, j) = ∆(i, j), i �= 0

��

A zone is called a subzone when it is the earliest subzone or the final subzone for some
clock zone. Zone capping can be defined using a subzone as upper bound for a clock
zone.



Model Checking Timed Systems with Urgencies 75

Definition 9. Zone Capping
Given a clock zone ζ for clocks in C and a subzone ζs, represented respectively by
DBMs ∆ and ∆s, the zone ζ can be capped by ζs into a new zone denoted by
ZCap(ζ, ζs) which is defined by its DBM ∆(ζ,ζs) as follows.

∆(ζ,ζs)(i, 0) = min(∆(i, 0), ∆s(i, 0))
∆(ζ,ζs)(i, j) = ∆(i, j), j �= 0 (1)

��

It must be noted here that after zone capping, we need to canonicalize the DBM∆(ζ,ζs)

before they can used for further processing in model checking.

4.3 Enforcing Urgencies

We now show how urgency is enforced in UTA by applying the zone capping operation
using the earliest and final subzones. Given a mode m with zone (m, ζm, βm), zero or
more delayable transitions {td}, zero or more eager transitions {te}, and zero or more
lazy transitions, urgency is enforced by modifying the clock zone ζm as shown in Ta-
ble 2. If there is no urgent transition (p = q = 0), then the mode clock zone ζm is not
modified.

Table 2. Zone Capping for Different Types of Urgencies

Urgency Newly Capped Zone (ζ′
m )

p = q = 0 ζm

p > 0, q = 0 ZCap(ζm, FSub(ζm ∩ ζτ(td))),
for some td ∈ {td | exlag(∆td , ∆m) = mintd(exlag(∆td , ∆m))}

p = 0, q > 0 ZCap(ζm, ESub(ζm ∩ ζτ(te))),
for some te ∈ {te | enlag(∆te , ∆m) = minte(enlag(∆te , ∆m))}

p > 0, q > 0 ZCap(ζm, ESub(ζm ∩ ζτ(te)) if exlag(∆td , ∆m) ≥ enlag(∆te , ∆m)
undefined, otherwise.
td ∈ {t′ | exlag(∆t′ , ∆m) = mint(exlag(∆t, ∆m))}
te ∈ {t′ | enlag(∆t′ , ∆m) = mint(enlag(∆t, ∆m))}

p = |{td}|, q = |{te}|

The intuitions behind the modifications are as follows. When there are only delayable
transitions, we need to force the system to leave mode m latest in the last subzone
before td becomes disabled and this is the final subzone (FSub) of the intersection of
ζm and ζτ(td). However, for multiple delayable transitions, we need to select the one
that becomes disabled the earliest, which is the one with the minimum zone exit lag,
that is, the transition td with mintd

(exlag(∆td
, ∆m)).

When there are only eager transitions, we need to force the system to leave mode
m latest in the first subzone when te becomes enabled and this is the earliest zubzone
(ESub) of the intersection of ζm and ζτ(te). However, for multiple eager transitions,
we need to select the one that becomes enabled the earliest, which is the one with the
minimum zone entry lag, that is, the transition te with minte(enlag(∆te , ∆m)).



76 P.-A. Hsiung et al.

When there are delayable and eager transitions, in order to satisfy the semantics of
both types of transitions, we need to ensure that the earliest disabled delayable tran-
sition becomes disabled in the same subzone or later than the earliest enabled eager
transition. This also results in time-reactivity or the absence of timelocks as is desired
of urgency extensions for timed automata. Hence, the condition exlag(∆td

, ∆m) ≥
enlag(∆te , ∆m), where td and te are the earliest disabled delayable and earliest en-
abled eager transitions, respectively. When the condition is not satisfied, we have cho-
sen to leave it as undefined because capping the zone either using the deadline of the
earliest disabled delayable transition or the enabling time of the earliest enabled eager
transition, would result in violating the semantics of the other urgent transition. This is
a limitation of our proposed method, which we leave for investigation in the future.

5 Implementation and Application Examples

The proposed method for model checking urgent timed automata (UTA) is implemented
in the State-Graph Manipulators (SGM) model checker [15], which is a high-level com-
positional model checker for real-time systems. For verifying an urgent timed system
modeled by a set of UTA, the system properties are specified in the Computation Tree
Logic (CTL) [1]. As described in Section 5.1, UTA can be input to SGM and they are
model checked automatically against user-specified CTL properties. Theoretical results
such as time reactivity and semantics equivalence are proved in Section 5.2. This is
the first known implementation and handling of urgency for timed automata in a model
checker itself. Other tools such as UPPAAL does not support the urgency semantics
described in this work, while the IF toolset [7] supports modeling of urgency, exhaus-
tive simulation, and model checking using observers. Labeled transition systems (LTS)
generated by IF could blow up in size and even not terminate, as detailed in Section 5.3.

5.1 Urgency Processing Algorithm

The methods proposed in Section 4 were all implemented into SGM. The main algo-
rithm for processing urgency assumes that we already have a system state graph which
represents the concurrent behavior of a set of timed automata. This state graph can be
obtained through the merge manipulator in SGM. The urgency processing algorithm is
then applied to the merged state-graph.

Due to page limit, the algorithm is not shown here. However, it is described briefly
as follows. For each mode, we count the number of delayable and eager outgoing tran-
sitions. Then, for each delayable transition, we calculate its zone exit lag with respect
to the mode clock zone Zm and for each eager transition, we calculate its zone entry lag
with respect to the mode clock zone. During the zone lag calculations, we also record
the delayable transition (tminx) that has the minimum zone exit lag and the eager tran-
sition (tmine) that has the minimum zone entry lag. Next, we check if the minimum
zone exit lag is smaller than the minimum zone entry lag, which is the undefined case
in Table 2 and we exit the algorithm if such a case is encountered. Finally, the zone
operations ZCap, ESub, FSub, Intersect are used to modify the mode clock zone
Zm according to Table 2.



Model Checking Timed Systems with Urgencies 77

For an urgent system state graph G = AS = (M,m0, C,D,L, χ, T, ψ, τ, µ, ρ) for
a system S, the complexity of the algorithm is O(|M | × |T | × |C|). For each mode in
M , we need to calculate the zone exit lag for each outgoing delayable transition and
the zone entry lag for each outgoing eager transition. The zone lag computations have
O(|C|) time complexity. Hence, the complexity of the algorithm is O(|M | × |T | ×
|C|). It is noted here that the zone capping, the subzone computation, and the intersect
operations all require |C|2 time complexity. However, we can assume that |C| = O(|T |)
because the number of clocks is usually much smaller than the number of transitions in
real-world system models.

5.2 Theoretical Results

We give some theoretical results pertaining to our proposed zone capping method for
enforcing zone-based urgency semantics. We first state that zone-based urgency seman-
tics is equivalent to absolute urgency semantics as advocated by the previous work on
urgency modeling [10,3,5]. Next, we state that our method preserves time-reactivity for
urgent timed automata.

Theorem 1. Semantics Equivalence
Zone-based urgency semantics and absolute urgency semantics give the same model
checking results.

Proof: For left closed, right open, and right closed time intervals on urgent transitions,
the two semantics are similar. However, for left open time intervals (c,∞) on an eager
transition, absolute urgency semantics require the transition to be taken at c+, while
zone-based urgency semantics require the transition to be taken in the clock zone (c, c+
1). Since c+ ∈ (c, c + 1) and any two time points in (c, c + 1) are in the same region,
the two semantics give the same model checking results. ��

Theorem 2. Time-Reactivity
The proposed zone capping method for enforcing zone-based urgency semantics pre-
serves time-reactivity for urgent timed automata.

Proof: The zone capping method stops time progress either in an earliest subzone
ESub(ζm ∩ ζτ(te)) for an eager transition te or in a final subzone FSub(ζm ∩ ζτ(td)) for
a delayable transition td. However, since we have taken the triggers of the urgent transi-
tions into consideration, at least one transition is enabled when time is stopped. Hence,
the zone capping method preserves time-reactivity for urgent timed automata. ��

5.3 Application Examples

Besides SGM, there are no other known CTL model checkers that have implemented
the proposed urgency semantics. The closest work that we have found is the IF toolset
[7], which performs model checking using observers. The UPPAAL model checker has
implemented urgent channels and committed locations, however these cannot be used to
model the urgency semantics described in this work. We first show why urgent channels
and state invariants cannot model the urgency semantics. Then, we compare SGM with



78 P.-A. Hsiung et al.

Table 3. Application Examples

No. System n(|Mi |/|Ti|) Urgency #Del #Eager

1 Water Sprinkler 2 (2/2, 2/2) Single Delayable 1 0
2 Heating Apparatus 2 (2/2, 2/2) Concurrent Eager 0 4
3 Error Checker 2 (2/3, 2/2) Branching Eager 0 4
4 Priority Arbiter 3 (3/4, 3/4, 3/4) Branching Eager/Delayable 1 9
5 Periodic Processes 2 (3/3, 3/3) Single Eager/Delayable 2 4
6 Lip Synchronization (VF) 4 (2/2, 1/1, 5/5, 4/5) Complex Eager/Delayable 1 10
7 Lip Synchronization (SF) 3 (1/1, 2/2, 6/7) Complex Eager/Delayable 2 7

n: # of UTA, VF: Video First, SF: Sound First
Models and input files: “http://embedded.cs.ccu.edu.tw/∼esl web/Project/Ch/SGM/”

IF using six examples from the embedded real-time systems domain, which show that
our approach as implemented in SGM always terminates and is more efficient.

We found two problems while modeling urgency in UPPAAL, as follows: (1) an ea-
ger transition with time constraints could not be modeled by an urgent channel because
an urgent channel cannot be associated with any time constraint, and (2) a delayable
transition when forced out of a state using invariants in UPPAAL could result in time-
locks. Out of the six examples we tried, as shown in Table 3, only one could be modeled
in UPPAAL using state invariants, namely the periodic processes system, because there
was no communication between the periodic processes.

We compared our urgency semantics implementation in SGM with that in IF using
six typical examples as summarized in Table 3, which have various combinations of
eager and delayable transitions. For each example, we also specified a few CTL prop-
erties to verify the urgency semantics, which could not have been possible if we used
UPPAAL or any other model checker without urgency semantics. Due to page-limits,
we describe the most complex example, namely Lip Synchronization, and use a toy
example to illustrate the differences between SGM, UPPAAL, and IF.

The Lip Synchronization algorithm was first described in the synchronous language
Esterel [13]. Then specifications in a number of different formalisms were presented.
The lip synchronization algorithm tries to synchronize audio and video streams as long
as their arrival times are within certain time intervals. It is a typical real-time protocol
for distributed multimedia systems. Bowman et al. [6] verified the lip synchronization
algorithm using the UPPAAL model checker. However, they also described the limita-
tions in UPPAAL in detecting timelocks and in the “hand-wired” construction of time-
out operators and watchdog timers, which could easily lead to timelocks. Since the lip
synchronization algorithm distinguished between the initial arrival of video or sound, it
was easy to partition the algorithm into two parts for verification. The models for initial
arrival of video and sound are given in Fig. 3. The main job of lip synchronization is
to compute vmins, the difference between the rate of the sound stream and the video
stream. If vmins is out of some predefined range, it means that the streams are out of
synchronization. We verified the following property, where mode v07 represents out of
synchronization: AG(!mode(V ideoSync) = v07).



Model Checking Timed Systems with Urgencies 79

so1 vi2

so2

s02

v03v07

v04

v05

s05s06

s07

s01

Video First

s02 vi1 vi2

v02v06

v03v07

v04

v05

Sound First

Fig. 3. Lip Synchronization Algorithm

In Fig. 3, we can see that it is much straightforward to model systems with urgency
using UTA in SGM, compared to the construction of timeout operators and of watchdog
timers, using UPPAAL committed locations and urgent channels as in [6]. As shown in
Table 4, we experimented with different video input streams for the lip synchronization
algorithm, by restricting the video input clock such as t7 ∈ [3, 4], that is a video frame
comes every 3 to 4 time units. The results of comparing SGM with IF for the six exam-
ples are given in Table 4. We can observe that the state-graphs with urgency handling as
generated by SGM are all smaller in size than the labeled transition systems generated
by IF. For the larger examples such as the priority arbiter and the lip synchronization
algorithm, the exhaustive simulation in IF does not terminate, while SGM can generate
manageable state graphs that can be model checked.

To show how the LTS generated by IF differs from our zone-based urgency handling
in SGM, we use a small example, as illustrated in Fig. 4, where the delayable transition
with time trigger x ≤ 20 in the first UTA when simulated in IF, using -tf -dfs
-po parameters, results in an LTS with 5 states and 8 transitions. In comparison, the
zone-based urgency semantics in SGM produces a state-graph with only 2 states and 3
transitions. Moreover, using state invariants in UPPAAL results in only a single initial
state due to timelock as shown in Fig. 4.

From the above experiments, we can observe that our zone-based urgency semantics
as implemented in SGM has the following advantages. First, compared to the state-of-
the-art CTL model checkers, modeling and verifying systems with urgency semantics
has become feasible, straightforward, flexible, and consistent with model checking. Sec-
ond, compared to the IF toolset, the urgency handling is more symbolic and the sizes
of the state graphs are thus much reduced, which makes model checking more efficient.



80 P.-A. Hsiung et al.

Table 4. State Graph Sizes Produced by SGM and IF

Example 6 7
(t7)

1 2 3 4 5
[3, 4] [3, 5] [3, 4] [3, 5]

Size |M | |T | |M | |T | |M | |T | |M | |T | |M | |T | |M | |T | |M | |T | |M | |T | |M | |T |
IF∗ 31 65 12 17 8 14 N/T 341 759 N/T N/T N/T N/T
IF∗∗ 17 28 10 13 7 11 N/T 339 673 N/T N/T N/T N/T

SGM† 9 11 8 9 4 5 200 327 116 194 178 184 700 892 155 165 506 594
t7: Video Clock, ∗Using DBM and DFS traversal with partial order reduction (-dfs -po),

∗∗Using DBM and -tf -dfs -po parameters, †No reduction, N/T: Non-Terminating

Fig. 4. Comparing Between Zone Capping, State Invariant, and IF LTS

Third, timelocks are naturally avoided due to the UTA semantics and urgency handling,
thus we need not use invariants for enforcing urgency now. Nevertheless, a current lim-
itation of the proposed zone-based urgency semantics in SGM, as described in Section
4.3, is an undefined composition of urgency transitions that have no time overlaps.

6 Conclusions

We have shown how a zone-based urgency semantics of the urgent timed automata
model can be used for verifying real-time embedded systems based on the CTL model
checking paradigm. We have proposed a novel zone capping operation, which enforces
the semantics of urgency types in urgent timed automata. The proposed zone-based ur-
gency semantics is equivalent to the absolute urgency semantics and advantageous for
model checking. The method also preserves time-reactivity. Several application exam-
ples illustrate how our method for verifying real-time embedded systems with urgency
is more symbolic and efficient compared to state-of-the-art model checkers. Future
work will consist of making the approach more complete.



Model Checking Timed Systems with Urgencies 81

References

1. R. Alur, C. Courcoubetis, and D.L. Dill. Model-checking for real-time systems. In Pro-
ceedings of the 5th Annual Symposium on Logic in Computer Science, pages 414–425. IEEE
Computer Society Press, 1990.

2. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

3. R. Barbuti and L. Tesei. Timed automata with urgent transitions. Acta Informatica,
40(5):317–347, 2004.

4. J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and Y. Wang. UPPAAL: a tool suite for
automatic verification of real-time systems. In Proceedings of Workshop on Verification and
Control of Hybrid Systems III, LNCS, volume 1066, pages 232–243, October 1995.

5. S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in timed systems. In Composition-
ality, LNCS, volume 1536. Springer Verlag, 1997.

6. H. Bowman, G. Faconti, J-P. Katoen, D. Latella, and M. Massink. Automatic verification
of a lip synchronisation algorithm using UPPAAL -extended version-. Third Internatinoal
Workshop on Formal Methods for Industrial Critical Systems, pages 97–124, May 1998.

7. M. Bozga, J. Cl. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, and L. Mounier. IF: An in-
termediate representation and validation environment for time asynchronous systems. In
Proceedings of the Formal Methods Conference (FM), 1999.

8. E.M. Clarke and E.A. Emerson. Design and sythesis of synchronization skeletons using
branching time temporal logic. In Proceedings of the Logics of Programs Workshop, volume
131 of LNCS, pages 52–71. Springer Verlag, 1981.

9. David L. Dill. Timing assumptions and verification of finite-state concurrent systems. In Pro-
ceedings of Workshop on Automatic Verification Methods for Finite State Systems, volume
407 of LNCS, pages 197–212. Springer-Verlag, 1989.

10. B. Gebremichael and F. Vaandrager. Specifying urgency in timed I/O automata. In Proceed-
ings of the 3rd IEEE International Conference on Software Engineering and Formal Methods
(SEFM), pages 5–9, September 2005.

11. D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. Timed I/O automata: A mathemat-
ical framework for modeling and analyzing real-time systems. In Proceedings of the 24th
IEEE International Real-Time Systems Symposium (RTSS), pages 166–177. IEEE CS Press,
December 2003.

12. S.-W. Lin, P.-A. Hsiung, C.-H. Huang, and Y.-R. Chen. Model checking prioritized timed
automata. In Proceedings of the 3rd International Symposium on Automated Technology
for Verification and Analysis (ATVA, Taipei, Taiwan), LNCS, volume 3707. Springer Verlag,
October 2005.

13. J-B Stefani, L. Hazard, and F.Horn. Computational model for distributed multimedia appli-
cation based on a synchronous programming language. Computer Communications (Special
Issue on FDTs), 15(2), 1992.

14. F. Wang. RED: Model-checker for timed automata with clock-restriction diagram. In Pro-
ceedings of the Workshop on Real-Time Tools, August 2001. Technical Report 2001-014,
ISSN 1404-3203, Department of Information Technology, Uppsala University.

15. F. Wang and P.-A. Hsiung. Efficient and user-friendly verification. IEEE Transactions on
Computers, 51(1):61–83, January 2002.

16. S. Yovine. Kronos: A verification tool for real-time systems. International Journal of Soft-
ware Tools for Technology Transfer, 1(1/2):123–133, October 1997.



Whodunit? Causal Analysis for Counterexamples�

Chao Wang1, Zijiang Yang2, Franjo Ivančić1, and Aarti Gupta1

1 NEC Laboratories America
4 Independence way, Princeton, NJ 08540, USA

{chaowang,ivancic,agupta}@nec-labs.com
2 Department of Computer Science

Western Michigan University, Kalamazoo, MI 49008, USA
zijiang.yang@wmich.edu

Abstract. Although the counterexample returned by a model checker can help
in reproducing the symptom related to a defect, a significant amount of effort is
often required for the programmer to interpret it in order to locate the cause. In
this paper, we provide an automated procedure to zoom in to potential software
defects by analyzing a single concrete counterexample. Our analysis relies on
extracting from the counterexample a syntactic-level proof of infeasibility, i.e.,
a minimal set of word-level predicates that contradict with each other. The pro-
cedure uses an efficient weakest pre-condition algorithm carried out on a single
concrete execution path, which is significantly more scalable than other model
checking based approaches. Unlike most of the existing methods, we do not need
additional execution traces other than the buggy one. We use public-domain ex-
amples to demonstrate the effectiveness of our new algorithm.

1 Introduction

One of the major advantages of model checking [5, 22] is the production of a counterex-
ample when verification fails. However, the counterexample only shows a symptom of
the defect; users still need to spend a considerable amount of time scrutinizing the
potentially lengthy trace in order to find the cause of the failure. In principle, an observ-
able failure is caused by a defect in the code after the infection propagates through a
sequence of relevant statements (also called the infection chain [26]). In this paper we
present an efficient procedure for identifying this infection chain, i.e., the cause-effect
segments from the given counterexample that eventually lead to a failure.

The problem of fault localization for software programs has been the attention of
recent research. Testing based methods [16, 23] rely on availability of a good test suite;
they compare a large set of failing executions with successful ones to find out points
in the failing executions that may (statistically) be responsible for the failure. Usually,
they assume that a large number of successful executions are available to be chosen as
a comparison to failing executions.

� A whodunit, for “who done it?”, is a plot-driven variety of detective story in which the reader
is provided with clues from which the identity of the perpetrator of the crime may be deduced.
Examples are the Sherlock Holmes stories by Conan Doyle.

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 82–95, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Whodunit? Causal Analysis for Counterexamples 83

Model checking based methods [3, 11, 10] seek additional execution traces by de-
ploying the same model checker again with additional constraints. A representative
approach is the work by Groce et al. [10], which uses a SAT based bounded model
checker to produce the counterexample, and then uses a pseudo-Boolean constraint
solver (called PBS [2]) on a constrained version of the same bounded model check-
ing instance to search for a “closest” successful execution trace. The difference be-
tween these two traces is considered as potential cause of failure. A drawback of model
checking based method is their limited scalability in dealing with large systems or long
counterexamples. Furthermore, the difference between a successful run and the coun-
terexample does not always provide a good explanation of the failure.

Delta debugging as in [26, 6] uses automated testing to isolate relevant variables
and values of the program by systematically narrowing the state difference between a
passing run and a failing run. Note that this method also requires alternative runs in ad-
dition to the given counterexample. The method is based on trial and error, by assessing
the outcome of altered executions to determine whether a change in the program state
makes a difference in the test outcome. The alternative runs also determine the quality
of results that Delta debugging can infer: a variable can be isolated as a failure cause
only if its value differs in the two runs. This method is purely empirical, which is quite
different from methods based on formal/static analysis. As is stated in [26], Delta de-
bugging may require a large number of tests to find a difference that can no longer be
narrowed.

A problem closely related to fault localization is program repair, which has been
studied in [25, 15, 9]. They take the view that a system component may be responsible
for a failure if replacing it by an alternative can make the system correct. The program
repair problem is cast into a two-player reachability game on a finite-state machine
extended from the system, by assuming any component can be replaced by an arbitrary
function in terms of inputs and the system state. An algorithm that computes a winning
strategy for the game effectively solves the program repair problem. However, program
repair in general is significantly more costly than standard model checking.

In general, accurately locating the faulty code requires a complete specification of the
system behavior (the same argument also holds for automated program repair). Unfortu-
nately, such specifications are often missing in realistic software development settings.
Without a complete specification, it is not possible to determine whether a particular
line in the code is faulty or not. What can be done (a view shared by many previous
works as well as this paper) is to locate portions of the program where a defect may
reside, and to provide an explanation how a defect triggers the failure. In this paper, we
try to identify the infection chain in the failed execution path, with the belief that the
defect resides in one of the chain segments.

The new causal analysis algorithm presented in this paper differs from previous
works in that: (1) it does not require additional successful or failing executions other
than the given counterexample; (2) it does not use expensive model checking or con-
straint solving algorithms. Instead, we use a path-based syntactic-level weakest pre-
condition computation algorithm to aid the analysis. It produces a concise proof of
infeasibility for the given counterexample, which is a minimal set of word-level pred-
icates extracted from the failed execution that explains why the execution fails. Since



84 C. Wang et al.

the pre-condition computations are cheap and are restricted to a single execution path
(less chance to blow up), our method is significantly more scalable than other model
checking based methods.

2 Motivating Examples

We provide two small examples to illustrate a shortcoming of some existing fault lo-
calization methods. The main assumption of the method in [10] is that, one can locate
the defect by comparing a successful run with a buggy run. A similar assumption is
also made in Delta debugging [26] although automatic testing is used to get alternative
runs. The unique feature of [10] is defining a distance metric with respect to the given
counterexample and then searching for a “closest” successful run with respect to that
metric. Since a program is deterministic, the only change they make in searching for
a successful run is the input values. By changing the input values and minimizing the
difference caused by these changes, they try to find an execution trace that does not vi-
olate the property. In other words, they try to find ways to dodge the observable failure
instead of fixing it.

find max (x1, x2, x3)
{

1: max = x1;
...

2: if ( max <= x2 )
3: max = x2 ;

...
4: if ( max >= x3 )
5: max = x3 ;

...
6: assert ( max >= x1 ) ;
7: assert ( max >= x2 ) ;
8: assert ( max >= x3 ) ;

}

(a) the maximum of three inputs;

compute diff (x1, x2)
{

1: if ( x1 != x2 ) {
2: if ( x1 < x2 )
3: diff = x1 - x2 ;
4: else
5: diff = x2 - x1 ;

}
6: else {
7: diff = 0 ;

...
}

8: assert ( diff > 0 ) ;
}

(b) the difference of two inputs;

Fig. 1. Two examples to illustrate fault localization algorithms

First, we note that it is not always possible to dodge the failure by merely changing
input values. When a failure exists regardless of any particular input value, the algo-
rithm in [10] fails since there is no valid solution for the constraint solver to optimize.
Even if a successful run can be found, the difference between the two runs does not
necessarily offer enough hints to locate the defect. This can be illustrated by the C pro-
gram in Figure 1-(a), which is supposed to find the maximum of three inputs. The input
(0,1,0) can trigger an execution that fails the assertion check at Line 7. The asser-
tion failure is caused by Lines 4-5 where the conditional expression should have been
different.



Whodunit? Causal Analysis for Counterexamples 85

Table 1 lists the variable assignments at different execution steps for the original
counterexample and a closest successful run. Each row in the table shows the names of
variables or conditional expressions, their program locations (max @3 corresponds to
Line 3), their values, and the distance according to the metric in [10]. Since there are
only two different assignments: x2 @0 and max @3, it would classify Line 3 as cause
of the failure. However, both Line 3 and Line 2 (the guard of Line 3) are correct, and
the real error is in Lines 4-5.

Table 1. Counterexample and successful executions for find max

variables/predicates variable/predicate valuations in distance
counterexample a successful run

x1 @ 0 0 0
x2 @ 0 1 0 1
x3 @ 0 0 0

max @ 1 0 0
(max<=x2) @ 2 true true

max @ 3 1 0 1
(max>=x3) @ 4 true true

max @ 5 0 0
(max>=x1) @ 6 true true
(max>=x2) @ 7 false true

Our second example, Figure 1-(b), is a program to compute |x1 − x2| when the two
inputs have different values. There is a bug at Line 2 and the correct version should be
(x1 > x2). A counterexample can be produced with the input (0,1), under which
the program goes through Lines 1-3 and 8. Since there is no way to avoid the failure
as long as (x1 != x2), a closest successful run would be with the input (0,0). The
successful run goes through lines 6-8. As a result, all lines within the if-branch and else-
branch are different between the two runs, and would be marked as potential causes of
the failure.

In these two examples, the inaccuracy of the algorithm is due to its way of analyzing
causality, which we believe is very different from the actual debugging practice by pro-
grammers. Given an execution trace exhibiting some erroneous behavior, a programmer
will not keep changing the input values until the bug disappears. Instead, the program-
mer will keep the same input and try to find out how this particular input value leads to
the failure. When there is an assertion check in the code, it often means that the program
is expected to work at this location all the time, regardless of which path it has taken
to reach here and regardless of the input values. Therefore, we choose to focus on the
given counterexample and tackle the problem from a different angle; in particular, we
want to explain why this particular run fails.

3 Preliminaries

We provide some needed notations before introducing the definition of transforming
statement and the notion of minimal proof of infeasibility, which are the foundation of



86 C. Wang et al.

our counterexample causal analysis algorithm. We focus on the class of failures that
can be captured using assertions. In a C program, for instance, assert(!crash) rep-
resents the property that crash should never be true at this program location. A coun-
terexample is a particular execution path of the program that violates the assertion.

An execution path π = s1, s2, . . . is a sequence of simple program statements, each
of which has one of the following types:

– assignment statement s: v := e, where v is a variable and e is an expression; we
assume that the statement has no side-effects.

– branching statement s: assume(c), where c is a predicate. It may come from
statements like if(c)...else or successfully executing of assert(c).

Given an execution path π, we use πi = si, . . . to represent the suffix starting from
i ≥ 1; we also use πi,j = si, . . . , sj to represent the segment between i and j.

A counterexample is a tuple 〈I, π1,n〉, where I is an input valuation and π1,n is the
corresponding execution path leading to failure at sn:assert(c). A counterexample is
a concrete execution of the program. Given a set I of initial values to input variables, the
execution of a deterministic program is completely fixed. It is easy to map a counterex-
ample back to an execution path π. Complex data structures and language constructs do
not pose a problem, because everything is completely determined in a concrete trace.
For pointers, the locations that they point to are fixed at every step; similarly for arrays,
the indexes are also fully determined. Since a counterexample is of finite length, recur-
sive functions and statements involving data in dynamically allocated memory can be
rewritten into simple but equivalent statements.

The set of input variables of the program induces an input space, in which each
particular input valuation corresponds to a point. In general, an execution path π1,n

corresponds to more than one counterexamples, each of which maps to a distinct point
in the input space. The input subspace related to π1,n can be represented by the weakest
pre-condition of ¬c with respect to π1,n−1; that is, the weakest condition before π1,n−1

that entails the failure at sn. The definition of weakest pre-condition is given below,
where we use f(V/W ) to denote the simultaneous substitution ofW with V in function
f(W ).

Definition 1 (cf.[8]). Given πi,j = si, . . . , sj and a propositional formula φ, the weak-
est pre-condition of φ with respect to πi,j , denoted by WP (πi,j , φ), is defined as fol-
lows,

– For a statement s: v = e,WP (s, φ) = φ(e/v);
– For a statement s: assume(c),WP (s, φ) = φ ∧ c;
– For a sequence of statements s1; s2,WP (s1 : s2, φ) = WP (s1,WP (s2, φ)).

Weakest pre-condition computation has been used in several recent predicate abstrac-
tion algorithms [20, 13, 14], where it is applied to an infeasible counterexample in the
abstract model in order to find relevant predicates that can eliminate the trace in the
refined model. However, in this paper the purpose of computing weakest pre-conditions
is quite different, since the counterexample here is a feasible trace in the concrete pro-
gram, as opposed to an infeasible trace in an abstract model.



Whodunit? Causal Analysis for Counterexamples 87

We use this computation to find a minimal set of conditions for the program to stay
on the same path without violating the assertion. The result is a set of predicates that
should hold at each step of the path. By comparing how these predicates contradict with
each other and with the given set of input values, we can locate part of the original code
responsible for this particular assertion failure.

4 Analyzing the Infection Chain

Given a counterexample 〈I, π1,n〉, we identify a set of statements in π1,n constituting
the infection chain, i.e., cause-effect segments that lead eventually to a failure in sn. We
accomplish this by computingWP (π1,n−1, c). According to the definition, the weakest
precondition over a path is a conjunction of predicates. That is,

WP (πi,j , c) = c′ ∧ (c′1 ∧ c′2 . . . ∧ c′k) ,

where c′ is transformed from the given formula c through (possibly transitive) variable
substitutions, and each c′l is transformed from a condition in sl: assume(cl) such that
i ≤ l ≤ j. More formally, given a formula φ, we use φ′ to denote the formula in WP
that is transformed from φ. The definition is transitive in that both φ′ = φ(e/v) and
φ′(e2/v2) are transformed formulae from φ.

Definition 2. A transforming statement of φ is an assignment statement s: v = e
such that variable v appears in the transitive support of formula φ.

For example, statement s1:x = y+1 is a transforming statement of φ:(x > 0), since
WP (s1, φ) produces φ′:(y+1 > 0); statement s2:y = z*10 is also a transform-
ing statement of φ, since WP (s2, φ′) produces (z*10+1 > 0). During weakest pre-
condition computations, only assignment statements can transform an existing conjunct
c into a new conjunct c′. Branching statements can only add new conjuncts to the ex-
isting formulae, but cannot transform them. Given an execution path πi,j = si, . . . , sj ,
we use the subset TS(πi,j , c) ⊆ {si, . . . , sj} to denote the transforming statements
for the predicate c. Transforming statements are the foundation of our causal analysis
algorithm.

For a failed execution path π1,n where the statement sn is assert(c), the three
pre-conditions, WP (π1,n−1, true), WP (π1,n−1, c), and WP (π1,n−1,¬c), have the
following relationships:

1. WP (π1,n−1, true) = WP (π1,n−1, c) ∨WP (π1,n−1,¬c);
2. WP (π1,n−1, c) ∧WP (π1,n−1,¬c) = ∅;

This is illustrated by Figure 2. Also note that the three pre-conditions share a common
subformula (c′1∧· · ·∧c′k), which is the same asWP (π1,n−1, true). We now introduce
the notion of proof of infeasibility.

Theorem 1. Given a counterexample 〈I, π1,n〉, we have I ⊆WP (π1,n−1,¬c), mean-
ing that

I ∧WP (π1,n−1, c) = ∅ .



88 C. Wang et al.

input subspace WP (π1,n−1, true)

assert(c)

c1
c2 c3

c4

WP (π1,n−1,¬c)

WP (π1,n−1, c)

¬c

Fig. 2. Partitioning of the input subspace WP (π1,n−1, true)

The input valuation I is a conjunction set of predicates I = I1 ∧ . . .∧ Im, where Ii, for
instance, can be the valuation of an input variable x = 10. Given that

(I1 ∧ . . . ∧ Im) ∧ c′ ∧ (c′1 ∧ . . . ∧ c′k) = ∅ ,

there exist a minimal subset of conjuncts in I and a minimal subset of conjuncts in
WP (π1,n−1, c), denoted by Isub andWPsub, respectively, such that Isub∧WPsub = ∅.
The point here is that only some conjuncts are responsible for the empty intersection
(which is the reason of the assertion failure). We call Isub ∧WPsub a minimal proof of
infeasibility.

In general, one can find a minimal set of contradicting predicates as follows,

1. initialize Isub = I andWPsub = WP (π1,n−1, c);
2. minimize WPsub by dropping each conjunct c′i in WPsub, and then checking

whether Isub ∧ WPsub = ∅: if the result remains empty, drop c′i permanently;
otherwise, add it back.

3. minimize Isub by dropping each Ii in Isub, and then checking whether Isub ∧
WPsub = ∅: if the result remains empty, drop Ii permanently; otherwise, add it
back.

For this particular application, however, we note thatWPsub always contains c′. This is
because other conjuncts c′i come from assume statements and are all consistent with I ,
but c′ comes from the failed assertion condition c. Therefore, we can skip the test for c′

when minimizingWPsub. It is often the case that c′ contradicts to some other conjuncts
in WP and Isub is not needed in the proof of infeasibility. However, if WP does not
have conflicting conjuncts by itself, then a minimal proof is of the form Isub ∧ c′.

The intuition behind this definition is that: given a concrete counterexample, our
proof of infeasibility provides a succinct explanation about the cause of the assertion
failure at sn. The choice of computing a syntactic-level proof of infeasibility, as opposed
to other forms including interpolation [19], is due to the need of eventually mapping the
proof back to the source code program. In our case, the explanation can be mapped back
to the source code by finding the transforming statements with respect to predicates
inWPsub.



Whodunit? Causal Analysis for Counterexamples 89

5 The Causal Analysis Procedure

In this section we present the entire causal analysis procedure and then explain how it
can be applied to the two working examples.

5.1 The Algorithm

Given a counterexample 〈I, π1,n〉, we compute the weakest precondition
WP (π1,n−1, c) by starting backward from c. (Recall that c comes from the failed
assert(c) at sn.) During this process, we also record in TS(c) all transforming state-
ments of c. At each pre-condition computation step, we check whether the intermediate
resultWP (πi,n−1, c) is empty. There are two possibilities:

– there exists an index 1 ≤ i < n such that WP (πi,n−1, c) = ∅;
– no such index exists and the computation ofWP (π1,n−1, c) completes.

We consider the first case as a special case, since it implies emptiness ofWP (π1,n−1, c)
and hence emptiness of its intersection with I .

1. In the first case, we take the set of conjuncts in WP (πi,n−1, c) right after it be-
comes empty and compute a minimal subset WPsub. We consider all conjuncts in
WPsub as responsible for triggering the failure. In the source code, we mark only
transforming statements in {s | s ∈ TS(φ) such that φ′ ∈ WPsub} as explanation
of the failure.

2. In the second case, we take all conjuncts in I and WP (π1,n−1, c) and compute
a minimal proof Isub ∧WPsub. We consider Isub and all conjuncts in WPsub as
responsible for triggering the failure. As is illustrated in Figure 3-(a), WPsub has
only one subformula in this case; that is,WPsub = c′. In the source code, we mark
only transforming statements in TS(c) as explanation of the failure. The marked
source code shows how Isub leads to the failure at sn:assert(c) through the
execution of the transforming statements.

The result in the first case is a stronger condition for explaining the failure—an empty
WP (πi,n, c) means that any execution path with the same suffix (si, ..., sn−1) would
fail at sn. As is illustrated in Figure 3-(b), the relevant input subspace in this case
becomesWP (πi,n−1, true), which is large thanWP (π1,n−1, true) in general. (In the
figure, with a little abuse of notation, we have usedWPsub \ c′ to represent the removal
of c′ from the set of conjuncts inWPsub.) By focusing onWPsub only, we can explain
the cause of failure common to all these execution paths.

Our algorithm aims at explaining why the given execution path fails by focusing
on the infection chain (i.e., set of transforming statements) leading to the failure. We
do not attempt to answer the question which segment in the infection chain contains
the faulty code or how to fix the bug by changing a particular segment. We believe
that the latter two problems in general require a relatively complete specification of
the intended program behavior in order for them to be solved effectively. Unfortu-
nately, complete specifications are often missing in realistic software development
settings.



90 C. Wang et al.

WP (π1,n,¬c)

Isub

(a) When Isub ∧ WPsub = ∅

I

WPsub = c′

(b) WPsub = ∅ before reaching s1

I

c′

WPsub \ c′

WP (π1,n−1, c) = c′ ∧ (c′1 ∧ . . . ∧ c′k)

I

Fig. 3. The minimal proof of infeasibility. WPsub consists of a subset of conjuncts of
WP (πi,n−1, c), and thus WP (πi,n−1, c) ⊆ WPsub. Similarly, I ⊆ Isub.

5.2 The Working Examples

We now demonstrate that our new method can produce better results than existing al-
gorithms. We first apply the new algorithm to find max in Figure 1-(a). We start the
weakest pre-condition computation with the failed assertion condition (max >= x2).
The sequence of intermediate results are listed in Table 2, where the first column gives
the line numbers, the second column gives the subformulae whose conjunction isWP ,
the third column indicates whether the statement belongs to TS(max ≥ x2); for in-
stance, a “yes” for Line 5 means that s5 :max = x3 is a transforming statement of the
predicate (max ≥ x2). The last column shows whether the weakest pre-condition is an
empty set.

Table 2 shows that the weakest pre-condition becomes empty only after the intersec-
tion with initial input values x1=0, x2=1, x3=0. The minimal subset is

(x2 = 1) ∧ (x3 = 0) ∧ (x3 ≥ x2)

In the source code, we highlight all transforming statements of predicates in TS(max
≥ x2) as responsible for the failure. Thus, Line 5 is marked as explanation of the



Whodunit? Causal Analysis for Counterexamples 91

Table 2. Analyzing the cause of failure in find max

Line Predicates in the WP in TS(max ≥ x2) empty WP?

7 (max≥x2)
6 max≥x1, (max≥x2)
5 x3≥x1, (x3≥x2) yes
4 max≥x3, x3≥x1, (x3≥x2)
3 x2≥x3, x3≥x1, (x3≥x2)
2 max≤x2, x2≥x3, x3≥x1, (x3≥x2)
1 x1≤x2, x2≥x3, x3≥x1, (x3≥x2)
0 0≤1, 1≥0, 0≥0, (0≥1) empty

Table 3. Analyzing the cause of failure in compute diff

Line Predicates in WP in TS(diff > 0) empty WP

8 (diff>0)
3 (x1-x2>0) yes
2 x1<x2, (x1-x2>0) empty
1 x1�=x2, x1<x2, (x1-x2>0) empty
0 0�=1, 0<1, (0-1>0) empty

failure cause; this is significantly more accurate than the algorithm of [10] (which in-
stead would mark Line 3).

Next, we apply our algorithm to compute diff in Figure 1-(b). We start weak-
est precondition computation with the failed assertion condition (diff > 0). The se-
quence of intermediate results are given in Table 3. The statement in Line 3 transforms
the initial predicate into (x1-x2 > 0), which then contradicts to (x1 < x2), the new
predicate added at Line 2. Since WP (πi,n−1, (diff > 0)) = ∅, we compute the mini-
mal proof of infeasibility at this point. The result is as follows,

(x1 < x2) ∧ (x1 − x2 > 0) .

In the source code, we mark all transforming statements in TS(diff > 0) and TS(x1
< x2), as well as the source statement of c′1, which is assume(x1 < x2). Thus, our
algorithm reports Lines 2-3 of Figure 1-(b) as the failure cause. The fact that weakest
pre-condition becomes empty in the middle of a counterexample strongly indicates that
the error may happen in the common suffix. In contrast, the algorithm in [10] is inef-
fective on this example since the first else-branch is the only possible successful run;
as a result, it would mark the code in both branches.

6 Further Discussion

6.1 About Delta-Debugging

The notion of cause transition in [26, 6] is similar to transforming statements in our
method. A cause transition points to the connecting points of execution path where a



92 C. Wang et al.

change of the previous state would lead the execution to a different branch. To find
the defect, the method in [26, 6] traces forward in the program to identify the chain
of cause transitions, by running an additional set of tests. Their idea of empirically
comparing state difference between successful and failing runs is significantly different
from ours; the notion of minimal proof of infeasibility is not used. In our method, the
set of predicates produced by weakest pre-condition computations at each individual
program location represents an abstract program state.

As is pointed out in [6], for each infection F ′, there is either an earlier infection F
that causes F ′, or no earlier infection—in which case F ′ is the defect. Therefore, given
the observable failure, tracing back the infection chain requires two proofs:

1. to prove that F and F ′ are “infected”;
2. to prove that F causes F ′.

Without a complete specification, in general it is not possible to determine whether
a program state is infected (and therefore not possible to determine where the very
first infection is). However, we note that the actual defect ought to be in one of the
chain segments. By our definition, each transforming statement of the failed assertion
condition (i.e., the last infection) is a proof that a previous infection F causes F ′.

6.2 About Distance Metric in Explain [10]

Compared to the explain tool in [10], our method answers the question why a specific
execution path fails, instead of how the failure can be avoided. In general, it is hard
to answer the latter question in a useful way unless one has a complete specification.
The reason is that there can be multiple ways of avoiding a particular failure, each of
which corresponds to a different program intent. (Program intent in principle can only
be provided by human.)

For example, the failed property in our first working example is, “all runs that go
through Lines 1-8 should pass the assertion check at Line 9.” This is only a partial
specification of the program behavior. When being represented in linear temporal logic,
this property is of the form G(P → Q), where

– P : the execution actually goes through lines 1-8;
– Q: the execution fails assertion check at line 9.

A counterexample of this property is an execution on which (P ∧ ¬Q) holds. One can
avoid this particular failure by satisfying ¬(P ∧ ¬Q) under the same input condition,
which is the same as

(¬c′1 ∨ . . . ∨ ¬c′k) ∨ c′ .
Unfortunately, any one of the disjunctive subformulae entails the entire formula. Note
that in our causal analysis, we focus only on c′ (i.e., the assertion check at sn should
pass) by assuming that P holds.

More Related Work: The property P → Q has also been studied in the context
of vacuity detection in [4, 18, 21], where P → Q is said to be vacuously satisfied
whenever P is false. This is because Q is often the property that the user intends to
check, while P is only a pre-condition. We believe that the same argument also applies
to counterexample explanation or fault localization.



Whodunit? Causal Analysis for Counterexamples 93

6.3 About Dynamic Slicing

Our method is also different from dynamic slicing [17, 1, 12], which is a variant of pro-
gram slicing with the restriction to an execution path. Although dynamic slicing often
gives more accurate data dependencies between variables than normal static analysis,
it is inferior to our weakest pre-condition based causal analysis in explaining cause of
failed assertions. Consider the following example,

1: x1 = 10;
2: x3 = 5;
3: ...
4: x2 = 0 ;
5: if ( x1 == 10) {
6: x2 = x2 * x3 ;
7: ...
8: }
9: else {
10: x2 = x2 * x4;
11: }
12: assert( x2 != 0 );

If only Lines 1-8 and 12 are executed, dynamic slicing with respect to line 12 can
remove the irrelevant variable x4, which could not have been removed by static pro-
gram slicing without knowing which path will be executed. However, it could not re-
move variable x1 since whether line 6 gets executed or not depends on the condition
(x1==10). In contrast, our analysis algorithm would remove (x1==10) because it is
not in the minimal proof of infeasibility (lines 4, 6, and 12).

7 Experiments

In this section, we apply our procedure to public benchmark programs in the Siemens
suite [24]. The Siemens suite provides a set of C programs, each of which has a number
of test vectors as well as a correct version of the program. The examples we used in
this study are from the TCAS (Traffic Collision Avoidance System) example, which is
a model of the aircraft conflict detection system. The assertion checks (or properties)
used in our experiment originated from a previous study using symbolic execution [7].

A faulty TCAS version differs from the correct one in Line 100, where the relational
operator> is used when it should be ≥.

result = !( Own_Below_Thread()) || ((Own_Below_Threat())
&& (!(Down_Separation >= ALIM()))) ; // correct

---
result = !( Own_Below_Thread()) || ((Own_Below_Threat())

&& (!(Down_Separation > ALIM()))) ; // buggy

The counterexample used in our study has been generated from a software model
checker, and it has a length of 90. (The counterexample may also come from other soft-
ware testing tools—our causal analysis procedure would be equally applicable as long



94 C. Wang et al.

as the counterexample is a fully determined execution path.) When our causal analysis
procedure is used, the weakest pre-condition becomes empty right after the computa-
tion passes Line 100. This gives a succinct explanation of the actual failure down the
stretch.

We compare our results with the previous results in [10]. Given the same counterex-
ample, the initial explanation by this previous algorithm was not particularly useful. In
fact, their tool dodged the failure by making the antecedent of the implication false. As
is stated in [10], to coerce it into reporting a more meaningful explanation, they had
to manually add some additional constraints (e.g. the antecedent should not be true).
After that, their tool reports a similar result as ours. We argue, however, that this kind of
manual intervention requires the user to have a deep understanding of the counterexam-
ple as well as the software program. In contrast, our method does not need additional
hints from the programmer, but still achieves the same accuracy as [10] combined with
manually provided assumptions.

8 Conclusions

We have addressed the problem of locating the failure cause of a program given a con-
crete counterexample trace, and demonstrated the effectiveness of our approach using
several examples. Our automated procedure relies on the minimal proof of infeasibil-
ity to generate succinct failure explanations. Since the computations are performed at
the syntactic level and are restricted to a single concrete path, there is no foreseeable
difficulty in applying it to long counterexamples in large production-quality software.
As future work, we will pursue a more detailed experimental study of the proposed
technique and comparison with existing tools.

References

[1] H. Agrawal, R. A. DeMillo, and E. H. Spafford. Debugging with dynamic slicing and
backtracking. Software - Practice and Experience, 23(6):589–616, 1993.

[2] F. A. Aloul, B. D. Sierawski, and K. A. Sakallah. Satometer: How much have we searched?
In Proceedings of the Design Automation Conference, pages 737–742, New Orleans, LA,
June 2002.

[3] T. Ball, M. Naik, and S. K. Rajamani. From symptom to cause: Localizing errors in coun-
terexample traces. In Symposium on Principles of Programming Languages (POPL’03),
pages 97–105, January 2003.

[4] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity in ACTL
formulas. In Computer Aided Verification (CAV’97), pages 279–290. Springer, 1997. LNCS
1254.

[5] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. In Proceedings Workshop on Logics of Programs, pages
52–71, Berlin, 1981. Springer-Verlag. LNCS 131.

[6] H. Cleve and A. Zeller. Locating causes of program failures. In ACM/IEEE International
Conference on Software Engineering, 2005.

[7] A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezze. Using symbolic execution for ver-
ifying safety-critical systems. In European Software Engineering Conference/Foundations
of Software Engineering, pages 142–151, 2001.



Whodunit? Causal Analysis for Counterexamples 95

[8] E. Dijkstra. A Discipline of Programming. Pretice Hall, NJ, 1976.
[9] A. Griesmayer, R. Bloem, and B. Cook. Repair of boolean programs with an application to

c. In Computer Aided Verification (CAV’06). Springer, 2006. LNCS series.
[10] A. Groce, S. Chaki, D. Kroening, and O. Strichman. Error explanation with distance met-

rics. International Journal on Software Tools for Technology Transfer, 2005.
[11] A. Groce and W. Visser. What went wrong: Explaining counterexamples. In Model Check-

ing of Software: 10th International SPIN Workshop, pages 121–135. Springer-Verlag, May
2003. LNCS 2648.

[12] T. Gyimóthy, Á. Beszédes, and I. Forgács. An efficient relevant slicing method for debug-
ging. In 7th European Software Engineering Conference (ESEC/FSE’99), pages 303–321.
Springer, 1999. LNCS 1687.

[13] H. Jain, F. Ivančić, A. Gupta, and M. Ganai. Localization and register sharing for predi-
cate abstraction. In Tools and Algorithms for the Construction and Abnalysis of Systems
(TACAS’05), pages 394–409. Springer, 2005. LNCS 3440.

[14] H. Jain, F. Ivančić, A. Gupta, I. Shlyakhter, and C. Wang. Using statically computed invari-
ants inside the predicate abstraction and refinement loop. In Computer Aided Verification
(CAV’06). Springer, 2006. LNCS series.

[15] B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In Computer
Aided Verification (CAV ’05), pages 226–238. Springer, 2005. LNCS 3576.

[16] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test information to assist fault
localization. In ACM/IEEE International Conference on Software Engineering, 2002.

[17] B. Korel and J. W. Laski. Dynamic slicing of computer programs. Journal of Systems and
Software, 13(3):187–195, 1990.

[18] O. Kupferman and M. Y. Vardi. Vacuity detection in temporal model checking. In Correct
Hardware Design and Verification Methods (CHARME’99), pages 82–96, Berlin, Septem-
ber 1999. Springer-Verlag. LNCS 1703.

[19] K. L. McMillan and N. Amla. Automatic abstraction without counterexamples. In Tools
and Algorithms for Construction and Analysis of Systems (TACAS’03), pages 2–17, April
2003. LNCS 2619.

[20] K. S. Namjoshi and R. P. Kurshan. Syntactic program transformations for automatic ab-
straction. In Computer Aided Verification (CAV’00), pages 435–449. Springer, 2000. LNCS
1855.

[21] M. Purandare and F. Somenzi. Vacuum cleaning CTL formulae. In Computer Aided Veri-
fication (CAV’02), pages 485–499. Springer-Verlag, July 2002. LNCS 2404.

[22] J. P. Quielle and J. Sifakis. Specification and verification of concurrent systems in CESAR.
In Proceedings of the Fifth Annual Symposium on Programming, 1981.

[23] M. Renieris and S. P. Reiss. Fault localization with nearest neighbor queries. In Interna-
tional Conference on Automated Software Engineering, pages 30–39, Montreal, Canada,
October 2003.

[24] G. Rothermel and M.J. Harrold. Empirical studies of a safe regression test selection tech-
nique. Software Engineering, 24:401–419, 1999.

[25] S. Staber, B. Jobstmann, and R. Bloem. Finding and fixing faults. In Correct Hardware
Design and Verification Methods (CHARME ’05), pages 35–49. Springer, 2005. LNCS
3725.

[26] A. Zeller. Isolating cause-effect chains from computer programs. In Symposium on the
Foundations of Software Engineering (FSE’02), pages 1–10, November 2002.



On the Membership Problem for Visibly

Pushdown Languages�

Salvatore La Torre, Margherita Napoli, and Mimmo Parente

Facoltà di Scienze Matematiche, Fisiche e Naturali
Università degli Studi di Salerno, Italy
{slatorre,napoli,parente}@unisa.it

Abstract. Visibly pushdown languages are a subclass of deterministic
context-free languages that can model nonregular properties of interest
in program analysis. This class properly contains typical classes of paren-
thesized languages like “balanced” and “input-driven” languages. Visibly
pushdown languages are closed under boolean operations and some de-
cision problems, such as inclusion and universality, are decidable. In this
paper, we study the membership problem for this class of languages and
show that it can be solved in time linear in the size of the input grammar
and in the length of the input word. The algorithm consists of a reduc-
tion to the reachability problem on game graphs. The same approach
can be efficiently applied when the input language is given as a visibly
pushdown automaton, moreover we also show time complexities of the
same problem using other approaches. We further motivate our result
showing an application to XML schema.

1 Introduction

Context-free languages are a very interesting class of languages that have been
intensively studied by many researchers from different areas. Via their recursive
characterization (the context-free grammars) they have played a central role in
the development of compiler technologies, and recently, they are also used to de-
scribe document formats over the Web (Document Type Definitions) [14]. The
automaton-like characterization of this class of formal languages, the pushdown
automata, is a natural model for the control flow of sequential programs of typ-
ical procedural programming languages. Thus, program analysis, compiler opti-
mizations, and program verification can be rephrased as decision problems for
pushdown automata. As sample references on these topics see [2,8,5,9,11,13,19].

The relevance of context-free languages often cannot be fully exploited due
to the intractability of many fundamental problems. In a recent paper Alur and
Madhusudan [4] have introduced the class of visibly pushdown languages (Vpls).
Visibly pushdown languages are context-free languages accepted by pushdown
automata in which the input symbols determine the stack operations. They have

� Work partially supported by funds for the research from MIUR 2006, grant “Metodi
Formali per la verifica di sistemi chiusi ed aperti”, Università di Salerno.

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 96–109, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



On the Membership Problem for Visibly Pushdown Languages 97

been also characterized by the so-called visibly pushdown grammars (Vpgs) [4].
This class of languages is rich enough to model nonregular properties and is also
tractable and robust like the class of regular languages. In fact, Vpls are closed
under all the boolean operations and decision problems, such as inclusion and
universality, are Exptime-complete while they are in general undecidable for the
context-free languages. In [3], syntactic congruences on words and the problem
of finding a minimal canonical deterministic pushdown automaton for Vpls are
studied.

In this paper, we focus on the membership problem: “given a word w and a
Vpl language L, is w ∈ L?” While w is represented explicitely, L can be rep-
resented by an automaton or a grammar and this leads to different approaches.
When the Vpl is represented by a Vpa a simple algorithm for testing mem-
bership can be obtained by determinizing the visibly pushdown automaton by
the construction given in [4] and then running the deterministic automaton on
the input word. Clearly, it is not needed to compute the whole deterministic au-
tomaton (that would require exponential time) but the determinization can be
carried out directly (on-the-fly) getting an O(|w| · |Q|3) time upper bound, where
Q is the state set of the pushdown automaton accepting the input language.

On the other hand, it is interesting to have an efficient algorithm also when
the language is given by a Vpg. It is known that for context-free languages,
represented by grammars in Chomsky-Normal-Form, an efficient algorithm is
the CYK algorithm. This algorithm runs in time cubic in the size of the word
and linear in the size of the grammar. Time complexity improves on to quadratic
if the grammar is not ambiguous [14]. More efficient algorithms have been given
for particular subclasses of unambiguous grammars [1].

Here we give a solution to the membership problem for Vpls that takes time
linear in both the size of the input word w and the size of the input visibly
pushdown grammar G. Non-null productions of this kind of grammars are either
of the form X → aY or of the form X → aY bZ where X,Y, Z are variables,
a, b are terminal symbols, and in the second production a and b correspond
respectively to a push and its matching pop of the stack. The main idea of our
algorithm is to reduce this problem to a two-player game H where: a player (the
existential player) claims that she can show a derivation for a word and gives the
next step in her proof; the other player (the universal player) challenges her to
proceed in her proof on a portion of the remaining part of the word. Note that
when a production of the form X → aY is picked by the existential player as
next step in the proof of av, then the only claim on which the universal player
can challenge her is on generating v from Y . Instead, when a production of the
form X → aY bZ is picked as next step in the proof of avbz, then the universal
player can challenge the existential player both on generating v from Y and on
generating z from Z. Clearly, the proof is completed when the existential player
is asked to show that the empty word is generated from a variable X such that
X → ε is a production of G. Therefore, if S is the start variable of G, we have
that w ∈ L(G) if and only if the existential player can prove the claim S ⇒∗ w
independently from the objections of the universal player.



98 S. La Torre, M. Napoli, and M. Parente

The above game can be modeled as a reachability problem on a game graph
of size linear in the size of w and G. Therefore, our result follows from the fact
that the game-graph reachability problem can be solved in linear time (see [20]).

Classical applications of the membership problem for formal languages have
concerned with the parsing of programs and thus is strictly related to the design
of compilers. In such a context, a language generator/acceptor is constructed and
then it is used to parse several programs. Therefore, the size of the grammar or
the automaton can be considered constant and the efficiency of the algorithms
is measured in terms of the length of the document (i.e., word) to parse. Also,
the possibility of computing a deterministic model that captures the languages
of interest guarantees efficient parsing independently of the complexity of the
determinization procedure (determinization is done once for all). Clearly, such
observations do not apply when the language acceptor/generator may vary and
this is the case of the type conformity checking of XML documents [22,23]. In
this paper, we show that the synctactic structure of a Document Type Defi-
nition (DTD) and of an XML schema can be efficiently captured by a visibly
pushdown grammar, and thus our algorithm solving the membership problem
for visibly pushdown languages can be used for efficiently checking the type of
XML documents.

The rest of the paper is organized as follows. In the next section we give all
the definitions and some known result on Vpl languages. In Section 3, we give
our solution to the membership problem for Vpls. In Section 4, we show that
our result can be used in type-checking XML documents. In Section 5, we report
a thorough discussion on the presented result and the related research. Finally,
we conclude the paper with few remarks.

2 Preliminaries

In this section we give some definitions and some preliminary results, mostly
following the notation of [4].

2.1 Visibly Pushdown Languages

A pushdown alphabet is a tuple Σ̃ = 〈Σc, Σr, Σ
〉 consisting of three disjoint
alphabets: Σc is a finite set of calls, Σr is a finite set of returns and Σ
 is a finite
set of local actions.

Call, return and local symbols determine the stack operations of a Visibly
Pushdown Automata over Σ̃, defined as follows.

Definition 1 (Visibly Pushdown Automata). A (nondeterministic) Visibly
Pushdown Automaton (Vpa) on finite words over 〈Σc, Σr, Σ
〉 is a tuple M =
(Q,Qin, Γ, δ,QF ) where Q is a finite set of states, Qin ⊆ Q is a set of initial
states, Γ is a finite stack alphabet that contains a special bottom-of-stack symbol
⊥, δ ⊆ (Q×Σc×Q× (Γ \{⊥}))∪(Q×Σr×Γ ×Q)∪(Q×Σ
×Q), and QF ⊆ Q
is a set of final states.



On the Membership Problem for Visibly Pushdown Languages 99

Let us remark that the acceptance is only on final states (not by empty-stack)
and ε-transitions are not allowed. The languages accepted by a Vpa over Σ̃ is a
context-free language over an alphabet Σ = (Σc ∪Σr ∪Σ
).

Definition 2. A language of finite words L ⊆ Σ∗ is a visibly pushdown language
(Vpl) with respect to Σ̃ (a Σ̃-Vpl) if there is a Vpa M over Σ̃ such that
L(M) = L.

Visibly pushdown languages are characterized also by a context-free grammar.

Definition 3 (Visibly Pushdown Grammar). A context-free grammar G =
(V, S, P ), over an alphabet Σ, is a Visibly Pushdown Grammar (Vpg) with re-
spect to the partitioning Σ̃ = (Σc, Σr, Σ
), if the set V of variables is partitioned
into two disjoint sets V 0 and V 1, such that the production in P are of one the
following forms

– X → ε

– X → aY such that if X ∈ V 0 then a ∈ Σ
 and Y ∈ V 0;
– X → aY bZ such that a ∈ Σc and b ∈ Σr and Y ∈ V 0 and if X ∈ V 0 then
Z ∈ V 0.

A word w is well-matched if either w ∈ Σ∗
 or w = xaybz where x, y, z are well-
matched, a ∈ Σc and b ∈ Σr. In a word w = uaxbv, where u, v, x ∈ Σ∗ and x is
well-matched, a ∈ Σc and b ∈ Σr are called matching symbols, thus in any word
for each call symbol there is at most one matching return symbol and vice-versa.

Directly from the definition, we can prove that from variables in V 0 only well-
matched words can be derived. While words that can be derived from variables
in V 1 are not necessarily well-matched.

Example 1. Consider the grammar G = (V, S, P ) over Σ̃ = 〈{a}, {b}, {d}〉 where
V 0 = {X,Y }, V 1 = {S} and P has the following rules:
S → ε | aS | bS | aXbS; X → ε | aY bY ; Y → ε | dY .

It is easy to see that the word w = a3bdba ∈ L(G). Note that in w the first
and the last occurrences of a are unmatched, while the others match with the
b’s. Note also that G is ambiguous (consider for example the word ab). ��

Now we recall some known results about Vpl languages which will be used in
the rest of the paper.

Theorem 1. [4] For a pushdown alphabet Σ̃, a language L is Vpl if and only
if it can be generated by a visibly pushdown grammar.

Theorem 2. [4] For any Vpa M over Σ̃, there is a deterministic Vpa M ′ over
Σ̃ such that L(M ′) = L(M). Moreover, if M has n states, we can construct M ′

with O(2n2
) states and with stack alphabet of size O(2n2 · |Σc|).



100 S. La Torre, M. Napoli, and M. Parente

n1 n2

n4

n3

n5

Fig. 1. An example of a game graph, where the ∃-nodes are circles and the ∀-nodes
are boxes

2.2 Game Graphs

A game graph is a graph H = (N,E) where N is a finite set of nodes partitioned
into two sets N∃ and N∀, and E ⊆ N ×N is the set of edges. A node of N∃ is
called an ∃-node and a node of N∀ is called a ∀-node. A strategy tree from a node
n0 of H is a labeled tree obtained from H as follows. The root is labeled with n0,
and for each internal node u of the tree: if u is labeled with an ∃-node n1 of H ,
then it has only a child which is labeled with a node n2 such that (n1, n2) ∈ E;
if u is labeled with a ∀-node n1 of H , then for each n2 such that (n1, n2) ∈ E
it has a child that is labeled with n2. Note that nodes n2 may be leaves of the
strategy tree.

Given a game graph H , a starting node n0 and a set T of nodes of H (called
the target set), the reachability problem in H consists of determining if there
exists a finite strategy tree from n0 whose leaves are all labeled with nodes of
T . We call such a strategy tree a winning strategy.

In Figure 1, a simple game graph is shown. We have used a circle to denote
an ∃-node and a box to denote a ∀-node. If we consider as target set T =
{n5} then there are no strategy trees from n1 whose leaves are all in T , that
is the reachability problem is not satisfied. If instead we set T = {n1, n4}, the
reachability problem is satisfied.

Reachability in game graphs can be solved at a cost of a depth-first search of
the graph. Therefore, we have the following theorem.

Theorem 3. The reachability problem on a game graph H can be solved in
O(|H |) time.

3 Membership Problem

Given a string w and a language L, the membership problem consists of establish-
ing whether w is in L. While w is represented explicitely, L can be represented



On the Membership Problem for Visibly Pushdown Languages 101

(X → aY bZ, avbz)

(X, av)

n1

(X, v)

n2

n1

(X, avbz)

n2

n3

(Y, v)

(1)

(2)

(Z, z)
n4

Fig. 2. Graphical representation of the construction rules of the game graph HG
w

by an automaton, a grammar, or an expression. For each of these representations
a different algorithm, hence different time and space complexities, corresponds.

In this section we present an algorithm to decide whether a word w ∈ Σ∗

belongs to a language generated by a given Vpg G = (V, S, P ). The main idea
of this algorithm is to reduce our membership problem to reachability in game
graphs.

The construction of the game graph. Let G be a Vpg (V, S, P ) over Σ̃ =
〈Σc, Σr, Σ
〉 and w ∈ Σ∗. Define HG

w = (N,E) with N = N∀ ∪ N∃ and N∃ ⊂
(V ×Σ∗) and N∀ ⊂ (P ×Σ∗). The sets N and E are defined constructively as
follows:

Let (S,w) ∈ N∃. Consider a node n1 = (X,u) in N∃, then

1. if u = av and (X → aY ) ∈ P , then n2 = (Y, v) ∈ N∃ and the edge (n1, n2) ∈
E (see part (1) of Figure 2);

2. if u = avbz such that a ∈ Σc and b ∈ Σr are matching symbols and (X →
aY bZ) ∈ P , then
– n2 = (X → aY bZ, u) ∈ N∀ and (n1, n2) ∈ E,
– n3 = (Y, v) ∈ N∃ and (n2, n3) ∈ E,
– n4 = (Z, z) ∈ N∃ and (n2, n4) ∈ E.

(See part (2) of Figure 2.)

The target set T consists of the nodes (X, ε), such that X → ε is a rule in P .
Note that the graph HG

w is a directed acyclic graph, having just one node with
no incoming edges and the nodes in T do not have outgoing edges. Moreover
each ∀-node has only one incoming edge (stemming from an ∃-node) and at most
two outgoing edges (going into ∃-nodes).

Example 2. Given G as in the Example 1 and w = a3bdba the corresponding
graph HG

w is given in Fig. 3. It is immediate to see that w ∈ L(G) and there



102 S. La Torre, M. Napoli, and M. Parente

(S, a2bdba)

* *

(S, abdba) (S → aXbS, a2bdba)

(S → aXbS, abdba)(S, bdba)

(X → aY bY, abd)

*

(S, a) (X, abd)

(X, ε) (S, dba) (S, ε)

(Y, ε) (Y, d)

(S, a3bdba)

Fig. 3. The ∃-nodes are circles and the ∀-nodes are boxes. The nodes in the target-set
are starred.

is a strategy tree, from (S,w), whose leaves are all in the target set (the two
uppermost starred nodes). ��
In the above construction, it is clear that the words denoting the second compo-
nent of the ∃-nodes and ∀-nodes are all subwords of w. Since all these subwords
are O(|w|2), we get an O(|w|2 · |V |) upper bound on the number of ∃-nodes and
O(|w2| · |P |) for the ∀-nodes. We will show that indeed the number of the nodes
in the graph is O(|w| · |P |). To this aim, in the next lemma we give a careful
characterization of the forms of the subwords effectively used in the construction
of HG

w .

Lemma 1. If (Y, v) ∈ N∃ then

1. either v is a suffix of w
2. or Y ∈ V 0, v is well-matched and there is a subword w′ of w such that

2.1 either w′ = a1αvb1, where a1, b1 are matching symbols and α ∈ Σ∗

2.2 or w′ = a1x1a2x2b2αvb1, where a1, b1 and a2, b2 are matching symbols,

x1, x2 ∈ Σ∗ and α ∈ Σ∗
 .



On the Membership Problem for Visibly Pushdown Languages 103

Proof. The proof is by structural induction on the definition of N∃. If (Y, v) =
(S,w) then clearly v is a suffix of w. Suppose now that (Y, v) has an incoming
edge then three cases can occur:

i) The incoming edge comes from the ∃-node (X,u), and this implies that
X → aY ∈ P and u = av. If u is a suffix of w then v is a suffix as well.
Otherwise, from the inductive hypothesis, u is well-matched and X ∈ V 0.
Then, from the definition of G, a ∈ Σ
. Moreover, there exists a subword w′

of w such that either w′ = a1αub1 = a1αavb1 or w′ = a1x1a2x2b2αub1 =
a1x1a2x2b2αavb1, where αa ∈ Σ∗
 and thus 2 holds.

ii) The incoming edge comes from a ∀-node (X → aY bZ, u) and in turn this has
an incoming edge from the ∃-node (X,u) where u = avbz, for some z ∈ Σ∗.
Since a, b are matching symbols, then Y ∈ V 0 and v is well-matched. From
inductive hypothesis u is a subword of w and then w′ = avb is a subword of
w as well (case 2.1 holds).

iii) The incoming edge comes from a ∀-node (X → aZbY, u) and this in turn has
an incoming edge from the ∃-node (X,u) where u = azbv, for some z ∈ Σ∗.
If u is a suffix of w then v is a suffix of w as well. Otherwise u is well-
matched and there exists a subword w′ of w such that either w′ = a1αub1 =
a1αazbvb1 or w′ = a1x1a2x2b2αub1 which can be written as a1x

′azbvb1
where x′ = x1a2x2b2α. Moreover X ∈ V 0 implies that Y ∈ V 0 too and thus
case 2 holds. ��

Note that the second component of a ∀-node is identical to the second compo-
nent of the ∃-nodes which precedes it. From the above lemma a simpler property
of the subwords in the second component of the nodes can be obtained. A well-
matched subword v of w is called right maximal if w = uvx, u �= ε, and, for each
prefix x′ �= ε of x, the subword vx′ is not well-matched. This implies that if x �= ε,
then it begins with a return symbol whose matching call does not appear in v.
The words v characterized in Lemma 1 are of this kind and thus the following
corollary holds.

Corollary 1. If (·, v) ∈ N then v either is a suffix of w or a right maximal
well-matched subword of w.

We can thus compute the size of HG
w .

Lemma 2. The graph HG
w has O(|w| · |G|) nodes and edges.

Proof. Consider first the ∃-nodes. Fix w = w1 . . . wn and denote by w(i, j) the
subword of w from the i-th through the j-th position (i.e., w(i, j) = wi . . . wj).
From Corollary 1, we have that if (Y, v) ∈ N∃ then v is either a suffix of w or a
right maximal well-matched subword of w. Thus, for i = 1, . . . , n, if v = w(i, h)
for some i ≤ h ≤ n and (Y, v) ∈ N∃ then one of the following cases holds:

– i > 0 and wi is either a matched call or a local action: then v is either w(i, n)
or the right maximal well-matched subword starting at position i;

– else i = 0 or wi is either an unmatched call or a return: then v = w(i, n).



104 S. La Torre, M. Napoli, and M. Parente

Therefore, the number of ∃-nodes is bounded by |V | · (2|w| − nuc − nr − 1),
where nuc is the number of unmatched calls in w and nr is the number of returns.
Similarly, from the definition of HG

w and the above counting, the ∀-nodes and
the edges are O(|P | · |w|) and thus the lemma follows. ��

In the next Lemma we prove that a strategy tree from (S,w) to nodes of the
target set exists if and only if w ∈ L(G) (cf. Example 2).

Lemma 3. For every (X,u) ∈ N∃ there is a strategy tree from (X,u) to the
target set T if and only if there is a derivation from X to u in G.

Proof. We prove the assert by induction on the definition of N∃, using the nodes
with no outgoing edges as base case. Let (X,u) be one of these nodes. If u = ε
then clearly a derivation from X to u exists if and only if (X,u) ∈ T . If u �= ε
then (X,u) /∈ T . As (X,u) has no outgoing edges, there are no productions of
G from X that can start a derivation to u. Thus, a derivation from X to u
does not exist. For the induction step we prove first the only-if part and let e
be the outgoing edge branching off the root (X,u) of the strategy tree. If e is
added in the HG

w construction for a production of the form X → aY , then an
∃-node (Y, v) exists having e as an incoming edge and u = av. Then by induction
hypothesis there is a derivation from Y to v, and thus a derivation from X to u.
If, on the other hand, e is added for a production of the form X → aY bZ, then
a ∀-node having e as an incoming edge exists. In HG

w , each ∀-node is followed
by two ∃-nodes within a strategy tree, let (Y, v) and (Z, z), with u = avbz, be
the labels of such nodes. By induction, Y ⇒∗ v and Z ⇒∗ z holds. Thus, the
following derivation exists: X ⇒ aY bZ ⇒∗ avbZ ⇒∗ avbz.

The if part can be easily proved analogously, by constructing the strategy
tree from the derivation of u from X . ��

From Lemmas 2 and 3 our main result follows.

Theorem 4. The membership problem for a Vpg G = (V, S, P ) over Σ and a
word w ∈ Σ∗ is decidable in O(|w| · |G|).

4 XML Grammars and XML Document Processing

In this section, we describe an interesting application of the membership problem
of Vpls for processing XML documents. We start recalling the definition of an
XML grammar which captures the synctactic structure of a Document Type
Definition (DTD) and of an XML schema [6].

Let Σ be a finite alphabet, we define by Σ̄ the set of symbols σ̄ such that
σ ∈ Σ. A symbol σ ∈ Σ denotes an “open tag” and σ̄ its matching “close tag”.
Fix Σ̂ = Σ ∪ Σ̄. XML grammars are defined over symbols of Σ̂.

Definition 4 (XML Grammar). An XML grammar G = (V, S, P,R), over
an alphabet Σ̂, is such that:



On the Membership Problem for Visibly Pushdown Languages 105

– V = {Xσ | σ ∈ Σ}, i.e., each non-terminal symbol is in a one-to-one corre-
spondence to an open tag;

– S ∈ V is the axiom;
– R = {Rσ | σ ∈ Σ}, where Rσ denotes a regular language over V ;
– productions in P are of the form Xσ → σασ̄ where α ∈ Rσ. (Note that each

pair of open and close tags is produced from just one grammar variable.)

An XML language is the language generated by an XML grammar. In the fol-
lowing, we assume that each regular language is represented by a right-linear
grammar that generates it. We will comment on the generality of such assump-
tion in Section 5.

Any XML language can be seen as a visibly pushdown language where open
tags correspond to call symbols and close tags to their matching return symbols.
Thus, an XML language over Σ̂ can be generated by a visibly pushdown grammar
over the alphabet Σ̃ = (Σ, Σ̄, ∅) as shown in the following lemma.

Lemma 4. Given an XML grammar GXML over an alphabet Σ̂, there exists a
visibly pushdown grammar G over Σ̃ = (Σ, Σ̄, ∅) such that L(G) = L(GXML)
and |G| = O(|GXML|).

Proof. Let GXML be the XML grammar (VXML, SXML, PXML, RXML). For
each set Rσ, let Gσ = (Vσ , Sσ, Pσ) be a regular right-linear grammar over Σ
such that L(Gσ) = Rσ. Assume that for each σ ∈ Σ the sets Vσ are pairwise
disjoint.

We construct a visibly pushdown grammar G = (V, S, P ) such that L(G) =
L(GXML) as follows. The set V is {S} ∪

⋃
σ∈Σ{X ′ | X ∈ Vσ} where S denotes

a fresh symbol. The set of productions P is the smallest set containing:

– a production S → θS′θ θ̄, if SXML → θαθ̄ is a production in PXML (i.e.,
SXML is the non-terminal symbol corresponding to θ), and

– a production X ′ → τS′τ τ̄Y
′ for each open tag σ and production X → τY of

Gσ;
– a production X ′ → ε for each open tag σ and production X → ε of Gσ.

The cardinality of V is 1 +
∑

σ∈Σ |Vσ|, and the number of productions in P
is 1 +

∑
σ∈Σ |Pσ|. Therefore, we obtain the claimed bound. ��

Given an XML document D and a DTD (or an XML schema) S, the XML type-
checking problem is the problem of checking if D syntactically conforms to S.
This problem can be formalized as a membership problem for XML languages.
From the above lemma and Theorem 4, we have the following corollary.

Corollary 2. The type-checking problem for XML documents is decidable in
time linear in the length of the document and in the size of the DTD (or XML
schema).



106 S. La Torre, M. Napoli, and M. Parente

5 Discussion

A Vpl can be represented either as a grammar or a (non)deterministic au-
tomaton. In this section, we briefly discuss on the computational complexity
of other solutions to the membership problem for Vpls considering as a start-
ing representation both Vpgs and Vpas. We also comment on the complexity
of the type-checking problem for XML languages and the assumption made in
Section 4. Finally, we recall some related works.

In what follows, we fix a Vpg G = (V, S, P ) over an alphabet Σ, a Vpa A =
(Q,Qin, Γ, δ,QF ) and a word w = w1w2 . . . wn, where wi ∈ Σ for i = 1, . . . , n
and n ≥ 0.

When a Vpl is given as a Vpa A, since this class of automata is determinizable
(see Theorem 2), we can use the determinization construction on-the-fly while
checking for language membership. This approach leads to an algorithm that
takes cubic time in the number of states of the nondeterministic automaton:
O(|Q|2 · |Γ | + |Q|3), see [4].

Alternatively, we could transform the Vpa A into an equivalent Vpg GA and
this, again using the construction given in [4], amounts to a set of rules P of size
|Q|4 · |Γ |2 · |Σc| · |Σr|.

Consider now the case when a Vpl is represented by a Vpg. The membership
problem can be solved using an algorithm which resembles the well known CYK
algorithm [1]. Recall that in the original CYK algorithm the grammar is in
Chomsky Normal Form. Since Vpgs have productions with at most two variables
(nonterminals) on the right hand side, we can develop a similar procedure: a
bottom-up parsing to fill in a lookup table whose entry (i, j) represents the set
of all the variables from which the subword wi, · · · , wi+j−1 can be derived. The
overall time complexity of this algorithm is O(|P | · n2) (recall that the CYK
algorithm for a generic context-free grammar runs in time O(|P | · n3)).

Alternatively, one can think of translating the Vpg into an equivalent Vpa,
but this turns out to be quite expensive in general. In fact, by the construction
given in [4], translating a Vpg into a Vpa costs O(|P | + |Pε| · |Σr| · |V |) time,
where |Pε| is the subset of the nullable productions (productions of the form
X → ε). The size of the set of states and the size of the stack alphabet of the
Vpa are respectively |V | and |V ·Σr|.

Concerning to the type checking problem presented in Section 4, a comment
on the linearity of the complexity of Corollary 2 is needed. In the Document
Type Definitions (DTD) and XML schemas, the regular sets Rσ are given as
regular expressions. Therefore, in the proof of Lemma 4 we have to take into ac-
count also a translation from regular expressions to right-linear grammars that
might cause a quadratic blow-up in the size of the DTD, or equivalently of the
XML schema. However, according to W3C recommendation [22], such regular
languages are required to admit a deterministic regular expression (cf. also [6]).
Therefore, it is reasonable to assume that the size of right-linear grammars Gσ

generating languages Rσ have linear size in the size of the regular expression
used in the DTD (or XML schema).



On the Membership Problem for Visibly Pushdown Languages 107

Related research
Several kinds of grammars generating subsets of Dyck languages have been stud-
ied in the past and they are strictly related to Vpg grammars. The best known
examples are the parenthesis grammars, defined by Mc Naughton in 1967 [18]
and the bracketed grammars, introduced by Ginsburg and Harrison [12]. A paren-
thesis grammar is a context-free grammar with set of variables V and alphabet
Σ ∪ {(, )}, where each rule is of the form X → (α), α ∈ (Σ ∪ V )∗.

One of the most relevant result for this class was obtained by Knuth [15]
who showed the existence of an algorithm for determining whether a context-
free language admits a parenthesis grammar (actually the class of languages
considered by Knuth is slightly larger than that defined by Mc Naughton since a
word in a language does not needed to be surrounded by parenthesis). In 1977,
Lynch [17] studied the membership problem for parenthesis language and showed
that it is in Logspace in the size of the input word.

A bracketed grammar differs from a parenthesis grammar because of a set of
indexed parentheses and a bijection between parentheses and production rules.
In fact, any rule i of a bracketed grammar is of the formX → (iα)i, α ∈ (Σ∪V )∗,
and (i �= (j for i �= j.

More recently, the class of so called balanced grammars has been introduced
[6] which extends both parenthesis and bracketed grammars. In these grammars
the set of productions for each variable is a regular set (as in the XML grammars,
studied in [7] and considered in Section 4). Many interesting properties of this class
have been studied such as inclusion, equivalence, intersection, canonical form and
testing context-free languages for membership to the class of XML-languages.

The classes of languages defined by the above described grammars are strictly
included in the class of Vpls. They all are deterministic context-free languages
and the membership problem can thus be solved in time which is linear with re-
spect to the length of the input word, but the complexity of the membership prob-
lem with respect to size of the language representation has not been addressed.

In [21,10], the class of input-driven languages has been introduced, which
coincides with well matched Vpls. In these papers the space complexity of the
membership problem is analysed when the languages are given as automata
(instead of grammars).

The use of visibly push-down automata for solving problems for XML that
involve processing of documents from left to right (such as the type-checking
problem we have considered in this paper) has been recently proposed in [16].
There, the authors give an automaton counterpart to XML-grammars that they
call XVpa (a variant of visibly push-down automata) and rephrase some typ-
ing and streaming problems for XML (including the type-checking problem) as
automata decision problems.

6 Conclusions

The membership problem is a central decision problem in the formal languages
theory. The time complexity of the membership problem for subclasses of



108 S. La Torre, M. Napoli, and M. Parente

context-free languages has been largely studied, mainly because of its impor-
tance in parsing (see also [1]).

In this paper, we have addressed the membership problem for visibly push-
down languages, a sub-class of deterministic context-free languages. Using the
visibly pushdown grammars from [4], we have given an algorithm to solve this
problem in time linear in both the length of the input word and the size of
the grammar. Thus, checking for membership in visibly pushdown grammars
can be done faster than for general context-free grammars (even in the case of
unambiguous grammars [14]). (Recall that the membership problem in regular
languages is linear both in the size of the automaton/grammar and the length
of the input word.) As for the other decision problems, the complexity of the
membership one confirms that visibly pushdown languages have nice features in
terms of tractability and robustness, and thus from this point of view are more
alike to the class of regular languages than to the class of context-free languages.
As shown in Section 4, our result on the membership problem for Vpls has a
natural application in the processing of XML documents.

Acknowledgments. We would like to thank Rajeev Alur and Parthasarathy
Madhusudan for fruitful discussions.

References

1. A. Aho and J. Ullman. “The theory of Parsing, Traslation and Compiling, vol. I,
Prentice-Hall, Englewood Cliffs, NJ, 1973

2. R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. W. Reps, and M. Yan-
nakakis. “Analysis of recursive state machines”, in ACM Trans. Program. Lang.
Syst., 27(4):786–818, 2005.

3. R. Alur, V. Kumkar, P. Madhusudan and M. Viswanathan. “Congruences for vis-
ibly pushdown languages” in Proc. of the 32nd Intl. Coll. of Automata and Lan-
guages (ICALP’05), LNCS 3580:1102–1114, 2005.

4. R. Alur and P. Madhusudan. “Visibly Pushdown Languages”,
www.cis.upenn.edu/˜alur/. A preliminary version appears in Proc. of the
36th ACM Symp. on Theory of Computing (STOC’04), 201–211, 2004.

5. T. Ball and S. Rajamani. “Bebop: A Symbolic Model Checker for Boolean Pro-
grams”, in Proc. of the 7th Intern. Workshop on Model Checking of Software (SPIN
2000), LNCS 1885: 113–130, 2000.

6. J. Berstel and L. Boasson. “Balanced Grammars and Their Languages”, in For-
mal & Natural Computing: Essay dedicated to Grzegorz Rozenberg , LNCS 2300:3–
25,2002.

7. J. Berstel and L. Boasson. “Formal Properties of XML Grammars and Languages”,
in Acta Informatica, 38 :649–671,2002.

8. A. Bouajjani, J. Esparza, and O. Maler. “Reachability analysis of pushdown au-
tomata: Application to model-checking”, in Proc. of the 8th Inter. Conf. on Con-
currency Theory (CONCUR’97), LNCS 1243: 135–150, 1997.

9. O. Burkart and B. Steffen. “Model Checking for Context-Free Processes”, in Proc.
of the 3rd Inter. Conf. on Concurrency Theory (CONCUR’92), LNCS 620:123–137,
1992.



On the Membership Problem for Visibly Pushdown Languages 109

10. P. W. Dymond. “Input-driven languages are Recognized in Log n Space”, in IPL
, 26:247250, 1988.

11. J. Esparza, A. Kucera, and S. Schwoon. “Model checking LTL with regular val-
uations for pushdown systems”, Information and Computation, 186(2): 355–376
2003.

12. S. Ginsburg and M. A. Harrison. “Bracketed Context-free languages”, J. Computer
and System Sci., 1:1-23, 1967.

13. T. A. Henzinger, R. Jhala, R. Majumdar, G. C. Necula, G. Sutre, and W. Weimer.
“Temporal-Safety Proofs for Systems Code”, in Proc. of the 14th Inter. Conf. on
Comp.-Aided Verif. (CAV 2002), LNCS 2404: 526–538, 2002.

14. J.E. Hopcroft, R. Motwani and J.D. Ullman “Introduction to Automata Theory,
Languages, and Computation” Addison Wesley, 2001.

15. D.E. Knuth. “A characterization of parenthesis languages”, Information and Con-
trol, 11(3):269–289,1967.

16. V. Kumkar, P. Madhusudan and M. Viswanathan. “Visibly Pushdown Languages
for XML”. Technical Report UIUCDCS-R-2006-2704, UIUC, 2006.

17. N. Lynch. “Log Space Recognition and Traslation of Parenthesis Languages”, J.
ACM, 24(4):583–590,1977.

18. R. McNaughton. “Parenthesis grammars”, J. ACM, 14(3):490–500,1967.
19. T. W. Reps, S. Horwitz, and S. Sagiv. “Precise Interprocedural Dataflow Anal-

ysis via Graph Reachability”, in Proc. of the 22nd Symposium on Principles of
Programming Languages (POPL’95), 49–61, 1995.

20. W. Thomas, “On the synthesis of strategies in infinite games”, in 12th Annual
Symposium on Theoretical Aspects of Computer Science, STACS’95, LNCS 900:
1–13, 1995.

21. B. von Braunmhl and R. Verbeek. “Input-driven languages are Recognized in Log
n Space”, in Proc. of FCT , LNCS 158:4051, 1983.

22. W3C Recommendation. Extensible Markup Language (XML) 1.0 (Second Edition),
6 October 2000. http://www.w3.org/TR/REC-xml

23. W3C Recommendation. XML Schema Part 0,1 and 2, 2 May 2001.
http://www.w3.org/TR/xmlschema-0,1,2



On the Construction of
Fine Automata for Safety Properties

Orna Kupferman and Robby Lampert

Hebrew University, School of Engineering and Computer Science, Jerusalem 91904, Israel
{orna,robil}@cs.huji.ac.il

Abstract. Of special interest in formal verification are safety properties, which
assert that the system always stays within some allowed region. Each safety prop-
erty ψ can be associated with a set of bad prefixes: a set of finite computations
such that an infinite computation violates ψ iff it has a prefix in the set. By trans-
lating a safety property to an automaton for its set of bad prefixes, verification
can be reduced to reasoning about finite words: a system is correct if none of its
computations has a bad prefix. Checking the latter circumvents the need to reason
about cycles and simplifies significantly methods like symbolic fixed-point based
verification, bounded model checking, and more.

A drawback of the translation lies in the size of the automata: while the trans-
lation of a safety LTL formula ψ to a nondeterministic Büchi automaton is expo-
nential, its translation to a tight bad-prefix automaton — one that accepts all the
bad prefixes of ψ, is doubly exponential. Kupferman and Vardi showed that for
the purpose of verification, one can replace the tight automaton by a fine automa-
ton — one that accepts at least one bad prefix of each infinite computation that
violates ψ. They also showed that for many safety LTL formulas, a fine automa-
ton has the same structure as the Büchi automaton for the formula. The problem
of constructing fine automata for general safety LTL formulas was left open. In
this paper we solve this problem and show that while a fine automaton cannot, in
general, have the same structure as the Büchi automaton for the formula, the size
of a fine automaton is still only exponential in the length of the formula.

1 Introduction

Today’s rapid development of complex and safety-critical systems requires reliable ver-
ification methods. In formal verification, we verify that a system meets a desired prop-
erty by checking that a mathematical model of the system meets a formal specification
that describes the property. Of special interest are properties asserting that observed
behavior of the system always stays within some allowed region, in which nothing
“bad” happens. For example, we may want to assert that every message received was
previously sent. Such properties of systems are called safety properties. Intuitively, a
property ψ is a safety property if every violation of ψ occurs after a finite execution
of the system. In our example, if in a computation of the system a message is received
without previously being sent, this occurs after some finite execution of the system.

In order to formally define what safety properties are, we refer to computations of
a nonterminating system as infinite words over an alphabet Σ. Typically, Σ = 2AP ,

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 110–124, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



On the Construction of Fine Automata for Safety Properties 111

where AP is the set of the system’s atomic propositions. Consider a language L of
infinite words over Σ. A finite word x over Σ is a bad prefix for L iff for all infinite
words y over Σ, the concatenation x · y of x and y is not in L. Thus, a bad prefix for
L is a finite word that cannot be extended to an infinite word in L. A language L is
a safety language if every word not in L has a finite bad prefix. Linear properties of
nonterminating systems are often specified using nondeterministic Büchi automata on
infinite words (NBW) or linear temporal logic (LTL) formulas. We say that an NBW is
a safety NBW if it recognizes a safety language. Similarly, an LTL formula is a safety
formula if the set of computations that satisfy it form a safety language.

In addition to proof-based methods for the verification of safety properties
[MP92, MP95], there is extensive work on model checking of safety properties. Gen-
eral methods for model checking of linear properties are based on a construction of an
NBW A¬ψ that accepts exactly all the infinite computations that violate the property
ψ [VW94]. Verification of a system M with respect to ψ is reduced to checking the
emptiness of the product of M and A¬ψ [VW86]. This check can be performed on-
the-fly and symbolically [BCM+92, CVWY92]. When ψ is an LTL formula, the size of
Aψ is exponential in the length of ψ, and the complexity of verification that follows is
PSPACE, with a matching lower bound [SC85].

When ψ is a safety property, the NBW A¬ψ can be replaced by bad-pref (Aψ)
– an automaton on finite words (NFW) that accepts exactly all the bad prefixes of
ψ [KV01a]. This has several advantages, as reasoning about finite words is simpler
than reasoning about infinite words: symbolic reasoning (in particular, bounded model
checking procedures) need not look for loops (cf. [HKSV97]) and can, instead, apply
backward or forward reachability analysis [BCM+92, IN97, CBRZ01, Hol04]. In fact,
the construction of bad-pref (Aψ) reduces the model-checking problem to the problem
of invariance checking [MP92], which is amenable to both model-checking techniques
[BCM+92, IN97] and deductive verification techniques [BM83, OSR95, MAB+94]. In
addition, using bad-pref (Aψ), we can return to the user a finite error trace, which is a
bad prefix, and which is often more helpful than an infinite error trace.

The construction of bad-pref (Aψ) is studied in [KV01a]. As shown there, while
the translation of ψ to the NBW A¬ψ involves an exponential blow-up, the NFW
bad-pref (Aψ) may be doubly-exponential in the length of ψ. This discouraging blow-
up is reflected in the fact that practitioners have restricted attention to invariance check-
ing [GW91, McM92, Val93, MR97], have assumed that a general safety property is
given by the set of its bad prefixes [GW91], or have worked with variants of A¬ψ that
approximate the set of bad prefixes [GH01].

Such an approximation is also studied in [KV01a], which relaxes the requirement on
bad-pref (Aψ) and seek, instead, an NFW that need not accept all the bad prefixes, yet
must accept at least one bad prefix of every infinite computation that does not satisfy
ψ. Such an NFW is said to be fine for ψ. For example, an NFW that accepts all the
finite words in 0∗ · 1 · (0 + 1) does not accept all the bad prefixes of the safety language
{0ω}; in particular, it does not accept the minimal bad prefixes in 0∗ · 1. Yet, such an
NFW is fine for {0ω}. Indeed, every infinite word that is different from 0ω has a pre-
fix in 0∗·1·(0+1). In practice, almost all the benefit that one obtains from bad-pref (Aψ)



112 O. Kupferman and R. Lampert

can also be obtained from a fine automaton. It is shown in [KV01a] that for many
safety formulas ψ, a fine automaton has the same structure as the NBW A¬ψ, and can
be constructed by redefining its set of accepting states.

The construction in [KV01a] has been optimized and implemented in [Lat03], which
also describes an implementation of the algorithm for checking whether an LTL formula
ψ is such that a fine automaton for it can be easily constructed from A¬ψ. The prob-
lem of constructing fine automata for general safety LTL formulas was left open in
both papers. We note that the problem was left open not due to a lack of interest; to
the contrary – in practice we do come across formulas for which the constructions in
[KV01a, Lat03, GH01] do not work, and a fine automaton is desirable. In this paper
we solve this problem and show how to construct, for every LTL formula, a fine au-
tomaton of size only exponential in the length of the formula. We also show that while
a fine automaton for ψ cannot, in general, have the same structure as the NBW A¬ψ,
its construction is similar to that of A¬ψ . The key idea behind our construction is that
even though it is impossible to bound the length of a good prefix, it is possible to bound
the number of visits that a good prefix has to the set of accepting states. In addition
to the above positive result, we give negative results about fine automata constructed
from Aψ (rather than A¬ψ), and about the possibility of using properties of the NBWs
obtained from LTL formulas (c.f., reverse determinism, single accepting run, obtained
by alternation removal of a very weak alternating automaton) in order to define a fine
automaton with the same structure as Aψ .

From a theoretical point of view, we find our result very interesting: the “fine-
automaton” problem belongs to a class of long-standing open problems that refer to the
power of nondeterminism, and this work is the first to solve a problem from this class.
To get the flavor of this class, consider an NBW A, and assume we want to translate it
to an equivalent nondeterministic co-Büchi automaton1 (NCW). The best known proce-
dure for doing it is to determinize A to a Streett automaton and then define the co-Büchi
condition on top of the deterministic automaton. This involves an exponential blow-up,
with no matching lower bound, and the question about the existence of an efficient
NBW-to-NCW translation that avoids determinization and goes directly to an NCW is
open. More problems in this class include a translation of an NBW to an automaton
on finite words (accepting a language whose limit is the language of the original au-
tomaton, see [Lan69]), a translation of nondeterministic tree automata for a derivable
language to a word automaton for the language that derives it (see [KSV96]), and more.
The “fine-automaton” problem is the first problem in this class to which we are able to
avoid determinization. Indeed, the existing solution, from [KV01a], applies the subset
construction. We hope the solution would shed light on the other problems in this class.
In particular, we believe that the idea used here, of using the complementary nondeter-
ministic automaton instead of a deterministic automaton would be useful for the other
problems: both determinization and complementation involves an exponential blow-up.
Nevertheless, when the language is given in terms of an LTL formula, complementation

1 Such a translation is not always possible, and attention is restricted to languages for which it is
possible. The need for such a translation arises from the fact that the transition from NCW to
the alternation-free µ-calculus is linear, whereas the transition from NBW to the alternation-
free µ-calculus is exponential. For details, see [KV05a].



On the Construction of Fine Automata for Safety Properties 113

is for free. Thus, as is the case with fine-automata, a construction that uses the comple-
menting automaton rather than the deterministic one is exponentially better.

From a practical point of view, our solution shows that reasoning about all safety for-
mulas can be done symbolically with a single exponential blow-up and a single nested
fixed-point. In Section 5, we discuss the application of our result in run-time verification
and bounded model checking.

2 Preliminaries

Safety and Co-safety Languages. Consider a language L ⊆ Σω of infinite words over
the alphabet Σ. A finite word x ∈ Σ∗ is a bad prefix for L iff for all y ∈ Σω, we
have x · y �∈ L. Thus, a bad prefix is a finite word that cannot be extended to an infinite
word in L. Note that if x is a bad prefix, then all the finite extensions of x are also bad
prefixes. A language L is a safety language iff every infinite word w �∈ L has a finite
bad prefix. For a safety languageL, we denote by bad-pref (L) the set of all bad prefixes
for L.

For a language L ⊆ Σω (Σ∗), we use comp(L) to denote the complement of L;
i.e., comp(L) = Σω \ L (Σ∗ \ L, respectively). We say that a language L ⊆ Σω is
a co-safety language iff comp(L) is a safety language. (The term used in [MP92] is
guarantee language.) Equivalently, L is co-safety iff every infinite word w ∈ L has a
good prefix x ∈ Σ∗: for all y ∈ Σω, we have x · y ∈ L. For a co-safety language L, we
denote by good-pref (L) the set of good prefixes for L. Note that for a safety language
L, we have that good-pref (comp(L)) = bad-pref (L). Thus, in order to construct the
set of bad prefixes for a safety property, one can construct the set of good prefixes for
its complementary language.

Word Automata. Given an alphabet Σ, an infinite word over Σ is an infinite sequence
w = σ1 · σ2 · · · of letters in Σ. We denote by wl the suffix σl · σl+1 · σl+2 · · · of w.
A nondeterministic Büchi word automaton (NBW, for short) is A = 〈Σ,Q, δ,Q0, F 〉,
whereΣ is the input alphabet,Q is a finite set of states, δ : Q×Σ → 2Q is a transition
function, Q0 ⊆ Q is a set of initial states, and F ⊆ Q is a set of accepting states. If
|Q0| = 1 and δ is such that for every q ∈ Q and σ ∈ Σ, we have that |δ(q, σ)| = 1,
then A is a deterministic Büchi word automaton (DBW, for short).

Given an input word w = σ0 ·σ1 · · · in Σω, a run of A on w is a sequence r0, r1, . . .
of states in Q, such that r0 ∈ Q0 and for every i ≥ 0, we have ri+1 ∈ δ(ri, σi); i.e.,
the run starts in one of the initial states and obeys the transition function. Note that
a nondeterministic automaton can have many runs on w. In contrast, a deterministic
automaton has a single run on w.

For a run r, let inf(r) denote the set of states that r visits infinitely often. That is,
inf(r) = {q ∈ Q : ri = q for infinitely many i ≥ 0}. As Q is finite, it is guaranteed
that inf(r) �= ∅. The run r is accepting iff inf(r) ∩ F �= ∅. That is, iff there exists a
state in F that r visits infinitely often. A run that is not accepting is rejecting. An NBW
A accepts an input word w iff there exists an accepting run of A on w. The language of
an NBW A, denoted L(A), is the set of words that A accepts. We assume that a given
NBW A has no empty states (that is, at least one word is accepted from each state –
otherwise we can remove the state).



114 O. Kupferman and R. Lampert

We say that the automaton A over infinite words is a safety (co-safety) automa-
ton iff L(A) is a safety (co-safety) language. We use bad-pref (A), good-pref(A), and
comp(A) to abbreviate bad-pref (L(A)), good-pref (L(A)), and comp(L(A)).

Linear Temporal Logic. The logic LTL is a linear temporal logic. Formulas of LTL are
constructed from a set AP of atomic propositions using the usual Boolean operators
and the temporal operators G (“always”), F (“eventually”), X (“next time”), and U
(“until”). Formulas of LTL describe computations of systems over AP . For example,
the LTL formula G(req → Fack ) describes computations in which every position in
which req holds is eventually followed by a position in which ack holds. For the de-
tailed syntax and semantics of LTL, see [Pnu81]. The model-checking problem for LTL
is to determine, given an LTL formula ψ and a systemM , whether all the computations
ofM satisfy ψ.

General methods for LTL model checking are based on translation of LTL formulas
to nondeterministic Büchi word automata:

Theorem 1. [VW94] Given an LTL formula ψ, one can construct an NBW Aψ that
accepts exactly all the computations that satisfy ψ. The size of Aψ is, in the worst case,
exponential in the length of ψ.

Given a systemM and a property ψ, model checking ofM with respect to ψ is reduced
to checking the emptiness of the product of M and A¬ψ [VW94]. This check can be
performed on-the-fly and symbolically [BCM+92, CVWY92], and the complexity of
model checking that follows is PSPACE, with a matching lower bound [SC85].

3 Detecting Bad and Good Prefixes

Recall that the model-checking problem for an LTL formulaψ involves the construction
of an NBW that accepts infinite computations that violate ψ. As discussed in Section 1,
when ψ is a safety property, it is desirable to construct, instead, a nondeterministic
automaton on finite words (NFW, for short) for the bad prefixes of ψ. In this section we
recall the relevant results from [KV01a], and the problem that has been left open there.

Consider a safety NBW A. If A is deterministic, we can construct a deterministic
automaton on finite words (DFW, for short) for bad-pref (A) by defining the set of ac-
cepting states to be the set of states s for which A with initial state s is empty. Likewise,
if A is a co-safety automaton, we can construct a DFW for good-pref(A) by defining
the set of accepting states to be the set of states s for which A with initial state s is
universal.

When A is nondeterministic, the story is more complicated. Even if we are after a
nondeterministic, rather than a deterministic, automaton for the bad or good prefixes,
the transition from infinite words to finite words involves an exponential blow-up. For-
mally, we have the following.

Theorem 2. [KV01a] Consider an NBW A of size n.

1. If A is a safety automaton, the size of an NFW for bad-pref (A) is 2Θ(n).
2. If A is a co-safety automaton, the size of an NFW for good-pref (A) is 2Θ(n).



On the Construction of Fine Automata for Safety Properties 115

The lower bound in Theorem 2 for the case A is a safety automaton is not surpris-
ing. Essentially, it follows from the fact that bad-pref (A) refers to words that are not
accepted by A. Hence, it has the flavor of complementation, and complementation of
nondeterministic automata involves an exponential blow-up [MF71]. The second blow-
up, however, in going from a co-safety automaton to a nondeterministic automaton for
its good prefixes is surprising. Since its proof in [KV01a] highlights our contribution
here, we describe it below.

For n ≥ 1, let Σn = {1, . . . , n,&}. We define Ln as the language of all words
w ∈ Σω

n such that w contains at least one & and the letter after the first & is either & or
it has already appeared somewhere before the first &. The language Ln is a co-safety
language. Indeed, each word in Ln has a good prefix (e.g., the one that contains the
first & and its successor). We can recognize Ln with an NBW with O(n) states (the
NBW guesses the letter that appears after the first &). Obvious good prefixes for Ln are
12&&, 123&2, etc. That is, prefixes that end one letter after the first &, and their last
letter is either & or has already appeared somewhere before the &. We can recognize
these prefixes with an NFW with O(n) states. But Ln also has some less obvious good
prefixes, like 1234 · · ·n& (a permutation of 1 . . . n followed by &). These prefixes are
indeed good, as every suffix we concatenate to them would start in either & or a letter
in {1, . . . , n}, which has appeared before the &. To recognize these prefixes, an NFW
needs to keep track of subsets of {1, . . . , n}, for which it needs 2n states. Consequently,
an NFW for good-pref(Ln) must have at least 2n states.

As described in the proof, some good prefixes for Ln (the “obvious prefixes”) can be
recognized by a small NFW. What if we give up the non-obvious prefixes and construct
an NFW A′ that accepts only the “obvious subset” of Ln? It is not hard to see that each
word in Ln has an obvious prefix. Thus, while A′ does not accept all the good prefixes,
it accepts at least one prefix of every word in L. This useful property of A′ is formalized
below.

Consider a safety language L. We say that a set X ⊆ bad-pref (L) is a trap for L iff
every word w �∈ L has at least one bad prefix in X . Thus, whileX need not contain all
the bad prefixes for L, it must contain sufficiently many prefixes to “trap” all the words
not in L. Dually, a trap for a co-safety language L is a set X ⊆ good-pref(L) such that
every word w ∈ L has at least one good prefix in X . We denote the set of all the traps,
for an either safety or co-safety language L, by trap(L).

An NFW A is fine for a safety or a co-safety language L iff A accepts a trap for L.
For example, an NFW that accepts 0∗ · 1 · (0 + 1) does not accept all the bad prefixes
of the safety language {0ω}; in particular, it does not accept the minimal bad prefixes
in 0∗ · 1. Yet, such an NFW is fine for {0ω}. Indeed, every infinite word that is different
from 0ω has a prefix in 0∗ · 1 · (0 + 1). Likewise, the NFW is fine for the co-safety
language 0∗ · 1 · (0 + 1)ω. In practice, almost all the benefit that one obtains from an
NFW that accepts all the bad/good prefixes can also be obtained from a fine automaton.
It is shown in [KV01a] that for natural safety formulas ψ, the construction of an NFW
fine for ψ is as easy as the construction of A¬ψ. In more details, if we regard A¬ψ as an
NFW, with an appropriate definition of the set of accepting states, we get an automaton
fine for ψ. For general safety formulas, the problem of constructing small fine automata
was left open:



116 O. Kupferman and R. Lampert

Open question [KV01a]: Are there feasible constructions of fine automata for general
safety and co-safety formulas?

In the rest of the paper, we solve the question and discuss our solution.

4 Fine Automata for Safety and Co-safety Properties

In this section we study the size of fine automata for safety and co-safety properties.
We start with the case the property is given by means of an NBW and show that then,
the size of a fine automaton is polynomial in the sizes of the NBWs for the property
and its negation. Since for LTL, the sizes of the NBWs for a formula and its negation
are both exponential in the length of the formula, we conclude that LTL formulas have
exponential fine automata.

4.1 Fine Automata for Safety NBW

We start with fine automata for safety NBWs. It is shown in [KV01a] that the transition
from an NBW to a tight NFW for its bad prefixes is exponential, and that the exponential
blow-up follows from the fact that a complementing NBW can be constructed from a
tight NFW. When we consider fine automata, things are more complicated, as the fine
NFW need not accept all bad prefixes. As we show below, however, a construction of
fine automata still has the flavor of complementation, and must involve an exponential
blow-up.

Theorem 3. Given a safety NBW A of size n, the size of an NFW fine for A is expo-
nential in n.

Proof: Since every tight NFW is fine, the upper bound follows from Theorem 2.
The lower bound follows from the exponential lower bound for NFW complemen-

tation [SS78]. As detailed below, given an NFW U , one can construct an NBW U ′ of
size linear in the size of U , such that L(U ′) is safety and an NFW fine for U ′ can be
turned into an NFW for comp(L(U)) of the same size. It follows that a sub-exponential
construction of fine automata would lead to a sub-exponential complementation con-
struction, which is known to be impossible.

For an alphabetΣ with # /∈ Σ and an NFW U for a languageL ⊆ Σ∗, we define the
language L′ = {u#ω : u ∈ L}∪Σω over the alphabetΣ′ = Σ∪{#}. Note that every
word y ∈ (Σ′)ω that is not inL′ must contain at least one #. Indeed, otherwise y ∈ Σω,
which is contained in L′. Nevertheless, L′ is a safety language, as every word y /∈ L′ is
of the form ht, where t is some string in (Σ′)ω and h is either v# for v ∈ Σ∗ \ L, or
v#+a for v ∈ (Σ′)ω and a �= #. In both cases, h is a bad prefix.

Given U , we construct the NBW U ′ for L′ by adding to U two new states, which
are going to be the only accepting states of U ′. The first state (which accepts Σω) has
a σ transition from the initial state and from itself, for every σ ∈ Σ. The second state
(which accepts #ω and is reachable by traversing v# for v ∈ L) has a # transition
from every accepting state of U and from itself. It is not hard to see that L(U ′) = L′.

Let A be an NFW fine for U ′. We now show how an NFW U for comp(L) can be
obtained from A. Given A, we make the following two changes. First, we define the set



On the Construction of Fine Automata for Safety Properties 117

of accepting states to be the set of states of A from which we can reach an accepting
state by reading a string t ∈ #+. Then, we delete from A all # transitions.

We prove that U indeed accepts comp(L). Consider a word w ∈ Σ∗. Assume first
that w ∈ comp(L). Then, w /∈ L and w#ω /∈ L′. Therefore, as A is fine, a prefix of
w#ω is accepted by A. Let h be the minimal prefix of w#ω accepted by A, and let
|h| = l. Since Σω ⊆ L′, the prefix h must contain at least one #. Thus, h = w#k

for some k ≥ 1. Let r0r1 . . . rl be an accepting run of A on h. Since we can reach the
accepting state rl from rl−k by reading #k, then, by the definition of U , the state rl−k

is accepting in U , thus r0r1 . . . rl−k is an accepting run of U on w, and w ∈ L(U).
Assume now that w ∈ L(U). Let |w| = m and let r0r1 . . . rm be an accepting run of U
on w. Then, by the definition of U , there is an accepting run r0r1 . . . rmrm+1 . . . rm+k

of A on h = w#k for some k ≥ 1, which means that h ∈ bad-pref(L′). As stated
above, h ∈ bad-pref (L′) if either h = v#t for v ∈ Σ∗ \ L, or h = v#+at for
v ∈ (Σ′)ω and a �= # (Note that since h need not be a minimal bad prefix, t may
be a finite string over Σ′). Since h consists of w, which contains only letters from Σ,
followed by #k, no letter a �= # appears after the first # in h. Thus, h must have the
form v#t for v /∈ L. As the part of h preceding the first # is w, we have that w /∈ L,
and we are done.

The proof of Theorem 3 shows that constructing a fine NFW for a safety NBW has the
flavor of complementation. In Theorem 5, we show that the size of the complementary
automaton is indeed the bottleneck in the construction of fine NFW for safety NBW,
and that a fine automaton can be constructed with a blow-up that depends on the size of
the complementary automaton.

4.2 Fine Automata for Co-safety NBW

We now move on to consider co-safety NBWs. We start with bad news and show that
a fine NFW for a co-safety NBW cannot, in general, have the same structure as the co-
safety NBW. We then present our main result and show that a fine NFW for a co-safety
property can be constructed from the NBWs for the property and its negation. Note that
by dualizing this result, we get a similar bound also for safety NBWs.

NBWs Are Not Fine-Type. The notion of typeness arises in the context of transla-
tions between different types of automata on infinite words [KPB94, KMM04]. For an
acceptance condition γ (say, Büchi), an automaton A is said to be γ-type if whenever
there is a γ-automaton equivalent to A, there is also a γ-automaton A′ equivalent to A
with the same structure as A. Thus, A′ is obtained from A by redefining its acceptance
condition. It is shown, for example, in [KPB94] that deterministic Rabin automata are
Büchi type: if a deterministic Rabin automaton A recognizes a language that can be
recognized by a deterministic Büchi automaton, then A has an equivalent determin-
istic Büchi automaton on the same structure. On the other hand, Streett automata are
not Büchi type: there is a deterministic Streett automaton A that recognizes a language
that can be recognized by a deterministic Büchi automaton, but all the possibilities of
defining a Büchi acceptance condition on the structure of A result in an automaton
recognizing a different language.



118 O. Kupferman and R. Lampert

For a co-safety NBW A, we say that A is fine-type if a fine automaton for A can
be defined on the structure of A. It is shown in [KV01a] that the NBWs for many co-
safety LTL formulas are fine-type: by taking the NBW Aψ for ψ and defining only
accepting sinks to be accepting2, one gets an NFW fine for ψ. Intuitively, each state
of Aψ is associated with a set S of subformulas of ψ. A word w is accepted by Aψ

from state S iff w satisfies all the formulas in S. For natural LTL formulas and for
constructions of Aψ (c.f., [GPVW95]) that keep in S only formulas that are essential
for the satisfaction, the set S would become empty after reading some prefix of a word
that satisfies ψ. Unfortunately, this is not true for all formulas. The reason for this is the
fact that known constructions for LTL proceed according to the syntax of the formulas,
and the co-safetyness of a formula may hide. We demonstrate this in the examples
below, which also show that NBWs are not fine type.

The NBW Aϕ in Figure 1 is the union of two NBWs. The NBW on the left accepts
all words over the alphabet {a, b} that satisfy Fa ∧ GFb (“eventually a and infinitely
many b’s”). The NBW on the right accepts all words satisfying Fb∧GFa. While each
of these languages is neither safe nor co-safe, their union is the co-safety language
of all words satisfying Fa ∧ Fb (“eventually a and eventually b”). The formula ϕ =
(Fa∧GFb)∨ (Fb∧GFa) is pathologically co-safe [KV01a], which means intuitively
that it is hard to tell that it is co-safe just from its syntax: a computation that satisfies ϕ
has no informative prefix [KV01a] — a prefix in which all the syntactic eventualities in
the formulas are satisfied. Indeed, only the combination of the two NBWs in the union
reveals the co-safetyness of ϕ.

b

a b

a,b a,bb a

a

Fig. 1. An NBW for ϕ = (Fa ∧ GFb) ∨ (Fb ∧ GFa)

The above analysis is reflected in the fact that the NBW Aϕ is not fine type; i.e.,
there is no way to define a fine NFW on its structure, by just redefining the accepting
states. To see this, observe that every state in Aϕ can be reached after reading a prefix
of length at most 1. Since every such prefix can be extended to one of the infinite words
aω or bω, which do not satisfy Fa ∧ Fb, an NFW with the structure of Aϕ is either
empty or accepts words that are not good prefixes for ϕ.

The above example refers to general co-safety NBWs. In Appendix A, we describe
two stronger examples, in the sense that they show the non-fine-typeness of restricted
classes of NBWs — classes that correspond to the NBWs obtained by translating LTL
formulas to NBWs. The first class of NBWs we consider is single run NBWs; i.e.,
every word that is accepted by the NBW has a single accepting run. The NBWs whose
construction is described in [VW94] are single run. The second class we consider is

2 The details in [KV01a] are for alternating automata, and the argument refers to the NBW ob-
tained by translating these automata to nondeterministic ones via the construction of [MH84].



On the Construction of Fine Automata for Safety Properties 119

of NBWs obtained by applying the Miyano-Hayashi procedure for alternation removal
[MH84] on top of the alternating Büchi automaton obtained from the LTL formula.

A Construction of Fine NFWs. While general co-safety NBWs are not fine-type, we
can still construct an NFW fine for a co-safety NBW A and whose size depends on the
sizes of A and comp(A). The idea is that it is possible to bound the number of times
that a run of A visits the set of accepting states, when it runs on a word not in L(A).
Formally, we have the following:

Lemma 1. Consider a co-safety NBW A. Let F be the set of accepting states of A and
let A be an NBW with n states such that L(A) = comp(L(A)). If a run of A on a finite
word h ∈ Σ∗ visits F more than |F | · n times, then h is a good prefix for L(A).

Proof: Since A is a co-safety NBW, A is a safety NBW. Recall that no state of A is
empty. Therefore, by [Sis94], every infinite run of A is accepting3. Let r = r0r1 . . . rl
be a run ofA on h that visitsF more than |F |·n times. Assume, by way of contradiction,
that h is not a good prefix. Then, h can be extended to a word accepted by A, and
thus, there is a (finite) run r′ = r′0r

′
1 . . . r

′
l of A on h. Since r visits F more than

|F | · n times, there exist 0 ≤ i < j ≤ l such that rj = ri ∈ F and r′j = r′i. Let
w = h1 . . . hi(hi+1 . . . hj)ω. Since rj = ri ∈ F , the run r0r1 . . . ri(ri+1 . . . rj)ω is an
accepting run of A onw. On the other hand, r′0r

′
1 . . . r

′
i(r

′
i+1 . . . r

′
j)

ω is an accepting run
of A onw. Hence,w is accepted by both A and A, and we have reached a contradiction.

Theorem 4. Consider a co-safety NBW A with n states, m of them accepting. Let A
be an NBW with n states such that L(A) = comp(L(A)). There exists an NFW A′ with
n · (m · n+ 1) states such that A′ is fine for L(A).

Proof: Let t = m · n. The NFW A′ consists of t + 1 copies of A. The transition
function is such that when a run of A′ visits F in the j-th copy of A, it moves to the
(j + 1)-th copy. The accepting states of A′ are the states of F in the (t + 1)-th copy.
Thus, there is a run of A on an infinite word w ∈ Σω that has t+ 1 visits in F iff there
is a run of A′ on w that reaches an accepting state in the t+ 1-th copy of A. Formally,
given A = 〈Σ,Q, δ,Q0, F 〉, we define A′ = 〈Σ,Q′, δ′, Q′0, F ′〉 as follows.

– Q′ = Q× {0, 1, . . . , t}.
– For every q ∈ Q, a ∈ Σ, and 0 ≤ i ≤ t the transition function δ′ is defined as

follows.

δ′(〈q, i〉, a) =
{
δ(q, a) × {i+ 1} if q ∈ F and i < t,
δ(q, a) × {i} if q /∈ F .

– Q′0 = Q0 × {0}.
– F ′ = F × {t}. Note that there are no transitions from states in F ′.

Clearly, the number of states in A′ is n · (t+ 1).

3 Note that A is equivalent to the nondeterministic word automaton obtained by making all its
states accepting. Such automata are termed looping.



120 O. Kupferman and R. Lampert

For every run r = r0r1 . . . of A on an infinite word w ∈ Σω we define a single
(possibly finite) corresponding run s = s0s1 . . . of A′ on w such that for all i ≥ 0, we
have that si = 〈ri, ji〉 for some 0 ≤ ji ≤ t, and in addition, the following hold.

1. j0 = 0.
2. If ri ∈ F , then ji+1 = ji + 1; otherwise, ji+1 = ji.
3. If si = 〈ri, t〉 and ri ∈ F , then the run s ends at si.

In order to prove that A′ is fine for L(A), we first prove the following proposition,
relating the runs r and s.

Proposition 1. For every i ≥ 0 and state si = 〈ri, ji〉 in s, the prefix r0 . . . ri−1 of r
has ji visits in F .

Proof: The proof proceeds by an induction on i. For i = 0, the prefix r0 . . . r0−1 is
empty, so it does not visit F at all, and indeed, by Condition 1 in the definition of s, we
have that j0 = 0. For i > 0, the induction hypothesis for i − 1 implies that r0 . . . ri−2

has ji−1 visits in F . If ri−1 ∈ F , then, by Condition 2 of the definition of s, we have
that ji = ji−1 +1, and indeed r0 . . . ri−1 has ji−1 +1 visits in F . Otherwise, ri−1 /∈ F ,
and, by Condition 2 of the definition of s, we have that ji = ji−1, and indeed r0 . . . ri−1

has ji−1 visits in F .

We can now prove that A′ is fine for L(A). That is, we prove that for every w ∈ Σω, it
holds that w ∈ L(A) if and only if A′ accepts some prefix of w.

Assume first that w ∈ L(A). Then, there exists a run r of A on w that visits F
infinitely many times. By Proposition 1, when r makes its (t + 1)-th visit to F , the
corresponding run of A′ on w visits a state in F ′. Thus, A′ accepts a prefix of w, and
we are done.

For the other direction, assume that there is an accepting run s = s0s1 . . . sk of A′
on a prefix of w. The run s ends in some state in F ′. Therefore, by Proposition 1, since
sk ∈ F × {t}, the run s corresponds to a prefix r0 . . . rk of a run r of A on w such that
r0 . . . rk−1 has t visits in F . In addition, since rk ∈ F , we have that r0 . . . rk has t+ 1
visits in F . Thus, by Lemma 1, w ∈ L(A), and we are done.

Given a safety NBW, its complement NBW is co-safety. Thus, dualizing Theorem 4,
we get the following.

Theorem 5. Consider a safety NBW A with n states. Let A be an NBW with n states,
m̄ of them accepting, such that L(A) = comp(L(A)). There exists an NFW A′ with
n̄ · (m̄ · n+ 1) states such that A′ is fine for L(A).

4.3 Fine Automata for Safety and Co-safety LTL Formulas

By Theorem 1, given an LTL formula ψ, we can construct NBWs Aψ and A¬ψ for ψ
and ¬ψ, respectively. The number of states in each of the NBWs is at most 2O(|ψ|).
Hence, by Theorem 4, we can conclude:

Theorem 6. Consider a safety LTL formula ϕ of length n. There exists an NFW fine
for ϕ with at most 2O(n) states.



On the Construction of Fine Automata for Safety Properties 121

5 Discussion

We have answered to the positive the question about the existence of exponential fine
automata for general safety LTL formulas. This improves the doubly-exponential con-
struction in [KV01a]. Essentially, our construction adds a counter on top of the NBW
for the formula. The counter is increased whenever the NBW visits an accepting state,
and a computation is accepted after the counter reaches a bound that depends on the
size of the formula. While we have focused on LTL, it is possible to extend our results
to all specification formalisms that can be translated to NBWs and for which negation
involves no blow-up. Thus, small fine automata can be defined also for specifications
described in recent industrial property-specification languages like PSL and SVA.

Our results give a better understanding of the relationship between safety and
bounded properties. A property ψ is bounded if there is a bound k ≥ 0 such that
every word of length k is either a good or a bad prefix for ψ. Thus, satisfaction of ψ
can be determined after reading a prefix of length k of the computation. It is known
that a property ψ is bounded iff ψ is both safety and co-safety [KV01b]. For a bounded
property with bound k, we know that if a word of length k is not a bad prefix, then it
must be a good prefix. Accordingly, if the NBW Aψ does not get stuck during its run on
a prefix of a computation of length k, the computation satisfies ψ. Moreover, k depends
on the size of the NBW for ψ [KV01b]. This enables simple application of bounded
model-checking procedures [CBRZ01] for the verification of bounded properties. For
a co-safety property, there is no such bound k: while we know that a computation that
satisfies ψ has a good prefix, we cannot point to a k such that if the NBW Aψ does not
get stuck during its run on the prefix of a computation of length k, then the computation
satisfies ψ. Our results here show that co-safety properties (and hence, also reasoning
about safety properties) do have a bounded nature, only that the bound depends not only
on the length of the prefix, but also on the number of visits to the set of accepting states
that the NBW Aψ makes on its run on the prefix. Indeed, there is a bound k such that if
the NBW Aψ has a run on a computation and the run visits the set of accepting states
k times, then the computation satisfies ψ. Interestingly, the bound on k is similar to the
one known for bounded properties [KV01b].

This result is helpful in the context of run-time verification and bounded model
checking. Run-time verification does not store the entire state space of the system. In-
stead, it observes finite executions. In [GH01], the authors describe a semantics for LTL
formula with respect to finite words. In this semantics, eventualities have to be satisfied
within the finite prefix. Thus, as with the “informative prefixes” of [KV01a], a prefix
never satisfies a pathologically safe formula ψ, even if it is a good prefix. By counting
visits to the set F of accepting state of the NBW for ¬ψ, the semantics can be made
tighter, and a prefix accepted by the fine automaton can be declared as violating ψ. The
same technique, applied to richer specification formalisms, enables the run-time veri-
fication algorithm in [AKT+06], which also follows finite prefixes, to return a definite
answer for more properties. Counting visits to F can help also in SAT-based bounded
model checking. Recall that SAT-based model checking of a safety property ψ tries to
find a path that satisfies ¬ψ and uses a bounded semantics for LTL: the formula ¬ψ is
checked with respect to prefixes of some bounded length k, possibly with a loop back.
The method is complete in the sense that if some computation satisfies ¬ψ, then there



122 O. Kupferman and R. Lampert

is some prefix as above, where k depends on both the size of the checked system and
ψ [CBRZ01]. The need to specify the fact that the prefix may have a loop back makes
the formula whose satisfaction we check much more complex, and complicates the ver-
ification procedure. Our results imply an alternative approach, which prevents the need
to consider loops and suggests, instead, to count sufficiently many visits to the set F
of accepting state of the NBW for ¬ψ. We note that for many co-safety formulas, the
states in F are accepting sinks, thus while k is a bound for the number of transitions
needed to reach F for the first time, we can expect successive visits to be made within
a single transition.

Finally, while we solved the problem of constructing exponential fine automata for
LTL formulas, the problem of constructing polynomial fine automata for co-safety
NBW is still open. The challenge here is similar to other challenges in automata-
theoretic constructions in which one needs both the NBW and its complementing NBW
— something that is easy to have in the context of LTL, but difficult in the context of
NBW. For a discussion of more problems in this status, see [KV05b]. From a practical
point of view, however, the problem of going from a co-safety automaton to a fine NFW
is of less interest, as users that use automata as their specification formalism are likely
to start with an automaton for the bad or the good prefixes anyway. Thus, the problem
about the size of fine automata is interesting mainly for the specification formalism of
LTL, which we did solve.

Acknowledgment. We thank Moshe Vardi for helpful discussions.

References

[AKT+06] R. Armoni, D. Korchemny, A. Tiemeyer, M.Y. Vardi, and Y. Zbar Deterministic
dynamic monitors for linear-Time assertions. In Proc FATES/RV, LNCS, 2006.

[BCM+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking: 1020 states and beyond. I& C, 98(2):142–170, June 1992.

[BM83] R.S. Boyer and J.S. Moore. Proof-checking, theorem-proving and program ver-
ification. Technical Report 35, Institute for Computing Science and Computer
Applications, University of Texas at Austin, January 1983.

[CBRZ01] E. M. Clarke, A. Bierea, R. Raimi, and Y. Zhu. Bounded model checking using
satisfiability solving. Formal Methods in System Design, 19(1):7–34, 2001.

[CVWY92] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient
algorithms for the verification of temporal properties. Formal Methods in System
Design, 1:275–288, 1992.

[GH01] D. Giannakopoulou and K. Havelund. Automata-based verification of temporal
properties on running programs. In Proc. 16th International Conference on Auto-
mated Software Engineering, pages 412–416. IEEE Computer Society, 2001.

[GPVW95] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verifi-
cation of linear temporal logic. In P. Dembiski and M. Sredniawa, editors, Proto-
col Specification, Testing, and Verification, pages 3–18. Chapman & Hall, August
1995.

[GW91] P. Godefroid and P. Wolper. Using partial orders for the efficient verification of
deadlock freedom and safety properties. In Proc. 3rd CAV, LNCS 575, pages 332–
342, 1991.



On the Construction of Fine Automata for Safety Properties 123

[Hol04] G.J. Holzmann. The Spin Model Checker: primer and reference manual. Addison-
Wesley, 2004.

[HKSV97] R.H. Hardin, R.P. Kurshan, S.K. Shukla, and M.Y. Vardi. A new heuristic for bad
cycle detection using BDDs. In Proc. 9th CAV, LNCS 1254, pages 268–278, 1997.

[IN97] H. Iwashita and T. Nakata. Forward model checking techniques oriented to buggy
designs. In Proc. ICCAD, pages 400–404, 1997.

[KMM04] O. Kupferman, G. Morgenstern, and A. Murano. Typeness for ω-regular automata.
In Proc. 2nd ATVA, LNCS 3299, pages 324–338. Springer-Verlag, 2004.

[KPB94] S.C. Krishnan, A. Puri, and R.K. Brayton. Deterministic ω-automata vis-a-vis
deterministic Büchi automata. In Algorithms and Computations, LNCS 834, pages
378–386. Springer-Verlag, 1994.

[KSV96] O. Kupferman, S. Safra, and M.Y. Vardi. Relating word and tree automata. In
Proc. 11th LICS, pages 322–333, DIMACS, June 1996.

[KV01a] O. Kupferman and M.Y. Vardi. Model checking of safety properties. Formal
methods in System Design, 19(3):291–314, November 2001.

[KV01b] O. Kupferman and M.Y. Vardi. On bounded specifications. In Proc. 8th LPAR,
LNCS 2250, pages 24–38. Springer-Verlag, 2001.

[KV05a] O. Kupferman and M.Y. Vardi. From linear time to branching time. ACM Trans.
on Computational Logic, 6(2):273–294, April 2005.

[KV05b] O. Kupferman and M.Y. Vardi. Safraless decision procedures. In Proc. 46th FOCS,
pages 531–540, Pittsburgh, October 2005.

[Lan69] L.H. Landweber. Decision problems for ω–automata. Mathematical Systems The-
ory, 3:376–384, 1969.

[Lat03] T. Latvala. Efficient model checking of safety properties. In Proc. 10th SPIN
Workshop on Model Checking of Software, LNCS 2648, pages 74–88, 2003.

[MAB+94] Z. Manna, A. Anuchitanukul, N. Bjorner, A. Browne, E. Chang, M. Colon, L. De
Alfaro, H. Devarajan, H. Sipma, and T. Uribe. STeP: The Stanford Temporal
Prover. TR STAN-CS-TR-94-1518, Dept. of Computer Science, Stanford Uni-
versity, 1994.

[McM92] K.L. McMillan. Using unfolding to avoid the state explosion problem in the ver-
ification of asynchronous circuits. In Proc. 4th CAV, LNCS 663, pages 164–174,
Montreal, June 1992. Springer-Verlag.

[MF71] A.R. Meyer and M.J. Fischer. Economy of description by automata, grammars,
and formal systems. In Proc. 12th IEEE Symp. on Switching and Automata Theory,
pages 188–191, 1971.

[MH84] S. Miyano and T. Hayashi. Alternating finite automata on ω-words. Theoretical
Computer Science, 32:321–330, 1984.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, Berlin, January 1992.

[MP95] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Safety. Springer-Verlag, New York, 1995.

[MR97] S. Melzer and S. Roemer. Deadlock checking using net unfoldings. In Proc. 9th
CAV, LNCS 1254, pages 364–375. Springer-Verlag, 1997.

[OSR95] S. Owre, R.E. Shankar, and J.M. Rushby. User guide for the PVS specification and
verification system. CSL, 1995.

[Pnu81] A. Pnueli. The temporal semantics of concurrent programs. Theoretical Computer
Science, 13:45–60, 1981.

[SC85] A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal logic.
Journal ACM, 32:733–749, 1985.

[Sis94] A.P. Sistla. Safety, liveness and fairness in temporal logic. Formal Aspects of
Computing, 6:495–511, 1994.



124 O. Kupferman and R. Lampert

[SS78] W. Sakoda and M. Sipser. Non-determinism and the size of two-way automata. In
Proc. 10th STOC, pages 275–286, 1978.

[Val93] A. Valmari. On-the-fly verification with stubborn sets. In Proc. 5th CAV, LNCS
697. Springer-Verlag, 1993.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. 1st LICS, pages 332–344, Cambridge, June 1986.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information
and Computation, 115(1):1–37, November 1994.

A NBWs for LTL Formulas Are Not Fine-Type

The NBW Aθ in Figure 2 consists of two NBWs too. The left one accepts all words
satisfying Fa ∧ FGb and the right one accepts words satisfying Fb ∧GFa. Thus, Aθ ,
their union, accepts all words satisfying θ = (Fa∧FGb)∨ (Fb∧GFa). It is not hard
to see that Aθ is a single-run automaton (in particular, it is the union of two disjoint
languages) that accepts exactly the words satisfying the formula Fa ∧ Fb. Also, by the
same considerations we had in Section 4.2 for Aϕ, for ϕ = (Fa∧GFb)∨(Fb∧GFa),
it is not fine-type.

We note that the single-run NBW obtained for ϕ by following the translation proce-
dure in [VW94] is not fine-type either.

a, b

a

b a

a

b

b

a

a

Fig. 2. A single run NBW for θ = (Fa ∧ FGb) ∨ (Fb ∧ GFa)

In the full version, we describe an NBW Aξ for the formula ξ = (GFa ∧ F (b ∧
XFb)) ∨ (GFb ∧ F (a ∧ XFa)). The formula ξ is equivalent to the formula F (b ∧
XFb)∧F (a∧XFa). Thus, the language of Aξ is the co-safety language of all infinite
words that contain at least two a’s and at least two b’s. The NBW Aξ is obtained from
ξ by translating ξ to an alternating Büchi word automaton (ABW) and translating this
automaton to a nondeterministic one [MH84]. Thus, Aξ is obtained by a translation that
is more optimized than the one in [VW94]. Still, Aξ is not fine type. To see this, note
that each of Aξ’s states can be reached after reading a prefix of length at most 3. Since
every such prefix can be extended to an infinite word in which a or b appear at most
once, and thus does not satisfy ξ, an NFW with the structure of Aξ is either empty or
accepts words that are not good prefixes for ξ.



On the Succinctness of Nondeterminism

Benjamin Aminof and Orna Kupferman

Hebrew University, School of Engineering and Computer Science, Jerusalem 91904, Israel
{benj,orna}@cs.huji.ac.il

Abstract. Much is known about the differences in expressiveness and succinct-
ness between nondeterministic and deterministic automata on infinite words.
Much less is known about the relative succinctness of the different classes of
nondeterministic automata. For example, while the best translation from a non-
deterministic Büchi automaton to a nondeterministic co-Büchi automaton is ex-
ponential, and involves determinization, no super-linear lower bound is known.
This annoying situation, of not being able to use the power of nondeterminism,
nor to show that it is powerless, is shared by more problems, with direct applica-
tions in formal verification.

In this paper we study a family of problems of this class. The problems orig-
inate from the study of the expressive power of deterministic Büchi automata:
Landweber characterizes languages L ⊆ Σω that are recognizable by determin-
istic Büchi automata as those for which there is a regular language R ⊆ Σ∗ such
that L is the limit of R; that is, w ∈ L iff w has infinitely many prefixes in R. Two
other operators that induce a language of infinite words from a language of finite
words are co-limit, where w ∈ L iff w has only finitely many prefixes in R, and
persistent-limit, where w ∈ L iff almost all the prefixes of w are in R. Both co-
limit and persistent-limit define languages that are recognizable by deterministic
co-Büchi automata. They define them, however, by means of nondeterministic
automata. While co-limit is associated with complementation, persistent-limit is
associated with universality. For the three limit operators, the deterministic au-
tomata for R and L share the same structure. It is not clear, however, whether
and how it is possible to relate nondeterministic automata for R and L, or to
relate nondeterministic automata to which different limit operators are applied.
In the paper, we show that the situation is involved: in some cases we are able
to describe a polynomial translation, whereas in some we present an exponential
lower bound. For example, going from a nondeterministic automaton for R to a
nondeterministic automaton for its limit is polynomial, whereas going to a non-
deterministic automaton for its persistent limit is exponential. Our results show
that the contribution of nondeterminism to the succinctness of an automaton does
depend upon its semantics.

1 Introduction

Finite automata on infinite objects were first introduced in the 60’s, and were the key
to the solution of several fundamental decision problems in mathematics and logic
[5,17,21]. Today, automata on infinite objects are used for specification and verification
of nonterminating systems. The automata-theoretic approach to verification reduces
questions about systems and their specifications to questions about automata [13,26].

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 125–140, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



126 B. Aminof and O. Kupferman

Recent industrial-strength property-specification languages such as Sugar [3], ForSpec
[2], and PSL 1.01 [7] include regular expressions and/or automata, making specification
and verification tools that are based on automata even more essential and popular.

There are many ways to classify an automaton on infinite words. One is the class of
its acceptance condition. For example, in Büchi automata, some of the states are desig-
nated as accepting states, and a run is accepting iff it visits states from the accepting set
infinitely often [5]. Dually, in co-Büchi automata, a run is accepting iff it visits states
from the accepting set only finitely often. Another way to classify an automaton is by
the type of its branching mode. In a deterministic automaton, the transition function
maps the current state and input letter to a single successor state. When the branching
mode is nondeterministic, the transition function maps the current state and letter to
a set of possible successor states. Thus, while a deterministic automaton has a single
run on an input word, a nondeterministic automaton may have several runs on an input
word, and the word is accepted by the automaton if at least one of the runs is accepting.

The different classes of automata have different expressive power. For example, un-
like automata on finite words, where deterministic and nondeterministic automata have
the same expressive power, deterministic Büchi automata (DBW) are strictly less ex-
pressive than nondeterministic Büchi automata (NBW). That is, there exists a language
L over infinite words such that L can be recognized by a nondeterministic Büchi au-
tomaton but cannot be recognized by a deterministic Büchi automaton. It also turns
out that some classes of automata may be more succinct than other classes. For ex-
ample, translating a nondeterministic co-Büchi automaton (NCW) into a deterministic
co-Büchi automaton (DCW) is possible [20], but involves an exponential blow up.

There has been extensive research on the expressiveness and succinctness of au-
tomata on infinite words [25]. In particular, since reasoning about deterministic au-
tomata is simpler than reasoning about nondeterministic ones, questions like deciding
whether a nondeterministic automaton has an equivalent deterministic one, and the blow
up involved in determinization, are of particular interest [8,16,12]. These questions get
further motivation with the discovery that many natural specifications correspond to
the deterministic fragments. In particular, it is shown in [12] that given a linear tem-
poral logic (LTL) formula ψ, there is an alternation-free µ-calculus (AFMC) formula
equivalent to ∀ψ iff ψ can be recognized by a DBW. Evaluating specifications in the
alternation-free fragment of µ-calculus can be done with linearly many symbolic steps,
so coming up with an optimal translation of LTL to AFMC is a problem of great prac-
tical importance.

Let us elaborate on the LTL to AFMC example, as it highlights the open problems
that have led to our research. Current translations translate the LTL formula ψ to a
DBW, which can be linearly translated to an AFMC formula for ∀ψ. The translation
of LTL to DBW, however, is doubly exponential, thus the overall translation is doubly-
exponential, with only an exponential matching lower bound. A promising direction
for tightening the upper bound was suggested in [12]: instead of translating an LTL
formula ψ to a DBW, one can translate ¬ψ to an NCW. Then, the NCW can be lin-
early translated to an AFMC formula for ∃¬ψ, whose negation is equivalent to ∀ψ. The
fact that the translation can go through a nondeterministic rather than a deterministic



On the Succinctness of Nondeterminism 127

automaton is very promising, as nondeterministic automata are typically exponentially
more succinct than deterministic ones. Nevertheless, the problem of translating LTL
formulas to NCWs of exponential size1 is still open. The best translation that is known
today involves a doubly-exponential blow up, and it actually results in a DCW, giving
up the idea that the translation of LTL to AFMC can be exponentially more efficient by
using intermediate nondeterministic automata.

This unfortunate situation of not being able to use the power of nondeterminism
is shared by more problems. One that is strongly related to the LTL to AFMC prob-
lem described above is the open problem of translating NBWs to NCWs (when pos-
sible). Despite continuous efforts, the best translation that is known first determinizes
the NBW. Accordingly, starting with an NBW with n states, we end up with an NCW
with 2O(n log n) states [22]. This is particularly annoying as even no super-linear lower
bound is known, and in fact, only recently were we able to come up with an example
that an NCW cannot be defined on top of the state space and transitions of the NBW
[9]. The class of open problems of this nature expands also to the branching setting. For
a language L of infinite words, let der (L) be the language of infinite trees that contain
exactly all trees all of whose paths are in L. It is known that der (L) can be recognized
by a nondeterministic Büchi tree automaton (NBT) iff L can be recognized by a DBW
[10]. Given an NBT for der (L), the most efficient construction that is known for gener-
ating from it an NBW forL is exponential, and it actually constructs a DBW forL. Also
here, no super-linear lower bound is known, and yet it is not clear how nondeterminism,
and its succinctness with respect to the deterministic model, can be used.

In this paper we study a family of problems in this class. Recall that DBWs are
less expressive than NBWs. Landweber characterizes languages L ⊆ Σω that can be
recognized by a DBW as those for which there is a regular language R ⊆ Σ∗ such that
L is the limit of R. Formally, w is in the limit of R iff w has infinitely many prefixes
in R [14]. It is not hard to see that a DBW for L, when viewed as a deterministic finite
automaton (DFW), recognizes a language whose limit is L, and vice versa – a DFW
for R, when viewed as a DBW, recognizes the language that is the limit of R. What
about the case in whichR and L are given by nondeterministic automata? It is not hard
to see that the simple transformation between the two formalisms no longer holds. For
example, the NBW A in Figure 1 recognizes the languageL of all words with infinitely
many 1s, yet when viewed as a nondeteministic finite automaton (NFW), it recognizes
(0 + 1)+, whose limit is (0 + 1)ω. As another example, the language of the NBW A′
is empty, yet when viewed as an NFW, it recognizes the language (0 + 1)∗ · 1, whose
limit is L. As demonstrated by the examples, the difficulty of the nondeterministic case
originates from the fact that different prefixes of the infinite word may follow different
accepting runs of the NFW, and there is no guarantee that these runs can be merged
into a single run of the NBW. Accordingly, the best translation that is known for going
from an NFW to an NBW accepting its limit, or from an NBW to a limit NFW, is to
first determinize the given automaton. This involves a 2O(n log n) blow up and gives up
the potential succinctness of the nondeterministic model. On the other hand, no lower
bound aboveΩ(n logn) is known.

1 As mentioned above, not all LTL formulas can be translated to NCWs. When we talk about
the blow up in a translation, we refer to formulas for which a translation exists.



128 B. Aminof and O. Kupferman

0, 1

1

A′ :A : 1
0, 1 0, 1

Fig. 1. Relating NBWs and limit NFWs

In addition to the limit operator introduced by Landweber, we introduce and study
two more ways to induce a language of infinite words from a language of finite words:
the co-limit of R is the set of all infinite words that have only finitely many prefixes in
R. Thus, co-limit is dual to Landweber’s limit. Also, the persistent limit of R is the set
of all infinite words that have only finitely many prefixes not in R. Thus, eventually all
the prefixes are in R.

We study the succinctness of NFWs for R with respect to DBWs, DCWs, NBWs,
and NCWs recognizing languages induced by each of the three limit operators, and
the succinctness of the Büchi and co-Büchi automata with respect to the NFWs. In
particular, we prove that while the translation from an NFW to an NBW for its limit is
cubic (thus, nondeterminism is helpful, and the traditional “determinize first” approach
is beaten!), the translations from an NFW to an NCW for its co-limit or its persistent
limit are exponential, thus determinization is legitimate. We also study succinctness
among NFWs to which different limit operators are applied. For example, we prove
that going from a persistent limit NFW to a limit NFW involves an exponential blow up.
In other words, given an NFW A whose persistent limit is L, translating A to an NFW
whose limit isLmay involve an exponential blow up. Note that persistent limit and limit
are very similar – both require the infinite word to have infinitely many prefixes inL(A),
only that the persistent limit requires, in addition, that only finitely many prefixes are not
in L(A). This difference, which is similar to the difference between NBW and NCW,
makes persistent limit exponentially more succinct. Technically, it follows from the
fact that persistent limit NFWs inherit the power of alternating automata. In a similar,
though less surprising way, co-limit NFWs inherit the power of complementation, and
are also exponentially more succinct. In cases where we are not able to describe a lower
bound, we prove that the translations are not type [8,9], namely that an equivalent NFW
cannot be defined on top of the same transition structure.

The study of the limit operators checks behaviors in the limit. We examine how our
results are affected by limiting attention to safety, co-safety, and bounded languages
[1,24,11]. In these languages, the behavior in the limit is not restricted. In particular, in
bounded languages, membership in the language depends on a bounded prefix of the
word. We show that most of our lower bounds apply even in the restricted setting of the
limited fragments, yet for some cases we are able to describe upper bounds that do not
hold in the general case. Finally, recall that the difficulty of the nondeterministic case
originates from the fact that the accepting runs on different prefixes of the infinite word
may not be merged into one infinite accepting run of the NBW. We describe a sufficient
structural condition on NFWs that guarantees that accepting runs can be merged. We
call NFWs that satisfy this condition continuous NFWs. We show that while the limit of



On the Succinctness of Nondeterminism 129

a continuous NFW A is the language of A when viewed as an NBW, continuous NFWs
are exponentially more succinct than DBWs.

2 Preliminaries

2.1 Automata on Finite and Infinite Words

Given an alphabet Σ, a word over Σ is a sequence w = σ1 · σ2 · σ3 · · · of letters in Σ.
A word may be either finite or infinite. An automaton is a tuple A = 〈Σ,Q, δ,Q0, α〉,
whereΣ is the input alphabet,Q is a finite set of states, δ : Q×Σ → 2Q is a transition
function, Q0 ⊆ Q is a set of initial states, and α ⊆ Q is an acceptance condition. We
define several acceptance conditions below. The automaton A may have several initial
states and the transition function may specify many possible transitions for each state
and letter, and hence we say that A is nondeterministic. In the case where |Q0| = 1 and
for every q ∈ Q and σ ∈ Σ, we have that |δ(q, σ)| = 1, we say that A is deterministic.

The automaton may run on finite or infinite words. A run of A on a finite word
w = σ1 · σ2 · · ·σk ∈ Σ∗ is a function r : {0, . . . , k} → Q where r(0) ∈ Q0, and
for every 0 ≤ i < k, we have that r(i + 1) ∈ δ(r(i), σi+1). The run is accepting iff
r(k) ∈ α. Otherwise, it is rejecting. When the input word is infinite, and thus w =
σ0 · σ1 · · · ∈ Σω, a run of A on w is a function r : IN → Q with r(0) ∈ Q0, and for
every i ≥ 0, we have that r(i + 1) ∈ δ(r(i), σi+1). Acceptance is defined with respect
to the set of states inf(r) that the run r visits infinitely often. Formally, inf (r) = {q ∈
Q : for infinitely many i ∈ IN, we have r(i) = q}. As Q is finite, it is guaranteed that
inf (r) �= ∅. The run r is accepting iff the set inf (r) satisfies the acceptance condition
α. We consider here the Büchi and the co-büchi acceptance conditions. A set S satisfies
a Büchi acceptance condition α ⊆ Q if and only if S ∩ α �= ∅. Dually, S satisfies a
co-Büchi acceptance condition α ⊆ Q if and only if S ∩ α = ∅.

We sometimes view a run r as a (finite or infinite) word over the alphabet Q. For
example, r = q0, q5, q5 indicates that r(0) = q0 whereas r(1) = r(2) = q5. Note that
while a deterministic automaton has a single run on an input word, a nondeterministic
automaton may have several runs on w or none at all. An automaton accepts a word iff
it has an accepting run on it. The language of an automaton A, denoted L(A), is the set
of words that A accepts. For a language L, the complement of L, denoted comp(L),
is the set of words not in L. Thus, for L ⊆ Σ∗ we have comp(L) = Σ∗ \ L, and for
L ⊆ Σω we have comp(L) = Σω \ L.

We denote the different classes of automata by three letter acronyms in {D,N} ×
{F, B, C} × {W}. The first letter stands for the branching mode of the automaton (de-
terministic or nondeterministic); the second letter stands for the acceptance-condition
type (finite, Büchi, or co-Büchi). The third letter indicates that the automaton runs on
words.

For two automata A and A′, we say that A and A′ are equivalent if L(A) = L(A′).
For a class γ of automata, we say that an automaton A is γ realizable iff A has an
equivalent automaton in the class γ. Similarly, a language L is γ realizable iff there
is an automaton A in the class γ whose language is L. In the case of finite words,
NFWs can be determinized, thus all NFWs are DFW realizable. In the case of infi-
nite words, different classes of automata have different expressive power. In particular,



130 B. Aminof and O. Kupferman

while NBWs recognize all ω-regular language [17], DBWs are strictly less expressive
than NBW, and so are DCW [14]. In fact, a language L is DBW-realizable iff comp(L)
is DCW-realizable. Indeed, by viewing a DBW as a DCW, we get an automaton for the
complementing language, and vice versa. The expressiveness superiority of the nonde-
terministic model with respect to the deterministic one does not apply to the co-Büchi
acceptance condition. There, NCWs can be determinized2, thus all NCWs are DCW
realizable.

2.2 Limits of Languages of Finite Words

Studying the expressive power of DBWs, Landweber characterizes languages L ⊆ Σω

that are DBW-realizable as those for which there is a regular language R ⊆ Σ∗ such
that w ∈ L iff w has infinitely many prefixes in R. Thus, each language of finite words
induces a language of infinite words. In Definition 1 below, we introduce two additional
ways to induce a language of infinite words from a language on finite words. Given a
word w = σ1, σ2, · · · ∈ Σω, we denote the i-th letter of w by w[i], the sub-word
σi, · · · , σj by w[i, j] and the sub-word σi, · · · , σj−1 by w[i, j).

Definition 1. Consider a language R ⊆ Σ∗. We define three languages of infinite
words induced by R.

1. [limit] lim(R) ⊆ Σω is the set of all words that have infinitely many prefixes in R.
I.e., lim(R) = {w | w[1, i] ∈ R for infinitely many i’s} [14].

2. [co-limit] co-lim(R) ⊆ Σω is the set of all words that have only finitely many
prefixes in R. I.e., co-lim(R) = {w | w[1, i] ∈ R for finitely many i’s}.

3. [persistent limit] plim(R) ⊆ Σω is the set of all words that have only finitely many
prefixes not in R. I.e., plim(R) = {w | w[1, i] ∈ R for almost all i’s}.

For example, for R = (a + b)∗b, the language lim(R) consists of all words that have
infinitely many b’s, co-lim(R) is the language of words that have finitely many b’s, and
plim(R) is the language of words that have finitely many a’s. For an NFW A, we use
lim(A), co-lim(A), and plim(A), to denote lim(L(A)), co-lim(L(A)), and plim(L(A)),
respectively.

The three limit operators are dual in the following sense:

Lemma 1. For everyR ⊆ Σ∗, we have comp(lim(R))=co-lim(R)=plim(comp(R)).

Recall that a language L ⊆ Σω is DBW realizable iff L = lim(R) for some regular
R ⊆ Σ∗ [14]. By Lemma 1 and the duality between DBW and DCW, it follows that
L is DCW realizable iff L = co-lim(R) for some regular R ⊆ Σ∗, or, equivalently,
L = plim(R) for some regularR ⊆ Σ∗. A direct way to prove the above expressiveness
results is to consider the deterministic Büchi or co-Büchi automaton A for L. Let Afin

be A when viewed as a DFW, and let Ãfin be Afin with a dualized accepting set. In
case A is a DBW, then L(A) = lim(Afin). Similarly, if A is a DCW, then L(A) =
co-lim(Afin ) = plim(Ãfin). Thus, in the deterministic setting, the transitions among

2 When applied to universal Büchi automata, the translation in [20], of alternating Büchi au-
tomata into NBW, results in DBW. By dualizing it, one gets a translation of NCW to DCW.



On the Succinctness of Nondeterminism 131

the automata for L and R involve no blow up, and are even done on top of the same
structure. Our goal in this paper is to study the blow up between the automata in the
nondeterministic setting. In order to avoid lower bounds that are inherited directly from
the exponential blow up of complementation, we study both co-limit and persistent-
limit. Note that only the former has the flavor of complementation.

Finally, note that for all of the three limit operators, different regular languages may
induce the same limit language. For example, if L is the language of all finite words of
length at least 7, L′ the language of all finite words of length at least 20, and L′′ the
language of all finite words of even length, then L �= L′ and yet lim(L) = lim(L′) =
plim(L) = plim(L′) = Σω, and co-lim(L) = co-lim(L′) = ∅. Also, even though
L′′ �= comp(L), we still have that co-lim(L) = plim(L′′).

3 Succinctness of NFW with Respect to Büchi and Co-Büchi
Automata

In this section we study the succinctness of the NFW for R with respect to the Büchi
and co-Büchi automata that recognize the ω-regular languages induced by applying
each of the three limit operators to R. We start with the case the Büchi and co-Büchi
automata are deterministic, and show that then, the succinctness of the nondeterministic
model in the case of finite words carries over to the limit setting. We then proceed to
the case the Büchi and co-Büchi automata are nondeterministic and show that there, the
situation is more involved. First, the exponential blow up in NFW complementation is
carried over to an exponential blow up in a translation of co-limit NFW to an NCW.
More surprising are the results for limit and persistent limit NFW: by analyzing the
structure of an NFW, we are able to translate an NFW to an NBW for its limit with only
a cubic blow up. On the other hand, while persistent limit involves no complementation,
it enables a universal reference to the prefixes of the input word. Consequently, we are
able to prove that the exponential succinctness of alternating automata on finite words
with respect to NFW carries over to an exponential lower bound on the translation of
an NFW to a NCW for its persistent limit.

We start with DBW and DCW. Recall that limit is associated with DBW whereas
co-limit and persistent limit are associated with DCW. We are still able to describe a
bound for the translation to both DBW and DCW.

Theorem 1. [lim NFW → DBW, plim NFW → DCW, clim NFW → DCW]

– For every n ≥ 1, there is Ln ⊆ Σω such that there is an NFW A with O(n) states
such that lim(A) = plim(A) = Ln, but Ln cannot be recognized by a DBW or a
DCW with less than 2n states.

– For every n ≥ 1, there is Ln ⊆ Σω such that there is an NFW A with O(n) states
such that co-lim(A) = Ln, but Ln cannot be recognized by a DBW or a DCW with
less than 2n states.

Proof: We start with limit and persistent limit. For n ≥ 1, let Rn ⊆ Σ∗ be such that
an NFW for Rn has O(n) states, whereas a DFW for it must have at least 2n states. By
[18], suchRn exist. Let # be a letter not inΣ, and let Ln = Rn ·#ω . In the full version,



132 B. Aminof and O. Kupferman

we show that there is an NFW A with O(n) states such that lim(A) = plim(A) = Ln,
but a DBW or a DCW for Ln must have at least 2n states.

We now turn to co-limit. For n ≥ 1, let Rn ⊆ Σ∗ be such that an NFW for Rn has
O(n) states whereas a DFW for comp(Rn) must have at least 2n states. By [18], such
Rn exist. In the full version, we show that there is an NFW A with O(n) states such
that co-lim(A) = Ln, but there is no DBW or DCW for Ln with less than 2n states.

The results proved in Theorem 1 are not surprising, as they meet our expectation from
the finite-word case. We now turn to study the succinctness of NFWs with respect to
NBWs and NCWs. Here, we can no longer apply the known succinctness of NFWs.

We first show that in the case of the limit operator, it is possible to translate an NFW
A to an NBW A′ of cubic size such that lim(A) = L(A′). Thus, while the limit operator
enables each prefix of the run to be accepted by following different nondeterministic
choices, this flexibility does not lead to an exponential succinctness.

We first need some notations. Given an NFW A = 〈Σ,Q, δ,Q0, α〉 and two sets of
states P, S ⊆ Q, we denote by LP,S the language of A with initial set P and accepting
set S. Formally, LP,S is the language accepted by the NFW 〈Σ,Q, δ, P, S〉. If S or P
are singletons we omit the curly braces; so instead of L{p},S we simply write Lp,S , etc.

Theorem 2. For every NFW A = 〈Σ,Q, δ,Q0, α〉,

lim(A) =
⋃

p∈Q

LQ0,p · (Lp,p ∩ Lp,α)ω.

Proof: Assume first that w can be partitioned into sub-wordsw = u0 ·u1 ·u2 · · · such
that for some p ∈ Q, we have u0 ∈ LQ0,p, and for every i ≥ 1, the word ui is in
Lp,p ∩ Lp,α. It follows that there is a run r0 of A on u0 that starts in Q0 and ends in
p, and that for every i ≥ 1 there are runs ri and r′i of A on ui such that ri starts in p
and ends in p while r′i starts in p and ends in some state in α. Then, for every i ≥ 1 the
run r0 · r1 · · · ri−1 · r′i is an accepting run of A on the prefix u0 · u1 · · ·ui of w, thus
w ∈ lim(A).

For the other direction, assume that w ∈ lim(A). For technical simplicity assume
first that A has a single initial state q0. We construct a tree T in which each node is
labeled by a state in Q. For a node x of T , let |x| denote the level of x in the tree, and
let state(x) be the state with which x is labeled. The tree T embodies all the possible
accepting runs of A on prefixes of w. The root of T is labeled by q0. Consider a node
x in the tree. All the successors of x have different labels, and y is a successor of x iff
|y| = |x|+ 1, and there is an accepting run r of A on a prefix of w of length at least |y|
such that r(|x|) = state(x) and r(|y|) = state(y). Observe that every node in the tree
has at most |Q| successors and that the tree is infinite since A accepts infinitely many
prefixes of w. Also note that every node in the tree is part of at least one accepting run
of A on some prefix of w.

By König’s Lemma the tree has an infinite path π. We associate with every node πi

on this path two nodes yi and zi such that yi is some node labeled by an accepting state
that is reachable in zero or more steps from πi, and zi is the node on π that is at the same
level as yi. Since Q is finite, there are two states p ∈ Q, q ∈ α such that state(yj) = q
and state(zj) = p for infinitely many indices j. By taking a sub-sequence of these



On the Succinctness of Nondeterminism 133

indices we can get an infinite set of indices 0 < j0 < j1 < . . . such that for every
k ≥ 0 not only state(yjk

) = q and state(zjk
) = p, but also |zjk

| < |πjk+1 |. It follows
that w[0, |zj0 |) is a word in Lq0,p. Also, for every k ≥ 0 the tree has a path from zjk

to
πjk+1 and from there to yjk+1 implying that w[|zjk

|, |yjk+1 |) is in Lp,α. Similarly, the
tree has a path from zjk

to zjk+1 implying thatw[|zjk
|, |zjk+1 |) is in Lp,p. Recalling that

|yjk+1 | = |zjk+1 | we obtain that w ∈ Lq0,p · (Lp,p ∩ Lp,α)ω .
WhenQ0 is not a singleton, we may have instead of a single tree T , a forest of trees,

with one tree for each state in Q0. Since Q0 is finite, one of the trees in the forest is
infinite, and the proof proceeds with that tree.

Given A = 〈Σ,Q, δ,Q0, α〉 with n states, constructing an NBW accepting
⋃

p∈Q

LQ0,p · (Lp,p ∩ Lp,α)ω, involves n intersections of NFWs, n applications of the ω
operation to an NFW, n concatenations of an NFW to an NBW, and finally, obtaining
the union of the resulting n NBWs. Accordingly, the characterization in Theorem 2
implies the following upper bound.

Corollary 1. [lim NFW → NBW] Given an NFW A with n states, there is an NBW
A′ with O(n3) states such that L(A′) = lim(A).

We now turn to study co-limit and persistent limit. In the first case, the exponential blow
up in NFW complementation and the complementing nature of the co-limit operator
hint that an exponential lower bound is likely to exist also for the translation of NFW to
an NCW or an NBW for its co-limit. In the case of persistent limit, however, we expect
the translation to be similar to the one for limit: the NFW enables the prefixes to be
accepted each by following a different nondeterministic choice, and, as with the limit
operator, an NCW that is polynomially larger should be able to merge these choices
into a single nondeterministic choice. This expectation is refuted: the persistence of
the plim operator adds to the NFW the power of universal branching, which makes it
exponentially more succinct.

Theorem 3. [co-lim NFW → NCW / NBW, plim NFW → NCW/ NBW] For every
n ≥ 1, there is a language Ln ∈ Σω such that there are NFW A and A′, both with
O(n) states, such that plim(A) = co-lim(A′) = Ln, but Ln cannot be accepted by an
NCW or an NBW with less than 2n states.

Proof: Let Σ = {0, 1}. Every word w over Σ can be viewed as a word in (Σn)ω,
that is, as an infinite sequence of n-bit vectors. The language Ln is the language of
sequences that are almost everywhere identical. Formally, Ln = {w | there is u ∈
(Σn)∗ and v ∈ Σn such that w = uvω}.

In the full version, we describe an NFW A withO(n) states such that plim(A) = Ln.
On the other hand, by [23], the language Ln cannot be accepted by a nondeterministic
Streett automaton with less than 2n states. Since NBWs and NCWs are a special case
of nondeterministic Streett automata, we are done.

4 Succinctness Among the Different Limit Operators

In the previous section, we related NFWs with Büchi and co-Büchi automata. In this
section we study the blow ups involved in translating an NFW that induces a language



134 B. Aminof and O. Kupferman

of infinite words by a limit operator (lim, co-lim, or plim) to an NFW that induces the
same language by a different limit operator.

We first show that the exponential blow up in NFW complementation can be lifted
to an exponential blow up in the translation of a lim or a plim NFW to a co-lim NFW.

Theorem 4. [lim NFW → co-lim NFW, plim NFW → co-lim NFW] For every n ≥
1, there is Ln ⊆ Σω such that there is an NFW A with O(n) states such that lim(A) =
plim(A) = Ln, but an NFW A′ such that co-lim(A′) = Ln, must have at least 2n

states.

Proof: For n ≥ 1, let Rn ⊆ Σ∗ be such that an NFW forRn hasO(n) states, whereas
an NFW for comp(Rn) must have at least 2n states. By [18], such Rn exist. We can
construct from an NFW A for Rn, an NFW A′ with one extra state for Rn ·#+. Then,
lim(A′) = plim(A′) = Rn · #ω . In the full version, we prove that there is no NFW A
with less than 2n states, such that co-lim(A) = Rn · #ω.

We note that similar arguments can be used to show that NCWs (and thus also NBWs, as
NCWs are linearly translatable to NBWs) are exponentially more succinct than co-lim
NFWs. To see this, note that the NCW obtained from the NFW A′ for Rn · #+ by
letting all states but the #-sink to be in α, accepts Rn · #ω.

Theorem 5. [co-lim NFW → lim NFW, plim NFW → lim NFW] For every n ≥ 1,
there is a language Ln ⊆ Σω such that there are NFWs A with O(n) states, and A′
with O(n2) states, such that co-lim(A) = plim(A′) = Ln but an NFW A′′ such that
lim(A′′) = Ln must have at least 2n states.

Proof: Consider the language Ln ⊆ {0, 1}ω of all words w such that w = uuz, with
|u| = n. In the full version, we prove that an NFW A′′ such that lim(A′′) = Ln must
remember subsets of size n, and thus must have at least 2n states.

In order to construct small NFW for the co-limit and persistent limit operators, we
observe that a word w is in Ln iff

∧n
i=1(w[i] = w[n + i]). In the case of co-limit,

we can check that only finitely many (in fact, 0) prefixes h of an input word are such
that h[i] �= h[i + n] for some 1 ≤ i ≤ n. This is done by letting A guess a position
1 ≤ i ≤ n, remember h[i], and accept a word iff the letter that comes n positions after
it (that is, in h[i+ n]) is different. It is easy to see that A requires only O(n) states. A
word w has finitely many prefixes in L(A) iff w ∈ Ln. Hence, co-lim(A′) = Ln.

The case of persistent limit is much harder, as we cannot use the implicit comple-
mentation used in the co-limit case. Instead, we use the universal nature of persistence.
We define the NFW A′ as a union of n gadgets A′1, . . . ,A′n. The gadget A′i is respon-
sible for checking that w[i] = w[n + i]. In order to make sure that the conjunction on
all 1 ≤ i ≤ n is satisfied, we further limit A′i to accept only words of length i mod n.
Hence, A′i accepts a word u ∈ Σ∗ iff u[i] = u[n+ i] ∧ |u| = i mod n. Consequently,
if w[i] �= w[n + i], then all the prefixes of w of length i mod n are rejected by A′.
On the other hand, if only a finite number of prefixes of an infinite word are not ac-
cepted by A′, then for all 1 ≤ i ≤ n, only a finite number of prefixes of length i mod n
are not accepted by A′i. Thus, a wordw is in plim(A′) iff for every 1 ≤ i ≤ n, almost all



On the Succinctness of Nondeterminism 135

the prefixes of w of length i mod n are accepted by A′i. Hence, w ∈ plim(A′) iff for all
1 ≤ i ≤ n we have that w[i] = w[n + i], and we are done. Since each of the gadgets
has O(n) states, and A′ needs n gadgets, it has O(n2) states.

The notion of typeness for automata was introduced in [8] in the context of DBW. It
is shown there that if a deterministic Rabin automaton A recognizes a language that
is DBW realizable, then A has an equivalent DBW on the same structure. Typeness in
general was studied in [9]. For example, it is shown in [9] that an NBW that is NCW
realizable need not have an NCW on the same structure. Here, we study typeness for
NFWs to which the limit operators are applied. For two limit operators β and γ (lim,
co-lim, or plim) we say that an NFW A = 〈Σ,Q, δ,Q0, α〉 is (β, γ)-type if there is
α′ ⊆ Q such that the NFW A′ = 〈Σ,Q, δ,Q0, α

′〉 satisfies γ(A′) = β(A). Thus,
we can apply the limit operator γ to an NFW obtained by only modifying the set of
accepting states of A, and get the same language obtained by applying to A the limit
operator β. Finally, we say that β is γ-type if all NFWs A are (β, γ)-type.

The exponential lower bounds in Theorems 4 and 5 imply that lim and plim are not
co-lim-type, and that co-lim and plim are not lim-type. Two lower bounds that we miss
are from co-lim and lim to plim. Below we show that polynomial translations to a plim
NFW, even if exist, cannot be done in general on the same structure.

Theorem 6. lim and co-lim are not plim-type.

Proof: We start with limit. Consider the NFW A in Figure 2. Note that lim(A) =
a+bω. As such, abω ∈ lim(A). It is not hard to see that if we change the set of accepting
states in such a way that only a finite number of prefixes of abω are rejected, then all
prefixes of the word aω are accepted. Hence, no NFW A′ with plim(A′) = a+bω can
be defined on the same structure as A.

a

b

a

a, b

bb a

a

Fig. 2. An NFW A with lim(A) = a+bω and co-lim(A) = Σω \ a+bω

We now turn to co-limit. Consider again the NFW A. Note that co-lim(A) = Σω \
a+bω. As such, bω ∈ co-lim(A). Thus, an NFW A′ with plim(A′) = co-lim(A) should
reject only finitely many prefixes of bω. The only way for A′ with the same structure
as A to do so, is to let the sink be accepting. Then, however, all but two prefixes of the
word aabω are also accepted, contradicting the fact that aabω �∈ co-lim(A).



136 B. Aminof and O. Kupferman

5 Succinctness in Safety, Co-safety, and Bounded Properties

The study of limit operators checks behaviors in the limit. In this section we restrict
attention to properties that refer to a bounded prefix of the computation. We show that
even though such properties can be recognized by automata of very restricted type,
almost all the lower bounds that hold in the general case, hold also in this restricted case.
We consider safety, co-safety, and bounded properties. We start with some definitions.
Let L be a language of infinite words over Σ. A finite word x ∈ Σ∗ is a bad prefix for
L if for all infinite words y ∈ Σω, the concatenation x · y of x and y is not in L. Thus,
a bad prefix for L is a finite word that cannot be extended into an infinite word in L. In
a similar fashion, a finite word x ∈ Σ∗ is a good prefix for L, if for all infinite words
y ∈ Σω, the concatenation x · y of x and y is in L.

Definition 2. A language L is

– a safety language if every word not in L has a bad prefix,
– a co-safety language if every word in L has a good prefix,
– a bounded language if it is both safety and co-safety.

Note that a language L is bounded iff every word w ∈ Σω has either a good or a bad
prefix [11]. Accordingly, evaluation of bounded properties can be done by traversing
a bounded prefix of the computation, making bounded properties suitable for bounded
model checking [6].

From an automata-theoretic point of view [24,11], safety properties correspond to
looping automata (Büchi automata where all states are accepting), co-safety properties
to co-looping automata (Büchi automata with a single accepting state that is a loop), and
bounded properties to cycle-free automata (automata whose transition function contains
no cycle, except possibly a self loop in an accepting sink). Accordingly, we expect the
differences between the limit operators to vanish.

Examining the results in the previous sections, however, we see that most of the suc-
cinctness results established for the general case were actually proven with a bounded
language, making them valid also for the bounded fragment. An exception is Theo-
rem 3, which makes a heavy use of the unbounded nature of the language Ln. Never-
theless, the language we have used in Theorem 5 is bounded and cannot be recognized
by a sub-exponential NCW or NBW. Hence, we also have exponential lower bounds for
the co-lim NFW → NCW/NBW and plim NFW → NCW/NBW transformations in the
bounded case.

In some cases, however, safetyness (and hence also boundedness) makes things sim-
pler. We start with the plim-typeness of lim NFWs:

Lemma 2. When restricted to safety properties, lim is plim-type.

Proof: Consider an NFW A = 〈Σ,Q, δ,Q0, α〉 such that lim(A) is a safety language.
We prove that there is A′ = 〈Σ,Q, δ,Q0, α

′〉 such that plim(A′) = lim(A).
By Theorem 2, we have that lim(A) =

⋃
p∈Q LQ0,p · (Lp,p ∩Lp,α)ω. Let S ⊆ Q be

the set of states in A that are not reachable fromQ0 or from which no state p such that
Lp,p∩Lp,α �= ∅ is reachable. The NFW A′ is obtained fromA by defining the accepting
set to be α′ = Q \ S. In the full version, we prove that lim(A) = lim(A′) = plim(A′).



On the Succinctness of Nondeterminism 137

Note that, in the construction above, removing all the states in S from A′ does not
change the language lim(A′), and results in an NFW in which all the states are accept-
ing. It is not hard to prove that if A is an NFW in which all states are accepting, then
it is always the case that lim(A) = L(Ainf ), where Ainf is A when viewed as a Büchi
automaton. Thus, in the case of safety properties, the above simple linear construction
gives a transformation from lim NFWs to NBWs, and the cubic construction in Sec-
tion 3 can be circumvented. In addition, if A is a looping NBW, then it is always the
case that L(A) = lim(Afin), where Afin is A when viewed as an NFW. Hence, we have
the following.

Theorem 7. When restricted to safety properties, the transformations from an NBW to
a limit NFW and from a limit NFW to an NBW are linear.

It is not hard to see that co-lim is not plim type also in the context of bounded properties.
Indeed, the non-typeness there has to do with the non-typeness of NFW complemen-
tation (that is, the fact that NFW complementation cannot always be done on top of
the same structure). More difficult is to show that lim is not plim type for co-safety
properties:

Lemma 3. lim is not plim-type, even for co-safety properties.

Proof: Consider the NFW A in Figure 3. Note that lim(A) = Σω \ {aω, bω}. Observe
that there is no way to define the accepting states in such a way that only a finite number
of prefixes of abω are rejected, while maintaining the requirement that infinitely many
prefixes of aω and bω are rejected.

a

b

b

a

a, ba

b a, b

Fig. 3. An NFW A with lim(A) = Σω \ {aω, bω}

6 Discussion

In Figure 4, we summarize most of our results. All the lower bounds in the table, with
the exception of plim NFW → co-lim NFW, are tight.

Below we discuss the cases that were left open and our efforts to solve them. In ad-
dition to the results described in Figure 4, Theorem 4 describes an exponential lower
bound for the translation of NBW and NCW to co-lim NFW. A translation of an NBW
to a lim NFW was left open (the considerations for the NCW to plim NFW case are sim-
ilar). Recall that an NBW A can be transformed to an NFW A′ with L(A) = lim(A′)
iff L(A) can be accepted by a DBW. As demonstrated in Section 1, even in cases where
the transformation is possible, the NFW A′ may not be defined on the same structure



138 B. Aminof and O. Kupferman

lim NFW co-lim NFW plim NFW

DBW 2Ω(n) [Theorem 1]
DCW 2Ω(n) [Theorem 1]
NBW O(n3) [Corollary 1] 2Ω(n) [Theorem 3]
NCW ? 2Ω(n) [Theorem 3]

lim NFW - 2Ω(n) [Theorem 5] 2Ω(
√

n) [Theorem 5]
co-lim NFW 2Ω(n) Theorem 4 - 2Ω(n) [Theorem 4]

plim ? (not type [Theorem 6], ? (not type [Theorem 6]) -
type for safety [Lemma 2])

Fig. 4. Main Results Summary

as A. This follows from the fact that different prefixes of an infinite word may follow
different accepting runs, and there is no guarantee that these runs can be merged into
a single infinite accepting run. Since a deterministic automaton has a single run on ev-
ery input, it does not suffer from this problem, and indeed the transformation from a
DBW to a lim DFW can be done on the same structure. This suggests an exponential
upper bound for the NBW to lim NFW transformation, and also hints that an exponen-
tial lower bound may follow from the exponential lower bound on determinization. On
the other hand, similar considerations apply to the reverse transformation — of a lim
NFW to an NBW, and there, as we have seen in Section 3, we are able to avoid deter-
minization and have a polynomial transformation. Another related observation is that
an exponential lower bound, if exists, cannot follow easily from the exponential lower
bound on NFW determinization. Indeed, as we have noted in Section 5, the transfor-
mation from an NBW to a lim NFW is linear for safety languages (and hence also for
ω-regular languages that are based on regular languages).

It follows that the most promising direction for obtaining an exponential lower bound
in the NBW to lim NFW case is one that makes use of the combinatorial properties of
the Büchi condition and relies on the 2O(n log n) lower bound for NBW determiniza-
tion. A natural candidate for a family of languages with which a lower bound can be
proved is therefore the family Ln defined by Michel in the context of NBW comple-
mentation and later used by Löding in the context of NBW determinization [19,15]. As
we show, however, in the full version, even though there is no DFW A with less than
2Ω(n log n) states such that lim(A) = Ln, there is an NFW A with only O(n2) states,
such that lim(A) = Ln. The NFW A belongs to a special class of NFWs we call con-
tinuous NFWs. The main property of continuous NFW is that the language they accept
as NBWs coincides with their limit. I.e., for a continuous NFW, the different accepting
runs over prefixes of an infinite word do merge into an accepting run on the infinite
word. Formally, we have the following. Consider an NFW A = 〈Σ,Q, δ,Q0, α〉. For
sets P, S ⊆ Q, we use L¬α

P,S to denotes the language of all words that A can read along
a run disjoint from α that start in P and ends in S (the runs may start and/or end in a
state in α, but states of α are not allowed in the middle of the run).

Definition 3. An NFW A = 〈Σ,Q, δ,Q0, α〉 is continuous if the languages lim(L¬α
Q0,α)

and lim(L¬α
α,α) are both empty.



On the Succinctness of Nondeterminism 139

In the full version, we show that all DFWs are continuous and that if A is a continuous
NFW, then L(A) = lim(Ainf ), when Ainf is A viewed as an NBW. As detailed in the
full version, the proof makes use of the characterization described for limit languages
in Theorem 2 — the characterization that was the key to the polynomial lim NFW to
NBW transformation. Our conjecture is that a polynomial translation from NBW to lim
NFW is possible also in the general case.

We now discuss another problem that was left open: the transformation from a lim
NFW to a plim NFW. Note that a “lim to plim” transformation is possible only for lan-
guages that are recognizable by both DBW and DCW, and hence are also recognizable
by a deterministic weak automaton [4] (a similar challenge is the “lim to NCW” trans-
formation, which was also left open). Our initial conjecture was that lim is plim type.
The examples in Theorem 6 and Lemma 3 have made us realize that the fact a lim NFW
does not have to eventually accept all prefixes enables it to classify states that are the
only destination of some prefixes as rejecting ones. As demonstrated in the examples,
this enables the NFW to use these states in cycles that are traversed along runs of words
that are not in the limit. On the one hand, this points to an advantage of lim NFWs
over plim NFWs. Note that a dual advantage enabled us to prove an exponential lower
bound in the reverse “plim to lim” transformation. On the other hand, this advantage of
lim seems to help it only with a bounded number of prefixes. Technically, it may be (and
this is the case in both examples), that by unwinding the graph of the NFW some fixed
number of times, we get a new NFW that is plim type. Thus, here too, our conjecture is
that a polynomial transformation exists.

Acknowledgment. We thank Annielo Murano for many helpful discussions.

References

1. B. Alpern and F.B. Schneider. Defining liveness. IPL, 21:181–185, 1985.
2. R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver, S. Mador-Haim,

E. Singerman, A. Tiemeyer, M.Y. Vardi, and Y. Zbar. The ForSpec temporal logic: A new
temporal property-specification logic. In 8th TACAS, LNCS 2280, pages 296–211, 2002.

3. I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh. The temporal logic
Sugar. In Proc. 13th CAV, LNCS 2102, pages 363–367, 2001.

4. B. Boigelot, S. Jodogne, and P. Wolper. On the use of weak automata for deciding linear
arithmetic with integer and real variables. In IJCAR, LNCS 2083, pages 611–625, 2001.

5. J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc. International
Congress on Logic, Method, and Philosophy of Science. 1960, pages 1–12, Stanford, 1962.

6. E. M. Clarke, A. Bierea, R. Raimi, and Y. Zhu. Bounded model checking using satisfiability
solving. Formal Methods in System Design, 19(1):7–34, 2001.

7. Accellera Organization Inc. http://www.accellera.org.
8. S.C. Krishnan, A. Puri, and R.K. Brayton. Deterministic ω-automata vis-a-vis deterministic

Büchi automata. In Algorithms and Computations, LNCS 834, pages 378–386, 1994.
9. O. Kupferman, G. Morgenstern, and A. Murano. Typeness for ω-regular automata. In Proc.

2nd ATVA, LNCS 3299, pages 324–338, 2004.
10. O. Kupferman, S. Safra, and M.Y. Vardi. Relating word and tree automata. In Proc. 11th

LICS, pages 322–333, DIMACS, June 1996.
11. O. Kupferman and M.Y. Vardi. On bounded specifications. In Proc. 8th LPAR, LNCS 2250,

pages 24–38, 2001.



140 B. Aminof and O. Kupferman

12. O. Kupferman and M.Y. Vardi. From linear time to branching time. ACM TOCL, 6(2):273–
294, April 2005.

13. R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton Univ.
Press, 1994.

14. L.H. Landweber. Decision problems for ω–automata. Mathematical Systems Theory, 3:376–
384, 1969.

15. C. Löding. Optimal bounds for the transformation of omega-automata. In Proc. 19th
FSTTCS, LNCS 1738, pages 97–109, 1999.

16. C. Löding. Efficient minimization of deterministic weak omega-automata. IPL, 79(3):105–
109, 2001.

17. R. McNaughton. Testing and generating infinite sequences by a finite automaton. I& C,
9:521–530, 1966.

18. A.R. Meyer and M.J. Fischer. Economy of description by automata, grammars, and formal
systems. In Proc. 12th SSAT, pages 188–191, 1971.

19. M. Michel. Complementation is more difficult with automata on infinite words. CNET, Paris,
1988.

20. S. Miyano and T. Hayashi. Alternating finite automata on ω-words. TCS, 32:321–330, 1984.
21. M.O. Rabin. Decidability of second order theories and automata on infinite trees. Transaction

of the AMS, 141:1–35, 1969.
22. S. Safra. On the complexity of ω-automata. In Proc. 29th FOCS, pages 319–327, 1988.
23. S. Safra and M.Y. Vardi. On ω-automata and temporal logic. In Proc. 21st ACM STOC,

pages 127–137, 1989.
24. A.P. Sistla. Safety, liveness and fairness in temporal logic. Formal Aspects of Computing,

6:495–511, 1994.
25. W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer Science,

pages 133–191, 1990.
26. M.Y. Vardi and P. Wolper. Reasoning about infinite computations. I& C, 115(1):1–37, 1994.



Efficient Algorithms for Alternating Pushdown

Systems with an Application to the
Computation of Certificate Chains�

Dejvuth Suwimonteerabuth, Stefan Schwoon, and Javier Esparza

Institut für Formale Methoden der Informatik, Universität Stuttgart,
Universitätsstr. 38, 70569 Stuttgart, Germany

{suwimodh,schwoosn,esparza}@informatik.uni-stuttgart.de

Abstract. Motivated by recent applications of pushdown systems to
computer security problems, we present an efficient algorithm for the
reachability problem of alternating pushdown systems. Although the al-
gorithm is exponential, a careful analysis reveals that the exponent is
usually small in typical applications. We show that the algorithm can be
used to compute winning regions in pushdown games. In a second con-
tribution, we observe that the algorithm runs in polynomial time for a
certain subproblem, and show that the computation of certificate chains
with threshold certificates in the SPKI/SDSI authorization framework
can be reduced to this subproblem. We present a detailed complexity
analysis of the algorithm and its application, and report on experimen-
tal results obtained with a prototype implementation.

1 Introduction

Pushdown systems are a concept from formal-language theory that has turned
out to be useful in computer-aided verification. They naturally model the be-
haviour of programs with possibly recursive procedures, and therefore model-
checking for pushdown systems has been the subject of recent research. Burkhard
and Steffen [1] and Walukiewicz [2] have studied the problem for the modal µ-
calculus. Other papers [3,4,5] have investigated specialised algorithms for LTL
model checking and both forward and backward reachability on pushdown sys-
tems. Concrete algorithms for these tasks with a precise complexity analysis were
proposed in [5] and subsequently implemented in the Moped tool. Moreover, [3]
has shown that a similar approach can be used to solve the backward reacha-
bility problem in alternating pushdown systems. This can be used to solve the
model-checking problem for the alternation-free µ-calculus on (non-alternating)
pushdown systems.

More recently, pushdown systems have also been applied in the field of com-
puter security. In the authorization framework SPKI/SDSI [6], certificates are
used to assign permissions to groups of principals, which are defined using local,
� This work was partially supported by the DFG project Algorithms for Software

Model Checking and SFB 627 Nexus, Project A6.

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 141–153, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



142 D. Suwimonteerabuth, S. Schwoon, and J. Esparza

hierarchical namespaces. In order to prove that a principal may access a certain
resource, he/she needs to produce a chain of certificates that, taken together,
provide a proof of authorisation. Jha and Reps [7] showed that a set of cer-
tificates can be seen as a pushdown system, and that certificate-chain discovery
reduces to pushdown reachability. The SPKI/SDSI specification also provides for
so-called threshold certificates, allowing specifications whereby a principal can be
granted access to a resource if he/she can produce authorisations from multiple
sources. We observe that this extension reduces to reachability on alternating
pushdown systems.

Motivated by the applications in verification and authorisation, we study
reachability algorithms for alternating pushdown systems (APDS) in more de-
tail. The algorithm proposed in [3] is abstract (i.e. only the saturation rule is
given), and its complexity is given as “exponential”, without further details.
Here, we provide a concrete algorithm for solving the problem together with a
precise complexity analysis. Moreover, inspired by the work of [7], we show that
the algorithm is very efficient for a special class of instances. Then, we consider
two applications. The first one is straightforward: We show that the algorithm
immediately leads to a procedure for computing winning regions in pushdown
reachability games, and derive a complexity bound improving a previous analysis
by [8]. The second application is perhaps more interesting. In [7], Jha and Reps
observed that, for a restricted form of threshold certificates, the certificate-chain-
discovery problem can be solved in polynomial, rather than exponential time. We
prove this result again by showing that the existence of certificate chains can be
reduced to the special class of instances of the reachability problem that we have
identified. We perform a detailed complexity analysis, and report on a prototype
implementation on top of the Nexus platform for context-aware systems [9].

We proceed as follows: Section 2 introduces alternating pushdown systems
and other concepts used in the paper. Section 3 presents an algorithm for solv-
ing the reachability problem on APDS and analyzes its complexity. Section 4
studies the special class of instances mentioned above. Section 5 presents new
upper bounds for computing winning regions in reachability pushdown games.
Section 6 presents our application to certificate-chain discovery, and Section 7
reports experimental results.

Due to lack of space, all proofs have been omitted from this paper. A complete
version that contains all the proofs has been published as a technical report [10].

2 Preliminaries

An alternating pushdown system (APDS) is a triplet P = (P, Γ,∆), where
P is a finite set of control locations, Γ is a finite stack alphabet, and ∆ ⊆
(P × Γ ) × 2(P×Γ∗) is a set of transition rules. A configuration of P is a pair
〈p, w〉, where p ∈ P is a control location and w ∈ Γ ∗ is a stack content. If
((p, γ), {(p1, w1), . . . , (pn, wn)}) ∈ ∆, we write 〈p, γ〉 ↪→ {〈p1, w1〉, . . . , 〈pn, wn〉}
instead. We call a rule alternating if n > 1, or non-alternating otherwise. We also
write 〈p, γ〉 ↪→ 〈p1, w1〉 (braces omitted) for a non-alternating rule. Moreover,



Efficient Algorithms for Alternating Pushdown Systems 143

for every w ∈ Γ ∗, the configuration 〈p, γw〉 is an immediate predecessor of the
set {〈p1, w1w〉, . . . , 〈pn, wnw〉}.

A computation tree of P is a directed tree whose nodes are labelled by configu-
rations and where every node n is either a leaf or an internal node labelled with c
such that n has one outgoing hyperedge whose set of target nodes is labelled with
configurations C = {c1, . . . , cn}, where c is an immediate predecessor of C. We
define the reachability relation ⇒ as c ⇒ C if there exists a computation tree
such that c labels the root and C is the set of labels of the leaves. If c ⇒ C,
then C is reachable from c. Given a set of configurations C, we define the set of
predecessors, pre∗(C) = {c | ∃C′ ⊆ C : c⇒ C′}, as the set of configurations that
are reachable backwards from subsets of C via the reachability relation.

Let us fix an APDS P = (P, Γ,∆). An alternating P-automaton is a quintuple
A = (Q,Γ, δ, P, F ), where Q ⊇ P is a finite set of states, F ⊆ Q is the set of
final states, and δ ⊆ Q×Γ ×2Q is a set of transitions. The initial states of A are
the control locations of P . We define the transition relation → ⊆ Q× Γ ∗ × 2Q

as the smallest relation satisfying:

– q
ε−→ {q} for every q ∈ Q,

– if (q, γ,Q′) ∈ δ then q γ−→ Q′, and
– if q w−−→ {q1, . . . , qm} and qi

γ−→ Qi for each 1 ≤ i ≤ m, then q
wγ−−→

(Q1 ∪ . . . ∪Qm).

A accepts or recognizes a configuration 〈p, w〉 if p w−−→ Q′ for some Q′ ⊆ F . The
set of configurations recognized by A is denoted by L(A).

In [3], it has been shown that given a set of configurations C of P , recognized
by an alternating automaton A, we can construct another automaton Apre∗ such
that L(Apre∗) = pre∗(C).

The procedure of [3] assumes w.l.o.g. that A has no transition leading to an
initial state. Apre∗ is computed by means of a saturation procedure, which adds
new transitions to A, according to the following rule:

If 〈p, γ〉 ↪→ {〈p1, w1〉, . . . , 〈pm, wm〉} ∈ ∆ and p1
w1−−→ P1,. . . , pm

wm−−−→
Pm holds, then add p γ−→ (P1 ∪ . . . ∪ Pm).

3 An Implementation for pre∗

In this section we present an implementation, as shown in Fig. 1, of the abstract
algorithm from Sect. 2. Without loss of generality, the algorithm imposes two
restrictions on every rule 〈p, γ〉 ↪→ R in ∆:

(R1) if R = {〈p′, w′〉}, then |w′| ≤ 2, and
(R2) if |R| > 1, then |R| = 2 and ∀〈p′, w′〉 ∈ R : |w′| = 1.

Note that any APDS can be converted into an equivalent one that satisfies
(R1) and (R2) with only a linear increase in size (i.e. the converted automaton
executes the same sequences of actions, modulo the fact that one step may be
refined into a sequence of steps).

In the rest of the paper we conduct a careful analysis in terms of certain
parameters of the input, which are listed below:



144 D. Suwimonteerabuth, S. Schwoon, and J. Esparza

– ∆a, ∆0, ∆1, ∆2 denote the sets of alternating rules and non-alternating rules
with 0, 1, 2 stack symbols in their right-hand side, respectively.

– The set of pop control locations, denoted by Pε, is the set of control locations
p1 ∈ P such that ∆0 contains some rule 〈p, γ〉 ↪→ 〈p1, ε〉.

– Given an alternating automaton, we define Qni as the set of its non-initial
states, i.e., Qni = Q \ P .

Algorithm 1 computes Apre∗ by implementing the saturation rule. The sets rel
and trans contain the transitions that are known to belong to Apre∗ ; rel contains
those that have already been examined. Lines 1–4 initialize the algorithm. The
rules 〈p, γ〉 ↪→ 〈p1, ε〉 are dealt with first, as in the pre∗ algorithm of the non-
alternating case [5]. All rules are copied to ∆′ (line 3), and the auxiliary function
F(r) is assigned to set of empty set for each rule r (line 4). The algorithm
then proceeds by iteratively removing transitions from trans (line 6), adding
them to rel if necessary (lines 7–8), and examining whether they generate other
transitions via the saturation rule (lines 9–22). The idea of the algorithm is to
avoid unnecessary operations. Imagine that the saturation rule allows to add
transition t if transitions t1 and t2 are already present. Now, if t1 is taken from
trans but t2 has not been added to Apre∗ , we do not put t1 back to trans but store
the following information instead: if t2 is added, then we can also add t. It turns
out that these implications can be stored in the form of “fake pushdown rules”
(like those added in line 18 or 21) and in the form of the auxiliary sets F(r).

Let us now look at the lines 9–22 in more detail. Lines 9–10 are as in [5]. Push
rules (lines 11–19) and alternating rules (lines 20–22), however, require a more
delicate treatment. At line 11 we know that q γ−→ Q′ is a transition of Apre∗

(because it has been popped from trans) and that 〈p1, γ1〉 ↪→ 〈q, γγ2〉 is a rule
of the APDS. So we divide the states q′ ∈ Q′ into those for which there is some
rule q′ γ2−−→ Q′′ in rel and the rest. If there is no rest then we can add new rules
to trans (lines 14–15). Otherwise we add the “fake rule” of line 18. At line 20
we know that q γ−→ Q′ is a transition of Apre∗ and 〈p1, γ1〉 ↪→ {〈q, γ〉} ∪R is an
alternating rule. So we add the “fake rule” 〈p1, γ1〉 ↪→ R.

Note that the algorithm obviously runs with exponential time, since the num-
ber of transitions of Apre∗ can be exponential in the number of states. However,
a closer look at the complexity reveals that the algorithm is exponential only in
a proper subset of states, which can be small depending on the instance.

Lemma 1. Algorithm 1 takes O(|δ0|+ |∆0|+ |∆1|2n + (|∆2|n+ |∆a|)4n) time,
where n = |Pε| + |Qni|.

In typical applications, we start with a small automaton, i.e. δ0 and Qni will be
small. In that case, n will be dominated by |Pε|, therefore the complexity can
be simplified to O(|∆0| + |∆1|2|Pε| + (|∆2||Pε| + |∆a|)4|Pε|)

Theorem 1. Let P = (P, Γ,∆) be an alternating pushdown system and A =
(Q,Γ, δ0, P, F ) be an alternating automaton. There exist an alternating automa-
ton Apre∗ that recognizes pre∗(L(A)). Moreover, if the restrictions R1 and R2
are met, Apre∗ can be constructed in O(|δ0|+ |∆0|+ |∆1|2n + (|∆2|n+ |∆a|)4n)
time, where n = |Pε| + |Qni|.



Efficient Algorithms for Alternating Pushdown Systems 145

Algorithm 1
Input: an APDS P = (P, Γ, ∆);

an alternating P-automaton A = (Q,Γ, δ0, P, F ) without transitions into P
Output: the set of transitions of Apre∗

1 rel := ∅;
2 trans := δ0 ∪ { (p, γ, p′) | 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆ } ∪ { (p, γ, ∅) | 〈p, γ〉 ↪→ ∅ ∈ ∆ };
3 ∆′ := ∆;
4 F := λx.{∅};
5 while trans �= ∅ do
6 pop t := (q, γ, Q′) from trans;
7 if t /∈ rel then
8 add t to rel ;
9 for all r := 〈p1, γ1〉 ↪→ 〈q, γ〉 ∈ ∆′ and Q′′ ∈ F(r) do

10 add (p1, γ1, Q
′ ∪ Q′′) to trans ;

11 for all 〈p1, γ1〉 ↪→ 〈q, γγ2〉 ∈ ∆′ do
12 S := { q′ ∈ Q′ | ∃Q′′ : (q′, γ2, Q

′′) ∈ rel };
13 Q1 := {⋃q′∈S Qq′ | ∀q′ ∈ S : (q′, γ2, Qq′) ∈ rel };
14 if S = Q′ then
15 add {(p1, γ1, Q1) | Q1 ∈ Q1} to trans ;
16 else
17 r := 〈p1, γ1〉 ↪→ {〈q′, γ2〉 | q′ ∈ Q′ \ S};
18 add r to ∆′ ;
19 add Q1 to F(r) ;
20 for all r := 〈p1, γ1〉 ↪→ {〈q, γ〉} ∪ R ∈ ∆′ s.t. R �= ∅ do
21 add 〈p1, γ1〉 ↪→ R to ∆′ ;
22 add {Q′′ ∪ Q′ | Q′′ ∈ F(r)} to F(〈p1, γ1〉 ↪→ R) ;
23 return rel ;

Fig. 1. An algorithm for computing pre∗

Given an APDS P , a configuration c of P , and a set of configurations C, the
backward reachability problem for P , c, and C is to check whether c ∈ pre∗P(C).
By Theorem 1, the problem is in EXPTIME. The following theorem shows a cor-
responding lower bound. It is a rather straightforward modification of a theorem
of [11].

Theorem 2. The backward reachability problem for alternating pushdown sys-
tems is EXPTIME-complete, even if C is a singleton.

4 A Special Case

Recall the saturation rule of the abstract algorithm for the computation of
pre∗: for every transition rule 〈p, γ〉 ↪→ {〈p1, w1〉, . . . , 〈pm, wm〉} and every set
p1

w1−−→ P1, . . . , pm
wm−−−→ Pm, add a new transition p γ−→ (P1 ∪ . . . ∪ Pm). The

exponential complexity of the algorithm is due to the fact that the target of the
new transition can be an arbitrary set of states, and so we may have to add an
exponential number of new rules in the worst case. We now consider a special



146 D. Suwimonteerabuth, S. Schwoon, and J. Esparza

class of instances in which a new transition p γ−→ Q need only be added if Q is a
singleton, and show that a suitable modification of Algorithm 1 has polynomial
running time.

Definition 1. Let P = (P, Γ,∆) be an APDS, and let R ⊆ PΓ ∗ be a set of
configurations. We say that (P , R) is a good instance for the computation of
pre∗ if for every 〈p, d〉 ↪→ {〈p1, w1〉, . . . , 〈pn, wn〉} ∈ ∆ with n ≥ 2 and for every
i ∈ {1, . . . , n}: piwiw ∈ pre∗(R) implies w = ε.

I.e., if the set R can be reached from piwi, then it cannot be reached from any
piwiw, where w is a nonempty word. As mentioned above, we introduce the
following modification to the saturation rule: a new transition p γ−→ Q is added
only if Q is a singleton.

Theorem 3. Let P = (P, Γ,∆) and R be a good instance, and let A be a non-
deterministic automaton recognizing R. Assume w.l.o.g. that A has one single
final state. Then, the modified saturation procedure produces a nondeterministic
automaton recognizing the same language as Apre∗ .

Algorithm 1 implements the modified procedure after the following change to
line 9: for all r := 〈p1, γ1〉 ↪→ 〈q, γ〉 ∈ ∆′ and Q′′ ∈ F(r) ∩ {∅, Q′} do.

Lemma 2. The modified Algorithm 1 takes O(|δ0| + |∆0| + (|∆1| + |∆a|)n +
|∆2|n2) time, where n = |Pε| + |Qni|, when applied to a good instance.

Note that Algorithm 1, when applied to a non-alternating PDS (i.e. one with
∆a = ∅), has the same complexity as the algorithm from [5] that was specially
designed for non-alternating PDS.

5 Computing Attractors in Pushdown Games

In [8] Cachat provided an algorithm for computing the winning positions of a
player in a pushdown reachability game. It is straightforward to reformulate the
algorithm in terms of pre∗ computations for alternating pushdown automata. We
do this, and apply the results of Sect. 3 to provide very precise upper bounds
for the complexity of these problems.

A pushdown game system (PGS) is a tuple G = (P, Γ,∆G , P0, P1), where
(P, Γ,∆G) is a PDS and P0, P1 is a partition of P . A PGS defines a pushdown
game graph GG = (V,→) where V = PΓ ∗ is the set of all configurations, and
pγv → qwv for every v ∈ Γ ∗ iff (p, γ, q, w) ∈ ∆G . P0 and P1 induce a partition
V0 = P0Γ

∗ and V1 = P1Γ
∗ on V . Intuititively, V0 and V1 are the nodes at which

players 0 and 1 choose a move, repectively. Given a start configuration π0 ∈ V ,
a play is a maximal (possibly infinite) path π0π1π2 . . . of GG ; the transitions of
the path are called moves; a move πi → πi+1 is made by player 0 if πi ∈ V0;
otherwise it is made by player 1.

The winning condition of a reachability game is a regular goal set of configu-
rations R ⊆ PΓ ∗. Player 0 wins those plays that visit some configuration of the



Efficient Algorithms for Alternating Pushdown Systems 147

goal set and also those that reach a deadlock for player 1. Player 1 wins the rest.
We wish to compute the winning region for player 0, denoted by Attr0(R), i.e.
the set of nodes from which player 0 can always force a visit to R or a deadlock
for player 1. Formally [8]:

Attr00(R) = R ,

Attri+1
0 (R) = Attri0(R) ∪ {u ∈ V0 | ∃v : u→ v, v ∈ Attri0(R)}

∪ {u ∈ V1 | ∀v : u→ v ⇒ v ∈ Attri0(R)} ,
Attr0(R) =

⋃
i∈N

Attri0(R) .

Given a PGS G = (P, Γ,∆G , P0, P1), we define an APDS P = (P, Γ,∆) as follows.
For every p ∈ P and γ ∈ Γ : if p ∈ P0, then for every rule 〈p, γ〉 ↪→ 〈q, w〉 of ∆G
add the rule 〈p, γ〉 ↪→ {〈q, w〉} to ∆; if p ∈ P1 and S is the set of right-hand-side
configurations of rules with 〈p, γ〉 as left-hand-side, then add 〈p, γ〉 ↪→ S to ∆. It
follows immediately from the definitions that Attr0(R) = pre∗P(R) (intuitively,
if c ∈ pre∗P(R) then c⇒ C for some C ⊆ R, and so player 0 can force the play
into the set C). So we can use Algorithm 1 to compute Attr0(R). To derive the
complexity bound, we apply Lemma 1:

Theorem 4. Let G = (P, Γ,∆G , P0, P1) be a PGS and a goal set R recognized
by an alternating automaton AR = (Q,Γ, δ0, P, F ). An alternating automaton
accepting the winning region can be computed in O(|δ0|+|∆0|+|∆1|2n+(|∆2|n+
|∆a|)4n) time, where n = |Pε| + |Qni|.

In [8] an upper bound of O(|∆| · 2c·|Q|2) is given. Our algorithm runs in O(|∆| ·
2c·|Q|) time, and in fact Theorem 4 further reduces the exponent c · |Q| to |Pε|+
|Qni|. Typically, |Pε|+ |Qni| is much smaller than |Q|. First, recall that, because
of the definition of P-automaton, we have P ⊆ Q. Moreover, goal sets often take
the form p1Γ

∗ ∪ . . . ∪ pnΓ
∗, i.e., player 0 wins if the play hits one of the control

states p1, . . . , pn. In this case we can construct AR with |Qni| = 1. Since |Pε| is
typically much smaller than |P |, the parameter n is much smaller than |Q|.

6 Computing Certificate Trees in SPKI/SDSI

In access control of shared resources, authorization systems allow to specify a
security policy that assigns permissions to principals in the system. The autho-
rization problem is, given a security policy, should a principal be allowed access
to a specific resource? In frameworks such as SPKI/SDSI [6] and RT0 [12], the
security policy is expressed as a set of certificates, and the authorization problem
reduces to discovering a subset of certificates proving that a given principal is
allowed to access a given resource.

The SPKI/SDSI standard provides for so-called threshold certificates. Jha and
Reps already observed in [7] that the authorization problem in the presence of
such certificates can be reduced to the APDS reachability problem, and that a
special case had polynomial complexity. In this paper, we observe that the special



148 D. Suwimonteerabuth, S. Schwoon, and J. Esparza

case corresponds to good instances of APDS reachability, as defined in Sect. 4,
and provide a detailed complexity analysis. Moreover, we report on experimental
results for a prototype implementation of the algorithm as an extension of the
Nexus platform [9] with distributed access control.

The expressiveness of RT0 is very similar to that of SPKI/SDSI and also
allows for role intersection. We note, therefore, that the authorization problem
for RT0 also reduces to APDS reachability. In [12], a specialised certificate-
chain-discovery algorithm for RT0 was proposed to which our solution provides
an alternative. A comparison between the two algorithms is a little involved,
however, and can be found in [10].

We proceed in two steps. First, we consider “simple” SPKI/SDSI, a subset
of SPKI/SDSI that has been considered in most of the work on this topic. Sim-
ple SPKI/SDSI does not handle threshold certificates, which we present in the
second part.

6.1 Simple SPKI/SDSI

In this paper, we introduce only the basic notations that are required to under-
stand SPKI/SDSI and its connections with alternating PDS. A more thorough
explanation can be found in [7].

In SPKI/SDSI, the principals (individuals, resources, or any other entities)
are represented by their public keys. We denote by K the set of public keys (or
principals), specific keys are denoted by K,KA,K

′, etc. An identifier is a word
over some alphabet Σ (usually denoted by typewriter font such as A, B, . . . ).
The set of identifiers is denoted by A. A local name is of the form K A, where
K ∈ K and A ∈ A. For example, KX Customer is a local name. A term is a key
followed by zero or more identifiers. For example, K Area Customer is a term.
SPKI/SDSI has two types of certificates, or “certs”:

Name Certificates. A name cert provides a definition of a local name in the
issuer’s local name space. Simply speaking, it can be understood as a rewrite
rule of the form K A → S, where K A is a local name and and S is a term.
Intuitively, this defines a meaning for A in the local name space of principal K,
and only K may issue and sign such a cert.

Imagine, for instance, that X is a telecommunication company with multiple
divisions, including the mobile phone division Xm. Alice is a customer with the
mobile phone division. Consider the following certificates:

KXm customer→ KAlice (1)
KX customer→ KXm customer (2)

Here, (1) intuitively declares Alice to be a customer of Xm, while (2) says that
customers of Xm are also customers of the company X as a whole.

Authorization Certificates. An auth cert grants or delegates a specific authoriza-
tion from an issuer to a subject. It can be understood as a rewrite rule of the form



Efficient Algorithms for Alternating Pushdown Systems 149

KR � → S b, where b ∈ {�,�}. If KR is the owner of some resource R, then
this certificate grants access to R to all principals described by term S. Only KR

may issue such a certificate. If b = �, then authorized principals may delegate
this authorization to other principals, otherwise delegation is not permitted. The
following certificate grants access to resource R to all of X ’s customers, without
delegation:

KR � → KX customers � (3)

Certificate Chains. In order for Alice to prove that she has access to some
resource, she needs to provide a list of certificates that lead from the public key
to herself by applying left-prefix rewriting. Such a list of certificates is called a
certificate chain. In the example, Alice is granted authorisation to access R if
she can produce the certificate chain (3),(2),(1), because applying them (in this
order) shows that:

KR � (3)→ KX customers � (2)→ KXm customers � (1)→ KAlice �

Since this chain leads from KR � to KAlice �, Alice is authorised to access R,
the “�” indicating that she is unable to delegate that access further.

It was observed in [7] that a set of name and auth certs can be interpreted as a
pushdown system; therefore, the authorization problem reduces to the problem
of pushdown reachability and can be solved using the algorithms from [3,5].

6.2 SPKI/SDSI with Threshold Certificates

The SPKI/SDSI standard [6] provides for so-called threshold subjects. A thresh-
old subject is a pair (S, k) where S is a set of terms and k ≤ |S|. A threshold
certificate is a name or auth cert where the right-hand side is a threshold sub-
ject. If threshold certificates are involved, proofs of authorisation can no longer
be done purely by certificate chains. Instead, a proof of authorisation for Alice
to access resource R becomes a certificate tree, where the nodes are labelled with
terms and the edges are labelled with rewrite rules that can be applied to the
term labelling their source nodes. The root is KR �, and if K A → (S, k) is used
to rewrite a node n, then the children of n are the elements of S. The tree is
considered a valid proof of authorisation for Alice if at least k of the children
can be rewritten to KAlice b, where b ∈ {�,�}.

We observe that it is sufficient to consider threshold certificates with subject
(S, k) such that k = |S|. (Any certificate where k < |S| can be simulated by

(|S|
k

)
threshold certificates for each subset of S with exactly k elements.) Therefore,
we will omit the number k from now on, silently assuming that it is equal to the
cardinality of S.

It can now easily be seen that in the presence of threshold certificates, the
certificate set can be interpreted as an alternating pushdown system, and that
the authorisation problem reduces to APDS reachability. In other words, Alice is
granted access to resourceR if she can prove thatKR � ⇒ {KAlice �,KAlice �}.



150 D. Suwimonteerabuth, S. Schwoon, and J. Esparza

In [13,7] the use of threshold subjects is restricted to just authorization cer-
tificates, claiming that the use of threshold subjects in name certificates would
make the semantics “almost surely too convoluted”. Moreover, [7] observes that
under this restriction the authorisation problem can be solved without incurring
(asymptotic) run-time penalties for threshold subjects and gives an informal al-
gorithm. Within our framework, we note that the restriction of threshold subjects
to auth certs allows one to obtain a good instance and to apply the algorithm
from Sect. 4 to solve the authorisation problem.

Theorem 5. Let Ct, C0, C1, and C2 be sets of certificates, where Ct contains
the auth certs with threshold subjects, C0 contains the name certs in which terms
have zero identifiers, C1 contains the name and auth certs in which terms have
one and zero identifiers, respectively, and C2 consists of the rest. Let n be the
number of different terms in C0. The authorization problem can be solved in
O(|C0| + (|C1| + |Ct|)n+ |C2|n2) time.

7 Implementation and Experiments

We have implemented a prototype of the pre∗ algorithm for APDS (in fact, a
dedicated version for good instances) inside the Nexus platform [9]. An applica-
tion can use Nexus “middleware” in order to obtain context data about mobile
objects registered at the platform, like the position of an object or whether it
enjoys a given relation to another object.

Nexus is based on an Augmented World Model (AWM). AWM can contain
both real world objects (e.g. rooms or streets) and virtual objects (e.g. websites).
Furthermore, Nexus defines a language called Augmented World Modeling Lan-
guage (AWML). This XML-based language is used for exchanging Nexus objects
between the platform and data repositories.

Our prototype extends the AWM and AWML with name and authorization
relations, which can be viewed as name and authorization certificates in the
case of SPKI/SDSI, respectively. In other words, we model relations as virtual
objects in the Nexus context. Moreover, we extend the platform so that it can
serve applications querying relations between entities. Note that, normally, the
base information about objects is contained in a Nexus database (the so-called
context server) and returned in the form of AWML documents. Our prototype
is not yet connected to such a database; instead, all data is kept directly in
AWML.

7.1 A Scenario

Consider a scenario where company X takes part in a trade fair. The exhibition
center consists of 2 exhibitions. An exhibition’s area is a hierarchical structure
with 3 exhibition halls, divided into 4 floors with 5 booths each. The structure
can be written by pushdown rules as follows, given that 1 ≤ i ≤ 2, 1 ≤ j ≤ 3, 1 ≤
k ≤ 4, 1 ≤ l ≤ 5:



Efficient Algorithms for Alternating Pushdown Systems 151

Ei Area → Ei Hall Floor Booth (4)
Ei Hall → H[i,j] (5)
H[i,j] Floor → F[i,j,k] (6)
F[i,j,k] Booth → B[i,j,k,l] (7)

Now, company X launches a promotion for visitors of the exhibition center
to freely download ringtones for their mobile phones. The following visitors are
allowed to download: (1) customers of X who are currently in the area of exhi-
bition 1; (2) non-customers to whom the right has been delegated by one of X ’s
customers; (3) customers who are currently not in the area of exhibition 1, but
have received delegation from another visitor of exhibition 1. This is expressed
by the following rule:

KX � → {E1 Area Visitor �,KX Customer �} (8)

The facts that Alice is visiting a booth in exhibition 1, and that she delegates
her right to Bob, who is a customer of X , can be written as:

B[1,j,k,l] Visitor→ KAlice, for some j, k, l (9)
KAlice � → KBob � (10)
KX customer→ KBob (11)

When Bob wants to download a ringtone, we can efficiently compute the
set pre∗({〈KBob,�〉, 〈KBob,�〉}) by noting the fact that the rules (4)–(11) and
{〈KBob,�〉, 〈KBob,�〉} form a good instance. Bob’s request is granted in this
case because 〈X,�〉 ∈ pre∗({〈KBob,�〉, 〈KBob,�〉}). Note that Bob can only
download as long as Alice stays in booths in the exhibition 1. As soon as she
moves away (i.e. the rule (9) is removed), a request from Bob can no longer be
granted even though he is a customer of X .

7.2 Experiments

The scenario explained above is implemented as an application of the Nexus plat-
form.We report on the running time for someexperiments.The experiments should
give a rough idea of the size of problems that can be handled in reasonable time.

We randomly add visitors to the exhibition center, and let them randomly
issue certificates. We consider a base case with 1000 visitors in the exhibition
center, 100 of them are customers of the company X , and the visitors issue 1000
authorization certificates. The issuer of a certificate decides randomly whether
the right can be further delegated or not. The series were conducted on a 2GHz
PC with 256MB RAM.

7.3 Experiment 1

In the base case, 10% of visitors are customers of X , and a visitor issues one cer-
tificate on average. In our first experiment we keep these two ratios constant, and
increase the number of visitors (for example, if there are 2000 visitors, there will



152 D. Suwimonteerabuth, S. Schwoon, and J. Esparza

be 200 customers that authorize 2000 times). We ran the experiment five times
for each set of parameters. In each run 1000 random download requests are made.
Table 1 displays the average results for 1000, 2000, 5000, and 10000 visitors (V).
The table shows how often the request was granted (G) and rejected (R), the
average time of a certificate search (T), and average time for granted (T(G))
and rejected (T(R)) searches. All measurements are in milliseconds.

In a realistic scenario, solving the authorisation problem requires to query
databases (e.g. databases containing the positions of objects) and transmit data
over a network, which are comparatively expensive operations. We kept relations
of various types in different AWML files and whenever a piece of data was needed,
we retrieved it from there. Since opening and reading files is also a comparatively
expensive operation, this gives some insight as to the overhead such operations
would incur in practice. The table shows the number of times AWML files (F)
needed to be opened in average. For comparison, the numbers for granted (F(G))
and rejected (F(R)) requests are also displayed.

Table 1. Results of Experiment 1

V G R T T(G) T(R) F F(G) F(R)

1000 229.8 770.2 18.71 29.09 15.49 13.84 22.54 11.19
2000 195.6 804.4 19.23 28.76 16.92 13.14 21.25 11.16
5000 202.2 797.8 18.62 29.33 15.90 12.99 21.10 10.93

10000 199.4 800.6 24.90 38.25 21.60 13.00 22.00 10.77

This experiment allows to draw a first conclusion: The average time of a search
does not depend on the number of visitors per se. When a visitor requests a
download, the algorithm has to search for the issuers of its certificates. Since the
number of certificates is equal to the number of visitors, each visitor has one
certificate in average.

7.4 Experiment 2

In this experiment, we kept the number of visitors constant, and increased the
number of certificates they issue, shown in column C in Table 2. The other
columns are as in Experiment 1. Again, we ran the experiment five times for
each value of C. Each run consisted of 100 random requests.

Table 2. Results of Experiment 2

C G R T T(G) T(R) F F(G) F(R)

1000 23.0 77.0 18.71 29.09 15.49 13.84 22.54 11.19
2000 56.2 43.8 120.72 193.93 21.96 74.68 118.50 15.83
3000 86.4 13.6 1477.35 1704.21 33.66 625.41 721.69 12.91
4000 95.2 4.8 2279.13 2393.81 13.40 898.01 942.94 9.64



Efficient Algorithms for Alternating Pushdown Systems 153

We see that the running time grows rapidly with the number of certificates
issued. The explanation is the larger number of certificates received by each vis-
itor, which leads to many more certificate chains. Observe also that the number
of granted requests increases.

The overall conclusion of the two experiments is that the algorithm scales
well to realistic numbers of visitors and certificates. Notice that in the intended
application a user will be willing to wait for a few seconds.

8 Conclusions

We have provided an efficient implementation of the saturation algorithm of [3]
for the computation of pre∗ in alternating pushdown systems. Following [8], we
have applied the algorithm to the problem of determining the winning region in
reachability pushdown games, improving the complexity bound of [8]. We have
shown that the algorithm has very low complexity for certain good instances, and
provided an application: The computation of certificate chains with threshold
subjects in the SPKI/SDSI authorization framework can be reduced to these
instances. We have implemented the algorithm within the Nexus platform [9],
and shown that it scales up to realistic scenarios.

References

1. Burkart, O., Steffen, B.: Model checking the full modal mu-calculus for infinite
sequential processes. In: Proc. ICALP. LNCS 1256, Springer (1997) 419–429

2. Walukiewicz, I.: Pushdown processes: Games and model checking. In: Proc. CAV.
LNCS 1102 (1996) 62–74

3. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model-checking. In: Proc. CONCUR. LNCS 1243 (1997) 135–150

4. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking
pushdown systems. ENTCS 9 (1997)

5. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model
checking pushdown systems. In: Proc. CAV. LNCS 1855 (2000) 232–247

6. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylönen, T.: RFC
2693: SPKI Certificate Theory. The Internet Society. (1999)

7. Jha, S., Reps, T.: Model checking SPKI/SDSI. JCS 12(3–4) (2004) 317–353
8. Cachat, T.: Symbolic strategy synthesis for games on pushdown graphs. In: Proc.

ICALP. LNCS 2380 (2002) 704–715
9. Hohl, F., Kubach, U., Leonhardi, A., Rothermel, K., Schwehm, M.: Nexus - an open

global infrastructure for spatial-aware applications. Technical Report 1999/02,
Universität Stuttgart: SFB 627 (1999)

10. Suwimonteerabuth, D., Schwoon, S., Esparza, J.: Efficient algorithms for alternat-
ing pushdown systems: Application to certificate chain discovery with threshold
subjects. Technical report, Universität Stuttgart (2006)

11. Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. JACM 28(1) (1981) 114–133
12. Li, N., Winsborough, W., Mitchell, J.: Distributed credential chain discovery in

trust management. In: Proc. CCS, ACM Press (2001) 156–165
13. Clarke, D., Elien, J., Ellison, C., Fredette, M., Morcos, A., Rivest, R.: Certificate

chain discovery in SPKI/SDSI. At http://theory.lcs.mit.edu/~rivest/ (1999)



Compositional Reasoning for Hardware/Software
Co-verification�

Fei Xie1, Guowu Yang1, and Xiaoyu Song2

1 Dept. of Computer Science, Portland State Univ., Portland, OR 97207
{xie, guowu}@cs.pdx.edu

2 Dept. of Electrical & Computer Engineering, Portland State Univ., Portland, OR 97207
song@ece.pdx.edu

Abstract. In this paper, we present and illustrate an approach to compositional
reasoning for hardware/software co-verification of embedded systems. The major
challenges in compositional reasoning for co-verification include: (1) the hard-
ware/software semantic gaps, (2) lack of common property specification lan-
guages for hardware and software, and (3) lack of compositional reasoning rules
that are applicable across the hardware/software boundaries. Our approach ad-
dresses these challenges by (1) filling the hardware/software semantic gaps via
translation of hardware and software into a common formal language, (2) defin-
ing a unified property specification language for hardware, software, and entire
systems, and (3) enabling application of existing compositional reasoning rules
across the hardware/software boundaries based on translation, developing a new
rule for compositional reasoning with components that share sub-components,
and extending the applicability of these rules via dependency refinement. Our ap-
proach has been applied to co-verification of networked sensors. The case studies
have shown that our approach is very effective in enabling application of compo-
sitional reasoning to co-verification of non-trivial embedded systems.

1 Introduction

Embedded systems are pervasive in the infrastructure of our society. They are often
mission-critical, therefore, must be highly trustworthy. Embedded systems often sup-
port concurrency intensive operations such as simultaneous monitoring, computation,
and communication. Thus, to build trustworthy embedded systems, they must be exten-
sively verified. Due to strict design constraints of embedded systems, to achieve better
performance, hardware and software components must closely interact and the trade-
off between hardware and software must be exploited. This demands hardware/software
co-design and, therefore, hardware/software co-verification of embedded systems.

Model checking [1,2] is a powerful formal verification method which has great po-
tential in hardware/software co-verification of embedded systems. It provides exhaus-
tive state space coverages for the systems being verified. However, a stumbling block
to scalable application of model checking to co-verification is the intrinsic complexity
of model checking. The number of possible states and execution paths in a real-world

� This research was supported by Semiconductor Research Corporation, Contract 1356.001.

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 154–169, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Compositional Reasoning for Hardware/Software Co-verification 155

system can be extremely large, which makes naive application of model checking in-
tractable and requires state space reduction. Compositional reasoning [3,4,5,6,7,8,9],
as applied in model checking, is a powerful state space reduction algorithm. Using
compositional reasoning, model checking of a property on a system is accomplished
by decomposing the system into components, model checking the component proper-
ties locally on the components, and deriving the system property from the component
properties.

Co-verification of an embedded system involves both its hardware and software com-
ponents, which leads to the following major challenges to compositional reasoning:

1. Hardware/software semantic gaps. Hardware usually follows synchronous clock-
driven semantics while software semantics are more diversified, e.g., asynchronous
interleaving message-passing semantics and event-driven call-return semantics.

2. Lack of unified property specification languages. Effective compositional reasoning
can benefit greatly from uniform specification of properties of both hardware and
software components and, furthermore, properties of entire embedded systems.

3. Lack of appropriate rules for co-verification. Existing compositional reasoning
rules do not readily address the special needs of co-verification: compositional
reasoning involving components of different semantics and components that share
sub-components, e.g., an execution scheduler shared by software components.

In this paper, we present and illustrate an approach to compositional reasoning for
hardware/software co-verification of embedded systems. This approach addresses the
above challenges as follows:

1. The hardware/software semantic gaps are filled via translation of both hardware
and software components into a formal language whose semantics serves as the
common semantic basis for co-verification and compositional reasoning.

2. A unified property specification language is defined, which supports property spec-
ification for hardware components, software components, and furthermore entire
embedded systems. This unification of property specification facilitates composi-
tional reasoning across the hardware/software semantic boundaries.

3. A new compositional reasoning rule supports compositional reasoning for compo-
nents that share sub-components. The new rule and the existing rules are applied
across the hardware/software boundaries based on translation. The applicability of
these rules is further extended through dependency refinement.

Our approach has been applied to co-verification of networked sensors, an emerging
type of embedded systems. Hardware components of sensors are specified in Verilog
while software components are specified in C following an asynchronous event-driven
call-run semantics of TinyOS [10] or in xUML [11], an executable dialect of UML,
following the asynchronous interleaving message-passing semantics. The case studies
have shown that our approach enables compositional reasoning of non-trivial embedded
systems and achieves order-of-magnitude reduction on verification complexities.

Related Work. There has been much research on compositional reasoning [9]. Particu-
larly relevant is assume-guarantee compositional reasoning, which was introduced by



156 F. Xie, G. Yang, and X. Song

Chandy and Misra [3] and Jones [4] for analyzing safety properties. Abadi and Lam-
port [5], Alur and Henzinger [6], and McMillan [7] extended assume-guarantee com-
positional reasoning to liveness properties. However, these extensions are incomplete,
i.e., there exist properties of systems which are true but not provable under these ex-
tensions [12]. Amla, Emerson, Namjoshi, and Trefler [8] proposed a sound and com-
plete compositional reasoning rule for both safety and liveness properties. Our approach
builds on the previous work on compositional reasoning and enables application of
compositional reasoning across the hardware/software boundaries. This is based on
translating hardware and software into the same formal model-checkable language.

The rest of this paper is organized as follows. In Section 2, we provide the back-
ground of this work. We discuss how translation fills the hardware/software semantic
gaps in Section 3. In Section 4, we define a unified property specification language. We
present compositional reasoning for co-verification in Section 5. In Section 6, we illus-
trate our approach with case studies on networked sensors. We conclude in Section 7.

2 Background

2.1 A Formal Semantics: ω-Automaton Semantics

We adopt the L-process model of ω-automaton semantics. Details of this model can be
found in [13]. Only the concepts essential for understanding this paper are given below.

Definition 1. For an L-process, ω, its language,L(ω), is the set of all infinite sequences
accepted by ω.

Definition 2. For an L-process, ω, L∗(ω) denotes the set of all finite prefixes of L(ω).

Definition 3. For L-processes, ω1, . . . , ωn, their synchronous parallel composition,
ω = ω1 ⊗ . . .⊗ ωn, is also an L-process and L(ω) = ∩L(ωi).

Definition 4. For L-processes, ω1, . . . , ωn, their Cartesian sum, ω = ω1 ⊕ . . . ⊕ ωn,
is also an L-process and L(ω) = ∪L(ωi).

For a language L of infinite sequences over a set of variables, V , the safety closure [14]
of L, denoted by cl(L), is defined as the set of infinite sequences over V where x ∈
cl(L) iff for each finite prefix y of x, there exists an infinite sequence z, y : z ∈ L.
(y : z denotes the concatenation of y and z where y and z are sequences over V .)
In [13], cl(L) is termed as the smallest limit prefix-closed language containing L.

Definition 5. The safety closure CL(ω) of an L-process ω is an L-process whose lan-
guage is the safety closure of the language of ω, L(CL(ω)) = cl(L(ω)).

CL(ω) can be derived from ω by changing the fairness condition of ω to true.

Definition 6. For a set S of finite sequences over a set of variables V , the limit of S,
denoted by lim(S), is the set of infinite sequences whose finite prefixes are all in S.

Notations. Given two languages L1 and L2, L1 ⇒ L2 denotes L1 ⊆ L2, and L1 ≡ L2

denotes L1 ⊆ L2 and L2 ⊆ L1.

Lemma 1. cl(L(ω)) ≡ lim L∗(ω)



Compositional Reasoning for Hardware/Software Co-verification 157

Proof of Lemma 1: Follows from the definitions of cl and lim. ��

Under the ω-automaton semantics model checking is reduced to checking L-process
language containment. Suppose a system is modeled by the composition ω1 ⊗ . . .⊗ωn

of L-processes, ω1, . . . , ωn, and a property to be checked on the system is modeled
by an L-processes, ω. The property holds on the system if and only if the language of
ω1 ⊗ . . .⊗ ωn is contained by the language of ω, L(ω1 ⊗ . . .⊗ ωn) ⊆ L(ω).

Definition 7. Given two L-processes ω1 and ω2, ω1 implements ω2 (denoted by ω1 |=
ω2) if L(ω1) ⊆ L(ω2).

2.2 S/R Language: A Realization of ω-Automaton Semantics

The S/R language is the input formal language of the COSPAN model checker [15].
In S/R, a system P is composed of synchronously interacting processes, conceptually
ω-automata. A process consists of state variables, selection variables, inputs, state tran-
sition rules, and selection rules. Selection variables define the outputs of the process.
Each process inputs a subset of all the selection variables of other processes. State tran-
sition rules update state variables as functions of the current state, selection variables,
and inputs. Selection rules assign values to selection variables as functions of state vari-
ables. Such a function is non-deterministic if several values are possible for a selection
variable in a state. The “selection/resolution” execution model of S/R is synchronous
clock-driven, under which a system of processes behaves in a 2-phase procedure every
logical clock cycle: [1: Selection Phase] Every process “selects” a value possible in
its current state for each of its selection variables. The values of the selection variables
of all the processes form the global selection of the system. [2: Resolution Phase] Ev-
ery process “resolves” the current global selection simultaneously by updating its state
variables according to its state transition rules. In S/R, a property to be checked is also
modeled by an ω-automaton T . COSPAN performs the verification by checking the
language containment, L(P ) ⊆ L(T ), using either an explicit state space enumeration
algorithm or a symbolic (BDD-based or SAT-based) search algorithm.

2.3 A Hardware Semantics: Synchronous Clock-Driven Semantics of Verilog

In the IEEE standard, the semantics of the Verilog hardware description language is
defined informally by means of a discrete event simulator. We adopt the semantics of a
Verilog subset that can be formalized via translation to the S/R language. The translation
has been implemented in FormalCheck [16]. Abstractly, a Verilog model consists of a
number of modules. The sequential portion of a module consists of flip-flops that keep
the states of the module. The outputs of a flip-flop can be updated based on its inputs at
the positive edge or the negative edge of the system clock. The outputs of combinational
circuits are updated based on their inputs instantly if zero delay is assumed.

2.4 Two Software Semantics

Asynchronous Event-Driven Call-Return Semantics of TinyOS. TinyOS [10] is an
operating system for networked sensors. It is component-based and is readily extensi-
ble and configurable via developing new components and including only the necessary



158 F. Xie, G. Yang, and X. Song

components in the system configuration for a given mission. A complete TinyOS sys-
tem configuration consists of a scheduler and a graph of components. A component has
four interrelated parts: a set of command handlers, a set of event handlers, a fixed-size
data frame, and a bundle of tasks. Command handlers, event handlers, and tasks execute
in the context of the frame and operate on its state and are implemented as functions
which are invoked following the call-return semantics. Higher level components issue
commands to lower level components and lower level components signal events to the
higher level components. The lowest level of components abstracts physical hardware.

Event handlers are invoked to deal with hardware events, either directly or indirectly.
The lowest level components have handlers connected directly to hardware interrupts.
An event handler can deposit information into its frame, post tasks, signal higher level
events or call lower level commands. A hardware event triggers a fountain of process-
ing that goes upward through events and can bend downward through commands. In
order to avoid cycles in the command/event chain, commands cannot signal events.
Commands and events are intended to perform a small, fixed amount of work.

Tasks perform the primary work. They are atomic with respect to other tasks, though
they can be preempted by events. Tasks can call lower level commands, signal higher
level events, and post other tasks within a component. The semantics of tasks make it
possible to allocate a single stack that is assigned to the currently executing task. Tasks
allow concurrency since they execute asynchronously with respect to events. However,
tasks must never block or spin wait or they will prevent progress in other components.
While events and commands approximate light-weight instantaneous computations,
task bundles provide a way to incorporate arbitrary computations into the event-driven
model. The task scheduler is FIFO, utilizing a bounded size scheduling queue.

Asynchronous Interleaving Message-Passing (AIM) Semantics of Executable
UML. Executable UML (xUML) [11] is an executable dialect of UML supporting
model-driven development of embedded software. System models in xUML can be sim-
ulated with execution simulators and can also be automatically compiled into C/C++.
xUML features an asynchronous interleaving message-passing semantics. Under this
semantics, a system consists of a set of interacting object instances. The behavior of
each object instance is specified by an extended Moore state model in which each state
may be associated with a state action. A state action is a program segment that exe-
cutes upon entry to the state. Object instances communicate with each other through
asynchronous message-passing. In a system execution, at any given moment only one
object instance can progress by executing a state transition or a state action in its ex-
tended Moore state model. The execution of a state transition or a state action is run-to-
completion.

3 Translations of Hardware and Software

For practical reasons, hardware and software components of an embedded system are
often specified in various languages with different semantics, for instance, the ones
given in Section 2. However, to formally verify correctness properties of the entire
system, a common formal semantic basis is needed, upon which events in hardware and



Compositional Reasoning for Hardware/Software Co-verification 159

software components can be precisely defined and, furthermore, related to one another.
This enables meaningful specification and reasoning of system-level properties which
often span across the hardware and software boundaries.

Leveraging the formal semantic basis to fill the hardware/software semantic gaps
requires translations of the hardware and software languages to the formal language.
The translations formalize the hardware and software semantics by simulating them
with the formal semantics. (Restrictions are applied to the software semantics to ensure
software components be finite-state.) The translations enable reuse of model checkers
and compositional reasoning rules that have been developed for the formal semantics.

The translation from Verilog to S/R has been implemented in FormalCheck [16],
which simulates the synchronous clock-driven semantics of Verilog with the selec-
tion/resolution semantics of S/R. The xUML-to-S/R translation has been implemented
in ObjectCheck [17], which simulates the AIM semantics with the selection/resolution
semantics of S/R. In this section, we briefly discuss the translation from TinyOS to S/R.

3.1 Translation from TinyOS to S/R

The TinyOS-to-S/R translation simulates the asynchronous event-driven call-return se-
mantics of TinyOS with the selection/resolution semantics of S/R and is currently being
implemented. Each component in a TinyOS system is mapped to multiple automata in
the resulting S/R system: the fixed-size data frame is modeled by an automaton which
keeps the state of the data frame and each event handler, command handler, or task is
also modeled as an automaton which updates the data frame by interacting with the data
frame automaton. An additional automaton, scheduler, is introduced in the S/R system
and it determines which event handler, command handler, or task should be executed.
The scheduler exports a selection variable, choice, imported by the automata corre-
sponding to event handlers, command handlers, and tasks. At any given moment, the
scheduler selects an automaton corresponding to an event handler, command handler,
or task by setting choice to a particular value. Only the chosen automaton executes a
state transition corresponding to the execution of a C language statement in the event
handler, command handler, or task. Other automata follow a self-loop transition back to
their current states.

Event handlers, command handlers, and tasks are implemented as C functions in
TinyOS. The call-return semantics is simulated with the semantics of S/R as follows.
The caller exports a Boolean selection variable which is set to true when the call is
made. The callee imports this variable and responds to the call if the variable is set
to true. Parameters of the call are passed via additional selection variables. The callee
exports a selection variable which indicates the call return and is imported by the caller.
The return value of the call is passed via additional selection variables of the callee.

In TinyOS, tasks are atomic with respect to other tasks, but can be preempted by
events. We assume that a task can be preempted in between the execution of two con-
secutive C language statements. The preemption is implemented through the scheduler
adjusting the value of the choice variable. In between the execution of two consecutive
C language statements in a task, the scheduler checks for hardware interrupts. If there
exists an interrupt, the choice is set to the automaton simulating the event handler of the
interrupt. The choice is set back to the task when the interrupt handling is done.



160 F. Xie, G. Yang, and X. Song

4 Unified Property Specification Language

Co-verification examines both hardware and software components, and entire embed-
ded systems. It is highly desirable to have a unified property specification language for
both hardware and software components, and entire systems. We have developed such
a language based on ω-automata, which extends the hardware property specification
language of FormalCheck [16]. This unified language is presented in terms of a set of
property templates shown in Figure 1, which have intuitive meanings and also rigorous

Always/Never (f)
After (e) Always/Never (f) [Unless[After] (d)]
After (e) Always/Never (f) [Until[After] (d)]
Always/Never (f) Unless[After] (d)
Always/Never (f) Until[After] (d)

After (e) Eventually (f) [Unless (d)]
Eventually (f) [Unless (d)]
IfRepeatedly (e) Repeatedly/Eventually (f)
IfRepeatedly (e) EventuallyAlways (f)
After (e) EventuallyAlways (f) [Unless (d)]
EventuallyAlways (f)
EventuallyAlways (f) Unless (d)
After (e) Repeatedly (f) [Unless (d)]
Repeatedly (f) [Unless (d)]
IfEventuallyAlways (e) Repeatedly/Eventually (f)
IfEventuallyAlways (e) EventuallyAlways (f)

Fig. 1. A list of available property templates

mappings to property templates written in S/R. (Note that in S/R, both systems and
properties are formulated as ω-automata.) An example of such templates is

After(e) Eventually(d)

where the enabling condition e and the discharging condition d are Boolean proposi-
tions declared over semantic entities of hardware or software. The semantic meaning is
that after each occurrence of e there eventually follows an occurrence of d. Although
similar to the LTL formula G(e → XF (d)), our property does not require a second
d in case the discharge condition d is accompanied by a second e, whereas an initial
e is not discharged by an accompanying d. This asymmetry meets many requirements
of software specification. (On account of this asymmetry, our property cannot be ex-
pressed in LTL.) The formal semantics of a property instantiating this template can be
precisely defined based on the mappings from the hardware and software semantics to
the semantics of S/R and the mapping of this template to a template written in S/R. The
property can be automatically translated into S/R based on these mappings.

Our property specification language is linear-time, with the expressiveness of ω-
automata [13]. The templates define parameterized automata. The language is readily



Compositional Reasoning for Hardware/Software Co-verification 161

extensible: new templates can be formulated as needed. A property in this language
consists of (1) declarations of Boolean propositions over software or hardware semantic
entities, and (2) declarations of temporal assertions. A temporal assertion is declared
through instantiating a property template: each argument of the template is realized by
a Boolean expression composed from the declared Boolean propositions.

5 Compositional Reasoning for Co-verification

5.1 Previous Work: Translation-Based Compositional Reasoning for Software

In [18], we developed translation-based compositional reasoning (TBCR), an approach
to application of compositional reasoning in model checking software systems based
on translation. If a translation can be shown to preserve the validity of properties (e.g.,
for the xUML-to-S/R translation, we established that the translation is linear-monotonic
with respect to language containment), then given a software system and a property to
be checked, compositional reasoning in the software semantics is conducted as follows.
(1) The system is decomposed into components on the software semantics level. (2) The
component properties are formulated. The components and their properties are trans-
lated into the formal semantics. A compositional reasoning rule in the formal semantics
is reused. The conditions of the rule are checked. (3) If the conditions hold, then it can
be concluded on the software semantics level that the system property holds.

TBCR has been realized for software specified in xUML. The xUML-to-S/R trans-
lation implements the semantic mapping from the AIM semantics to the ω-automaton
semantics. Based on this translation, we have reused, for verification of xUML models,
a rule [8] that has been established in the ω-automaton semantics, Rule 1.

Rule 1. For ω-automata P1 and P2 modeling two components of a system, and Q mod-
eling a property of the system, to show that P1 ⊗ P2 |= Q, find ω-automata Q1 and Q2

modeling the component properties such that the following conditions are satisfied.1

C1: P1 ⊗ Q2 |= Q1 and P2 ⊗ Q1 |= Q2

C2: Q1 ⊗ Q2 |= Q
C3: Either P1 ⊗ CL(Q) |= (Q ⊕ Q1 ⊕ Q2) or P2 ⊗ CL(Q) |= (Q ⊕ Q1 ⊕ Q2)

5.2 Translation-Based Compositional Reasoning for Co-verification

The translation-based nature of TBCR enables its natural extension to support compo-
sitional reasoning for co-verification. Given an embedded system and a system prop-
erty in the unified property specification language, compositional reasoning for co-
verification can be conducted as follows: (1) The system is partitioned into its hardware
and software components. (2) The properties of the hardware and software components

1 An additional condition of Rule 2 is that Q1 (or Q2) does not block P2 (or P1). A process
Q does not block process P iff (i) any initial state of P can be extended to an initial state of
P ⊗ Q, and (ii) for any reachable state of P ⊗ Q, any transition of P from that state can be
extended to a transition of P ⊗Q. The condition holds trivially in the ω-automaton semantics.



162 F. Xie, G. Yang, and X. Song

Verilog−to−S/R translation

Semantics

Conformance

Semantics

Conformance

Semantics Mapping
Omega−automata

S/R Verilog

Semantics

Conformance

Clock−Driven
SynchronousSemantics Mapping

TinyOS (or xUML)

Asynchronous Event−Driven
Call−Return (or AIM)

TinyOS−to−S/R translation (or

xUML−to−S/R translation)

Fig. 2. Model translations realize semantic mappings for co-verification

are formulated. The hardware and software components and their properties are trans-
lated into a formal language with their corresponding translators. The conditions of
a compositional reasoning rule in the formal semantics are checked. (3) If the condi-
tions hold, it can be concluded that the system property holds. As shown in Figure 2,
the Verilog-to-S/R translation and the TinyOS-to-S/R (or xUML-to-S/R, respectively)
translation realize the semantic mappings from the synchronous clock-driven semantics
and the asynchronous event-driven call-return semantics (or the AIM semantics) to the
ω-automaton semantics, therefore, enables compositional reasoning for systems with
hardware in Verilog and with software in the C subset for TinyOS (or in xUML).

This extension of TBCR requires that the hardware and software translations pre-
serve the validity of the hardware and software properties, e.g., TinyOS-to-S/R and
Verilog-to-S/R translations are linear-monotonic with respect to language containment.

5.3 Compositional Reasoning with Components That Share Sub-components

Compositional reasoning for co-verification requires new rules that support reasoning
about components that share sub-components. Simulating a software semantics with
the common formal semantics often requires modeling of a scheduler in the formal
semantics. The translation of a TinyOS system into S/R inserts in the resulting S/R
system a scheduler that interacts with the automata simulating each software compo-
nent. The translation of an xUML system into S/R inserts a scheduler that interacts
with each automaton simulating an object instance. (A component in xUML may con-
tain multiple object instances.) These schedulers make scheduling decisions based on
interactions with hardware. When each software component is verified, it is often the
case that the scheduler must be included in the verification since using assumptions
to abstract the scheduler is often difficult. Therefore, the scheduler becomes a shared
sub-component. Rule 1 does not apply here since it does not allow components to share
sub-components.

We propose a new compositional reasoning rule, Rule 2, addressing this problem:

Rule 2. For ω-automata P1 and P2 modeling two components of a system, S modeling
a common component, and Q modeling the system property, to show that S ⊗ P1 ⊗
P2 |= Q, find ω-automata Q1 and Q2 modeling the component properties such that the
following conditions are satisfied.



Compositional Reasoning for Hardware/Software Co-verification 163

C1’: S ⊗ P1 ⊗ Q2 |= Q1 and S ⊗ P2 ⊗ Q1 |= Q2

C2’: S ⊗ Q1 ⊗ Q2 |= Q
C3’: Either S⊗P1⊗CL(Q) |= (Q⊕Q1⊕Q2) or S⊗P2⊗CL(Q) |= (Q⊕Q1⊕Q2)

Lemma 2. L∗(S ⊗ P1 ⊗ P2) ⇒ L∗(S ⊗ Q1 ⊗ Q2)

Proof of Lemma 2: Follows from C1’ by induction on length of finite prefixes. ��

Theorem 1. (Soundness) For ω-automata S, P1, P2, Q1, Q2, and Q satisfying the
conditions of Rule 2, S ⊗ P1 ⊗ P2 |= Q.

We decompose the proof of Theorem 1 into a safety proof and a liveness proof ac-
cording to the decomposition of L(Q) into its safety part and liveness part, L(Q) ≡
cl(L(Q)) ∧ (¬cl(L(Q)) ∨ L(Q)). The safety proof shows that L(S ⊗ P1 ⊗ P2) ⇒
cl(L(Q)) while the liveness proof shows that L(S ⊗ P1 ⊗ P2) ∧ cl(L(Q)) ⇒ L(Q).

Proof of Safety Part of Theorem 1:

L(S ⊗ P1 ⊗ P2)
⇒ cl(L(S ⊗ P1 ⊗ P2)) {Closure is weakening}
≡ lim L∗(S ⊗ P1 ⊗ P2) {Lemma 1}
⇒ lim L∗(S ⊗ Q1 ⊗ Q2) {lim is monotonic; Lemma 2}
≡ cl(L(S ⊗ Q1 ⊗ Q2)) {Lemma 1}
⇒ cl(L(Q)) {Closure is monotonic; Condition C2’}

��
Proof of Liveness Part of Theorem 1:

L(S ⊗ P1 ⊗ P2) ∧ cl(L(Q))
≡ L(S ⊗ P1 ⊗ P2) ∧ L(CL(Q)) {Closure represents language closure}
≡ L(S) ∧ L(P1) ∧ L(P2) ∧ L(CL(Q))

{Composition is conjunction of languages}
⇒ L(S) ∧ L(P1) ∧ L(P2) ∧ L(Q ⊕ Q1 ⊕ Q2) {Condition C3’}
≡ L(S) ∧ L(P1) ∧ L(P2) ∧ (L(Q) ∨ L(Q1) ∨ L(Q2))

{Cartesian sum is disjunction of languages}
⇒ L(Q) ∨ (L(S) ∧ L(P1) ∧ (L(Q2)) ∨ (L(S) ∧ L(P2) ∧ L(Q1))

{Distribution of ∧ over ∨; dropping conjuncts}
⇒ L(Q) ∨ (L(S) ∧ L(Q1) ∧ L(Q2)) {Condition C1’}
⇒ L(Q) {Condition C2’}

��

Theorem 2. (Completeness) For ω-automata S, P1, P2, and Q, if S ⊗ P1 ⊗ P2 |= Q,
there exist Q1 and Q2 that satisfy the conditions of Rule 2.

Proof of Theorem 2: By choosing P1 and P2 as Q1 and Q2, the proof is trivial. ��



164 F. Xie, G. Yang, and X. Song

5.4 Dependency Refinement

Both Rule 1 and Rule 2 share the same intuition: using Conditions C3 and C3’ to pre-
vent circular reasoning by showing that at least one component will take the first step
voluntarily. However, naive application of these rules will fail to establish system prop-
erties in many cases where the interaction between the two components of a system
has more than two steps which form a dependency cycle. Suppose that a system has
two components, M1 and M2, as shown in Figure 3(a). The property of M1 (or M2,

Q1={Q11, Q12, Q13}
Q11 Q21

Q12 Q22

Q13 Q23

(b)

Component M2

Q2={Q21, Q22, Q23}

Component M1

(a)

Fig. 3. A motivating example for dependency refinement

respectively), Q1 (or Q2), is actually the conjunction of a set of sub-properties, Q11,
Q12, and Q13 (or Q21, Q22, and Q23), each of which asserts on a step of the interac-
tion. The circular dependency among Q1 and Q2, in fact, consists of more complicated
dependencies among Q11, Q12, Q13, Q21, Q22, and Q23 as shown in Figure 3(b). If
Q1 and Q2 are used straightforwardly in Rule 1 (or Rule 2, respectively), C3 (or C3’)
does not hold since the left-hand side of C3 (or C3’) implies the sub-properties of Q1

or Q2 asserted on the first step of the interaction, but not those asserted on the other
steps.

Our solution to the above problem is dependency refinement: (1) decompose the
component properties into their sub-properties, derive the refined dependency graph of
the sub-properties, and identify the cycles in the refined graph; (2) apply C3 or C3’ to
break each of the identified cycles; (3) if all cycles in the refined dependency graph can
be broken, the compositional reasoning is sound and the component properties can be
established. For the example in Figure 3, suppose that we can establish C3 for Q11, i.e.,
M1 takes the first step. We can then conclude that the component properties Q1 and
Q2 hold since there is a single cycle. Currently, manual efforts are required to decom-
pose the component properties into their sub-properties, refine the dependency graph,
and identify the first sub-property in a dependency cycle for which the conditions C3
or C3’ should be checked first. We are exploring heuristics that can automate these
steps.

6 Case Studies

Our approach to compositional reasoning for co-verification has been applied to net-
worked sensors with hardware specified in Verilog and software specified in xUML
following the asynchronous interleaving message-passing semantics or in C following
the asynchronous event-driven call-return semantics. In this section, we illustrate our



Compositional Reasoning for Hardware/Software Co-verification 165

Network

Legend:

Software Message

Hardware Signal

Component

Bridge

start

stop

intr_c

dout

reset

system clock

8 8
din

C
_Intr

C
_R

et

A
_Intr

S_Schd

Clock
Hardware Hardware

Sensor

intr_n

d_rdy

intr_s

start_s

OP_Ack (Data_Ack)

Data (Output)

Software Network

N
_Schd

N
_R

et

R
_Intr

R
_R

et

Software Sensor

A
_R

et

S_R
et

Hardware

Fig. 4. Architecture of a sensor instance with software in xUML and hardware in Verilog

approach with its application to a sensor instance with software in xUML. The ap-
proach is applied to sensor instances with software in C the same way. (Translation
of sensor software in C to S/R currently requires manual efforts due to the unfinished
translator.)

The architecture of the sensor instance with software in xUML is shown in Fig-
ure 4. Its software is partitioned into two components: software sensor (S-SEN) and
software network (S-NET) and its hardware is partition into three components: hard-
ware clock (H-CLK), hardware sensor (H-SEN), and hardware network (H-NET). The
software components execute on a generic processor while the hardware components
are implemented as application specific integrated circuits (ASICs). The software and
hardware components are connected through a bridge component (BRDG) which in-
teracts with the software components following the software semantics and with the
hardware components following the hardware semantics and propagates events such as
software messages and hardware interrupts across the hardware/software boundary.

The property shown in Figure 5 is to be verified on the entire system. This property

Repeated (H-NET.flag = true); Repeated (H-NET.flag = false);

Fig. 5. Repeated transmission property

asserts that the sensor system transmits on the network repeatedly. Repeated setting and
clearing of a flag in H NET indicates repeated transmission. The system property is
manually decomposed into the properties of its components as shown in Figure 6. Note
that as S-SEN and S-NET are composed, the Output (or Output Ack, respectively) mes-
sage type of S-SEN is mapped to the Data (or Data Ack) message type of S-NET. The
ADC.Pending variable in S-SEN and the RFM.Pending variable in S-NET are mapped
to the start s signal in H-SEN and the d rdy signal in H-NET via BRDG, respectively.
STQ.Empty (or NTQ.Empty, respectively) is a variable in S-SEN (or S-NET).

We verify the system property with compositional reasoning in two steps. In Step 1,
we establish the property of the composite component S&B that is composed of S-SEN,



166 F. Xie, G. Yang, and X. Song

Property of S-SEN, PSS :
PSS(1):

IfRepeatedly (C Intr) Repeatedly (Output);
PSS(2):

After (C Intr) Eventually (C Ret); After (A Intr) Eventually (A Ret); After (S Schd) Eventually (S Ret);
PSS(3):

After (Output) Never (Output) UnlessAfter (OP Ack);
Never (Output) UnlessAfter (S Schd); After (Output) Never (Output) UnlessAfter(S Schd);
Never (S Ret) UnlessAfter (OP Ack); After (S Ret) Never (S Ret) UnlessAfter(OP Ack);
Never (C Ret) UnlessAfter (C Intr); After (C Ret) Never (C Ret) UnlessAfter (C Intr);
Never (A Ret) UnlessAfter (A Intr); After (A Ret) Never (A Ret) UnlessAfter (A Intr);
After (ADC.Pending) Never (ADC.Pending) UnlessAfter (A Ret);
Never (S Ret) UnlessAfter (S Schd); After (S Ret) Never (S Ret) UnlessAfter (S Schd);
After (STQ.Empty=False) Never (STQ.Empty=False) UnlessAfter(S Ret);

Property of S-NET, PSN :
PSN (1):

IfRepeatedly (Data) Repeatedly (RFM.Pending); IfRepeatedly (Data) Repeatedly (RFM.Pending=False);
PSN (2):

After (Data) Eventually(Data Ack); After (N Schd) Eventually (N Ret); After (R Intr) Eventually (R Ret);
PSN (3):

Never (Data Ack) UnlessAfter (Data); After (Data Ack) Never (Data Ack) UnlessAfter (Data);
Never (N Ret) UnlessAfter (N Schd); After (N Ret) Never (N Ret) UnlessAfter (N Schd);
After (NTQ.Empty=False) Never(NTQ.Empty=False) UnlessAfter(N Ret);
Never (R Ret) UnlessAfter (R Intr); After (R Ret) Never (R Ret) UnlessAfter (R Intr);
After (RFM.Pending) Never (RFM.Pending) UnlessAfter (R Ret);

Property of BRDG, PB :
PB(1):

IfRepeatedly (intr c) Repeatedly (C Intr);
IfRepeatedly (RFM.Pending) Repeatedly (d rdy);
IfRepeatedly (RFM.Pending=False) Repeatedly (d rdy=False);

PB(2):
After (ADC.Pending) Eventually (A Intr); After (STQ.Empty=False) Eventually (S Schd);
After (NTQ.Empty=False) Eventually (N Schd); After (RFM.Pending) Eventually (R Intr);

PB(3):
After (C Intr) Never (C Intr + A Intr + S Schd + N Schd + R Intr) UnlessAfter (C Ret);
Never (A Intr) UnlessAfter (ADC.Pending);
After (A Ret) Never (A Intr) UnlessAfter (ADC.Pending);
After (A Intr) Never (C Intr + A Intr + S Schd + N Schd + R Intr) UnlessAfter (A Ret);
Never (S Schd) UnlessAfter (STQ.Empty=False);
After (S Ret) Never (S Schd) UnlessAfter (STQ.Empty=False);
After (S Schd) Never (C Intr + A Intr + S Schd + N Schd + R Intr) UnlessAfter (S Ret);
Never (N Schd) UnlessAfter (NTQ.Empty=False);
After (N Ret) Never (N Schd) UnlessAfter (NTQ.Empty=False);
After (N Schd) Never (C Intr + A Intr + S Schd + N Schd + R Intr) UnlessAfter (N Ret);
Never (R Intr) UnlessAfter (RFM.Pending);
After (R Ret) Never (R Intr) UnlessAfter (RFM.Pending);
After (R Intr) Never (C Intr + A Intr + S Schd + N Schd + R Intr) UnlessAfter (R Ret);

Property of H-CLK, PHC :
PHC(1): Repeatedly (intr c);

Property of H-SEN, PHS :
PHS(1):

After (start s) Eventually (intr s);
Never (intr s) UnlessAfter (start s); After (intr s) Never (intr s) UnlessAfter (start s);

Property of H-NET, PHN :
PHN (1):

IfRepeatedly (d rdy) Repeatedly (flag); IfRepeatedly (d rdy=False) Repeatedly (flag=False);
PHN (2):

After (d rdy) Eventually (intr n);
Never (intr n) UnlessAfter (d rdy); After (intr n) Never (intr n) UnlessAfter (d rdy);

Fig. 6. Component properties and their sub-properties



Compositional Reasoning for Hardware/Software Co-verification 167

S-NET, and BRDG. In this step, we apply Rule 2 since although not shown in Figure 4,
S-SEN, S-NET, and BRDG share a scheduler that schedules the execution of the xUML
object instances in each component. The scheduler is inserted when the xUML model
is translated into S/R. The properties of S-SEN, S-NET, and BRDG can be directly veri-
fied by assuming the properties of the others hold. (BRDG also has assumptions on the
hardware components.) Therefore, Condition C1’ holds. Since we define the property
of S&B as the conjunction of the properties of its sub-components, Condition C2’ holds
trivially. The dependencies among the sub-properties of the component properties are
shown in Figure 7. It can be observed that on the component property level, there is

PSS(1) → {PSN (2), PSN(3), PB(2), PB(3)}
PSS(2) → {PSN (2), PSN(3), PB(3)}
PSS(3) → {PSN (3), PB(3)}

PSN(1) → {PSS(3), PB(2), PB(3)}
PSN(2) → {PSS(3), PB(3)}
PSN(3) → {PSS(3), PB(3)}

PB(1) → {PSS(2), PSS(3), PHS(1), PHN(2)}
PB(2) → {PSS(2), PSS(3), PSN(2), PSN(3), PHS(1), PHN(2)}
PB(3) → {PSS(3), PSN(3), PHS(1), PHN(2)}

Fig. 7. Dependencies among component sub-properties

a dependency cycle among the property PSS of S-SEN, the property PSN of S-NET,
and the property PB of BRDG. If PSS , PSN , and PB are used straightforwardly in
Rule 2, Condition C3’ does not hold. However, if we conduct dependency refinement
and examine the dependencies among the component sub-properties, we can success-
fully establish the property of S&B using Rule 2. PSS(3), PSN (3), and PB(3) forms
a dependency cycle on which C3’ holds since PSS(3), PSN (3), and PB(3) are safety
properties. Thus, PSS(3), PSN (3), and PB(3) holds. Following the dependencies back-
ward, we can show all other sub-properties hold. Therefore, the property of S&B holds.

In Step 2, we derive the system property by applying Rule 1 to S&B, H-CLK, H-SEN,
and H-NET since these components do not share any sub-component. The properties
of H-CLK, H-SEN, and H-NET are verified directly, thus C1 holds. Since the system
property is implied by PHC(1), PB(1), PSS(1), PSN (1), and PHN (1), C2 holds. There
is no need to check C3 since there are no circular dependencies among the properties
of S&B, H-CLK, H-SEN, and H-NET. Therefore, the system property holds.

If the system property is verified using the straightforward translation-based co-
verification approach in [19]: translating the entire system into S/R and verify it using
COSPAN, 50800 seconds and 730.54 megabytes are needed. The time and memory
usages for establishing C1’ in Step 1 and C1 in Step 2: model checking the compo-
nent properties, are shown in Table 1. In Step 1, C2’ holds trivially and since the sub-
properties for which C3’ must be checked are safety properties, C3’ also holds trivially.
In step 2, C2 can be established by checking the system property on the component



168 F. Xie, G. Yang, and X. Song

Table 1. Time and memory usages for model checking the component properties

Components Time (Seconds) Memory (MBytes)
S-SEN 18.66 8.49
S-NET 18.06 9.11
BRDG 86.05 15.83
H-CLK 0.21 3.38
H-SEN 0.22 3.38
H-NET 0.22 3.38

properties using 0.1 seconds and 3.4 megabytes. It can be observed that our component-
based approach to co-verification achieved order-of-magnitude reduction on verification
complexities over the translation-based approach in verifying this sensor instance.

7 Conclusions and Future Work

In this paper, we have presented a novel approach to compositional reasoning for co-
verification. Its key contributions include integration of compositional reasoning for
hardware and software based on translation, development of a new compositional rea-
soning rule allowing components to share sub-components, and extending applicability
of compositional reasoning rules via dependency refinement. Case studies on networked
sensors have shown that our approach is very effective. Future work will be focused on
automation of compositional reasoning with heuristics that explore architectural pat-
terns of embedded systems to formulate system and component properties, decompose
system properties into component properties, and facilitate dependency refinement.

References

1. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using
branching time temporal logic. In: Proc. of Logic of Programs Workshop. (1981)

2. Quielle, J.P., Sifakis, J.: Specification and verification of concurrent systems in CESAR. In:
Proc. of Symposium on Programming. (1982)

3. Chandy, K.M., Misra, J.: Proofs of networks of processes. IEEE Transaction on Software
Engineering 7(4) (1981)

4. Jones, C.B.: Development methods for computer programs including a notion of interference.
PhD thesis, Oxford University (1981)

5. Abadi, M., Lamport, L.: Conjoining specifications. TOPLAS 17(3) (1995)
6. Alur, R., Henzinger, T.: Reactive modules. FMSD 15(1) (1999)
7. McMillan, K.L.: A methodology for hardware verification using compositional model check-

ing. Cadence Design Systems Technical Reports (1999)
8. Amla, N., Emerson, E.A., Namjoshi, K.S., Trefler, R.: Assume-guarantee based composi-

tional reasoning for synchronous timing diagrams. In: Proc. of TACAS. (2001)
9. de Roever, W.P., de Boer, F., Hanneman, U., Hooman, J., Lakhnech, Y., Poel, M., Zwiers,

J.: Concurrency Verification: Introduction to Compositional and Non-compositional Proof
Methods. Cambridge University Press (2001)

10. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D.E., Pister, K.S.J.: System architecture
directions for networked sensors. In: Proc. of ASPLOS. (2000)



Compositional Reasoning for Hardware/Software Co-verification 169

11. Mellor, S.J., Balcer, M.J.: Executable UML: A Foundation for Model Driven Architecture.
Addison Wesley (2002)

12. Namjoshi, K.S., Trefler, R.J.: On the completeness of compositional reasoning. In: Proc. of
CAV. (2000)

13. Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes: The Automata-
Theoretic Approach. Princeton University Press (1994)

14. Alpern, B., Schneider, F.: Defining liveness. Information Processing Letters 21(4) (1985)
15. Hardin, R.H., Har’El, Z., Kurshan., R.P.: COSPAN. In: Proc. of CAV. (1996)
16. Kurshan, R.P.: FormalCheck User Manual. Cadence (1998)
17. Xie, F., Levin, V., Browne, J.C.: Objectcheck: A model checking tool for executable object-

oriented software system designs. In: Proc. of FASE. (2002)
18. Xie, F., Browne, J.C., Kurshan, R.P.: Translation-based compositional reasoning for software

systems. In: Proc. of FME. (2003)
19. Xie, F., Song, X., Chung, H., Nandi, R.: Translation-based co-verification. In: Proc. of

MEMOCODE. (2005)



Learning-Based Symbolic Assume-Guarantee

Reasoning with Automatic Decomposition�

Wonhong Nam and Rajeev Alur

Dept. of Computer and Information Science
University of Pennsylvania

{wnam, alur}@cis.upenn.edu

Abstract. Compositional reasoning aims to improve scalability of veri-
fication tools by reducing the original verification task into subproblems.
The simplification is typically based on the assume-guarantee reason-
ing principles, and requires decomposing the system into components as
well as identifying adequate environment assumptions for components.
One recent approach to automatic derivation of adequate assumptions is
based on the L∗ algorithm for active learning of regular languages. In this
paper, we present a fully automatic approach to compositional reasoning
by automating the decomposition step using an algorithm for hypergraph
partitioning for balanced clustering of variables. We also propose heuris-
tic improvements to the assumption identification phase. We report on
an implementation based on NuSMV, and experiments that study the
effectiveness of automatic decomposition and the overall savings in the
computational requirements of symbolic model checking.

1 Introduction

To enhance the scalability of analysis tools, compositional verification suggests
a “divide and conquer” strategy to reduce the verification task into simpler sub-
tasks. The assume-guarantee based compositional reasoning to verify that a sys-
tem S satisfies a requirement ϕ typically consists of the following three steps: (1)
System Decomposition: decompose the system S into components M1, · · · ,Mn,
(2) Assumption Discovery: find an environment assumption Ai for each com-
ponent Mi, and (3) Assumption Checking: verify that the assumptions Ai are
adequate for proving or disproving the satisfaction of ϕ by S . The last step in-
volves a number of verification subtasks, and while the exact nature of these
subtasks depends on the specific compositional rule used, each subtask involves
only one of the components Mi, and can be implemented using model checkers
as it can be computationally less demanding than the original verification task.

The success of compositional reasoning depends on discovering appropriate
assumptions for all the components so that the assumption checking phase will
succeed, and one promising approach for automating this step is based on learn-
ing [9,5,3,11]. If a componentMi communicates with its environment via a setXi

� This research was partially supported by ARO grant DAAD19-01-1-0473, and NSF
grants ITR/SY 0121431 and CCR0306382.

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 170–185, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Learning-Based Symbolic Assume-Guarantee Reasoning 171

of boolean variables, then the assumption Ai can be viewed as a language over
the alphabet 2Xi , and the assumption checking constraints impose a lower and
an upper bound on this language. The assumptions are constructed by adopting
the L∗ algorithm for learning a regular language using membership and equiv-
alence queries [4,17]. The membership query (whether a trace belongs to the
desired assumption), and the equivalence query (whether the current assump-
tion is adequate for the assumption checking phase) are implemented by invoking
a model checker.

In this paper, we develop a fully automated framework for assume-guarantee
based compositional reasoning by automating the decomposition phase also.
While a modular description of a system can suggest a natural decomposition, an
automated approach may be necessary for a variety of reasons: the description of
a system, particularly when compiled from a high-level language to the input lan-
guage of a model checker, is often monolithic; the decomposition suggested by the
syntactic description need not be the one suitable for compositional reasoning,
either in terms of the number of components or the partitioning of functionality
among components. Our solution is based on an algorithm for partitioning of
hypergraphs [14,13]. Given a system S consisting of a set X of variables, and a
desired number n of components, we partition the set X into n disjoint subsets
X1, · · · , Xn so that each set Xi contains approximately the same number of vari-
ables while keeping the number of communication variables (i.e. variables whose
update depends on or affects a variable in another cluster) small. Each such vari-
able partition Xi corresponds to a component Mi that controls these variables.

We describe an implementation of the automated compositional reasoning
using parts of the state-of-the-art symbolic model checker NuSMV [7]. In our
application, the alphabet size of the language being learnt itself grows expo-
nentially with the number of communication variables. Consequently, in [3] we
have developed a symbolic implementation of the L∗ algorithm where the data
structures for recording the membership information, and the assumption au-
tomaton, are maintained compactly using binary decision diagrams (BDDs) [6].
As described in Section 5, we have enhanced our implementation with several ad-
ditional heuristics, in particular, one aimed at early falsification, and one aimed
at deleting edges from the conjecture machine to force rapid convergence without
violating the correctness of the learning algorithm.

In Section 6, we report on some examples where the original model contains
around 100 variables, and the computational requirements of NuSMV are signif-
icant. The experiments are aimed at understanding the following tradeoffs: (1)
how does our strategy for automatic decomposition compare with respect to the
experiments we had performed earlier with manually chosen decomposition? (2)
what is the impact of the number of components on the overall computational
requirements? (3) how do the revised and more general assume-guarantee rule,
and the new heuristics impact the performance? and (4) how does the integrated
tool, automatic symbolic compositional verifier (ASCV), compare with NuSMV?
It turns out the automatic decomposition strategy works pretty well, and manual
(or structure-directed) decomposition seems unnecessary. No conclusions can be



172 W. Nam and R. Alur

drawn regarding whether small or large number of components should be pre-
ferred in this approach. In terms of comparisons of the integrated tool with
NuSMV, excellent gains are observed in some cases either reducing the required
time or memory by two or three orders of magnitude, or converting infeasible
problems into feasible ones. However, in some cases the number of states of the
assumption is too large, and our learning-based strategy performs poorly.

Related Work. While program slicing [20] is a technique to extract, from
an original program, program statements relevant to a particular computation,
compositional verification is to reduce a large verification problem into smaller
subproblems. Compositional reasoning using assume-guarantee rules has a long
history in formal verification literature (c.f. [19,12,1,2,16]). The use of learning
algorithms for automatic discovery of assumptions was first reported in [9,5], and
has been further developed by many researchers: [18] considers the problem of
substituting one component with another and how to reuse the conjecture ma-
chines computed in the original version while checking properties of the revised
version; [8] reports several experiments to test whether assumptions with small
DFA (deterministic finite automaton) representations exist. Our work is based
on the symbolic implementation of learning-based compositional reasoning in
[3]. The contributions of this paper include an automatic decomposition strat-
egy, use of a more general assume-guarantee rule that is applicable to multiple
components, heuristic improvements in computing the conjecture assumptions,
and experiments to study several tradeoffs.

2 Preliminaries

We formalize the notions of a symbolic transition system and decomposition into
its modules, and explain the assume-guarantee rule we use in this paper.

2.1 Symbolic Transition Systems

In the following, for any set of boolean variables X , we will denote the set of
primed variables of X as X ′ = {x′ | x ∈ X}. For a valuation q for X , q′ denotes
the valuation for X ′ such that q′(x′) = q(x) for every x′ ∈ X ′. A predicate ϕ(X)
is a boolean formula over X , and for a valuation q of variables in X , we write
ϕ(q) to mean that q satisfies the formula ϕ. We denote, given a predicate ϕ, a
set of unprimed variables appearing in ϕ as Var(ϕ).

A symbolic transition system, shortly a transition system, is a tuple S (X, Init ,
T ) with the following components:

– X is a finite set of boolean variables,
– Init(X) =

∧
x∈X Initx(X) is an initial predicate over X , where Initx(X) is

an initial predicate for the variable x,
– T (X,X ′) =

∧
x∈X Tx(X,X ′) is a transition predicate over X ∪X ′ (X ′ rep-

resents a set of variables encoding the successor states), where Tx(X,X ′) is
a transition predicate for the variable x.



Learning-Based Symbolic Assume-Guarantee Reasoning 173

A state q of S is a valuation of the variables in X ; i.e. q : X → {true, false}.
Let Q denote the set of all states q of S . For a state q over a set X of variables,
let q[Y ], where Y ⊆ X denote the valuation over Y obtained by restricting q to
Y . The semantics of a transition system is defined in terms of the set of runs it
exhibits. A run of S (X, Init , T ) is a sequence q0q1 · · · where every qi ∈ Q, such
that Init(q0) holds, and for every i ≥ 0, T (qi, q′i+1) holds. A safety property for
a transition system S (X, Init , T ) is a predicate over X . For a transition system
S (X, Init , T ) and a safety property ϕ(X), we define S |= ϕ if, for each run q0q1 · · ·
of S , ϕ(qi) holds for each i ≥ 0. Finally, given a transition system S (X, Init , T )
and a safety property ϕ(X), an invariant checking problem is to check S |= ϕ.

2.2 Decomposition into Modules

A module is a tuple M (XM , IM ,OM , InitM , TM ) with the following components:

– XM is a finite set of boolean variables controlled by the module M ,
– IM is a finite set of boolean input variables that the module reads from its

environment; IM is disjoint from XM ,
– OM ⊆ XM is a finite set of boolean output variables that are observable to

the environment of M ; let IOM denote IM ∪OM ,
– InitM (XM , IM ) is an initial predicate over XM ∪ IM ,
– TM (XM , IM , X ′

M ) is a transition predicate over XM ∪ IM ∪X ′
M .

Given modules M1, · · · ,Mn, where each Mi = (XMi , IMi ,OMi , InitMi , TMi), we
can compose them if for every i, XMi is disjoint fromXMj (j �= i). We denote this
composition as M1‖ · · · ‖Mn, and a set of all input variables and output variables
as IO (i.e. IO =

⋃
i IOMi). As a symbolic transition system, the semantics for

M1‖ · · · ‖Mn is defined in terms of the set of runs it exhibits. A run of M1‖ · · · ‖Mn

is a sequence q0q1 · · ·, where each qi is a state over XM1 ∪ · · · ∪XMn , such that
for every 1 ≤ j ≤ n, InitMj (q0[XMj ], q0[IMj ]) holds and for every i ≥ 0 and
1 ≤ j ≤ n, TMj (qi[XMj ], qi[IMj ], q′i+1[X

′
Mj

]) holds. Again, given a composition of
modules M1‖ · · · ‖Mn and a safety property ϕ over XM1 ∪ · · · ∪XMn , we define
M1‖ · · · ‖Mn |= ϕ if for every run q0q1 · · · of M1‖ · · · ‖Mn, ϕ(qi) holds for every
i ≥ 0.

Given a symbolic transition system S (X, Init , T ) and a set Y ⊆ X of variables,
we define a module M [S, Y ], shortly M [Y ], as a tuple (XM [Y ], IM [Y ],OM [Y ],
InitM [Y ], TM [Y ]) as follows:

– XM [Y ] = Y ,
– InitM [Y ] =

∧
x∈Y Initx(X) where each Initx(X) is acquired from S ,

– TM [Y ] =
∧

x∈Y Tx(X,X ′) where each Tx(X,X ′) is also obtained from S ,
– IM [Y ] = {x ∈ X \ Y | x ∈ Var(InitM [Y ]) ∪ Var(TM [Y ])},
– OM [Y ] = {x ∈ Y | ∃y ∈ X \ Y. x ∈ Var(Inity) ∪ Var(Ty)}.

Now, we can decompose a transition system S (X, Init , T ) into modulesM [X1],
· · · ,M [Xn] by partitioning X into X1, · · · , Xn where X =

⋃
iXi and every Xi

is disjoint from each other. In addition, we can denote this decomposition as



174 W. Nam and R. Alur

S dec= M [X1]‖ · · · ‖M [Xn] using the composition operator ‖, since every Xi is
disjoint from each other. For the sake of simplicity, we will use = instead of dec= .

For a transition system S (X, Init , T ) decomposed into M [X1], · · · ,M [Xn]
where each M [Xi] = (XM [Xi], IM [Xi],OM [Xi], InitM [Xi], TM [Xi]), each run of S
is obviously a run of M [X1]‖ · · · ‖M [Xn] and each run of M [X1]‖ · · · ‖M [Xn] is
also a run of S , since X =

⋃
iXi, and Init and T of S are equivalent to the con-

junction of every InitM [Xi] and TM [Xi], respectively. Finally, given S (X, Init , T )
and a partition of X into disjoint subsets X1, · · · , Xn, M [X1]‖ · · · ‖M [Xn] |= ϕ
iff S |= ϕ.

2.3 Assume-Guarantee Rule

Given a module M (XM , IM ,OM , InitM , TM ), a run of M is, similarly with a run
of a transition system, a sequence q0q1 · · · where every qi is a state over XM ∪
IM such that Init(q0[XM ], q0[IM ]) holds and for every i ≥ 0, T (qi[XM ], qi[IM ],
q′i+1[X

′
M ]) holds. For a run q0q1 · · · of M , the trace is a sequence q0[IOM ]q1[IOM ]

· · ·. Let us denote the set of all the traces of M as L(M ), and the complement
of the set as LC(M ) (formally, LC(M ) = QIO

M
∗ \ L(M ) where QIO

M is a set of
all the states over IOM ). For a trace set L over a variable set IOM and a safety
property ϕ over IOM , we can extend the notion of |= to trace sets as following:
L |= ϕ if, for every trace q0q1 · · · ∈ L, ϕ(qi) holds for every i ≥ 0. In addition,
the composition operator ‖ can be extend to trace sets which have the same
alphabet (i.e. the same set of input/output variables) as following: for L1 and
L2 with the same I/O variable set, L1‖L2 = L1 ∩ L2.

Now, we use the following assume-guarantee rule to prove that a composition
of modules, M1‖ · · · ‖Mn satisfies a safety property ϕ over IO where for every
module Ai, IOAi equals to IO of M1‖ · · · ‖Mn (IO =

⋃
i IOMi).

M1‖A1 |= ϕ, · · · ,Mn‖An |= ϕ (Pr1)
LC(A1)‖ · · · ‖LC(An) |= ϕ (Pr2)

M1‖ · · · ‖Mn |= ϕ

The rule above says that if there exist assumption modules A1, · · · , An such
that for each i, the composition of Mi and Ai is safe (i.e. satisfies the property ϕ)
and the composition of the complements of every Ai satisfies ϕ, then M1‖ · · · ‖Mn

satisfies ϕ. Intuitively, the first premise Pr1 makes every assumption strong
enough to keep each Mi safe, and the second premise Pr2 makes the assumptions
weak enough to cover all the traces which can violate ϕ (i.e., for every trace
violating ϕ, Pr2 requires at least one assumption to contain it). This rule is
sound and complete [5]. Our aim is to construct such assumptions A1, · · · , An

to show that M1‖ · · · ‖Mn satisfies ϕ, and the smaller assumptions can save the
more in terms of searching state space.

Given a symbolic transition system S (X, Init , T ), an integer n ≥ 2 and a safety
property ϕ, the model-checking problem we consider in this paper is, instead of
checking S |= ϕ, to partition X into disjoint subsets X1, · · · , Xn, and to check
M [X1]‖ · · · ‖M [Xn] |= ϕ using the above assume-guarantee rule. Note that we



Learning-Based Symbolic Assume-Guarantee Reasoning 175

are assuming that the safety property ϕ is a predicate over IO , but this is not
a restriction: to check a property that refers to private variables of a module,
we can simply declare them as output variables. Finally, the challenges of this
paper are (1) how to find a variable partition and (2) how to find assumptions
satisfying both of the above premises.

3 Automatic Partitioning

Automatic partitioning is, given a transition system S (X, Init , T ) and an integer
n ≥ 2, to decompose X into disjoint subsets X1, · · · , Xn, and there exist about
n|X| possible partitions. Among them, we want a partition to minimize memory
usage for assumption construction and commitment in our assume-guarantee
reasoning. The memory usage, however, cannot be formulated. Therefore, we
roughly fix our goal to find a partition that has small number of variables required
in each step of the assume-guarantee reasoning because a state space for each
step is exponential in the number of variables. More precisely, the alternative
goal is to find a partition that minimizes max i(|Xi ∪ IOMi |) where IOMi is the
set of I/O variables of moduleM [Xi]. This partitioning problem is NP-complete.

We reduce our problem into a well-known partitioning problem called the
hypergraph partitioning problem which can be used for directed-graph partition-
ing. For the reduction, we relax our goal as following; given a transition system
S (X, Init , T ), and an integer n ≥ 2, our automatic partitioning is to find a parti-
tion decomposing X into n disjoint subsets such that (1) the number of variables
in each module is in some bound (near even distribution) and (2) modules corre-
sponding to each variable subset have as few input/output variables as possible.

A hypergraph G(V,E) is defined as a set of vertices V and a set of hyperedges
E where each hyperedge is a set of arbitrary number of vertices in V . Thus,
an ordinary graph is a special case of hypergraphs such that every edge is a
pair of two vertices. Given a hypergraph G(V,E) and an overall load imbalance
tolerance c ≥ 1.0, the k-way hypergraph partitioning problem is to partition the
set V into k disjoint subsets, V1, · · · , Vk such that the number of vertices in each
set Vi is bounded by |V |/(c · k) ≤ |Vi| ≤ |V |(c/k), and the size of hyperedge-cut
of the partition is minimized where the hyperedge-cut is a set of hyperedges e
such that there exist v1 and v2 in e which belong to different partitions.

Now, our partitioning problem can be reduced to the k-way hypergraph par-
titioning problem. Given a transition system S (X, Init , T ), we construct a hy-
pergraph G(V,E) as follows. V = {vx | x ∈ X}. For each x ∈ X , we have a
hyperedge ex that immediately contains the corresponding vertex vx and also
vertices vy such that x ∈ Var(Inity)∪Var (Ty). Intuitively, ex represents the cor-
responding variable x and all the variables to read x. Finally, E is the set of all
ex. Then, after hypergraph partitioning, V1, · · · , Vk correspond with X1, · · · , Xn

in our problem. If we have a hyperedge ex in the hyperedge-cut (let us assume
that the corresponding vertex vx belongs to Vi), then there exist some vertex
vy ∈ ex which belongs to Vj(i �= j). Since y is dependent on x but they are in
different partitions, x should be an input variable of M [Xj] and also an output



176 W. Nam and R. Alur

variable of M [Xi]. For the overall load imbalance tolerance c, a large value for
c can reduce the number of I/O variables but it causes larger imbalance among
each module. On the other hand, a small value for c increases I/O variables.
Therefore, we perform partitioning with six different values (i.e. 1.0, 1.2, · · ·,
2.0) and pick the partition that has the minimum value as max i(|Xi ∪ IOMi |).

Many researchers have studied this problem and developed tools, and among
them we use hMETIS [14]. hMETIS is one of the state-of-the-art hypergraph
partitioning tools which uses a multilevel k-way partitioning algorithm. The
multilevel partitioning algorithm has three phases; (1) it first reduces the size of
a given hypergraph by collapsing vertices and edges until the hypergraph is small
enough (coarsening phase), (2) the algorithm partitions it into k sub-hypergraphs
(initial partitioning phase), and (3) the algorithm uncoarsens them to construct
a partition for the original hypergraph (uncoarsening and refinement phase). Ex-
periments on a large number of hypergraphs arising in various domains including
VLSI, databases and data mining show that hMETIS produces partitions that
are consistently better than those produced by other widely used algorithms,
such as KL [15] and FM [10]. In addition, it is so fast as to produce high quality
bisections of hypergraphs with 100,000 vertices in 3 minutes [13].

4 Learning Assumptions

In this section, we define the weakest safe assumption tuple which is a witness
for the truth of a given invariant, and briefly explain an algorithm for learning
regular languages, called L∗ algorithm. We then establish that our verification
algorithm based on the L∗ algorithm converges to the weakest safe assumption
tuple or, before that, concludes with a witness for the invariant.

4.1 Weakest Safe Assumptions

After partitioning, our aim is, given a set of modules M [X1], · · · ,M [Xn] (ob-
tained from automatic partitioning) and a safety property ϕ(IO), to verify that
M [X1]‖ · · · ‖M [Xn] |= ϕ by finding assumption modules A1, · · · , An that satisfy
both premises of our assume-guarantee rule. A tuple (A1, · · · , An) of assumptions
is called a safe assumption tuple (ST) if the assumptions A1, · · · , An satisfy Pr1,
and a tuple (A1, · · · , An) of assumptions is called an appropriate assumption tu-
ple (AT) if the assumptions A1, · · · , An satisfy both of Pr1 and Pr2. For every
M [Xi], the weakest safe assumption Wi is a module such that M [Xi]‖Wi |= ϕ
and L(Wi) ⊇ L(Ai) for every Ai such that M [Xi]‖Ai |= ϕ. We denote such a
tuple (W1, · · · ,Wn) as the weakest safe assumption tuple (WT). Now, we show
that the WT is a witness for the truth of M [X1]‖ · · · ‖M [Xn] |= ϕ.

Lemma 1. If M [X1]‖ · · · ‖M [Xn] |= ϕ, the WT (W1, · · · ,Wn) is a witness of
M [X1]‖ · · · ‖M [Xn] |= ϕ.

Proof. If M [X1]‖ · · · ‖M [Xn] does indeed satisfy ϕ, then there exists an AT
(A1, · · · , An) since the composition rule is complete. By definition, (W1, · · · ,Wn)



Learning-Based Symbolic Assume-Guarantee Reasoning 177

satisfies Pr1. For the above AT (A1, · · · , An), since for every i, LC(Wi) ⊆ LC(Ai)
and LC(A1)‖ · · · ‖LC(An) |= ϕ, LC(W1)‖ · · · ‖LC(Wn) |= ϕ (Pr2). Finally, the
WT (W1, · · · ,Wn) is one of ATs and a witness of M [X1]‖ · · · ‖M [Xn] |= ϕ.

Lemma 2. If M [X1]‖ · · · ‖M [Xn] �|= ϕ, the WT (W1, · · · ,Wn) is a witness of
M [X1]‖ · · · ‖M [Xn] �|= ϕ.

Proof. IfM [X1]‖ · · · ‖M [Xn] does not satisfy ϕ, then there is no AT; i.e., if an as-
sumption tuple (A1, · · · , An) satisfies Pr1, there exists a trace τ ∈ LC(A1)‖ · · · ‖
LC(An) violating ϕ. Again, since (W1, · · · ,Wn) satisfies Pr1 by definition, there
exists τ ∈ LC(W1)‖ · · · ‖LC(Wn) violating ϕ. For every (A1, · · · , An) that sat-
isfies Pr1, since for every i, LC(Wi) ⊆ LC(Ai) and LC(W1)‖ · · · ‖LC(Wn) ⊆
LC(A1)‖ · · · ‖LC(An), the above trace τ violating ϕ also belongs to LC(A1)‖ · · · ‖
LC(An). Thus, the WT (W1, · · · ,Wn) is a witness of M [X1]‖ · · · ‖M [Xn] �|= ϕ.

The WT (W1, · · · ,Wn) can be represented by a tuple of DFAs with the alphabet
QIO (where QIO is a set of all states over IO) as each M [Xi] is finite. Therefore,
we can learn the WT which a witness for truth ofM [X1]‖ · · · ‖M [Xn] |= ϕ, using
the L∗ algorithm for learning regular languages.

4.2 L∗ Algorithm

The L∗ algorithm learns an unknown regular language U (let Σ be its alphabet)
and generates a minimal DFA that accepts the regular language. This algorithm
was introduced by Angluin [4], but we use an improved version by Rivest and
Schapire [17]. The algorithm infers the structure of the DFA by asking a teacher,
who knows the unknown language, membership and equivalence queries. Mem-
bership queries ask whether a given string σ ∈ Σ∗ is in the language U , and
the answer for the queries is yes or no. Equivalence queries ask whether a given
conjecture DFA C represents the language U , and the answer is yes or no with
a counter-example that is a symmetric difference between L(C) and U .

At any given time, the L∗ algorithm has, in order to construct a conjecture
machine, information about a finite collection of strings over Σ, classified either
as members or non-members of U based on membership queries. This informa-
tion is maintained in an observation table (Rs ,Es ,Mp) which represents the
conjecture DFA; Rs is a set of representative strings for states in the DFA such
that each representative string rq ∈ Rs for a state q leads from the initial state
(uniquely) to the state q, and Es is a set of experiment suffix strings that are
used to distinguish states. Mp maps strings σ in (Rs ∪ Rs ·Σ) · Es to 1 if σ is
in U , and to 0 otherwise. Once a conjecture machine C is built, the algorithm
asks an equivalence query. Finally, if the answer is ‘yes’, it returns the current
conjecture DFA C; otherwise, a counter-example cex ∈ ((L(C) \U)∪ (U \L(C))
is provided by the teacher. In the latter case, the algorithm updates the current
conjecture using the counter-example cex .

If a teacher for two kinds of queries is provided, the L∗ algorithm is guaran-
teed to construct a minimal DFA for the unknown regular language using only
O(|Σ|n2 + n logm) membership queries and at most n− 1 equivalence queries,



178 W. Nam and R. Alur

where n is the number of states in the final DFA and m is the length of the
longest counter-example provided by the teacher for equivalence queries.

4.3 Automatic Symbolic Compositional Verification

Now, we present our verification algorithm. Given a transition system S (X, Init ,
T ), an invariant property ϕ, and an integer n ≥ 2, our automatic symbolic com-
positional verification (ASCV) algorithm decomposes X into n disjoint subsets
X1, · · · , Xn and then checksM [X1]‖ · · · ‖M [Xn] |= ϕ by learning the WT (weak-
est safe assumption tuple), which is a witness for the truth of the invariant. For
learning the WT, the ASCV algorithm provides teachers who answer member-
ship and equivalence queries, which correspond with the WT (W1, · · · ,Wn).

Given a string τ ∈ QIO∗ and a module M [Xi], a teacher for membership
queries answers whether there is an execution ofM [Xi] consistent with τ , which
violates ϕ; that is, whether τ ∈ L(Wi). The ASCV algorithm constructs a
conjecture assumption Ai for each module M [Xi], based on the results of mem-
bership queries, and after this phase, it asks an equivalence query. The equiva-
lence query consists of two sub-queries: checking Pr1 and Pr2 of the
assume-guarantee rule. If a given assumption tuple satisfies both premises, we
conclude S = M [X1]‖ · · · ‖M [Xn] |= ϕ; otherwise, the teacher produces a
counter-example. More precisely, the teacher checking Pr1 answers, given an
assumption Ai for a module M [Xi], whether M [Xi]‖Ai |= ϕ; if not, it returns
τ ∈ L(Ai) violating ϕ (i.e. τ ∈ L(Ai)\L(Wi)). The teacher for Pr2 checks, given
A1, · · · , An, whether LC(A1)‖ · · · ‖LC(An) |= ϕ; if not, it returns τ ∈ LC(Ai) for
every i which violates ϕ. For Pr1 queries, τ is immediately used to update Ai,
but for Pr2 queries, we need an additional analysis. That is, when we execute
every M [Xi] corresponding to τ , if everyM [Xi] reaches a state violating ϕ, then
τ is a counter-example of the original problem, S = M [X1]‖ · · · ‖M [Xn] |= ϕ;
otherwise, τ is used to update Ai such that M [Xi] correspondent with Ai does
not violate the invariant ϕ (i.e. τ ∈ L(Wi) \ L(Ai)).

In the ASCV algorithm, since all answers from teachers are always consistent
with the WT (for equivalence queries, counter-examples are checked with each
Wi), our ASCV algorithm will converge to the WT which a witness for the
truth of S |= ϕ, in the polynomial number of queries by the property of the L∗

algorithm. However, there can be early termination with a counter-example or
an AT satisfying both premises. In addition, the algorithm will not generate any
assumption Ai with more states than Wi.

Figure 1 illustrates our ASCV algorithm. Given a transition system S , a
safety property ϕ, and an integer n, the ASCV algorithm first decomposes S
into n modules and assigns them to an array M [ ] (line 1), and it constructs
the initial conjecture machines according to the rule of the L∗ algorithm (line
2). Then, we repeat asking two sub-queries for equivalence and updating the
current conjecture machines; if either of them returns a counter-example cex ,
the algorithm updates the conjecture machines using cex (lines 4–18). In more
detail, we check that for every i, the current A[i] is a safe assumption such that
M [i]‖A[i] |= ϕ by a function SafeAssumption(). If so, we have A[1], · · · , A[n]



Learning-Based Symbolic Assume-Guarantee Reasoning 179

Boolean ASCV(S , ϕ, n)
1: M [ ] := AutomaticPartitioning(S , ϕ, n);
2: A[ ] := InitializeAssumptions(M [1], · · · , M [n], ϕ);
3: repeat:
4: foreach(1 ≤ i ≤ n){
5: while((cex := SafeAssumption(M [i], A[i], ϕ)) �= null){
6: UpdateAssumption(M [i], A[i], cex );
7: } }
8: if((cex := DischargeAssumptions(A[1], · · · , A[n], ϕ)) = null){
9: return true;

10: } else {
11: IsRealCex := true ;
12: foreach(1 ≤ i ≤ n) {
13: if(SafeTrace(M [i], cex )) {
14: UpdateAssumption(M [i], A[i], cex );
15: IsRealCex := false;
16: } }
17: if(IsRealCex) return false;
18: }

Fig. 1. Automatic symbolic compositional verification algorithm

satisfying Pr1; otherwise (i.e., for some i, we have a counter-example cex), we
update A[i] with respect to cex (line 6). Once we have A[1], · · · , A[n] satisfying
Pr1, the algorithm checks Pr2 by a function DischargeAssumptions(). If the
function returns null, then we conclude S |= ϕ since A[1], · · · , A[n] satisfy both
premises; otherwise, we are provided a counter-example cex . Lines 11–17 analyze
whether cex is a real counter-example for the invariant; if cex indeed violates
ϕ for every M [i], then we conclude S �|= ϕ. Otherwise, it is a spurious counter-
example and we update A[i] that is the conjecture for M [i] not violating ϕ.

5 Symbolic Implementation

The ASCV algorithm can be implemented explicitly as well as implicitly. How-
ever, as input/output variables increase, the number of the alphabet symbols of
the languages we want to learn also increases exponentially. In explicit implemen-
tations [9,11], the large alphabet size poses crucial problems: (1) the constructed
assumption DFAs have too many edges when represented explicitly, (2) the size
of the observation tables for each assumption gets very large, and (3) the number
of membership queries needed to fill each entry in the observation tables also
increases. In [3] we introduced a symbolic implementation for learning-based
compositional verification and we, in this paper, extend the technique.

5.1 Data Structures and Functions

For symbolic implementation, we already defined a symbolic transition system
and decomposition to modules implicitly in Section 2. Here, we present the rest
of important symbolic data structures used in the ASCV algorithm.



180 W. Nam and R. Alur

– Each conjecture assumption Ai is also a module Ai(XAi , IAi ,OAi , InitAi ,
TAi) that can be constructed using BDDs. Each Ai represents a conjecture
DFA in the L∗ algorithm: XAi encodes a set of states, IOAi represents its al-
phabet, and InitAi and TAi encode an initial state and a transition function,
respectively.

– Observation table (Rs,Es ,Mp) for each conjecture assumption Ai is main-
tained using BDDs. Each representative string r ∈ Rs is encoded by a BDD
representing a set of states ofM [Xi] reachable by r (i.e. PostImage(InitM [Xi],
r)). Every experiment string e ∈ Es is also represented by a BDD encoding
a set of states of M [Xi] from which some state violating ϕ is reachable by e
(i.e. PreImage(¬ϕ, e)). Mp is maintained by a set of boolean arrays.

– A counter-example cex is a finite sequence of states over IO , and it is rep-
resented by a list of BDDs.

All functions in the ASCV algorithm are implemented using symbolic compu-
tation as following (where all the parameters are already represented by BDDs).
– SafeAssumption(M [Xi], Ai, ϕ) checksM [Xi]‖Ai |= ϕ. It can be achieved by

an ordinary symbolic reachability test.
– DischargeAssumptions(A1, · · · , An, ϕ) checks LC(A1)‖ · · · ‖LC(An) |= ϕ.

For every Ai, we first construct a module encoding a complement DFA of
Ai. This complementing can be easily performed even in our symbolic im-
plementation. We then check that the composition of the complement DFAs
satisfies ϕ, which is also handled by the symbolic reachability test.

– UpdateAssumption(M [Xi], Ai, cex) reconstructs the conjecture assumption
Ai for the module M [Xi] to be used in the next iteration. It first finds a new
experiment string that is the longest suffix of cex which can demonstrate the
difference between the current conjecture and the goal language. We then
update the observation table for Ai by adding the new experiment string.
This addition introduces new states and edges. We identify a set of edges
between states by BDD computation.

– SafeTrace(M [Xi], cex) checks, by the reachability test, that there exists any
trace of M [Xi] corresponding with cex , which violates ϕ.

5.2 Early Falsification

In the previous implementations of learning-based compositional verification
[9,11] including ours [3], we have found a possible optimization that allows us
to conclude earlier S �|= ϕ with a counter-example. In Figure 1, if cex acquired
from DischargeAssumptions() reaches some state violating ϕ for every M [Xi],
then we conclude that the invariant is false (line 17). That is, in the case that
the invariant is indeed false, the algorithm cannot terminate until encountering
safe assumptions for each module and checking DischargeAssumptions(). On
the other hand, cex provided from SafeAssumption() is immediately used for
updating the current conjecture (line 6) even though it is a candidate of evidence
for S �|= ϕ. In our new implementation, if cex obtained from SafeAssumption()
is a feasible trace for every other module M [Xj](j �= i), then we declare cex as



Learning-Based Symbolic Assume-Guarantee Reasoning 181

a counter-example for S |= ϕ. Otherwise (cex violates ϕ in M [Xi], but it is in-
feasible for some other module), we update the current assumption for M [Xi] to
rule out cex as the original algorithm. We believe that the additional feasibility
checking adds a little effort in terms of time and memory, but sometimes this
function can falsify the invariant earlier. We will present examples where we can
conclude much earlier than experiments without early falsification in Section 6.
The function EarlyFalsify() is implemented as below:

EarlyFalsify(Trace τ , int MNum){
foreach (j �= MNum)

if (¬ FeasibleTrace(M [j], τ)) return false;
return true;

}
Finally, we add the function EarlyFalsify() between line 5 and 6 in the ASCV
algorithm (see Figure 1).

5: while((cex := SafeAssumption(M [i], A[i], ϕ)) �= null){
5′: if(EarlyFalsify(cex, i)) return false ;
6: UpdateAssumption(M [i], A[i], cex);

5.3 Edge Deletion for Safe Assumptions

The ultimate goal of our model-checking problem is to quickly discover a small
AT (appropriate assumption tuple) or a counter-example for S |= ϕ. The ASCV
algorithm, however, only guarantees that we can eventually learn the WT (weak-
est safe assumption tuple) whose size is, in theory, exponential in the size of each
module in the worst case. That is, the ASCV algorithm based on the L∗ algo-
rithm may keep introducing new states for conjecture machines until converging
on a very large WT, even though there may exist smaller ATs than the WT.
We have experienced many cases where our algorithm needs many iterations to
converge on the WT (lines 5–6). The optimal solution for this problem is to learn
the smallest AT in terms of the number of states rather than the WT, but this
is a computationally hard problem.

Instead, we propose a simple heuristic called edge deletion for this problem
where we retry, without introducing new states, to check Pr1 and Pr2 after
eliminating some edges from the current assumption. More precisely, when we
are given a counter-example cex from SafeAssumption(M [Xi], Ai, ϕ), cex is a
list of BDDs encoding a set of counter-examples to reach some state violating ϕ.
Each counter-example is a sequence of states of M [Xi]‖Ai, and we can extract
the edge of Ai from the last transition of the sequence which immediately leads to
the state violating ϕ. By disallowing the edges from Ai, we can rule out cex from
the current conjecture machine Ai. Then, we check SafeAssumption() again; if
we get a safe assumption by the retrial, we proceed to the next step. If we can-
not conclude using this stronger assumption, then we replace it with the original
assumption and update the original one for the next iteration. This replace-
ment ensures the convergence to the WT. Intuitively, our heuristic edge deletion



182 W. Nam and R. Alur

searches, with the same number of states, more broadly in solution candidate
space, while the original L∗ algorithm keeps searching deeply by introducing new
states. We believe that sometimes this heuristic also can encounter a smaller AT
than the original algorithm. Section 6 shows evidence of this benefit.

6 Experiments

We have implemented our automatic symbolic compositional verification algo-
rithm with the BDD package in a symbolic model checker NuSMV. For experi-
ment, we have six sets of examples where five sets are collected from the NuSMV
package and one is artificial. For the artificial examples, we know that small
assumptions exist, and for examples from NuSMV package, we added some vari-
ables or scaled them up as tools finished fast with the original models. All exper-
iments have been performed on a Sun-Blade-1000 workstation using a 750MHz
UltraSPARC III processor, 1GB memory and SunOS 5.10. First, we compare
our automatic symbolic compositional verifier (ASCV) with our previous imple-
mentation in [3]. We then present effects of the number of partitions and new
features (early falsification and edge deletion in Section 5). Finally, we com-
pare our ASCV with the invariant checking (with early termination) of NuSMV
2.3.0. Each result table has the number of variables in total (tv), I/O variables,
max i(|Xi ∪ IOMi |) (mx), execution time in seconds, the peak BDD size and the
number of states in the assumptions we learn (asm). The running time includes
time to perform partitioning as well. Entries denoted by ‘–’ mean that a tool did
not finish within 2 hours. In addition, columns denoted by ‘F/D’ mean that early
falsification or edge deletion contributes to concluding earlier, and ‘np’ means
the number of partitions.

ASCV vs. SCV. Compared with the previous implementation SCV in [3],
ASCV has the following new features: automatic partitioning, a symmetric com-
positional rule, early falsification and edge deletion. Table 1 presents that ASCV
shows better performance in 10 over 14 examples. However, since the examples
in Table 1 were selected in [3] so as to explain that SCV worked well, they may
be favorable to SCV. Also, in all the examples, automatic partitioning is as good
as manual partitioning in terms of max i(|Xi ∪ IOMi |), and in 5 cases it reduces
the numbers by 20–40%.

The Number of Partitions. Table 2 shows how the number of partitions
affects the performance. In two cases, increasing the number of partitions saves
significantly in terms of time and BDD usage by keeping generating small as-
sumptions. However, other two cases need more time and BDDs due to large
assumptions. Therefore, one has to experiment with the different number of
partitions for better results.

Early Falsification and Edge Deletion. In Table 3, we present how our new
features help to conclude earlier. In case of that given invariants are true, our edge
deletion heuristic saves the number of states of assumptions in many examples.



Learning-Based Symbolic Assume-Guarantee Reasoning 183

Table 1. Comparison between SCV and ASCV

example tot SCV ASCV
name

spec
var mx IO time peak BDD np mx IO time peak BDD F/D

simple1 69 37 4 19.2 607,068 2 36 4 4.9 605,024 D
simple2 78 42 5 106 828,842 2 41 5 31.3 620,354 D
simple3

true
86 46 5 754 3,668,980 2 46 5 223 2,218,762 D

simple4 94 50 5 4601 12,450,004 2 50 5 1527 9,747,836 D
guidance1 false 135 118 23 124 686,784 2 89 18 – – –
guidance2 true 122 105 22 196 1,052,660 4 59 18 6.6 359,744 D
guidance3 true 122 93 46 357 619,332 2 76 15 – – –
barrel1 false 60 35 10 20.3 345,436 2 35 10 – – –
barrel2 true 60 35 10 23.4 472,164 2 35 10 – – –
msi1 45 37 25 2.1 289,226 2 37 19 0.3 50,078 D
msi2 true 57 49 25 37.0 619,332 2 49 22 1.8 524,286 D
msi3 70 62 26 1183 6,991,502 2 60 25 31.9 2,179,926 D

robot1 false 92 89 12 1271 4,169,760 2 52 5 283 1,905,008 F
robot2 true 92 75 12 1604 2,804,368 2 50 7 9.5 427,196 D

Table 2. Effect of the number of partitions

simple4 guidance2np
spec tv mx IO time peak BDD asm spec tv mx IO time peak BDD asm

2 49 5 1526 9,747,836 2,2 82 18 1680 612,178 2,2
3 true 94 61 37 1.8 497,714 2,2,2 true 122 61 23 34 614,222 2,2,2
4 53 37 0.7 217,686 2,2,2,2 59 33 6.6 359,744 2,2,2,2

robot1 syncarb4np
spec tv mx IO time peak BDD asm spec tv mx IO time peak BDD asm

2 52 5 283 1,905,008 3,2 21 21 332 7,700,770 131,131
3 false 92 62 30 – – too many true 21 21 21 643 14,870,100 35,19,35
4 64 46 – – too many 21 21 4520 31,234,364 11,11,19,19

Table 3. With/without Early falsification and edge deletion

example tot IO Without F/D With F/D
name

spec
var

np mx
var time peak BDD asm time peak BDD asm F/D

simple1 69 2 36 4 10.3 605,024 2,3 4.9 605,024 2,2 D
simple2 true 78 2 41 5 58.3 624,442 2,3 31.3 620,354 2,2 D
simple3 86 2 45 5 441 2,997,526 3,2 223 1,849,462 2,2 D
simple4 94 2 49 5 3044 9,747,836 2,3 1526 9,747,836 2,2 D

guidance2 true 122 2 105 18 1634 1,066,968 2,37 1603 612,178 2,2 D
msi1 45 2 37 19 – – too many 0.3 49,056 2,2 D
msi2 true 57 2 49 22 – – too many 1.8 524,286 2,2 D
msi3 70 2 60 25 – – too many 31.9 2,179,926 2,2 D

robot1 false 92 2 52 5 529 2,275,994 3,58 283 1,905,008 3,2 F
robot2 true 92 2 50 7 10.4 529,396 2,3 9.5 427,196 2,2 D

syncarb1 false 18 2 18 18 28.2 1,384,810 67,67 125 1,536,066 67,67 –
syncarb2 true 18 2 18 18 30.4 1,274,434 67,67 86.6 1,280,566 67,67 –

In case of false, early falsification helps to save. In two examples (syncarb1 and
syncarb2), however, these features affect performance adversarially.

ASCV vs. NuSMV. Finally, Table 4 presents the comparison between ASCV
(with the heuristics) and NuSMV. In 10 examples, ASCV is significantly bet-
ter than NuSMV where we have found small assumptions. In syncarb3 and
syncarb4, however, the assumptions we have learnt are relatively large (with
more than 100 states for each) and we believe that the large size of assumptions



184 W. Nam and R. Alur

Table 4. Comparison between ASCV and NuSMV

example tot ASCV NuSMV
name

spec
var np mx IO time peak BDD time peak BDD

simple1 69 2 36 4 4.9 605,024 269 3,993,976
simple2 78 2 41 5 31.3 620,354 4032 32,934,972
simple3

true
86 4 50 37 1.0 330,106 – –

simple4 94 4 53 37 0.7 217,686 – –
guidance2 true 122 4 59 18 6.6 359,744 – –

msi1 45 2 37 19 0.3 50,078 157 1,554,462
msi2 true 57 2 49 22 1.8 524,286 3324 16,183,370
msi3 70 2 60 25 31.9 2,179,926 – –

robot1 false 92 2 52 5 283 1,905,008 654 2,729,762
robot2 true 92 2 50 7 9.5 427,196 1039 1,117,046

syncarb3 false 21 2 21 21 351 9,948,148 0.1 5,110
syncarb4 true 21 2 21 21 332 7,700,770 0.1 3,066
barrel1 false 60 – – – – – 1201 28,118,286
barrel2 true 60 – – – – – 4886 36,521,170

is a main reason of negative results in these examples. Also, it can explain why
ASCV cannot complete in the timeout in barrel1 and barrel2. More details
about the examples are available at http://www.cis.upenn.edu/∼wnam/ASCV/.

References

1. M. Abadi and L. Lamport. Conjoining specifications. ACM TOPLAS, 17:507–534,
1995.

2. R. Alur and T.A. Henzinger. Reactive modules. Formal Methods in System Design,
15(1):7–48, 1999. A preliminary version appears in Proc. 11th LICS, 1996.

3. R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional verification by
learning assumptions. In Proc. CAV 2005, pages 548–562, 2005.

4. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75:87–106, 1987.

5. H. Barringer, C.S. Pasareanu, and D. Giannakopolou. Proof rules for automated
compositional verification through learning. In Proc. 2nd SVCBS, 2003.

6. R.E. Bryant. Graph-based algorithms for boolean-function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, 1986.

7. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. NuSMV Version 2: An OpenSource Tool for Symbolic
Model Checking. In Proc. CAV 2002, LNCS 2404, pages 359–364, 2002.

8. J.M. Cobleigh, G.S. Avrunin, and L.A. Clarke. Breaking up is hard to do: an
investigation of decomposition for assume-guarantee reasoning. Technical Report
UM-CS-2004-023, 2005.

9. J.M. Cobleigh, D. Giannakopoulou, and C.S. Pasareanu. Learning assumptions for
compositional verification. In Proc. 9th TACAS, LNCS 2619, pages 331–346, 2003.

10. C.M. Fiduccia, R.M. Mattheyses. A linear time heuristic for improving network
partitions. In Proc. of 19th DAC, pages 175–181, 1982.

11. D. Giannakopoulou, C.S. Pasareanu. Learning-based assume-guarantee verifica-
tion. In Proc. of SPIN 2005, pages 282–287, 2005.

12. O. Grümberg and D.E. Long. Model checking and modular verification. ACM
Transactions on Programming Languages and Systems, 16(3):843–871, 1994.



Learning-Based Symbolic Assume-Guarantee Reasoning 185

13. G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph par-
titioning: applications in VLSI domain. IEEE Trans. VLSI Systems, 7(1):69–79,
1999.

14. G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. In Proc. of
36th Design Automation Conference, pages 343–348, 1999.

15. B.W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. The Bell System Technical Journal, 49(2):291–307, 1970.

16. K.L. McMillan. A compositional rule for hardware design refinement. In CAV 97:
Computer-Aided Verification, LNCS 1254, pages 24–35, 1997.

17. R.L. Rivest and R.E. Schapire. Inference of finite automata using homing se-
quences. Information and Computation, 103(2):299–347, 1993.

18. N. Sharygina, S. Chaki, E.M. Clarke, and N. Sinha. Dynamic component substi-
tutability analysis. In Proc. of FM 2005, LNCS 3582, pages 512–528, 2005.

19. E.W. Stark. A proof technique for rely-guarantee properties. In FST & TCS 85,
LNCS 206, pages 369–391, 1985.

20. M. Weiser. Program slicing. IEEE Trans. on Software Engineering, 10:352–357,
1984.



On the Satisfiability of Modular Arithmetic

Formulae

Bow-Yaw Wang�

Institute of Information Science
Academia Sinica

Taiwan

Abstract. Modular arithmetic is the underlying integral computation
model in conventional programming languages. In this paper, we discuss
the satisfiability problem of propositional formulae in modular arithmetic

over the finite ring Z2ω . Although an upper bound of 22O(n4)
can be ob-

tained by solving alternation-free Presburger arithmetic, it is easy to see
that the problem is in fact NP-complete. Further, we give an efficient
reduction to integer programming with the number of constraints and
variables linear in the length of the given linear modular arithmetic for-
mula. For non-linear modular arithmetic formulae, an additional factor of
ω is needed. With the advent of efficient integer programming packages,
our algorithm could be useful to software verification in practice.

1 Introduction

Modular arithmetic is widely used in the design of cryptosystems and pseudo
random number generators [22,12]. Since integers use a finite binary represen-
tation in conventional programming languages such as C, modular arithmetic
is often required in software verification as well. Indeed, many algorithms are
designed to avoid overflow in modular arithmetic explicitly. Verification tools
therefore need to support modular arithmetic to check these algorithms.

In this paper, we discuss the satisfiability problem of propositional formulae
in modular arithmetic. All arithmetic computation in the formulae is over the
finite ring Z2ω for some fixed ω. In addition to linear terms, non-linear terms
such as multiplications and modulo operations of arbitrary terms are allowed.
We show that the satisfiability problem is NP-complete for formulae of linear
modular arithmetic. The problem is still in NP for full modular arithmetic.

We give an efficient reduction to integer programming to have a practical de-
cision procedure for modular arithmetic. Several issues have to be addressed in
our construction. Firstly, modular computation must be simulated by linear con-
straints, as well as all logical operations. Furthermore, non-linear multiplications
and modulo operations need to be expressed in the form of linear constraints.
Most importantly, we would not like our reduction to increase the size of the
� This work was partly supported by NSC under grants NSC 94-2213-E-001-003- and

NSC 95-2221-E-001-024-MY3.

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 186–199, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



On the Satisfiability of Modular Arithmetic Formulae 187

problem significantly. Our construction should not use more than a linear num-
ber of constraints and variables in the length of the modular arithmetic formula.

It is well-known that the first-order non-linear arithmetic theory is undecid-
able [8]. Presburger arithmetic is a decidable first-order linear arithmetic the-

ory [6,15,19]. In [15], Oppen shows an upper bound of 222O(n lg n)

for determining
the truth of Presburger arithmetic formula of length n. If the number of quan-
tifier alternation is m, the problem can be solved in time 22O(nm+4)

and space
2O(nm+4) [19]. Although Presburger arithmetic can express first-order linear arith-
metic properties, it does not allow modular arithmetic nor non-linear operations.

Integer programming optimizes a given linear objective function subject to
a set of linear constraints [16]. The problem is known to be NP-complete. Un-
like Presburger arithmetic, it does not allow arbitrary logical combinations of
constraints but their conjunction. It does not allow modular arithmetic either.

Other decision procedures for linear arithmetic are available. In [4], a survey
of the automata-theoretic approach is given. For a special class of quantifier-free
Presburger arithmetic, [21] gives an efficient reduction to Boolean satisfiabil-
ity. The tool CVC Lite [2] contains a decision procedure to check validity of
linear arithmetic formula. Similar to [6,15,19], none of them considers modular
arithmetic nor non-linear operations. In [1], a decision procedure for systems of
modular arithmetic inequalities is proposed. Although the authors use an alge-
braic approach to check the satisfiability of (in)equalities in a system. It is unclear
whether the logical and modulo operations can be added within their framework.

We note that our reduction may serve as a reduction to Presburger arithmetic.
Since Presburger arithmetic does not allow modular arithmetic, encoding it in
linear constraints allows us to solve the problem by various decision procedures
for Presburger arithmetic. However, solving the corresponding Presburger arith-
metic formula requires 22O(n4)

in the length of the modular arithmetic formula.
Our reduction is more efficient asymptotically.

The remaining of paper is organized as follows. Section 2 contains the back-
ground. It is followed by the syntax and semantics of linear modular arithmetic
in Section 3. The algorithm for the satisfiability of linear modular arithmetic
is presented in Section 4. The syntax and semantics of modular arithmetic for-
mulae are defined in Section 5. Section 6 discusses the satisfiability problem for
non-linear modular arithmetic. Applications of our algorithm are discussed in
Section 7. We report our preliminary experimental results in Section 8. Finally,
Section 9 concludes the paper.

2 Preliminaries

Let Z be the set of integers, Z+ the set of positive integers, and Z× the set of
non-zero integers. In the following exposition, we will fix the set X of integer
variables and m = 2ω where ω ∈ Z+.

Definition 1. ([11], for example) For any a ∈ Z, b ∈ Z×, there are q, r ∈ Z
such that a = bq + r and 0 ≤ r < |b|.



188 B.-Y. Wang

The numbers q and r are called a quotient b (a quo b) and a modulo b (a mod b)
respectively. We also define signed quotient and signed modulo as follows.

a smod b
�
=

{
a mod b if 0 ≤ a mod b < ! |b|2 "
a mod b− |b| if ! |b|2 " ≤ a mod b < |b|

a squo b �=
a− (a smod b)

b

For example, −7 quo −3 = 3 and −7 mod −3 = 2, but −7 squo −3 = 2
and −7 smod −3 = −1 for −7 = −3 × 3 + 2. We say a is congruent to b modulo
m, a ≡ b (mod m), if (a − b) mod m = 0. For any a ∈ Z, the residue class of

a modulo m is the set [a]
�
= {x|x ≡ a (mod m)}. It is easy to verify that the

residue class system Zm = ({[0], [1], . . . , [m − 1]},+, [0], ·, [1]) is a commutative
ring with identity [11].

Since Zm consists of residue classes of integers modulo m, several represen-
tations of the equivalence classes are possible. Particularly, we call {−m

2 , . . . ,
−1, 0, 1, m

2 − 1} the signed representation and {0, 1, . . . ,m − 1} the unsigned
representation. To emulate integral computation in conventional languages, we
use the signed representation if not mentioned otherwise. If c ∈ Z, the notation
c ∈ Zm denotes that c is an element in the signed representation of Zm.

Let c, ai,j ∈ Z and xj ∈ X for 0 ≤ i < M , 0 ≤ j < N . Given a set of M linear
constraints

∑N−1
j=0 ai,jxj ∼i ci where ∼i∈ {≤, <,=, >,≥}, and a linear objective

function
∑N−1

j=0 bjxj , the integer programming problem is to find a valuation
ρ : X → Z such that ρ satisfies all linear constraints and attains the maximum
value of the objective function. We denote an instance of integer programming
problem as follows.

maximize
∑N−1

j=0 bjxj

subject to

∑N−1
j=0 a0,jxj ∼0 c0∑N−1
j=0 a1,jxj ∼1 c1

...∑N−1
j=0 aM−1,jxj ∼M−1 cM−1

It is known that the integer programming problem is NP-complete [16].

3 Linear Modular Arithmetic

For any c ∈ Zm and x ∈ X , the syntax of the Linear Modular Arithmetic For-
mula over Zm is defined in Figure 1. We use the symbols % and ÷ for the
modulo and quotient operators respectively in our object language to avoid con-
fusion. Also, we do not use syntactic translation for equality nor any of the logical
connectives. A more efficient reduction can be attained by treating each oper-
ator separately, although it does not improve the performance asymptotically.



On the Satisfiability of Modular Arithmetic Formulae 189

Term t
	
= c | c · t | t % c | t ÷ c | t + t′

Atomic Proposition l
	
= ff | t ≤ t′ | t = t′

Formula f
	
= l | ¬f | f ∧ f ′ | f ∨ f ′

Fig. 1. Syntax of Linear Modular Arithmetic Formula over Zm

[[c]]ρ
	
= c

[[c · t]]ρ 	
= c[[t]]ρ smod m

[[t + t′]]ρ
	
= [[t]]ρ + [[t′]]ρ smod m

[[t % c]]ρ
	
= [[t]]ρ mod c

[[t ÷ c]]ρ
	
= [[t]]ρ quo c

[[ff]]ρ
	
= false

[[t ≤ t′]]ρ
	
= [[t]]ρ ≤ [[t′]]ρ

[[t = t′]]ρ
	
= [[t]]ρ = [[t′]]ρ

[[¬f ]]ρ
	
= ¬[[f ]]ρ

[[f ∧ f ′]]ρ
	
= [[f ]]ρ ∧ [[f ′]]ρ

[[f ∨ f ′]]ρ
	
= [[f ]]ρ ∨ [[f ′]]ρ

Fig. 2. Semantics of Linear Modular Arithmetic Formula over Zm

Finally, only constants in Zm are allowed. Overflowed constants cause compilers
to generate warnings; they can be identified rather easily.1

For any valuation ρ, the semantic function [[•]]ρ for linear modular arithmetic
formulae over Zm is defined in Figure 2. Since c ∈ Zm, it is unnecessary to com-
pute the signed representations for constants, modulo and quotient operations.
For the others, their semantic values are obtained by the signed modulo m.

Assume each integral and logical computation in conventional languages takes
O(1) time. We can now phrase the satisfiability problem as follows.

Problem 1. (Satisfiability) Given a linear modular arithmetic formula f over Zm

with variables x̄, determine whether there is a valuation ρ such that [[f ]]ρ = true.

Since the evaluation of any linear modular arithmetic formula is in P, we imme-
diately have the following upper bound for the satisfiability problem.

Proposition 1. The satisfiability problem for any linear modular arithmetic
formula f can be decided in NP.2

The lower bound of the problem can be obtained by reduction from 3CNF.
Although Boolean variables are not allowed in linear modular arithmetic, they
can be simulated by the parity of integer variables fairly easily.

Proposition 2. The satisfiability problem for any linear modular arithmetic
formula f is NP-hard.

Corollary 1. The satisfiability problem for linear modular arithmetic formula
is NP-complete.
1 In gcc 4.0.2, the warning message “integer constant is too large for its type” is shown.
2 Please refer to [23] for all proofs of the propositions and theorems in this paper.



190 B.-Y. Wang

4 Solving the Satisfiability Problem for Linear Modular
Arithmetic

Since modular arithmetic is the default integral computation in conventional
languages, deciding the satisfiability of linear modular arithmetic formula could
be useful in software verification. One may, of course, use binary encoding and
solve the problem in the Boolean domain. But it would disregard the nature of
the problem. We are therefore looking for alternatives capable of exploiting the
underlying mathematical structure of the problem.

Given an instance of any syntactic class (terms, atomic propositions, or for-
mulae), we translate it to an integer variable and a set of constraints. Intuitively,
the integer variable has the semantic value of the given instance for any valua-
tion subject to the set of constraints. For terms, the integer variable has a value
in [−m

2 ,
m
2 − 1]. For atomic propositions and formulae, it has values 0 or 1.

σ(c)
	
= (p, p = c)

σ(c · t) 	
=

⎛⎝p,
α

−m
2
≤ p < m

2

cp′ − mq = p

⎞⎠
where (p′, α) = σ(t)

σ(t0 + t1)
	
=

⎛⎜⎜⎝p,

α0

α1

−m
2
≤ p < m

2

p0 + p1 − mq = p

⎞⎟⎟⎠
where

(p0, α0) = σ(t0)
(p1, α1) = σ(t1)

σ(t% c)
	
=

⎛⎝p,
α

0 ≤ p < |c|
p′ − cq = p

⎞⎠
where (p′, α) = σ(t)

σ(t ÷ c)
	
=

(
p,

α
0 ≤ p′ − cp < |c|

)
where (p′, α) = σ(t)

Fig. 3. Linear Constraints for Terms

Consider, for example, the following translation of t% c (Figure 3).⎛⎝p, α
0 ≤ p < |c|
p′ − cq = p

⎞⎠where (p′, α) = σ(t)

The semantic value p′ and constraints α of t are obtained by σ(t) recursively.
Since the semantic value p of t% c is equal to p′% c, we add the constraints
0 ≤ p < |c| and p′ − cq = p. The following proposition shows that the semantics
of terms is still retained in spite of the constraints in Figure 3.

Proposition 3. Let t be a term in linear modular arithmetic. Then, there is a
valuation ρ such that [[t]]ρ = d ⇔ there is a valuation η such that η satisfies α
and η(p) = d where (p, α) = σ(t).



On the Satisfiability of Modular Arithmetic Formulae 191

λ(ff)
	
= (p, p = 0)

λ(t0 ≤ t1)
	
=

⎛⎜⎜⎜⎜⎝p,

α0

α1

0 ≤ p ≤ 1
p0 − p1 − (m − 1)(1 − p) ≤ 0

p0 − p1 + mp > 0

⎞⎟⎟⎟⎟⎠
where

(p0, α0) = σ(t0)
(p1, α1) = σ(t1)

λ(t0 = t1)
	
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
p,

α0

α1

0 ≤ q0 + q1 ≤ 1
p0 − p1 + m(1 − q0) − q0 ≥ 0
p0 − p1 − m(1 − q1) + q1 ≤ 0

p0 − p1 − m(q0 + q1) ≤ 0
p0 − p1 + m(q0 + q1) ≥ 0

1 − q0 − q1 = p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where

(p0, α0) = σ(t0)
(p1, α1) = σ(t1)

Fig. 4. Linear Constraints for Atomic Propositions

For atomic propositions, observe

−m < −m+1 = −m
2
−(
m

2
−1) ≤ [[t0]]ρ− [[t1]]ρ ≤ (

m

2
−1)−(−m

2
) = m−1 < m.

Consider the atomic proposition t0 ≤ t1. From Figure 4, we have⎛⎜⎜⎜⎜⎝p,
α0

α1

0 ≤ p ≤ 1
p0 − p1 − (m− 1)(1 − p) ≤ 0

p0 − p1 +mp > 0

⎞⎟⎟⎟⎟⎠where (p0, α0) = σ(t0)
(p1, α1) = σ(t1)

.

Since the variables p0 and p1 have the semantic values of the terms t0 and
t1 respectively, we have −m < p0 − p1 ≤ m − 1. If p0 ≤ p1, it is easy to verify
that the constraints are satisfied if the semantic value p is 1. Conversely, if the
variable p has the value 1, p0 − p1 − (m− 1)(1− p) = p0 − p1 ≤ 0 is enforced by
the constraints. Thus p0 ≤ p1.

For equality, one could use a less efficient construction by conjunction and com-
parison. But we have a slightly better translation in Figure 4. Intuitively, the vari-
ables q0 and q1 denote p0 > p1 and p0 < p1 respectively. Note that q0 and q1 must
be 0 or 1 by the constraint 0 ≤ q0 + q1 ≤ 1. If q0 = 1, then p0 − p1 − 1 ≥ 0 by
the constraint p0 − p1 +m(1 − q0) − q0 ≥ 0. Hence p0 > p1. Conversely, suppose
p0 > p1 but q0 = 0. There are two cases. If q1 = 0, we have p0 − p1 ≤ 0 by the
constraint p0 − p1 +m(q0 + q1) ≤ 0, a contradiction. If q1 = 1, p0 − p1 + 1 ≤ 0 by
the constraint p0 − p1 −m(1− q1) + q1 ≤ 0, also a contradiction. Hence, q0 = 1 if
and only if p0 > p1 for any valuation satisfying the constraints. And the semantic
value of t0 = t1 is 1 if and only if q0 = q1 = 0, namely, 1 − q0 − q1.

The following proposition shows that we can replace the semantics values of
atomic propositions by 0 or 1.



192 B.-Y. Wang

Proposition 4. Let l be an atomic proposition in linear modular arithmetic.
Then, (1) there is a valuation ρ such that [[l]]ρ = true ⇔ there is a valuation η
such that η satisfies α and η(p) = 1 where (p, α) = λ(l); (2) there is a valuation
ρ such that [[l]]ρ = false ⇔ there is a valuation η such that η satisfies α and
η(p) = 0 where (p, α) = λ(l).

Let p0 and p1 be the semantic values of the subformulae f0 and f1 respectively.
Consider the constraints p0 + p1 ≥ p and p0 + p1 ≤ 2p in the translation of their
disjunction (Figure 5). We would like the semantic value p of their disjunction
to be 0 when both p0 and p1 are 0. It is achieved by the constraint p0 + p1 ≥ p.
On the other hand, the constraint p0 + p1 ≤ 2p is added to enforce p = 1 when
any of the disjuncts is true.

φ(l)
	
= λ(l)

φ(¬f)
	
=

(
p,

α
1 − p′ = p

)
where (p′, α) = φ(f)

φ(f0 ∧ f1)
	
=

⎛⎜⎜⎜⎜⎝p,

α0

α1

0 ≤ p ≤ 1
p0 + p1 ≥ 2p
p0 + p1 ≤ 1 + p

⎞⎟⎟⎟⎟⎠
where

(p0, α0) = φ(f0)
(p1, α1) = φ(f1)

φ(f0 ∨ f1)
	
=

⎛⎜⎜⎜⎜⎝p,

α0

α1

0 ≤ p ≤ 1
p0 + p1 ≥ p
p0 + p1 ≤ 2p

⎞⎟⎟⎟⎟⎠
where

(p0, α0) = φ(f0)
(p1, α1) = φ(f1)

Fig. 5. Linear Constraints for Formulae

Note that we do not rearrange the input formula to canonical forms. Since
the rearrangement could increase the length of the formula significantly, it would
not be efficient. In order to have linear number of constraints and variables, it
is crucial not to transform the input formula to canonical forms.

Given a formula in linear modular arithmetic, there is a set of constraints such
that the semantic value of the formula is denoted by the designated variable in
our construction. Our progress is summarized in the following proposition.

Proposition 5. Let f be a formula in linear modular arithmetic. Then, (1)
there is a valuation ρ such that [[f ]]ρ = true ⇔ there is a valuation η such that η
satisfies α and η(p) = 1 where (p, α) = φ(f); and (2) there is a valuation ρ such
that [[f ]]ρ = false ⇔ there is a valuation η such that η satisfies α and η(p) = 0
where (p, α) = φ(f).

To solve the satisfiability problem of a linear modular arithmetic formula f , we
first obtain an integer variable p and a set of constraints α from the translation
φ(f). It is not difficult to see that the satisfiability problem can be solved by
optimizing the objective function p with respect to α.

Our translation is constructed recursively. A recursive call is invoked for each
subformula in the input formula. Further, a constant number of constraints and
variables are added in each recursion. Since the number of subformulae is lin-
ear in the length of the input formula, the corresponding integer programming



On the Satisfiability of Modular Arithmetic Formulae 193

problem has the number of variables and constraints linear in the length of the
input formula. The following theorem summarizes our result on the satisfiability
problem for linear modular arithmetic formulae.

Theorem 1. Given a formula f in linear modular arithmetic, the satisfiability
problem can be solved by an instance of the integer programming problem with
the number of constraints and variables linear in |f |.

5 Modular Arithmetic

The syntax and semantics of modular arithmetic extend those of linear modular
arithmetic by multiplication, t · t′, and modulo operation, t% t′, of terms (Fig-
ure 6). Similar to linear terms, the semantic value of term multiplication uses the
signed modulo to reflect the semantics of conventional programming languages.
On the other hand, it is unnecessary to compute the signed representation for
modulo operations of terms since overflow could not occur.

Term t
	
= . . . | t · t′ | t % t′

[[t · t′]]ρ 	
= [[t]]ρ[[t′]]ρ smod m

[[t % t′]]ρ
	
= [[t]]ρ mod [[t′]]ρ

Fig. 6. Syntax and Semantics of Modular Arithmetic over Zm

The lower bound of the satisfiability problem for modular arithmetic formula
follows from Proposition 2. Additionally, the evaluation of any modular arith-
metic formula can also be done in polynomial time, we immediately have the
following theorem.

Theorem 2. The satisfiability problem for modular arithmetic formula is NP-
complete.

6 Solving the Satisfiability Problem for Modular
Arithmetic

Based on the translation of linear modular arithmetic formulae, multiplications
and modulo operations of arbitrary terms can be emulated in integer program-
ming. Of course, one could use the binary representation and encode a multiplier
circuit in linear modular arithmetic. But it would introduce too many tempo-
rary variables. Besides, the mathematical nature of the problem would not be
preserved by Boolean circuits. We hereby propose a more efficient translation.



194 B.-Y. Wang

In order to compute non-linear terms, we will use the binary representations
of operands’ semantic values. But it becomes complicated for negative numbers.
However, it is safe to use the unsigned representation in this context. Observe

ab ≡ (a+m)b ≡ a(b+m) ≡ (a+m)(b+m) (mod m).

We therefore assume the unsigned representation, compute the result, then con-
vert it back to the signed representation for multiplications of terms. Thus, only
the linear constraints of the unsigned multiplication is needed.

χ(p0, p1)
	
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
c,

p1 < m
0 ≤ bi ≤ 1 for 0 ≤ i < ω∑ω−1

i=0 2ibi = p0

0 ≤ ci ≤ 2ip1 for 0 ≤ i < ω
2ip1 − 2im(1 − bi) ≤ ci for 0 ≤ i < ω

2imbi ≥ ci for 0 ≤ i < ω∑ω−1
i=0 ci = c

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 7. Linear Constraints for Unsigned Multiplication

More concretely, suppose 0 ≤ p0 < m. The constraints 0 ≤ b0, . . . , bω−1

≤ 1 and
∑ω−1

i=0 2ibi = p0 compute the unsigned representation of p0 (Figure 7).
Intuitively, the bit string bω−1bω−2 · · · b1b0 is the binary representation for p0.

To compute the partial result ci = 2ibip1, we use the constraints 0 ≤ ci ≤ 2ip1,
2ip1 − 2im(1 − bi) ≤ ci, and 2imbi ≥ ci. If bi = 0, we have 2imbi = 0 ≥ ci ≥ 0.
On the other hand, we have 2ip1 − 2im(1− bi) = 2ip1 ≤ ci ≤ 2ip1 when bi = 1.
Thus, ci = 2ibip1.

Proposition 6. Let p0, p1 be variables. Then, there is a valuation ρ such that 0 ≤
η(p0) = d0, ρ(p1) = d1 < m, and ρ(p0)ρ(p1) = d⇔ there is a valuation η such that
η satisfies α, η(p0) = d0, η(p1) = d1, and η(p) = d where (p, α) = χ(p0, p1).

ζ(p′)
	
=

⎛⎜⎜⎝p,

0 ≤ a ≤ 1
m
2

(a − 1) ≤ p′ ≤ m
2

a − 1
−ma ≤ p + p′ ≤ ma

−m(1 − a) ≤ p − p′ ≤ m(1 − a)

⎞⎟⎟⎠

Fig. 8. Linear Constraints for Absolute Value

For modulo operations of terms, note

a mod b = a mod |b| =
{
|a| mod |b| if a ≥ 0
(−|a|) mod |b| = |b| − (|a| mod |b|) if a < 0.

We can therefore perform the modulo operations of terms by their absolute values.
Consider the constraints 0 ≤ a ≤ 1 and m

2 (a−1) ≤ p′ ≤ m
2 a−1 in Figure 8, where



On the Satisfiability of Modular Arithmetic Formulae 195

p′ has the semantic value of any term. Intuitively, p′ is non-negative if and only if
a = 1. Suppose p′ ≥ 0 and a = 0. We would have −m

2 ≤ p′ ≤ −1, a contradiction.
Conversely, a = 1 implies 0 ≤ p′ ≤ m

2 − 1. Hence p′ ≥ 0.

Proposition 7. Let p′ be a variable. Then, there is a valuation ρ such that
−m ≤ ρ(p′) = d′ ≤ m and |ρ(p′)| = d ⇔ there is a valuation η such that η
satisfies α, η(p′) = d′, and η(p) = d where (p, α) = ζ(p′).

We can now describe the linear constraints for non-linear terms. For multiplication
t0 ·t1, we first get the unsigned representation p′0 and p′1 of the semantic values of t0
and t1 respectively. This is done by the constraints p′0 = p0+ma, 0 ≤ p′0 < m, p′1 =
p1 +mb, and 0 ≤ p′1 < mwhere (p0, α0) = σ(t0) and (p1, α1) = σ(t1) respectively.
Thenwe compute the unsigned resultp′ byχ(p′0, p

′
1). Finally, the result is converted

to the signed representation p by p′ −md = p and −m
2 ≤ p < m

2 (Figure 9).
To compute the semantic value of t0 % t1, we first get the absolute values p′0

and p′1 of the semantic values of t0 and t1 by ζ(p0) and ζ(p1) respectively. The
constraints p′0 − r = p′ and 0 ≤ p′ < p′1 give p′ = |p0| mod |p1| where r is a
multiple of |p1|. Suppose p0 ≥ 0. Then a = 1 by the constraint m

2 (a − 1) ≤
p0 ≤ m

2 a − 1. Hence p = p′ = |p0| mod |p1| by the constraint −2m(1 − a) ≤
p− p′ ≤ m(1− a). On the other hand, p0 < 0 implies a = 0. Hence p = p′1 − p′ =
|p1| − (|p0| mod |p1|) by the constraint −ma ≤ p− p′1 + p′ ≤ 2ma (Figure 9).

Proposition 8. Let t be a non-linear term in modular arithmetic. Then, there
is a valuation ρ such that [[t]]ρ = d ⇔ there is a valuation η such that η satisfies
α and η(p) = d where (p, α) = σ(t).

σ(t0 · t1) 	
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
p,

α0

α1

α2

p′
0 = p0 + ma

0 ≤ p′
0 < m

p′
1 = p1 + mb

0 ≤ p′
1 < m

p′ − md = p
−m

2
≤ p < m

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where

(p0, α0) = σ(t0)
(p1, α1) = σ(t1)
(p′, α2) = χ(p′

0, p
′
1)

σ(t0 % t1)
	
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
p,

α0

α1

α2

α3

α4

p′
0 − r = p′

0 ≤ p′ < p′
1

0 ≤ a ≤ 1
m
2

(a − 1) ≤ p0 ≤ m
2

a − 1
−2m(1 − a) ≤ p − p′ ≤ m(1 − a)
−ma ≤ p − p′

1 + p′ ≤ 2ma

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where

(p0, α0) = σ(t0)
(p1, α1) = σ(t1)
(p′

0, α2) = ζ(p0)
(p′

1, α3) = ζ(p1)
(r, α4) = χ(p′

1, p
′′)

Fig. 9. Linear Constraints for Non-linear Terms



196 B.-Y. Wang

Since the number of constraints and variables in the unsigned multiplication
is O(ω), our translation requires O(ω) constraints and variables for non-linear
terms. In summary, the satisfiability problem for modular arithmetic formula
can be reduced to an instance of integer programming with O(ω|f |) constraints
and variables.

Theorem 3. Given a formula f in modular arithmetic over Zm where m = 2ω,
the satisfiability problem can be solved by an instance of the integer programming
problem with the number of constraints and variables linear in ω|f |.

7 Applications

Our decision procedure may be useful in software verification, especially for
programs in conventional programming languages. For hardware verification,
our reduction may work as a non-linear constraint solver which accepts control
signals from other decision procedures. Particularly, we find that the following
areas may benefit from our algorithm.

Modern proof assistants allow external decision procedures to discharge proof
obligations [13,17,10]. Although modular arithmetic is essential to many number
theoretic and cryptographic algorithms, there is no proof assistant which pro-
vides decision procedures for modular arithmetic to the best of our knowledge.
Since it is rather tedious to deal with modular arithmetic in each integral com-
putation, verifiers simply assume the infinite-precision integer model in software
verification. Subsequently, algorithms certified by proof assistants are not ex-
actly the same as their implementations. Our procedure may help verifiers work
in a more realistic computational model.

If a proof assistant is used to determine the truth values of predicates, ab-
stract models constructed in predicate abstraction [7,20] may be inadequate for
the same reason. In the presence of non-linear modular arithmetic, our integer
programming-based procedure may also be more efficient than, say, SAT-based
technique used in predicate abstraction [5] (see Section 8). The new technique
refines the abstraction and may perform better in such circumstances.

Another possible application of our algorithm is SAT-based model checking
([3], for instance). Our word-level decision procedure may be better for models
with modular arithmetic, but it does not seem to fare well on Boolean satis-
fiability. However, modern integer programming packages support distributed
computation [18]. Our approach gives a parallel SAT solver indirectly.

8 Experimental Results

We have implemented the algorithm to solve the satisfiability problem of modu-
lar arithmetic formulae. Our implementation generates instances of integer pro-
gramming problems in the MPS format [14]. These files are then sent to the
SYMPHONY package [18] as inputs. SYMPHONY is an open-sourced mixed
integer programming solver. In addition to the conventional execution model,



On the Satisfiability of Modular Arithmetic Formulae 197

Uni-process Multi-process
Experiment solution time solution time

(i) x = 53, y = 51 183.97 x = 13, y = 11 1.90
(ii) - > 600 x = y = 0, z = 253 0.39
(iii) - > 600 x = y = 0, z = 3 0.92
(iv) x = y = 0, z = 128 0.84 x = 42, y = 0, z = 6 0.61
(v) x = y = 0, z = 128 1.12 x = y = 0, z = 128 1.60

(a) with Integer Programming Package

Experiment solution time

(i) x = 15, y = 129 0.19
(ii) x = 64, y = 254, z = 255 2.08
(iii) x = y = 0, z = 3 1.53
(iv) x = y = 0, z = 128 1.52
(v) x = y = 0, z = 128 1.52

(b) with SAT Solver

Fig. 10. Experimental Results

the SYMPHONY package also supports Parallel Virtual Machine [9]. We there-
fore conduct our experiments with both the uni- and multi-process versions. The
uni-process version runs on an Intel Pentium 4 2.8GHz Linux 2.6.17 workstation
with 2GB memory. The multi-process version runs on a PC cluster consisting
of fifteen AMD Athlon MP 2000+ Linux 2.4.22 workstations with 1GB mem-
ory. For comparison, we repeat the experiments by the SAT solver zchaff on
the workstation of the same configuration as the uni-process version.3 We are
interested in solving the following problems in Z256 (that is, ω = 8).

i. (x · y = 143) ∧ (x ≤ 143) ∧ (y ≤ 143) ∧ ((x �= 1 ∧ y �= 1))
ii. x · y · z + y · z + 2 · x · z + 2 · z + 3 · x · y + 3 · y + 6 · x+ 6 = 0
iii. x · y · z − y · z − 2 · x · z + 2 · z − 3 · x · y + 3 · y + 6 · x− 6 = 0
iv. ((x �= 0)∨(y �= 0)∨(z �= 0))∧x·y ·z+y ·z+2·x·z+2·z+3·x·y+3·y+6·x= 0
v. ((x �= 0)∨(y �= 0)∨(z �= 0))∧x·y ·z−y ·z−2·x·z+2·z−3·x·y+3·y+6·x= 0

Our first experiment is to factorize 143. Although it is easy to see that 11×14 =
143 is a solution, other solutions may be possible in Z256. Other experiments find
roots to three-variable polynomials of degree three. In Experiment (ii) and (iii),
the polynomials have constant terms. Hence their roots are always non-trivial.
For polynomials without constant terms, trivial solutions can easily be found. We
therefore look for non-trivial solutions in Experiment (iv) and (v).

Figure 10 shows the solution and the user time (in seconds) for each experi-
ment. The multi-process solver does improve the performance significantly. For
3 Unfortunately, we have not conducted all the experiments in the same platform at

the time of writing. Each workstation in our PC cluster is a bit outdated than the
workstation used in the uni-version version.



198 B.-Y. Wang

example, the factorization is done in less than two seconds by the multi-process
solver. But it takes more than three minutes with the uni-process solver. Another
interesting observation is that the solutions are not necessarily obvious. The fac-
torization found by the uni-process solver is somewhat unexpected. Instead of
the unique factorization in Z, we have 53 × 51 ≡ 143 in Z256. Similarly, the
solution found by the multi-process solver in Experiment (iv) is correct only in
Z256. These unexpected solutions are precisely the reasons why bugs may occur.
On the other hand, the SAT solver performs rather stably. Although it may not
always outperform the uni-process integer programming package, it does solve
all problems in seconds. The multi-process integer programming package is able
to finish and outperform the SAT solver in three of the five problems. More
thorough experiments are still needed to compare both techniques.

9 Conclusion

Deciding the satisfiability of modular arithmetic formula is essential in software
verification. We have characterized the complexity of its satisfiability problem
and provided an efficient reduction to the integer programming problem. Our
result shows that it is more efficient to develop specialized algorithms than apply
more general algorithms for Presburger arithmetic. Additionally, the number
of constraints and variables is linear in the length of the input formula in our
reduction. With heuristics like relaxation and rounding, the satisfiability problem
could be solved efficiently by modern integer programming packages in practice.

It would be interesting to compare our algorithm with other techniques [4,21,1],
especially those with the binary encoding scheme. Since the satisfiability problem
ofmodular arithmetic formula is NP-complete, one could also build a decision pro-
cedure based on SAT solvers. But the binary encoding would eliminate the math-
ematical nature of the problem. Although our preliminary experimental results
suggest that our approach may be useful in finding solutions to multi-variant low-
degree polynomials, it is unclear which approach will prevail in practice.

There are still a few missing pieces in our construction. Our translation of
the unsigned multiplication is not satisfactory. It would be more useful if our
construction used only O(lgω) variables and constraints. Additionally, the quo-
tient and remainder operations of arbitrary terms are not allowed. Although it is
possible to encode them in modular arithmetic formula, an efficient construction
similar to non-linear terms is certainly welcome.

Acknowledgement. The author would like to thank anonymous referees for
their constructive comments in improving the paper.

References

1. Babić, D., Musuvathi, M.: Modular arithmetic decision procedure. Technical Re-
port MSR-TR-2005-114, Microsoft Research (2005)

2. Barrett, C., Berezin, S.: CVC Lite: A new implementation of the cooperating
validity checker. In Alur, R., Peled, D.A., eds.: Computer Aided Verification.
Volume 3114 of LNCS., Springer-Verlag (2004) 515–518



On the Satisfiability of Modular Arithmetic Formulae 199

3. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking
using SAT procedures instead of BDDs. In: Design Automation Conference, ACM
Press (1999) 317–320

4. Boigelot, B., Wolper, P.: Representing arithmetic constraints with finite automata:
An overview. In Stuckey, P.J., ed.: International Conference on Logic Programming.
Volume 2401 of LNCS., Springer-Verlag (2002) 1–19

5. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of ANSI-
C programs using SAT. Formal Methods in System Design 25(2–3) (2004) 105–127

6. Cooper, D.C.: Theorem proving in arithmetic without multiplication. Machine
Intelligence 7 (1972)

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: ACM
Symposium on Principles of Programming Languages. (1977) 238–252

8. Enderton, H.: A Mathematical Introduction to Logic. Academic Press (1972)
9. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.: PVM:

Parallel Virtual Machine – A Users’ Guide and Tutorial for Networked Parallel
Computing. The MIT Press (1994)

10. Huet, G., Kahn, G., Paulin-Mohring: The Coq proof assistant: a tutorial: version
6.1. Technical Report 204, Institut National de Recherche en Informatique et en
Automatique (1997)

11. Hungerford, T.W.: Algebra. Volume 73 of Graduate Texts in Mathematics.
Springer-Verlag (1980)

12. Knuth, D.E.: The Art of Computer Programming. Volume II, Seminumerical Al-
gorithms. Addison-Wesley (1997)

13. Melham, T.F.: Introduction to the HOL theorem prover. University of Cambridge,
Computer Laboratory. (1990)

14. Murtagh, B.A.: Advanced Linear Programming: Computation and Practice. Mc-
GrawHill (1981)

15. Oppen, D.C.: Elementary bounds for presburger arithmetic. In: ACM Symposium
on Theory of Computing, ACM (1973) 34–37

16. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
17. Paulson, L.C., Nipkow, T.: Isabelle tutorial and user’s manual. Technical Report

TR-189, Computer Laboratory, University of Cambridge (1990)
18. Ralphs, T.K., Guzelsoy, M.: The SYMPHONY callable library for mixed integer

programming. In: INFORMS Computing Society. (2005)
19. Reddy, C.R., Loveland, D.W.: Presburger arithmetic with bounded quantifier al-

ternation. In: ACM Symposium on Theory of Computing, ACM (1978) 320–325
20. Sáıdi, H., Graf, S.: Construction of abstract state graphs with PVS. In Grumberg,

ed.: Computer Aided Verification. Volume 1254 of LNCS., Springer Verlag (1997)
72–83

21. Seshia, S.A., Bryant, R.E.: Deciding quantifier-free presburger formulas using pa-
rameterized solution bounds. In: Logic in Computer Science, IEEE Computer
Society (2004) 100–109

22. Stinson, D.R.: Cryptography: Theory and Practice. CRC Press, Inc (1995)
23. Wang, B.Y.: On the satisfiability of modular arithmetic formula. Technical

Report TR-IIS-06-001, Institute of Information Science, Academia Sinica (2006)
http://www.iis.sinica.edu.tw/LIB/TechReport/tr2006/tr06.html.



Selective Approaches for Solving Weak Games

Malte Helmert1, Robert Mattmüller1, and Sven Schewe2

1 Albert-Ludwigs-Universität Freiburg
79110 Freiburg, Germany

{helmert,mattmuel}@informatik.uni-freiburg.de
2 Universität des Saarlandes
66123 Saarbrücken, Germany

schewe@cs.uni-sb.de

Abstract. Model-checking alternating-time properties has recently at-
tracted much interest in the verification of distributed protocols. While
checking the validity of a specification in alternating-time temporal logic
(ATL) against an explicit model is cheap (linear in the size of the formula
and the model), the problem becomes EXPTIME-hard when symbolic
models are considered. Practical ATL model-checking therefore often
consumes too much computation time to be tractable.

In this paper, we describe a novel approach for ATL model-checking,
which constructs an explicit weak model-checking game on-the-fly. This
game is then evaluated using heuristic techniques inspired by efficient
evaluation algorithms for and/or-trees.

To show the feasibility of our approach, we compare its performance
to the ATL model-checking system MOCHA on some practical examples.
Using very limited heuristic guidance, we achieve a significant speedup
on these benchmarks.

1 Introduction

Alternating-time temporal logics like ATL [2] have recently attracted much
interest in the multi-agent community [15,16,14,17]. A typical application of
alternating-time model-checking is the verification of distributed protocols. In
the design of such protocols, we are often interested in the strategic abilities of
certain agents (cf. [15,16,3]). For example, in a contract-signing protocol, it is
important to ensure that while Alice and Bob can cooperate to sign a contract,
Alice is never able to obtain Bob’s signature unless Bob can also obtain Alice’s
signature, and vice versa. Such properties can be expressed in ATL, which ex-
tends the branching-time temporal logic CTL [7] with modalities that quantify
over the strategic choices of groups of agents.

As in the case of CTL, the model-checking problem for ATL reduces to solv-
ing weak games [2]. Weak games are a particular simple version of parity games,
where all verticeswithin a strongly connected component have the same color.ATL
model-checking therefore seems to be simple: Given an alternating transition sys-
tem A (i. e., an explicit model for ATL) and a specification ϕ, the size of the weak
model-checking game is in O(|A| · |ϕ|), where |A| denotes the size of A and |ϕ| the

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 200–214, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Selective Approaches for Solving Weak Games 201

number of subformulas of ϕ. The resulting weak game can be solved in time lin-
ear in its size. It thus seems, at first glance, that ATL inherits the model-checking
complexity from CTL. Indeed, MOCHA [3], the only available tool for ATL model-
checking, generalizes a symbolic backward approach for CTL model-checking [5].

In light of these similarities, it might appear somewhat surprising that the
performance of ATL model checking does not seem to meet the high standards set
by CTL model checking. Kremer and Raskin, for example, observed exceptionally
large time consumption (and, partly, abortions) when model checking simple
properties of small protocols [15]. One possible explanation for this discrepancy
is that, despite the identical model-checking complexity of O(|A|·|ϕ|) for explicit
models, the model-checking complexities of CTL and ATL do not coincide for
symbolic models: while symbolic model-checking is PSPACE-complete for CTL,
it becomes EXPTIME-complete for ATL, as recently shown by van der Hoek
et al. [18]. In practice, model-checkers use succinct symbolic representations for
models, such as RML for MOCHA [3] or PROMELA for SPIN [12], so that the
symbolic model checking complexity is of paramount importance.

In addition to the increased complexity of ATL model-checking, there is a
significant structural difference between model-checking ATL and CTL formu-
las. When we model-check a CTL formula, it is not unusual that the complete
(reachable) state space needs to be explored (consider, e.g., a proof that ϕ holds
during all computations, AGϕ). For many ATL formulas, there is no such neces-
sity of complete exploration: to prove that a group A of agents can enforce that
ϕ globally holds (〈〈A〉〉Gϕ), we only need to consider a fragment of the states,
defined by the strategies followed by these agents.

We therefore propose an approach that constructs the explicit model-checking
game from a symbolic representation of the model-checking problem on-the-fly.
Different from a forward-backward approach, we do not start by constructing the
complete set of forward reachable states. Instead, we adopt heuristic best-first
search methods for solving reachability games in and/or-trees to weak games,
and finish a model-checking run as soon as we can prove that the considered set
of states is sufficiently large for one of the players to have a winning strategy.
Our adoption takes into account that, unlike and/or-trees, weak games can not
only be won by a player by reaching winning states, but also by forcing the game
to stay in vertices with a winning color. It turns out that selectively exploring
the space of game vertices is a powerful method for obtaining small proof graphs
and fast evaluation results.
Organization of the Paper. The following section introduces weak games,
followed by Section 3 describing our approach for their solution. We then discuss
the application of these techniques to ATL model-checking in Section 4. We close
with a presentation (Section 5) and discussion (Section 6) of our results.

2 Weak Games

A weak game is a tuple G = 〈Veven , Vodd , E, v0, α〉, where
– V = Veven ) Vodd is a finite set of vertices, partitioned into Veven and Vodd ,

with a designated initial vertex v0 ∈ V .



202 M. Helmert, R. Mattmüller, and S. Schewe

– E ⊆ V × V is a set of edges.
– α : V → N is a coloring function, satisfying (v, w) ∈ E ⇒ α(v) ≤ α(w).

Each vertex v ∈ V has outdegree at least 1 in the directed graph (V,E). For
a vertex v ∈ Veven we say that even is the owner of v (owner(v) = even) and
for a vertex v ∈ Vodd we say that odd is the owner of v (owner (v) = odd). We
say that the level of v is even (level (v) = even) iff α(v) is even and that that
the level of v is odd (level(v) = odd) iff α(v) is odd. For each natural number
n ∈ α(V ) in the mapping of α, the vertices α−1(n) colored with n are called a
level.

The winning condition for weak games is defined in terms of runs. A run of a
game is an infinite sequence v0v1v2 . . . in V ω such that (vi, vi+1) ∈ E is an edge
if vi+1 is a successor of vi. A run is winning for player even (odd) iff the highest
color of vertices occurring infinitely often in the run is even (odd). Due to the
monotonicity condition for vertex colors, almost all vertices in a run have the
same color, and every run is winning either for player even or odd.

Weak games are a special form of parity games, and consequently one player
wins with a memoryless strategy [9]. A (memoryless) strategy for player p ∈
{odd , even} is a mapping sp : Vp → V such that (v, v′) ∈ E whenever sp(v) = v′.
A run v0v1v2 . . . is in accordance with a strategy sp iff, for all i ∈ N, vi ∈
Vp ⇒ vi+1 = sp(vi) holds. A strategy sp is winning for player p, iff all runs in
accordance with sp are winning for player p.

A vertex v is winning for player p iff she has a winning strategy in the game
〈Veven , Vodd , E, v, α〉, and a game is won by player p iff the initial vertex is
winning for her. Solving a game means determining by which player it is won.

3 Solving Weak Games

Weak games with n vertices and e edges can be solved in time O(n+e) following
a simple backward approach. For player p ∈ {even, odd} and a given (partial)
labeling of the game vertices as winning for even or winning for odd, define the
p-attractor to be the minimal set Vp such that:

– a vertex v ∈ V with owner (v) = p belongs to Vp if some successor w ∈
succ(v) is labeled as winning for p or belongs to Vp (player p can choose to
play into a vertex winning for p), and

– a vertex v ∈ V with owner (v) �= p belongs to Vp if each successor w ∈ succ(v)
is labeled as winning for p or belongs to Vp (the opponent of p is forced to
play into a vertex winning for p).

The backward algorithm proceeds in phases, iterating until the initial vertex
is labeled as winning for either player. In every phase, it considers the set of
unlabeled vertices Vmax whose color is maximal among all unlabeled vertices
and labels the vertices in Vmax as winning for p, where p is even (odd) if the
color of the vertices in V ′ is even (odd). It then computes the p-attractor Vp

and labels the vertices in Vp as winning for p. The algorithm can easily be



Selective Approaches for Solving Weak Games 203

implemented in such a way that every vertex and edge is considered only once
(cf. [8,4]), proving the O(n + e) complexity bound.

A disadvantage of this approach is that usually almost all vertices of the
game need to be considered. On the other hand, only a small fragment of the
state space is forward reachable in most model-checking games. An obvious
improvement in such situations is to construct all forward reachable states in a
first phase, and then solve the smaller resulting game using a standard backward
algorithm. The complexity of this approach is linear in the size of the forward
reachable sub-game.

For larger examples, this is still unsatisfactory: knowing a winning strategy
beforehand, it suffices to consider only the fragment of the forward reachable
vertices defined by this strategy. For example, in games corresponding to and/or-
trees of uniform outdegree b ≥ 2 and depth d, exploiting the knowledge of a
winning strategy reduces the number of vertices that need to be considered from
O(bd) to O(bd/2) [13]. In other words, the number of vertices to consider is
reduced to its square root.

This raises the question whether we can identify winning states without the
need of completely exploring the game graph. This is obviously the case for ver-
tices which are won because they belong to the attractor of a previously labeled
set of vertices: If all successors of a vertex are winning for p, or if the vertex is
owned by p and has at least one winning successor, then it is winning. However,
it is also possible to define a winning criterion for vertices which are winning for
a player because they belong to a level of that player and the opponent cannot
force a run to leave this level without playing into a losing vertex. For this pur-
pose, we define a force-set of player p ∈ {even, odd} to be a set F of vertices in
the same level level(F ) = {p} with the following properties:

– each vertex v ∈ F with owner (v) = p has some successor w ∈ succ(v) which
belongs to F or is already labeled as winning for p, and

– each vertex v ∈ F with owner(v) �= p only has successors w ∈ succ(v) which
belong to F or are already labeled as winning for p.

Vertices in a force-set F of player p are winning for player p, following a strategy
which maps vertices in F to vertices in F or to vertices labeled as winning for p.

3.1 A Strategic Forward-Backward Approach

Our algorithm for solving weak games incrementally constructs the game graph.
Different from a forward-backward approach, we do not start by constructing
the complete set of forward reachable states, but rather aim at an early (partial)
evaluation of the constructed fragment.

The central data structure of the algorithm is the partial game graph, which
represents a subgraph of the game graph (V,E) of the weak game to be solved.
At any time during the execution of the algorithm, vertices in the partial game
graph are partitioned into three groups:



204 M. Helmert, R. Mattmüller, and S. Schewe

Procedure ExpandFringeVertex(v: Vertex):
change the status of v from “fringe” to “pending”
for all outgoing edges (v, v′) ∈ E:

add (v, v′) to the partial game graph
if v′ is unconstructed:

add v′ to the fringe
if v has an evaluated successor v′ ∈ succ(v) with winner(v′) = owner(v):

EvaluatePendingVertex(v, owner(v))
else if all successors v′ ∈ succ(v) are evaluated:

EvaluatePendingVertex(v, opponent(owner(v)))

Fig. 1. Expanding a vertex moves it from the fringe to the set of pending vertices and
add its outgoing edges to the graph, creating new fringe vertices where necessary. The
new vertex is immediately evaluated if possible.

– An evaluated vertex v has already been classified as winning for even or
winning for odd, and all outgoing edges (v, w) ∈ E are represented in the
partial game graph.

– A pending vertex v has not yet been classified, but all outgoing edges (v, w) ∈
E are represented in the partial game graph.

– A fringe vertex v has not yet been classified, and none of its outgoing edges
are is represented in the partial game graph.

Evaluated, pending and fringe vertices are called constructed, while vertices not
represented in the partial game graph at all are called unconstructed.

The central primitive operations of the algorithm are expanding a fringe ver-
tex, which transforms a fringe vertex into a pending vertex and adds its uncon-
structed successors to the fringe, and evaluating a pending vertex, which trans-
forms a pending vertex into an evaluated vertex. Both operations can lead to the
evaluation of further vertices. The overall solving procedure repeatedly expands
vertices and identifies force-sets, triggering the ensuing vertex evaluations until
the initial vertex of the game is evaluated. At this point, the algorithm stops.
We now explain these three parts of the algorithm in sequence.

Expanding a Fringe Vertex. When a fringe vertex is expanded, it is removed
from the fringe and becomes a pending vertex. Pending vertices must have their
outgoing edges represented in the partial game graph, so they are added at this
step, which may lead to the creation of new fringe vertices.

It may be the case that the winner for the expanded vertex can be determined
immediately: If the owner of the vertex can play into a winning vertex, she wins
the expanded vertex. Conversely, if the owner of the vertex is forced to play into
a losing vertex for lack of other possibilities, she loses the expanded vertex. In
either situation, procedure EvaluatePendingVertex is called to mark the vertex
as evaluated and propagate the evaluation result upwards in the partial game
graph where possible. The pseudo-code for the expansion procedure is depicted
in Figure 1.



Selective Approaches for Solving Weak Games 205

Procedure EvaluatePendingVertex(v: Vertex, p: Player):
change the status of v from “pending” to “evaluated”
set winner(v) to p
for all pending predecessors v′ ∈ pred(v):

if owner(v′) = p:
EvaluatePendingVertex(v′, p)

else if v′ has no unevaluated successors:
EvaluatePendingVertex(v′, p)

Fig. 2. Whenever a vertex is evaluated as winning for either player, the evaluation
result is propagated up the partial game graph until no further evaluations are possible

Evaluating a Pending Vertex. The evaluation procedure moves a vertex v
from the set of pending vertices to the set of evaluated vertices and stores the
winning player p in winner(v).

Evaluating a vertex may lead to further winning vertices being found: If the
partial game graph contains a pending predecessor v′ of v which is owned by
p, then p can choose to play into v from there and consequently also wins v′.
A pending predecessor v′ owned by the opponent of p is winning for p if all
its successors are winning for p. In the evaluation procedure, it suffices to test
that such a vertex v′ has no pending or fringe successors; it cannot have eval-
uated successors won by the opponent of p, because in that case it would have
been evaluated as winning for the opponent in an earlier call to the evaluation
procedure.

In either case where a winning predecessor v′ is found, the evaluation proce-
dure is called recursively to mark v′ as winning and propagate the evaluation
result. The pseudo-code for the evaluation procedure is depicted in Figure 2.

Overall Solution Algorithm. To solve a weak game, the overall solution
algorithm starts with an empty game graph, which only contains the initial
vertex as a fringe vertex.

It then proceeds iteratively by locating force-sets of pending vertices and
evaluating the contained vertices as won by their owner, or if no force-set can
be found, expanding a fringe vertex which can be selected with an arbitrary
selection strategy. This process is repeated until the initial vertex is evaluated
(pseudo-code in Figure 3).

The algorithm is guaranteed to terminate: In each iteration, either a force-set
can be identified or a fringe vertex can be expanded. In particular, if there are
no fringe vertices left, the complete reachable part of the game graph has been
constructed, in which case the set of all pending vertices of maximal color forms
a force-set. (If no pending vertices remain, the initial vertex must already be
evaluated.) It is thus not possible for the overall search procedure to arrive in a
situation where it is impossible to proceed further. It is clear that the algorithm
must terminate after at most 2|V | iterations of the main loop, because each
iteration either moves a vertex from the fringe to the set of pending vertices or
from there to the set of evaluated vertices.



206 M. Helmert, R. Mattmüller, and S. Schewe

Procedure SolveWeakGame():
initialize the sets of evaluated and pending vertices with ∅
initialize the set of fringe vertices with {v0}
while v0 is not evaluated:

if we can locate a force-set F among the set of pending vertices:
for all v ∈ F :

EvaluatePendingVertex(v,level(v))
else:

pick a fringe vertex v
ExpandFringeVertex(v)

Fig. 3. Starting from a partial game graph containing only the initial vertex, expand
vertices and evaluate force-sets until the initial vertex is evaluated

The remaining open question is how the algorithm locates force-sets. A com-
plete – but expensive – method to identify force-sets is to continuously test if
a force-set exists using a strategy similar to that used by the pure backward
algorithm. However, the complexity of this approach is too high, scaling with
the product of the size of the constructed sub-game and the maximal size of a
single level.

Thus, the algorithm pursues the less ambitious approach of only searching for
force-sets that consist of all pending vertices within a given level. Testing this
property can be performed very efficiently, as we will now discuss. Although it
cannot find all force-sets, it already provides good results (cf. Section 5).

Efficient Implementation. We assume that the basic set operations of adding
an element, removing an element and testing membership can be performed in
constant time. Hash tables with randomized hash functions can achieve this in
the expected case. (If we do not want to resort to randomization, we can instead
use AVL trees, in which case a logarithmic factor needs to be added to our
complexity result.)

We also assume that it is possible to enumerate the set of successor vertices
succ(v) of a given vertex v in time linear in |succ(v)|.

Under these assumptions, procedure ExpandFringeVertex only requires time
O(|succ(v)|) for a given vertex v (excluding any time spent within Evaluate-
PendingVertex), and as it is called at most once for each vertex in the partial
game graph, the total time spent in this procedure is O(|E′|), where E′ is the
set of edges in the partial game graph upon termination.

To efficiently determine the pending predecessors of a vertex, we can maintain
sets pred(v) for all constructed vertices, adding each vertex v′ to the predecessor
set of all its successors as it is constructed. (We never need to refer to predecessors
which are not part of the partial game graph.) To efficiently determine whether a
vertex has unevaluated successors, we can keep track of the number of such suc-
cessors for all vertices in the partial game graph. Maintaining the consistency of
these numbers is easy to achieve without increasing the complexity of the search
procedures. Excluding recursive invocations, procedure EvaluatePendingVertex
thus runs in time linear in the number of constructed predecessors of a given



Selective Approaches for Solving Weak Games 207

vertex v, again leading to an overall bound of O(|E′|) because each vertex in the
partial game graph is evaluated at most once.

To efficiently track whether the pending vertices of a given level form a force
set, we maintain a single counter for each level which tracks the number of vio-
lating vertices in this level, and a set of levels for which this counter is currently
0. A pending vertex v violates the force-set condition iff it is owned by the level
owner and has no pending successors in the same level or is owned by the other
player and has a fringe successor or a pending successor with a higher color.
(Note that we can ignore evaluated successors for testing the force-set condition
because the propagation of evaluation results is already adequately taken care of
by procedure EvaluatePendingVertex.) We thus only need to keep track of one
additional number for each constructed vertex, which either counts the number
of pending successors in the same level (for vertices v with owner (v) = level (v)),
or the combined number of fringe successors and pending successors with a
higher color (for other vertices). Again, keeping track of these numbers does not
increase the asymptotical run-time of the algorithm.

If, finally, we also maintain a hash table which maps each color in the partial
game graph to the corresponding set of pending vertices, procedure
SolveWeakGame can be implemented in such a way that the overhead for each
call to EvaluatePendingVertex or ExpandFringeVertex is constant, leading to
the following result.

Theorem 1. Procedure SolveWeakGame is a sound and complete algorithm for
the problem of solving weak games. Its runtime is bounded by O(|E′|), where E′

is the set of edges constructed.

The theorem follows from the previous discussion. In particular, termination
and the run-time bound have already been been established, and for soundness,
observe that vertices are only evaluated if they belong to a force-set or if their
evaluation immediately follows from that of already evaluated successors.

4 Games and ATL

4.1 ATL

Alternating-time temporal logic (ATL) extends the classical computation tree
logic (CTL) with path quantifiers 〈〈A〉〉 and [[A]], expressing that a group A of
agents has a strategy to accomplish a goal (defined by the respective path for-
mula). For a definition of ATL formulas, we first introduce the structures over
which a formula is interpreted. An alternating transition system (ATS) is a tuple

A = 〈Π,Σ,Q, q0, π, δ〉,

consisting of a finite set Π of atomic propositions, a finite set Σ of agents,
a finite set Q of states with a designated initial state q0, a labeling function
π : Q→ 2Π that decorates each state with a subset of the atomic propositions,
and a transition function δ : Q × Σ → 22Q

. Intuitively, δ maps a state q and



208 M. Helmert, R. Mattmüller, and S. Schewe

an agent a to the choices available to a at q. For any state q ∈ Q and set of
agents A ⊆ Σ, we define the set of joint decisions ∆(q, A) of A in state q as
∆(q, A) = {

⋂
a∈AQa |Qa ∈ δ(q, a) for all a ∈ A }. Once all agents a ∈ Σ have

made their choice Qa ∈ δ(q, a) in a state q, the successor state must be uniquely
determined. We thus require δ to be defined such that, in any state q, all joint
decisions in ∆(q,Σ) are singletons.

ATL formulas are interpreted over an alternating transition system A =
〈Π,Σ,Q, q0, π, δ〉. An ATL formula can be formed using the following grammar:

ϕ ::= true | false | p | ¬p |ϕ ∧ ϕ |ϕ ∨ ϕ | 〈〈A〉〉 © ϕ | [[A]] © ϕ |
〈〈A〉〉ϕUϕ | [[A]]ϕUϕ | 〈〈A〉〉ϕWϕ | [[A]]ϕWϕ,

where p ∈ Π is an atomic proposition, and A ⊆ Σ is a set of agents. (Note that
this definition deviates slightly from the original definition of ATL. The variant
we use is strictly more expressive; e. g., in the original definition of ATL 〈〈A〉〉ϕWψ
cannot be expressed.) Intuitively, a formula 〈〈A〉〉τ expresses the capability of
the agents in A to enforce the path formula τ if they always have to make their
choices before the other agents, while [[A]]τ is the weaker requirement expressing
that the agents in A can enforce the path formula τ if they only need to fix their
decisions after their opponents made their choices.

For an ATL formula ϕ with atomic propositions Π and an alternating tran-
sition system A = 〈Π,Σ,Q, q0, π, δ〉, ‖ϕ‖A ⊆ Q denotes the set of states where
ϕ holds. The set ‖ϕ‖A is defined inductively along the structure of ϕ:

– Atomic propositions are interpreted as follows: ‖true‖A = Q, ‖false‖A = ∅,
‖p‖A = { q ∈ Q | p ∈ π(q) } and ‖¬p‖A = { q ∈ Q | p /∈ π(q) }.

– As usual, conjunction and disjunction are interpreted as intersection and
union, respectively: ‖ϕ∧ψ‖A = ‖ϕ‖A∩‖ψ‖A and ‖ϕ∨ψ‖A = ‖ϕ‖A∪‖ψ‖A.

– A state q ∈ Q is in ‖〈〈A〉〉 © ϕ‖A if the agents A can make a joint decision
QA ∈ ∆(q, A) such that, for all joint decisions QΣ�A ∈ ∆(q,Σ � A) of the
other agents, ϕ holds in the successor state (QA ∩QΣ�A ⊆ ‖ϕ‖A).

– A state q ∈ Q is in ‖[[A]]©ϕ‖A if for all joint decisions QΣ�A ∈ ∆(q,Σ�A)
of the other agents, the agents A can make a joint decision QA ∈ ∆(q, A)
such that ϕ holds in the successor state (QA ∩QΣ�A ⊆ ‖ϕ‖A).

– The remaining temporal operators are defined as fixed points.
• ‖〈〈A〉〉ϕUψ‖A (‖〈〈A〉〉ϕWψ‖A) is the smallest (greatest) set X satisfying
‖ψ‖A ⊆ X ⊆ ‖ϕ ∨ ψ‖A with the following property:
For all q ∈ X � ‖ψ‖A, the agents in A can make a joint decision QA ∈
∆(q, A) such that, for all joint decisions QΣ�A ∈ ∆(q,Σ � A) of the
other agents, the successor state is in X (QA ∩QΣ�A ⊆ X), and

• ‖[[A]]ϕUψ‖A (‖[[A]]ϕWψ‖A) is the smallest (greatest) set X satisfying
‖ψ‖A ⊆ X ⊆ ‖ϕ ∨ ψ‖A with the following property:
For all q ∈ X � ‖ψ‖A and all joint decisions QΣ�A ∈ ∆(q,Σ�A) of the
other agents, the agents A can make a joint decision QA ∈ ∆(q, A) such
that the successor state is in X (QA ∩QΣ�A ⊆ X).

A is a model of a specification ϕ iff ϕ holds in the initial state (q0 ∈ ‖ϕ‖A).



Selective Approaches for Solving Weak Games 209

4.2 Weak Games for ATL Model-Checking

Given an ATS A and an ATL formula ϕ, model-checking A naturally reduces to
solving a weak model-checking game Gϕ

A. The vertices of this game essentially
consist of pairs of states of A and subformulas of ϕ.

Constructing the Game Graph. Intuitively, an ATL model-checking game
is concurrently played on the formula tree and on the alternating transition
system. It is technically more convenient to identify an until or wait-for formula
ψ = ((A))ψ′Vψ′′ (((A)) ∈ {〈〈A〉〉, [[A]]},V ∈ {U,W}) with the equivalent formula
ψ′′ ∨ψ′ ∧ ((A)) © ((A))ψ′Vψ′′. The extended set Φ of subformulas of a formula ϕ
thus consists of the following formulas:

– each subformula ψ of ϕ,
– for each subformula ψ = 〈〈A〉〉ψ′Uψ′′ or ψ = 〈〈A〉〉ψ′Wψ′′ of ϕ,

the formulas ψ = 〈〈A〉〉 © ψ and ψ̂ = ψ′ ∧ 〈〈A〉〉 © ψ, and
– for each subformula ψ = [[A]]ψ′Uψ′′ or ψ = [[A]]ψ′Wψ′′ of ϕ,

the formulas ψ = [[A]] © ψ and ψ̂ = ψ′ ∧ [[A]] © ψ.

The formulas ψ, ψ and ψ̂ are called connected (with the intuition that they
form a strongly connected component in a subformula graph), and formulas of
the form 〈〈A〉〉 © ψ and [[A]] © ψ are called temporal.

The model checking game has two types of vertices:

– For each state q ∈ Q of the model A and formula ψ ∈ Φ in the extended
set of subformulas of ϕ, there is a full-move vertex (q, ψ), representing the
situation where q is the current state in the model and formula ψ must be
proved.

– For each temporal formula 〈〈A〉〉©ψ ∈ Φ or [[Σ�A]]©ψ ∈ Φ in the extended
set of subformulas of ϕ, state q ∈ Q and joint decision Q′ ∈ ∆(q, A), there
is a half-move vertex (q, ψ,A,Q′), representing the situation where q is the
current state in the model, formula ψ must be proved, and the agents in A
have already made their next joint decision Q′.

It is computationally more convenient to use a variant of weak games where
some vertices, namely those which refer to literals, have no successors, but are
evaluated immediately. Such vertices appear as sinks in the game graph.

The weak model-checking game has the following transitions:

– There is a transition from (q, ψ) to (q, ψ′) if ψ′ is a direct subformula of
ψ, where until and wait-for formulas ((A))ψVψ′ are again interpreted as dis-
junctions ψ′ ∨ ψ ∧ ((A)) © ((A))ψVψ′.

– There is a transition from (q, ψ) to (q, ψ,A,Q′) if ψ is a temporal formula.
– There is a transition from (q, ψ,A,Q′) to (q′, ψ′) if q′ ∈ Q′ ∩QΣ�A for some

joint decisionQΣ�A ∈ ∆(q,Σ�A) of the agents not in A, and ψ = ((A))©ψ′.



210 M. Helmert, R. Mattmüller, and S. Schewe

Game Construction. To construct a weak game Gϕ
A = 〈Veven , Vodd , E, v0, α〉,

we only need to partition the set V of vertices into two sets Veven and Vodd of ver-
tices, owned by the two players even and odd, find a suitable coloring function,
and define the initial vertex. We assume that the objective of even is to prove
that the model satisfies the formula, while the objective of odd is to disprove this.

The initial vertex is given by the pair (q0, ϕ) consisting of the initial state q0 of
the model and the formula ϕ to be checked. A proper partition of V follows from
the ATL semantics: Vertices (q, ψ) of the model-checking game whose formula
part ψ is a conjunction or a temporal formula of the form [[A]]©ψ′, and vertices
(q, ψ,A,Q′) whose formula part ψ is a temporal formula of the form 〈〈A〉〉 © ψ′

are owned by player odd ; the remaining vertices are owned by player even. A
proper coloring function maps a state (q, 〈〈A〉〉ψUψ′) or (q, [[A]]ψUψ′) to an odd
color, and a state (q, 〈〈A〉〉ψWψ′) or (q, [[A]]ψWψ′) to an even color.

While the algorithm is sound and complete for every proper coloring function,
the chosen coloring function canhave a significant impact on the performance of the
algorithm introduced in Section 3. The “standard” coloring is designed to create a
small number of colors,which depend only on the formula. While this is convenient
in a pure backwards analysis, it makes finding force-sets more difficult. In an op-
timal setting each strongly connected component of the game graph has a color of
its own. While partitioning the game graph into strongly connected components is
not cheaper than a complete evaluation, significant information can often be drawn
from the symbolic representation of an alternating transition system.

A simple analysis of an RML specification suffices to identify counters that are
only counted up (or down) and flags that are only set (or reset). Such situations
naturally arise, e. g., in the definition of protocols. This allows for a simple con-
struction of a ranking function γ on the abstract states, which is preserved by the
concretization. Using such a ranking function results in a significant reduction
of the size of levels, and therefore accelerates model-checking (cf. Section 5).

To achieve small levels, we create a coloring function which assigns the same
color to two states (q, ψ) and (q′, ψ′) if and only if q and q′ have the same rank
and ψ and ψ′ are equivalent or connected. In the protocol benchmark discussed
in Section 5, this increases the number of colors from 2 colors in the standard
coloring to about 5.3 · 1033 colors, leaving the single levels in an accessible size.

5 Benchmarks and Results

To evaluate our algorithm, we implemented it in Java and tested it on some
ATL properties of the Garay and MacKenzie multi-party contract signing pro-
tocol [10], using the RML formalization by Chadha et al. [6].

In particular, we considered the case of five agents (four contract-signing par-
ties P1, . . . , P4 and a trusted third party T ) and the property of protocol fairness:
A protocol is fair for an agent Pi following the protocol iff, whenever some other
agent Pj obtains the signature of Pi, then Pi can obtain the signatures of the
other agents, even if they are all dishonest (i. e., do not follow the protocol) and
do not cooperate. In ATL, we can express this property as



Selective Approaches for Solving Weak Games 211

AG
((∨

j �=i

has sig(Pj , Pi)
)
→ 〈〈Pi〉〉F

∧
j �=i

has sig(Pi, Pj)
)

(The common G and F modalities can be expressed in ATL using W and U in
the usual way [5]. The A path quantifier is synonymous with 〈〈∅〉〉.) Because the
Garay and MacKenzie protocol is asymmetric, protocol fairness must be proved
or disproved separately for each of the four contract-signing parties Pi.

As we observed in the introduction, selective explicit-state methods are only
useful when checking properties which can be verified or refuted without con-
sidering the complete reachable state space. Given that the protocol fairness
property is of the form AGϕ, verifying it requires constructing all reachable
states. However, as originally shown by Chadha et al. [6], fairness is violated in
the Garay and MacKenzie protocol for the case of i �= 4, and thus in this case the
property can serve as a useful benchmark for selective methods. The protocol is
fair for agent P4, so selective algorithms do not work well in this case.

We have model-checked the protocol fairness property for each agent using
three different approaches:

– First, we used the MOCHA model checker, which solves the weak game
corresponding to an ATL formula by a symbolic backward computation.

– Second, we implemented a standard explicit-state forward-searching evalua-
tion strategy, exploring the game graph in depth-first order.

– Third, we considered our strategic forward-backward approach. As a selection
strategy for choosing the next fringe vertex to expand, we employed a variant
of the proof-number search algorithm used for evaluating and/or-trees [1].

A symbolic (non-strategic) forward-backward algorithm would have been a
good fourth candidate approach, but it appears that no efficient implementation
of such an algorithm is available. To at least compute a lower bound on the
performance of such an algorithm, we performed a complete symbolic forward
exploration – the first stage of a symbolic forward-backward algorithm – of the
game graph using MOCHA’s symbolic forward exploration capabilities (which
are distinct from its ATL model-checking algorithm and can only be used to
model-check invariants).

To initialize proof numbers for fringe vertices within our strategic forward-
backward approach, we used the FF heuristic [11] with a problem-dependent
goal formula, i. e., for each of the three properties we specified a collection of
literals that we considered to be likely to be satisfied near “interesting” vertices
in the game graph, which biases the exploration towards such vertices. Using
such problem-dependent heuristics of course means that this is merely a semi-
automatic approach: while the algorithm is sound and complete for all possible
heuristics, a reasonable choice of heuristics is important for good performance.
Using hand-tuned heuristic information is sufficient for the purposes of this in-
vestigation, in which our objective is to demonstrate the usefulness of selective
game-solving approaches in general rather than the development of game-solving
heuristics; however, the latter certainly remains as an important open problem.



212 M. Helmert, R. Mattmüller, and S. Schewe

MOCHA forward SFB strategic
fairness for P1 21:15:07 failure > 04:19:52 00:01:22
fairness for P2 failure failure > 02:41:45 00:01:46
fairness for P3 10:57:07 failure > 06:25:33 00:01:26
fairness for P4 00:39:14 failure > 10:44:13 failure

Fig. 4. Run-time results for the protocol-fairness property. The four algorithms con-
sidered are MOCHA, explicit forward search, symbolic forward-backward search (SFB;
only forward exploration counted), and strategic forward-backward search. Time is
measured in hours, minutes and seconds (hh:mm:ss).

evaluated pending fringe reachable
fairness for P1 130 934 37036 2.4 · 1014

fairness for P2 298 2098 51814 7.6 · 1015

fairness for P3 628 4765 31952 7.4 · 1017

Fig. 5. Numbers of evaluated, pending and fringe vertices generated by the strategic
forward-backward algorithm. The total number of forward-reachable vertices is shown
for comparison.

The results of our experiment are shown in Figure 4.1 We clearly see that
selectivity pays off on this suite of benchmarks. Simple-minded explicit search
methods like standard forward search cannot cope with this state space at all,
and exhaustive symbolic methods require many hours of solution time where
the selective approach terminates within a few minutes. In particular, it dra-
matically improves on a symbolic forward-backward exploration, which would
require several hours for computing the set of forward reachable states alone. All
this only applies to agents P1, P2 and P3, however. For agent P4, the complete
reachable state space must be considered to prove protocol fairness, and there
is no hope of achieving this with an explicit-state method.

Compared to traditional approaches, one advantage of our algorithm is that
proofs (or refutations) of the checkedproperties are generated as part of the search.
In particular, the subgraph of the partial game graph induced by the set of evalu-
ated vertices forms an explicit proof of the property. In comparison, MOCHA only
reports whether a given ATL formula holds or does not hold in a model, without
providing further information. Figure 5 offers some statistics on the size of the ex-
plored state spaces, showing that the generated proofs are indeed very selective.

6 Discussion

We have presented a new algorithm for solving weak games, such as those aris-
ing from ATL model-checking problems, which is based on the idea of selectively
generating only those parts of the game graph which are relevant to proving

1 Experiments were conducted on a standard Linux PC with a 3GHz CPU and using
a heap limit of 512 MB. All failures are due to running out of memory.



Selective Approaches for Solving Weak Games 213

or disproving the hypothesized property. Using a combination of forward explo-
ration to extend a partially constructed game graph and backward propagation
of evaluation results, including the efficient detection of force-sets for situations
where a player can force a run of the game to stay in a given level of the game
graph indefinitely, the algorithm can solve a weak game in time which is linear
in the size of the subgame considered, rather than linear in the size of the game.
In the best case, this can lead to dramatic speedups compared to exhaustive
approaches. In the worst case, the algorithm is still asymptotically optimal.

One significant advantage of the selective search method we present is that,
unlike traditional methods for solving weak games symbolically, it generates a
verifiable proof of the model-checking result. What is more, due to the selective
nature of the search, we can expect such proofs to be comparatively small, be-
cause they are explicitly represented within the algorithm as subgraphs of the
partial game graph that serves as a main data structure.

Of course, the flip side of this advantage is that selective search techniques
only make sense for games where short proofs exist, i. e., where one player can
force the game to remain in a comparatively small fragment of the overall game
graph. If the complete game graph needs to be explored, there is little point
in using a selective method, and one can expect better performance from a
systematic symbolic algorithm.

Future Work. In the current form, the algorithm only finds force-sets that
cover all pending vertices within a level. One might consider strengthening this
approach by initiating an exhaustive evaluation after each expansion, but this is
too expensive to be pursued. An interesting alternative is to use approximative
methods based on the weak or strong connectivity structure of the pending
vertices in a level. Both structures provide useful information since finding a
force-set within a strongly or weakly connected component coincides with finding
a force-set in a level.

Weak connectedness, in particular, can be efficiently tracked using classi-
cal union-find data structures. Thus, distinguishing weakly connected compo-
nents within a level promises a good trade-off between (expensive) continuous
re-evaluations and the coarse approximation of the basic method. Using this
method, worst-case runtime is still quasi-linear in the number |E′| of edges con-
structed by the algorithm, while the constructed subgraph is potentially smaller.

Another method to speed up the detection of force-sets is to use thresholding
forward-backward search, where a complete backward evaluation is initiated after
c, c2, c3, . . . steps (for some constant c > 1). On a finer granularity, one could
initiate the evaluation of a level after c, c2, c3, . . . vertices of the level have been
constructed. One strength of such a thresholding approach is that it retains the
asymptotically optimal behavior of the basic algorithm.

Acknowledgement

This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and



214 M. Helmert, R. Mattmüller, and S. Schewe

Analysis of Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for
more information.

References

1. L. V. Allis, M. van der Meulen, and H. J. van der Herik. Proof-number search.
Artificial Intelligence, 66(1):91–124, 1994.

2. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Journal of the ACM, 49(5):672–713, 2002.

3. R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and
S. Tasiran. Mocha: Modularity in model checking. In Proc. CAV, pages 521–525,
1998.

4. H. R. Andersen. Model checking and boolean graphs. Theor. Comput. Sci.,
126(1):3–30, 1994.

5. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):142–
170, 1992.

6. R. Chadha, S. Kremer, and A. Scedrov. Analysis of multi-party contract signing.
Technical Report 516, Université Libre de Bruxelles, 2004.

7. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skele-
tons using branching time temporal logic. In Proc. IBM Workshop on Logics of
Programs, pages 52–71, 1981.

8. R. Cleaveland and B. Steffen. A linear-time model-checking algorithm for the
alternation-free modal µ-calculus. In Proc. CAV ’91, pages 48–58, 1992.

9. E. A. Emerson and C. S. Jutla. Tree automata, µ-calculus and determinacy. In
Proc. FOCS, pages 368–377, 1991.

10. J. A. Garay and P. D. MacKenzie. Abuse-free multi-party contract signing. In
International Symposium on Distributed Computing, volume 1693 of LNCS, pages
151–165, 1999.

11. J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14:253–302, 2001.

12. G. J. Holzmann. The model checker SPIN. Software Engineering, 23(5):279–295,
1997.

13. D. E. Knuth and R. W. Moore. An analysis of alpha-beta pruning. Artificial
Intelligence, 6(4):293–326, 1975.

14. S. Kremer. Formal Analysis of Optimistic Fair Exchange Protocols. PhD thesis,
Université Libre de Bruxelles, Brussels, Belgium, Dec. 2003.

15. S. Kremer and J.-F. Raskin. A game-based verification of non-repudiation and fair
exchange protocols. Journal of Computer Security, 11(3):399–430, 2003.

16. A. Mahimkar and V. Shmatikov. Game-based analysis of denial-of-service preven-
tion protocols. In IEEE Computer Security Foundations Workshop, pages 287–301,
2005.

17. M. Ryan and P.-Y. Schobbens. Agents and roles: Refinement in alternating-time
temporal logic. In Proc. ATAL, pages 100–114, 2001.

18. W. van der Hoek, A. Lomuscio, and M. Wooldridge. On the complexity of practical
ATL model checking. In Proc. AAMAS, 2006.



Controller Synthesis and Ordinal Automata�

Thierry Cachat

LIAFA/CNRS UMR 7089 & Université Paris 7, France

Abstract. Ordinal automata are used to model physical systems with
Zeno behavior. Using automata and games techniques we solve a con-
trol problem formulated and left open by Demri and Nowak in 2005.
It involves partial observability and a new synchronization between the
controller and the environment.

1 Introduction

Controller Synthesis. The synthesis of controller is today one of the most impor-
tant challenges in computer science. Since [RW89] different formalisms have been
considered to model (un)controllable and (un)observable actions. The problem
is well understood for finite systems admitting infinite behavior (indexed by ω)
[PR89]. Recent developments concern extensions to e.g. infinite state systems or
timed systems [BDMP03].

Transforming control problems into two-player games have provided efficient
solutions [Tho95]. In this setting the controller is modeled by a player and the
environment by her opponent. Determining whether a controller exists falls down
to determine the winner and computing a winning strategy is equivalent to
synthesizing a controller.

Ordinal Automata. A Büchi or Muller automaton, after reading an ω-sequence,
simply accepts or rejects, depending on the states visited infinitely often. In an
ordinal automaton there is a limit transition to a new state, also depending
on the states visited infinitely often and the run goes on from this state. This
allows to model a system preforming ω actions in a finite time and reaching a
limit state.

Systems with Zeno Behaviors. When modeling physical systems we face the
problem that different components can have different time scales. For example
the controller of an anti-lock braking system (ABS) is supposed to react much
quicker than the physical environment. In the opposite one can consider physical
systems admitting Zeno behavior —infinitely many actions in a finite amount
of time— whereas the controller is a computer with constant clock frequency.
A simple example is a bouncing ball. Another one is the physical description of
an electronic circuit which evolves much quicker than its logical description in

� The author acknowledges partial support by the ACI “Sécurité et Informatique”
CORTOS. http://www.lsv.ens-cachan.fr/aci-cortos/

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 215–228, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



216 T. Cachat

VHDL. The speeds are so different that one can consider that the former one
evolves infinitely quicker than the latter one.

Following this idea Demri and Nowak [DN05] have proposed to model physi-
cal systems by ordinal automata, thus admitting ordinal sequences as behavior
(typically of length ωk). They define a logic LTL(ωk) as an extension of LTL
to express properties of such systems. The controller should be a usual automa-
ton whose execution is an ω-sequence. The synchronization between controller
and environment is the following: environment makes ωk−1 steps “alone”, then
controller and environment makes one step together, and so on.

Particularly in the context of timed systems, different techniques have been
proposed to forbid or restrict Zeno behaviors, see introduction of [AFH+03] for
an overview. Our claim is that we want to allow Zeno behavior, to model them
and express properties about them, and finally to control such systems.

Our Contribution. The main contribution of our article is a solution to the
control problem stated and left open in [DN05]. Given a physical system modeled
by an ordinal automaton and a formula ψ of LTL(ωk) we want to determine
whether a controller exists and synthesize one. The technique used is to transform
the control problem into a game problem. Because of the unobservable actions
and also because of the different time scales, the controller can not fully observe
the current state of the system. For that reason we construct a game of imperfect
information. Another difficulty is that the length of the interaction is greater
than ω, but fortunately one can summarize ωk−1 steps done by the environment
“alone”. Several games and automata techniques are used.

Related Work. It is known that games of imperfect information have higher com-
putational complexity [Rei84]. Zeno behavior have already been considered in the
literature. In [BP00] languages of ordinal words accepted by timed automata are
studied. In the framework of hybrid systems [AM98, Bou99] or cellular automata
on continuous time and space [DL05] it is known that allowing Zeno behaviors
gives rise to highly undecidable problems. In [DN05] Demri and Nowak solve
the satisfiability and the model-checking problem for LTL(ωk): given an ordi-
nal automaton reading ωk-sequences and a formula ψ, determine whether every
run of the automaton satisfies ψ. For this they use a “succinct” form of ordinal
automata to have better complexity bounds.

Plan of the Paper. In the next section we present the temporal logic LTL(ωk),
ordinal automata and the control problem. We show a translation to first order
logic. In Section 3 we solve our main problem. We first explain how to translate
it to a game and why the controller has imperfect information about the system.
An example is provided in Section 4.

2 Reasoning About Transfinite Sequences

We assume basic knowledge about ordinals less than ωω, see e.g. [Ros82]. An
ordinal is a well and totally ordered set. It is either 0 or a successor ordinal of the



Controller Synthesis and Ordinal Automata 217

form β+1 or a limit ordinal. The first limit ordinal is denoted ω. For all ordinal
α, β < α ⇔ β ∈ α and α = {β : β < a}. In this article we restrict ourselves
to ordinals less or equal than ωω. By the Cantor Normal Form theorem, for
all α < ωω there exists unique integers p, n1, . . . , np and k1, . . . , kp such that
k1 > k2 > · · · > kp and α = ωk1n1 +ωk2n2 + · · ·+ωkpnp. Recall e.g. that 2ω = ω
and ω + ω2 = ω2. An ordinal α is said to be closed under addition whenever
β, β′ < α implies β + β′ < α. In particular for every α ≤ ωω, α is closed under
addition iff α is equal to ωβ for some β ≤ ω or α = 0. In the following we will
consider a logic whose models are ωk sequences for some k < ω.

2.1 Temporal Logic

We recall the definition of the logic LTL(α) introduced in [DN05]. For every
ordinal α closed under addition, the models of LTL(α) are precisely sequences of
the form σ : α→ 2AP for some countably infinite set AP of atomic propositions.
The formulas of LTL(α) are defined as follows: φ ::= p | ¬φ | φ1 ∧ φ2 |
Xβφ | φ1Uβ′

φ2, where p ∈ AP, β < α and β′ ≤ α. The satisfaction relation is
inductively defined below where σ is a model for LTL(α) and β < α:

– σ, β |= p iff p ∈ σ(β),
– σ, β |= φ1 ∧ φ2 iff σ, β |= φ1 and σ, β |= φ2, σ, β |= ¬φ iff not σ, β |= φ,
– σ, β |= Xβ′

φ iff σ, β + β′ |= φ,
– σ, β |= φ1Uβ′

φ2 iff there is γ < β′ such that σ, β + γ |= φ2 and for every
γ′ < γ, σ, β + γ′ |= φ1.

Closure under addition of α guarantees that β + β′ and β + γ above are strictly
smaller than α. Usual LTL is expressively equivalent to LTL(ω): X is equivalent
to X1 and U is equivalent to Uω, conversely Xn and Un can be expressed in LTL.
Standard abbreviations are also extended: Fβφ

def= *Uβφ and Gβφ
def= ¬Fβ¬φ.

Using Cantor Normal Form it is easy to effectively encode an LTL(ωk) formula
for k < ω. We provide below properties dealing with limit states that can be
easily expressed in LTL(ωk) (k ≥ 2).
“p holds in the states indexed by limit ordinals strictly less than ωk”:

Gωk

(Xωp ∧ · · · ∧ Xωk−1
p).

For 1 ≤ k′ ≤ k − 2, “if p holds infinitely often in states indexed by ordinals of
the form ωk′ × n, n ≥ 1, then q holds in the state indexed by ωk′+1”:

(Gωk′+1
Fωk′+1

Xωk′
p) ⇒ (Xωk′+1

q).

2.2 Translation to First Order Logic

In [DN05] it is proved that LTL(ωω) (hence also LTL(ωk)) can be translated
to the monadic second order theory of 〈ωω, <〉, which gives a non-elementary
decision procedure for satisfiability [BS73]. We improve this result by showing
that LTL(ωω) can be translated even to the first order theory (FO) of 〈ωω, <〉.



218 T. Cachat

Proposition 1. For every LTL(ωω) formula there exists an equivalent first or-
der formula over 〈ωω, <〉.

It is open whether the converse also holds, extending Kamp’s theorem [Kam68].

Proof (sketch). The main point is the definition of a formula +β(x, y) for some
β < ωω such that 〈ωω, <〉 |=v +β(x, y) with v : {x, y} → ωω iff v(y) = v(x) + β.
The relation |=v is the standard satisfaction relation under the valuation v. The
formulas of the form +β(x, y) with β < ωω are inductively defined as:

1. +0(x, y)
def= (x = y) ,

2. +1(x, y)
def= (x < y) ∧ ∀ z (z > x⇒ y ≤ z) ,

3. +ωkn+β(x, y) def= ∃ z +ωk (x, z) ∧ +ωk(n−1)+β(z, y) (n ≥ 1, k ≥ 0) ,
4. +ωk(x, y) def= (x < y) ∧ ∀z(x ≤ z < y ⇒ ∃z′(+ωk−1(z, z′) ∧ z′ < y)) ∧

∀y′[((x < y′) ∧ ∀z(x ≤ z < y′ ⇒ ∃z′(+ωk−1(z, z′) ∧ z′ < y′))) ⇒ y ≤ y′]
(k ≥ 1) .

For k = 1, the latter formula is written in the following way. The ordinal y such
that +ω(x, y) holds is greater than x, greater than every finite step successors
of x, and y is the least ordinal satisfying this two conditions. By induction one
can show that y > x + n for every n < ω. Analogously for k > 1, the formula
implies that y > x+ ωk−1n for every n < ω. ��

The first order theory of 〈ωω,+〉 has a non-elementary decision procedure
[Mau96]. We are not aware of the exact complexity of the more restricted first or-
der theory of 〈ωω, <〉. We use ordinal automata, both to model physical systems
and to represent specifications.

2.3 Ordinal Automata

Since Büchi in the 1960s and Choueka in the 1970s, different forms of ordinal
automata have been proposed. A particular class of ordinal automata is well
suited to solve our problem. See [Bed98] for the equivalence between different
definitions. Ordinal automata has two kinds of transitions: usual one-step tran-
sition for successor ordinals and limit transitions for limit ordinals where the
state reached is determined by the set of states visited again and again “before”
that ordinal. An ordinal automaton is a tuple (Q,Σ, δ, E, I, F ) where:

– Q is a finite set of states,
– Σ is a finite alphabet,
– δ ⊆ Q×Σ ×Q is a one-step transition relation,
– E ⊆ 2Q ×Q is a limit transition relation,
– I ⊆ Q is a finite set of initial states,
– F ⊆ Q is a finite set of final states.

We write q a−→ q′ whenever 〈q, a, q′〉 ∈ δ and P −→ q whenever 〈P, q〉 ∈ E.
A path of length α + 1 is an (α + 1)-sequence r : α + 1 → Q labeled by an



Controller Synthesis and Ordinal Automata 219

α-sequence σ : α → Σ such that for every β ∈ α, r(β)
σ(β)−−→ r(β + 1) and for

every limit ordinal β ∈ α + 1, there is P −→ r(β) ∈ E s.t. P = cofinal(β, r)
with cofinal(β, r) def= {q ∈ Q : for every γ ∈ β, there is γ′ such that γ < γ′ <
β and r(γ′) = q}. The set cofinal(β, r) is the set of states visited again and again
arbitrary close to β (hence infinitely often).
If moreover r(0) ∈ I, it is a run. If moreover r(α) ∈ F , it is accepting.

Example 1. We present here an example of ordinal automa-
ton A with limit transitions {0} −→ 1 and {0, 1} −→ 2.
One can show that L(A) contains only ω2-sequences and
L(A) = (aω · b)ω. 0 1

2

b

a

For all k < ω there exists an ordinal automaton accepting exactly the sequences
of length ωk, using k+ 1 states. But if an ordinal automaton accepts a sequence
of length ωω, then it must also accept longer sequences. That is a second reason,
beside closure under addition, why we restrict ourselves to ordinals less than ωω.

Level. An ordinal automaton A = 〈Q,Σ, δ, E, I, F 〉 is of level k ≥ 1 iff there is
a map l : Q→ {0, . . . , k} such that:

– for every q ∈ F , l(q) = k;
– q

a−→ q′ ∈ δ implies l(q′) = 0 and l(q) < k;
– P −→ q ∈ E implies l(q) ≥ 1, for every q′ ∈ P , l(q′) < l(q), and there is
q′ ∈ P such that l(q′) = l(q) − 1.

The idea is that a state of level i is reached at positions β + ωi.j, j < ω.
Since [VW86], different techniques for translating logic formulas to automata
are widely used.

Proposition 2 ([DN05]). For all LTL(ωk) formula, there exists an equivalent
ordinal automaton.

This result can be obtain by translating an LTL(ωk) formula into an equiva-
lent first order formula (or even monadic second order) and applying results
from [BS73]. In [DN05] a succinct version of ordinal automata is defined to
improve the complexity of the translation from non-elementary to polynomial
(resp. exponential) space when integers in the formulas are encoded in unary
(resp. binary).

2.4 Control Problem

Before we recall the control problem from [DN05] we need some preliminary
definitions. In order for the physical system to evolve much faster than the
controller we need a particular synchronization between them.

Synchronous Product. We define below the synchronous product of two ordinal
automata having possibly different alphabets. They synchronize only on the
common actions. This is used later to model unobservable actions. Let Σi = 2Acti



220 T. Cachat

for i = 1, 2, a letter from Σi is a set of actions. Given two ordinal automata
Ai = 〈Qi, Σi, δi, Ei, Ii, Fi〉, for i = 1, 2, their synchronous product is defined as
A1 ×A2 = 〈Q,Σ, δ, E, I, F 〉 where:

– Q = Q1 ×Q2, Σ = 2Act1∪Act2 .
– 〈q1, q2〉 a−→ 〈q′1, q′2〉 ∈ δ iff q1

a∩Act1−−−−→ q′1 and q2
a∩Act2−−−−→ q′2.

– P −→ 〈q1, q2〉 ∈ E iff there exists P1 −→ q1 ∈ E1 and P2 −→ q2 ∈ E2 such that
{q : 〈q, q′〉 ∈ P} = P1 and {q′ : 〈q, q′〉 ∈ P} = P2.

– I = I1 × I2, F = F1 × F2.

Lifting. In order to synchronize the system with a controller working on ω-
sequences, we need to transform the controller so that its product with S only
constraints states on positions ωk−1 × n, n < ω. The other positions are not
constrained.

Let A = 〈Q,Σ, δ, E, I, F, l〉 be an automaton of level 1. We define its lifting
liftk(A) at level k ≥ 2 to be the automaton 〈Q′, Σ, δ′, E′, I ′, F ′, l′〉 by:

– Q′ = {0, . . . , k} ×Q, I ′ = {k − 1} × I, F ′ = {k} × F
– l′(〈i, q′〉) = i,
– δ′ = {〈k − 1, q〉 a−→ 〈0, q′〉 : q a−→ q′ ∈ δ}∪

{〈i, q〉 a−→ 〈0, q〉 : 0 ≤ i ≤ k − 2, a ∈ Σ, q �∈ F},
– E′ = {{〈0, q〉, . . . , 〈i−1, q〉} −→ 〈i, q〉 : 1 ≤ i < k, q ∈ Q}∪{{〈0, q1〉, . . . , 〈k−

1, q1〉, . . . , 〈0, qn〉, . . . , 〈k − 1, qn〉} −→ 〈k, q〉 | {q1, . . . qn} −→ q ∈ E}.

Example 2. We present below an example of ordinal automaton A with limit
transition {q0, q1} −→ q2 and the corresponding automaton lift2(A) with limit
transitions {〈0, q0〉} −→ 〈1, q0〉, {〈0, q1〉} −→ 〈1, q1〉, and
{〈0, q0〉, 〈1, q0〉, 〈0, q1〉, 〈1, q1〉, } −→ 〈2, q2〉. We omit useless transitions.

A lift2(A)

q0 q1

q2

a

b
〈1, q0〉 〈0, q1〉

〈1, q1〉 〈0, q0〉

a

b

Σ

Σ

〈2, q2〉

Proposition 3 ([DN05]). For all w ∈ Σωk

, w ∈ L(liftk(A)) iff the word w′ ∈
Σω, defined by w′(i) = w(ωk−1 × i), is in L(A).

A physical system S is modeled as a structure

〈AS ,Actc,Acto,Act〉

where AS is an ordinal automaton of level k with alphabet 2Act where Act is
a finite set of actions, Acto ⊆ Act is the set of observable actions, Actc ⊆ Acto
is the set of controllable actions. The set Act\Actc of uncontrollable actions is



Controller Synthesis and Ordinal Automata 221

denoted by Actnc. A specification of the system S is naturally an LTL(ωk) for-
mula ψ. A controller C for the pair 〈S, ψ〉 is a system whose complete executions
are ω-sequences (typically ordinal automata of level 1) verifying the properties
below.

(obs) Only observable actions are present in the controller. Hence, thanks to the
synchronization mode, in the product system between S and C, unobservable
actions do not change the C-component of the current state. So the alphabet
of C is 2Acto . Moreover for every state q of C there is a transition q ∅−→ q.

(unc) From any state of C, uncontrollable actions can always be executed: ∀q ·
∀a ⊆ Acto \ Actc, there is a transition q b−→ q′ in C such that b ∩ Actnc = a.

(prod) Finally, the system S controlled by C satisfies ψ. Because S and C work
on sequences of different length, the controlled system is in fact equal to
liftk(C) × S. So liftk(C) × S |= ψ should hold. This is equivalent to the
emptiness of the language of the product automaton liftk(C) × S × A¬ψ .

We say that C is a controller for S (without mentioning ψ) if C fulfills the first
two conditions. The notion of final state is not relevant for the controller or
the physical system. To conform with previous definitions we require that every
(ω + 1)-run of the controller and (ωk + 1)-run of S end in a final state.

The control problem for LTL(ωk) is defined as follows:
input: a system S = 〈AS ,Actc,Acto,Act〉 with ordinal automaton AS of level
k and an LTL(ωk) formula ψ over atomic formulas in Act.
output: an ordinal automaton C of level 1 satisfying the conditions (obs), (unc)
and (prod) above if there exists one. Otherwise the answer “no controller exists”.

3 Solving the Control Problem

Given a physical system S modeled by an ordinal automaton AS of level k and an
LTL(ωk)-formula ψ, we are looking for a controller C such that liftk(C) ×AS |=
ψ and C has the expected properties about uncontrollable and unobservable
actions.

From Control Problem to Game. Let B = liftk(C)×AS ×A¬ψ. At a given point
in a run of B the controller is in a state q. From q and for all o ⊆ Acto ∩ Actnc

it must have at least one transition labeled by o ∪ c for some c ⊆ Actc. The
most general form of a controller (possibly with infinite memory) is a function
f : (2Acto)∗ × (2Acto∩Actnc) −→ 2Actc , because the current state of the controller
shall only depend on the past observable actions. This function is exactly a
strategy in a game that we will define. A controller for 〈S, ψ〉 is such that every
run according to f is winning.

Let A = AS × A¬ψ. It is also an ordinal automaton of level k : A =
〈Q,Σ, δ, E, I, F, l〉. We are looking for a controller C such that the language
of liftk(C) × A is empty. We will consider a game where the environment tries
to build an accepting run of A, whereas the controller tries to avoid that, using
the controlled actions. In fact the environment plays both for the system S and
for the automaton of ¬ψ, as we will see later.



222 T. Cachat

3.1 Some Definitions from Game Theory

We recall some definitions about games. See for example [Tho95, GTW02] for an
introduction. An arena, or game graph, is a triple (V0, V1, G), where V = V0∪V1

is the set of vertices and G ⊆ V ×V is the set of edges. The vertices of V0 belongs
to Player 0, those of V1 to Player 1 (V0 ∩ V1 = ∅). A play from v0 ∈ V proceeds
as follows: if v ∈ V0, Player 0 chooses a successor v1 of v0, else Player 1 does.
Again from v1 ∈ Vi, Player i chooses a successor v2 of v1, and so on.

A play π = v0, v1, v2, . . . is a finite or infinite sequence of vertices such that
∀i, (vi, vi+1) ∈ G. If the play is finite, the convention is that the player who
belongs the last vertex loses (he is stuck). If the play is infinite, the winner is
determined by a winning set, Win ⊆ V ω: Player 0 wins an infinite play π if
and only if π ∈ Win. Usually Win is an ω-regular set, defined by a Büchi,
Rabin, parity or Muller automaton. One speaks also of winning condition. A
game (V0, V1, G,Win) is an arena together with a winning condition and possibly
an initial vertex v0 ∈ V .

For a game or an automaton, a Büchi condition is given by a set F ⊆ V of
“final” vertices and π ∈ Win if and only if ∀i > 0, ∃j > i, πi ∈ F . A Muller
condition is given by F ⊆ 2V , F = {F1, · · · , Fn}, and π ∈ Win if and only if
the set of states visited infinitely often along π is equal to one of the Fi’s.

A strategy for Player 0 is a (partial) function f0 : V ∗V0  → V such that
for every prefix v0, v1, v2, · · · vi of a play, where vi ∈ V0, f(v0v1v2 · · · vi) is a
vertex vi+1 such that (vi, vi+1) ∈ G. A play π is played according to a strategy
f0 if ∀i, vi ∈ V0 ⇒ vi+1 = f(v0v1v2 · · · vi). A strategy for Player 1 is defined
analogously. A strategy of Player 0 is winning if every play according to it is
winning for Player 0. An important case in practice is when the strategy is
positional: it depends only on the current vertex, not on the past of the play,
i.e., for all v0, v1, v2, · · · vi, f(v0v1v2 · · · vi) = f(vi).

From [Mar75] we know that every zero-sum two-player turn based game of
complete information with Borel winning condition (including ω-regular and
many more) is determined: from a given initial configuration, one of the players
has a winning strategy.

In the case of incomplete information, the players do not in general know
exactly the current position of the game. They only know that the position
belongs to a certain set of uncertainty. The move chosen by a player (by his
strategy) shall depend on this set, but not on the precise position of the play. As
we will see in some cases one can transform such a game into a game of complete
information, where a vertex represents a set of positions of the original game.

3.2 A Solution with Incomplete Information

Summarizing ωk−1 Steps. From the definition of liftk we see that the controller
can act only every ωk−1 steps of the environment. Our aim is to summarize
ωk−1 steps of the environment in a single step. One can compute a relation
R ⊆ Q× 2Q ×Q such that (q, P, q′) ∈ R iff there exists in A a path from q to
q′ of length ωk−1 + 1 where the set of states seen along this path is exactly P .



Controller Synthesis and Ordinal Automata 223

Note that to determine R, one has to look for cycles in A and states that are
seen infinitely often, but in R itself we only need to know states that are ever
visited. The reason is that (considering cofinal(ωk, r) ) it is not relevant to know
that some state is visited infinitely often between e.g. ωk−13 and ωk−14 and no
more visited after ωk−14. Relation R can be computed in time 2O(|Q|) [Car02].

Game. We introduce a game (G) modeling the interaction between the controller
(Cont) and the environment (Env). It is not possible in general for Cont to know
exactly the current state of the system for several reasons.

– Cont cannot know the ωk−1 steps done by the environment without control.
– As Env act, by choosing v ⊆ Actnc, Cont can only observe the actions that

are in Acto.
– Moreover A is not necessarily deterministic. In particular it is possible that

A¬ψ is not deterministic and Env has to “choose” which subformulas of ¬ψ
he wants to make true.

– Also Cont cannot know exactly the initial state chosen by Env.

In the game G Cont has partial information: a position of the game is a subset
Qi of Q, such that Cont knows that the current state of the system is in Qi, but
does not know which state exactly. The game is defined by the following steps:

1. i = 0 and the initial position is Q0 = I, the set of initial states of A
2. Env chooses oi ⊆ Acto ∩Actnc,
3. Cont chooses ci ⊆ Actc,
4. there is a one step transition to

Q′i = {q′ ∈ Q : ∃u ⊆ Act\Acto, ∃q ∈ Qi, q
ci∪oi∪u−−−−→ q′},

5. there is a jump to Qi+1, summarizing ωk−1 steps

Qi+1 = {q ∈ Q : ∃q′ ∈ Q′i, ∃(q′, P, q) ∈ R},

6. i = i+ 1, continue at point 2.

In this game the knowledge of Cont about the current state is exactly what a
controller can compute in the original problem, based on the observable actions.
A play is essentially a sequence Q0, Q

′
0, Q1, Q

′
1, . . . (a more precise definition

of the game graph is given below) and now it is more intricate to determine
the winner. The sequence Q0, Q

′
0, Q1, Q

′
1, . . . represents the point of view of the

controller, and we call it an abstract play. After the game is played a referee has to
choose inside this abstract play a concrete path (if it exists one) q0, q′0, q1, q′1, . . .
such that qi ∈ Qi, q

′
i ∈ Q′i and compatible to the sequence of ci’s and oi’s. That is

to say one has to choose q0 ∈ Q0, a sequence of elements ui ∈ Act\Acto such that
qi

ci∪oi∪ui−−−−−→ q′i and elements (q′i, Pi, qi) ∈ R. The sequence q0, q′0, P0, q1, q
′
1, P1, . . .

summarizes a run in A and we can determine if it is accepting, in which case
Env wins the play. Note that for the acceptance condition of A it is relevant to
know whether some q ∈ Q appears in infinitely many Pi’s. Therefore the set of



224 T. Cachat

winning plays of Env can be defined by a non deterministic Muller automaton
searching a concrete path, as we will see below, after we make some comments.

The advantage that Env plays “abstractly” the game, and one selects a con-
crete path only afterward is not unfair. Again we want a controller that is secure,
and we worry if the environment could have won. And in the case that the con-
troller does not have a winning strategy, it does not necessarily mean that the
environment has one, but it means that there is a risk that the environment
wins. This is related to the fact that games of incomplete information are not
determined in general: it is possible that no player has a winning strategy.

We now describe the automaton defining the set of winning plays and then
the arena in more details. Note that the sequence Q0, Q

′
0, Q1, Q

′
1, . . . above is

uniquely determined by the sequence o0, c0, o1, c1, . . . of actions chosen by Cont
and Env. The state space of the automaton AWin recognizing the winning plays
for Env is Q×2Q. For all P �= ∅ there is a transition (q, P ) c∪o−→ (q′, ∅) if and only
if ∃u ⊆ Act\Acto, ∃ q c∪o∪u−−−→ q′ in A and there is a transition (q′, ∅) ε−→ (q, P ) if
and only if ∃ (q′, P, q) ∈ R.

The automaton AWin non-deterministically guesses a run in A conforming
to the sequence o0, c0, o1, c1, . . . The acceptance condition of AWin is the same
as those of A: it can be seen as a Muller condition depending on the states
appearing infinitely often in a run. It is given by a set of sets F ⊆ 2Q. The usual
way to handle such a non-deterministic Muller automaton is to transform it into
a non-deterministic Büchi automaton [GTW02, Ch. 1]. The Büchi automaton
BWin simulates AWin and guesses at some point which subset of states are
going to be visited infinitely often and that other states are no longer visited.
The state space of BWin is Q ∪Q×F × (Q ∪ {qf}). It checks in turn that each
state of the chosen acceptance component F ∈ F is visited infinitely often and
it is not necessary to remember the whole (q, P ) ∈ Q× 2Q of AWin. Using e.g.
Safra’s construction [GTW02, Ch. 3] one can transform the Büchi automaton
BWin into a deterministic Rabin automaton CWin. Then the Index Appearance
Record allows to have a deterministic parity automaton DWin [GTW02, p.86]
[Löd98].

For defining the arena, we see that Cont and Env essentially choose the actions
ci and oi:

VEnv = 2Actc , VCont = 2Acto∩Actnc , G = (VEnv × VCont) ∪ (VCont × VEnv)

Now the product of the arena (VEnv, VCont, G) by the parity automaton DWin

gives rise to a parity game on a finite graph. One can determine the winner
and compute a positional winning strategy [GTW02, Ch.6,7] [JPZ06]. Due to
the synchronization between the arena and DWin, the set VEnv can be merged
to a single vertex: it is not needed to remember the move of Cont because its
effect on DWin is sufficient. In fact the successive sets Q0, Q

′
0, Q1, Q

′
1, . . . of the

above description are computed by DWin (thanks to Safra’s construction already
in CWin).



Controller Synthesis and Ordinal Automata 225

Theorem 1. The control problem defined in Section 2.4 can be solved in 2ex-
ptime. Moreover if a controller exists, then there is one with finite memory of
double exponential size.

The complexity is measured in the number |Q| of states of A = AS×A¬ψ. Recall
that the usual control problem is 2exptime-complete [PR89] in the size of the
system and the length of the formula.

See Appendix for the proof. The idea is to prove the following facts. If the game
G is won by Cont then a controller for 〈S, ψ〉 exists, and it can be constructed.
Conversely if a controller for 〈S, ψ〉 exists then G is won by Cont. By construction
a strategy for Cont in G is a finite state automaton with expected properties
about (un)observable and (un)controllable actions. Moreover if that strategy is
winning, it defines a controller for 〈S, ψ〉: every run of liftk(C) × S fulfills ψ.
Conversely, if a controller for 〈S, ψ〉 exists, possibly with infinite memory, then
this controller provides a winning strategy for Cont in G. From the analysis
above we know that if there is a controller for 〈S, ψ〉, then there is one with
finite memory, and one can compute it.

4 Example

We illustrate our construction by a (slightly modified) example from [DN05].
The system is a bouncing ball with three actions lift-up, bounce and stop, where
only lift-up is controllable, and only stop and lift-up are observable. The law of
the ball is described by the following LTL(ω2) formula:

φ = Gω2
(lift-up ⇒ X1(Gωbounce ∧ Xωstop)) .

Informally, φ states that when the ball is lifted-up, it bounces an infinite number
of times in a finite time and then stops. Equivalently the behavior of the system
is modeled by the following ordinal automaton of level 2.

AS {b} −→ s

{0} −→ s

{s, b} −→ f

{s, 0, b} −→ f

{s, 0} −→ f
s

0 b

f

lift-up

stop {stop, lift-up}

stop

bounce

{bounce, lift-up}

The specification is given by the LTL(ω2) formula:

ψ = Gω2
X1bounce

Informally, ψ states that the ball should almost always be bouncing. In the
following picture of the automaton A¬ψ, the star (∗) stands for any subset of
actions of Act.



226 T. Cachat

A¬ψ
{y1} −→ yω

{n1} −→ nω

{y1, yω} −→ yω2

{n1, nω} −→ nω2

yω y1 n1

nωyω2 nω2

∗ {¬bounce, ∗}

∗

{bounce, ∗} ∗

The automaton A = AS ×A¬ψ is then

A

s, yω 0, y1 0, n1 s, nω

b, y1 b, n1

f, yω2 f, nω2

stop

{stop, lift-up}

stop

lift-up

stop

{stop, lift-up}
lift-up

stop

{bounce (lift-up)} {bounce (lift-up)}

We omit here the limit transitions. In the relation R ⊆ Q× 2Q ×Q the relevant
elements are

(〈b, y1〉 , {〈b, y1〉}, 〈s, yω〉) (〈0, y1〉 , {〈0, n1〉}, 〈s, nω〉)
(〈b, n1〉 , {〈b, n1〉}, 〈s, nω〉) (〈0, n1〉 , {〈0, n1〉}, 〈s, nω〉)

(〈0, n1〉 , {〈0, n1〉 , 〈b, n1〉}, 〈s, nω〉)

If we construct the automaton AWin, we see that its (Muller) acceptance con-
dition can be reduced to a Büchi condition. In the next figure the automaton
DWin is simplified, and some unnecessary transitions are omitted.

DWin Game graph

stop

{stop, lift-up} ∗

e1 c1 e2 c2

stop

lift-up ∅

stop

∗

The winning strategy for Cont is: from c1 always go to e1. The corresponding
controller for 〈S, ψ〉 has essentially two loops on its initial state: one labeled
{stop, lift-up} and one labeled {lift-up}.



Controller Synthesis and Ordinal Automata 227

5 Perspectives

It is open whether the upper bounds of Theorem 1 are tight, and whether one
can find LTL-fragments or restrictions on the physical system such that the
complexity of the control problem is lower.

We would like to extend the previous results in two directions: to timed sys-
tems and to other linear orderings. Given a timed automaton, it is possible to
determine whether it has Zeno behaviors. Our motivation is to extend the se-
mantics such that after ω transitions there is a limit transition to a new control
state and the new clock values are the limit of the former ones (see [BP00]).

A Zeno behavior is not necessarily an ordinal sequence, it can be a more
general linear ordering (see [BC05]). One should extend the results to this more
general class of automata.

Acknowledgments. Great thanks to Stéphane Demri and David Nowak for many
interesting discussions, helpful comments on previous versions and for their help.

References

[AFH+03] L. de Alfaro, M. Faëlla, T. A. Henzinger, R. Majumdar, and M. Stoelinga.
The element of surprise in timed games. CONCUR’03, LNCS 2761, pp.
142–156. 2003.

[AM98] E. Asarin and O. Maler. Achilles and the tortoise climbing up the arith-
metical hierarchy. JCSS 57(3), pp. 389–398. 1998.

[BC05] A. Bès and O. Carton. A Kleene theorem for languages of words indexed
by linear orderings. DLT’05, LNCS 3572, pp. 158–167. 2005.

[BDMP03] P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with
partial observability. CAV’03, LNCS 2725, pp. 180–192. 2003.

[Bed98] N. Bedon. Langages reconnaissables de mots indexés par des ordinaux.
PhD thesis, Université de Marne-la-Vallée. 1998.

[Bou99] O. Bournez. Achilles and the tortoise climbing up the hyper-arithmetical
hierarchy. TCS, 210(1):21–71. 1999.

[BP00] B. Bérard and C. Picaronny. Accepting Zeno words: A way toward timed
refinements. Acta Informatica, 37(1):45–81. 2000.

[BS73] J. R. Buchi and D. Siefkes. The monadic second order theory of all count-
able ordinals, Lect. Notes in Math. 328 Springer. 1973.

[Car02] O. Carton. Accessibility in automata on scattered linear orderings.
MFCS’02, LNCS 2420, pp. 155–164. 2002.

[DL05] J. Durand-Lose. Abstract geometrical computation for black hole compu-
tation (extended abstract). In Machines, computations, and universality,
LNCS 3354, pp. 176–187. 2005.

[DN05] S. Demri and D. Nowak. Reasoning about transfinite sequences (extended
abstract). ATVA’05, LNCS 3707, pp. 248–262. 2005.

[GTW02] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and
Infinite Games: A Guide to Current Research, LNCS 2500. 2002.

[GW94] P. Godefroid and P. Wolper. A partial approach to model checking. In-
form. and Comput., 110(2):305–326. 1994.



228 T. Cachat

[JPZ06] M. Jurdzinski, M. Paterson, and U. Zwick. A deterministic subexponential
algorithm for solving parity games. SODA, pp. 117–123, 2006.

[Kam68] H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis,
University of California at Los Angeles, 1968.

[Löd98] C. Löding. Methods for the transformation of omega-automata: Com-
plexity and connection to second order logic. Master’s thesis, Christian-
Albrechts-University of Kiel, 1998.

[Mar75] D. A. Martin. Borel Determinacy. Annals of Math., 102:363–371, 1975.
[Mau96] Françoise Maurin. Exact complexity bounds for ordinal addition. Theor.

Comput. Sci., 165(2):247–273, 1996.
[PR89] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In

POPL’89, pp. 179–190. ACM, 1989.
[Rei84] J. H. Reif. The complexity of two-player games of incomplete information.

J. Comput. System Sci., 29(2):274–301. 1984.
[Ros82] J. G. Rosenstein. Linear orderings. Academic Press Inc. 1982.
[RW89] P. J. Ramadge and W. M. Wonham. The control of discrete event systems.

Proceedings of IEEE 77(1), pp. 81–98. 1989.
[Tho95] W. Thomas. On the synthesis of strategies in infinite games. STACS’95,

LNCS 900, pp. 1–13. 1995.
[VW86] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic

program verification. LICS’86, pp. 332–344. 1986.



Effective Contraction of Timed STGs for
Decomposition Based Timed Circuit Synthesis

Tomohiro Yoneda1 and Chris J. Myers2

1 National Institute of Informatics
yoneda@nii.ac.jp

2 University of Utah
myers@ece.utah.edu

Abstract. This paper presents a way to contract timed STGs effectively for a de-
composition based logic synthesis of timed circuits. In the decomposition based
synthesis method, a sufficient input signal set for each output is first obtained,
and the timed STG is contracted to include only transitions on this input signal
set and the output of interest, from which the circuit for the output is synthesized.
Care is, however, needed for the contraction of timed STGs. A simple contraction
algorithm used for the untimed version can result in the loss of important timing
information, causing it to synthesize non-optimal circuits. On the other hand, ex-
act contraction that preserves the timing information precisely is applied only to
a small class of transitions, which degrades the performance of the decomposi-
tion based synthesis method. This paper proposes a way to contract timed STGs
effectively without losing the optimality of the synthesized circuits, and shows
some experimental results.

1 Introduction

Logic synthesis [1,2,3] from signal transition graphs (STGs) is one of the major ap-
proaches to the automated synthesis of asynchronous circuits. The cost required by this
approach to enumerate the full state space of the given STG has, however, limited the
size of STGs to which it can be successfully applied. The decomposition based syn-
thesis method, which was originally suggested by Chu [4], has recently been used with
sophisticated algorithms to determine relevant input sets (or CSC supports) based on
the complete state coding (CSC) violation trace analysis [5] or the incidence matrix
solver by the integer linear programming technique [6], and is reported to succeed in
synthesizing large asynchronous circuits that the previous logic synthesis methods can-
not handle. The idea is that for each output signal x, it first finds a set of input signals
relevant to x, and then contracts (or projects) the STG to include only transitions on
those signals as well as x, and finally synthesizes a sub-circuit for x from the reduced
STG. Since the relevant input signal set is usually much smaller than the set of all sig-
nals in the given STG, the reduced STG is very small, and so, the cost for logic synthesis
is reduced dramatically.

On the other hand, in order to satisfy the requirements of high performance, design-
ers are interested in optimization based on timing information, and aggressively timed

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 229–244, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



230 T. Yoneda and C.J. Myers

circuit design styles are sometimes used (e.g., RAPPID [7] and GasP [8]). It is, how-
ever, not easy to perform such optimization based on timing or to design aggressively
timed circuits by hand. Thus, it is desirable to synthesize such optimized circuits auto-
matically using timing information given. Fortunately, the above decomposition based
synthesis by CSC violation trace analysis can be extended for handling timed circuits
[9]. This is because its original untimed algorithm can be utilized almost as is, i.e., only
the state space exploration and the STG contraction must be replaced with their timed
versions. Care, however, should be taken for the timed extension of STG contraction. If
one wants to contract as many transitions as in the untimed case, the contraction algo-
rithm should be conservative in dealing with time bounds. It still synthesizes a correct
circuit, but the circuit may be less optimal due to the conservative timing information.
In order to avoid this problem, timed contraction should be performed so that timing
information is preserved exactly. Exact contraction, however, results in inefficiency of
the synthesis process because only a small class of transitions can be contracted.

This paper proposes a way to contract timed STGs effectively without a significant
loss in circuit quality. It finds portions of timed STGs that should be exactly contracted
from the structural information of the timed STG, and thus, the other portion can be
contracted conservatively without affecting optimality. Our algorithm currently pursues
the heuristics for deciding trigger and context signals precisely.

Untimed net contractions for Petri nets have had a long history [10,11,12]. More re-
cently, Vogler and Wollowski formalized the contraction algorithm for untimed STGs
using a bisimulation relation in [13]. Zheng et al. developed a timed contraction algo-
rithm in [14] and applied it to perform modular synthesis in [15]. This method, however,
requires user-specified hierarchy information to guide the decomposition of the synthe-
sis algorithm. Therefore, it cannot be used on flat designs or large modules. This method
also preserves timing in a conservative fashion which may sacrifice circuit optimality.

2 Definitions

This section reviews the definitions and theorems needed for the discussion in this pa-
per, which are taken from [9].

A time Petri net is a Petri net, where each transition t is annotated with two firing
times, denoted by Eft(t) and Lft(t). Intuitively, a transition t cannot fire before being
enabled for Eft(t) and must fire before it has been enabled for longer than Lft(t). A
timed STG is a time Petri net, where each transition t is further annotated with a labeling
function l that maps a transition to either an input or output signal change, denoted by
w+ or w− for a signal w, or a symbol λ. In figures of this paper, a transition is shown
either by its name (as shown in Figure 2) or by its signal change (e.g., transitions except
for t1 and t2 in Figure 7 (a)). If a transition is related to an output signal change, it
is called an output transition. An input transition is defined similarly. If a transition is
related to the change of a signal w, the transition is sometimes called a w-transition.
A transition that is related to λ is called a dummy transition. For a transition t, a set of
places connected to t (i.e., source places) is denoted by •t, and a set of places connected
from t (i.e., destination places) is denoted by t•. For a place p, •p and p• are defined



Effective Contraction of Timed STGs for Decomposition 231

similarly. Transitions t and t′ such that •t ∩ •t′ �= ∅ are said to be in conflict. Let
conflict(t) = {t′ | •t ∩ •t′ �= ∅} − {t}.

A timed state of a timed STG is defined by a marking and a clock function, where the

latter associates each transition with the time for which it has been enabled. Let σ
tf→ σ′

denote that a timed state σ′ is obtained from a timed state σ by first passing some time
and then firing a transition tf . For a sequence v = t1t2 · · · of transitions, σ

v→ σ′ is
defined similarly (σ is equal to σ′ for an empty v). If in any reachable timed state, a
token is never produced into a place that already has a token, then the timed STG is
called one-safe. Furthermore, a timed STG is consistent, if in every transition sequence
v, every signal alternates. (e.g., · · ·w + · · ·w − · · ·).

A timed state graph of an STG G is a graph 〈V,E〉 with an initial timed state σ0,
denoted by GG = (〈V,E〉, σ0), such that V is the set of all reachable timed states ofG,

and E is the timed state transition relation of G, that is, {(σ, t, σ′) | σ ∈ V, σ t→ σ′}.
An output signal w is excited in a timed state σ, if there exists a (possibly empty)
sequence u1u2 · · ·un of dummy transitions such that (σ, u1u2 · · ·un, σ2) ∈ E∗, and
t with l(t) = w+ or l(t) = w− is enabled (i.e., every place in •t is marked) in σ2.
Let out excited(σ) be a set of output signals that are excited in σ. A dummy-free timed
state graph of GG is a graph 〈V ′, E′〉 with an initial timed state σ0, denoted by Gdf

G =
(〈V ′, E′〉, σ0), satisfying, V ′ = {σ | (σ′, t, σ) ∈ E, l(t) �= λ} ∪ {σ0} and E′ =
{(σ, t, σ3) | σ ∈ V ′, (σ, u1u2 · · ·un, σ2) ∈ E∗, n ≥ 0, ∀i.l(ui) = λ, (σ2, t, σ3) ∈
E, l(t) �= λ}. This dummy-free timed state graph is constructed based on the fact that
timed state transitions by a (possibly empty) sequence of dummy transitions followed
by a nondummy transition can be replaced by the single nondummy transition.

A timed state in a dummy-free timed state graph is mapped to a signal state, which is
a binary vector representing the values of signals. Different timed states may be mapped
to the same signal state. For an output signal x, ES(x+) denotes a set of signal states
mapped from timed states where x is excited for rising, and QS(x+) denotes a set
of similar signal states except that x has the value 1 and is not excited. ES(x−) and
QS(x−) are defined similarly. The other signal states are unreachable, and the set of
unreachable signal states is denoted by UR.

There are two important properties for synthesizability. Suppose that two timed states
have a common signal state, but the excitation of some output signals is different. This
situation is called a CSC violation. If an STG has a CSC violation, we say that the STG
does not have CSC. Otherwise, it has CSC. If an STG does not have CSC, a circuit
cannot be synthesized from the STG without modifying the STG. The property called
output semi-modularity is also necessary to synthesize a circuit from an STG. This pa-
per uses the following simplified definition of output semi-modularity for timed STGs.
A timed STG G is output semi-modular, if for any conflicting transitions that are en-
abled in the same timed state of GG, every (possibly empty) path of dummy transitions
starting from each of them on the STG ends with an input transition. Intuitively, if an
output transition conflicts with some other transition directly or indirectly (i.e., through
dummy transitions), the excitation of the output signal can be lost without changing the
output signal itself. This violates output semi-modularity.

Although one-safeness of STGs is not required for synthesis, our timed state space
enumeration algorithm supports only one-safe STGs like other tools such as atacs [16].



232 T. Yoneda and C.J. Myers

Furthermore, the consistency requirement significantly simplifies the analysis and syn-
thesis algorithms. Thus, we say that an STG G is synthesizable, if G is one-safe, con-
sistent, output semi-modular, and has CSC.

There is another property needed especially for timed circuit synthesis. The timed
circuit synthesis method assumes that a synthesized logic function for an output is im-
plemented with a delay within the firing time bounds (i.e., [Eft(t), Lft(t)]) of the cor-
responding output transitions in the given timed STG. This assumption, however, may
not make sense, if the output transitions related to the same output signal have different
firing time bounds, or even a dummy transition that precedes those output transitions
has a non-zero delay. In order to simplify the problem, this paper considers a class of
timed STGs satisfying the following timed-implementability. A timed STG G is timed
implementable, if for every output signal x of G, every x-transition has the same firing
time bounds, and in any path of dummy transitions on G that ends with an output tran-
sition, all dummy transitions have [0,0] bounds. In this paper, it is assumed that a given
timed STG is always both synthesizable and timed implementable.

From different STGs, circuits that behave similarly under the given environment can
be synthesized. Thus, from this point of view, the correctness of an STG with respect
to the original STG can be defined. A circuit is defined by a set of logic functions, and
a logic function is specified by a cover, which is a set of signal states where the logic
function is changed to or kept at the value 1. In the atomic gate implementation, for
each output signal x, an STG G defines a cover, denoted by C(x), satisfying C(x) −
UR = ES(x+) ∪ QS(x+). An STG G1 is cover-correct with respect to G, if for each
output signal of G1, the cover C1(x) for G1 satisfies the above condition of the cover
for G. That is, C1(x) satisfying C1(x) − UR1 = ES1(x+) ∪ QS1(x+) must satisfy
C1(x) − UR = ES(x+) ∪ QS(x+).

In order that a correct delay can be assigned to the synthesized circuit, another prop-
erty is needed for the correctness ofG1. An STGG1 is delay-correct with respect to G,
ifG1 is timed implementable, and for every output signal x ofG1, every x-transition of
G1 has the same firing time bounds (i.e., [Eft(t), Lft(t)]) as x-transitions in G. If G1 is
both cover-correct and delay-correct with respect to G, G1 is correct with respect to G.

In order to decide the cover-correctness more directly, the following notion is in-
troduced. For STGs G1 and G2 with the same input and output signal sets, a simula-
tion from G1 to G2 is a relation S between timed states of Gdf

G1
= (〈V ′1 , E′1〉, σ0

1) and

Gdf
G2

= (〈V ′2 , E′2〉, σ0
2) satisfying

1. (σ0
1 , σ

0
2) ∈ S,

2. for any (σ1, σ2) ∈ S, out excited(σ1) = out excited(σ2) holds, and
3. for any (σ1, σ2) ∈ S and any (σ1, t1, σ

′
1) ∈ E′1, there exists some t2 and σ′2 such

that l(t2) = l(t1), (σ2, t2, σ
′
2) ∈ E′2, and (σ′1, σ

′
2) ∈ S hold.

Let G1 � G2 denote that G1 and G2 have the same input and output signal sets, and
that there exists a simulation from G1 to G2 (i.e.,G2 can simulate G1).

For an STG G with a signal set W , an output signal x of G, and V ⊆ W with
x ∈ V , let G |V,x denote an STG, which has the input signal set V − {x} and the
output signal set {x}, and is obtained from G by replacing w-transitions by dummy
transitions for signals w with w ∈ W − V . Let abs(G, V, x) be any STG such that



Effective Contraction of Timed STGs for Decomposition 233

G |V,x� abs(G, V, x). Furthermore, trigger(x) denotes the set of all possible trigger
signals for an output x, where a signal w is a possible trigger signal of x, if some of
w-transitions can reach some x-transitions onG either directly or through only dummy
transitions. The following theorem is proved in [9].

Theorem 1. If abs(G, V, x) has CSC and trigger(x) ⊆ V holds, then abs(G, V, x) is
cover-correct with respect to G.

Transforming G |V,x to as small abs(G, V, x) as possible is one of the keys of the
decomposition based synthesis method. This is done by the contraction described in the
next section.

3 Contraction of Timed STGs

3.1 Basic Algorithm

The contraction of timed STGs consists of the transformation of the net structure and
the modification of time bounds (the earliest and latest firing times). The former is the
same as that for untimed nets (e.g., [13]). The algorithm for this transformation with
respect to a transition t is transform net(t) shown in Figure 1. In this algorithm, for
each pair (p, p′) such that p ∈ •t and p′ ∈ t•, a new place pnew is created, and the
incoming arcs to p and p′ are redirected to pnew, and the outgoing arcs from p and
p′ are originated from pnew. If p or p′ initially has a token, so does pnew. Then, t, its
preset and postset, and the arcs connected from/to them are removed. Finally, duplicated
places that are introduced by this transformation are removed.

The modification of time bounds is performed by modify bounds(t). It basically
transfers the delay of the contracted transition to its successor transitions. That is, when
t is contracted, Eft(t) is added to Eft(x) and Lft(t) is added to Lft(x) for x ∈ t••. This
modification of time bounds, however, does not work when x has a source place that
has a source transition other than t, i.e., • • (t • •) is not equal to {t}. For example, in
Figure 2 (a), •• (t••) is {t, y}. In this case, when u fires much earlier than v, x can fire
3 time units after the firing of v in the original STG. If both Eft(t) and Lft(t) are added
to x as shown in the STG labeled by [incorrect] in the figure, then it takes at least 13
time units for x to fire after the firing of v, which means that the contracted STG cannot
simulate the original STG. A similar situation occurs when arcs merge at a place. Thus,
in such cases, the time bounds of the successor transitions are enlarged conservatively
as shown in the right-hand side of the figure. In this STG, the earliest firing time of x is
kept at its original value 2. This preserves the behavior of the original STG that x fires
3 time units after the firing of v. When v fires early enough, x fires 2 time units after
the firing of u, which is an extra behavior that is not included in the original STG. But,
this is not a problem, because the contracted STG can now simulate the original STG.

This modification of timed bounds is not appropriate when t conflicts with some
other transitions. For example, in Figure 2 (b), t and then x can fire in the original STG.
In this case, • • (t • •) = {t} holds. Thus, the above algorithm simply adds both the
earliest and latest firing times to those of x, which results in the STG shown in the
middle of Figure 2 (b). In this STG, however, x can no longer fire due to a too small



234 T. Yoneda and C.J. Myers

timed contract(t) {
1: modify bounds(t);
2: transform net(t);
}

transform net(t) {
1: forall p ∈ •t and p′ ∈ t• {
2: add new place pnew to the net;
3: forall u ∈ •p ∪ •p′ − {t}
4: add u to •pnew;
5: forall v ∈ p • ∪p′ • −{t}
6: add v to pnew•;
7: if (p or p′ is marked) mark pnew;
8: }

9: remove t and •t ∪ t• from the STG;
10: remove duplicate places from the STG;
}

modify bounds(t) {
1: max orig Lft = max{Lft(x) | x ∈ t • •};
2: forall x ∈ t • •
3: Lft(x) = Lft(x) + Lft(t);
4: if (• • (t • •) == {t})
5: forall x ∈ t • •
6: Eft(x) = Eft(x) + Eft(t);
7: forall u ∈ conflict(t)
8: Lft(u) = Lft(u)+ max orig Lft;
}

Fig. 1. Contraction algorithm for a transition

(a) (b)

t[10, 20]

u v

y[1, 9]

x[2, 5]

u v

x[12, 25]

y[1, 9] u[1, 9]

x[10, 20]

t[2, 5] u[1, 9]

x[12, 25]

u v

x[2, 25]

y[1, 9] u[1, 29]

x[12, 25]

[original] [incorrect] [conservative] [original] [incorrect] [conservative]

Fig. 2. Modification of time bounds

latest firing time 9 of u, which again means that the contracted STG cannot simulate
the original STG. To avoid this situation, the latest firing time of u should be increased
by the latest firing time of x in the original STG, because u is now conflicting with x,
whose firing time can be larger, by at most the latest firing time of x, than the originally
conflicting transition t. Thus, from the original STG in Figure 2 (b), the STG in the
right-hand side is obtained. modify bounds(t) shows this modification of time bounds.

There are still several issues to be discussed about the above contraction algorithm.
First, a self-loop (i.e., the case that •t∩ t• �= ∅ holds) cannot be handled correctly by the
above contraction algorithm. Second, if both (•t)• and •(t•) includes transitions other
than t, contracting t may add additional untimed behavior to the STG. For example, in
an STG shown in the right-hand side of Figure 3 (a), which is obtained by contracting
t using the above contraction algorithm, u can be enabled when v fires. It is, however,
impossible in the original STG. Since our simulation relation requires the exact excitation
(out excited(σ1) = out excited(σ2)), such a contraction should be avoided. Third, some
conflicting transitions cannot be contracted appropriately. Consider an STG shown in the
left-hand side of Figure 3 (b). In this STG, if Eft(t) ≤ Lft(u) holds, t can fire, and then x
fires after v fires. On the other hand, if t is contracted, x never fires in the case that v fires
too late. This problem cannot be solved by introducing conservativeness, because it is
hard to estimate what value should be added to Lft(u) without checking the whole state



Effective Contraction of Timed STGs for Decomposition 235

u

vt

x

y

[2,4]

[original] [incorrect]

[1,1]

[2,3] [7,8]

[3,4] [3,7]

u v u v

x x

t

[original] [incorrect]

[5,6] [5,6] [5,6] [5,6]

[1,1]

[1,1] [2,2]

(b) (c)

u

v

x

y

[2,8]

[1,1]

[7,8]

u

t

y

[2,4]

[1,1]

v

[2,4]

x

[original]
[1,1]

u

y

[2,5]

[1,1]

v

[2,4]

x

[1,4]

[2,3]

[incorrect]
(a)

Fig. 3. Illegal contraction

space. Finally, if both source and destination places of t have tokens in the initial marking
as shown in Figure 3 (c), then a correct contracted STG can be obtained by putting two
tokens in the right source place of x, which, however, violates the one-safeness. Thus,
our method prohibits the contraction in the above four cases1.

Hence, in our method, the contraction is applied to a transition t only when t satisfies
the following conditions.

(1) t is dummy, i.e., l(t) = λ. (4) Either conflict(t) = ∅ or ∀x ∈ t • •.| • x| = 1.
(2) t has no self-loops. (5) Either •t ∩ µ0 = ∅ or t • ∩µ0 = ∅.
(3) Either (•t)• = {t} or •(t•) = {t}.

We say that a transition t is contractable if t satisfies the above (1), (2), (3), (4) and (5).
Suppose that G is a timed STG and t is one of its contractable transitions. Let G′

denote a timed STG obtained by applying the above contraction algorithm to t. The
following theorem holds.

Theorem 2. If G′ is one-safe, thenG � G′ holds.

From the transitivity of �, the contraction algorithm can be applied to contractable tran-
sitions repeatedly while preserving the relation � as long as one-safeness is preserved.
Thus, forG |V,x (defined in the last paragraph of Section 2), a STGG′′ obtained by con-
tracting contractable transitions inG |V,x one by one satisfies G |V,x� G′′, and thusG′′

can be abs(G, V, x). Therefore, if trigger(x) ⊆ V holds and V is chosen such that G′′

has CSC, Theorem 1 guarantees thatG′′ is cover-correct with respect to G. The outline
of the algorithm to choose V such that G′′ has CSC is shown in Section 4.1. Further-
more, from the output semi-modularity and the timed implementability of the original
STG, the delay-correctness of G′′ is easily achieved by disallowing the contraction of
w-transitions with w ∈ trigger(x). This is because the time bound of a transition t is
modified, only when t is in conflict with some other transition, or some other transi-
tion in • • t with non-zero bound is contracted, but neither case can happen, because
no output transition conflicts with other transitions (from output semi-modularity), any
non-dummy transition reached through only dummy transitions from each output tran-
sition cannot be contracted (i.e., those non-dummy transitions are related to possibly

1 This does not guarantee that the contracted STG is always one-safe. As mentioned in the end
of this subsection, a recovery action is needed when one-safeness violation is detected during
the state space exploration process.



236 T. Yoneda and C.J. Myers

..

..

.. ..

u1 un

x

[a1, b1] [an, bn]

[1,1]

E

tE,x

x

[min{a1, · · · , an}
max{b1, · · · , bn}]

[1,1]

pE,x

Fig. 4. Transformation FE,x

trigger signals), and all dummy transitions between them have zero bound (from timed
implementability). In order not to contractw- transitions with w ∈ trigger(x), it is only
needed to choose V with trigger(x) ⊆ V , which coincides with the second condition of
Theorem 1. Hence, it can be concluded that the above G′′ is correct with respect to G.
Note that this discussion for proving the delay-correctness implies that the time bounds
of output transitions are never modified. This is one of the properties required by our
correctness definition.

As for one-safeness, it is unavoidable that contracting some transition may cause
a one-safeness violation when the one-safeness of the original STG is guaranteed by
timing. It is, however, usually easy to detect such a problem during the state space
exploration process needed in the synthesis algorithm. When a one-safeness violation
is detected at the firing of transition u, it is mainly caused by contracting transitions t
of the original STG satisfying t ∈ u • •. Thus, if such transitions exist, they are flagged
to be non-contractable, and the contraction and the state space exploration process are
repeated. Otherwise, reducing the contraction of other transitions is necessary.

3.2 Optimization

The contraction algorithm of Figure 1 sometimes widens time bounds of transitions
unnecessarily. For example, if t and then y are contracted in the original net of Fig-
ure 2 (a), the time bounds [2,34] is finally obtained for x. However, for enabling x, both
t and y must fire. Thus, at least one time unit needs to pass, and passing 20 time units is
enough, even if either t or y fires later. Hence, the time bound [3,25] is sufficient for x.

To formalize this optimization, another transformation is considered. A transition t is
a simple trigger of a transition x, if t is contractable, t• = {p} with p• = {x} and •p =
{t} holds, and p is not marked initially. For example, in the original STG of Figure 2
(a), both t and y are simple triggers of x. For a set E of simple triggers of x, let FE,x

denote a transformation of an STG such that every u ∈ E is removed with its postset,
and a new transition tE,x and its single destination place pE,x are introduced connecting
every source place of u to tE,x and pE,x to x, where Eft(tE,x) = minu∈E{Eft(u)} and
Lft(tE,x) = maxu∈E{Lft(u)} (See Figure 4). Similar optimizations for the cases that
arcs merge at a place or even more complicated cases are possible but omitted here.

Let G′ denote a timed STG obtained by applying FE,x to G. The following holds.

Theorem 3. If G′ is one-safe, then G � G′ holds and tE,x is contractable in G′.

Since tE,x is contractable in G′, the contraction algorithm shown in Figure 1 can be
applied to tE,x. LetG′′ be the resultant STG. Then,G′′ also satisfiesG � G′′. ThisG′′



Effective Contraction of Timed STGs for Decomposition 237

conservative STG contract(C) {
1: while (C has contractable transitions) {
2: t ← a contractable transition in C;
3: if (• • (t • •) == {t}) {
4: C = C − {t};
5: timed contract(t);
6: }
7: }
8: while (C has contractable transitions) {
9: t ← a contractable transition in C;

10: x ← a transition in t • •;
11: if (∀t′ ∈ • • x. [t′ is a simple

trigger of x]) {
12: C = C − • • x;
13: perform FE,x for E = • • x;
14: timed contract(tE,x);
15: }
16: }

17: while (C has contractable transitions) {
18: t ← a contractable transition in C;
19: C = C − {t};
20: timed contract(t);
21: }
}

exact STG contract(C) {
1: while (C has exactly-contractable

transitions) {
2: t ← an exactly-contractable transition

in C;
3: C = C − {t};
4: timed contract(t);
5: }
}

Fig. 5. Conservative and exact contraction algorithms for timed STGs

has the same net structure as the timed STG G′′′ obtained by applying the contraction
algorithm to each u ∈ E one by one, but the time bounds of x in G′′ are tighter than
those in G′′′.

One simple heuristic for obtaining a better (i.e., less conservative) STG is to apply
the contraction algorithm to the transitions in the following order. (1) A contractable
transition t satisfying • • (t • •) = {t}. (2) A transition tE,x obtained by FE,x, if for
a transition x, every transition in E = • • x is a simple trigger of x. If every transition
in • • x can be transformed by FE,x, introducing unnecessary conservativeness can be
avoided. (3) Any remaining contractable transition.

Figure 5 shows an overall contraction algorithm for timed STGs based on this heuris-
tic. C is initially given a set of all dummy transitions in a timed STG. Since this algo-
rithm introduces conservativeness, it is called conservative STG contract(C).

On the other hand, it is possible to consider a restricted version of the above contrac-
tion algorithm by which no conservativeness is introduced. It can be seen that the above
STG contraction algorithm introduces conservative time bounds, only if a transition t
satisfying one of the following conditions is contracted.

(a) conflict(t) �= ∅. (c) |t • | > 1.
(b) • • (t • •) �= {t}.

Some explanation may be necessary for the third condition. If transition t has two des-
tination places, and two transitions x and y have each of them as their source place, x
and y are enabled by t at the same time. If t is contracted, however, this information
that both x and y are enabled at the same time is lost. This may introduce additional
behavior. We say that a transition t is exactly-contractable, if it is contractable and sat-
isfies none of the above (a) · · · (c). Our second STG contraction algorithm that never
introduces conservativeness is exact STG contract(C), and it is shown in Figure 5.



238 T. Yoneda and C.J. Myers

h1 h2

final(h1) final(h2)

�→ �→ �→ �→

w+ w− w− w+w+
s1 s2

Fig. 6. Causality relation needed for w to solve the CSC violation

4 Effective Contraction

4.1 Overview of Decomposition Based Synthesis

For a given timed STG G, our timed circuit synthesis method is performed in the fol-
lowing 5 steps for each output x [9].

Step 1. The initial input set for x is defined by trigger(x), the set of the possible trigger
signals of x.

Step 2. The transitions that are not related to either x or the signals in the input signal
set for x are contracted from G if possible, and a reduced STG G′ is obtained.

Step 3. The timed state space of G′ is explored. The partial order reduction [17] and
the POSET method [18] are used in this step in order to avoid interleaving non-
signal (i.e., dummy) transitions in G′. If this state graph has CSC, then a correct
circuit for x is synthesized from this state graph from Theorems 1, 2, and 3.

Step 4. Otherwise, the state graph is examined, and traces that cause the CSC violations
are extracted. Note that these traces are on G′, but the corresponding traces on G
are necessary for our purpose. Thus,G is simulated guided by the traces onG′, and
real traces onG are obtained. Then, they are analyzed to find signals that should be
added to the input set for x. The idea is that for each CSC violation trace, a signal
in G but not in G′ that occurs in odd times between the CSC violation state pair in
the trace is found. The occurrence order in the trace, however, does not guarantee a
(timed) causality relation. Thus, the four pairs of transitions shown in Figure 6 are
further checked if one actually causes the other, where w is the candidate signal,
s1 and s2 are the CSC violation pair, final(h) denotes the last transition of the sub-
trace h, and  → denotes the causality relation.

Step 5. The input set for x is updated by adding the signals found in the above step,
and the steps from Step 2 are performed again.

The key issue addressed in this section is how to perform Step 2. If conserva-
tive STG contract(C) is used for this step, the synthesized circuits may lose the addi-
tional performance that is supposed to be obtained from the timed circuit synthesis, due
to the conservative timing information. On the other hand, if the contraction is done only
by exact STG contract(C), only a restricted class of transitions can be contracted. As
a result, the advantage of the above approach to reduce the synthesis cost is lost. Hence,
the contraction of timed STGs should be performed very carefully in order to avoid
degrading the performance of the synthesized circuits while keeping the efficiency of
the approach.



Effective Contraction of Timed STGs for Decomposition 239

(a)

(b)

a

b
x a x

(c)

x − [2, 3]

b+

[5, 10]

t1

[50, 60]

t2

[1, 5]

x + [2, 3]

b − [5, 10]

a − [5, 10]

a+
[5, 10]

Inputs: a, b
Outputs: x

(e)

c
a x

(d)

x − [2, 3]

c+

[5, 10]

t1

[50, 60]

t2

[1, 5]

c − [5, 7]

x + [2, 3]

a − [5, 10]

a + /1

[5, 10]

Inputs: a, c
Outputs: x

a + [5, 10]a − /1

[5, 10]

Fig. 7. Influence on synthesis

Contracting inappropriate transitions conservatively affects the synthesis process in
the following aspects.

(1) Circuit performance: In timed circuit synthesis, if some trigger signals of an
output x always occur too early, then they are automatically excluded from the circuit
for x, which makes the circuit simple and fast. If the time bounds of trigger transitions
(or some of their near ancestors) are enlarged by inappropriate conservative contrac-
tion, this advantage of timed circuit synthesis may be lost. Hence, the relative firing
times between trigger transitions for each output transition should be preserved after
contraction. For example, in the timed STG shown in Figure 7 (a), if the transitions
t1 and t2 are contracted by conservative STG contract(C), the time bounds for a+
is modified to [6,70]. From the contracted STG, the circuit shown in Figure 7 (b) is
synthesized. This is because in the contracted STG, a+ can fire earlier than b+. It is,
however, impossible in the original STG, because a+ actually fires much later than b+
due to the earliest firing time 50 of t1. Using this timing information, the circuit (just
a wire) shown in Figure 7 (c) is actually synthesized from the original STG. Hence,
to avoid synthesizing such redundant circuits, the relative firing times between trigger
transitions for each output transition should be preserved by restricting the application
of contraction to them and some of their ancestors.

(2) CSC: Besides the trigger signals, the circuit input contains the context signals
to satisfy the CSC property. Such context transitions must satisfy the causality rela-
tion between some other transitions. In timed circuit synthesis, such a causality relation
may be established by timing, not by the net structure. In the timed STG shown in Fig-
ure 7 (d), c is a context signal, which distinguishes the state where a+ (or a−) triggers
x+ (or x−) and the state where a+ or a− triggers nothing. The circuit synthesized
from this STG is shown in Figure 7 (e). For c to be a context signal, c+ must fire be-
fore a + /1, but the causality between c+ and a+/1 is guaranteed by the delay of
t1. In such cases, the inappropriate conservative contraction may destroy the causality
relation. This makes it impossible to synthesize a circuit from the contracted STG, or
causes the circuit to use more context signals, which again degrades the advantage of
the timed circuit synthesis. In this example, if t1 and t2 are contracted conservatively,
the synthesis becomes impossible. Hence, when a context signal is chosen in Step 4 of



240 T. Yoneda and C.J. Myers

E

t1

t2[5, 10]

t3[50, 100]

[5,10]

t4
[5,10]

t5
[5,10]

Fig. 8. A timed STG with a cone 〈t2, {t1, t2, t3, t4} ∪ E〉

the previous subsection, the transitions such that the causality relation is required be-
tween them should be identified, and the relative firing times between them should be
preserved after the contraction (by restricting contraction).

4.2 Selecting Contraction Methods

Let a target transition set denote a set of transitions such that the relative firing times
should be preserved after the contraction. For each target transition set, our algorithm
computes a set of transitions that should not be contracted conservatively, and marks
them. Then, the marked transitions are contracted by exact STG contract(C), while
the others are contracted by conservative STG contract(C).

For this purpose, we define the following notion. For a transition a and b of a timed

STG, let a
P
� b denote that the transition b is reached from a on the STG via a sequence

P of transitions. It is assumed that a �∈ P and b �∈ P . Note that a
P
� a holds with

P = ∅. A cone for a set E of transitions is a pair 〈cone top,B〉, where

– E ⊆ B, and cone top ∈ B,

– for any a ∈ B, there exists some P such that cone top �∈ P and a
P
� x with some

x ∈ E,
– for any a ∈ B, every P such that a

P
� x with x ∈ E satisfies cone top ∈ P ∪ {x}.

Intuitively, every path to the transitions in E from the outside of the cone certainly
passes through cone top as shown in Figure 8. Thus, the firing times of the transition
outside of B do not affect the relative firing times of the transitions in E. Hence, for
each target transition set, if its cone is computed, and the transitions in B are marked
such that they should be exactly contracted, appropriate conservative contraction can be
performed. For example, in the timed STG shown in Figure 8, 〈t1, {t1, t4}∪E〉 cannot
be a cone forE, because t3, which is outside of {t1, t4}∪E, can reach an element ofE
without passing through t1. Actually, if t3 is contracted conservatively, the information
that t1 always fires earlier than t4 is lost. In this example, 〈t2, {t1, t2, t3, t4} ∪ E〉 is a
cone for E. Note that for a cone 〈cone top,B〉 for E, a different pair 〈t, B′〉 satisfying
t ∈ B and B ⊆ B′ may also be a cone for E. Thus, it is desirable to find a cone
with the smallest B. A cone may seem to be a notion similar to a dominator (e.g, [19]).
However, a dominator is usually considered in directed graphs where start nodes or
terminal nodes are defined. On the other hand, STGs have no such nodes in general.
This makes it more difficult to compute cones.



Effective Contraction of Timed STGs for Decomposition 241

compute cone(E) {
1: i = 0;
2: forall t ∈ E {
3: Ei = Ti = {t};
4: i = i + 1;
5: }
6: while(true) {
7: forall 0 ≤ i ≤ |E| {
8: Ei = • • Ei − Ti;
9: Ti = Ti ∪ Ei;

10: }
11:: C =

⋂
0≤i≤|E| Ti;

12: forall can ∈ C {
13: B = construct cone body(can, E, ∅);
14: if (|B| ≤ threshold) return 〈can, B〉;
15: else keep 〈can, B〉;
16: }
17: if (every Ei is empty)
18: return 〈can, B〉 with smallest B;
19: }
}

construct cone body(can, F, B) {
1: F = F − B;
2: if (F = ∅) return B;
3: B = B ∪ F ;
4: F = • • (F − {can});
5: construct cone body(can, F, B);
}

top level contract(x, in signals,E ) {
1: change transitions not related to

x or in signals to dummies;
2: Let C be the set of dummy transitions;
3: exact STG contract(C);
4: LetC be the set of dummytransitions

of the resulting STG;
5: forall E ∈ E {
6: 〈c, B〉 = compute cone(E);
7: C = C − B;
8: }
9: conservative STG contract(C);
}

Fig. 9. Algorithms to compute a cone

This paper proposes the following heuristics to compute relatively good cones. Our
algorithm is based on a backward breadth-first-search from each element of E in par-
allel. The algorithm compute cone(E) shown in Figure 9 uses two sets Ei and Ti for
each element of E, where Ei keeps frontiers and Ti stores reached transitions during
the backward breadth-first-search. In the second forall block (lines 7–10), these sets
are updated. In each backward step, the conjunction C of all Ti is obtained. The ele-
ments in this conjunction C are the candidates of cone top, because they are reached
backwardly from every element of E. Some of them, however, may not be a good cone.
To check it, construct cone body() constructsB with respect to a candidate can by the
simple backward breadth-first-search from E except that the backward search cannot
go beyond can. If the constructed setB is small enough, it is decided that the candidate
is a cone top for a good cone. This decision is based on threshold, which is set to, for
example, one tenth of the number of transitions of the given STG. If it is not a good
cone, the parallel backward breadth-first-search is continued in compute cone(E). In
the case that no good cone can be found, a cone with smallest B is returned.

The remaining task of our algorithm is to obtain the target transition sets properly
for each of the above cases (1) and (2). This is done as follows.

(1) For each output transition x, its possible trigger transitions form a target transition
set. For example, for the timed STG shown in Figure 7 (a), transitions a+ and b+ are
the possible trigger transitions for x, and so, {a+, b+} is a target transition set. From
it, a cone 〈x−, B〉 is obtained, where B = {x−, a+, b+, t1, t2}. Hence, neither t1 nor
t2 is contracted.



242 T. Yoneda and C.J. Myers

(2) When a signal a is chosen as a candidate of newly added input signals, its corre-
sponding transitions are supposed to satisfy the causality relation shown in Figure 6. If
some of them are satisfied by timing, not by the net structure, then the pair of transitions
concerned is recorded with respect to a. When every CSC violation trace is analyzed,
and signals added to the input are decided, each pair of transitions recorded with respect
to the signals that are actually added to the input set form a target transition set. For ex-
ample, in the timed STG shown in Figure 7 (d), the initial input set is {a} because the
possible trigger signal for x is a, and a CSC violation trace

a+, x+, a−, x−, t2, c+, t1, a+/1

is obtained by the guided simulation, where the state after firing a+ and the final state
cause the CSC violation (i.e. both signal states are (ax) = (10)). Since the transition for
signal c fires in odd times between the CSC violation pair, c is chosen as an additional
input signal. In this case, the causality between c+ and a+/1 holds by timing. Thus,
{c+, a+/1} is obtained as a target transition set. From it, x− is chosen as a cone top
and B = {x−, c+, t1, t2, a+/1} is obtained. Hence, neither t1 nor t2 is contracted.

When a timed STG is contracted for the first time, only the target transition sets
for the first category (i.e., for the possible trigger transitions) are used. After the CSC
violation trace analysis, if the target transition sets for the second category are obtained,
they are used for the next contraction. Let E denote the set of the target transition sets
obtained as above. For an output x, the input signal set in signals, and this E , the top
level algorithm for contraction is shown in Figure 9.

5 Experimental Results

The proposed method has been implemented, and experiments are performed on a 3.0
GHz Pentium 4 workstation with 4 gigabytes of memory. Table 1 shows the synthesis
results for the examples that are taken from [20]. They are specifications for an IIR filter,
an FIR filter, and a portion of the Discrete Cosine Transform (DCT) circuit obtained
from SpecC/Balsa high-level specifications. All of these timed STGs satisfy CSC. “#T”
and “#W” show the number of transitions and the number of input and output signals
in each STG. The columns “Exact” show the values when only the exact contraction
is used. The numbers in parentheses in “CPU” columns show the CPU times for the
contraction and the state space exploration of the reduced STGs (Step 2 and Step 3
in Subsection 4.1), which the proposed method mainly improves. “sp. up” shows their
speed-up ratios. “#Lit” shows the total number of literals of the synthesized circuits.
“Red” columns show how the STG sizes are reduced from the original ones by the
decomposition based synthesis method, that is

Red =
(
1 −

∑
x∈Out(size of reduced STG for x)
(size of original STG) × |Out|

)
× 100,

where Out is the set of output signals of the original STG. The sizes are evaluated by
the average number of transitions in the reduced STG used for each output. Note that
these “Red” values are used to compare the effectiveness of the proposed method over



Effective Contraction of Timed STGs for Decomposition 243

Table 1. Experimental results

STG #T #W CPU (s) #Lit Red (%)
Exact Proposed sp. up Exact Proposed Exact Proposed

IIR a 370 126 9.56 (5.28) 5.45 (1.22) 4.1 391 391 26.9 84.7
IIR b 362 128 54.69 (49.76) 37.54 (32.45) 1.5 462 462 27.7 84.8
FIR a 872 293 142.75 (67.12) 87.34 (12.47) 5.4 923 923 28.7 90.0
FIR b 848 291 820.41 (749.67) 545.35 (468.18) 1.6 1116 1116 30.6 91.2
DCT a 1763 533 2396.03 (628.28) 1497.79 (46.15) 13.6 1872 1871 33.4 94.3
DCT b 1774 507 2612.57 (1107.54) 1486.19 (147.76) 7.5 1902 1902 38.1 94.3

the exact contraction method. These results show that the proposed method succeeds
in effectively reducing the sizes of STGs (about 90% of transitions are projected out)
and accordingly improving the CPU times while keeping the quality of the synthesized
circuits.

6 Conclusion

This paper presents a method to contract timed STGs effectively without losing opti-
mality of the synthesized circuits. It first formalizes the contraction algorithm for timed
STGs and justifies its correctness. Then, the algorithm to find portions of the given
STGs that should be contracted exactly for deciding the trigger and context signals
precisely is shown. The remaining part of the STGs can be contracted conservatively,
which makes the decomposition based timed synthesis approach more applicable to
larger classes of designs. The experimental results show that significant reduction in the
size of STGs is obtained by the proposed method. Our tool nutas implemented based
on the proposed ideas is available at http://research.nii.ac.jp/∼yoneda.

References

1. J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Petrify: a tool
for manipulating concurrent specifications and synthesis of asynchronous controllers. IEICE
Trans. on Information and Systems, E80-D(3):315–325, 1997.

2. P. A. Beerel, C. J. Myers, and T. H.-Y. Meng. Covering conditions and algorithms for the
synthesis of speed-independent circuits. IEEE Trans. on Computer-Aided Design, 1998.

3. R. M. Fuhrer, S. M. Nowick, M. Theobald, N. K. Jha, B. Lin, and L. Plana. Minimalist:
An environment for the synthesis, verification and testability of burst-mode asynchronous
machines. Technical Report TR CUCS-020-99, Columbia University, NY, 1999.

4. Tam-Anh Chu. Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic Specifications.
PhD thesis, MIT Laboratory for Computer Science, 1987.

5. T. Yoneda, H. Onda, and C. Myers. Synthesis of speed independent circuits based on decom-
position. In Proc. International Symposium on Advanced Research in Asynchronous Circuits
and Systems, pages 135–145. IEEE Computer Society Press, 2004.

6. J. Carmona and J. Cortadella. ILP models for the synthesis of asynchronous control circuits.
Proc. of the IEEE/ACM International Conference on Computer Aided Design, pages 818–
825, 2003.



244 T. Yoneda and C.J. Myers

7. K. Stevens, S. Rotem, R. Ginosar, P. Beerel, C. Myers, K. Yun, R. Kol, C. Dike, and M. Ron-
cken. An asynchronous instruction length decoder. IEEE Journal of Solid-State Circuits,
35(2):217–228, February 2001.

8. Ivan Sutherland and Scott Fairbanks. GasP: A minimal FIFO control. In Proc. Interna-
tional Symposium on Advanced Research in Asynchronous Circuits and Systems, pages 46–
53. IEEE Computer Society Press, 2001.

9. Tomohiro Yoneda and Chris Myers. Synthesis of timed circuits based on decomposition. NII
Technical Report, NII-2006-001E, 2006.

10. I. Suzuki and T. Murata. Stepwise refinements for transitions and places. New York:
Springer-Verlag, 1982.

11. G. Berthelot. Checking properties of nets using transformations. In Lecture Notes in Com-
puter Science, 222, pages 19–40, 1986.

12. T. Murata. Petri nets: Properties, analysis, and applications. In Proceedings of the IEEE
77(4), pages 541–580, 1989.

13. Walter Vogler and Ralf Wollowski. Decomposition in asynchronous circuit design. In J. Cor-
tadella, A. Yakovlev, and G. Rozenberg, editors, Concurrency and Hardware Design, volume
2549 of Lecture Notes in Computer Science, pages 152–190. Springer-Verlag, 2002.

14. H. Zheng, E. Mercer, and C. J. Myers. Modular verification of timed circuits using automatic
abstraction. IEEE Trans. on Computer-Aided Design, 22(9), 2003.

15. H. Zheng. Modular Synthesis and Verification of Timed Circuits Using Automatic Abstrac-
tion. PhD thesis, University of Utah, 2001.

16. Chris J. Myers. Computer-Aided Synthesis and Verification of Gate-Level Timed Circuits.
PhD thesis, Dept. of Elec. Eng., Stanford University, 1995.

17. T. Yoneda, E. G. Mercer, and C. J. Myers. Modular synthesis of timed circuits using partial
order reduction. Proc. of The 10th Workshop on Synthesis And System Integration of Mixed
Technologies, pages 127–134, 2001.

18. E. G. Mercer, C. J. Myers, and T. Yoneda. Improved POSET timing analysis in timed Petri
nets. Proc. of The 10th Workshop on Synthesis And System Integration of Mixed Technolo-
gies, pages 151–158, 2001.

19. L. Georgiadis, R. E. Tarjan, S. Triantafyllis, and D. August. Finding dominators in practice.
In Proceedings of the 12th Annual European Symposium on Algorithms, LNCS 3221:677–
688, 2004.

20. T. Yoneda, A. Matsumoto, M. Kato, and C. Myers. High level synthesis of timed asyn-
chronous circuits. In Proc. International Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 178–189. IEEE Computer Society Press, 2005.



Synthesis for Probabilistic Environments�

Sven Schewe

Universität des Saarlandes, 66123 Saarbrücken, Germany
schewe@cs.uni-sb.de

Abstract. In synthesis we construct finite state systems from temporal
specifications. While this problem is well understood in the classical set-
ting of non-probabilistic synthesis, this paper suggests the novel approach
of open synthesis under the assumptions of an environment that chooses
its actions randomized rather than nondeterministically. Assuming a ran-
domized environment inspires alternative semantics both for linear-time
and branching-time logics. For linear-time, natural acceptance criteria
are almost-sure and observable acceptance, where it suffices if the prob-
ability measure of accepting paths is 1 and greater than 0, respectively.

We distinguish 0-environments, which can freely assign probabilities
to each environment action, from ε-environments, where the probabili-
ties assigned by the environment are bound from below by some ε > 0.
While the results in case of 0-environments are essentially the same as
for nondeterministic environments, the languages occurring in case of
ε-environments are topologically different from the results for nonde-
terministic and 0-environments (in case of LTL, recognizable by weak
alternating automata vs. recognizable by deterministic automata). The
complexity of open synthesis is, in both cases, EXPTIME and
2EXPTIME-complete for CTL and LTL specifications, respectively.

1 Introduction

Among the most important developments in verification is the development of
model-checking algorithms, which test whether or not a finite-state program sat-
isfies a temporal specification. However, this method suffers from two significant
drawbacks: First, it can only be applied after much effort has been invested
to the (manual) construction of the system. And second, model-checking cannot
distinguish unrealizable specifications from erroneous implementations. The nat-
ural approach to circumvent these drawbacks is to construct finite-state systems
directly from the specification. Such an approach is called synthesis.

Early works consider closed systems that do not interact with an environ-
ment [3,18]. Closed synthesis is in this sense a constructive extension of satisfi-
ability checking. This approach is not suitable for open systems, which interact
with a predefined environment, since the synthesized system cannot restrict the

� This work was partly supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS).

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 245–259, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



246 S. Schewe

behavior of its environment. Later works therefore concentrate on the synthe-
sis of open systems from linear-time specifications [15,16,1]. These fundamental
works on open synthesis required that the system satisfies its specification for all
possible behaviors of the environment, i.e., an LTL formula ϕ is interpreted as
the CTL* formula Aϕ. Pnueli and Rosner [15] demonstrated that the LTL syn-
thesis problem is 2EXPTIME-complete in this setting. Kupferman and Vardi [10]
extended open synthesis to branching-time specifications and incomplete infor-
mation, and established EXPTIME and 2EXPTIME-completeness results for
the CTL and CTL* synthesis problem, respectively.

In the view of the attractiveness of synthesis, it is alluring to extend its ap-
plicability as far as possible. A particular interesting extension is the treatment
of probabilistic systems. Probabilistic randomization has, e.g., successfully been
introduced into protocols (cf. [13]). In synthesis, we want to construct systems
which, under reasonable assumptions about the probabilistic behavior of the en-
vironment, satisfy a linear-time specification with probability 1 (almost-surely)
or with probability greater than 0 (observably).

System synthesis is more complex than model-checking probabilistic systems
(Markov decision processes). There, a probabilistic measure is defined a priori
on the set of computations, usually by assigning fixed probabilities to the single
transitions. In synthesis, on the other hand, we do not have a transition-system
to start with (this situation is comparable with the problem occurring in the
treatment of transition fairness in system synthesis, cf. [2]).

When restricting the scope to almost-sure and observable satisfaction of linear-
time properties, the concrete probabilities of single transitions play a minor role;
in finite systems it is only of interest whether or not a probability is 0 or 1.
It turns out that these properties are preserved when the probabilities of the
single transitions are uncertain, as long as an (arbitrary) lower bound ε > 0
on their probability is guaranteed. This allows for considering synthesis for en-
vironments, which only guarantee the existence of some lower bound on the
probability of each single action. We call such environments ε-environments.
They are closely related to probabilistic fair systems [5] (with the distinction
that systems discussed in this paper necessarily have a predefined constant set
of environment actions) and inherit their semantical benefits: they provide a
simple way of representing probabilistic choices while abstracting from the nu-
merical value of probability. The LTL synthesis problem remains 2EXPTIME
complete in almost-sure and observable semantics for ε-environments.

The decidability of almost-sure and observable acceptance gives rise to a re-
definition of the semantics for the branching-time logic CTL*. CTL* allows for
universal (Aπ) and existential (Eπ) path quantification. A natural analogy is
to interpret universal path quantification as the property that the probability
measure of the paths satisfying π is 1 (i.e., that a path almost-surely satisfies π),
and existential path quantification as the property that the probability measure
of the paths satisfying π is greater than 0 [8]. This paper provides a constructive
method to solve the synthesis problem for CTL* in 3EXPTIME in the length
of the specification, whereas a 2EXPTIME lower bound is inherited from the



Synthesis for Probabilistic Environments 247

LTL synthesis problem. While the exact complexity remains open for CTL*, the
synthesis problem is EXPTIME-complete for CTL.

Under the assumption of stronger environments, which can reduce the prob-
ability of each single event arbitrarily, synthesis for almost-sure/observable se-
mantics is essentially equivalent to synthesis for classical semantics.

2 Preliminaries

Synthesis algorithms automatically construct, for a given class of environments,
systems that are correct by construction from a given specification. The envi-
ronment is an external part of the system, which is not under the control of the
synthesis algorithm. Intuitively, the environment provides the system with in-
puts from a finite input-alphabet Υ . The system reacts on each input by emitting
an output symbol from a finite output-alphabet Σ. When the specifications are
provided as temporal logics, the input- and output alphabet consist of the pos-
sible valuations of boolean input- and output-variables, respectively [15,10,11],
which also serve as atomic propositions in the specification. A system is modeled
as a finite transition-system, which defines a mapping m : Υ ∗ → Σ from histories
of input-signals to output-signals. This paper addresses synthesis for linear- and
branching-time specifications for environments with an uncertain probabilistic
behavior.

Environments. In general, the concrete behavior of the environment is un-
known or too complex to represent. The uncertainty with respect to the concrete
behavior of the environment is expressed by the power of the environment to
choose, in every step, a probability distribution of its single input letters.

An environment is called an ε-environment if, in each step, the probability
p(υ) ∈ [ε, 1] that the environment chooses a particular input letter υ ∈ Υ is
bound from below by some ε > 0. It is called a 0-environment, if the probability
that the environment chooses a particular input letter υ ∈ Υ is not bound from
below (p(υ) ∈ ]0, 1] or p(υ) ∈ [0, 1]).

Transition Systems. A system is implemented as a finite Σ-labeled Υ -transi-
tion-system T = (S, s0, τ, l), where S is a set of states with initial state s0 ∈ S,
τ : S × Υ → S is a transition function and l : S → Σ is a labeling function. A
Σ-labeled Υ -transition-system is called input-preserving, if Σ = Υ ×Σ′ for some
Σ′ and the Υ -projection of l(τ(s, υ)) is υ for all s ∈ S (i.e., the Υ -part of the
label reflects the previous input from the environment).

Parity Automata. An alternating automaton is a tuple A = (Σ,Q, q0, δ, α),
where Σ denotes a finite set of labels, Q denotes a finite set of states, q0 ∈ Q
denotes a designated initial state, δ denotes a transition function, and α : Q →
C ⊂ N is a coloring function. The transition function δ : Q ×Σ → B+(Q × Υ )
maps a state and an input letter to a positive boolean combination of states
and directions. In our context, an alternating automaton runs on Σ-labeled



248 S. Schewe

Υ -transition-systems. The acceptance mechanism of alternating automata is de-
fined in terms of run trees.

As usual, a Ξ-tree is a prefixed closed subset Y ⊆ Ξ∗ of the finite words over
a predefined set Ξ of directions. For given sets Σ and Ξ, a Σ-labeled Ξ-tree is
a pair 〈Y, l〉, consisting of a tree Y ⊆ Ξ∗ and a labeling function l : Y → Σ that
maps every node of Y to a letter of Σ. If Υ and Σ are not important or clear
from the context, 〈Y, l〉 is called a tree.

A run tree 〈R, r〉 on a given transition-system T = (S, s0, τ, l) is a Q × S-
labeled tree where the root is labeled with (q0, s0) and where, for each node n
with label (q, s), there is a set An ⊆ Q × Υ which satisfies δ(q, l(s)) such that
(q′, υ) ∈ An iff a child of n is labeled with (q′, τ(s, υ)).

An infinite path fulfills the parity condition, if the highest color of the states
appearing infinitely often on the path is even. A run tree is accepting if all
infinite paths fulfill the parity condition. A transition-system is accepted if it
has an accepting run tree.

The set of transition-systems accepted by an alternating automaton A is called
its language L(A). An automaton is empty, if its language is empty.

The acceptance of a transition-system can also be viewed as the outcome of
a game, where player accept chooses, for a pair (q, σ) ∈ Q × Σ, a set of atoms
of δ(q, σ), satisfying δ(q, σ), and player reject chooses one of these atoms, which
is executed. The input tree is accepted iff player accept has a strategy enforcing
a path that fulfills the parity condition. One of the players has a memoryless
winning strategy, i.e., a strategy where the moves only depend on the state of
the automaton and the state of the transition-system, and, for player reject, on
the choice of player accept in the same move.

A nondeterministic automaton is a special alternating automaton, where the
image of δ consists only of such formulas that, when rewritten in disjunctive
normal form, contain exactly one element of Q × {υ} for all υ ∈ Υ in every
disjunct. For nondeterministic automata, every node of a run tree corresponds
to a node in the input tree (the unrolling of the transition-system). Emptiness can
therefore be checked with an emptiness game, where player accept also chooses
the letter of the input alphabet. A nondeterministic automaton is empty iff the
emptiness game is won by reject.

A nondeterministic automaton is called deterministic if the image of δ consists
only of such formulas that, when rewritten in disjunctive normal form, contain
exactly one disjunct. An automaton is called a word automaton if Υ is singleton;
in this case, Υ is omitted in the notation. An automaton is called weak if, for
every path on every run tree for every transition-system, the color increases
monotonously, i.e, if δ maps each pair (q, σ) of states and input letters to positive
boolean combination over pairs of states and directions, where the color of the
respective state is not smaller than the color of q. An automaton is called a
Büchi automaton iff the image of α is contained in {1, 2}.

The Synthesis Problem. For trace languages, we distinguish almost-sure
and observable acceptance of transition-systems. A transition-system T satisfies
a specification



Synthesis for Probabilistic Environments 249

– almost-surely iff the probability measure of the set of infinite paths defined
by T that satisfy the specification is 1, and

– observably iff the probability measure of the set of infinite paths defined by
T that satisfy the specification is greater than 0.

In case of temporal logics, the input-alphabet 2I and output-alphabet 2O

represent the possible assignments to boolean input and output variables, which
also serve as atomic propositions in the specification.

For CTL* specifications, all subformulas of the form Aπ and Eπ are inter-
preted as state formulas with the semantics that the path formula π is satisfied
almost-surely and observably, respectively. The synthesis problem is to either
construct, for a given input-alphabet Υ , a given output-alphabet Σ and a speci-
fication ϕ, an input-preserving Υ ×Σ-labeled Υ -transition-system which satisfies
the specification, or to prove that no such transition-system exists.

3 Synthesis for Trace Languages

Following an automata-theoretic approach to open synthesis, the synthesis prob-
lem is decomposed into two parts: finding an automaton, which accepts a transi-
tion-system iff it is input-preserving and satisfies the specification, and con-
structing a transition-system accepted by this automaton (or demonstrating its
emptiness). In this section, we consider synthesis for specifications provided as
deterministic word automata under the assumption of ε-environments.

Structural Acceptance Criteria. Testing whether a transition-system T
almost-surely (observably) satisfies a deterministic word automaton D can be
reduced to a simple structural argument over the composition of T and D. The
result of their composition is a colored graph, and it suffices to check if the
highest color in all (some) reachable strongly connected components of GTD that
are leaves in the SCC-graph of GTD is even.

The composition GTD = T ‖D of a transition-system T = (S, s0, τ, l) and a
deterministic word automaton D = (Σ,Q, q0, δ, α) is a colored graph GTD = (S×
Q, (s0, q0), τ ′, α′) with transition function τ ′ : ((s, q), υ)  → (τ(s, υ), δ(q, l(s)))
and coloring function α′ : (s, q)  → α(q).

Lemma 1. An Υ -transition-system T almost-surely (observably) satisfies a
specification provided as a deterministic word automaton D iff the highest color
in all (some) reachable leaf-SCCs of GTD = T ‖D is even.

Proof. For all ε-environments, the probability of every single transition is bound
from below by some ε ∈ ]0, 1]. This implies the following attributes of the com-
putations:

– Almost-surely almost all states of a computation are in a single leaf of the
SCC-tree of GTD , which is reachable from the initial state of GTD :
If GTD has n states, then, from every state of GTD , the probability not to reach
some leaf-SCC within the next n steps is bound from above by ε′ = 1−εn <
1, which implies a probability of 0 to stay forever out of reachable leaf-SCCs.



250 S. Schewe

– Every reachable leaf-SCC of GTD is reached with some positive probability
(which is bound from below by εn).

– For traces that eventually reach a leaf-SCC L, the highest color occurring
infinitely often is almost-surely the highest color of the states of L:
The probability not to reach some state s in L within the next n steps is
again bound from above ε′ = 1 − εn < 1. This implies, for every position in
the trace, a probability of 0 that s occurs never again; this holds in particular
for a state s whose color is maximal in L.

The first (second) and third attribute imply the claim for almost-sure (ob-
servable) satisfaction. ��

Game Construction. These structural criteria can be transformed into (weak)
acceptance games deciding almost-sure and observable acceptance, respectively.
These games are played on GTD , starting in (s0, q0), and consist of three phases.
For almost-sure (observable) acceptance the game is played according to the
following rules:

– In the first phase, player reject (accept) either chooses to proceed to the
second phase or picks a transition in GTD . Picking a transition means that, in
a state (s, q), she chooses a direction υ and the game proceeds in τ ′((s, q), υ).
Intuitively, she can use this phase to move to a leaf-SCC of her choice.

– In the second phase, player accept (reject) either picks a transition in GTD or
chooses to proceed to the third phase, but with the restriction that he can
only move to the third phase if the color of the current node is even (odd).
In case he moves to the third phase, the color c of the current node is stored.
This phase is to prevent player reject (accept) from “cheating” by terminat-
ing the first phase in a state of GTD , which is no element of any leaf-SCC.
Player accept could, in such a case, move on to a vertex with highest color
in a leaf-SCC of his choice (reachable from v), or even pick any arbitrary
state reachable from v.

– In the last phase, player reject (accept) again chooses the transitions. She
wins immediately upon reaching a state with an odd (even) color greater
than c.

Infinite plays of the game are won by player accept (reject) if the game always
stays in the first phase and if the game eventually stays forever in the third
phase, while player reject (accept) wins otherwise.

Lemma 2. The acceptance game on GTD is won by player accept if, and only if,
T satisfies D almost-surely (observably).

Proof. To prove the claim for almost-sure acceptance, first assume that T does
not satisfies D almost-surely. In this case, the highest color in some reachable
leaf-SCC L of GTD is odd by Lemma 1. Player reject can direct the game towards
such a leaf-SCC L and then let the game proceed to the second phase.

If player accept ever moves on to the third phase, he must do so from a state
in L. Since L is cyclic, player reject can then move to a state with maximal (odd)



Synthesis for Probabilistic Environments 251

color and wins directly. If, on the other hand, player accept never moves to the
third phase, player reject wins since the third phase is never reached.

To prove the “if” direction, recall that almost-sure satisfaction of D by T
entails that the highest color in all reachable leaf-SCCs of GTD is even. If player
reject never leaves the first phase, player accept wins due to the winning condition
for infinite plays. If player reject eventually changes in some state v to the second
phase, then player accept can move to some leaf-SCC L. Since L is cyclic by
definition, he can reach a state v′ in L, whose (even) color is maximal in L.
After having moved on to v′, player accept changes to the third phase (storing
the color of v′). Since the color of v′ is maximal in L, player reject cannot win
directly in the third phase, and consequently loses by the winning condition for
infinite plays.

The proof for observable acceptance runs accordingly. ��

From Acceptance Games to Automata. It is only a small step from the
acceptance games of the previous paragraph to weak alternating automata over
transition-systems. A given deterministic word automaton D can be turned into
weak alternating automata, which accept a transition-system iff it satisfies D
almost-surely or observably, respectively. The states of these automata are con-
structed from the states and colors of D, and the transition function reflects the
transitions of the game introduced in the previous paragraph.

Theorem 1. Given a deterministic word automaton D = (Σ,Q, q0, δ, α) we can
construct weak alterating tree automata AD and OD which accept a Σ-labeled Υ -
transition-system if it almost-surely and observably satisfies D, respectively. If D
has n states and c colors, AD and OD have at most n · �2 + c

2� states.

Proof. AD = (Σ,Q′, q′0, δ
′, α′) is defined as follows:

– The set of states is set to Q′ = Q×({f, s}∪Ce) and initial state q′0 = (q0, f),
where Ce denotes the set of even colors of D.

– The transition function is defined by:
• δ′ : ((q, f), σ)  → δ′((q, s), σ) ∧

∧
υ∈Υ ((δ(q, σ), f), υ),

• δ′ : ((q, s), σ)  → δ′((q, α(q)), σ)∨
∨

υ∈Υ ((δ(q, σ), s), υ) if α(q) is even and
• δ′ : ((q, s), σ)  →

∨
υ∈Υ ((δ(q, σ), s), υ) if α(q) is odd,

• δ′ : ((q, c), σ)  → false if α(q) is an odd number greater then c, and
• δ′ : ((q, c), σ)  →

∧
υ∈Υ ((δ(q, σ), c), υ) otherwise.

– The coloring function α′ maps Q×{f} to 0, Q×{s} to 1, and Q×Ce to 2.

Likewise, OD = (Σ,Q′′, q′′0 , δ′′, α′′) is defined as follows:

– The set of states is set to Q′′ = Q×({f, s}∪Co) and initial state q′′0 = (q0, f),
where Co denotes the set of odd colors of D.

– The transition function is defined by:
• δ′′ : ((q, f), σ)  → δ′′((q, s), σ) ∨

∨
υ∈Υ ((δ(q, σ), f), υ),

• δ′′ : ((q, s), σ)  → δ′′((q, α(q)), σ)∧
∧

υ∈Υ ((δ(q, σ), s), υ) if α(q) is odd and
• δ′′ : ((q, s), σ)  →

∧
υ∈Υ ((δ(q, σ), s), υ) if α(q) is even,



252 S. Schewe

• δ′′ : ((q, c), σ)  → true if α(q) is an even number greater then c, and
• δ′′ : ((q, c), σ)  →

∧
υ∈Υ ((δ(q, σ), c), υ) otherwise.

– The coloring function α′′ maps Q×{f} to 1, Q×{s} to 2, and Q×Co to 3.

The states Q×{f} refer to the first phase of the acceptance game, the states
Q×{s} to the second and the remaining states Q×Ce and Q×Co, respectively,
refer to the third phase of the acceptance game. A winning strategy for either
player in the acceptance game on GTD can easily be transformed into a winning
strategy in the acceptance game of the respective alternating automaton. ��

Efficient Nondeterminization. Weak alternating automata are well suited
for model-checking, but synthesis (or its non-constructive equivalent, check-
ing non-emptiness) usually contains an exponential blow-up due to a nonde-
terminization step. A closer look on the special weak alternating automata of
Theorem 1 reveals that this is not the case here: Most decisions can easily be
guessed by a nondeterministic automaton. The crucial point in the nondeter-
minization is the single decision of player reject when to proceed from the first
to the second phase (in case of almost-sure acceptance) and from the second to
the third phase (in case of observable acceptance), respectively. It turns out that
this single decision can be left uncertain in the construction of a nondeterministic
automaton, avoiding the blow-up.

Theorem 2. Given deterministic word automaton D = (Σ,Q, q0, δ, α) we can
construct nondeterministic Büchi tree automata AD′ and OD′ which accept a
Σ-labeled Υ -transition-system if it almost-surely and observably satisfies D, re-
spectively. If D has n states and c colors, AD′ and OD′ have at most 2n·!1+ c

2"+1
and n · !2 + c

2" states, respectively.

Proof. The nondeterministic Büchi tree automaton OD′ = (Σ,Q′′, q′′0 , δ
′′, α′′) for

testing observable acceptance is defined as follows:

– The set of states is set to Q′′ = Q ∪ Q × C−o and the initial state q′′0 = q0
is the initial state from D. C−o denotes the set of odd colors of D, plus an
additional color emin = omin − 1, where omin denotes the smallest odd color
of D.

– The transition function is defined by:
• δ′′ : (q, σ)  →

∨
υ∈Υ (δ(q, σ), υ) ∨ δ′′(q, emin), σ),

• δ′′ : ((q, c), σ)  →
∨

υ∈Υ

(
((δ(q, σ),max{c, α(q)}), υ)

∧
∧

υ �=υ′∈Υ ((δ(q, σ), emin ), υ)
)

if α(q) is odd,
• δ′′ : ((q, c), σ)  →

∧
υ∈Υ ((δ(q, σ), emin), υ)

if α(q) > c is even and greater than c, and
• δ′′ : ((q, c), σ)  →

∨
υ∈Υ

(
((δ(q, σ), c), υ) ∧

∧
υ �=υ′∈Υ ((δ(q, σ), emin), υ)

)
if α(q) < c is even and smaller than c.

– The coloring function α′′ maps the states Q×{emin} to 2 and the remaining
states to 1.



Synthesis for Probabilistic Environments 253

The states in Q reflect the first phase of the acceptance game on GTD : player
accept moves to a position of her choice (

∨
υ∈Υ (δ(q, σ), υ)) and eventually moves

on to the second phase (δ′′(q, emin), σ)). The color 1 for these states reflect the
winning condition on infinite plays (player accept looses if she stays for ever in
the first phase).

In the second phase, the situation is more involved, since rather than guessing
the action of player accept, the automaton needs to cover all possible actions of
player reject. Intuitively, the option of player reject to stay in the second phase
is covered by sending, from a state (q, c), a copy (q′, emin) (with q′ = δ(q, σ))
to each direction. Since player reject looses when staying in the second phase
indefinitely, the color of these states is 2. Additionally, if α(q) is odd, player
reject could move to the third phase, which could be reflected by sending a copy
(q, α(q)) to some direction (α(q) denotes the color to be stored). Concurrently, we
must consider the possibility that the game is in the third phase. If α(q) is even
and greater than c, then player accept wins immediately (no successor send),
otherwise (q′, c) is sent to some successor. Since player accept loses by staying in
the third phase indefinitely, the color of a state (q, c) with c �= emin is 1. Since
the situation of player reject becomes strictly better when the stored color c
increases, we can, instead of sending (q′, c) and (q′, c′) into the same direction,
send only (q′,max{c, c′}). This results in the nondeterministic automaton OD′.

The nondeterministic Büchi tree automaton AD′ = (Σ,Q′, q′0, δ
′, α′) for test-

ing almost-sure acceptance is defined as follows:

– The set of states is set to Q′ = Q × B × C+
e ∪ {⊥} with initial state q′0 =

(q0, true, emax ), where C+
e denotes the set of even colors of D, plus, if the

highest color of D is an odd number omax , omax +1. emax denotes the highest
number in C+

e .
– The transition function is defined by:

• δ′ : ((q, ∗, c), σ)  →
∨

υ∈Υ

(
((δ(q, σ), true, c), υ)

∧
∧

υ �=υ′∈Υ ((δ(q, σ), false , c), υ)
)

∨
∧

υ∈Υ (δ(q, σ), false ,min{c, α(q)}), υ) if α(q) is even,
• δ′ : ((q, ∗, c), σ)  →

∧
υ∈Υ (⊥, υ) if α(q) > c is odd and greater than c,

• δ′ : ((q, ∗, c), σ)  →
∨

υ∈Υ

(
((δ(q, σ), true, c), υ)

∧
∧

υ �=υ′∈Υ ((δ(q, σ), false , c), υ)
)

otherwise, and
• δ′ : (⊥, σ)  →

∧
υ∈Υ (⊥, υ).

– The coloring function α′ maps Q× {true} × C+
e and the error state ⊥ to 1

and Q× {false} × C+
e to 2.

In almost-sure acceptance, the situation is slightly more involved. The states
keep three pieces of information: the state of the deterministic word automa-
ton, the information, if the game could be in the second phase, and a color,
which reflects that the third phase could have been entered from a state in this
color. The color is initialized to emax , which is greater than all odd colors. From
every point of the computation tree, one or no successor can refer to the sec-
ond phase: No successor, if player accept would move to the third phase, and



254 S. Schewe

one successor otherwise. Player accept loses iff there is a trace where he even-
tually stays indefinitely in the second phase, or if there is a trace where he
eventually moves to the third phase in a state (q, ∗, ∗) and then reaches a state
(q′, ∗, ∗) with odd color α(q′) > α(q). The latter is modelled by moving to the
designated error state ⊥. The remaining information can be handled by storing
the (even) color α(q) every time player accept would move to the third phase
(
∧

υ∈Υ ((δ(q, σ), false ,min{c, α(q)}), υ)) or by marking the direction player ac-
cept would choose when staying in the second phase (

∨
υ∈Υ ((δ(q, σ), true, c), υ)∧∧

υ �=υ′∈Υ ((δ(q, σ), false , c), υ)).
Obviously, a transition-system is rejected by AG′ iff the acceptance game on

GTD is won by player reject. ��

These automata additionally have the pleasant property that their transition
tables are short (at most |Υ | + 1 entries for each state/input-letter pair).

The step to input-preserving transition-systems is a small one. The respective
automaton can be multiplied with a deterministic safety automaton that checks
if the label always agrees with the direction. The small transition table property
is preserved by this transformation.

Theorem 3. [11] Given an alternating tree automaton A over Υ × Σ-labeled
Υ -transition-systems, we can construct an alternating tree automaton A′ over
Υ × Σ-labeled Υ -transition-systems that accepts a transition-system T iff it is
input-preserving and accepted by A. If A has n states, A′ has at most n · |Υ |+1
states, and if A is a (non)deterministic, weak or Büchi automaton, so is A′. ��

4 Temporal Logics

While Section 3 provided basic techniques for trace languages and
ε-environments, these results are transferred to temporal logics in this section.
For the linear-time temporal logic LTL the techniques from the previous section
can easily be applied: It suffices to translate an LTL formula into an equivalent
deterministic word automaton, and then use the results of Section 3.

For probabilistic systems, the almost-sure/observable semantics for LTL in-
spire a redefinition of CTL* semantics [8]: Universal path quantification (Aπ)
can be interpreted as the property that the probability measure of the paths
satisfying π is 1, and existential path quantification can be interpreted as the
property that the probability measure of the paths satisfying π is greater than 0.

Liner-Time Logic. Converting LTL formulas to deterministic word automata
is well established.

Theorem 4. [15,7] Given an LTL specification ϕ, we can construct a determin-
istic word automaton Dϕ that accepts exactly the models of ϕ. The number of
states of Dϕ is doubly exponential in the length of ϕ. ��

Given an LTL specification ϕ, we can, by the Theorems 4, 2 and 3, construct
a nondeterministic Büchi tree automaton Nϕ that accepts an input-preserving



Synthesis for Probabilistic Environments 255

2I × 2O-labeled 2I -transition-system iff it almost-surely (observably) satisfies ϕ,
such that the number of states of Nϕ is doubly exponential in the length of ϕ.
Checking Nϕ for emptiness and, if Nϕ is non-empty, constructing a transition-
system accepted by Nϕ reduces to solving a Büchi game, whose states intuitively
consist of the states of Nϕ and the entries in the transition-table of Nϕ.

Corollary 1. Given an LTL specification ϕ we can, in time doubly-exponential
in the length of ϕ, construct an input-preserving 2I × 2O-labeled 2I-transition-
system which almost-surely (observably) satisfies ϕ, or show that no such transi-
tion-system exists, in time doubly-exponential in the length of ϕ. ��

It turns out that this upper bound is sharp.

Theorem 5. The LTL synthesis problem is 2EXPTIME complete.

Proof. The upper bound is established by Corollary 1. To establish a matching
lower bound, consider the ω-regular trace language

Ln = { {0, 1, 2, 3}∗ · 3 · {0, 1, 2}∗ · 2 · v · 2 · {0, 1, 2}∗ · 3 · v · {0, 1, 2}ω | v ∈ {0, 1}n}.

While Ln can be expressed by an LTL formula with size quadratic in n, any
automaton accepting Ln necessarily has at least 2n states [9] (since it must
continously update the set of subsets of {0, 1} words of length n that have
occurred between two 2 symbols since the last 3).

Consider a system with two boolean input variables i1 and i2, and a single
output variable o. One can use i1 and i2 to encode the letters 0, . . . , 3, and
represent the language Ln by a formula ϕn (of length quadratic in n).

The specification ψn = ϕn ↔ FGo can only be satisfied by a transition-system
with at least O(2n) states, regardless if in classical, almost-sure or observable
semantics, since the transition-system always needs to react on an additional 3
(e.g., by setting the value of the output variable to true or false n steps after a
3 was read and keeping it constant otherwise). ��

Branching-Time. In the branching-time case, one can use the fact that Eψ
and Aψ are state-formulas. We call the strict subformulas of a CTL* specification
ϕ of this special form the basic subformulas of ϕ, denoted basic(ϕ). Testing if a
transition-system T satisfies a CTL* formula ϕ can be reduced to testing if the
labels of T can be extended with suitable truth values for the basic subformulas
of ϕ. The correct labels can be guessed on the fly.

Theorem 6. Given a CTL* specification ϕ we can construct a weak alternating
tree automaton A which accepts an 2I × 2O-labeled 2I-transition-system iff it
satisfies ϕ. The number of states of A is doubly-exponential in the length of ϕ.

Proof. In our construction, the values of the basic formulas are guessed. Let
Aψ = (Σψ, Qψ, qψ

0 , δ
ψ, αψ) denote the weak alternating tree automaton that

accepts the models of a basic formula ψ = Eψ′ or ψ = Aψ′ of ϕ (or of ϕ
itself), where the basic subformulas of ψ are provided as atomic proposions.



256 S. Schewe

Aψ can be constructed by the method introduced in Theorem 1. The number
of states of Aψ is doubly exponential in the number of states of ψ. Let Aψ =

(Σψ, Qψ, qψ
0 , δ

ψ, αψ) denote the weak alternating automaton dual to Aψ.
We assume w.l.o.g. that ϕ is basic (otherwise we can replace the state for-

mula ϕ by Aϕ or Eϕ without changing the semantics) and define the weak
alternating tree automaton A = (2I × 2O, Q, q0, δ, α) as follows: The states
Q = Qϕ ∪

⋃
ψ∈basic(ϕ)(Q

ψ ∪ Qψ) are formed by the states of the single weak
alternating automata Aψ, and the initial state q0 = qϕ

0 is the initial state of Aϕ.
The transition function is defined such that

δ(qψ , σ) =
∨

Ψ⊆basic(ψ)

(
δψ(qψ , σ ∪ Ψ) ∧

∧
ψ′∈Ψ

δ(qψ′
0 , σ) ∧

∧
ψ′∈basic(ψ)�Ψ

δ(qψ′
0 , σ)

)
holds true. The coloring function maps a state qψ with even (odd) color αψ(qψ)
in Aψ to an even (odd) color, such that the weakness criterion is preserved.

Intuitively, the truth of the single basic subformulas is guessed on the fly.
To demonstate that guessing these values is safe, we show that player accept
has a winning strategy in the acceptance game if, and only if, he as a winning
strategy where he always guesses the validity of all basic subformulas correctly.
This can be demonstrated by induction along the structure of ϕ: Assume that
player accept has a winning strategy where the truth value of some subformula
is guessed incorrectly. Then there is a basic subformula ψ whose truth value is
eventually guessed incorrectly, but the truth values of the basic subformulas of
ψ are always guessed correctly. Then, for a state s in the transition-system T
where the truth of ψ was eventually guessed incorrectly (w.l.o.g. to true), player
accept has a winning strategy from (qψ

0 , s) in the acceptance game, such that all
values of basic subformulas of ψ are guessed correctly. Then player accept has a
winning strategy in Aψ when the labeling of T are enriched by the correct values
for the basic subformulas of ψ (the winning strategy is the winning strategy from
A, with the simplification that the correct values need not be guessed). But in
this case ψ is valid in s. ��

The automaton Aϕ constructed by Theorem 6 can be turned into an equivalent
nondeterministic Büchi tree automaton Nϕ [14] with exponentially more states
than Aϕ. The language of Nϕ can be restricted to input-preserving
transition-systems (Theorem 3). A transition-system accepted by Aϕ can be
constructed via solving the emptiness game for the resulting automaton.

Corollary 2. Given a CTL* specification ϕ we can construct an
input-preserving 2I × 2O-labeled 2I-transition-system, or proof that no such sys-
tem exists, in time triply exponential in the length of ϕ.

Theorem 5 provides a 2EXPTIME lower bound, which leaves the exact charac-
terization of the complexity of the CTL* synthesis problem open. For its impor-
tant sub-logic CTL, the complexity coincides with the synthesis complexity for
classical semantics.



Synthesis for Probabilistic Environments 257

Theorem 7. The CTL synthesis problem is EXPTIME complete.

Proof. In CTL, each path quantifier refers to a path formula of the form ψ1Uψ2,
Gψ1, orXψ1, where ψ1 and ψ2 are propositional (when basic formulas are viewed
as propositions). For such path formulas (and their negations) acceptance of a
path can be tested by a deterministic word automaton with three, two, or three
states, respectively. The alternating automaton constructed by Theorem 6 is
therefore only linear in the length of the specification, and emptiness can be
checked (via nondeterminization [14] of this automaton) in time exponential in
the length of the specification.

To demonstrate EXPTIME-hardness, we reduce solving the two player game
PEEK-G4 [17] to CTL synthesis. An instance of this game is a four-tuple
〈X,Y, Z, ϕ〉, where X and Y are disjoint sets of boolean variables with the
intuition that X is under the control of the system and Y is under the control
of the environment. Z ⊆ X ∪ Y denotes the variables which initially hold true
and ϕ is a propositional formula over the variables X ∪Y . The game is played in
rounds where first the system can change the value of at most one variable in X ,
followed by a decision of the environment to change the value of at most one vari-
able in Y . The system wins the game iff ϕ is eventually satisfied (after the move
of the system). To determine the winner of such games is EXPTIME-hard [17].

An instance of this game can be reduced to the synthesis problem for a system
with one input-variable i, two output variables o1 and o2, and a CTL specification
ψ quadratic in |X |+|Y | and linear in ϕ. ψ = ψ0∧ψ1∧ψ2∧ψ3∧ψϕ is a conjunction
of the following five CTL formulas:

– ψ0 requires that the first |X | values of o1 reflect (on every path) the initial
truth value of the variables in X (defined by X ∩ Z) and the following |Y |
values of o1 reflect the initial truth value of the variables in Y .

– ψ1 requires that o2 is true exactly every |X | + |Y | steps (and initially) on
every path.

– ψ2 requires that at most one value of the variables o1 within |X | − 1 steps
after o2 was last set to true (including the current step) differs from the
value of o1 |X | + |Y | steps earlier.

– ψ3 states that within |X | to |X | + |Y | − 1 steps after o2 was set true, the
value of the variable o1 is different from its value |X | + |Y | steps earlier iff
(1) the value of the input variable is true and (2) the values of the previous
input variables since |X | steps after o2 was last set to true were all false .

– ψϕ requires that, for all paths, there is eventually a position where o2 is true
and along the path where i is false for the following |X | + |Y | steps, the
following |X |+ |Y | values of o1 (including the current value) satisfy ϕ.

ψ2 and ψ3 refer to the changing of at most one assignment for the variables of
X and Y by the system and the environment, respectively, ψ0 initializes the game
and ψ1 guarantees that o2 can be used as a flag, indicating that a round starts.
ψϕ reflects the winning condition of the game. An input-preserving transition-
system that satisfies ψ (in classical semantics as well as in almost-sure/observable
semantics) defines a winning strategy for 〈X,Y, Z, ϕ〉 and vice versa. ��



258 S. Schewe

5 0-Environments

0-environments can “emphasize” each single path by assigning a probability
measure of 1 (if the probability of each single action can be chosen from [0, 1])
or arbitrarily close to 1 (if the probability of each single action can be chosen
from ]0, 1]). For the latter consider an assignment of the probability 1 − 2i · ε
for staying on the path desired by the environment in the i-th step for some
ε > 01. Consequently, the LTL synthesis problem coincides for almost-sure and
observable semantics with the LTL synthesis problem for classical semantics,
which is 2EXPTIME-complete [15].

For almost-sure/observable CTL* semantics this implies that existential and
universal path quantifiers coincide. Consequently, a transition-system T is a
model of a CTL* specification ϕ iff T is a model of a specification ϕ′ in classical
semantics, where ϕ′ is obtained from ϕ by replacing all existential path quan-
tifiers by universal path quantifiers. This implies EXPTIME and 2EXPTIME
upper bounds for the CTL and CTL* synthesis problem [11], respectively.

On the other hand, in classical semantics each specification ψ can be trans-
lated to an equivalent specification ψ′ by replacing each occurrence of an exis-
tential path quantifier E by the sequence ¬A¬. Since the length of ψ′ is linear
in the length of ψ and the classical semantics for ψ′ coincides with the almost-
sure/observable semantics, the matching lower bounds for the CTL and CTL*
synthesis problem [11] are preserved as well.

6 Conclusions

This paper suggests constructive decision procedures for the LTL, CTL and
CTL* synthesis problems under the assumption of 0-environments and ε-environ-
ments. While the semantics for 0-environments essentially reflect the classical
semantics and practically all established results trivially carry over, the results
for ε-environments provide interesting new insights.

The results of this paper show that the complexity of synthesizing transition-
systems satisfying an LTL or CTL specification ϕ in almost-sure/observable se-
mantics is, under the assumption of ε-environments, equivalent to the complexity
in classical semantics. While the complexity coincides, the language classes for
LTL are at the same time simpler and more involved than for classical seman-
tics: They are simpler in the sense that the languages are recognizable by weak
alternating automata, and more involved since they cannot be recognized by
deterministic automata.

Two interesting questions deserve further study: the exact complexity of CTL*
synthesis in almost-sure/observable semantics, and the influence of incomplete
information on the complexity of the LTL2 synthesis problem. These problems
1 The probability measure of the path is, in this case, greater than 1 − ε, and can

therefore be chosen arbitrarily close to 1 by the 0-environment.
2 For CTL and CTL* synthesis, incomplete information can be handled using estab-

lished automata-based techniques [10].



Synthesis for Probabilistic Environments 259

may be closely interrelated: In classical semantics, both problems can be solved
through the existence of alternating automata that are only exponential in the
length of a CTL* formula ϕ, which accept the models of ϕ. It does not seem
unlikely that similar solutions exist for almost-sure/observable semantics, tak-
ing into account that model-checking remains PSPACE-complete (Yannakakis
PSPACE result for LTL model-checking [4] trivially extends to CTL*).

An interesting side effect of using an automata-based synthesis algorithm is
the possibility to extend the results for single-process synthesis directly to multi-
process synthesis [12,6].

References

1. M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable concurrent
program specifications. In Proc. ICALP, pages 1–17. Springer-Verlag, July 1989.

2. A. Anuchitanukul and Z. Manna. Realizability and synthesis of reactive modules.
In Proc. CAV, pages 156–168. Springer-Verlag, June 1994.

3. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skele-
tons using branching time temporal logic. In Proc. IBM Workshop on Logics of
Programs, pages 52–71. Springer-Verlag, 1981.

4. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
J. ACM, 42(4):857–907, 1995.

5. L. de Alfaro. From fairness to chance. In Proc. PROBMIV’98, 1999.
6. B. Finkbeiner and S. Schewe. Uniform distributed synthesis. In Proc. LICS, pages

321–330. IEEE Computer Society Press, June 2005.
7. Y. Gurevich and L. Harrington. Trees, automata and games. 14:60–65, 1982.
8. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal

Aspects of Computing, 6(5):512–535, 1994.
9. O. Kupferman and M. Vardi. Freedom, weakness, and determinism: From linear-

time to branching-time. In Proc. LICS, June 1995.
10. O. Kupferman and M. Y. Vardi. Synthesis with incomplete informatio. In Proc.

ICTL, pages 91–106, Manchester, July 1997.
11. O. Kupferman and M. Y. Vardi. Church’s problem revisited. The bulletin of

Symbolic Logic, 5(2):245–263, June 1999.
12. O. Kupferman and M. Y. Vardi. Synthesizing distributed systems. In Proc.

LICS’01, pages 389–398. IEEE Computer Society Press, July 2001.
13. D. Lehmann and M. O. Rabin. On the advantages of free choice: a symmetric and

fully distributed solution to the dining philosophers problem. In Proc. POPL ’81,
pages 133–138. ACM Press, 1981.

14. D. E. Muller and P. E. Schupp. Simulating alternating tree automata by non-
deterministic automata: new results and new proofs of the theorems of Rabin,
McNaughton and Safra. Theor. Comput. Sci., 141(1-2):69–107, 1995.

15. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. POPL,
pages 179–190. ACM Press, 1989.

16. A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive module.
In Automata, Languages and Programming, pages 652–671. Springer-Verlag, 1989.

17. L. J. Stockmeyer and A. K. Chandra. Provably difficult combinatorial games.
SIAM J. Comput., 8(2):151–174, 1979.

18. P. Wolper. Synthesis of Communicating Processes from Temporal-Logic Specifica-
tions. PhD thesis, Stanford University, 1982.



Branching-Time Property Preservation Between

Real-Time Systems�

Jinfeng Huang1, Marc Geilen1, Jeroen Voeten1,2, and Henk Corporaal1

1 Eindhoven University of Technology, The Netherlands
2 Embedded systems institute, The Netherlands

J.Huang@tue.nl

Abstract. In the past decades, many formal frameworks (e.g. timed
automata and temporal logics) and techniques (e.g. model checking and
theorem proving) have been proposed to model a real-time system and to
analyze real-time properties of the model. However, due to the existence
of ineliminable timing differences between the model and its realization,
real-time properties verified in the model often cannot be preserved in its
realization. In this paper, we propose a branching representation (timed
state tree) to specify the timing behavior of a system, based on which
we prove that real-time properties represented by Timed CTL∗ (TCTL∗

in short) formulas can be preserved between two neighboring real-time
systems. This paper extends the results in [1][2], such that a larger scope
of real-time properties can be preserved between real-time systems.

1 Introduction

Real-time systems have been widely used in various control applications, such
as robotic control and consumer electronics. The timing behaviors of these sys-
tems have to satisfy critical timing constraints (real-time properties) for correct
functioning. To this end, a model of the system can be constructed and formal
verification techniques (e.g. model-checking or theorem proving) can be used to
check whether the desired real-time properties are satisfied by the model. How-
ever, in practice the timing behavior of a model is not always identical to that
of its realization. It has been shown that a small timing perturbation in the tim-
ing behavior of the model can invalidate formal verification results. Therefore,
real-time properties satisfied by the model may not hold in its realization.

To address this problem, the robustness of the model has been investigated
in literature. In [3], a subclass of timed automata is examined, whose proper-
ties are robust w.r.t. infinitesimal timing errors. In [4], an algorithm is given to
extend the behavior of a timed automaton to tolerate infinitesimal clock drifts.
Consequently, properties of the extended behavior are robust w.r.t. the infinites-
imal clock drifts. Based on a similar technique proposed in [4], [5] shows that
for a given property, the upper bound of timing errors on guards of the timed
� This research is supported by PROGRESS project TES.7020, “Predictable co-design

for distributed embedded mechatronic control systems”.

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 260–275, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Branching-Time Property Preservation Between Real-Time Systems 261

�

��

��

Close

�

Fig. 1. The objective of property preservation

automaton can be calculated. Consequently, the timed automaton incorporating
these timing errors is still robust w.r.t. the given property.

Different from the above mentioned work, the problem mentioned previously
can also be addressed by investigating property relations between two timing
behaviors (e.g. of a model and its realization). The core question of this work is
illustrated in Figure 1. When real-time system S1 is close to S2, then the proper-
ties of S2 can be predicted from those of S1. For instance, in [1], we demonstrate
that linear real-time properties (MTL formulas [6]) of two neighboring real-time
systems can be predicted from one to the other based on their relative and abso-
lute timing differences. In [7], authors showed that the same property relations
also hold for TCTL formulas. Consequently, real-time properties of the realiza-
tion can be predicted from those of the model. In this framework, a model and
its realization with a small distance between them satisfy similar properties.
Furthermore, the closer is the model and its realization, the more similar their
properties are. This is different from [3],[4] and especially [5], which look into the
conditions under which properties satisfied by the model hold in the realization.

In this paper, we extend previous work in [1] [7] to achieve more general
property-preservation results. To this end, we first propose a branching repre-
sentation (called timed state trees) to specify the timing behavior of a system
(Section 2). Following that, we introduce TCTL∗ as a generalisation of TCTL [8]
to express real-time properties (Section 3). Subsequently, we prove that TCTL∗

formulas can be preserved between these branching-timing behaviors (Section 4).
Since TCTL∗ is more expressive than MTL, a larger scope of real-time properties
can be preserved between real-time systems.

2 Representation of System Behaviors

A commonly-used branching representation of a system is a computation tree
〈s0, S,→〉, where s0 is the root of the tree, S is a countable set of states and
→ is a binary relation over states. Starting from state s0, the computation tree
is recursively formed by attaching each state s with a set of computation trees
rooted by its successors. However, this discrete branching representation of the
system is not always sufficient. For instance, in a continuous time domain, the
state of the system continuously changes during the time progress. Furthermore,
the system may have different choices for the evolution at each state of these
continuous states. In [8], a TCTL-structure is proposed to specify the continuous
behavior in a branching structure, in which each sequence (called a run) records



262 J. Huang et al.

the states at time instances in a continuous time domain along an execution, and
the branching structure is defined by the fusion and suffix closure properties.

In our context, the same system behavior may have different timing observa-
tions. For example, suppose two persons measure the duration of the same traffic
light using different clocks. If the clock of the first person is 1.2 faster than that
of the second person, the time duration observed by the first person should be 1.2
longer than that observed by the second person. This simple example illustrates
that the same untimed behavior observed in different time domains could result
in different time behaviors. In this case, using the TCTL-structure to represent
the branching behavior of a system in different time domains has two limitations.
1)We assume that the same untimed behavior can be observed in different time
domains, which results in different timing behaviors. In the assumption, we con-
sider that the untimed behavior specifies the qualitative ordering relations be-
tween system states, while the timing behavior defines the quantitative ordering
relations between states. In the TCTL-structure, both qualitative and quantita-
tive ordering relations between states are defined in the same formalism. Hence,
the untimed behavior cannot be specified directly by the TCTL-structure.
2) According to the fusion closure property of the TCTL-structure, once a state s
is observed during the system evolution, its possible succeeding timing sequences
are always the same. The TCTL-structure is not sufficient for specifying a sys-
tem observed in different time domains. For instance, suppose the behavior of
system S is observed in two different time domains D1 and D2, where the time
progress of D2 is faster than that ofD1 by varying factors. If the timing behavior
of S observed in D1 is a TCTL-structure, then the timing behavior of S observed
in D2 may not be a TCTL-structure any more, because the succeeding possible
timing behavior of a state can be varying according to the time progress of D2.

In the following, we first propose a formalism (state trees) to express the
untimed behavior of the system, which is independent from its time observations.
Afterwards, the timing behavior of the system is specified by labelling times on
the states of the state tree.

2.1 Untimed Behaviors

In many formal frameworks, an execution of the untimed behavior is represented
by a sequence of discrete states. If continuous states can be observed along an
execution of the system, the untimed behavior cannot be expressed by a finite or
countable finite sequence of states. In the following, we introduce state segment
to represent a sequence of continuous states. Correspondingly, an execution of
the system can be represented by a finite or countable infinite sequence of state
segments.

Proposition set. Prop is a set of atomic propositions. An observable state of
a system can be associated with a subset of Prop which contains all propositions
that hold in that state. Notice that two states with the same interpretation are
not necessarily identical.

Index interval. I is a set of continuous positions defined over R≥0. I has
the form [0, t], where t ∈ R≥0. |I| (= t) represents the length of interval I.



Branching-Time Property Preservation Between Real-Time Systems 263

State segment. Intuitively, state segment ŝ is a sequence of continuous states.
More formally, it can be viewed as a function mapping each position x in index
interval I to a state. |ŝ| represents the length of ŝ, which equals |I|. For any
0 ≤ x ≤ |ŝ|, ŝ(x) represents the state observed at position x of ŝ. Two state
segments ŝ and ŝ′ are equal iff |ŝ| = |ŝ′| and for any 0 ≤ x ≤ |ŝ|, ŝ(x) = ŝ′(x). ŝ
is singular iff |ŝ| = 0.

Example 1 shows the application of state segments in a timed automaton.

Example 1. Consider a timed automaton [9] A = 〈l0, L,X,E〉, where l0 is the
initial location, L is the set of locations, X is an ordered set of n local clocks1

and E is a set of edges. The state of a timed automaton with clocks X is (l,x)
where l is a location and x ∈ Rn is an assignment of clocks in X . x + t denotes
that each clock assignment in x is increased by t. An edge e from location l to
location l′ is (l, g, r, l′) where g is the guard and r ⊆ {1, ...n} are clocks which
are reset during the jump from l to l′. Guard g ⊆ Rn is defined inductively by
g := x ≤ c | x ≥ c | ¬g | g1 ∧ g2, where x ∈ X and c is a constant.

We consider that the semantics of a timed automatonA is given by a transition
system T = 〈s0, QT ,→, Σ〉 [4], where s0 is the initial state (l0,0), QT is the
state space of A, →⊆ QT × (R+∪{d})×QT is the set of discrete and continuous
transitions. Continuous transition ((l,x), t, (l,y)) ∈→ represents that the timed
automaton A resides in the same location and lets the time elapse, where t > 0
and y = x + t. Discrete transition ((l,x), d, (l′,y)) ∈→ represents that A jumps
from one location l to another l′, when there exists an edge (l, g, r, l′) ∈ E such
that x ∈ g, yk = 0 when k ∈ r and yk = xk for k /∈ r.

Given a timed automaton A, each of its states (l,x) can be denoted by a
singular state segment ŝ = 〈l,x, 0〉, where 0 represents the length of ŝ. The
continuous states observed during continuous transition ((l,x), t, (l,y)) can be
represented by a state segment ŝ = 〈l,x, t〉, where t is the length of the state
segment. For any position 0 ≤ t′ ≤ t, the mapping from t′ to a state is given by
ŝ(t′) = (l,x + t′).

We consider that the positions of a state segment ŝ only specify qualitative
ordering relations between continuous states of ŝ. Quantitative ordering relations
between states derived from positions are not of our interest. In our context, the
quantitative ordering relations between states are derived from the time tags of
states, which are determined by the time progress of a time domain.

Two state segments ŝ and ŝ′ are contiguous iff ŝ(|ŝ|) = ŝ′(0). Two operations
are defined over state segments.
(1) Concatenation: if two state segments ŝ and ŝ′ are contiguous, the concate-
nation of state segments ŝ and ŝ′ is a state segment ŝ · ŝ′ given by:

ŝ · ŝ′(x) =
{
ŝ(x); if 0 ≤ x ≤ |ŝ|,
ŝ′(x− |ŝ|); if |ŝ| < x ≤ |ŝ| + |ŝ′|).

(2) Extraction: for state segment ŝ and interval [a, b] ⊂ [0, |ŝ|], an extraction
ŝ[a,b] of state segment ŝ is given by ŝ[a,b](t) = ŝ(t+ a), if 0 ≤ t ≤ b − a.
1 To distinguish from the clock concept used to measure the time progress of a time

domain, we call clocks of a timed automaton as local clocks.



264 J. Huang et al.

Given a set of state segments Ŝ, we call Ŝ closed under concatenation iff for any
two contiguous state segments ŝ1, ŝ2 ∈ Ŝ, ŝ1 · ŝ2 ∈ Ŝ. Similarly, we call Ŝ closed
under extraction iff for any state segment ŝ ∈ Ŝ and [a, b] ⊆ [0, |ŝ|], state segment
ŝ[a,b] ∈ Ŝ. We can verify that the set of state segments of a timed automaton
given in Example 1 is closed under both concatenation and extraction. In the
sequel, we assume that state segment set Ŝ is closed under both concatenation
and extraction, unless explicitly stated otherwise.

State path. ρ of state segment set Ŝ is a finite or countable infinite sequence
of state segments in Ŝ, ŝ0, ŝ1, ŝ2, ..., which satisfies the stutter-free constraint:
for any two adjacent state segments ŝi and ˆsi+1, ŝi(|ŝi|) �= ˆsi+1(0). According to
this, a continuous state segment should not be split into two or more segments
in a state path. N(ρ) represents the length (the number of the state segments)
of ρ. ρ(i) represents the i-th state segment of ρ, and ρ(i, x) represents the state
at position x of the i-th state segment of ρ(i). Given a state path ρ, the set of its
positions are defined by Φρ = {(i, x) | i < N(ρ) ∧ 0 ≤ x ≤ |ρ(i)|}. ρ, therefore,
can be viewed as a function which maps each position (i, x) in Φρ to a state. A
total order is defined over Φρ. (i, x) < (j, y) iff i < j or i = j and x < y.

Example 2. A state path ρ of a timed automaton T is a sequence of state seg-
ments ŝ0ŝ1..., which satisfies the stutter-free property. Namely, for any i ≤ |ρ|,
there exists a discrete transition (ŝi(|ŝi|), d, ŝi+1(0)) ∈→. Furthermore, the state
path ρ of T is diverging, i.e. for any t > 0, there exists i ≤ N(ρ) such that∑i

k=0 |ρ(k)| > t. Actually, the state path of a timed automaton is similar to the
s-path concept defined in [8] by removing its time tags on states.

In the following, we define operations suffix, prefix and concatenation for state
paths. For any (i, x) ∈ Φρ, the (i, x)-suffix of ρ (denoted as ρ(i,x)) represents a
path:

ρ(i,x)(j, y) =
{
ρ(i, x+ y), if j = 0 and (i, x+ y) ∈ Φρ

ρ(i+ j, y) if j > 0 and (i+ j, y) ∈ Φρ.

The (i, x)-prefix of ρ (denoted as ρ(i,x)) is defined by a function which maps
position (j, y) in {(j, y) | (j, y) ≤ (i, x), (j, y) ∈ Φρ} to state ρ(j, y).

Given a (i, x)-prefix of path ρ and a path ρ′, the concatenation of ρ(i,x) with
ρ′ (denoted as ρ(i,x) ·ρ′) is a path ρ∗. To ensure ρ∗ to be stutter-free, ρ∗ is defined
differently according to the relation between ρ(i, x) and ρ′(0, 0).

ρ(i, x) �= ρ′(0, 0) :
{
ρ∗(j, y) = ρ(j, y); if (j, y) ≤ (i, x) and (j, y) ∈ Φρ

ρ∗(i+ j + 1, y) = ρ′(j, y); if (j, y) ∈ Φρ′
.

ρ(i, x) = ρ′(0, 0) :

⎧⎨⎩
ρ∗(j, y) = ρ(j, y); if (j, y) ≤ (i, x) and (j, y) ∈ Φρ

ρ∗(i, x+ y) = ρ′(0, y); if (0, y) ∈ Φρ′

ρ∗(i+ j, y) = ρ′(j, y); if j > 0 and (j, y) ∈ Φρ′
.

If Θ is a set of paths, then ρ(t,m) ·Θ is the set of paths {ρ(t,m) · ρ′ | ρ′ ∈ Θ}.
It is easy to see that if ρ is a state path of Ŝ, so is its suffix ρ(i,x). Similarly,

if ρ and ρ′ are state paths of Ŝ, so is ρ(i,x) · ρ′. In the following, we define the
branching structure of the untimed behavior based on state paths.



Branching-Time Property Preservation Between Real-Time Systems 265

Definition 1. state tree
A state tree M is a tuple 〈s0, S, Ŝ, µ, f〉 where s0 ∈ S is the initial state, S is
a set of states, Ŝ is a set of state segments defined over S, µ maps each state
s ∈ S to a set of atomic propositions and f maps each state s ∈ S to a set of
state paths of Ŝ starting with s. f(s) satisfies the following constraints.
1) Fusion closure: for all ρ ∈ f(s), ρ(i,x) · f(ρ(i, x)) ⊆ f(s).
2) Suffix closure: for all ρ ∈ f(s), ρ(i,x) ∈ f(ρ(i, x)).

As we have mentioned previously, the state path of a timed automaton is similar
to the s-path concept of a TCTL-structure by removing its time tags. Cor-
respondingly, a state tree can roughly be considered as a TCTL-structure by
removing its time tags.

2.2 Timing Behaviors

In the previous section, we have introduced a branching representation to spec-
ify the untimed behavior for a real-time system, where only qualitative order
relations between states are specified. When the untimed behavior is observed
in a time domain, quantitative timing relations between states can be specified
based on their observation times. In the following, we define a time observation
of a state tree.

Definition 2. Given a state tree M = 〈s0, S, Ŝ, µ, f〉, a time observation D of
M maps each path prefix ρ of f(s0) to a non-negative real and D(ρ(0,0)) = 0.
Furthermore, D is weakly monotonically increasing such that if (i, x) ≤ (j, y),
D(ρ(i,x)) ≤ D(ρ(j,y)). The pair (D,M) is called a timed state tree.

The following example shows a timed state tree of a timed automaton.

Example 3. Consider a timed automaton T = 〈l0, L,X,E〉, whose untimed be-
havior is given by a state tree M = 〈s0, S, Ŝ, µ, f〉. s0 is the initial state of T . S
is the state space of T . Ŝ is the set of state segments of T , which is defined as in
Example 1. f maps each state s ∈ S to the set of state paths of Ŝ, which start
from s. It can be verified that f satisfies fusion and suffix closure.

Assume thatM is observed in the model time domain, where the domain clock
is always consistent with the progress of local clocks in the timed automaton. For
instance, an increase of the local clock value by 5 at a location indicates that
the model time also progresses 5 time units. During the location jump, each
local clock either remains unchanged or is reset, which implies that the model
time does not progress. Therefore, the time observation of M in the model time
domain is defined as below. For any state path ρ ∈ f(s0) and (i, x) ∈ Φρ,
– Dm(ρ(0,0)) = 0;
– if i > 0 and x = 0, then Dm(ρ(i,0)) = Dm(ρ(i−1,0))+ |ρ(i−1)| =

∑i−1
k=0 |ρ(i)|;

– if i > 0 and 0 < x ≤ |ρ(i)|, then Dm(ρ(i,x)) = Dm(ρ(i,0)) + x.

It is easy to see that Dm is a time observation of M . Furthermore, if we consider
Dm(ρ(i,x)) to be the time tag labelled on the state ρ(i, x), this timed state tree
can be considered as a TCTL-structure.



266 J. Huang et al.

A state tree with different time observations results in different timed state trees.
For example, assume that the realization of a system have the same qualitative
relations between states as the model, e.g. the untimed behaviors of both is
specified by the same state tree. However, the timing behavior of the model is
observed in a continuous model time domain, while that of the realization is
observed in a digital hardware time domain. Consequently, the same path prefix
of the state tree is labelled with different values in the two time domains. To
capture the difference between timed state trees, in the following, we introduce
two proximity measures: absolute time deviation and relative time drift. The
absolute time deviation refers to the absolute differences between the times of
corresponding path prefix in two timed state trees. The relative time drift refers
to the ratio between the corresponding time differences of path prefixes in two
timed state trees.

Definition 3. Absolute time deviation
Let M = 〈s0, S, Ŝ, µ, f〉 be a state tree and let D and D′ be two of its time
observations. Further let ε ∈ R≥0. (D′,M) is absolute ε-close to (D,M), iff
for any path ρ ∈ f(s0) and (i, x) ∈ Φρ, |D′(ρ(i,x)) −D(ρ(i,x))| ≤ ε.

Definition 4. Relative time drift
Let M = 〈s0, S, Ŝ, µ, f〉 be a state tree and let D and D′ be two of its time
observations. Further let ε ∈ R≥1. (D′,M) is relative ε-close to (D,M), iff for
any path ρ ∈ f(s0), (i, x), (j, y) ∈ Φρ such that (i, x) < (j, y)

D′(ρ(j,y)) −D′(ρ(i,x))
D(ρ(j,y)) −D(ρ(i,x))

∈ [
1
ε
, ε].

In the case that both D′(ρ(i,x)) − D′(ρ(j,y)) and D(ρ(i,x)) − D(ρ(j,y)) are zero,

then
D′(ρ(i,x))−D′(ρ(j,y))

D(ρ(i,x))−D(ρ(j,y))
is not defined.

In practice, the observation times of a state tree in a time domain is determined
by the time progress measured by a domain clock. Correspondingly, we can also
use the deviation/drift between domain clocks to estimate the deviation/drift
between timed state trees. For instance, given two clocks C1 and C2, if clock
C1 is at most 2 and at least −2 seconds faster than C2, then we can estimate
that the timed state tree (D1,M) observed in the time domain of C1 is absolute
2-close to (D2,M) observed in the time domain of C2. Similarly, if the change
rate of C1 is at most twice faster and at least 0.5 faster than that of C2 at any
moment, then we can estimate that timed state tree (D1,M) is relative 2-close
to (D2,M).

3 Representations of Real-Time Properties

Temporal logics have been widely applied to the formalization of real-time prop-
erties of a system. Typical examples include LTL, CTL and CTL∗. When timeli-
ness becomes a major concern, it is necessary to incorporate quantitative



Branching-Time Property Preservation Between Real-Time Systems 267

timing constraints into temporal logics to express desired quantitative real-time
properties. A common way to do so is to extend qualitative temporal logics by
attaching time bounds to their temporal operators. Typical examples include
metric temporal logic MTL (a time-bounded extension of LTL) [6] and branch-
ing time-bounded temporal logic RTCTL (real-time CTL) [10]. In this paper,
due to the rich expressiveness of CTL∗, we use a time-bounded extension TCTL∗

of CTL∗ to express the quantitative timing constraints. In the following, we first
introduce the syntax of TCTL∗ and give its semantics w.r.t. timed state trees
defined in the previous section. Then, we investigate the weakening relations be-
tween TCTL∗ formulas, and define two specific weakening functions over TCTL∗

formulas. These weakening functions are used to establish property relations be-
tween neighboring timed state trees in the next section.

3.1 Quantitative Temporal Logic TCTL∗

In this paper, a time-bounded extension of CTL∗ is used to express the quan-
titative timing constraints. The extension of its syntax is similar to that from
CTL to TCTL, which has been proposed in [8]. Hence, his extension is denoted
as TCTL∗. A TCTL∗ formula is defined by the following state formulas α and
path formulas β.

α := p | ¬p | α1 ∧ α2 | α1 ∨ α2 | Eβ | Aβ;

β := α | β1 ∧ β2 | β1 ∨ β2 | β1UIβ2 | β1VIβ2,

where time bound I is an interval of non-negative reals. We use l(I) and r(I)
to represent the left end and right end of I respectively.

We choose a set of dual operators: ∧ (“and”) and ∨ (“or”), A (“all paths”)
and E (“for some path”), U (“until”) and V (“unless”) to define a “negation-
free” TCTL∗ logic, where negation only appears in front of atomic propositions.
However, it is also possible to choose another set of operators ¬ (“not”) ∧,
A and U to define the TCTL∗ logic. The two definitions are equivalent. The
choice of negation-free TCTL∗ can facilitate the establishment of the property-
preservation relation between different timed state trees later. In the following,
we define the semantics of TCTL∗ w.r.t. a timed state tree.

Definition 5. Semantics of TCTL∗

For any state tree M = 〈s0, S, Ŝ, µ, f〉, time observation D, state s ∈ S, path ρ ∈
f(s0), state formula α of TCTL∗ and path formula β of TCTL∗, the satisfaction
relations (M, s) |=D α and (M, (ρ, (i, x))) |=D β are inductively defined as follows
(M is omitted, whenever it is implicitly understood.).

– s |=D p iff p ∈ µ(s);
– s |=D ¬p iff p /∈ µ(s);
– s |=D α1 ∧ α2 iff s |=D α1 and s |=D α2;
– s |=D α1 ∨ α2 iff s |=D α1 or s |=D α2;
– s |=D Eβ iff for any ρ ∈ f(s0) and (i, x) ∈ Φρ such that ρ(i, x) = s, there

exists ρ′ ∈ f(s) such that (ρ(i,x) · ρ′, (i, x)) |=D β.



268 J. Huang et al.

�

���

�

t’
t’+3

t+2t

��

���� �� � �

���

Fig. 2. A timed state tree

Table 1. Syntactic abbreviations

true T ≡ p ∨ ¬p

false F ≡ p ∧ ¬p

eventually ♦Iβ ≡ TUIβ

always �Iβ ≡ FVIβ

weakly until β1UIβ2≡ (β1UIβ2)∨�Iβ1

implication β1 → β2 ≡ ¬β1 ∨ β2

– s |=D Aβ iff for any ρ ∈ f(s0) and (i, x) ∈ Φρ such that ρ(i, x) = s and for
any ρ′ ∈ f(s), (ρ(i,x) · ρ′, (i, x)) |=D β.

– (ρ, (i, x)) |=D α iff one of the following conditions is satisfied
• (α = p or α = ¬p) and ρ(i, x) |=D α;
• α = α1 ∧ α2 and ((ρ, (i, x)) |=D α1 and (ρ, (i, x)) |=D α2);
• α = α1 ∨ α2 and ((ρ, (i, x)) |=D α1 or (ρ, (i, x)) |=D α2);
• α = Eβ and there exists ρ′ ∈ f(ρ(i, x)) such that (ρ(i,x) ·ρ′, (i, x)) |=D β;
• α = Aβ and for any ρ′ ∈ f(ρ(i, x)), (ρ(i,x) · ρ′, (i, x)) |=D β;

– (ρ, (i, x)) |=D β1 ∧ β2 iff (ρ, (i, x)) |=D β1 and (ρ, (i, x)) |=D β2;
– (ρ, (i, x)) |=D β1 ∨ β2 iff (ρ, (i, x)) |=D β1 or (ρ, (i, x)) |=D β2;
– (ρ, (i, x)) |=D β1UIβ2 iff there exists (j, y) ≥ (i, x) such that D(ρ(j,y)) −
D(ρ(i,x)) ∈ I, (ρ, (j, y)) |=D β2 and for any (i, x) ≤ (k, z) < (j, y), (ρ, (k, z))
|=D β1;

– (ρ, (i, x)) |=D β1VIβ2 iff for any (j, y) ≥ (i, x) such that D(ρ(j,y))−D(ρ(i,x))
∈ I, either (ρ, (j, y)) |=D β2 or there exists (i, x) ≤ (k, z) < (j, y) such that
(ρ, (k, z)) |=D β1.

In the case that I is [0,∞), we omit the time bound I of temporal operators.
Several other useful abbreviations are defined in Table 1.

Once a state s is observed during the system evolution, its possible succeeding
state paths are always the same (the fusion closure of the state tree). However,
the quantitative timing relations between states in the succeeding state paths
can vary for different occurrences of s. Therefore, if a state formula α is satisfied
by a state s, we require that α is satisfied by all possible occurrences of s in the
timed state tree. On the other hand, if a state formula α is satisfied by a path ρ
at its position (i, x) (ρ(i, x) = s), we only require that the particular occurrence
of s in the particular ρ satisfies α. For instance, property E♦[0,3]q is satisfied by
state s in the timed state tree in Figure 2, but E♦[0,2]q is not. However, E♦[0,2]q
is satisfied by path ρ at its position (i, x) where ρ(i, x) = s.

3.2 Weakening Formulas

In this subsection, we first introduce the weakening relation between TCTL∗

formulas, based on which two specific functions, the absolute-weakening function



Branching-Time Property Preservation Between Real-Time Systems 269

and the relative-stretching function, are defined over TCTL∗ formulas. These
two functions are used to establish property relations between two neighboring
real-time systems.

Weakening Relation. Formula ϕ is weaker than ϕ′, if the satisfaction of ϕ′

by a timed state tree always implies the satisfaction of ϕ. For example, formula
p ∨ q is weaker than formula p. The weakening relation between negation-free
TCTL∗ formulas can be derived from the weakening relation between their sub-
formulas and/or the inclusion relation between their time bounds. This is briefly
summarised as the following lemmas, which proofs are straightforward.

Lemma 1. For any TCTL∗ formula ϕ and sub-formula φ of ϕ, if φ′ is a weaker
formula than φ and ϕ′ is the formula obtained by replacing one occurrence of φ
with φ′ in ϕ, then ϕ′ is a weaker formula than ϕ.

Lemma 2. Let I and I ′ be two time bounds. Further let ϕ1, ϕ2 be two TCTL∗

formulas. If I ⊆ I ′, then ϕ1UI′ϕ2 (ϕ1VIϕ2) is a weaker formula than ϕ1UIϕ2

(ϕ1VI′ϕ2).

Weakening Functions. We have shown that the inclusion of time bounds
implies the weakening of formulas. Now we define several operators for mod-
ifying the size of time bounds. More specifically, operators ⊕ and , change
time bounds with absolute values, while operators ⊗ and - change time bounds
with scale factors. Correspondingly, the absolute-weakening function and the
relative-stretching function are defined by modifying the time bounds of TCTL∗

formulas.
Operators ⊕ and ,. For any ε ∈ R≥0 and time-bound I, I⊕ ε represents an

interval, which has the same form as I and has left end-point l(I) + ε and right
end-point r(I)− ε. I, ε is an interval, which has the same form as I and has left
end-point l(I)+ε and right end-point r(I)−ε. For instance, [2, 4]⊕0.5 = [1.5, 4.5],
(3, 9) ⊕ 1 = (2, 10) and [1.5, 3), 1 = [2.5, 2] = ∅.

Operators ⊗ and -. For any ε ⊆ R≥1 and time-bound I, I ⊗ ε represents
an interval, which has the same form as I and has left end-point l(I) · 1

ε and
right end-point r(I) · ε. I - ε represents an interval, which has the same form
as I and has left end-point l(I) · ε and right end-point r(I) · 1

ε . For instance,
[2, 4]⊗ 2 = [1, 8], (3,∞) ⊗ 1.5 = (2,∞) and [2, 3)- 2 = [4, 1.5) = ∅.

The following lemmas reveal the relations between I, I , ε⊕ ε and I - ε⊗ ε,
which are useful for the proofs of property preservation in the next section.

Lemma 3. Let I be a non-empty time bound. For any ε ∈ R≥0, if I , ε �= ∅
then I , ε⊕ ε = I ⊕ ε, ε = I.

Lemma 4. Let I be a non-empty time bound. For any ε ∈ R≥1, if I - ε �= ∅
then I - ε⊗ ε = I ⊗ ε- ε = I.

Absolute ε-weakening function. The absolute ε-weakening function over
TCTL∗ formulas is defined based on operators ⊕ and ,. In the next section, the



270 J. Huang et al.

absolute ε-weakening function is used to establish the property relations between
two timed state trees, where their proximity is measured based on the absolute
time deviation.

Definition 6. Weakening function Rε
a : TCTL∗ → TCTL∗ is inductively de-

fined by:

Rε
a(p) = p; Rε

a(¬p) = ¬p;
Rε

a(α1 ∨ α2) = Rε
a(α1) ∨ Rε

a(α2); Rε
a(α1 ∧ α2) = Rε

a(α1) ∧ Rε
a(α2);

Rε
a(Aα) = ARε

a(α); Rε
a(Eα) = ERε

a(α);
Rε

a(β1 ∨ β2) = Rε
a(β1) ∨ Rε

a(β2); Rε
a(β1 ∧ β2) = Rε

a(β1) ∧ Rε
a(β2);

Rε
a(β1UIβ2) = Rε

a(β1)UI⊕ε∩[0,∞]R
ε
a(β2); Rε

a(β1VIβ2) = Rε
a(β1)VIεR

ε
a(β2).

In the absolute ε-weakening function Rε
a(ϕ), ε is a parameter giving the extent

to which the time bounds of ϕ are elongated (or shrunk). Since I ⊕ ε may
elongate I to negative reals, we avoid this by using the intersection of I ⊕ ε and
[0,∞] in the definition of Rε

a. Rε
a(ϕ) relaxes the quantitative timing constraints

in formula ϕ and is called the absolute ε-weakened formula of ϕ. For instance,
R0.01

a (p ∨ q) = p ∨ q, and R0.5
a (pU[1.2,5)q) = pU[1.2,5)⊕0.5q = pU[0.7,5.5)q. The

following proposition shows that formula Rε
a(ϕ) is indeed weaker than formula

ϕ. Since for any time bound I, it is easy to see that I ⊆ (I ⊕ ε) ∩ [0,∞) and
I , ε ⊆ I. Proposition 1 can be proved by induction on the structure of formula
Rε

a(ϕ) and using Lemma 1 and 2.

Proposition 1. For any ε1, ε2 ∈ R≥0 such that ε1 ≤ ε2 and ϕ ∈ TCTL∗, Rε2
a (ϕ)

is weaker than Rε1
a (ϕ).

It is easy to see from Proposition 1 that for any ε ≥ 0, Rε
a(ϕ) is always weaker

than ϕ.

Relative ε-stretching function. For the relative timing difference case, we
use the relative ε-stretching function Rε

r which is defined over TCTL∗ formulas
based on operators ⊗ and -. Function Rε

r is defined similar to function Rε
a. The

only differences between the definitions are unless and until formulas.

Rε
r(β1UIβ2) = Rε

r(β1)UI⊗εR
ε
r(β2); Rε

r(β1VIβ2) = Rε
r(β1)VI�εR

ε
r(β2).

Similar to the absolute case, we also have the weakening relation for relative
ε-stretching functions.

Proposition 2. For any ε1, ε2 ∈ R≥1 such that ε1 ≤ ε2 and ϕ ∈ TCTL∗, Rε2
r (ϕ)

is weaker than Rε1
r (ϕ).

4 Property Preservation Between Timed State Trees

In this section, we complete the diagram illustrated in Figure 1. Intuitively speak-
ing, when a timed tree (D2,M) is close to (D1,M), we expect that properties of
(D2,M) are close to those of (D1,M) as well. This intuition can be conformed
in two ways as shown in Figure 3. First we consider the case when two timed
state trees are absolute close.



Branching-Time Property Preservation Between Real-Time Systems 271

��

��

�

�
��

�

�������� ��	����

(a) Absolute case

�� �
�

�

��
�

�������� ����	
�

(b) Relative case

Fig. 3. Property-preservation results

Lemma 5. Let M = 〈s0, S, Ŝ, µ, f〉 be a state tree, and let D1 and D2 be two of
its time observations such that (D2,M) is absolute ε-close to (D1,M). For any
path ρ ∈ f(s0), (i, x), (j, y) ∈ Φρ such that (i, x) < (j, y), and interval I ⊆ R≥0,
if D1(ρ(j,y)) −D1(ρ(i,x)) ∈ I then D2(ρ(j,y)) −D2(ρ(i,x)) ∈ I ⊕ 2ε ∩ [0,∞].

Proof. Note thatD2(ρ(j,y))−D2(ρ(i,x)) = (D2(ρ(j,y))−D1(ρ(j,y)))−(D2(ρ(i,x))−
D1(ρ(i,x))) + (D1(ρ(j,y)) − D1(ρ(i,x))), where −ε ≤ D2(ρ(j,y)) − D1(ρ(j,y)) ≤ ε,
−ε ≤ D2(ρ(i,x)) −D1(ρ(i,x)) ≤ ε, and (D1(ρ(j,y)) −D1(ρ(i,x))) ∈ I. The rest of
the proof is straightforward by the definition of operator ⊕ and the monotonic
property of D2.

Theorem 1. Let M = 〈s0, S, Ŝ, µ, f〉 be a state tree, and let D1 and D2 be two
of its time observations such that (D2,M) is absolute ε-close to (D1,M). For
any state s ∈ S, path ρ ∈ f(s0), state formula α and path formula β of TCTL∗, if
s |=D1 α then s |=D2 R

2ε
a (α) and if (ρ, (i, x)) |=D1 β then (ρ, (i, x)) |=D2 R

2ε
a (β).

Proof. We show that s |=D2 R
2ε
a (α) and (ρ, (i, x)) |=D2 R

2ε
a (β) by induction

on the structure of formulas α and β. In the following, we only give the proof
for cases that α = Eβ, β = β1UIβ2, and β = β1VIβ2. The other cases are
straightforward or can be proven in a similar way.

– Case α = Eβ. By the interpretation of TCTL∗ logic, for any ρ ∈ f(s0)
and (i, x) ∈ Φρ such that ρ(i, x) = s, there exists ρ′ ∈ f(ρ(i, x)) such that
(ρ(i,x) · ρ′, (i, x)) |=D1 β. By induction, we know that (ρ(i,x) · ρ′, (i, x)) |=D2

R2ε
a (β). Therefore, s |=D2 ER

2ε
a (β) = R2ε

a (Eβ).
– Case β = β1UIβ2. There exists (j, y) ≥ (i, x) such thatD1(ρ(j,y))−D1(ρ(i,x))

∈ I, (ρ, (j, y)) |=D1 β2 and for any (i, x) ≤ (k, z) < (j, y), (ρ, (k, z)) |=D1 β1.
By Lemma 5, D2(ρ(j,y)) −D2(ρ(i,x)) ∈ I ⊕ 2ε. By induction, (ρ, (j, y)) |=D2

R2ε
a (β2) and for any (i, x) ≤ (k, z) < (j, y), (ρ, (k, z)) |=D2 R

2ε
a (β1). Thus,

(ρ, (i, x)) |=D2 R
2ε
a (β1UIβ2).

– Case β = β1VIβ2. For any (j, y) such that D2(ρ(j,y)) − D2(ρ(i,x)) ∈ I ,
2ε, by Lemma 3 and Lemma 5, D1(ρ(j,y)) − D1(ρ(i,x)) ∈ I. Then, either
(ρ, (j, y)) |=D1 β2 or there exists (i, x) ≤ (k, z) < (j, y) such that (ρ, (k, z))
|=D1 β1. By induction, either (ρ, (j, y)) |=D2 R

2ε
a (β2) or there exists (i, x) ≤

(k, z) < (j, y) such that (ρ, (k, z)) |=D2 R
2ε
a (β1). Therefore, (ρ, (i, x)) |=D2

R2ε
a (β1VIβ2).

Similarly, we can prove the property relation between timed trees based on
their relative time drift. This is given by the following lemma and theorem.



272 J. Huang et al.

��� �����
�� ������ ����

������

����

�����

� � ����

� �� �� � �� �

�
��
��

�
�
�
� �
�
�
��
�

�
��
�

� � ����

� �� �

�

�
������

�����

� �� �

� � �

Fig. 4. The behavior of the intelligent light controller

Lemma 6. Let M = 〈s0, S, Ŝ, µ, f〉 be a state tree, and let D1 and D2 be two
of its time observations such that (D2,M) is relative ε-close to (D1,M). For
any path ρ ∈ f(s0), (i, x), (j, y) ∈ Φρ such that (i, x) < (j, y), and non-negative
interval I ⊆ R≥0, if D1(ρ(j,y))−D1(ρ(i,x)) ∈ I then D2(ρ(j,y))−D2(ρ(i,x)) ∈ I⊗ε.

Theorem 2. Let M = 〈s0, S, Ŝ, µ, f〉 be a state tree, and let D1 and D2 be two
of its time observations such that (D2,M) is relative ε-close to (D1,M). For any
state s ∈ S, path ρ ∈ f(s0), state formula α and path formula β of TCTL∗, if
s |=D1 α then s |=D2 R

ε
r(α) and if (ρ, (i, x)) |=D1 β then (ρ, (i, x)) |=D2 R

ε
r(β).

5 An Example

In this section, we apply the property-preservation results proven in the previ-
ous sections to the design of a real-time system. We consider the design process
starting from the model of a real-time system, proceeding with the transforma-
tion of the model into a realization on a digital target platform and ending with
a realization observed in a continuous environment time domain.

Example 4. Consider an intelligent light controller, which can adjust light inten-
sity according to different input action sequences. The timing behavior of the sys-
tem is modeled by a timed automaton Tc visualised in Figure 4. We assume that
there is at least 0.01 seconds delay between two consecutive clicks. If a click ac-
tion occurs at the initial location (Off ), the controller goes into location (Active)
where a timer with duration 2 seconds is activated. Then the controller switches
immediately to another location (Wait) to wait for the time-out or another click
action. If a second click occurs within 2 seconds, the light intensity is set to high.
If the timer expires, the light intensity is set to normal. When the light is on (with
either normal or high intensity), another click turns the light off.

5.1 The Model in the Continuous Model Time Domain

Here we define an atomic proposition set AP with four atomic propositions.
1) Active: The controller detects the first click when the light is off.
2) Wait : The controller is waiting for the next action.



Branching-Time Property Preservation Between Real-Time Systems 273

3) Normal : The light intensity is normal.
4) High : The light intensity is high.

The location set L of Tc is defined by {Off ,Active,Wait ,Normal ,High}. Each
location is associated with a set of atomic propositions. Off is associated with
∅ and the other locations are associated with the corresponding atomic propo-
sitions e.g. Active with {Active}. In this example, we use two clocks x and z
to specify timing constraints of the controller, where x is used to specify the
constraint of the timer and z specifies the timing constraint between two con-
secutive clicks. The initial location of the system is Off and the initial state of
the system is (Off , (0, 0)), where clocks x and z are initialised to 0. The edge set
E is illustrated in Figure 4. For instance, the edge from location Off to Active
is (Off , z ≥ 0.01, {1, 2},Active).

The state segments of Tc are defined in the same way as in Example 1. Several
state segments of timed automaton Tc are 〈Wait , (0, 0), 1.5〉, 〈High , (1.2, 1.2), 3〉
and 〈Active, (0, 0), 0〉. A state path of the intelligent light controller can be

ρ = 〈Off , (0, 0), 1〉, 〈Active, (0, 0), 0〉, 〈Wait , (0, 0), 1〉, 〈High, (1, 0), 2〉....

The state tree Mc of Tc can be defined as in Example 3. Furthermore, the time
observation Dm of Mc in the model time domain is also the same as that in
Example 3. For instance, we have that Dm(ρ(0,0.5)) = 0.5 and Dm(ρ(3,1.5)) =
1 + 0 + 1 + 1.5 = 3.5.

A real-time property of the model
Consider a real-time property of the controller stating that it is always possible
to switch the light to the high intensity within 0.1 seconds. This property can be
expressed by TCTL∗ formula P = A�(E♦[0,0.1]High). In the model of the intel-
ligent light controller, we can see a stronger property Pm = A�(E♦[0,0.02]High)
is satisfied.

5.2 The Realization in the Digital Hardware Time Domain

Typically, a real-time system is deployed on a certain platform, where the time
is measured by a digital hardware clock. We cannot ensure that the timing rela-
tions specified in the model completely hold in the realization. For instance, two
simultaneous actions in the model are observed with a small delay between them
in the digital hardware time domain. Furthermore, since digital hardware clocks
measure time progress in a discrete way, it is obvious that the time labelling of
each state path in a continuous time domain (the model time domain) is not
always consistent with that in the digital hardware time domain. Consequently,
the real-time properties verified in the model may not hold in the realization.

However, if the timing behavior of the controller in the digital hardware time
domain is absolute-close to that in the model time domain, the real-time prop-
erties of the realization can still be predicted. In the example of intelligent light
controller, we introduce an additional clock y to timed automaton Tc. The value
of clock y is initialised to 0 and keeps on increasing during the execution of Tc. It



274 J. Huang et al.

is easy to see that for any state path prefix of Tc, the value of clock y in the last
state of the prefix equals the observation time of the prefix in the model time
domain. During the execution of timed automaton Tc in the digital hardware
time domain, Tc evolves based on the same execution semantics as in the model.
The only difference is that the values of clock y are synchronised with/mapped
to the values of the digital clock such that their deviations are always less than
0.01 seconds. In this way, the observation time of each state path prefix in the
state tree in the digital time domain deviates no more than 0.01 seconds from
that in the model time domain. That is, the timed state tree (Dd,M) in the
digital hardware time domain is absolute 0.01-close to (Dm,M). Therefore, we
can predict the controller satisfies an absolute 0.02-weakened property of Pm:
Pd = A�(E♦[0,0.04]High)2.

5.3 The Realization in the Continuous Time Domain

The realization on the hardware platform has to react to the stimuli (clicks) from
the environment. In general the behavior of the realization has to be reasoned
about in the time domain of the environment instead of the digital hardware
clock. Assume that the environment time is measured by a continuous clock.
This clock may have infinitely large absolute deviation from the digital hardware
clock in a long term. However, if we assume that the average relative change
rate between two clocks within any 0.01 second interval is less than 1%, then
we can construct an auxiliary continuous time domain, whose time absolute
time deviation from the digital hardware time domain is always within 0.001
seconds. The relative time drift from environment time domain to the auxiliary
time domain is within [ 1

1.01 , 1.01]. In this case, we can predict that the controller
satisfies property Pa = R0.01

a (Pd) = A�(E♦[0,0.05]High) in the auxiliary time
domain, and it satisfies property Pe = R1.01

r (Pa) = A�(E♦[0,0.0505]High) in the
environment time domain. It is easy to see that Pe is stronger than the required
property P .

6 Conclusion

During real-time system design, the timing behavior of the model is not identical
to that of its realization. Consequently, properties of the model cannot be al-
ways satisfied by its realization. To address this problem, in this paper, we have
first proposed a formalism (timed state trees) to specify the timing behavior of
real-time systems in a branching structure. On one hand, the proposed formal-
ism is “compatible” to the existing formal frameworks such as timed automata
and timed transition systems. On the other hand, it is more flexible to capture
2 The 0.02-weakened property of Pm should be A�[0.02,∞](E♦[0,0.04]High). However,

when the time interval of operator U (or �) starts from 0, the left end of the time
interval is unchanged in the preserved properties. Lemma 7.9 and Theorem 7.11 in
[2] state a similar result for the preservation of MTL formulas between real-time
systems.



Branching-Time Property Preservation Between Real-Time Systems 275

the timing behaviors observed in different time domains. Based on the timed
state trees, we have proven the theoretical results to build up property relations
between two neighboring real-time systems. Together with existing formal verifi-
cation techniques, these property-preservation results can be applied to real-time
system design. By estimating the absolute and relative differences between the
model and its realization, we can predict the properties of the realization from
those of the model. A design example has been given to illustrate our method.

For brevity, we use one parameter ε to capture the proximity between real-
time systems in this paper. However, we can also use two parameters to capture
the upper and lower bounds of absolute time deviation (or relative time drift)
respectively, which results in tighter property-preservation results. Interested
readers are referred to [2], where we proved property-preservation for MTL logics
using two parameters to capture proximities between real-time systems.

References

1. Huang, J., Voeten, J., Geilen, M.: Real-time property preservation in approxi-
mations of timed systems. In: Proceedings of 1st ACM & IEEE International
Conference on Formal Methods and Models for Codesign, IEEE Computer Society
Press (2003) 163–171

2. Huang, J.: Predictability in Real-time System Design. PhD thesis, Eindhoven
University of Technology, The Netherlands (Aug. 2005)

3. Gupta, V., Henzinger, T., Jagadeesan, R.: Robust timed automata. In Maler,
O., ed.: Hybrid and Real-Time Systems, Proceedings of International Workshop
HART’97, Grenoble, France, Springer Verlag, LNCS 1201 (1997) 331–345

4. Puri, A.: Dynamical properties of timed automata. Discrete Event Dynamic Sys-
tems 10(1-2) (2000) 87–113

5. Wulf, M.D., Doyen, L., Raskin, J.F.: Almost asap semantics: From timed models
to timed implementations. Formal Aspects of Computing 17(3) (2005) 319–341

6. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Systems 2(4) (1990)

7. Henzinger, T.A., Majumdar, R., Prabhu, V.: Quantifying similarities between
timed systems. In: Proceedings of the Third International Conference on Formal
Modeling and Analysis of Timed Systems (FORMATS), Lecture Notes in Com-
puter Science 3829, Springer, 2005. (2005) 226–241

8. Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Information
and Computation 104(1) (1993) 2–34

9. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2) (1994) 183–235

10. Emerson, E., Mok, A., Sistla, A., Srinivasan, J.: Quantitative temporal reasoning.
In: Proceedings of the 2nd International Workshop on Computer Aided Verifica-
tion, Springer-Verlag (1991) 136–145



Automatic Verification of Hybrid Systems

with Large Discrete State Space�

Werner Damm1,2, Stefan Disch3, Hardi Hungar2, Jun Pang1,
Florian Pigorsch3, Christoph Scholl3, Uwe Waldmann4, and Boris Wirtz1

1 Carl von Ossietzky Universität Oldenburg
Ammerländer Heerstraße 114-118, 26111 Oldenburg, Germany

2 OFFIS e.V., Escherweg 2, 26121 Oldenburg, Germany
3 Albert-Ludwigs-Universität Freiburg

Georges-Köhler-Allee 51, 79110 Freiburg, Germany
4 Max-Planck-Institut für Informatik

Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

Abstract. We address the problem of model checking hybrid systems
which exhibit nontrivial discrete behavior and thus cannot be treated by
considering the discrete states one by one, as most currently available
verification tools do. Our procedure relies on a deep integration of sev-
eral techniques and tools. An extension of AND-Inverter-Graphs (AIGs)
with first-order constraints serves as a compact representation format
for sets of configurations which are composed of continuous regions and
discrete states. Boolean reasoning on the AIGs is complemented by first-
order reasoning in various forms and on various levels. These include
implication checks for simple constraints, test vector generation for fast
inequality checks of boolean combinations of constraints, and an exact
subsumption check for representations of two configurations.

These techniques are integrated within a model checker for universal
CTL. Technically, it deals with discrete-time hybrid systems with linear
differentials. The paper presents the approach, its prototype implemen-
tation, and first experimental data.

1 Introduction

The analysis of hybrid systems faces the difficulty of having to address not only
the continuous dynamics of mechanical, electrical and other physical phenom-
ena, but also the intricacies of discrete switching. Both of these two constituents
of hybrid systems alone often pose a major challenge for verification approaches,
and their combination is of course by no means simpler. For instance, the be-
havior of a car or airplane is usually beyond the scope of mathematically precise
assessment, even if attention is restricted to only one particular aspect like the
functioning of a braking assistant. Even though the continuous behavior might
� This work was partly supported by the German Research Council (DFG) as part

of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS, http://www.avacs.org/).

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 276–291, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Automatic Verification of Hybrid Systems with Large Discrete State Space 277

in such a case be rather simple – at least after it has been simplified by introduc-
ing worst-case assumptions to focus on the safety-critical aspects –, through the
interaction with discrete-state control the result is in most cases unmanageable
by present-day techniques.

In this work, we address the analysis of hybrid systems with a focus on the
discrete part. Systems with non-trivial discrete state spaces arise naturally in
application classes where the overall control of system dynamics rests with a
finite-state supervisory control, and states represent knowledge about the global
system status. Examples of such global information encoded in states are phases
of a cooperation protocol in inter-vehicle communication (such as in platooning
maneuvers or in collision-avoidance protocols), knowledge about global system
states (e. g., on-ground, initial ascent, ascent, cruising, . . . for an aircraft), and/or
information about the degree of system degradation (e. g., due to occurrence of
failures). States of the control determine the selection of appropriate continuous
maneuvers, and conditions on the continuous state (reached thresholds, for in-
stance) trigger changes in the control. But while there might be tens or hundreds
of boolean state variables, often there are only very few different maneuvers and
continuous trigger conditions, so that much of the discrete switching happens
independently of the continuous evolution.

In our approach, we intend to profit from the independence of the supervi-
sory control and the continuous sections, using adequate techniques for each of
the two constituents in a hybrid procedure. We do so by representing discrete
states symbolically, as in symbolic model checking [5], and combine this with a
first-order logic representation of the continuous part. In that way, unnecessary
distinctions between discrete states can be avoided and efficiency gained.

This idea, which has already been pursued in a different setting in [14,3],
can be seen as combining symbolic model checking with Hoare’s program logic
[13]. The discrete part of the state is encoded in bit vectors of fixed length. Sets
of discrete states are represented in an efficient format for boolean functions,
in our case functionally reduced AND-Inverter graphs (FRAIGs) [15]. The state
vectors are extended by additional components referring to linear (first-order)
constraints. Model checking works essentially as in [5,17] on the discrete part,
while in parallel for the continuous part a Hoare-like calculus is applied. An
important detail is that the set of constraints is dynamic: computing the effect
of a system step usually entails the creation of new constraints. So it is not just
model checking a finite-state encoding of the hybrid verification problem.

To make an automatic proof procedure out of this, we add diverse reasoning
procedures for the first-order constraints. Of central importance is the ability
to perform a subsumption check on our hybrid state-set representation in order
to detect whether a fixpoint has been reached during model checking. HySAT

[9] is one of the tools we use for that purpose. However, a key point of our ap-
proach is the idea to avoid expensive applications of decision procedures as much
as possible. Test vector generation for fast inequality checks of boolean combi-
nations of constraints, implication checks for linear constraints, and advanced
boolean reasoning are examples for methods which provide some lightweight and



278 W. Damm et al.

inexpensive reasoning and are used both in the context of subsumption checks
and for keeping state set representations as compact as possible.

In its current form, our approach is applicable to checking universal temporal
logic in discrete-time hybrid systems, where conditions and transitions contain
linear terms over the continuous variables. These correspond to a time discretiza-
tion of systems whose evolution is governed by linear differential equations, of
which the linear hybrid automata from [11] form a subset.

We present our class of models formally in Section 2. Section 3 explains our
procedure on a semantical and logical level. The implementation is described in
Section 4, followed by a report on first experiments with our current prototype in
Section 5. Sections 6 and 7 discuss related work and possible future extensions.

2 System Model

2.1 Time Discretization

As mathematical model we use discrete-time hybrid automata, which in each
time step of fixed duration update a set of real-valued variables as determined
by assignments occurring as transition labels. Since assignments and transition
guards may use linear arithmetical expressions, this subsumes the capability
to describe the evolvement of plant variables by difference equations. Steps of
the automata are assumed to take a fixed time period (also called cycle-time),
intuitively corresponding to the sampling period of the control unit, and deter-
mine the new mode and new outputs (corresponding to actuators) based on the
sampled inputs (from sensors).

The decision to base our analysis on discrete-time models of hybrid systems is
motivated from an application perspective. Industrial design flows for embedded
control software typically entail a transition from continuous time models in early
analysis addressing control-law design, to discrete-time models in modeling tools
such as ScadeTM, ASCETTM, or Matlab/Simulink-StateFlowTM, as a basis for
subsequent autocode generation. We address the latter class of models, from
which the production code can be generated. Note that the discrete complexity
of our systems results mainly from the control logic, discretization of time only
adds one more dimension to the complexity.

In this paper, we analyze closed-loop systems with only discrete inputs, e. g.,
corresponding to discrete set points.

2.2 Formal Model

Our analysis is based on discrete-time models of hybrid systems. Time is modeled
implicitly, in that each step corresponds to a fixed unit delay δ, as motivated in
the previous section.

We assume that a hybrid system operates over two disjoint finite sets of vari-
ables D and C. The elements of D = {d1, . . . , dn, dn+1, . . . , dp} (n ≤ p) are dis-
crete variables, which are interpreted over finite domains; Din = {dn+1, . . . , dp}
⊆ D is a finite set of discrete inputs. The elements of C = {c1, . . . , cm} are



Automatic Verification of Hybrid Systems with Large Discrete State Space 279

continuous variables, which are interpreted over the reals R. Let D denote the
set of all valuations of D over the respective domains, C = Rm the set of all val-
uations of C. The state space of a hybrid system is presented by the set D×C;
a valuation (d, c) ∈ D× C is a state of the hybrid system.

A set of states of a hybrid system can be represented symbolically using a
suitable (quantifier-free) first-order logic formula over D and C. We assume
that the data structure for the discrete variables D is given by a signature
SD which introduces typed symbols for constants and functions, and by ID

which assigns a meaning to symbols. We denote by TD(D) the set of terms over
D, and by B(D) the set of boolean expressions over D. The first-order part
on continuous variables is restricted to linear arithmetic of R, which has the
signature {Q, +,−,×, =, <,≤}, where Q is the set of rational numbers appearing
as constants, {+,−,×} is the set of function symbols, and {=, <,≤} is the set
of predicate symbols. The interpretation IC assigns meanings to these symbols
as usual. We define

– TC(C) as the set of linear terms over C,
– L(C) as the set of linear constraints, with the syntax t ∼ 0, where ∼ ∈

{=, <,≤} and t ∈ TC(C), and
– P(D, C), the set of first-order predicates, as boolean combinations of expres-

sions in B(D) and linear constraints.

We use φ(D, C), g(D), t(C), and #(C), possibly with subscripts, to denote first-
order predicates in P(D, C), terms in TD(D), terms in TC(C), and linear con-
straints in L(C), respectively; D and C may be omitted, if they are clear from
the context. We use ID,C � φ(d, c) to denote that φ is true under the valua-
tions d and c. Thus φ represents the sets of states of a hybrid system such that
{ (d, c) | ID,C � φ(d, c) }. Assignments to the variables D and C are given in the
form of (d1, . . . , dn) := (g1, . . . , gn) and (c1, . . . , cm) := (t1, . . . , tm); they may
leave some variables unchanged.

Definition 1. A discrete-time hybrid system DTHS contains four components:

– D = {d1, . . . , dn, dn+1, . . . , dp} (n ≤ p) is a finite set of discrete variables,
Din = {dn+1, . . . , dp} ⊆ D is a finite set of discrete inputs;

– C = {c1, . . . , cm} is a finite set of continuous variables;
– Init is a set of initial states, given in the form of φ0(D − Din, C);
– Trans is a union of a finite number of guarded assignments, each guarded

assignment gai (i = 1, . . . , k and k ≥ 1) is in the form of

φi(D, C) → (d1, . . . , dn) := (gi,1, . . . , gi,n); (c1, . . . , cm) := (ti,1, . . . , ti,m).

The assignment of gai transforms a state (d, c) to (d′, c′). Moreover, such (d′, c′)
exists if and only if ID,C � φi(d, c).

We assume that the guards of the assignments defining the transition relation are
exclusive and exhaustive. This is no restriction of the set of systems we consider,
as nondetermism can be eliminated from the transition relation by introducing



280 W. Damm et al.

resolution variables R ⊆ D. These are discrete inputs which are used like r in
the following illustration of the case of two overlapping guards:

φ1 → assignment1

φ2 → assignment2

}
�

{
φ1 ∧ (¬φ2 ∨ r = 1) → assignment1

φ2 ∧ (¬φ1 ∨ r = 2) → assignment2

A trajectory of a DTHS is a discrete-time sequence (di, ci) satisfying the
conditions (i) (d0, c0) ∈ Init and (ii) ((di, ci), (di+1, ci+1)) ∈ Trans for all i ∈
{0, 1, . . .}. Given a DTHS, we define the reachable set of states to be the set
of all states that are reachable by a trajectory of the DTHS. The purpose of
verification is to determine whether all possible behaviors of a system satisfy
some property, which is specified as formula in a temporal logic.

3 Approach

3.1 Specification Logic

We sketch a model checker for a temporal logic over discrete and quantifier-free
first-order atoms. Though we could build, from our basic ingredients, a procedure
handling full CTL (or a linear-time logic), we restrict ourselves to its universal
fragment ACTL with the temporal operators AX · (next), A[· U ·] (until) and
A[· W ·] (unless), with AG · (globally) and AF · (finally) as derived operators.

In practice, we expect the valuations of continuous variables to come from
bounded subsets of R. In other words, for each c ∈ C we assume a lower and an
upper bound lc and uc. Such restrictions can be captured in global constraints
GC . With global constraints present, the formula operators are interpreted as
follows:

AGCXφ = ¬GC ∨ AX (φ ∨ ¬GC )
AGC [φ Wψ] = A[φ W (ψ ∨ ¬GC )]
AGC [φ Uψ] = A[φ U (ψ ∨ ¬GC )]

3.2 Logical Representation of State Sets

Our model-checking procedure operates on logical representations of state sets.
For ease of exposition we assume that discrete variables are encoded by sets
of boolean variables, i. e., we consider D as a set of boolean variables. Then, a
state-set representation is a boolean formula over D and L(C), the set of linear
constraints. To be able to use advanced data structures for boolean formulas,
we introduce a set of new (boolean) constraint variables Q as encodings for lin-
ear constraints, where each occurring # ∈ L(C) is represented by some q� ∈ Q.
Thus we arrive at boolean formulas over D ∪ Q, together with a mapping of Q
into L(C).

3.3 Step Computation

Our procedure works backwards, which means that it has to compute pre-images
of state sets. Since we are going to check ACTL, we compute



Automatic Verification of Hybrid Systems with Large Discrete State Space 281

pre(S) =df { s | ∀s′. s → s′ ⇒ s′ ∈ S } ,

which corresponds to the temporal operator AX (⇒ stands for logical impli-
cation, → for the transition relation). On the logical level, for the transitions
of our DTHSs consisting of conditions, assignments and input, this can be ex-
pressed by substitution for assignments and universal quantification for input,
see [3]. Since we have restricted ourselves to closed-loop systems, there are no
continuous inputs. Therefore, there is no need for first-order quantification, only
boolean quantification has to be performed. In the following, we describe in de-
tail how to compute pre for our state-set representations, given a DTHS. The
variables in D and Q are treated rather differently.

A discrete variable dj ∈ D − Din is updated according to the transitions in
the following set.

{φi(D, C) → dj := gi,j(D) | i = 1, . . .k }

This translates to the (logical) update function:

pre(dj) =
k∧

i=1

(φi(D, C) ⇒ gi,j(D))

For the continuous part, we have to update the variables Q. The transitions

{φi(D, C) → (c1, . . . , cm) := (ti,1(C), . . . , ti,m(C)) | i = 1, . . . k }

induce

pre(q�) =
k∧

i=1

(
φi(D, C) ⇒ q�[c1,...,cm/ti,1(C),...ti,m(C)]

)
as an update for a constraint variable q� occurring in the state-set description.
That is, each q� gets replaced by a boolean combinations of constraint variables.
In this formula, q�[c1,...,cm/ti,1(C),...,ti,m(C)] is a (possibly new) constraint variable
which represents the linear constraint resulting from # by replacing the variables
cj by the terms ti,j(C).

Finally, the pre-image of a set of states S is computed by substituting in
parallel the pre-images for the respective variables, and afterwards universally
quantifying over the discrete inputs.

pre(S) =
∀Din.S[d1, . . . , dn, q�1 , . . . , q�v / pre(d1), . . . , pre(dn), pre(q�1), . . . , pre(q�v)]

Note that the pre-image of a boolean variable is described by a quantifier-free for-
mula which does not change during model checking – it can be computed once and
for all. The same holds for each single constraint variable: The right-hand side re-
mains constant. But the RHS may contain a constraint not already present in the



282 W. Damm et al.

formula. This necessitates to add constraint variables to the state representations
during model checking, and also to add corresponding components to the step func-
tion.This corresponds to the semantical viewofmodel-checker steps: Semantically,
an occurring constraint is a hyperplane serving as a bound to define a polyhedron
in the continuous state space. The pre-image of the polyhedron then is bounded by
other hyperplanes, whose descriptions are derived via substitution from the exist-
ing bounding conditions.

3.4 Model Checking

The computation of the effect of a step is one main ingredient of CTL model
checking. Besides that, one needs the ability to check whether two sets of states
are equal, to detect that a fixpoint has been reached. In explicit or symbolic
model checking, the criterion is simple: Two successive approximations must
be the same. Here, where constraints enter the state-set descriptions, one has
to check for semantical equality. Since our constraints are linear, this problem
is decidable. This check for implication between two state-set representation
completes the model-checking procedure.

In the following section we will present how we realized the conceptual pro-
cedure of this section, explaining the concrete representation format, how we
perform logical operations and test for semantical implication.

Remark 2. Note the procedure described above can be applied to a broad class
of systems. The logical treatment of the step function permits arbitrary linear
terms on the right-hand sides of assignments, like c1 := α1c1 + α2c2 + α0. Dis-
cretization of the linear hybrid automata from [11] yields the more restricted
format c := c + α.

4 Realization

In order to implement the approach described in the previous section, we use
a new data structure for representing sets of states, the so-called First-Order
AND-Inverter-Graphs (FO-AIGs) (see Fig. 1 for an illustration).

Using efficient methods for keeping this representation as compact as possible
is a key point for our approach. This goal is achieved by a rather complex
interaction of various methods. In the following we give some more details on
these concepts. The methods are divided into three classes:

– methods dealing with the boolean part,
– methods dealing with the first-order part, and
– methods dealing with the interaction of the boolean and the first-order part.

Note that to implement the model-checking algorithm we need only boolean
operations, substitution and first-order implication. Our description focuses on
the the first-order part and on how to keep our data structures small.



Automatic Verification of Hybrid Systems with Large Discrete State Space 283

4.1 Methods Dealing with the Boolean Part

...

...

...

...

dp

c1 cm

φ1 φk

q1 qj

d1

mapping between
first-order conditions
and bool. variables

boolean domain variables

continuous domain variables

Represented first-order
predicates

FO conditions

AIG

Fig. 1. The FO-AIG structure

In FO-AIGs boolean formulas
are represented by Functionally
Reduced AND-Inverter Graphs
(FRAIGs) [15,17]. FRAIGs are
basically boolean circuits consist-
ing only of AND gates and in-
verters. In contrast to BDDs as
used in [3], they are not a canon-
ical representation for boolean
functions, but they are “semi-
canonical” in the sense that every
node in the FRAIG represents
a unique boolean function. To
achieve this goal several tech-
niques like structural hashing,
simulation and SAT solving are
used:

First, simple local transformation rules are used for node minimization. For in-
stance, we apply structural hashing for identifying isomorphic AND nodes which
have the same pairs of inputs.

Moreover, we maintain the so-called “functional reduction property”: Each
node in the FRAIG represents a unique boolean function (up to complementa-
tion). We use a SAT solver to check for equivalent nodes while constructing a
FRAIG and to merge equivalent nodes immediately.

Of course, checking each possible pair of nodes would be quite inefficient.
However, simulation using test vectors of boolean values restricts the number of
candidates for SAT check to a great extent: If for a given pair of nodes simulation
is already able to prove non-equivalence (i. e., the simulated values are different
for at least one test vector), the more time consuming SAT checks are not needed.
The simulation vectors are initially random, but they are updated using feedback
from satisfied SAT instances (i. e., from proofs of non-equivalence).

For the pure boolean case, enhanced with other techniques such as quantifier
scheduling, node selection heuristics and BDD sweeping, FRAIGs proved to be a
promising alternative to BDDs in the context of CTL model checking, avoiding in
many cases the well-known memory explosion problem which may occur during
BDD-based symbolic model checking [17].

4.2 Methods Dealing with the First-Order Part

The second component of FO-AIGs is a representation of linear constraints #
connected to the boolean part by constraint variables q�. These constraints are
of the form

∑n
i=1 αici + α0 ∼ 0 with rational constants αj , real variables ci,

and ∼ ∈ {=, <,≤}. When new linear constraints are computed by substitution
during the step computation (see Sect. 3), we avoid introducing linear constraints



284 W. Damm et al.

which are equivalent to existing constraints. The restriction to linear constraints
makes this task simple, since it reduces to the application of (straightforward)
normalization rules.

4.3 Methods Dealing with the Interaction of the Boolean and the
First-Order Part

Of course, a strict separation between the boolean part and the first-order part
of FO-AIGs gives us usually not enough information, for instance when we have
to check whether two sets of states are equivalent during the fixpoint check of
the model checking procedure. As a simple example consider the two predicates
φ1 = (c < 5) and φ2 = (c < 10) ∧ (c < 5). If c < 5 is represented by the boolean
constraint variable q1 and c < 10 by variable q2, then the corresponding boolean
formulas q1 and q1 ∧ q2 are not equivalent, whereas φ1 and φ2 are certainly
equivalent. Both as a means for further compaction of our representations and
as a means for detecting fixpoints we need methods for transferring knowledge
from the first-order part to the boolean part. (In the example above this may be
the information that q1 = 1 and q2 = 0 can not be true at the same time or that
φ1 and φ2 are equivalent when replacing boolean variables by their first-order
interpretations.)

Computing Implications Between Linear Constraints. In our first
method we consider dependencies between linear constraints that are easy to de-
tect a priori and transfer them to the boolean part. It is not known initially, which
dependencies are actually needed in the rest of the computation; for this reason
we restrict to two simple cases: First, we compute unconditional implications be-
tween linear constraints α1c1+. . .+αncn+α0 ≤ 0 and α1c1+. . .+αncn+α′0 ≤ 0,
where α0 > α′0 (and analogously implications involving negations of linear con-
straints). Second, we use a sound but incomplete method to detect implications
modulo global constraints, where a linear constraint α′1c1 + . . .+ α′ncn + α′0 ≤ 0
follows from α1c1 + . . .+ αncn + α0 ≤ 0 and the global lower and upper bounds
li ≤ ci ≤ ui for the first-order variables.

Using Implications Between Linear Constraints. Suppose we have found
a pair of linear constraints #1 and #2 with #1 ⇒ #2, and in the boolean part #1
is represented by the constraint variable q1, #2 by variable q2. Then we know
that the combination of values q1 = 1 and q2 = 0 is inconsistent w. r. t. the
first-order part, i. e., it will never be applied to inputs q1 and q2 of the boolean
part. We transfer this knowledge to the boolean part by a modified behavior
of the FRAIG package: First we adjust our test vectors, such that they become
consistent with the found implications (potentially leading to the fact that proofs
of non-equivalence by simulation will not hold any longer for certain pairs of
nodes) and second we introduce the implication q1 ⇒ q2 as an additional clause
in every SAT problem checking equivalence of two nodes depending on q1 and q2.
In that way non-equivalences of AIG nodes which are only caused by differences
w. r. t. inconsistent input value combinations with q1 = 1 and q2 = 0 will be
turned into equivalences, removing redundant nodes in the AIG.



Automatic Verification of Hybrid Systems with Large Discrete State Space 285

Using a Decision Procedure for Deciding Equivalence. In addition to
the eager dependency check for linear constraints above, we use HySAT [9] as a
decision procedure for the equivalence of nodes in FO-AIGs (representing boolean
combinations of linear constraints). If two nodes are proven to be equivalent
(taking the linear constraints into account), then these nodes can be merged,
leading to a compaction of the representation or leading to the detection of a
fixpoint in the model checking computation.

In principle, we could use HySAT in an eager manner every time when a new
node is inserted into the FO-AIG representation, just like SAT (together with
simulation) is used in the FRAIG representation of the boolean part. This would
lead to a FO-AIG representation where different nodes in the FRAIG part always
represent different first-order predicates. However, we decided to use HySAT only
in a lazy manner in order to avoid too many potentially expensive applications of
HySAT (taking the linear constraints into account): In our first implementation
HySAT is only invoked by explicit equivalence checks and fixpoint checks of the
model checking procedure.

Using Test Vectors to Increase Efficiency. As in the boolean case (see
Sect. 4.1), we use simulation with test vectors as an incomplete but cheap method
to show the non-equivalence of FO-AIG nodes, thus reducing the number of
expensive calls to HySAT. However, note that the boolean simulation vectors
which we apply to the boolean variables corresponding to linear constraints must
now be consistent with respect to the linear constraints, since otherwise our proof
of non-equivalence could be incorrect. For this reason we use an appropriate set
of test vectors in terms of real variables such that we can compute consistent
boolean valuations of linear constraints based on the real valued test vectors.

Trying to find an optimal set of test vectors that allows us to distinguish be-
tween any two boolean combination of linear constraints is at least as hard as
solving our main problem, the implication check between such boolean combi-
nations, and therefore unpractical. On the other hand, if test vectors are picked
randomly with a uniform distribution over the polyhedron of permitted values,
a large number of them fall into “uninteresting regions” of this polyhedron.

Our solution is to choose test vectors randomly in the proximity of relevant
hyperplanes: Assume that every variable ci has a global lower and upper bound
li ≤ ci ≤ ui, so that the polyhedron of permitted values is P = {$c | $c =
(c1, . . . , cn), li ≤ ci ≤ ui }. For each linear constraint f($c) ≤ 0 with f($c) =
α1c1 + . . .+αncn +α0, we determine first the vertices $r and $s of P for which f is
maximal or minimal, respectively (without loss of generality, f($r) > 0 > f($s)).
Second, we compute random points $t ∈ P , and finally, for each of these random
points, we use linear interpolation between $t and $r (if f($t) < 0) or $t and $s
(otherwise) to obtain a point on the straight line between $t and $r (or $t and $s)
that is close to the hyperplane defined by f($c) = 0.

Satisfied HySAT instances (i. e., proofs of non-equivalence for boolean combi-
nations of linear constraints) are another source of boolean simulation vectors
which are consistent w. r. t. linear constraints. The satisfying assignments com-
puted by HySAT are guaranteed to be consistent w. r. t. linear constraints and



286 W. Damm et al.

they are able to separate at least the pair of nodes which are currently proven
to be non-equivalent. (Learning from HySAT corresponds to learning from SAT

in the pure Boolean case.)

5 Application

We implemented a prototype model checker based on the concepts mentioned
above and applied it both to several small examples and to a model derived from
an industrial case study. In this section we report on results for the case study.

5.1 The Case Study

Flap controller

Rest of Aircraft

Reasonable
Pilot Mechanism

Flap
c

f

v

�

Fig. 2. Components in the flap controller example

General Description. Our
sample application is de-
rived from a case study
for Airbus, a controller for
the flaps of an aircraft
[4]. The flaps are extended
during take-off and land-
ing to generate more lift at
low velocity. They are not
robust enough for high ve-
locity, so they must be re-
tracted for cruising period. It is the controller’s task to correct the pilot’s com-
mands if he endangers the flaps. However, the flap controller is not supposed
to guarantee safety under all circumstances, but only if the pilot acts “reason-
ably”. To enable manoeuvres risking aircraft integrity in critical situations, the
controller is limited to only modify the pilot’s command by one notch.

Model Structure. Our simplified system consists of four components to model,
i. e., the pilot behavior, the controller, the flap mechanism, and the rest of the
aircraft. It contains two continuous variables v (velocity) and f (flap angle), and
two discrete variables # (lever position set by the pilot) and c (corrected position,
set by the controller). For each lever position, there is a pre-defined flap position
and a pre-defined nominal velocity nominal(f).

Property. The property “safe” to establish for our model is the following: “For
the current flap setting f , the aircraft’s velocity v shall not exceed the nominal
velocity nominal (f) plus 7 knots”. Whether this requirement holds for our model
depends on a “race” between flap retraction and speed increase. The controller
is correct, if it initiates flap retraction (by correcting the pilot) early enough.

Model Details. The pilot component in our model ensures reasonable lever posi-
tions, by guaranteeing that the lever is at most one notch too high. The behavior
of the controller depends on both # and v: When the velocity is greater than the



Automatic Verification of Hybrid Systems with Large Discrete State Space 287

nominal max value (nominal (f) + 2.5 knots), the modification of the pilot be-
havior is activated (c = # − 1); when the velocity has changed to less than
the nominal min value (nominal (f) − 2.5 knots), the modification is turned off
(c = #). The flap mechanism controls the continuous variable f , and depends
on the discrete variable c. It models the mechatronic which adapts the physical
flap angle f to the position commanded by c. This is a process which takes time.
f has a range from 0 to 55.0. At each discrete time step (the sampling rate is
δ = 100 ms in this example), the flap angle may change by ∆f = 0.15625. At
the same time, the rest of the aircraft might increase the velocity by 0.5 knots
within a range from 150.0 to 340.0 knots. This defines the “races” mentioned
above. Our specification of the model is simply AG safe.

5.2 Experimental Results

Our prototype successfully model checked the flap controller with 3 lever posi-
tions, 220.0 ≤ v ≤ 340.0, and 0.0 ≤ f ≤ 20.0, showing that the system remains in
the safe region. Using all the concepts presented in Section 4 our model checking
run was completed after 46 steps within 4.7 minutes of CPU time.5

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0  5  10  15  20  25  30  35  40  45  50

A
IG

 n
od

e 
co

un
t

step number

implication integration
no implication integration

Fig. 3. Number of AIG nodes

 0

 50

 100

 150

 200

 250

 0  5  10  15  20  25  30  35  40  45  50

st
ep

 c
om

pu
ta

tio
n 

tim
e 

(s
)

step number

implication integration
no implication integration

Fig. 4. CPU times for different steps

In a first experiment we evaluated the effect of integrating knowledge of impli-
cations between linear constraints into the FO-AIG representation. We compared
two cases: Case no impl when no implications were computed and integrated and
case impl when implications were computed and integrated as described in Sec-
tion 4.3. Figure 3 depicts the number of AIG nodes used during the different steps
of the model checking procedure both for case no impl (dashed line) and case
impl (solid line). For case no impl the maximal number of active AIG nodes was
192, 630 whereas for case impl the maximal number was only 59, 372. This clearly
shows that integrating knowledge of linear constraints pays off in terms of node
counts: By using implications it was possible to simplify the representation to a
great extent, since AIG nodes were identified which were equivalent taking the

5 All experiments were performed on a dual Opteron 250, 2.4 GHz with 4 GB memory.



288 W. Damm et al.

linear constraints into account. Figure 4 shows that making use of implications
not only improves node counts, but run times as well: It presents the run times
needed for the different steps in both cases. The total run time for case no impl
was 37.9 CPU minutes whereas the total run time for case impl was 4.7 CPU

minutes. (The total number of implications between linear constraints computed
by our tool was 622 (implications due to transitivity not taken into account).)

In the following we will confine ourselves to case impl and we will perform
a more detailed analysis of the behavior of our representation of states con-
taining discrete and continuous variables. The efficiency of our FO-AIGs relies
both on efficient methods for boolean manipulations and on efficient methods
for integrating knowledge of linear constraints avoiding the application of more
expensive calls to a linear constraint solver as much as possible.

We could observe that the number of SAT checks divided by the total number
of attempts to insert a node into the FRAIG was only 0.24% in our experiment.
The fraction of SAT checks which led to the result that the compared nodes
were functionally equivalent was 59%. This means that – although we are always
maintaining the functional reduction property of FRAIGs – the assistance of SAT

by simulation and structural hashing as described in Sect. 4.1 assures that SAT

is applied only for a small fraction of all node insertions. Moreover, the high
percentage of SAT checks proving functional equivalence of two nodes shows the
effectiveness of simulation in avoiding unnecessary SAT checks for nodes which
are not equivalent.

In a last experiment we analyzed how often the application of calls to the linear
constraint solver HySAT was saved by incomplete (but inexpensive) methods. In
our method HySAT calls can be saved for two reasons:

1. The equivalence of two boolean combinations of linear constraints can be
proven just by considering the boolean part (without interpreting the vari-
ables representing linear constraints).

2. The non-equivalence of two boolean combinations of linear constraints can
be proven by simulation with test vectors as described in Section 4.3.

Our model checking run involved 5374 equivalence checks for boolean combi-
nations of linear constraints. However, for only 22 out of these 5374 checks it
turned out to be necessary to call the linear constraint solver in HySAT (i. e., in
0.41% of all cases). In 42.91% of all cases the call to HySAT could be avoided
due to reason (1) and in 56.68% of all cases due to reason (2).

Although we believe that the complex interaction of different methods in our
approach to first-order model checking still leaves room for improvement, our
first experiments provide promising results confirming our idea of increasing
efficiency by incomplete but inexpensive methods.

6 Related Work

We address hybrid systems consisting not only of a continuous part, but also of a
potentially complex discrete part. Tools like HyTech [12], d/dt [1], PHAver [10]



Automatic Verification of Hybrid Systems with Large Discrete State Space 289

based on the notion of hybrid automaton [11] fail when dealing with complex
hybrid controllers, since only the continuous part of the system is represented
symbolically, while the discrete states are represented explicitly. Thus, these tools
cannot take advantage of the breakthrough achieved for symbolic model checkers
[5]. In this section, we discuss those verification tools which can (potentially) deal
with hybrid systems with large discrete parts, and compare them with our work
in the end of this section.

CheckMate [19] is a Matlab-based tool for simulation and verification of
threshold-event driven hybrid systems (TEDHSs). A TEDHS has a clear separa-
tion between purely continuous blocks representing the dynamics in a given mode
and discrete controllers. The changes in the discrete state can occur only when
continuous state variables encounter specified thresholds. CheckMate converts
the TEDHS model into a polyhedral-invariant hybrid automaton [6], computes the
sets of reachable states for the continuous dynamics using flowpipe approxima-
tions [7], and performs search in a completely constructed approximate quotient
transition system. This approach was adapted for discrete-time controllers with
fixed sampling rate [18], where the sampled behavior only applies to conditions
for discrete-state transitions.

Separation of continuous dynamics and control by observing threshold pred-
icates as guards of transitions was also taken in [3,2], which extended symbolic
model checking with dynamically generated first-order predicates. Those pred-
icates express sets of valuations over large data domains like reals. BDDs are
used to encode discrete states, and specific variables within the BDDs are used
to represent those first-order formulas, which are maintained separately.

The SAL verification tool [16] for hybrid systems builds on a symbolic repre-
sentation of polynomial hybrid systems in PVS, the guards on discrete transitions
and the continuous flows in all modes can be specified using arbitrary polyno-
mial expressions over the continuous variables. SAL applies hybrid abstraction
[20] to construct a sound discrete approximation using a set of polynomial ex-
pressions to partition the continuous state space into sign-invariant zones. This
abstract discrete system is passed to a symbolic model checker. SAL also uses
other techniques like quantifier elimination and invariant generation.

HySAT [9] is a bounded model checker for linear hybrid systems. It combines
Davis-Putnam style SAT solving techniques with linear programming, and im-
plements state of the art optimizations such at nonchronological backjumping,
conflict driven learning and lazy clause evaluation.

HYSDEL [21] is a model language for describing discrete-time hybrid systems
by interconnections of linear dynamic systems, finite-state automata, if-then-else
and propositional logic rules. The description can be transformed into a Mixed
Logical Dynamical (MLD) system. HYSDEL uses mathematical programming to
perform reachability analysis for MLD systems. The algorithms determines the
reachable set by solving a mixed-integer optimization problem.

Both CheckMate and SAL construct a discrete approximation in order to
perform model checking. Our approach checks properties directly on a com-
puted reachable state space, which includes both discrete and continuous parts,



290 W. Damm et al.

without using any approximation. Moreover, instead of using BDDs as in [3,2],
we use FO-AIGs as symbolic representation of hybrid state spaces. Various tech-
niques like implication test and test vector generation are tightly integrated
to identify equivalent and non-equivalent linear constraints efficiently. This ap-
proach allows us to deal with large discrete state spaces, while smoothly incor-
porating reasoning about continuous variables (linear constraints). From this
perspective, our approach is different with all the aforementioned works. Un-
like bounded model checking in HySAT, we perform verification on a completely
constructed state space. Tools like CheckMate and SAL deal with continuous-
time hybrid systems. Our approach focuses on discrete-time hybrid systems as
HYSDEL, but the analysis procedure in HYSDEL is different from ours.

7 Conclusions and Future Work

In this paper, we have proposed an approach for model checking safety pro-
preties of discrete-time hybrid systems. It uses a first-order extension of AIGs as
a compact representation for sets of configurations, which are composed of both
continuous regions and discrete states. Several efficient methods for keeping this
representation as compact as possible have been tightly integrated. For instance,
we have implemented techniques to keep the discrete part functionally reduced,
to detect implications between linear constraints, to use a decision procedure to
perform equivalence checks on our hybrid state-set representation, to generate
test vectors to distinguish between any two boolean combination of linear con-
straints. The typical application domain of our approach is hybrid systems with
non-trivial discrete state spaces.

So far, the preliminary implementation of our approach has been used to
check an industrial case study with limited size and several small examples. In
the future we will apply our approach to more sophisticated examples for further
evaluation and for comparisons with other tools (see Sect. 6). Moreover, it seems
that an integration of predicate abstraction to derive a finite-state abstraction of
the hybrid system either on-the-fly or at a separate initial abstraction step (as in
[3,2]) can be achieved without much difficulties. We expect that for larger exam-
ples the exectution time of our approach will heavily rely on time discretization.
For this reason, currently techniques like acceleration to speed up step compu-
tation are under our investigation. We also plan to use counter-example guided
abstraction refinement, as it has been added to CheckMate [8] recently.

References

1. E. Asarin, T. Dang, and O. Maler. The d/dt tool for verification of the hybrid
systems. In Proc. CAV 2002, LNCS 2404, pp. 365–370. Springer.

2. T. Bienmüller, J. Bohn, H. Brinkmann, U. Brockmeyer, W. Damm, H. Hungar,
and P. Jansen. Verification of the automotive control units. In Correct System
Design – Recent Insights and Advances, 1999, LNCS 1710, pp. 319–341. Springer.

3. J. Bohn, W. Damm, O. Grumberg, H. Hungar, and K. Laster. First-order-CTL
model checking. In Proc. FST&TCS 1998, LNCS 1530, pp. 283–294. Springer.



Automatic Verification of Hybrid Systems with Large Discrete State Space 291

4. M. Bretschneider, H.-J. Holberg, E. Böde, I. Brückner, T. Peikenkamp, and
H. Spenke. Model-based safety analysis of a flap control system. In Proc. 14th
Annual INCOSE Symposium, 2004.

5. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic
model checking: 1020 states and beyond. In Proc. LICS 1990, pp. 428–439.

6. A. Chutinan and B. H. Krogh. Computing polyhedral approximations to flow pipes
for dynamic systems. In Proc. IEEE CDC 1998.

7. A. Chutinan and B. H. Krogh. Verification of the polyhedral-invariant hybrid
automata using polygonal flowpipe approximations. In Proc. HSCC 1999, LNCS
1569, pp. 76–90. Springer.

8. E. M. Clarke, A. Fehnker, Z. Han, B. H. Krogh, J. Ouaknine, O. Stursberg, and
M. Theobald. Abstraction and counterexample-guided refinement in model check-
ing of hybrid systems. Foundations of Computer Science, 14(4):583–604, 2003.

9. M. Fränzle and C. Herde. Efficient proof engines for bounded model checking of
hybrid systems. ENTCS, 133:119–137, 2005.

10. G. Frehse. PHAVer: Algorithmic verification of hybrid systems past HyTech. In
Proc. HSCC 2005, LNCS 3414, pp. 258–273. Springer.

11. T. A. Henzinger. The theory of hybrid automata. In Proc. LICS 1996, pp. 278–292.
12. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for hybrid

systems. Software Tools for Technology Transfer, 1(1-2):110–122, 1997.
13. C. A. R. Hoare. An axiomatic basis for computer programming. Communication

of the ACM, 12:576–583, 1969.
14. H. Hungar, O. Grumberg, and W. Damm. What if model checking must be truly

symbolic. In Proc. CHARME 1995, LNCS 987, pp. 1–20. Springer.
15. A. Mishchenko, S. Chatterjee, R. Jiang, and R. K. Brayton. FRAIGs: A unifying

representation for logic synthesis and verification. Technical report, EECS Dept.,
UC Berkeley, 2005.

16. L. de Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar, M. Sorea, and A. Tiwari.
SAL 2. In Proc. CAV 2004, LNCS 3114, pp. 496–500. Springer.

17. F. Pigorsch, C. Scholl, and S. Disch. Advanced unbounded model checking by
using AIGs, BDD sweeping and quantifier scheduling. In Proc. FMCAD 2006.

18. B. I. Silva and B. H. Krogh. Modeling and verification of hybrid system with
clocked and unclocked events. In Proc. IEEE CDC 2001.

19. B. I. Silva, K. Richeson, B. H. Krogh, and A. Chutinan. Modeling and verification of
hybrid dynamical system using CheckMate. In Proc. 4th Conference on Automation
of Mixed Processes, 2000.

20. A. Tiwari and G. Khanna. Series of the abstractions for hybrid automata. In Proc.
HSCC 2002, LNCS 2289, pp. 465–478. Springer.

21. F. D. Torrisi and A. Bemporad. HYSDEL - A tool for generating computational
hybrid models. IEEE Transactions on Control Systems Technology, 12(2):235–249,
2004.



Timed Unfoldings for Networks of Timed Automata

Patricia Bouyer1, Serge Haddad2, and Pierre-Alain Reynier1

1 LSV, CNRS & ENS Cachan, France
2 LAMSADE, CNRS & Université Paris-Dauphine, France

{bouyer,reynier}@lsv.ens-cachan.fr,haddad@lamsade.dauphine.fr

Abstract. Whereas partial order methods have proved their efficiency for the
analysis of discrete-event systems, their application to timed systems remains a
challenging research topic. Here, we design a verification algorithm for networks
of timed automata with invariants. Based on the unfolding technique, our method
produces a branching process as an acyclic Petri net extended with read arcs.
These arcs verify conditions on tokens without consuming them, thus expressing
concurrency between conditions checks. They are useful for avoiding the explo-
sion of the size of the unfolding due to clocks which are compared with constants
but not reset. Furthermore, we attach zones to events, in addition to markings.
We then compute a complete finite prefix of the unfolding. The presence of in-
variants goes against the concurrency since it entails a global synchronization on
time. The use of read arcs and the analysis of the clock constraints appearing in
invariants helps increasing the concurrency relation between events. Finally, the
finite prefix can be used to decide reachability properties, and transition enabling.

1 Introduction

Partial-order methods for discrete-event systems. In the last decades, major advances
in the analysis of distributed systems were based on two paradigms: the independence
and the locality of actions. Whereas partial-order methods mainly take advantage of
the independence (see e.g. [20]), the unfolding methods rely on both concepts [13,17].
Furthermore from a semantical point of view, system unfoldings are a theoretical well-
defined alternative to the usual interleaving semantics. It must be emphasized that this
semantics is more discriminant than the classical one and may be applied for other
purposes than verification like observation and diagnosis (see e.g. [9]).

Timed systems. Several timed models have been proposed for representing real-time
systems, e.g. various extensions of Petri nets, but the most studied and well-established
model is the one of timed automata (TA for short). It has been defined in [1] and since
then much investigated, with the development of several tools based on this model.

Partial-order methods for timed systems. If this approach led to efficient tools and algo-
rithms in the untimed case, no counterpart has so far been achieved for timed systems.
The main reason is that time synchronization of actions in the standard timed models
is essentially global and thus yields numerous conceptual and technical difficulties for
adapting or extending the previous methods. We discuss in Section 5 existing works.

Our contribution. In this paper, we design an efficient verification algorithm for net-
works of timed automata with invariants (NTA). Our algorithm is based on the unfold-
ing technique, and produces an acyclic Petri net with read arcs. Conditions (i.e. places

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 292–306, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Timed Unfoldings for Networks of Timed Automata 293

of the net) are labeled either by locations or by clocks, and events (i.e. transitions of the
net) represent the transitions of the NTA. Read arcs are convenient for modeling clock
testing with no clock reset (see for instance [7]), and, though they add some complex-
ity to the building of the unfoldings [21,22], they increase the independence relation
between events.

More precisely, we define a timed unfolding of an NTA close to the untimed case, by
attaching zones (a classical symbolic representation in the framework of timed systems)
to events, in addition to markings. Roughly the zone attached to an event t will capture
all relevant timing informations of possible configurations reached after having fired
all events belonging to the minimal causal past of t. It must be emphasized that the
dimension of the zones that we attach to events is small (and constant while the NTA is
unfolded): it is equal to three times the number of clocks plus twice the number of TA.

The main problem encountered by previous works is that urgency requirements (for
instance due to invariants) entail global synchronization between a priori independent
transitions. When a clock appears in an invariant, we use read arcs to express depen-
dencies of the transitions w.r.t. this invariant. This increases the concurrency relation
between events, even in the presence of invariants and enables a local decision of the
firability of an event (i.e. only by looking at its cut).

Finally, we prove that we can build a complete finite prefix which can be used, as in
the untimed case, for deciding in linear time (w.r.t. the size of the finite prefix) reacha-
bility (as well as transition firing) properties in NTA.

Due to lack of space, proofs are omitted, but can be found in [8]

2 Networks of Timed Automata

LetX be a finite set of variables, called clocks. We write C(X) for the set of constraints
over X , which consist of conjunctions of atomic formulae of the form x %& c and
x − y %& c for x, y ∈ X , c ∈ Z and %&∈ {<,≤,=,≥, >}. We write Clocks(γ) for
the set of clocks involved in γ. We define the proper subset Cdf (X) of diagonal-free
constraints over X where constraints x − y %& h (called diagonal constraints) are not
allowed. Similarly, we define the proper subset Cub(X) of upper-bounded constraints
overX where only constraints x ≺ h with ≺∈ {<,≤} are allowed.

Let s be a mapping fromX to elementary expressions over some setX ′ (i.e. x, x−y
or x − c). Then the substitution of s in a diagonal-free constraint γ, denoted γ[{x ←
s(x)}x∈X ] is defined as the expression obtained by replacing in γ every occurrence of x
by the term s(x), for any clock x. Note that the resulting expression belongs to C(X ′).

We will use as timed domain the set R≥0 of nonnegative real numbers. A valuation
over the set X of clocks is an element of RX

≥0. For R ⊆ X , the valuation v[R ← 0]
is the valuation v′ such that v′(x) = 0 when x ∈ R and v′(x) = v(x) otherwise. For
d ∈ R≥0, the valuation v + d is defined by (v + d)(x) = v(x) + d for every x ∈ X .
Constraints of C(X) are interpreted in a natural way over valuations: we write v |= γ
when the constraint γ is satisfied by v.

We use the classical notion of zones to represent symbolically infinite sets of val-
uations [12]. A zone over a set of variables Y is defined as a constraint of C(Y ).
We assume the reader to be familiar with the following operations on zones (see [6]):



294 P. Bouyer, S. Haddad, and P.-A. Reynier

conjunction, extension of the set of variables, elimination of a set of variables (we write
∃V.Z), and emptiness checking. The extrapolation of zone Z w.r.t. constant M is the
smallest zone containing Z defined with constants in {−M, . . . , 0, . . . ,M}.

Definition 1 (Timed Automaton (TA) [1]). A timed automaton A over Σ is a tuple
(L, �0, X,Σ,E, Inv) where L is a finite set of locations, �0 ∈ L is the initial location,
X is a finite set of clocks,Σ is a finite alphabet of actions,E ⊆ L×Cdf(X)×Σ×2X×L
is a finite set of edges and Inv ⊆ Cub(X)L associates to each location an invariant given

as an upper bound constraint. An edge (�, g, a, R, �′) ∈ E (or �
g,a,R−−−→ �′) represents

a transition from location � to location �′ labeled by a, with the guard g defined by a
constraint and reset R ∈ 2X .

Definition 2 (Network of TA (NTA)). A partial function f : (Σ ∪ {⊥})n → Σ is
called an n-ary synchronization function. A network of timed automata is a finite family
(Ai)1≤i≤n of n TA, whose sets of locations are pairwise disjoint, together with an n-ary
synchronization function f .

Note that we do not assume that clocks are local to each TA of an NTA. Before giving the
semantics of an NTA, we first give some notation and definitions which will be useful
in the rest of the paper. We fix an NTA A, and we assume that A is given by (Ai)1≤i≤n,
and f a synchronization function. We write Ai = (Li, �i,0, Xi, Σ,Ei, Invi) for every
1 ≤ i ≤ n. We then denote by X (resp. L) the set

⋃
1≤i≤nXi (resp.

⋃
1≤i≤n Li). We

extend naturally the function Inv over the set L.
Finally, we consider a synchronization function f : (Σ∪{⊥})n → Σ. In the sequel,

we denote Σ⊥ (resp. E) the set (Σ ∪ {⊥})n (resp. the set
∏

i(Ei ∪ {⊥})). We use a
similar notation for their elements: we denote a (resp. e) an n-uple (a1, . . . , an) ∈ Σ⊥
(resp. (e1, . . . , en) ∈ E). We define the function Lab from E to Σ⊥ which maps an

element e to the element a defined for every 1 ≤ i ≤ n by ai = b if ei = �i
g,b,R−−−→ �′i,

and by ai = ⊥ otherwise. We define the subset Sync = Lab−1(f−1(Σ)) of E, which
is the set of possible synchronizations of edges, i.e. the set of transitions of the NTA.

Given e ∈ Sync, assuming ei = �i
gi,ai,Ri−−−−−→ �′i, for all i such that ei �= ⊥, we define

I(e) the set {1 ≤ i ≤ n | ei �= ⊥}, g(e) the constraint
∧

i∈I(e) gi and R(e) the set⋃
i∈I(e)Ri. Finally, given an n-tuple �, we note Inv(�) =

∧
1≤i≤n Inv(�i).

Definition 3 (Semantics of an NTA). Let A = ((Ai)1≤i≤n, f) be an NTA. The seman-
tics of A is the transition system SA = (Q, q0,→) whereQ = (Π1≤i≤nLi)×(R≥0)X ,1

q0 = (�0,0) and → is defined by:⎧⎪⎨⎪⎩
(�, v) d−→ (�, v + d) if d ∈ R≥0 and v + d |= Inv(�) (delay moves);

(�, v) a−→ (�
′
, v′) if ∃e ∈ Lab−1(f−1({a})) s.t. v |= g(e), v′ = v[R(e) ← 0] and

�′i is given by ei if i∈I(ē) and by �i otherwise (discrete moves).

Finally, an element σ = (ēi, di)i≥0 ∈ (Sync×R≥0)∗ is a timed sequence of A if the

sequence of moves q0
d0−→ . . .

di−di−1−−−−−→ f(Lab(ēi))−−−−−−→ . . .
f(Lab(ēn))−−−−−−→ is in SA.

1 We denote � an n-tuple of Π1≤i≤nLi, and �0 = (�i,0)1≤i≤n.



Timed Unfoldings for Networks of Timed Automata 295

W.l.o.g. we assume that the constraints and resets associated with edges syntactically
ensure that the invariants associated with the output locations of every edge are satisfied
when a discrete move following that edge is performed.

Important and unusual definitions. We define several other notions, which will be
fundamental for defining our unfolding. Let A be an NTA. Let X be its set of clocks,
thenXinv is the subset of clocks occurring in the invariant of some location of L. Given

an edge ē = �̄
g,ā,R−−−→ �̄′, and a clock x ∈ X , we say that x is redefined by ē if x is not

reset by ē, and if the constraints Inv(�) and Inv(�′) are not equivalent w.r.t. x. We denote
by Redefined(ē) the set of clocks redefined by ē. Given a clock x ∈ X , we say that x
is modified by ē if x ∈ R(ē) ∪ Redefined(ē). This means that x has either been reset
by one of the edges, or an invariant constraint over x has been redefined. Moreover, we
say that x is tested by e if x ∈ Clocks(g(ē)) ∪ Xinv. This means that the clock x is
either tested in one of the constraints, or used in some invariant of the NTA. It is worth
noticing that we include here the whole set Xinv. This latter point will be discussed
later. Finally, we note:⎧⎨⎩

Pre(e) = {�i | i ∈ I(e)} ∪ {x ∈ X | x is modified by e}
Read(e) = {x ∈ X | x is tested but not modified by e}
Post(e) = {�′i | i ∈ I(e)} ∪ {x ∈ X | x is modified by e}

3 Unfoldings of NTA

3.1 Untimed Nets

We first define the untimed structures we use. These are classical structures defined
e.g. in [17,13], extended with read arcs [21,22]. Even if read arcs do not add expres-
siveness to (untimed) Petri nets (w.r.t. reachability), they improve quite a lot unfolding
techniques, since they increase the concurrency relation between events. However, their
unfolding is more involved.

Definition 4 (Read Arc Petri Net). A read arc Petri net is a tuple N = (P, T,Pre,
Post,Read,M0) where P is a (finite) set of places, T is a (finite) set of transitions with
P ∩T = ∅, Pre, Post and Read are three mappings from T to 2P called resp. backward,
forward and read incidence mapping. Finally, M0 ∈ 2P is the initial marking.

The untimed structure associated with the unfolding of a NTA is a particular kind of read
arc Petri net. Before giving the structure, we first define precedence, strong precedence
and conflict relations between nodes of a net. We first give some notation. Let t be a
transition and p be a place of a net N = (P, T,Pre,Post,Read,M0):

– •t denotes the set Pre(t), t• denotes the set Post(t), ◦t denotes the set Read(t),
– •p denotes the set {t′ ∈ T | p ∈ t′•}, p• denotes the set {t′ ∈ T | p ∈ •t′}.

We extend the notation to set of nodes as usual. We now define relations between nodes:

– Let < (the precedence relation) be the minimal transitive relation over P ∪ T sat-
isfying for every t, t′ ∈ T , for every p ∈ P ,
if p ∈ •t then p < t, if t ∈ •p then t < p, if p ∈ ◦t and p ∈ t′• then t′ < t.
We denote ≤ the reflexive closure of <.



296 P. Bouyer, S. Haddad, and P.-A. Reynier

– Let ≺ (the stong precedence relation) be the minimal transitive relation over P ∪T
satisfying for every t, t′ ∈ T , for every p ∈ P , and for every nodes x and y,
if x < y then x ≺ y, if p ∈ ◦t and p ∈ •t′ then t ≺ t′.
We denote / the reflexive closure of ≺.

– Let # (the conflict relation) be defined by x # y iff ∃p ∈ P, ∃t, t′ ∈ p• s.t.
t �= t′ ∧ t ≤ x ∧ t′ ≤ y.

These definitions are those given in [22] which are a slight variant of those in [21].

Definition 5 (Occurrence Net). An occurrence net is a net N = (P, T,Pre,Post,
Read,M0) fulfilling the following conditions. |•p| ≤ 1 for every p ∈ P . The prece-
dence relation < of N is a finitary partial order (i.e. every item of P ∪ T has a finite
number of predecessors). For every item x ∈ P ∪ T , the strong precedence relation
restricted to the set of predecessors of x w.r.t. < is a partial order. No element is in
conflict with itself. M0 = Min(P ), where Min(P ) denotes the set {p | •p = ∅}.

In an occurrence net, elements of P are called conditions and elements of T events. We
define the branching process associated with an NTA as a labeled occurrence net:

Definition 6 (Branching Process of an NTA). Let A be the NTA given as a family
(Ai)1≤i≤n of n TA and an n-ary function f . A branching process of A is defined as a
pair of an occurrence net N = (P, T,Pre,Post,Read,M0) and a labeling function λ
ranging over P ∪ T such that:

– λ(P ) ⊆
⋃

1≤i≤n(Li ∪Xi) (conditions correspond to locations or clocks of A),
– λ(T ) ⊆ Sync (events correspond to possible transitions of A),
– λ is a one-to-one mapping from M0 to

⋃
1≤i≤n �i,0 ∪ X (initially, the marking

consists in initial locations plus the clocks),
– for every element t ∈ T with λ(t) = ē ∈ Sync, λ is a one-to-one mapping from •t

(resp. ◦t, t•) to Pre(ē) (resp. to Read(ē), Post(ē)).
– ∀t, t′ ∈ T , λ(t) = λ(t′) ∧ •t = •t′ ∧ ◦t = ◦t′ ⇒ t = t′ (no redundancy)

We use read-arcs in our unfoldings for increasing the concurrency relation between
events: indeed, when firing a transition, there is no need to create a new place for a
clock which is not modified, that’s thus relevant to test its value using a read-arc, and
not a pre-arc.

In [21,22], a prefix relation is defined between branching processes of an NTA and
it is shown that these processes form a complete lattice w.r.t. this relation which im-
plies that there is a maximal branching process. The branching processes differ on “how
much they unfold”. The untimed unfolding of an NTA is defined as its maximal branch-
ing process.

Example 1. An example of branching process is depicted on Figure 1. Conditions are
represented by circles, and events by boxes, as usual for Petri nets. Labels are written
close to the nodes. A read arc is represented by an arc with no arrow (for instance there
is a read arc from the top-most condition labeled x to the top-most event labeled a1: for
being fired, event a1 will check that there is a token in condition x, since x is involved
in an invariant). The dashed part of the branching process represents an event that will
be considered by our algorithm but whose timing constraints are unconsistent, and thus
which will not be built (see Subsection 3.2).



Timed Unfoldings for Networks of Timed Automata 297

x ≤ 2

y ≥ 2,
y := 0

a1

y = 0
a4

a2

x ≥ 3
a3

�1

�2

�3

�′1

�′2

�′3

f :

⎧⎪⎪⎨⎪⎪⎩
(a1,⊥,⊥) �→ a1

(⊥, a2,⊥) �→ a2

(⊥,⊥, a3) �→ a3

(a4, a2,⊥) �→ a4,2

(a) A NTA A

y �1 �2 x �3

y

y

�′1

�′1

�′2 x �′3

�′3l′′1 l′2 x

a1

a1

a2 a3

a3a4,2

p2 p3 p5p1

p6

p11

p4

p9p7

p12

p8 p10

p16p13 p14 p15

t1

t4

t2 t3

t6t5

(b) A branching process of A

Fig. 1. An example of branching process of an NTA

We introduce more or less classical notions concerning branching processes. Note that
these definitions take into account read arcs.

Definition 7 (Non-branching Process, Configuration, Cut, Causal Past). Let β =
(N , λ) be a branching process of an NTA A. We write T (resp. P ) for the set of events
(resp. of conditions) of N . We consider the occurrence net (P ′, T ′) ⊆ (P, T ) obtained
as a restriction N ′ of N , and the labeling function λ′ defined as the restriction of λ to
N ′. Then β′ = (N ′, λ′) is called a non-branching process of β if it satisfies the five
following conditions:

– ∀t ∈ T, ∀p ∈ •t ∪ ◦t ∪ t•, t ∈ T ′ ⇒ p ∈ P ′ (events are consistent with β),
– ∀p ∈ P, ∀t ∈ •p, p ∈ P ′ ⇒ t ∈ T ′ (conditions are consistent with β),
– Relation ≺ restricted to P ′ ∪ T ′ is a partial order,
– ∀x, y ∈ P ′ ∪ T ′, ¬(x # y) (N ′ is conflict-free),
– Min(P ′) = Min(P ).

We fix a non-branching process β′. The configuration C of β′ is the set of events of β′.
A set of conditions is a co-set if it is an antichain w.r.t. ≺ in β′ (i.e. where items are
pairwise incomparable). A cut is a maximal co-set. If C is the configuration of β′, we
associate with C the cut Cut(C) defined by Cut(C) = (Min(P ) ∪ C•) \ •C. We also
define the cut of a non-branching process as the cut of its configuration.

Given a non-branching process β′ of β, and an event t belonging to β′, we denote
[t]β′ the causal past of t relative to β′ defined as the set of events {t′ ∈ T ′ | t′ / t}.
The minimal causal past 2 of t, denoted [t], is

⋂
β′ [t]β′ where β′ ranges over the set of

non-branching processes of β containing t. [t] is a configuration and we denote by βt

its associated non branching process.
Finally, we say that a non-branching process β+ extends a non-branching process

β, denoted by β 0 β+ if the events of β are events of β+ and if given any event t of β
and any event t+ of β+ \ β, we do not have t+ ≺ t in β+.

2 Note that [t] may be inductively defined by [t] = {t} ∪⋃
t′∈•(•t ∪ ◦t)[t

′]. Due to the lattice

structure of branching processes of a read arc Petri net, [t] does not depend on β.



298 P. Bouyer, S. Haddad, and P.-A. Reynier

Example 1 continued. Let β be the branching process of Figure 1. Then the subgraph
underlied by nodes {pi}i=1..9 ∪ {t1, t2} is a non branching process (say β′); its asso-
ciated configuration is {t1, t2} = [t2]β′ �= [t2] = {t2}. Let β1 (resp. β2) be the non
branching process corresponding to {t1, t2, t3} (resp. {t1, t2, t6}). Then β′ ⊆ βi for
i = 1, 2 and β′ 0 β2 but β′ �0 β1 due to the arc between p4 and t3 (implying t3 ≺ t2).

Important remark. It is worth noticing that if C is a configuration of an NTA, the set
Cut(C) ∩ λ−1(X) is in bijection (by λ) with the setX of clocks of the NTA and that λ
maps the set Cut(C) ∩ λ−1(L) to a set consisting of one location per TA of the NTA.
Indeed, each time a clock place is consumed, it is produced back and each time a place
whose label is a location of a TA is consumed another place whose label is a location of
the same TA is produced.

We use the notation of [21] to present the (semi-)algorithm (Algorithm 1.) for the
construction of the untimed unfolding of an NTA. In the algorithm, a condition of the
unfolding is encoded as a pair (p, t) where p is the label of this condition, and t is the
unique input event of this condition (t equals to ∅ if the condition has an empty preset).
An event is represented with three fields (ē, Yin, Yr) where ē is the label of this event (a
synchronized edge), Yin and Yr are two lists of pointers to conditions (respectively the
input and read conditions).

Definition 8 (Possible Extensions (PE)). Let β = (N , λ) be a branching process of
an NTA A. The possible extensions of β are the triples t = (ē, Yin, Yr) where ē is an
element of Sync such that there exists a non branching process β′ with Yin ∪ Yr being
a co-set of β′, such that λ is a one-to-one mapping from Yin (resp. Yr) to Pre(ē) (resp.
Read(ē)), and such that (ē, Yin, Yr) does not already belong to β.

In this case, we define the extension of β by t, obtained by the operation Extend(β, t)
as the branching process β′ obtained from β by adding an event labeled by ē, connected
to conditions in Yin with pre-arcs and to conditions in Yr with read arcs, and with new
conditions, according to Post(ē).

Algorithm 1. Building the (eventually infinite) untimed unfolding (semi-algorithm)
Require: An NTA A.
Ensure: The unfolding Unf of A.
1: Unf := {(�1,0, ∅), . . . , (�n,0, ∅)} ∪ {(x, ∅) | x ∈ X}; (Initialization)
2: pe := PE(Unf); (Possible Extensions)
3: while pe �= ∅ do
4: Choose an event t = (ē, Yin, Yr) in pe. (ē is the label of t)
5: Extend(Unf, t);
6: pe := PE(Unf);
7: end while

3.2 Adding Timing Constraints to the Untimed Unfolding

Our objective is to add timing information in the untimed structure described before
for getting a new symbolic representation of the set of timed sequences of an NTA.



Timed Unfoldings for Networks of Timed Automata 299

This will also reduce the size of the untimed structure, by removing extensions with
unfeasible timed part (see the dashed part of Example 1).

Timed executions. In order to define and compute the timed unfolding of an NTA, we
first add time to a non-branching process. We associate an absolute date, written d,
with every event corresponding to its occurrence and two or three dates with every
condition. The first one corresponds to its production (or birth), written db. The second
date corresponds to the consumption (or end) of the condition (it may be +∞), written
de. A third date is associated with a condition corresponding to a clock, and represents
the date at which the clock has been reset the last time (written dr).

Definition 9 (Timed Valuation of a Non-branching Process). Let β be a branching
process, and β′ a non-branching process of β. A timed valuation of β′ is a mapping d
from T ′ to R≥0, a mapping db from P ′ to R≥0, a mapping de from P ′ to R≥0∪{+∞}
and a mapping dr from P ′ ∩ λ−1(X) to R≥0.

We want to characterize the timed valuations of a non-branching process corresponding
to a real timed execution of the NTA. In order to obtain such a characterization, we
introduce some additional notation. Let t be an event, C+(t) (resp. C−(t)) is the cut
corresponding to configuration [t] (resp. [t]\{t}). We denote byL(t) = C−(t)∩λ−1(L).
Given a clock x, there is a unique place p+x (resp. p−x ) in cut C+(t) (resp. C−(t)) whose
label is x. Given a timed valuation of a non-branching process including t, we note
v(t)x = d(t) − dr(p−x ) and v′(t)x = d(t) − dr(p+x ).

Definition 10 (Feasibility of a Timed Valuation). Let β be a branching process of an
NTA, and β′ a non-branching process of β. A timed valuation (d,db,de,dr) of β′ is
feasible iff it satisfies the following (in)equations: for every t ∈ T ′,

Causal (in)equations: Timed (in)equations:
- ∀p ∈ t•, db(p) = d(t) - g(λ(t))[{x← v(t)x}x∈X ]
- ∀p ∈ •t, de(p) = d(t) -

∧

∈L(t) Inv(�)[{x← v(t)x}x∈X ]

- ∀p ∈ ◦t, db(p) ≤ d(t) ≤ de(p) -
∧

x∈R(λ(t)) v
′(t)x = 0

- ∀p ∈ P ′, db(p) ≤ de(p) -
∧

x∈Redefined(λ(t)) v
′(t)x = v(t)x

- ∀p ∈ Min(P ′), db(p) = dr(p) = 0

Definition 11. Let A be an NTA and σ a timed sequence of A. Its timed non-branching
process (β,d,db,de,dr) is inductively defined as follows:

– If σ is the empty sequence then β is Min(P ), ∀p ∈ Min(P ), db(p) = 0, de(p) =
∞, and for every p ∈ Min(P ) ∩ λ−1(X), dr(p) = 0.

– If σ = σ′(ē, d) (d represents the date of the occurrence of ē) and (β′,d′,db
′,de

′,
dr
′) is the timed non-branching process of σ′ then, denoting C the cut associated

with β′, there is a unique possible extension of β′ from C by an event t labeled by
ē. β is this extension.
• The timed valuation on places and transitions of β′ is preserved except for the

places p ∈ •t, for which we set de(p) = d.
• We set d(t) = d, and for every place p ∈ t•, we set db(p) = d and de(p) = ∞.
• If p ∈ t• is s.t. λ(p) = x ∈ X , if x is reset by e, we set dr(p) = d; otherwise

let p′ be the unique place of C whose label is x, then dr(p) = dr(p′).



300 P. Bouyer, S. Haddad, and P.-A. Reynier

The next proposition shows the close relation between timed sequences and feasible
timed non-branching processes, i.e. admitting a feasible timed valuation.

Proposition 1 (Feasibility is Equivalent to Execution). Let A be an NTA. Then:

1. If σ is a timed sequence of A then its timed non-branching process is feasible.
2. If β is a non-branching process of A and (d,db,de,dr) a feasible time valuation

of β, then there is a timed sequence σ of A whose timed non-branching process is
(β,d,db,de,dr).

We obtain as a corollary that the set of configurations obtained after firing a shuffle of
concurrent transitions is a zone, a result also proved in [3] by other means.

The proof of this proposition (see [8]) heavily relies on the way invariants are han-
dled: since transitions are connected by read arcs or pre arcs to a single condition per
clock involved in some invariant, two concurrent transitions must share these conditions
and be connected to them by a read arc. Thus, given an event t of the non-branching
process β of σ, the satisfaction of the invariant constraint by t in σ is equivalent to the
satisfaction of the invariant equation in [t]. If an event t is not firable in [t] (its non-
branching process β is not feasible) then it is firable in no extension of β. We illustrate
this point in Example 1. Every event is connected to one place labeled by x by a read
arc. Since the firing of a2 redefines the invariant on clock x, there are two places labeled
by x. This leads to two different occurrences of a1 and a3, depending on their ordering
with a2, which are necessary since they yield different behaviors. Firing a3 before a2

is unfeasible (see the dashed event), whereas a3 is firable after a2 with the constraint
x = y∧x ≥ 3. For a1, we get similarly different timing constraints over clocks x and y.

Remark. It is worth noticing that we could increase slightly the locality of events by
restricting connections to invariants clocks. Indeed, given a global edge ē, we could
perform an offline untimed analysis of the system to restrict the possible set of undeter-
mined locations, thus restricting the set of invariants to consider. That way to proceed
would be similar to the method of active clocks [11].

Symbolic representation of timed executions. If we interpret the dates of a
non-branching process β as variables and the (in)equations of Definition 10 as a system
of linear inequations, we obtain a zone, denoted Eq(β). As stated by Proposition 1, this
zone characterizes the set of timed sequences of β and β admits a timed sequence iff
Eq(β) is satisfiable. The set of variables of Eq(β) is {d(t) | t ∈ T } ∪ {db(p),de(p) |
p ∈ P} ∪ {dr(p) | p ∈ P ∩ λ−1(X)}, whose size is larger than that of β. Since the
complexity of operations on zones heavily depends on the number of variables, we will
reduce the number of variables as much as possible. We thus keep only variables which
are necessary to decide whether one can extend the non-branching process. To this aim,
we state the following proposition, which is a key ingredient to compute incrementally
timed feasibility of non-branching processes, and whose proof follows by examining
the inequations of Definition 10.

Proposition 2. Let β, β+ be non-branching processes of some NTA such that β 0 β+,
let C be the cut associated with β. We partition the variables of Eq(β+) into three
sets: VC the variables associated with places of C, V − the variables of Eq(β) different



Timed Unfoldings for Networks of Timed Automata 301

from VC and V + the remaining variables. Then Eq(β+) can be decomposed as the
conjunction Eq(β) ∧ Eq′(β+ \ β), where the set of variables of Eq(β+) (resp. Eq(β)
and Eq′(β+ \ β)) is the disjoint union V − ∪ VC ∪ V + (resp. V − ∪ VC and VC ∪ V +).

Given a non-branching process β, we now define the zone Zβ as the zone ∃V −.Eq(β),
with the notation of Proposition 2. If t is an event, Zt denotes Zβt . By previous propo-
sition, the set of variables of Zt is equal to VC . We have VC = {db(p),de(p) | p ∈
C} ∪ {dr(p) | p ∈ C ∩ λ−1(X)}, where C denotes the cut Cut([t]) (note that variable
d(t) has been eliminated). It is worth noticing that the size3 of VC is equal to 2n+ 3|X |.
Timed unfolding. We can now propose a (semi-)algorithm, namely Algorithm 2., which
builds the (possibly infinite) timed unfolding of an NTA such that an event occurs in the
unfolding iff there is at least one timed sequence whose branching process includes this
event. This algorithm is an extension of Algorithm 1., in which we associate with each
event t of the unfolding the zone Zt defined above. By previous study, we thus add the
event t if and only if Zt admits a solution (line 6). If Z is a zone, we write 〈Z〉 for the
set of valuations satisfying Z . We also need to record the possible extensions already
considered but leading to empty zones (line 7). The remaining point is the computation
of the zone Zt (line 5).

Algorithm 2. Building the (eventually infinite) timed unfolding (semi-algorithm)
Require: An NTA A.
Ensure: The timed unfolding T-Unf(A) of A.
1: T-Unf := {(�1,0, ∅), . . . , (�n,0, ∅)} ∪ {(x, ∅) | x ∈ X};
2: pe := PE(T-Unf);
3: while pe �= ∅ do
4: Choose an event t = (ē, X, Y ) in pe.
5: Compute the zone Zt associated with the firing of t
6: if 〈Zt〉 �= ∅ then Extend(T-Unf, t); pe := PE(T-Unf);
7: else Mark t as useless event. end if (In order to not consider t again)
8: end while

Since we do not keep the entire equation system of the non-branching process yield-
ing an event t but only a projection of it, the computation of a new zone Zt is a difficult
task. To solve this problem, we compute additional zones associated with intermedi-
ate non branching processes. A first remark is that given the zone Zβ corresponding to
some non-branching process β, and an extension β+ of β consisting of a set of con-
current events, it is easy to compute the zone Zβ+ , simply by applying Definition 10
(see [8]).

Let T be the set of maximal events of configuration C = [t] \ {t} and βT be the
non branching process associated with C. Using previous remark, it is easy, given the
zone ZT corresponding to βT , to compute the zone Zt. Our goal is thus to compute
ZT . Let t0 ∈ C. A topological sort of C \ [t0] w.r.t. ≺ gives sets of concurrent events,
which we call “slices”. If we can apply the previous remark from βt0 to these successive

3 We obtain the bound claimed in the introduction.



302 P. Bouyer, S. Haddad, and P.-A. Reynier

slices, then we can compute iteratively, for each of these slices, the zone resulting from
the firing of a slice, and thus get the desired zone. To apply the remark, the different
intermediate non-branching processes have to extend each other. Because of read arcs,
given a non-branching process β and an event t′ ∈ β, this may be the case that β does
not extend βt′ . This happens exactly when [t′]β \ [t′] �= ∅. In this case, a transition t′′ of
this difference set reads a place belonging to β′ \ Cut(β′). Using this characterization,
we can compute correctly the initial event t0. The previous discussion is formalized
in [8], providing an algorithm for the computation of the zone Zt.

As a direct consequence of the previous developments, we obtain the following the-
orem, which states properties of our (infinite) timed unfolding.

Theorem 1. Algorithm 2. is correct: if A is an NTA, an event t occurs in the timed
unfolding T-Unf(A) iff there is at least one timed sequence whose non-branching pro-
cess is βt, and Zt is the set of possible values for the variables associated with Cut([t])
obtained by timed sequences whose non-branching process is βt.

4 Algorithm for the Construction of a Finite Prefix

The construction of a complete finite prefix for read arcs Petri nets is much more in-
volved that in classical Petri nets. It has been first studied in [21] where the problem is
solved for a subclass of read arcs Petri nets, and a solution for the general class has then
been proposed in [22]. All the algorithms rely on the detection of cut-off events: the cut
obtained from every non-branching process including a cut-off event can be obtained
by a non-branching process built from another already computed event.

In the timed framework, we must take into account the zones associated with the cut-
off event and the previously computed event for checking whether the current cut-off
event is redundant also w.r.t. timing constraints. In the context of TA, it is well-known
that there are infinitely many incomparable zones. Thus, an extrapolation operator has
been designed, which bounds the number of zones which can be computed. This extrap-
olation is an over-approximation, but is correct for checking reachability properties [6].

However, to compare the configurations reached by two non-branching processes [t]
and [t′], we cannot use directly the zones Zt and Zt′ computed in the previous sec-
tion: indeed, the (unbounded) dates of occurrence of t and t′ are irrelevant w.r.t. to the
corresponding configurations reached in the NTA. Thus, we compute from zone Zt a
new zone corresponding to the possible valuations of the clocks reached in the NTA
after firing all possible timed sequences corresponding to the non-branching process of
[t]. To enforce termination, we then apply the classical extrapolation operator on this
last zone and get the so-called clock zone Testt. Unfortunately, two events whose clock
zones and cuts are identical can lead to different processes: indeed, it must be noticed
that a configuration [t] may be extended by an event t′ whose timed occurrence pre-
cedes the one of t! This may occur if the new event added t′ is concurrent with t. Then,
the date of t′ may be smaller than that of t, which implies that classical extrapolation
may induce mistakes, and thus that we can no more “forget the past” by comparing only
clock zones and cuts. We will thus use a subclass of synchronized events, which have
the desired property of “forgettable past”. Indeed, when an event t synchronizes all the
TA of an NTA A, the timing occurrences of all events extending configuration [t] will



Timed Unfoldings for Networks of Timed Automata 303

follow the one of t. This is the key ingredient which enables us to obtain a finite prefix,
see Lemma 2. Note that this observation is quite similar to the one of [16] (operator $).
Note also that our algorithm avoids using the sophisticated algorithm of [22]. We now
define an unavoidable subset of edges of an NTA.

Definition 12. Let A = ((Ai)1≤i≤n, f) be an NTA and E′ be a subset of global edges
of A (i.e. a subset of Sync), then E′ is unavoidable iff for every i, every circuit of the
underlying graph of Ai intersects E′: there is some ei belonging to the circuit such that
if ei occurs in ē ∈ Sync then ē ∈ E′.

Obviously, any NTA has at least one unavoidable subset of edges. However the effi-
ciency of the method will depend on two characteristics of the selected subset: its size
and the synchronization factor of its edges (i.e. |I(ē)|). Now we transform the NTA in
such a way that when one fires an edge of E′, one synchronizes the whole NTA.

Definition 13. Let A = ((Ai)1≤i≤n, f) and E′ be an unavoidable set of edges, then

– if ē ∈ E′, its synchronized version is Sync(ē) = {ē′ | ∀i ∈ I(ē), e′i = ei and ∀i /∈
I(ē), ∃�i ∈ Li s.t. e′i = idle(�i)} with idle(�i) = �i

true,ε,∅−−−−→ �i.
– A(E′) is the NTA where E′ has been replaced by

⋃
ē∈E′ Sync(ē).

Note that A(E′) is not defined via a synchronization function but directly with its set of
edges. However all previous results equally apply on such NTA. Note also that A and
A(E′) have the same set of (finite or infinite) timed sequences with the same interme-
diate configurations and so any property expressible in terms of these extended timed
sequences is equivalent for A and A(E′). This is in particular the case for reachability,
and event occurrence which are the usual properties checked by the unfolding method.
Note that if for all ē ∈ E′, I(ē) = {1, . . . , n} then A(E′) = A.

Let us now explain how we build the finite prefix of the timed unfolding of A(E′)
(Algorithm 3., page 304). When we fire a synchronized event t, we build the clock
zone Testt as follows. We project the last zone (corresponding to Zt of the previous
section before elimination of variable d(t)) over the variables d(t) and {dr(p) | p ∈
Cut([t]) ∩ λ−1(X)}. Then we relativise the result w.r.t. variable d(t), i.e. we replace
variables dr(p) by d(t) − dr(p), and we eliminate variable d(t). We noteWt this new
zone.

Lemma 1. The zone Wt corresponds to the set of valuations v such that there exists
a timed sequence whose non-branching process βt, and such that in A(E′), the clock
valuation after having fired the above timed sequence is v.

We close zone Wt by time elapsing and intersect it with the invariant specified by
Cut([t]), i.e. the conjunction of invariants of locations appearing in Cut([t]). At last
we extrapolate the result, yielding the zone Testt. We then check whether there exists
a synchronized event t′ & t 4 with λ(Cut([t′])) = λ(Cut([t])) and 〈Testt〉 ⊆ 〈Testt′〉. If
this is the case, we mark t as useless and we do not produce its output places.

4 � denotes an adequate order, as required by [13,17] for proving completeness of the finite
prefix construction. A possible such order is Card([t′]) < Card([t]).



304 P. Bouyer, S. Haddad, and P.-A. Reynier

It is worth noticing that diagonal constraints appearing in zones Zt do not induce
wrong extrapolation results as in timed automata using diagonal constraints [6]. Indeed,
the zones Testt are related to the NTA A(E′), which does not have diagonal constraints,
the extrapolation operator can thus safely be used.

Algorithm 3. Building a finite and complete prefix of the timed unfolding
Require: An NTA A.
Ensure: A finite and complete prefix Fin of T-Unf(A).
1: Fin := {(�1,0, ∅), . . . , (�n,0, ∅)} ∪ {(x, ∅) | x ∈ X}; pe := PE(Fin);
2: while pe �= ∅ do
3: Choose an event t = (ē, Yin, Yr) in pe.
4: if t is not a synchronized event then
5: Compute the zone Zt associated with the firing of t
6: if 〈Zt〉 �= ∅ then Extend(Fin, t); pe := PE(Fin);
7: else Mark t as useless event; end if (In order to not consider t again)
8: else (t is a synchronized event)
9: Compute the extrapolated zone Testt of clock values.

10: if ∃ a synchronized event t′ � t | λ(Cut([t′])) = λ(Cut([t])) ∧ 〈Testt〉 ⊆ 〈Testt′〉 then
11: Mark t as useless event. (In order to not consider t again)
12: else if 〈Zt〉 �= ∅ then Extend(Fin, t); pe := PE(Fin);
13: else Mark t as useless event; end if (In order to not consider t again)
14: end if
15: end while

Synchronized events enjoy the following nice property, proved in [8].

Lemma 2 (Forgettable Past of Synchronized Events). Let t be a synchronized event
of a branching process of an NTA. It is equivalent to extend βt and to build a non-
branching process from Cut([t]) with constraints on variables {dr(p) | p ∈ Cut([t]) ∩
λ−1(X)} given by Testt.

Finally the following theorem states the termination and soundness of Algorithm 3..

Theorem 2. Algorithm 3. terminates and the computed finite prefix Fin is such that:
(1) a transition t can become firable in A(E′) iff an event labeled by t occurs in Fin;
(2) a configuration is reachable in A(E′) iff an equivalent configuration (w.r.t. strong
time bisimulation) is reachable by a timed sequence whose non-branching process is
included in Fin.

We have thus constructed for any NTA A a finite prefix which is complete for checking
reachability properties, and transition enabling.

5 Related Work

Partial order method for TA with ample sets. During the state exploration, partial-
order methods select a subset of transitions rather than developping all the state suc-
cessors. This subset, called an ample set, fulfills some properties relying on an inde-
pendence relation between transitions (see [19] for more details). Thus the efficiency of



Timed Unfoldings for Networks of Timed Automata 305

these methods is closely related to the size of the independence relation. So introduc-
ing time (and its implicit synchronizations) will necessarily restrict the corresponding
relation for the associated untimed model. In [4,18], the authors define an alternative
semantics for NTA based on local time elapsing. Despite the fact that this semantics
allows more behaviours than the standard semantics, the reachability relation asso-
ciated with the usual semantics can be checked on the system corresponding to the
new one. Moreover, the independence relation is enlarged when considering local time
elapsing. Clearly, the efficiency of this method depends on two opposite factors: local
time semantics generate more states but the independence relation restricts the explo-
ration.

Partial order method for TA with Mazurkiewicz trace. In [16], the independence
between transitions of a TA are exploited in a different way: the occurrences of two
independent transitions do no need to be ordered (and consequently nor the occurrences
of the clock resets). Thus a symbolic state in this framework is defined by a location
and constraints between variables related to both the clock resets and the transition
occurrences. When two sequences ab and ba are developped from a state with a and
b independent, they will lead to the same symbolic state whereas with the ordinary
construction they would generally yield two different states. However this method does
not exploit the independence relation for limiting the exploration.

Partial order method for time Petri nets with ample (or stubborn) sets. In Petri
nets, ample sets are denoted as stubborn sets [20]. Stubborn sets are similar to ample
sets but their definition takes advantage of the “locality” of the firing rule. In [23],
the authors generalise this concept to time Petri nets (TPN) calling it a ready set and
applying it to the class graph construction of [5] where a class is similar to a symbolic
state of a TA. Given a symbolic state, a ready set is a stubborn set with an additional
constraint relative to the timing occurrences of enabled transitions. Thus the efficiency
of the method depends on the weakness of the timing coupling between transitions.

Partial order method for TPNs with unfoldings. Depending on the Petri net to be
analysed, the unfolding and stubborn set methods behave very differently. For instance,
the former one outperforms the latter one when the net presents “confusion”, (i.e. when
the firing of a transition may influence the conflict set of another unrelated transition of
the net). The generalisation of the unfoldings for TPNs has been developed by differ-
ent searchers. First, in [2] the authors have studied the realisability of a non-branching
process in a TPN showing that the temporal mechanism of these nets requires a global
analysis of the process in order to check the firing of a transition in such a process. Start-
ing from this analysis, [10] has recently designed a finite complete prefix for TPNs. In
another direction, [15] proposes a method controlling the class graph construction with
an unfolding of the untimed net. However this unfolding may be infinite whereas the
TPN is bounded. In [14] the authors propose a discrete-time semantics for TPNs equiv-
alent to the dense-time one w.r.t. reachability. The net include a special transition of
the net modelling time elapsing but the occurrence of this transition in the unfolding
requires a complete cut drastically decreasing the locality of the unfolding. Further-
more, this method suffers the combinatorial explosion related to the discrete time ap-
proach.



306 P. Bouyer, S. Haddad, and P.-A. Reynier

References

1. R. Alur and D. Dill. A theory of timed automata. Theor. Comp. Sci., 126(2):183–235, 1994.
2. T. Aura and J. Lilius. A causal semantics for time Petri nets. Theor. Comp. Sci., 243(1–

2):409–447, 2000.
3. R. Ben Salah, M. Bozga, and O. Maler. On interleaving in timed automata. In 17th Int. Conf.

Concur. Theory (CONCUR’06), LNCS 4137. Springer, 2006. To appear.
4. J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial order reductions for timed systems. In

9th Int. Conf. Concur. Theory (CONCUR’98), LNCS 1466, 485–500. Springer, 1998.
5. B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems using

time Petri nets. IEEE Trans. Softw. Engineering, 17(3):259–273, 1991.
6. P. Bouyer. Forward analysis of updatable timed automata. Formal Methods in Syst. Design,

24(3):281–320, 2004.
7. P. Bouyer, S. Haddad, and P.-A. Reynier. Timed Petri nets and timed automata: On the

discriminating power of Zeno sequences. In 33rd Int. Coll. Automata, Languages and Pro-
gramming (ICALP’06), LNCS 4052, 420–431. Springer, 2006.

8. P. Bouyer, S. Haddad, and P.-A. Reynier. Timed unfoldings for networks of timed automata.
Research Rep. LSV-06-09, Lab. Spécification et Vérification, ENS de Cachan, France, 2006.

9. Th. Chatain and C. Jard. Time supervision of concurrent systems using symbolic unfoldings
of time Petri nets. In 3rd Int. Conf. Formal Modeling and Analysis of Timed Syst. (FOR-
MATS’05), LNCS 3829, 196–210. Springer, 2005.

10. Th. Chatain and C. Jard. Complete finite prefixes of symbolic unfoldings of time Petri nets. In
27th Int. Conf. Appl. and Theory of Petri Nets (ICATPN’06), LNCS 4024, 125–145. Springer,
2006.

11. C. Daws and S. Tripakis. Model-checking of real-time reachability properties using abstrac-
tions. In 4th Int. Conf. Tools and Algo. for the Construction and Analysis of Syst. (TACAS’98),
LNCS 1384, 313–329. Springer, 1998.

12. D. Dill. Timing assumptions and verification of finite-state concurrent systems. In of the
Work. Automatic Verification Methods for Finite State Systems (1989), LNCS 407, 197–212.
Springer, 1990.

13. J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding algorithm.
Formal Methods in Syst. Design, 20(3):285–310, 2002.

14. H. Fleischhack and C. Stehno. Computing a finite prefix of a time Petri net. In 23rd Int.
Conf. Appl. and Theory of Petri Nets (ICATPN’02), LNCS 2369, 163–181. Springer, 2002.

15. J. Lilius. Efficient state space search for time Petri nets. ENTCS 18, 1998.
16. D. Lugiez, P. Niebert, and S. Zennou. A partial order semantics approach to the clock explo-

sion problem of timed automata. In 10th Int. Conf. Tools and Algo. for the Construction and
Analysis of Syst. (TACAS’04), LNCS 2988, 296–311. Springer, 2004.

17. K. McMillan. A technique of state space search based on unfolding. Formal Methods in Syst.
Design, 6(1):45–65, 1995.

18. M. Minea. Partial order reduction for model checking of timed automata. In 10th Int. Conf.
Concur. Theory (CONCUR’99), LNCS 1664, 431–446. Springer, 1999.

19. D. Peled. All from one, one for all: on model checking using representatives. In 5th Int.
Conf. Computer Aided Verif. (CAV’93), LNCS 697, 409–423. Springer, 1993.

20. A. Valmari. Stubborn sets for reduced state space generation. In 10th Int. Conf. Appl. and
Theory of Petri Nets (ICATPN’89), LNCS 483, 491–515. Springer, 1989.

21. W. Vogler, A. L. Semenov, and A. Yakovlev. Unfolding and finite prefix for nets with read
arcs. In 9th Int. Conf. Concur. Theory (CONCUR’98), LNCS 1466, 501–516. Springer, 1998.

22. J. Winkowski. Reachability in contextual nets. Fundam. Inform., 51(1-2):235–250, 2002.
23. T. Yoneda and B.-H. Schlingloff. Efficient verification of parallel real-time systems. Formal

Methods in Syst. Design, 11(2):187–215, 1997.



Symbolic Unfoldings for Networks of Timed Automata

Franck Cassez1,�, Thomas Chatain2, and Claude Jard3

1 CNRS/IRCCyN, Nantes, France
franck.cassez@cnrs.irccyn.fr

2 IRISA/INRIA, Campus de Beaulieu, Rennes, France
Thomas.Chatain@irisa.fr

3 IRISA/ENS Cachan, Campus de Kerlann, Bruz, France
Claude.Jard@irisa.fr

Abstract. In this paper we give a symbolic concurrent semantics for network of
timed automata (NTA) in terms of extended symbolic nets. Extended symbolic
nets are standard occurrence nets extended with read arcs and symbolic con-
straints on places and transitions. We prove that there is a complete finite prefix
for any NTA that contains at least the information of the simulation graph of the
NTA but keep explicit the notions of concurrency and causality of the network.

1 Introduction

Concurrent Semantics for Finite State Systems. The analysis of distributed or concur-
rent finite state systems has been dramatically improved thanks to partial-order meth-
ods (see e.g. [21]) that take advantage of the independence between actions, and to
the unfolding based methods [11,16] that improve the partial order methods by taking
advantage of the locality of actions.

Timed Systems. The main models that include timing information and are used to
specify distributed timed systems are networks of timed automata (NTA) [1], and time
Petri nets (TPN) [17]. There are a number of theoretical results about NTA and TPN and
efficient tools to analyze them have been developed. Nevertheless the analysis of these
models is always based on the exploration of a graph which is a single large automaton
that produces the same behaviours as the NTA or the TPN; this induces an exponential
blow up in the size of the system to be analysed.

Related Work. In [13,18], the authors define an alternative semantics for NTA based
on local time elapsing. The efficiency of this method depends on two opposite factors:
local time semantics generate more states but the independence relation restricts the
exploration. In [15] (a generalization of [22]), the independence between transitions
in a TA is exploited in a different way: the key observation is that the occurrences of
two independent transitions do no need to be ordered and consequently nor do the oc-
currences of the clock resets. The relative drawback of the method is that, before their
exploration, the symbolic states include more variables than the clock variables. Partial
order methods for TPNs are studied in [20], where the authors generalize the concept

� Work supported by the project CORTOS, a program of the French government.

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 307–321, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



308 F. Cassez, T. Chatain, and C. Jard

of stubborn set to time Petri nets, calling it a ready set. They apply it to the state class
graph construction of [5]. The efficiency of the method depends on whether the (dy-
namical) timing coupling between transitions is weak or not. Unfortunately the urgent
semantics of this model entails a strong timing coupling. The previous partial order
methods only take advantage of the independence of actions and not of any locality
property. We are interested in a true concurrent semantics for NTA and this has not
been developed in the aforementioned work.

Process semantics for time Petri nets which is a generalization of the unfolding se-
mantics for time Petri nets has been developed by different researchers. From a seman-
tical point of view, Aura and Lilius have studied in [19] the realizability problem of
a non branching process in a TPN. They build an unfolding of the untimed Petri net
underlying a safe TPN, and add constraints on the dates of occurrence of the events. It
is then possible to check that a timed configuration is valid or not. In [12] the authors
consider bounded TPN and a discrete time domain: the elapsing of one time unit is a
special transition of the net. Thus the global synchronization related to this transition
heavily decreases the locality property of the unfolding. Furthermore, when the inter-
vals associated with the transitions involve large integers, this method suffers the usual
combinatorial explosion related to the discrete time approach.

Section 3 of this paper can be viewed as the counterpart of the work of Aura and
Lilius [19] in the framework of NTA: we define similar notions for NTA and build a
symbolic unfolding which is a symbolic net. We have to extend the results of Aura and
Lilius because there is no urgency for firing a transition1 in a NTA. As stated in [19]
those unfoldings are satisfactory for free choice nets which are a strict subclass of TPN.
Our NTA are not free choice nets and in section 4 we refine our symbolic unfolding to
obtain an extended symbolic unfolding which is a symbolic net with read arcs.

Following our recent approach [9] using the notion of symbolic unfolding to capture
the partial order behaviors of TPN, we propose in this paper a similar notion for NTA,
but we cannot directly apply the framework of [9]. Indeed TA and TPN have different
expressive powers [4,8] and as stated earlier NTA do not have the nice urgency features
that TPN have.

Up to our knowledge, this is the first attempt to equip NTA with a concurrent se-
mantics, which can be finitely represented by a prefix of an unfolding. In this paper we
answer the following questions:

1. What can be a good model for a concurrent semantics of NTA? The result is an
extension of the model of symbolic nets we have proposed in [9];

2. How to define a concurrent semantics for NTA, i.e. how to define a symbolic un-
folding that captures the essential properties of a NTA while preserving concur-
rency information? This is achieved in two steps: first build a symbolic unfolding
and use this object to build a proper extended symbolic unfolding of the NTA. By
proper unfolding, we mean a symbolic Petri net on which we can check that a local
configuration is valid using only the extended causal past of an event.

3. Is there a complete finite prefix for NTA? This result is rather easy to obtain on the
symbolic unfolding object and carries over to the extended symbolic unfolding.

1 invariants and guards can be independent and a transition is not bound to fire before its dead-
line given by the guard.



Symbolic Unfoldings for Networks of Timed Automata 309

About point 3 above, we are not addressing the problem of building such a prefix
efficiently but our work is concerned with identifying the key issues in the construction
of a prefix for NTA. The solution proposed in [9] builds a complete finite prefix for
safe TPNs, but with no guarantee that this prefix is one of the smallest, which is a
very difficult problem to solve. Based on this work, we address more basic questions
about NTA, which are in a sense easier to study than safe TPNs because the concurrent
structure is explicit.

Key Issues. In this section we present informally the problem and the key issues raised
by the three previous questions. In the case of networks of finite automata, finite com-
plete prefixes exist. For example, for the network2 of Fig. 1(a), a finite complete prefix
is given on Fig. 1(b). Finite complete prefixes contain full information about the reach-
able states of the network and about the set of events that are feasible in the network.
A set of events (labels) is feasible iff it is a word that can be generated by the network.
For example, {t1} is not a feasible set of events in the network N1, because t1 must be

0

1

2

t0

t1

A

x ≤ 10

B
x ≤ 2

C

t2; x := 0

t1; x ≤ 2

U

y ≤ 3

V
t2; y ≤ 3

(a) The NTA N1

⊥ δ⊥ = 0

0 A U

δU ≤ 3

e2 t2, δe2 ≤ 3

B
δB − δe2 ≤ 2

V

e3 t1, δe3 − δe2 ≤ 2

2 C

e1
t0

δe1 − δ⊥ ≤ 5

1

(b) Symbolic unfolding for the network N1

Fig. 1. A NTA and its Symbolic Unfolding

preceded by t2. And this appears in the unfolding as event e3 (labelled by t1) must be
preceded by e2 (labelled by t2). In an unfolding, a set of events K is a configuration if
there is a reachable marking obtained by firing each event in K . For example {⊥, e1}
is a configuration, {⊥, e1, e2} as well, but {⊥, e3} is not as e3 must be preceded by e2
before it occurs. The minimal set of events necessary for an event e to occur is called
the causal past (or local configuration) of e. Note that by definition a configuration
contains the causal past of each of its event. A complete prefix is an unfolding that sat-
isfies property (P ): a set of events is feasible in the NTA iff it is a configuration of the

2 The automata synchronize on common labels. Labels of the events and places represent the
corresponding location and transition in the network of automata. The constraints appearing
near each node are explained later and can be ignored at this stage.



310 F. Cassez, T. Chatain, and C. Jard

unfolding3. This property of unfoldings is the key point in the untimed case and allows
one to do model-checking on the complete finite prefix. This unfolding can also be used
for fault diagnosis purposes which is a very important application area.

In the case of networks of timed automata, we deal with timed events which are
pairs (e, δ) where δ ∈ R≥0. A set of timed events E is feasible iff there is a run in
the NTA that generates a timed word that contains all the timed events in E. To de-
cide whether a set of timed events is feasible in a network of timed automata, we can
build a symbolic unfolding. For this, we add a symbolic timing constraint g(e) to each
event of the previous unfolding. For example, with e1 we can associate the constraint

g(e1)
def
= δe1 − δ⊥ ≤ 5, where δe is the variable that represents the date of occur-

rence of e. A set of timed events {(e1, d1), · · · , (ek, dk)} is a timed configuration if
{e1, e2, · · · , ek} is a configuration and the constraint g(e1) ∧ · · · ∧ g(ek) is satisfied
when replacing each δei by di. For example {(⊥, 0), (e1, 4)} is a timed configura-

tion with g(⊥)
def
= δ⊥ = 0. Thus the property we would like to have for symbolic

unfoldings is (P ′): {(e1, d1), · · · , (ek, dk)} is a timed configuration iff there is a run
(ef(1), df(1)), · · · , (ef(k), df(k)) in the NTA with f a one-to-one mapping from 1..k
to 1..k. In the untimed case, one can check that an event is fireable in the unfolding
using only the causal past of the event. We want this property to hold for the timed
unfoldings as well and then a formula associated with an event e should only involve
variables that are associated with events in the causal past of e (the local configuration
of e). Now assume we want to decide whether {(⊥, 0), (e1, d1), (e2, d2)} is a timed
configuration. It is actually if d1 − d2 ≤ 2. But this cannot be captured by any conjunc-
tion g(⊥) ∧ g(e1) ∧ g(e2) because e1 is not in the causal past of e2 and e2 not in the
causal past of e1. A symbolic unfolding built by associating constraints with each event
e, with the property that each constraint g(e) uses only variables in the causal past of e,
does not always contain enough information for property (P ′) to hold. In this paper we
show 1) how to build an unfolding that contains enough information so that (P ′) holds;
2) how to build a finite and complete prefix of the unfolding satisfying (P ′).

Organization of the Paper. The paper is organized as follows. Section 2 presents the
model of NTA and its usual sequential semantics. Section 3 gives a concurrent seman-
tics for NTA in terms of symbolic branching processes (SBP) and proves the existence
of complete finite prefixes. The SBP is a first step towards a complete finite prefix hav-
ing property (P ′). In section 4, we show how to build an extended SBP, using read-arcs,
which is a complete finite prefix satisfying property (P ′). Section 5 gives a summary
of the paper and directions for future work. The proofs of the theorems are omitted and
can be found in the extended version of the paper [7].

2 Networks of Timed Automata

Notations . Given a set B we use Bε for the set B ∪ {ε} (assuming ε �∈ B). Let
X = {x1, · · · , xn} be a finite set of clock variables. A valuation ν is a mapping from
X to R≥0. Let X ′ ⊆ X . The valuation ν[X ′] is defined by: ν[X ′](x) = 0 if x ∈ X ′

3 Actually we should write “it is a labeling” of a configuration of the unfolding.



Symbolic Unfoldings for Networks of Timed Automata 311

and ν[X ′](x) = ν(x) otherwise. ν|X′ is the restriction (projection) of ν to X ′ and is
defined by ν|X′(x) = ν(x) for x ∈ X ′. We denote 0 the valuation defined by 0(x) = 0
for each x ∈ X . For δ ∈ R, ν + δ is the valuation defined by (ν + δ)(x) = ν(x) + δ.
C(X) is defined to be the set of conjunctions of terms of the form x − x′ %& c or x %& c
for x, x′ ∈ X and c ∈ N and %&∈ {<,≤,=,≥, >}. C(X) is called the set of diagonal
constraints over X . The set of rectangular constraints, Cr(X) is the subset of C(X)
where only constraints of the form x %& c appear. Given a formula ϕ ∈ C(X) and a
valuation ν ∈ RX

≥0, we use ϕ[x/ν(x)] for ϕ where x is replaced by ν(x). we denote
ϕ(ν) ∈ {tt, ff} the truth value of ϕ[x/ν(x)]. We let [[ϕ]] = {ν ∈ R≥0 |ϕ(ν) = tt}. A
subset Z of RX

≥0 is a zone if Z = [[ϕZ ]] for some ϕZ ∈ C(X). Note that the intersection
of two zones is a zone. Two operators are defined on zones: the time successor operator,
Z↗ = {v+δ | v ∈ Z, δ ∈ R≥0} and theR-reset operator,Z[R] = {v | ∃v′ ∈ Z s.t. v =
v′[R]}. Both Z↗ and Z[R] are zones if Z is a zone.

Timed Automata. Timed automata were introduced in [1] to model systems which
combine discrete and continuous evolutions.

Definition 1. A timed automaton A is a tuple (L, �0, Σ,X, T, Inv) where: L is a finite
set of locations; �0 is the initial location; Σ is a finite set of discrete actions; X =
{x1, · · · , xn} is a finite set of (positive real-valued) clocks; T ⊆ L × Cr(X) × Σ ×
2X × L is a finite set of transitions: (�, g, a, R, �′) ∈ T represents a transition from
the location � to �′, labeled by a, with the guard g and the reset set R ⊆ X; we write
SRC(t) = �, TGT(t) = �′, G(t) = g, λ(t) = a and R(t) = R. Inv ∈ Cr(X)L assigns
an invariant to any location. We require that Inv be a conjunction of terms of the form
x %& c with %&∈ {<,≤} and c ∈ N.

A state of a timed automaton is a pair (�, v) ∈ L×RX
≥0. A timed automaton is bounded

if there exists a constant k ∈ N s.t. for each � ∈ L, Inv(�) ⊆ [[0 ≤ x1 ≤ k ∧ · · · ∧ 0 ≤
xn ≤ k]]. Examples of timed automata are given in Fig. 1(a). In the sequel we require
that for any valuation v and any transition t = (�, g, a, R, �′), g(v) =⇒ Inv(�′)(v[R]).

Definition 2. The semantics of a timed automaton A = (L, �0, Σ,X, T, Inv) is a la-
beled timed transition system (TTS) SA = (Q, q0, T ∪R≥0,→) withQ = L×(R≤0)X ,
q0 = (�0,0) is the initial state and → consists of the discrete and continuous transition

relations: i) the discrete transition relation is defined for all t ∈ T by: (�, v) t−→ (�′, v′)
⇐⇒ ∃t = (�, g, a, R, �′) ∈ T s.t. g(v) = tt, v′ = v[R  → 0]; ii) the continuous tran-

sition relation is defined for all δ ∈ R≥0 by: (�, v) δ−→ (�′, v′) iff � = �′, v′ = v + δ
and ∀0 ≤ δ′ ≤ δ, Inv(�)(v + δ′) = tt. A run of a timed automaton A is a path in SA
starting in q0 where continuous and discrete transitions alternate4. The set of runs of A
is denoted by [[A]]. A state q is reachable in A if there is a run from q0 to q. REACH(A)
is the set of reachable states of A. A timed word w ∈ (T × R≥0)∗ is accepted by A if
there is a run ρ ∈ [[A]] s.t. the trace of ρ is w.

The analysis of timed automata is based on the exploration of a (finite) graph, the sim-
ulation graph, where the nodes are symbolic states. A symbolic state is a pair (�, Z)
where � is a location and Z a zone over the set RX

≥0.

4 In our definition runs are labeled by transitions.



312 F. Cassez, T. Chatain, and C. Jard

Definition 3. The simulation graph SG(A) of a timed automaton A is given by: i) the
set of states is the set of symbolic states of the form (�, Z) where Z is a zone; ii) the
initial state is (�0, Z0) with Z0 = 0↗ ∩ [[Inv(�0)]]; iii) (�, Z) a−→ (�′, Z ′) if there is
a transition (�, g, a, R, �′) in A s.t. Z ∩ [[g]] �= ∅ (this ensures Z ′ is not empty) and

Z ′ =
(
(Z ∩ [[g]])[R]

)↗ ∩ [[Inv(�′)]].

We assume that the timed automata are bounded i.e. in each location �, Inv(�) is
bounded5. In this case the number of zones of the simulation graph is finite [14,6].

Network of Timed Automata. We use the classical composition notion based on
a synchronization function. Let A1, . . . , An be n timed automata with Ai =
(Li, li,0, Σi, Xi, Ti, Invi). We assume that for each i �= j,Li∩Lj = ∅ andXi∩Xj = ∅
(clocks are not shared). A synchronization constraint I is a subset of Σε

1 × Σε
2 · · · ×

Σε
n\(ε, · · · , ε). The (synchronization) vectors of a synchronization constraint I indicate

which actions synchronize. For (t1, · · · , tn) ∈ T ε
1 × · · ·T ε

n we write λ(t1, · · · , tn) =
(λ1(t1), · · · , λn(tn)) with λi(ε) = ε. λ−1(I) ⊆ T ε

1 × · · ·T ε
n indicates how the tran-

sitions synchronize. For t ∈ λ−1(I), we let: SRC∗(t) = {l ∈ SRC(t[i]) | t[i] �= ε},
TGT∗(t) = {l ∈ TGT(t[i]) | t[i] �= ε}, R(t) = {x |x ∈ R(t[i]) and t[i] �= ε},
G(t) = ∧t[i] �=εG(t[i]).

Definition 4. The network of timed automata (NTA) (A1| . . . |An)I is the timed au-
tomatonB = (L, l0, Σ,X, T, Inv) defined by:L = L1×· · ·×Ln, l0 = (�1,0, · · · , �n,0),
Σ = Σ1 × · · · × Σn, X = ∪n

i=1Xi; (l, g, a, R, l′) ∈ T iff ∃t ∈ λ−1(I) s.t.: (1) if
t[i] �= ε then li = SRC(t[i]) and otherwise l′i = TGT(t[i]), (2) a = λ(t), g = G(t) and
R = R(t) and Inv(l) = ∧n

i=1Invi(�i) if l = (�1, · · · , �n).

This definition implies that if each Ai is bounded (resp. simple) then the NTA is
bounded (resp. simple).

3 Symbolic Unfolding for Network of Timed Automata

In this section we define the symbolic semantics of a NTA in terms of symbolic branch-
ing processes. Those processes contain timing constraints both on places and events.
We do not recall the definitions of occurrence nets, branching processes (BP) for un-
timed network of automata. The reader is referred to [10] for a detailed presentation of
these notions.

Let (A1| . . . |An)I be a synchronous product of TA. In a first step, we build the
untimed branching processes (UBPs) of (A1| . . . |An)I . For each timed automaton Ai

we let UNTIME(Ai) be the automaton obtained by removing all the timing constraints
and clocks in Ai. An UBP of a NTA is a BP of the network of untimed automata
(UNTIME(A1)| . . . |UNTIME(An))I in the sense of [10]. The set of UBPs is defined
inductively over two sets E and P by: i) ⊥ ∈ E , ii) if e ∈ E and s ∈ L then (e, s) ∈ P ,
iii) if S ⊆ P and t ∈ λ−1(I) then (S, t) ∈ E . On those two sets we define the mappings
•(), ()•:

5 Any timed automaton can be transformed into an equivalent (behaviours) bounded automa-
ton [2].



Symbolic Unfoldings for Networks of Timed Automata 313

– for E , •⊥ = ∅, and if e = (S, t), •e = S; and e• = {s | (e, s) ∈ P};
– for P : •(e, s) = e and (e, s)• = {e | •e ∩ s �= ∅}.

By definition of E and P a SBP is completely determined by E ans P as •() and
()• are implicitly defined. Let x, y be two nodes (place or transitions). If x ∈ •y or
y ∈ x• there is an arc from x to y and we write x → y. This enables us to refer to
the directed graph of a net which is simply the graph (E ∪ P,→). The reflexive and
transitive closure of → is denoted /. x, y are causally related if either x / y or y / x.
x is in the (strict) causal past of y if x / y and x �= y, i.e. x ≺ y. x, y are in conflict,
noted x#y, if there is a place p ∈ P such that p → w / x and p → u / y with
u �= w. x and y are concurrent if x and y are neither causally related nor in conflict.
If J is a set of events then ↑ J =

(
∪e∈J e

•)\( ∪e∈J
•e
)
. For a set J ⊆ E ∪ P

�J� = {e′ ∈ E ∪ P | e′ / e for some e ∈ J}. A set of events J is causally closed if
�J� = J . A configuration of a BP is a set of events K ⊆ E which is causally closed
and conflict-free. A set A is a co-set iff A ⊆↑K where K is a configuration. A cut
S ⊆ P is a set of places which is a maximal co-set. To each configuration K , we can
associate a unique cut ↑K which is denoted CUT(K). A place p = (e, s) ∈ P is a
i-place if s ∈ Li. We can define the union of two branching processes (E1, P1) and
(E2, P2) component-wise on events and places. BPs are closed under countable union
and the unfolding of (UNTIME(A1)| . . . |UNTIME(An))I is be the maximal branching
process. The next two properties are taken from [10]:

Proposition 1. Two i-places of a UBP are either causally related or in conflict.

Proposition 2. Let C be a cut of a UBP. C contains one i-place for each 1 ≤ i ≤ n.

Thus given a configurationK , CUT(K) corresponds to a unique state of the product of
untimed automata.

The symbolic branching processes of a NTA are built from the UBP. The intuition
is that we associate with places and events a time variable. For an event e, the variable
δe stands for the (global) time at which event e fired. For a place p, δp stands for the
most recent (global) time for which a token was in p. We define δ(E ∪ P ) to be the
set of variables {δx |x ∈ E ∪ P}. A symbolic branching process (SBP) (E,P, γ) of
(A1| . . . |An)I is a UBP (E,P ) of (UNTIME(A1)| . . . |UNTIME(An))I with γ : E ∪
P → C(δ(E ∪ P )) a mapping that associates to each node a timing constraint. The
constraint on a node x should only refer to variables in �x�.

The constraint γ(x) is computed by rewriting the timing constraints of the NTA in
terms of the variables δy for y ∈ �x�. For the event ⊥ we just set δ⊥ = 0 stating
that the system started at time 0. On the example of Fig. 1(b), to compute the timing
constraint γ(U) we just rewrite the invariant y ≤ 3 in terms of the firing times of
the events in the past of place U : if the current (global) time at which a token is in
U is δU we must have x = δU − δ⊥ ≤ 3 i.e. δU ≤ 3. For event e3, we must have
x ≤ 2 and the value of x is given by δe3 − δe2 which yields δe3 − δe2 ≤ 2. The
result for the NTA of Fig. 1(a) is depicted on Fig. 1(b). The important point is that each
constraint γ(x) is entirely determined by x. Hence to each UBP (E,P ) we can associate
a unique SBP (E,P, γ). We can thus define the symbolic unfolding TBP(A1| . . . |An)I

of (A1| . . . |An)I to be the symbolic branching process associated with the unfolding
of (UNTIME(A1)| . . . |UNTIME(An))I .



314 F. Cassez, T. Chatain, and C. Jard

To define cuts for SBP we need to take into account the timing constraints: for in-
stance in Fig. 1(b), (0, A, U) is a cut iff δ0 = δA = δU ≤ 3 meaning that the global
time in each place is the same and the constraints on the places are satisfied. For an
event the same strategy applies. We can define a formula that characterizes all the timed
cuts of a SBP:

Definition 5. (M,Φ) is a symbolic co-set of (E,P, γ) if: 1) M is a co-set of (E,P ),
2) Φ = Φ1(M) ∧ Φ2(M) ∧ Φ3(M) ∧ Φ4(M) with:

Φ1(M) =
∧

x∈�M�
γ(x) (1)

Φ2(M) =
∧

e∈�M�∩E

(
∧p∈•eδp = δe

)
(2)

Φ3(M) =
∧

p∈M

(
δ•p ≤ δp

)
(3)

Φ4(M) =
( ∧
p,p′∈M

δp = δp′
)

(4)

If M is a cut of (E,P ), (M,Φ) is a symbolic cut. The meaning of formula (2) is that
the last date δp at which a token was in p is the time at which an event removed a token
in p. (3) imposes that if a token is in p and p is in a co-set, the current time in p which
is δp is larger than the date of occurrence of the event that put a token in p. Finally (4)
requires that all the places in the co-set have reached the same global time. The reason
why we need to use variables associated with places is because there is no urgency in
NTA. Notice that the formulaΦ of a symbolic co-set is entirely determined by the co-set
M and unique; we denote it by ΦM . Moreover the form of the constraints on δ(E ∪ P )
in the SBP is such that ΦM is a zone for each symbolic cutM :

Theorem 1. For each symbolic cut (M,ΦM ) ΦM is a zone.

Given a SBP (E,P, γ), a set M ⊆ P , and a mapping Θ : δ(�M�) → R≥0 that
associates with each node a date, (M,Θ) is a timed cut iff (M,ΦM ) is a symbolic cut
and Θ ∈ [[ΦM ]]. Given a timed cut (M,Θ) we can associate a unique state of the NTA
GS(M,Θ): it suffices to compute the values of each clock variables in X from the
values of the nodes variables in the SBP. Conversely, given a state (l, v) of the product,
we can associate a timed cut to (l, v) as stated by Theorem 3 below.

Theorem 2. If K is a configuration of TBP(A1| . . . |An)I and Θ ∈ [[ΦCUT(K)]] then a)
GS(CUT(K), Θ) = (l, v) for some (l, v) reachable in (A1| . . . |An)I , and b) ifK∪{e}
is a configuration andΘ ∈ [[ΦCUT(K)∧γ(e)

∧(
∧p∈•eδp = δe

)
]] then (l, v)

λ(e)−−−→ (l′, v′)
with GS(K ∪ {e}, Θ′) = (l′, v′) and Θ′|CUT(K) = Θ and Θ′(x) = Θ(p) for some
p ∈ CUT(K) otherwise.

The formula ΦCUT(K) ∧ γ(e)
∧(

∧p∈•eδp = δe
)

asserts that the global time is the same
in every automata which is also equal to the firing time of e and that the guard of the
transition t holds.

Theorem 3. Let (l, v) be a reachable state in (A1| . . . |An)I . There is a configuration
K of TBP(A1| . . . |An)I and Θ ∈ [[ΦCUT(K)]] s.t.: a) GS(CUT(K), Θ) = (l, v), and

b) if (l, v) t−→ (l′, v′) there is a configuration K ∪ {e} s.t. λ(e) = t and a valuation
Θ′ ∈ [[ΦCUT(K∪{e})]] s.t. GS(K ∪ {e}, θ′) = (l′, v′).



Symbolic Unfoldings for Networks of Timed Automata 315

If a TBP T satisfies the conditions of Theorem 3, we say that T is complete. Theo-
rem 2, corresponds to a correctness property. For network of finite untimed automata,
complete and correct finite branching processes exist, and are called complete finite
prefixes [16,10]. In the case of network of timed automata we can construct a finite
complete prefix that preserves the reachability information of the simulation graph.

Theorems 3 and 2 have two consequences. They follow from the fact that each
ΦCUT(K) is a zone for a configuration K . This means that the set of valuations reach-
able by all the linearizations of the events in K defines a zone as well. In the symbolic
unfolding we construct, we obtain one zone for all the linearizations of the events in
K whereas in SG((A1| . . . |An)I) they could be two distinct states for two different
linearizations. The first consequence is that the union of the zones reachable by all the
linearization in SG((A1| . . . |An)I) is a zone. Indeed computing global states preserves
zones. This result was obtained recently by Ramzi Ben Salah, Marius Bozga and Oded
Maler in [3] and has useful consequences. Our framework gives an alternative proof of
this result and accounts for it in terms of partial order. The second consequence is that
finite complete prefixes exist for NTA.

Assume the two configurations K1 and K2 lead to the same symbolic state
GS(CUT(K1), ΦCUT(K1)) = GS(CUT(K2), ΦCUT(K2)), then they have the same fu-
ture. Thus we can discard the events that extend one of them, for instance the
smallest w.r.t. the order � defined as: K1 � K2 iff GS(CUT(K1), ΦCUT(K1)) =
GS(CUT(K2), ΦCUT(K2)) ∧ |K1| < |K2|. As the simulation graph contains a finite
number of (union of) zones and because each ΦCUT(K) is a union of zones, we can not
have an infinite number of different symbolic states. This allows us to construct a com-
plete finite prefix by keeping only the events e such that there exists a configurationK
that enables e and is minimal w.r.t. �. We let PREF((A1| . . . |An)I) be the complete
symbolic finite prefix obtained from (A1| . . . |An)I . So far we are able to answer the
question whether a set of timed events is a timed configuration: given the set of events
K and the valuation Θ we can check whether Θ ∈ [[ΦCUT(K)]]. What we would like to
do is to check whether a set of eventsK can be extended to a configuration i.e. if ↑(K)
is a co-set. We cannot do this directly with the SBP we have constructed so far. In the
next section we refine our unfolding so that we do not need to look at the global state of
the system to decide whether a set of events can be extended to a timed configuration.

4 Extended Finite Complete Prefixes

In the case of finite automata, any cut containing a co-set that enables an event, still
enables the same event. This is not the case for network of timed automata as can be
seen on the example of Fig. 1(b). If e2 has not fired, e1 can fire because nothing can
prevent it from doing so (e3 is not enabled). The fact that e2 has not fired can be inferred
from the fact that either placeA or U contains a token. But this implies that the date δe1

at which e1 fires satisfies δe1 ≤ 3. If e2 has fired at δe2 , e3 and e1 are in conflict. Thus
e1 can only occur at a date when a token can be in B, i.e. to fire we must have δB = δe1

and the constraint on the date at which a token can be in B which is δB − δe2 ≤ 2. This
implies δe1 − δe2 ≤ 2. Thus the timing constraints associated with e1 are not the same
in the cuts (0, A, U) and (0, B, V ) although they are both cuts that contain •e1.



316 F. Cassez, T. Chatain, and C. Jard

To encode this timing dependency structurally we can use symbolic occurrence nets
with read arcs. For instance the symbolic net of Fig. 1(b) can be “transformed” into the
symbolic extended net of Fig. 2 (a read arc is a dash line). Read arcs enable us to point
to the missing timing information in the net that is needed to ensure an event can fire.
This also means that we duplicate the event e1 into e1 and e′1 because the constraints
are different depending on whether e2 has occurred or not. Read arcs enlarge the causal
past of the events. In the extended occurrence net, the constraint between the dates of
occurrence of e1 and e2 can be inferred from the past of e1: indeed, to fire, we must
have δe1 = δB and thus δe1 − δe2 ≤ 2. Read arcs enable us to differentiate the two cuts
(0, A, U) and (0, B, V ) that generate different timing constraints on e1 and e2.

Extended Branching Processes. An extended net N is a tuple (E,P, •(), ()•, ◦())
where (E,P, •(), ()•) is a net, and ◦() : E → 2P . If ◦e = ∅ for each e ∈ E then
N is a net. The set ◦e represents the input places of an event that are to be read without
removing a token. The Extended symbolic branching processes (ESBP) of a network
are defined as in section 3: the only change we need to do is to define the set of events
so that it includes the read-only places of an event denoted ◦e. To this end, if S, S′ ⊆ P
and t ∈ T , (S, S′, t) is in E and if e = (S, S′, t), ◦e = S′.

The causality relation is now defined by: x → y if x ∈ •y ∪ ◦y or y ∈ x•. / is
the reflexive and transitive closure of →. The weak causality relation ��� is given by:
x ��� y if either x→ y or ◦x∩ •y �= ∅ (if x needs a token in one of the input place of y
this implies a causality relation, even if x is not in the past of y in the sense of →.). We
let � the reflexive and transitive closure of ���. Two nodes x and y are weakly causally
related if either x � y or y � x. x and y are in conflict, x#y, if there is a place p s.t.
there exist w and u, w �= u, p ∈ •u∩ •w and w � x and u � y. x and y are concurrent
if they are not weakly causally related nor in conflict. For J ⊆ E ∪P , the definitions of
↑J and �J� are unchanged (we use the new /). A set of events is now causally closed
if �J� = J . Co-sets, configurations and cuts are defined as before.

Safe Co-sets. Let ENABLE(e) denote the enabling cuts of e �= ⊥ in a finite sym-
bolic branching process N : ENABLE(e) = {C | •e ⊆ C and C is a cut of N}. As a
running example we take the prefix N1 built in Fig. 1(b) and δ⊥ is always replaced by 0
(zero). For this example the enabling cuts are: ENABLE(e1) = {(0, A, U), (0, B, V )},
ENABLE(e2) = {(0, A, U), (1, A, U)}, ENABLE(e3) = {(0, B, V )}.

Now assume an event e is in conflict with another event e′ in the symbolic unfolding.
As we pointed out at the end of section 3, the timing constraints given by �•e� on the
firing time of e do not always contain enough information to ensure event e can fire:
event e1 in N1 can fire if a) e2 has not fired (this must be at time δ ≤ 3), or b) e2 has
fired, and the time elapsed since it has occurred is less than 2 time units (i.e. at time δ
with δ − δe2 ≤ 2), or c) e2 has been disabled by another event in conflict with it and
cannot occur in the future. To ensure e can fire, we should add to the conditions in •e
some information about the events in conflict with e. This is the purpose of safe co-sets.
They extend the co-sets of the symbolic unfolding with some information about the
conflicting events. In terms of occurrence nets, a safe co-set for an event e will be the
set of places •e, extended with a set a read only places, ◦e. The information contained
in a safe co-set should be such that, if the timing constraints obtained by Φ•e∪◦e are
satisfied, then there is a cut C ⊇ •e ∪ ◦e s.t. ΦC is satisfied.



Symbolic Unfoldings for Networks of Timed Automata 317

⊥ δ⊥ = 0

0
A

U
δU ≤ 3

e2 t2, δe2 ≤ 3

B

δB − δe2 ≤ 2
V

e3 t1, δe3 − δe2 ≤ 2

2 C

e1
t0
δe1 ≥ 0

e′1
t0
δe′1 ≥ 0

11

Fig. 2. Extended symbolic unfolding for the example of Fig. 1(a)

For any cut C, the formula ΦC (Def. 5, equations (1)–(4)) is a formula over δ(C ∪
(�C� ∩ E)). Indeed all the intermediate places p, not in the cut, are constrained by a
formula of the form δe = δp because of equation 2 of Def. 5. For instance Φ(0,B,V ) =
δB − δe2 ≤ 2 ∧ 0 ≤ δe2 ≤ 3 ∧ δB ≥ δe2 ∧ δ0 = δB = δV .

Because of the term Φ4, if we use an extra variable δ and the formula (δ = δp)∧ΦC

for any6 p ∈ C, we obtain a formula over δ(�C� ∩ E) ∪ {δ}: δ stands for the current
global time (since the system started) and the constraint on δ in ΦC defines the set of
instants for which the cut C is reachable i.e. there are tokens in each place p ∈ C. We
write Φδ

C for the projection on (�C� ∩ E) ∪ {δ} of the formula ΦC ∧ (δ = δp). In our
example, Φδ

(0,A,U) = δ ≤ 3, Φδ
(1,A,U) = δe1 ≤ 3 ∧ δe1 ≤ δ ≤ 3 and Φδ

(0,B,V ) =
δ− δe2 ≤ 2∧ 0 ≤ δe2 ≤ 3∧ δ ≥ δe2 . This last example is interesting because it shows
that the set of dates s.t. a token is in (0, B, V ) depends on the time at which e2 occurred.
Finally we letΘ(e) = {Φδ

C |C ∈ ENABLE(e)} and in the previous example, we obtain:
Θ(e1) = {Φδ

(0,A,U), Φ
δ
(0,B,V )}, Θ(e2) = {Φδ

(0,A,U), Φ
δ
(1,A,U)}, Θ(e3) = {Φδ

(0,B,V )}
Θ(e) represents the set of different constraints that can be generated by all the enabling
cuts of event e.

Definition 6. A set of places S is a safe representative of a pair (e, C) where e ∈ E
and C ∈ ENABLE(e) if 1) •e ⊆ S ⊆ C and 2) for all ν : δ(�C� ∩ E) ∪ {δ} →
R≥0 if ν|δ(�S�∩E)∪{δ} ∈ [[Φδ

S ]] and ν|δ(�C\S�∩E)∪{δ} ∈ [[Φδ
C\S ]] then ν ∈ [[Φδ

C ]]. S is
a safe representative of e if S is a safe representative of each pair (e, C) with C ∈
ENABLE(e).

If S is a safe representative of (e, C), then if γ(e) holds together with ΦS , e can be
added to the unfolding. For example, (0, A) is not a safe representative of (0, A, U)
because Φδ

(0,A) = δ ≥ 0 and Φδ
(0,A,U) = δ ≤ 3. (0, U) is a safe representative of

(0, A, U) as well as (0, A, U) itself. (0, B) is a safe representative of (0, B, V ). As

6 As equation (4) already imposes δp′ = δp for p, p′ ∈ C we can add δ = δp for any p in C.



318 F. Cassez, T. Chatain, and C. Jard

each cut C ∈ ENABLE(e) is a safe representative of itself, there is always one safe
representatives for any C which is ENABLE(e). We can state a theorem which is a
variant of Theorem 2 using only safe representatives of an event (item b) of the theorem
is altered):

Theorem 4. If K is a configuration of TBP(A1| . . . |An)I and Θ ∈ [[ΦCUT(K)]] then
a) GS(CUT(K), Θ) = (l, v) for some (l, v) reachable in (A1| . . . |An)I , and b) if
K ∪ {e} is a configuration and S is a safe representative of CUT(K) and Θ ∈ [[ΦS ∧
γ(e)

∧(
∧p∈•eδp = δe

)
]] then (l, v)

λ(e)−−−→ (l′, v′) with GS(K ∪ {e}, Θ′) = (l′, v′) and
Θ′|CUT(K) = Θ and Θ′(x) = Θ(p) for some p ∈ CUT(K) otherwise.

This theorem is a direct consequence of Theorem 2 and Def. 6. It states that a safe
representative for e contains enough information to decide whether event e can be fired
or not. As a consequence, if whenever we add a new event e to a (finite) extended
symbolic branching process of a NTA (A1| . . . |An)I , we use a safe representative S =
•e∪◦e and add read-arcs to the places of ◦e, then �e� (including �S�) gives the accurate
constraints on the date δe at which e can fire.

To build an extended complete finite prefix for a NTA we can proceed as follows:
1) build the symbolic net defined in section 3; this enables us to obtain the safe co-sets
for each event; 2) build an extended net by adding an event to the unfolding using safe
co-sets instead of simple co-sets. On the example of Fig. 1 this gives the unfolding of
Fig. 2:

1. start with places 0, A, U and event ⊥;
2. to add an event labelled t0 use a safe co-set: we choose (0, U) and add event e′1

with a read arc to U ;
3. add e2 and e3;
4. now a new safe co-set has appeared: (0, B); we can add an event e1 labelled by t0

with a read arc from place B.

This construction can be formally defined (see [7]). The result is a finite extended sym-
bolic complete prefix EPREF((A1| . . . |An)I) that satisfies property (P ′). Formally, we
define symbolic configurations. Assume EPREF((A1| . . . |An)I) = (E,P, γ).

Definition 7. (K,Ψ) is a symbolic configuration of (E,P, γ) if: 1)K is a configuration
of (E,P ), and 2) Ψ = Ψ1(K) ∧ Ψ2(K) where Φi(M), 1 ≤ i ≤ 2 are defined by:

Ψ1(K) =
∧

e∈�K�
γ(e) (5) and Ψ2(K) =

∧
e∈K

(
∧p∈•e∪◦eδp = δe

)
(6)

Notice that Ψ uses only information in the past of K and is uniquely determined thus
we can write it ΨK . Let ν : K → R≥0. (K, ν) is a timed configuration if ν ∈ [[ΨK ]].

Theorem 5. If (K ′, Ψ ′) is a symbolic configuration of EPREF((A1| . . . |An)I) and
Θ′ ∈ [[Ψ ′]] then: there exists a symbolic configuration (K,Ψ) with K ⊇ K ′ and Θ ∈
[[Ψ ]] s.t. 1) GS(CUT(K), Θ) = (l, v) for some (l, v) reachable in (A1| . . . |An)I , and

2) if (K ′ ∪ {e}, Ψ ′′) is a symbolic configuration and [[Ψ ′′]] �= ∅ then (l, v)
λ(e)−−−→ (l′, v′)

and GS(CUT(K ′ ∪ {e}), Θ′) = (l′, v′) for some Θ′ ∈ [[Ψ ′′]].



Symbolic Unfoldings for Networks of Timed Automata 319

0
x ≤ 3

1

a; x ≤ 3

A
y ≤ 2

B

b; y ≤ 2

(a) Two Independent Automata

⊥ δ⊥ = 0

0 A

e2
b
δe2 ≤ 2

B

e1
a

δe1 ≤ 3

1

(b) The Unfolding

Fig. 3. A Network of two Independent Timed Automata

On the example of Fig. 1(a), {(⊥, 0), (e1, δe1), (e2, δe2)} is a timed configuration iff
δe1 − δe2 ≤ 2 and δe2 ≤ 3.

Minimality for Safe Co-sets. The purpose of unfoldings is to keep explicit the concur-
rency of events. In the case of untimed network of automata, •e is sufficient to ensure
e can fire. For NTA, we have to use read arcs, but we should be concerned about the
number of the new dependencies: for instance, if we use ENABLE(e) as the set of safe
representatives for each e, we require that the global state of the network is known each
time we want to fire e. This means we do not keep explicit any concurrency in the un-
folding. It is thus important to try and reduce the number of read arcs from each event.
To this extent we define a notion of minimality for safe representatives.

We can define a partial order 0 on co-sets i.e. sets of places using the cardinality
of the sets: C1 0 C2 iff |C1| ≤ |C2|. For each C ∈ ENABLE(e) we can take one
minimal element in the set of safe representatives of C. Given e ∈ E, SAFE(e) denotes
a set of minimal safe representatives, one for each C ∈ ENABLE(e). In the example
for N1 we can take the sets: SAFE(e1) = {(0, U), (0, B)}, SAFE(e2) = {(A,U)},
SAFE(e3) = {(0, B)}. For the independent automata of Fig. 3(a), we obtain that 0 is
a safe representative of e1 (in Fig. 3(b)): indeed 0 is a safe representative of (0, A) and
a safe representative of (0, B) which belongs to ENABLE(e1). For the NTA given by
Fig. 3(a) we obtain the unfolding of Fig. 3(b).

The minimality criterion we have defined does not give a unique set of safe represen-
tatives. A consequence is that there is no smallest complete finite prefix for a NTA but
rather a set of set of minimal complete finite prefixes. Moreover as we take at least one
safe representative for each pair (e, C) the branching process we build is still complete.

Checking Validity of Timed Configuration. To complete the construction and provide
a solution to the problem of checking whether a timed configuration is valid, we can
define the constraint Γ (e) associated with an event e by: Γ (e) = Ψ(�e�)|�e�∩E . This
constraint gathers the constraints of all the past events. The branching process obtained
this way is a reduced branching process with only constraints on events. For the network
of timed automata of Fig. 1(a), the reduced branching process is given on Fig. 4. It



320 F. Cassez, T. Chatain, and C. Jard

⊥ δ⊥ = 0

0
A

U

e2 t2, δe2 ≤ 3

B V

e3 t1, δe3 − δe2 ≤ 2

2 C

e1
t0
δe1 − δe2 ≤ 2

e′1
t0
δe′1 ≤ 3

11

Fig. 4. Reduced Extended symbolic unfolding for the example of Fig. 1(a)

enables us to decide whether a closed set of eventsK is a prefix of an extended symbolic
branching process.

5 Conclusion

In this paper we have defined a model, extended symbolic branching process, to define
the concurrent semantics of timed systems. We have also proved that each NTA admits
a finite complete prefix which is a symbolic extended branching process, and we have
given an algorithm to compute such a prefix. Other interesting results are: 1) there is
no unique complete finite prefix for a NTA but rather a set of complete finite prefixes;
2) building a small (optimal) complete finite prefix is very expensive as it requires the
computation of information spread across the network; and 3) we have pointed out the
difficulties arising in the construction of such a prefix, namely the need for safe co-sets.
Our future work will consist in: a) define heuristics to determine when an event can
be added to a prefix of an unfolding; this means having an efficient way of computing
safe representatives, which are no more guaranteed to be minimal; b) when step 1 is
developed, we can define algorithms to check properties of the NTA using the unfolding
and assess the efficiency of these algorithms.

References

1. Rajeev Alur and David Dill. A theory of timed automata. Theoretical Computer Science
(TCS), 126(2):183–235, 1994.

2. Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Paul Pettersson, Judi
Romijn, and Frits Vaandrager. Minimum-cost reachability for priced timed automata. In
Proc. 4th International Workshop on Hybrid Systems: Computation and Control (HSCC’01),
volume 2034 of Lecture Notes in Computer Science, pages 147–161. Springer, 2001.

3. Ramzi Ben Salah, Marius Bozga, and Oded Maler. On interleaving in timed automata. In
Proceedings of the 17th International Conference on Concurrency Theory (CONCUR’06),
LNCS, aug 2006. To appear.



Symbolic Unfoldings for Networks of Timed Automata 321

4. Béatrice Bérard, Franck Cassez, Serge Haddad, Olivier H. Roux, and Didier Lime. Compar-
ison of the Expressiveness of Timed Automata and Time Petri Nets. In Paul Pettersson and
Wang Yi, editors, Proceedings of the third International Conference on Formal Modeling
and Analysis of Timed Systems (FORMATS’05), volume 3829 of Lecture Notes in Computer
Science, pages 211–225, Uppsala, Sweden, September 2005. Springer.

5. Bernard Berthomieu and Michel Diaz. Modeling and verification of time dependent systems
using time Petri nets. IEEE Trans. Software Eng., 17(3):259–273, 1991.

6. Patricia Bouyer. Forward analysis of updatable timed automata. Formal Methods in System
Design, 24(3):281–320, 2004.

7. Franck Cassez, Thomas Chatain, and Claude Jard. Symbolic Unfoldings for Networks of
Timed Automata. Technical Report RI-2006-4, IRCCyN/CNRS, Nantes, May 2006.

8. Franck Cassez and Olivier H. Roux. Structural translation from time petri nets to timed
automata. Journal of Systems and Software, 2006. forthcoming.

9. Thomas Chatain and Claude Jard. Complete finite prefixes of symbolic unfoldings of safe
time Petri nets. In ICATPN, volume 4024 of LNCS, pages 125–145, june 2006.

10. Javier Esparza and Stefan Römer. An unfolding algorithm for synchronous products of tran-
sition systems. In CONCUR, volume 1664 of LNCS, pages 2–20. Springer, 1999.

11. Javier Esparza, Stefan Römer, and Walter Vogler. An improvement of McMillan’s unfolding
algorithm. Formal Methods in System Design, 20(3):285–310, 2002.

12. Hans Fleischhack and Christian Stehno. Computing a finite prefix of a time Petri net. In
ICATPN, pages 163–181, 2002.

13. J. Bengtsson, B. Jonsson, J. Lilius, W. Yi. Partial order reductions for timed systems. In
CONCUR 99, volume 1466 of LNCS, pages 485–500, 1999.

14. Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Efficient verification of real-
time systems: Compact data structure and state-space reduction. In Proc. 18th IEEE Real-
Time Systems Symposium (RTSS’97), pages 14–24. IEEE Computer Society Press, 1997.

15. Denis Lugiez, Peter Niebert, and Sarah Zennou. A partial order semantics approach to the
clock explosion problem of timed automata. In Proc. 10th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’2004), volume 2988
of Lecture Notes in Computer Science, pages 296–311. Springer, 2004.

16. Kenneth L. McMillan. A technique of state space search based on unfolding. Formal Meth-
ods in System Design, 6(1):45–65, 1995.

17. P.M. Merlin and D.J. Farber. Recoverability of communication protocols – implications of a
theorical study. IEEE Transactions on Communications, 24, 1976.

18. M. Minea. Partial order reduction for model checking of timed automata. In CONCUR 99,
volume 1664 of LNCS, pages 431–446, 1999.

19. T. Aura and J. Lilius. A causal semantics for time petri nets. Theoretical Computer Science,
1–2(243):409–447, 2000.

20. T. Yoneda, B-H. Schlingloff. Efficient verification of parallel real-time systems. Formal
Methods in System Design, 2(11):187–215, 1997.

21. A. Valmari. Stubborn sets for reduced state space generation. In Applications and Theory of
Petri Nets, volume 483 of LNCS, pages 491–515, 1989.

22. W. Belluomini, C. J. Myers. Verification of timed systems using posets. In CAV 98, volume
1427 of LNCS, pages 403–415, 1998.



Ranked Predicate Abstraction for Branching Time:
Complete, Incremental, and Precise�

Harald Fecher1 and Michael Huth2

1 Institut für Informatik, Christian-Albrechts-Universität zu Kiel, Germany
hf@informatik.uni-kiel.de

2 Department of Computing, Imperial College London, United Kingdom
M.Huth@doc.imperial.ac.uk

Abstract. Predicate abstraction frameworks are a powerful means of combating
the state explosion problem in model checking as they automatically synthesize
abstract models that either verify compliance with a property, give rise to a gen-
uine counter-example or produce a spurious counter-example that drives refine-
ment of the abstract model. Prominent tools for safety (e.g. Blast) and termination
(e.g. Terminator) checking rely on this approach. This paper presents such an ab-
straction framework for all properties of the modal µ-calculus based on ranked
predicate abstraction. We show that our framework is incremental and confluent
and should therefore allow good refinement heuristics. Moreover, ranked predi-
cate abstractions are proved to be precise (i.e. optimal as abstractions) and also
complete in that all properties true in a model are also true in a finite-state, ranked
predicate abstraction of that model. This completeness relates to known charac-
terizations of relative completeness for predicate abstraction with branching time.

1 Introduction

Model checking, invented 25 years ago [4,24], provides a framework for verifying prop-
erties of systems: a system is represented by a mathematical model M , a property of
interest is coded within a formal language as some φ, and the satisfaction relationship
is captured by a formal predicate |= relating formal models and properties. Its instances
M |= φ are then decided fully automatic (e.g. if M is finite-state) or semi-automatic
(e.g. if M is abstracted first). Models often have infinite state space and this infinity
can have a variety of sources: unbounded data-types, recursive process specifications,
quantitative and continuous parameter values etc. Even if models are finite, their size is
typically exponential in the number of system variables or communicating sub-models.
This state explosion problem is a severe impediment to the scalability of this approach
and its technology transfer into industrial research & development units even if the
complexity of computingM |= φ is linear in the sizes ofM and φ.

Abstraction of models, e.g. [20,5,7,8,3,16], is seen as a key aid in realizing scalable
model checks: instead of checking M |= φ for a large model M , construct an abstract
model A from a compact specification of M such that A |= φ always implies M |= φ
for certain kinds of properties φ. Predicate abstraction [15] partitions the state space

� This work is in part financially supported by the DFG project Refism (FE 942/1-1).

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 322–336, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Ranked Predicate Abstraction for Branching Time 323

of a model M based on finitely many predicates of a suitable logic and then abstractly
interprets [6] its transitions and labelings over that partition to render an abstract model
A. If decidability of that logic is computable or can be approximated, this abstract
model structure (if expressible in the logic) can be synthesized automatically with calls
to a theorem prover. Predicate abstraction is highly successful as it allows the automatic
computation of abstractions and an incremental refinement of the abstraction with new
predicates in case that the current abstraction contains spurious information, i.e. that
A �|= φ erroneously suggests M �|= φ. Finding good heuristics for the choice of initial
and refining predicates and proving relative completeness (i.e. possible termination) of
this refinement process are two principal concerns in this line of research.

To enable finite-state model checking via abstractions in principle, we require that
M |= φ implies A |= φ for some finite-state abstraction A of M ; as is customary, we
call such A feasible abstractions. The existence of such a reduction for all properties
of a given formal language is termed “completeness” in [10], a terminology we will
adopt in this paper. Given completeness one could somehow find a magic abstraction
even though the original problem M |= φ may be undecidable. For Kripke structures
and formulas of linear-time temporal logic completeness has been shown by Kesten &
Pnueli in [17], where models where augmented with progress monitors to allow ab-
stractions to preserve liveness properties.

Branching-time temporal logics are needed in important application settings. We
mention multiple system observers that prevent a “linearization of time,” and invari-
ants of dynamical systems that mix different path quantifiers (e.g. whether all reachable
states in a model of a biological system can reach a state from which a cyclic behavior
is possible). Branching time may also aid in expressing process/environment interaction
as seen in alternating-time temporal logic [1]. For branching time, Dams & Namjoshi
have shown in [10] that Kripke structures are incomplete for Existential Computation
Tree Logic (ECTL) but that completeness can be secured for the entire modalµ-calculus
(including CTL and CTL*) if models are augmented to render tree-automata-like struc-
tures: focussed transition systems in [10], µ-automata in [11], etc. Completeness proofs
share that they, in essence, construct a finite-state abstraction A of M with A |= φ
from a proof that M |= φ holds. This completeness is an expressibility result and says
nothing about how a feasible finite-state abstraction may be found.

Namjoshi [22] shows completeness for the modal µ-calculus through the abstraction
of an alternating transition system M × φ, a product between a labeled transition sys-
tem M and an alternating tree automata φ that represents the property to be checked.
These abstractions use choice predicates at OR-states, and rank functions for moni-
toring progress. For this abstraction framework, and a set of predicates that contains
the initially chosen ones and is closed under weakest preconditions, he shows that the
abstraction is relatively complete iff (choices at OR-states are uniform and progress
ranks are bounded). In [22] we therefore find a precise characterization of the kind of
branching-time properties for which predicate abstraction can find a feasible abstraction
within the abstraction framework of loc. cit.

Dams [7] considers a quality measure of an abstraction, precision, an optimality
principle that is concerned with maximizing the number of properties being preserved



324 H. Fecher and M. Huth

by the abstraction, given that its state space and model signature are fixed. In [22]
precision is not covered.

In this paper we draw from the ideas in [7,17,22,10] discussed above to develop an
abstraction framework for Kripke structures and the modal µ-calculus (given here in
the equivalent form of alternating tree automata) that meets the following objectives:

1. our framework is complete for the modal µ-calculus in the sense of [10]
2. our framework allows the construction of precise abstractions in the sense of [7]
3. our framework supports a notion of ranked predicate abstraction, a predicate ab-

straction that can deal with liveness properties as well
4. all abstractions, including those that prove completeness, are specified through

ranked predicate abstractions that partition the state space they abstract
5. ranked predicate abstractions are incremental and thus open up the possibility of

counter-example-guided abstraction refinement as familiar for linear time, and
6. ranked predicate abstractions are confluent: feasible abstractions, if they exist, can

always be found in principle, regardless of the particular history of incremental
refinements of an initially chosen abstraction

Although our models and methods are somewhat related to the work in [22], we
highlight important differences. Abstractions in [22] are computed from a product of
the model with the property to be checked. In contrast, our ranked predicate abstraction
extends the state space partitions familiar from predicate abstraction with finitely many
ranking functions and a set of slice predicates (Section 4). In [22] they find sufficient
and necessary conditions for a feasible abstraction to be computed through predicate
abstraction. In our framework we show that ranked predicate abstraction can indeed al-
ways express feasible abstractions (Section 6). We also show that our canonical ranked
predicate abstraction is precise (Section 4) and that ranked predicate abstraction is in-
cremental and confluent (Section 5).

The use of ranking functions, and their heuristics [9], for encoding fairness
conditions is certainly not knew. This use is seen in the aforementioned [17], in the
compositional verification of liveness properties [12], and in the context of efficient
complementation of automata [19]. We merely combine ranking functions with existing
abstraction formalisms to prove desirable results for branching-time model checking.

2 Hypermixed Kripke Structures

We define the models of interest, extensions of disjunctive modal transition systems
[21]. Models with similar transition structure as those presented here, but with a differ-
ent kind of acceptance condition, had already been proposed, and shown to be complete,
in the technical report [13]. Without loss of generality, we won’t consider action labels
on models in this paper. Throughout, |S| denotes the cardinality of a set S and P(S)
denotes its power set.

Definition 1 (Models). For a set of atomic propositions AP, a hypermixed Kripke
structureM is a tuple (S,R−, R+, L−, L+, (E
, F
)
∈L) with finite L such that



Ranked Predicate Abstraction for Branching Time 325

– (s ∈)S is a set of states,
– R−, R+ ⊆ S × P(S) the set of must- and may-transitions (respectively),
– L−, L+ : S → P(AP) the must- and may-labelings (respectively) of states, and
– (E
, F
)
∈L is a Streett acceptance condition with each (E
, F
) in P(S) × P(S).

We often refer to hypermixed Kripke structures as ‘models’. Furthermore, such a
model is finite if |S| + |

⋃
s∈S L

−(s)| + |AP \ (
⋃

s∈S L
+(s))| is finite.

Kripke structures have straightforward representations as hypermixed Kripke struc-
tures: let R− = R+, L− = L+, L = {}, and ensure that (s,D) ∈ R− implies thatD is
a singleton. A hypermixed Kripke structure is depicted in Figure 1 and a Kripke struc-
ture is presented in Figure 2. The interpretation of the labelings L− and L+ is standard
[7,8]: L−(s) lists those atomic propositions that must hold in any refining states of s
whereas L+(s) lists those propositions that may hold in some refinement of s. A must-
transition (s,D) ∈ R− specifies that all refining states s̈ of s in a Kripke structure M̈
must have a transition (s̈, {s̈′}) in M̈ such that s̈′ refines some state inD [21]. Dually, a
may-transition (s, C) ∈ R+ specifies that all refining states s̈ of s in a Kripke structure
M̈ may (but must not) have transitions in M̈ of form (s̈, {s̈′}) such that s̈′ refines all
states in C. We formalize these intuitions in refinement games below.

The Streett acceptance condition for modelM is a predicate AM that characterizes
the allowed infinite sequences of states, those (sn)n∈IN satisfying “for all � ∈ L, set
{n ∈ IN | sn ∈ E
} is infinite or set {n ∈ IN | sn ∈ F
} is finite”. For example in the
model from Figure 1, the infinitely repeating sequence of states (s100 s

2
10)

ω is accepted
whereas (s010 s111)ω is not, where the superscript 2 (resp., 1) denotes membership in E


(resp., F
). We chose a Streett condition over, say, a Rabin condition since its conjunc-
tivity allows us to enforce all constraints of a ranking function; and since it guarantees
that checking guarded formulas of the modal µ-calculus for such models is in NP as
Player I will have a memoryless winning strategy.

We turn to defining abstraction between models through a refinement notion, using
various acceptance conditions of regular games. Below we write πi for the projection
into the i-th component of an ordered tuple. Given a relation ρ ⊆ B × C with subsets
X ⊆ B and Y ⊆ C we write X.ρ for {c ∈ C | ∃b ∈ X : (b, c) ∈ ρ} and ρ.Y for
{b ∈ B | ∃c ∈ Y : (b, c) ∈ ρ} and abuse this notation whenever ρ is a function (viewed
as a graph). For a sequence of tuples Φ we write Φ[i] for the sequence obtained from
Φ through projection into the i-th coordinate. Let map(f, Φ) be the sequence obtained
from Φ by applying function f to all elements of Φ in situ.

Definition 2 (Refinement)

1. Finite refinement plays for models M1 and M2 have the rules and winning condi-
tions as stated in Table 1. An infinite play Φ is a win for Player I (the verifier) iff
[AM1(Φ[1]) ⇒ AM2(Φ[2])] holds; otherwise it is won by Player II (the refuter).

2. State s1 ∈ S1 refines s2 ∈ S2 (and then s2 abstracts s1) iff Player I has a winning
strategy for all refinement plays started at (s1, s2).

3. Model M1 refines (is abstracted by) M2 iff Player I has a strategy for the corre-
sponding refinement game between M1 and M2 such that any state in S1 is ab-
stracted by some state in S2, and any state in S2 is refined by some state in S1.



326 H. Fecher and M. Huth

p−
0

p+
0 , p+

1

s00

p−
0

p+
0 , p+

1

s01

p+
1

s10

p+
1

s11

��������2

��
��������2

���
���

���
���

���
���

�����

�
�

�

•

��������2
��������

����
��������2

�
�

����
��������2

��
��������2

���
���

���
���

���
���

�����

�
�

�
•

��������2
� � � � � � � �

��� �

��������2

�
�

���
�

•

��������0 ��

��������2
��

•

��������1 ��

��������2
��

•
��������1��

��������1

��

��������2

��	
	

	
	

	
	•

��������1 




��

 ��������1����

		���

•

�
�
���������1 

�



��������1� � �
�

�
�

� � � ��

•

�
�
�
�

��������1


�

�



��������0� � �
�

�
�

�
� � ��

•

�
�
�
�
�
�

��������2



�
�
�

�



��������2� �
� � � � � � � � �

� � ��

•

��������0��

��������2
��

•

��������0��

��������2
��

•

��������0��

��������1
��

��������1
��

•

�
�

�
�

�
�
��������1�

�

����������1 � � � �

��� � �

•

�
�
� ��������1�

�



��������0 ���
�

�
�

�����

•

�
�
�
�
��������2

�

 

�



��������0 �!
�

�
"

�
�!���

•

�
�
�
�
�
�

��������0

�
#

$
%
�



��������2 �!
�
&���&
�

!���

Fig. 1. A hypermixed Kripke structure. At state s, label p− (resp., p+) denotes s ∈ L−(p)
(resp., s ∈ L+(p)). Branching solid (resp., dashed) arrows model must-transitions (s, D) (resp.,
may-transitions (s, C)). Depicted states come in three versions — labeled with 0, 1, or 2 super-
scripts — that share outgoing transitions. Labels on transitions indicate the version of their source
state. For example, the upper most depicted solid transition indicates {(si

10, {s1
01, s

1
11, s

2
11}) |

i ∈ {0, 1, 2}} ⊆ R−. The state set of all versions labeled with 2, paired with the state set
of all versions labeled with 1, yields the sole Streett acceptance condition of this model, here,
E = {s2

00, s
2
01, s

2
10, s

2
11} and F = {s1

00, s
1
01, s

1
10, s

1
11}.

Our ranked predicate abstraction defined below will ensure item 3. above by definition.
Since this paper presents techniques that render abstractions by construction, we are
not concerned with the complexity of checking refinement per se. We note that our
refinement between two Kripke structures coincides with bisimulation [23].

Example 1 (Abstraction). The model in Figure 1 is an abstraction of the model from
Figure 2 where all three versions of s00 and s01 abstract ŝ, and all three versions of s10
and s11 abstract all states of the Kripke structure other than ŝ.

3 Sound Satisfaction Relation

We will present the modal µ-calculus in its equivalent form of alternating tree au-
tomata [25]. All results in this section have standard proofs.

Definition 3 (Tree automata). An alternating tree automaton A = (QA, δA, ΘA) has

– a finite, nonempty set of states (q ∈)QA

– a transition relation δA mapping automaton states to one of the following forms,
where q, q1, q2 are automaton states and p ∈ AP: p | ¬p | q | q1∧̃q2 | q1∨̃q2 |
EX q | AX q and



Ranked Predicate Abstraction for Branching Time 327

p0
ŝ

� � � � � � � �

� � � � � � � � � � � � � � �

p1 p1 p1 p1 p1 p1 p1

s0 s1 s2 s3 s4 s5 s6 s7

ŝ0 ŝ1 ŝ2 ŝ3 ŝ4 ŝ5 ŝ6

�

� � � � � � � �

· · ·

· · ·

· · ·

Fig. 2. A Kripke structure with L−(ŝ) = {p0}, L−(si) = {}, and L−(ŝi) = {p1} for all i ≥ 0.
Arrows s → s′ denote (s, {s′}) ∈ R−.

Table 1. Moves of refinement game at configuration (s1, s2). Refinement plays are sequences of
configurations generated thus.

L− labeling: Player II chooses p from L−(s2); Player I wins iff p is in L−(s1)
L+ labeling: Player II chooses p from AP \ L+(s2); Player I wins iff p is not in L+(s1)
R− transition: Player II chooses a set of states D′

2 ∈ {s2}.R−
2 ; Player I responds with D′

1 ∈
{s1}.R−

1 ; Player II chooses s′1 ∈ D′
1; Player I responds with s′2 ∈ D′

2; the next configuration
is (s′1, s

′
2)

R+ transition: Player II chooses a set of states C′
1 ∈ {s1}.R+

1 ; Player I responds with C′
2 ∈

{s2}.R+
2 ; Player II chooses s′2 ∈ C′

2; Player I responds with s′1 ∈ C′
1; the next configuration

is (s′1, s
′
2)

– an acceptance condition ΘA : QA → IN with finite image, where an infinite se-
quence of automata states is accepted iff the maximal acceptance number occurring
infinitely often is even.

An alternating tree automaton is depicted in Figure 3. Throughout this paper, we assume
without loss of generality [18] that all automata correspond to guarded formulas of the
modal µ-calculus, i.e. that every cycle in the underlying graph of automaton A has to
contain an element that is labeled with EX or AX . Also, for any bounded sequence n
of elements in IN we write sup(n) for the largestm that occurs in n infinitely often.

Definition 4 (Satisfaction)

– Finite satisfaction plays for model M and alternating tree automaton A have the
rules and winning conditions as stated in Table 2. An infinite play Φ is a win
for Player I iff [AM (Φ[1]) ⇒ sup(map(Θ,Φ[2])) is even]; otherwise it is won by
Player II.

– ModelM satisfies automatonA in configuration (s, q) ∈ S×Q, written (M, s) |=
(A, q), iff Player I has a strategy for the corresponding satisfaction game between
M and A such that Player I wins all satisfaction plays started at (s, q) with her
strategy.

The acceptance condition for satisfaction plays between a modelM and an automataA
is a variant of those familiar from the literature: An infinite play Φ is a win for Player I



328 H. Fecher and M. Huth

AX ∨̃�� EX�� ∧̃�� EX�� EX�� EX��
��

p0

��
p1

��

0 1 0 0 0 0 0

0 0
q̂

q̈

Fig. 3. An alternating tree automata. Accepting values are depicted next to states. At state q̈ it
expresses that there is a run that reaches a p0-state after 4n moves for some n ≥ 0 (since the
cycle has to be left to obtain an accepting sequence) such that p1 always holds after 4m+1 moves
for every m < n with m ≥ 0. At q̂, it expresses that after any transition the property expressed
at q̈ holds.

Table 2. Moves of satisfaction game at configuration (s, q), specified through a case analysis on
the value of δ(q). Satisfaction plays are sequences of configurations generated thus.

p: Player I wins iff p ∈ L−(s)
¬p: Player I wins iff p /∈ L+(s)
q′: the next configuration is (s, q′)
q1∧̃q2: Player II picks a q′ from {q1, q2}; the next configuration is (s, q′)
q1∨̃q2: Player I picks a q′ from {q1, q2}; the next configuration is (s, q′)
EX q′: Player I picks D′ ∈ {s}.R−; Player II picks s′ ∈ D′; the next configuration is (s′, q′)
AX q′: Player II picks C′ ∈ {s}.R+; Player I picks s′ ∈ C′; the next configuration is (s′, q′)

iff either the projection of Φ into the automataA is accepting in A (sup(map(Θ,Φ[2]))
is even) or the projection of Φ into M is non-accepting in M (¬AM (Φ[1])). We write
s |= q and Q, etc, wheneverM and A are clear from the context. Note that |= applied
to Kripke structures corresponds to the usual satisfaction relation.

Example 2 (Satisfaction game). For the model of Figure 4 and the automaton from
Figure 3 we have s000 |= q̂: at the q̂-state Player I chooses s210 or s220 in the AX -move,
depending on which may-transition from s000 is picked by Player II. In order to show
q̈ at s210 or s220, Player I chooses the EX -automaton state in the ∨̃-move, then she
chooses the must-transition pointing to {s031}, (if Player II picks the EX -state) Player
I chooses the must-transition pointing to {s021}, at the next EX -move she chooses
the one pointing to {s110, s020}, at the next EX -move she chooses the one pointing to
s101, respectively the one pointing to {s110, s120}. Then in the latter case, a cycle has
been reached and the game continues as described before. So either p0 is reached or a
sequence that contains no state labeled with 2 but infinitely many states labeled with 1
is generated, which contradicts the Streett acceptance condition.

The winning conditions for the satisfaction game are Rabin conditions as they have
form [Streett ⇒ RabinChain] which reduces to Rabin; so deciding (M, s) |= (A, q)
is in NP for finite-state models. We prove soundness of (M, s) |= (A, q) as an approxi-
mation of the EXPTIME-hard relation which asks whether all pointed Kripke structures
(M̈, s̈) that refine (M, s) satisfy A in (s̈, q), the proof is completely standard. As usual,



Ranked Predicate Abstraction for Branching Time 329

p−
0

p+
0

s00 p−
0

p+
0

s01

s10 s11

s20 s21

p−
1

p+
1

s30 p−
1

p+
1

s31

''''
•

��������2
������

�����
��������2 ( (

��

� �•

��������2

)
)
)
)
)
)
)

��

�
*

( + , - . / / � � � 0 �� 1 �
2

%
3
�

��������2

�

4
5
�
6

#
7

���

( ( ( (
•

��������2 � � � � � �

��� � �
��������2

''
��

�� •

��������2
8
8
8
8
8
8
8

��

�
9

':;1<00��//��-�
=

�
>
�

��������2

�
?
@
%
A
�
B

C
��

��������1(((((((((((((((((((

��((((

��������1





��������1

��

��������0

��

��������1 '''''''''''''''''''

��''''

��������1





��������2

��

��������0

��

�����
•

��������1 ��
�����

��������1��

DDDDDDDDDDDDDDDDD

•
��������1DDDDD

��DD

��������1
���

���

����

��������0
!!!!!!!!!!!!!!!!!!!

��!!!!

��������1

��

EEEEE
•
��������1��

		���

��������1 ��

FFFFFFFFFFFFFFFFF

•
��������1 FFFFF

��FF

��������0
���

���

����

��������0 �������������������

������

��������2

��
��������2DDDDDDDDDDDDDDDDDDDD

��DDDDD
��������2




��������2 FFFFFFFFFFFFFFFFFFFF

��FFFFF
��������0





Fig. 4. Another hypermixed Kripke structure. For notational conventions we refer to Figure 1.

(M, s) �|= (A, q) does not imply (M, s) |= (¬A, q) where ¬A recognizes the comple-
ment of A.

Theorem 1 (Soundness). Suppose s1 refines s2. Then for any “guarded” automaton
A and q ∈ Q, we have that s2 |= (A, q) implies s1 |= (A, q).

4 Ranked Predicate Abstraction

Predicate abstraction computes a partition of a concrete state space by identifying states
that have the same truth values for finitely many given formulas of some logic [15].
If that logic is decidable or if its decidability can be over-approximated, then model
structure (e.g. a state transition relation) over this partition can be synthesized by means
of such decision procedures without explicitly constructing the concrete model [15] —
provided that model structure is expressible in the given logic.

We now adapt predicate abstraction to hypermixed Kripke structures and branching
time and argue the suitability of that adaption. In doing so, we work with a function h
that maps concrete states S to abstract states I . This function is derived from finitely
many predicates φ1, φ2, . . . , φn by the equivalence relation ≡⊆ S×S, given by s ≡ s′

iff (for all 1 ≤ i ≤ n, s |= φi ⇔ s′ |= φi). Then I is the set of equivalence classes of
≡ and h(s) is defined to be the equivalence class of s.

Definition 5 (Ranked predicate abstraction). A ranked predicate abstraction ℵ of a
state space S is a tuple (I, h, J, (≤k)k∈K , ℘) where

– h : S → I is a surjective function mapping concrete (S) to abstract (I) states
– J is a non-empty set of rank locations;



330 H. Fecher and M. Huth

– for all k ∈ K , with K a (possible empty) index set, ≤k ⊆ (S × J) × (S × J) is a
pre-order with well-founded irreflexive version <k; and

– ℘ ⊆ AP is the set of slice predicates such that
– |I| + |J | + |K| + |℘| is finite.

Ranked predicate abstraction ℵ generalizes the familiar predicate abstraction [15] to the
entire modal µ-calculus, and so to liveness properties in particular. In our approach

– precision and completeness require an acceptance condition: abstract runs that are
infinitely descending and related (not necessarily state-wise) to concrete runs are
rejected; “descending” is defined in terms of given pre-orders

– set J is used to allow more complex ranking pre-orders ≤k

– set ℘ is used to restrict the predicates of the model to those which occur in properties
one wishes to check.

Example 3 (Ranked predicate abstraction). Two ranked predicate abstractions for state
space S of the Kripke structure in Figure 2 are ℵ̂=({i0, i1}, ĥ, {j̈, ĵ}, (≤k)k∈{0}, {p0})
and ℵ̈ = ({i0, i1, i2, i3}, ḧ, {j̈, ĵ}, (≤k)k∈{0}, {p0, p1}) such that ĥ(ŝ) = ḧ(ŝ) = i0,

ĥ(s0) = ḧ(s0) = i1, and for n ∈ IN, ĥ(sn+1) = ĥ(ŝn) = i1, ḧ(sn+1) = i2, ḧ(ŝn) =
i3, and (s′, j′) ≤0 (s, j) ⇔ ω(s′, j′) ≤ ω(s, j) for s, s′ ∈ S, j, j′ ∈ {j̈, ĵ} where
ω(ŝ, j̈) = ω(ŝ, ĵ) = 0, ω(sn, ĵ) = ω(ŝn, j̈) = n+ 1, and ω(sn, j̈) = ω(ŝn, ĵ) = n+ 2.

We point out that a nontrivial J is required to obtain completeness of the abstraction
framework, see Proposition 1 in Section 6 below. The ℵ-abstraction game involves two
hypermixed Kripke structures M1 and M2 where ℵ is a ranked predicate abstraction
for the state space of M1. The objective of Player I is to show that M1 is abstracted by
M2 up to ℵ, meaning that Player II can switch between states of M1 that map to the
same elements via h as long as no contradiction to the acceptance condition of M1 or
to the ranking functions of ℵ is produced. Therefore, the states ofM1 are represented in
configurations via elements of I×J×((L∪K) → {0, 1, 2}), where J is under control of
Player I such that soundness of the game is ensured, and ((L∪K) → {0, 1, 2}) is used
to encode fairness constraints as follows: A Streett condition pair (E,F ), represented
by an element k ∈ K , is encoded via a function into {0, 1, 2} where value 2 indicates
that a state ofE, respectively, a move not preserving≤k happens; 1 indicates that a state
of F \ E, respectively, a move that preserves <k happens; and 0 indicates that a state
outside F or E, respectively, a move that preserves ≤k (but not strictly so) happens.
Formally ΩM,ℵ : (S × J)2 → ((L ∪K) → {0, 1, 2}) is given by

ΩM,ℵ
(s′,j′,s,j)(x) =

⎧⎨⎩
2 if (x ∈ L& s′ ∈ Ex) or (x ∈ K & (s′, j′) �≤x (s, j))
1 if (x ∈ L& s′ ∈ Fx \ Ex) or (x ∈ K & (s′, j′) <x (s, j))
0 otherwise

where we assume throughout thatK and L are disjoint. For the completeness proof for
(M, s) |= (A, q) it is instructive to think of J as the set of automaton states QA. We
write Φ(n) for the n-th configuration of play Φ.

Definition 6 (Ranked predicate abstraction game). Let ℵ be a ranked predicate ab-
straction for the state space ofM1.



Ranked Predicate Abstraction for Branching Time 331

Table 3. Moves of ℵ-abstraction game at configuration (i, j, g, s2) ∈ I × J × ((L ∪ K) →
{0, 1, 2}) × S2 where ℵ-abstraction plays are sequences of configurations generated thus.

L− labeling: Player II chooses p from L−(s2) and s1 ∈ h.{i}; Player I wins iff p ∈ L−(s1)∩℘
L+ labeling: Player II chooses p from AP \ L+(s2) and s1 ∈ h.{i}; Player I wins iff p ∈

℘ \ L+(s1)
R− transition: Player II chooses a set of states D′

2 ∈ {s2}.R−
2 ; Player I responds with j′ ∈ J ;

Player II chooses s1 ∈ h.{i}; Player I responds with D′
1 ∈ {s1}.R−

1 ; Player II chooses s′1 ∈
D′

1; Player I responds with s′2 ∈ D′
2; the next configuration is (h(s′1), j

′, ΩM,ℵ
(s′1,j′,s1,j)

, s′2)

R+ transition: Player II chooses s1 ∈ h.{i} and C′
1 ∈ {s1}.R+

1 ; Player I responds with C′
2 ∈

{s2}.R+
2 ; Player II chooses s′2 ∈ C′

2; Player I responds with s′1 ∈ C′
1 and j′ ∈ J ; the next

configuration is (h(s′1), j
′, ΩM,ℵ

(s′1,j′,s1,j)
, s′2)

– Finite ℵ-abstraction plays for modelsM1 andM2 have the rules and winning con-
ditions as stated in Table 3. An infinite play Φ is a win for Player I iff [(for all
x ∈ L ∪ K , sup((π3(Φ(n))(x))n∈IN) is even) ⇒ AM2(Φ[4])] holds; otherwise it
is won by Player II.

– The model M1 is ℵ-abstracted by M2 iff Player I has a strategy for the corre-
sponding ℵ-abstraction game between M1 and M2 such that for any (i, j, g) ∈
I × J × ((L ∪K) → {0, 1, 2}) there is s2 ∈ S2 (and, conversely, for all s2 ∈ S2

there is (i, j, g) ∈ I ×J × ((L∪K) → {0, 1, 2})) such that Player I wins with her
strategy in all ℵ-abstraction plays started at (i, j, g, s2).

We show that ℵ-abstractions are indeed abstractions.

Theorem 2 (Consistency of ranked predicate abstractions). Let ℵ be a ranked pred-
icate abstraction of the state space of M1. If M1 is ℵ-abstracted by M2, then M1 is
abstracted byM2.

We now define an abstraction that is precise with respect to the ℵ-abstraction game.

Definition 7 (Precise ranked predicate abstraction). Let ℵ be a ranked predicate
abstraction of the state space of M . The precise ℵ-abstraction Mℵ of M is defined
to be the model (Sℵ, R−ℵ , R

+
ℵ , L

−
ℵ , L

+
ℵ , (E

ℵ
x , F

ℵ
x )x∈L∪K) where

Sℵ = {(i′, j′, ΩM,ℵ
(s′,j′,s,j)) ∈ I × J × ((L ∪K) → {0, 1, 2}) | i′ = h(s′)}

R−ℵ =
{
((i, j, g), D̃) | ∃j′ ∈ J, f : S → P(S) : (∀s ∈ h.{i} : f(s) ∈ {s}.R−)&

D̃ = {(i′, j′, ΩM,ℵ
(s′,j′,s,j)) | s ∈ h.{i}& s′ ∈ h.{i′} ∩ f(s)}

}
R+
ℵ =

{
((i, j, g), C̃) | ∃s ∈ h.{i}, C ∈ {s}.R+ :

C̃ = {(i′, j′, ΩM,ℵ
(s′,j′,s,j)) | j

′ ∈ J & s′ ∈ C ∩ h.{i′}}
}

L−ℵ (i, j, g) = ℘ ∩
⋂

s∈h.{i}
L−(s) L+

ℵ (i, j, g) = (AP \ ℘) ∪
⋃

s∈h.{i}
L+(s)

Eℵx = {(i, j, g) | g(x) = 2} Fℵx = {(i, j, g) | g(x) = 1}



332 H. Fecher and M. Huth

In the ℵ-abstraction of M , the set of must-labelings (resp., may-labelings) is standard,
except that it (resp., its complement) is restricted to predicates from ℘. The Streett
conditions specify that value 1 must not occur infinitely often if value 2 occurs only
finitely often. The state space is the reachable one occurring in the ℵ-abstraction game.
The first component h(s′) corresponds to the abstract state, the second component j′

corresponds to the rank location (the current automaton state if J is taken to be Q),
and the third component corresponds to the acceptance encoded in the ranked predicate
abstraction game.

A must-transition ((i, j, g), D̃) ∈ R−ℵ is determined by choosing must-transitions
(s, f(s)) ∈ R− for every related concrete state s ∈ h.{i} and taking a ranked predicate
location j′ ∈ J . Note that Player I has control of the ranked predicate location in the
satisfaction game, so she can always respond with the reached automaton state if J is
taken to be Q. Set D̃ is the union of the abstract states in f(s) for s ∈ h.{i} combined
with j′. Furthermore, the g-component of a target in D̃ may vary depending on the
considered witnesses s and s′ inM . A may-transition ((i, j, g), C̃) ∈ R+

ℵ is determined
by taking a may-transition (s, C) ∈ R+ for some s that is related to the abstract state
i. The target set consists of all abstract states related to a state in C combined with any
value from J . The g-component of a target in C̃ may similarly vary depending on the
witnesses for the abstract state in C.

Example 4. For ℵ̂ and ℵ̈ of Example 3, the ℵ̂-abstraction of the model in Figure 2 is
shown in Figure 1 and the ℵ̈-abstraction of that same model is depicted in Figure 4.
There the index of sij corresponds to the I-component (respectively J-component) and
the g-component is encoded by the transition labels. These figures omit must-transitions
that have matching must-transitions with a superset as target (these omission leads to
refinement equivalent models). To enhance readability the must-transitions outgoing
from states s00 and s01 as well as the outgoing may-transitions from other states are
omitted in Figure 4.

We justify the adjective “precise” of Definition 7.

Theorem 3 (Precision). The finite-state model Mℵ of Definition 7 is a precise ℵ-
abstraction ofM , i.e.,

– Mℵ is a ℵ-abstraction ofM and
– if M2 is a ℵ-abstraction ofM , thenM2 abstractsMℵ.

5 Incremental Analysis

In the case that an abstraction obtained by ranked predicate abstraction does not satisfy
a property of interest, techniques for abstraction-refinement that reuse already verified
sub-properties are called for. Such a technique, a generalization of adding predicates in
the predicate or Cartesian abstraction approach [2,14], is introduced now:

Definition 8 (Extensions of ranked predicate abstractions). Let ℵ1 and ℵ2 be ranked
predicate abstractions of S. Then ℵ1 is an extension of ℵ2 if h2 = h1 ◦ h for some
surjective function h, J2 ⊆ J1, ℘2 ⊆ ℘1, K2 ⊆ K1, and ∀k ∈ K2 : ≤k

1 = ≤k
2 .



Ranked Predicate Abstraction for Branching Time 333

For example, the ranked predicate abstraction ℵ̈ is an extension of ℵ̂, where ℵ̈ and ℵ̂ are
given in Example 3. Extensions always enable incremental analysis.

Theorem 4 (Incremental analysis). Let the ranked predicate abstraction ℵ1 be an
extension of the ranked predicate abstraction ℵ2. ThenMℵ1 is abstracted byMℵ2 .

Extensions should be confluent in the following sense: if a ranked predicate abstrac-
tion ℵ1 for the state space of some model M yields an abstraction Mℵ1 satisfying the
automaton (A, q), then any ranked predicate abstraction ℵ2 for the state space of M
should be extendable to a ranked predicate abstraction ℵ such that Mℵ also satisfies
(A, q). We define common extensions and show this desired confluence.

Definition 9 (Common extension). Let ℵ1 andℵ2 be ranked predicate abstractions for
state space S, where we assume without loss of generality thatK1 andK2 are disjoint.
The ranked predicate abstraction ℵ1�ℵ2 for S is (S.h, h, J1∪J2, (≤k)k∈K1∪K2 , ℘1∪
℘2) where h = {(s, (i1, i2)) ∈ S × (I1 × I2) | s ∈ h1.{i1} ∩ h2.{i2}}, and ≤k is ≤k

1

if k ∈ K1, but equals ≤k
2 if k ∈ K2.

Theorem 5 (Confluence of extensions). Let ℵ1 and ℵ2 be ranked predicate abstrac-
tions for state space S. Then ℵ1 � ℵ2 is an extension of ℵ1 and of ℵ2.

6 Completeness

First we point out an issue of expressiveness: more than one rank location is needed in
order to get a complete predicate abstraction.

Proposition 1 (Limited expressiveness). There is no ranked predicate abstraction ℵ
of the Kripke structure from Figure 2 such that its J is a singleton and (Mℵ, h(ŝ)) |=
(A, q̂) holds, where A is the automaton from Figure 3.

We now construct ranked predicate abstractions that prove the desired completeness.
Let (M, s) |= (A, q) hold. The set of OR-states OA and the set TA of states that are
targets of EX - or AX -states are defined:

OA = {q ∈ Q | ∃q1, q2 ∈ S : δ(q) = q1∨̃q2}
TA = {q′ ∈ Q | ∃q ∈ Q : δ(q) ∈ {EX q′,AX q′}} .

Without loss of generality, the automaton state q that describes the property we are
interested in is in TA (otherwise add a fresh automaton state q′ with δ(q′) = EX q; thus
q′ is unreachable and won’t interfere with satisfaction games at other automaton states).

A choice function for A is a function cA : OA → {1, 2}. Let ChA be the set of all
choice functions for A. Let θ be a memoryless strategy for Player I for the satisfaction
game betweenM andA. Then cθ,s

A is the choice function whose choices on any q ∈ OA

agree with those of θ on (s, q).
The ranked predicate abstraction that proves completeness with respect to a memo-

ryless strategy θ is constructed as follows: States ofM are equivalent iff

– they satisfy the same automaton states with respect to θ and
– θ behaves the same on every OR-state.



334 H. Fecher and M. Huth

Relevant predicates are those that occur in the automaton. The set J is taken to be
the set of automaton states TA. The pre-orders ≤k are derived from ranking functions
corresponding to odd automaton acceptance numbers: roughly speaking, the ranking
function ωθ,k is determined (if possible, otherwise a default value κ is chosen) by the
least number of unfoldings necessary to guarantee that no further 2k + 1 value can
be reached by remaining below 2k + 2. This is formalized by counting the unfoldings
of function �θ,k applied to the empty set until the state of the model combined with
the corresponding automaton state is obtained in the generated set (note that κ will be
chosen such that it is always greater than any possible counting). Formally, �θ,k : (S ×
Q) → (S ×Q) is given by

�θ,k(W ) = W ∪ {(s, q) | ∀(sn, qn)n∈IN ∈ ξθ
(s,q), r ∈ IN:

Θ(qr+1) = 1 + 2k ⇒ ((sr+1, qr+1) ∈ W or ∃r′ ≤ r : Θ(qr′) > 1 + 2k)}

with ξθ
(s,q) as set of all plays started in configuration (s, q) and played via strategy θ.

Definition 10 (Complete ranked predicate abstraction). Let θ be a memoryless strat-
egy for Player I for the satisfaction game between M and automaton A. Then the θ-
ranked predicate abstraction is ℵθ = (S.hθ, hθ, TA, (≤k

θ)k∈Kθ
, ℘θ), where

Kθ = {0, 1, . . . , !(max{Θ(q) | q ∈ Q} − 1)/2"} and κ = |P(P(S ×Q))|
hθ : S → P(TA) × ChA with hθ(s) = ({q ∈ TA | θ wins in (s, q)}, cθ,s

A )
ωθ,k

(s,q) = min({α | (s, q) ∈ �α
θ,k({})} ∪ {κ})

(s′, q′) ≤k
θ (s, q) ⇔ ωθ,k

(s′,q′) ≤ ωθ,k
(s,q)

℘θ = {p | ∃q ∈ Q : δ(q) ∈ {p,¬p}}

Theorem 6 (Completeness). LetM be a Kripke structure and θ be a memoryless strat-
egy for Player I for (M, s) |= (A, q) and ℵθ the θ-ranked predicate abstraction of M .
Then (Mℵθ

, (hθ(s), q, g)) |= (A, q) holds whenever θ is winning for the satisfaction
game at configuration (s, q).

7 Discussion

Fairness constraints in models, the Streett acceptance conditions in our paper, are re-
quired for securing completeness as the property language is powerful enough to ex-
press such constraints. Such completeness can already be proved if R+ has type S × S
instead of our S×P(S). But then abstractions for a given ℵ may be less precise, and the
completeness proof is likely to be harder; in fact, we don’t know whether completeness
for feasible abstractions restricted to state space partitions is then always realizable.

Our abstract models are closely related to the modal automata in [11], except that in
our model

– only must-transitions point to OR-states, e.g., our must-transition (s,D) is graphi-
cally represented through an OR-state o that has exactly the outgoing transitions to
all elements ofD and s points to o; and

– may-transitions point to AND-states via a similar graphical representation.



Ranked Predicate Abstraction for Branching Time 335

Note that AND-states do not exist in modal automata; in our approach AND-states
allow more compact abstractions and simplify our completeness proof. We did consider
using modal automata but found that a definition and proof of precision would be more
complex than for our choice of model, as indicated in the previous paragraph.

We also considered using the focussed transition systems in [10] as an alternative
complete abstraction framework. We decided against its use as one of our key objectives
was to maximize the reuse of tried and tested methods in predicate abstraction, notably
the partition of a concrete state space through predicates and the computation of abstract
transitions based on the existence of transitions between states of such partitions. The
focus and defocus operations in focussed transition systems seem to make it difficult
to reason about the existence of transitions in this manner. This is related to the fact
that the model checking game F |= φ for property φ and focussed transition systems F
in [10] does not satisfy conjunction elimination and disjunction introduction; e.g. there
are F , φ1, and φ2 with F |= φ1∧φ2 but F �|= φ1. This also suggests that “most precise”
abstractions may not exist or may be difficult to define for focussed transition systems.

Our completeness result, as all others, does not shed light on how to find feasible
abstractions but it secures the existence of ranked predicate abstractions that are fea-
sible, confluent, and incremental. So the design of an abstraction-refinement loop for
predicate abstraction of branching time may be attainable in future work.

8 Conclusion

In this paper we developed an abstraction framework for Kripke structures that extends
predicate abstraction to ranked predicate abstraction so that one can deal with all live-
ness properties as well. Specifically, whenever a Kripke structureM satisfies a property
φ of the modal µ-calculus, there is a finite-state model computed through a ranked
predicate abstraction that witnesses this truth, and so our framework is complete in the
sense of Dams & Namjoshi [10]. We also proved that the abstractions synthesized in
this way are precise in the sense of Dams [7]. Our ranked predicate abstractions cor-
respond to state space partitions of the concrete model by definition. We demonstrated
that these abstractions are incremental and confluent: new predicates may be added
for abstraction-refinement, and feasible abstractions can be found no matter how, and
how often, initial abstractions have been refined so far. In summary our results form
a good foundation for the automated synthesis of abstractions and counter-example-
guided abstraction-refinement for branching time, both subjects for future work.

References

1. R. Alur, Th. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of
the ACM 49(5):672–713, 2002.

2. Th. Ball, A. Podelski, and S. K. Rajamani. Boolean and Cartesian Abstraction for Model
Checking C Programs. In Proc. of TACAS’01, LNCS 2031, pp. 268–283, Springer-Verlag,
2001.

3. G. Bruns and P. Godefroid. Model Checking Partial State Spaces with 3-Valued Temporal
Logics. In Proc. of CAV’99, LNCS 1633, pp. 274–287, Springer-Verlag, 1999.



336 H. Fecher and M. Huth

4. E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching time
temporal logic. In Logic of Programs Workshop, LNCS 131, pp. 244–263. Springer-Verlag,
1981.

5. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM
TOPLAS 16(5):1512–1542, 1994.

6. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs. In Proc. of POPL’77, pp. 238–252, ACM Press, 1977.

7. D. Dams. Abstract interpretation and partition refinement for model checking. PhD thesis,
Technische Universiteit Eindhoven, The Netherlands, 1996.

8. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems. ACM
TOPLAS, 19(2):253–291, 1997.

9. D. Dams, R. Gerth, and O. Grumberg. A Heuristic for the Automatic Generation of Ranking
Functions. In Proc. of the Workshop on Advances in Verification, Chicago, July 2000.

10. D. Dams and K. Namjoshi. The Existence of Finite Abstractions for Branching Time Model
Checking. In Proc. of LICS’04, pp. 335–344, IEEE Computer Society Press, 2004.

11. D. Dams and K. S. Namjoshi. Automata as Abstractions. In Proc. of VMCAI’05, LNCS 3385,
pp. 216–232, Springer-Verlag, 2005.

12. Y. Fang, N. Piterman, A. Pnueli, and L. D. Zuck. Liveness with Incomprehensible Ranking.
In Proc. of TACAS’04, LNCS 2988, pp. 482-496, Springer-Verlag, 2004.

13. H. Fecher and M. Huth. Complete abstractions through extensions of disjunctive modal tran-
sition systems. Technical Report No. 0604, Institut für Informatik und Praktische Mathematik
der Christian-Albrechts-Universität zu Kiel, 31 pages, March 2006.

14. P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based Model Checking using Modal
Transition Systems. In Proc. of CONCUR’01, LNCS 2154, pp. 426–440, Springer-Verlag,
2001.

15. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Proc. of CAV’97,
LNCS 1254, pp. 72–83, Springer-Verlag, 1997.

16. M. Huth, R. Jagadeesan, and D. A. Schmidt. Modal transition systems: a foundation for
three-valued program analysis. In Proc. of ESOP’01, LNCS 2028, pp. 155–169. Springer-
Verlag, 2001.

17. Y. Kesten and A. Pnueli. Verification by Augmented Finitary Abstraction. Inf. Com-
put. 163(1):203-243, 2000.

18. D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science 27:333–
354, 1983.

19. O. Kupferman and M. Y. Vardi. Complementation Constructions for Nondeterministic Au-
tomata on Infinite Words. In Proc. of TACAS’05, LNCS 3440, pp. 206–221, Springer-Verlag,
2005.

20. K. G. Larsen and B. Thomsen. A Modal Process Logic. In Proc. of LICS’88, pp. 203–210,
IEEE Computer Society Press, 1988

21. K. G. Larsen and L. Xinxin. Equation Solving Using Modal Transition Systems. In Proc. of
LICS’90, pp. 108–117, IEEE Computer Society Press, 1990.

22. K. Namjoshi. Abstraction for Branching Time Properties. In Proc. of CAV’03, LNCS 2725,
pp. 288–300, Springer-Verlag, 2003.

23. D. M. R. Park. Concurrency and automata on infinite sequences. In Proc. of the 5th GI
Conference, LNCS 104, pp. 167–183, Springer-Verlag, 1989.

24. J. P. Quielle and J. Sifakis. Specification and verification of concurrent systems in CESAR.
In Proc. of the 5th International Symposium on Programming, 1981.

25. Th. Wilke. Alternating tree automata, parity games, and modal µ-calculus. Bull. Soc. Math.
Belg., 8(2):359–391, May 2001.



Timed Temporal Logics for Abstracting

Transient States

Houda Bel Mokadem1, Béatrice Bérard2, Patricia Bouyer1,
and François Laroussinie1

1 LSV, CNRS & ENS de Cachan, France
{mokadem,bouyer,fl}@lsv.ens-cachan.fr

2 LAMSADE, CNRS & Université Paris-Dauphine, France
berard@lamsade.dauphine.fr

Abstract. In previous work, the timed logic TCTL was extended with
an “almost everywhere” Until modality which abstracts negligible sets of
positions (i.e. with a null duration) along a run of a timed automaton. We
propose here an extension of this logic with more powerful modalities, in
order to specify properties abstracting transient states, which are events
that last for less than k time units. Our main result is that model-
checking is still decidable and PSPACE-complete for this extension. On
the other hand, a second semantics is defined, in which we consider the
total duration where the property does not hold along a run. In this case,
we prove that model-checking is undecidable.

1 Introduction

Timed Verification. Temporal logic is a convenient formalism for specifying
systems and reasoning about them. Furthermore, model-cheking techniques lead
to the automatic verification that a model of a system satisfies some temporal
logic specification. These methods have been extended to real-time verification:
systems are modeled with timed automata [4] and timed logics like TCTL [1] are
used to express timed specification like “any problem is followed by an alarm
within 3 seconds”. Analysis tools have been developped [22,15,20] and success-
fully applied to numerous case studies.

Timed Temporal Logics and Duration Properties. Along with the study
of timed automata, various timed logics have been defined to extend the classical
temporal logics with quantitative modalities. For example, this was done with
MTL [19,5,21], an extension of LTL, and TCTL [6,1,17], where CTL modalities
are augmented with time comparisons of the form ∼ c, where ∼ is a comparison
operator. Another related logic is the Parametrized TCTL [13] where TCTL and
the timed model are in turn extended with parameters.

In another direction, since the introduction of the duration calculus [14] in or-
der to express duration properties, numerous works have been devoted to the al-
gorithmic computation of such properties for timed systems. Since clocks, which
evolve at the rate of time (as in timed automata), are sometimes not expres-
sive enough, hybrid variables (with multiple slopes) have been considered. The

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 337–351, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



338 H. Bel Mokadem et al.

resulting model of hybrid automata has been largely studied in the subsequent
years [16]. However, while some decidability results could be obtained [3,18],
using stopwatches (i.e. variables with slopes 0 and 1) already leads to undecid-
ability for the reachability problem [2].

Further researchhas thus been devoted to weakermodels where hybrid variables
are only used as observers, i.e. are not tested in the automaton and thus play no
role during a computation. These variables, sometimes called costs or prices in this
context can be used in an optimization criterium [3,7,8,11] or as constraints in tem-
poral logic formulas. For instance, the logic WCTL [12,10], interpreted over timed
automata extended with costs, adds cost contraints on modalities: it is possible to
express that a given state is reachable within a fixed cost bound.

Abstracting transient states. When practical examples are considered, the
need for abstracting transient states often happens. For example, modeling the
instantaneous changes of a variable may introduce artificial (and thus non per-
tinent) transient states in the model. This motivated the work in [9], where
configurations with zero duration could be abstracted by introducing into TCTL
the almost everywhere Ua modality. However, this is not sufficient in some cases.

Contribution. In this paper, we propose an extension of TCTL called TCTL∆,
which brings out a powerful generalization of the results in [9]. We introduce a
new modality Uk, where k ∈ N is a parameter, in order to abstract events that do
not last continuously for at least k time units (t.u). For example, AF2

≤100alarm ex-
presses that for any execution, the atomic proposition alarm becomes true before
100 t.u and will hold for at least 2 time units. One also could express the fact that
an event a precedes an event b along any run, an event being actually considered
iff it lasts for at least k time units: the formula ArequestP3grant states that along
any run where grant has occurred for a duration greater than 3, a request has
been emitted continusously for a duration greater than 3. We prove that model-
checking for TCTL∆ is still PSPACE-complete. While the analogous result for
TCTL or the extended version of [9] relies on the standard notion of equivalent
runs, we have to define a stronger form for this equivalence, in order to obtain
the consistency of TCTL∆-formulae on the regions of the timed automaton.

Finally, we also consider a global semantics, called TCTL∆
Σ , for which the global

duration during which a property does not hold, is bounded by a fixed constant k.
Although this semantics is more natural and uses only observer hybrid variables
in the model, we prove that model-checking TCTL∆

Σ is undecidable.

Outline. Section 2 recalls the main features of timed automata model and gives
definitions for the syntax and semantics of our extended logics. Sections 3 and 4
are devoted to the model-checking of TCTL∆ and, in the last section, we show
that model-checking the extended logic TCTL∆

Σ is undecidable.

2 Logic TCTL∆

Let N and R denote the sets of natural and non-negative real numbers, respec-
tively. Let X be a set of real valued clocks. We write C(X) for the set of boolean



Timed Temporal Logics for Abstracting Transient States 339

expressions over atomic formulae of the form x ∼ k with x ∈ X , k ∈ N, and
∼ ∈ {<,≤,=,≥, >}. Constraints of C(X) are interpreted over valuations for
clocks, i.e. mappings from X to R. The set of valuations is denoted by RX . For
every v ∈ RX and d ∈ R, we use v+d to denote the time assignment which maps
each clock x ∈ X to the value v(x) + d. For every r ⊆ X , we write v[r ← 0] for
the valuation which maps each clock in r to the value 0 and agrees with v over
X \ r. Let AP be a set of atomic propositions.

2.1 Timed Automata

Definition 1. A timed automaton (TA) is a tuple A = 〈X,QA, qinit,→A, InvA,
lA〉 where X is a finite set of clocks, QA is a finite set of locations or control states
and qinit ∈ QA is the initial location. The set →A ⊆ QA × C(X) × 2X ×QA is a
finite set of action transitions: for (q, g, r, q′) ∈ →A, g is the enabling condition
and r is a set of clocks to be reset with the transition (we write q

g,r−→A q′).
InvA : QA → C(X) assigns an invariant to each control state. Finally lA : QA →
2AP labels every location with a subset of AP.

A state (or configuration) of a TA A is a pair (q, v), where q ∈ QA is the current
location and v ∈ RX is the current clock valuation. The initial state of A is
(qinit, v0) with v0(x) = 0 for any x in X . There are two kinds of transition. From
(q, v), it is possible to perform the action transition q

g,r−→A q′ if v |= g and
v[r ← 0] |= InvA(q′) and then the new configuration is (q′, v[r ← 0]). It is also
possible to let time elapse, and reach (q, v + d) for some d ∈ R whenever the
invariant is satisfied along the delay. Formally the semantics of a TA A is given
by a Timed Transition System (TTS) TA = (S, sinit,→TA , l) where:

– S = {(q, v) | q ∈ QA and v ∈ RX s.t. v |= InvA(q)} and sinit = (qinit, v0).
– →TA ⊆ S × S and we have (q, v)→TA(q′, v′) iff

• either q′ = q, v′ = v + d and v + d′ |= InvA(q) for any d′ ≤ d. This is a
delay transition — we write (q, v) d−→ (q, v + d) —,

• or there exists q
g,r−→A q

′ s.t v |= g, v′ = v[r ← 0] and v′ |= InvA(q′). This
is an action transition — we write (q, v) →a (q′, v′).

– l : S → 2AP labels every state (q, v) with the subset lA(q) of AP .

An execution (or run) of A is an infinite path s0 →TA s1 →TA s2 . . . in TA

such that (1) time diverges and (2) there are infinitely many action transitions.
Note that an execution can be described as an alternating infinite sequence
s0

d1−→→a s1
d2−→→a · · · for some di ∈ R. Such an execution ρ goes through

any configuration s′ reachable from some si by a delay transition of duration
d ∈ [0, di]. Let Exec(s) be the set of all executions from s. With a run ρ :
(q0, v0)

d1−→→a (q1, v1)
d2−→→a . . . of A, we associate the sequence of absolute dates

defined by t0 = 0 and ti =
∑

j≤i dj for i ≥ 1, and in the sequel, we often write
ρ as the sequence ((qi, vi, ti))i≥0.



340 H. Bel Mokadem et al.

A state (q, v) can occur several times along a run ρ, the notion of position 1

allows us to distinguish them: every occurrence of a state is associated with a
unique position. Given a position p, the corresponding state is denoted by sp.

The standard notions of prefix, suffix and subrun apply to paths in TTS: given
a position p ∈ ρ, ρ≤p is the prefix leading to p, ρ≥p is the suffix issued from p.
Finally a subrun σ from p to p′ is denoted by p σ → p′.

Note that the set of positions along ρ is totally ordered by <ρ. Given two
positions p and p′, we say that p precedes strictly p′ along ρ (written p <ρ p

′)
iff there exists a finite subrun σ of ρ s.t. p σ → p′ and σ contains at least one non
null delay transition or one action transition (i.e. σ is not reduced to 0−→). We
write σ <ρ p when for any position p′ in the subrun σ, we have p′ <ρ p.

Given a position p ∈ ρ, the prefix ρ≤p has a duration, Time(ρ≤p), defined as
the sum of all delays along ρ≤p. Since time diverges along an execution, we have:
for any t ∈ R, there exists p ∈ ρ such that Time(ρ≤p) > t.

For a subset P ⊆ ρ of positions in ρ, we define a natural measure µ̂(P ) =
µ{Time(ρ≤p) | p ∈ P}, where µ is Lebesgue measure on the set of real numbers.
In the sequel, we only use this measure when P is a subrun of ρ: in this case, for
a subrun σ such that p σ → p′, we simply have µ̂(σ) = Time(ρ≤p′

) − Time(ρ≤p).

2.2 Definition of TCTL∆

TCTL∆ is obtained by adding to TCTL the modalities E Uk
∼c and A Uk

∼c with
k ∈ N:

Definition 2 (Syntax of TCTL∆). TCTL∆ formulae are given by the following
grammar:

ϕ, ψ ::= P1 | P2 | . . . | ¬ϕ | ϕ ∧ ψ | EϕU∼cψ | AϕU∼cψ | EϕUk
∼cψ | AϕUk

∼cψ

where Pi ∈ AP, ∼ belongs to the set {<,>,≤,≥,=} and c, k ∈ N.

Standard abbreviations include *,⊥, ϕ ∨ ψ, ϕ⇒ ψ, . . . as well as:

EFk
∼c ϕ

def= E( * Uk
∼c ϕ) AFk

∼c ϕ
def= A( * Uk

∼c ϕ)
EGk

∼c ϕ
def= ¬AFk

∼c¬ϕ AGk
∼c ϕ

def= ¬EFk
∼c¬ϕ

Moreover Uk stands for Uk
≥0.

Definition 3 (Semantics of TCTL∆). The following clauses define when a
state s of some TTS T = 〈S, sinit,→, l〉 satisfies a TCTL∆ formula ϕ, written
s |= ϕ, by induction over the structure of ϕ (the semantics of boolean operators
is omitted).

1 Note that as it is possible to perform a sequence of action transitions in 0 t.u., we
cannot replace the notion of positions by a function from fρ from R to S.



Timed Temporal Logics for Abstracting Transient States 341

s |= EϕU∼cψ iff ∃ ρ ∈ Exec(s) s.t. ρ |= ϕU∼cψ
s |= AϕU∼cψ iff ∀ ρ ∈ Exec(s) we have ρ |= ϕU∼cψ
s |= EϕUk

∼cψ iff ∃ ρ ∈ Exec(s) s.t. ρ |= ϕUk
∼cψ

s |= AϕUk
∼cψ iff ∀ ρ ∈ Exec(s) we have ρ |= ϕUk

∼cψ

ρ |= ϕU∼cψ iff ∃p ∈ ρ s.t. Time(ρ≤p)∼c ∧ sp |= ψ ∧ ∀p′ <ρ p, sp′ |= ϕ
ρ |= ϕUk

∼cψ iff there exists a subrun σ along ρ, a position p ∈ σ s.t.
Time(ρ≤p)∼c ∧ µ̂(σ) > k ∧ ∀p′ ∈ σ, sp′ |= ψ
and for all subrun σ′ s.t. σ′ <ρ p ∧ ∀p′ ∈ σ′, sp′ |= ¬ϕ
we have µ̂(σ′) ≤ k

The modality Uk allows us to abstract intervals with duration less than k t.u.
where ϕ does not hold. Thus AF2

≤100alarm states that along every run, there is
an event alarm of duration greater than 2 t.u. that occurs before 100 t.u.

The precedence operator 2 P can be written as follows: AϕPkψ
def= ¬E(¬ϕ)Ukψ.

For example, A request P3grant states that a request of duration greater than 3
has to occur before an event grant (which must also last more than 3 t.u.).

Note that the semantics has to be handled carefully: Φ = AGkϕ expresses that
no event ¬ϕ occurs, i.e. it is not possible to have ¬ϕ continuously for more than
k t.u. An execution where ¬ϕ holds for everywhere except every k t.u. would
satisfy Φ. This choice of semantics is also motivated by negation closure of the
Until modality.

Note that the logic TCTLext defined in [9] is the restriction of TCTL∆ where
the parameter k is always 0. As the modality E U0 cannot be expressed in
TCTL[9], TCTL∆ is clearly more expressive then TCTL.

The size of a timed automaton and the size of a TCTL∆ formula are defined
in the standard way with constants written in binary notation.

3 Equivalence of Runs

In this section, we show that the classical notion of region proposed by Alur,
Courcoubetis and Dill [1] for TCTL is also correct for TCTL∆. Nevertheless we
need a stronger notion of equivalence for the runs in order to preserve the truth
value of TCTL∆ formulae.

First let us recall the standard equivalence over valuations:

Definition 4 (Equivalence on valuations [1]). Given a set X of clocks and
M ∈ N, two valuations v, v′ ∈ RX are M-equivalent (written v ∼=M v′) if:

1. for any x ∈ X !v(x)" = !v′(x)" or (v(x) > M ∧ v′(x) > M),
2. for any x, y ∈ X s.t. v(x) ≤M and v(y) ≤M , we have:

frac(v(x)) ≤ frac(v(y)) ⇔ frac(v′(x)) ≤ frac(v′(y)) and
frac(v(x)) = 0 ⇔ frac(v′(x)) = 0.

2 This is a kind of release operator.



342 H. Bel Mokadem et al.

An equivalence class of ∼= is called a region; and a region is called a boundary
region if it contains valuations v s.t. the fractional part of v(x) is 0, for some
clock x. Given a TA A, we use MA to denote the maximal constant occurring in
A (in its guards or invariants). We write simply ∼= instead of ∼=M whenM is clear
from the context. The equivalence ∼=MA is consistent w.r.t. TCTL∆ formulae:

Theorem 1 (Consistency of ∼=). Given a TA A, Φ ∈ TCTL∆ and v, v′ ∈ RX

s.t. v ∼=MA v
′, we have: (q, v) |= Φ ⇔ (q, v′) |= Φ.

Consider the formula Φ = EϕUk
∼cψ and assume (q, v) |= Φ, i.e. there exists a run

ρ = ((qi, vi, ti))i≥0 from (q, v) satisfying ϕUk
∼cψ. In order to prove the theorem,

we need to show that there exists an equivalent run ρ′ from (q, v′) which also
satisfies ϕUk

∼cψ.
For this, we first extend ∼= to pairs (vi, ti) as follows: (vi, ti) ∼= (v′i, t

′
i) iff (1)

vi
∼= v′i, (2) !ti" = !t′i" and frac(ti) = 0 iff frac(t′i) = 0 and (3) for each clock

x ∈ X , (i) frac(vi(x)) < frac(ti) iff frac(v′i(x)) < frac(t′i) and (ii) frac(vi(x)) =
frac(ti) iff frac(v′i(x)) = frac(t′i).

Now we define the equivalence over runs as follows:

Definition 5 (Equivalence on runs). Given a TA A, two runs ρ = ((qi, vi,
ti))i≥0 and ρ′ = ((q′i, v

′
i, t

′
i))i≥0 are equivalent (written ρ ∼=∗ ρ′) if

(ER a.) for all i ≥ 0, qi = q′i ,
(ER b.) for all i ≥ 0, (vi, ti) ∼=MA (v′i, t

′
i),

(ER c.) for all 0 ≤ j < i, (i) frac(tj) < frac(ti) iff frac(t′j) < frac(t′i)
and (ii) frac(tj) = frac(ti) iff frac(t′j) = frac(t′i).

The equivalence on runs used in [1] to prove that regions are compatible with
TCTL formulae only requires conditions (ER a) and (ER b). This is however
not sufficient for proving Theorem 1. Indeed, let A be the automaton depicted
below, with atomic proposition P and two clocks x and y, and consider the two
following runs, which are equivalent in [1]:
ρ : (q0, (0, 0)) 0.1−→→a (q1, (0.1, 0)) 0.8−→→a (q2, (0.9, 0.8)) 0.3−→→a (q3, (1.2, 0)) . . .
ρ′ : (q0, (0, 0)) 0.8−→→a (q1, (0.8, 0)) 0.1−→→a (q2, (0.9, 0.1)) 1.05−→→a (q3, (1.95, 0)) . . .

A :

q0
P

q1
P

q2
¬P

q2
P

x < 1, y := 0 x < 1 x < 2 ∧ y > 1, y := 0

The runs ρ and ρ′ satisfy conditions (ER a) and (ER b) but the delays spent
in state q2 where P does not hold are respectively 0.3 and 1.05, so that ρ |= G1P
whereas ρ′ �|= G1P .

This is why we need the stronger equivalence above which also requires condi-
tion (ER c). Note that this condition (ER c) does not correspond to a splitting of
the regions. Moreover, we will not prove that all equivalent paths satisfy the same
until-formulae but rather that given a path ρ leaving from a configuration (q, v),



Timed Temporal Logics for Abstracting Transient States 343

we can build a path ρ′, equivalent to ρ and which satisfies the formula we con-
sider. The following proposition 3 then ensures the existence of equivalent runs:

Proposition 1. Given a TA A, q ∈ QA, and v, v′ ∈ RX s.t. v ∼=MA v′, then
∀ρ ∈ Exec((q, v)), there exists a run ρ′ ∈ Exec((q, v′)) s.t. ρ ∼=∗ ρ′.

We can now prove Theorem 1.

Proof (Theorem 1 – sketch). The proof is done by structural induction on Φ. We
omit the basic cases and the TCTL operators (similar to [1]). Assume (q, v) |=
EϕUk

∼cψ. Let ρ = ((qi, vi, ti))i≥0 be a run from (q, v) s.t. ρ |= ϕUk
∼cψ. Consider

a run ρ′ from (q, v′) equivalent to ρ (its existence is ensured by Proposition 1).
Along ρ the truth value of ϕ and ψ depends on the current region. We know

that ρ′ goes through the same sequence of regions (as for TCTL) but we have
also to show that the amounts of time spent in every sequence of consecutive
regions in ρ and ρ′ have the same integral part (less than or equal to k for ¬ϕ and
greater than k for ψ). Let σ be a subrun of ρ corresponding to an arrival in some
region at time δ1 until a departure from another region at time δ2. Let δ′1 and δ′2
be the corresponding dates in ρ′. We want to prove that !δ2 − δ1" = !δ′2 − δ′1".

A sufficient condition for this would be (1) !δi" = !δ′i" for i = 1, 2, (2)
frac(δ1) < frac(δ2) iff frac(δ′1) < frac(δ′2) and (3) frac(δ1) = frac(δ2) iff frac(δ′1) =
frac(δ′2).

Such a property would be ensured if the dates δi (and δ′i) occurred as some
tj in ρ (and ρ′). But the tjs are the dates of action transitions. Consider the
new TA Ā that extends A with loops on every control states, with no guard and
no reset. In Ā, there are additional runs (compared to A) but they induce no
problem for checking E Uk

∼c formulae.
Consider the run ρ̄ in Ā that mimics ρ except that it performs a loop before

entering/exiting a region 4. Clearly ρ̄ satisfies also ϕUk
∼cψ. Now we consider a

run ρ̄′ from (q, v′) equivalent to ρ̄; then the property above over the δi is ensured
by the definition of ∼=∗. Clearly ρ̄′ |= ϕUk

∼cψ. We can consider in A the run ρ′

similar to ρ̄′ without using the loops: ρ′ satisfies ϕUk
∼cψ. Then (q, v′) |= EϕUk

∼cψ.
Now consider the case of Φ = AϕUk

∼cψ. Assume (q, v) �|= Φ and let ρ be a
run from (q, v) s.t. ρ |= ¬(ϕUk

∼cψ). Thus we have either (1) there is no subrun
σ of duration greater than k satisfying ψ and containing a position p located at
duration ∼ c, or (2) for any such σ and p, there exists a subrun σ′ <ρ p s.t. σ′

satisfies ¬ϕ and µ̂(σ′) > k. In both case, we can build a corresponding run from
(q, v′) witnessing ¬(ϕUk

∼cψ). ��

4 Model-Checking Algorithm

In this section we show how to reduce the model-checking problem A |= Φ with
a TA A = 〈X,QA, qinit,→A, InvA, lA〉 and Φ ∈ TCTL∆, to a model-checking
3 The omitted proofs are given in the long version of the paper.
4 NB: when going into/out a non-boundary region, we consider the date corresponding

to the previous/next boundary region.



344 H. Bel Mokadem et al.

problem A′ |= Φ′ where A′ is a region graph (i.e. a finite Kripke structure) and
Φ′ is a CTL-like formula.

Let X∗ be the set of clocks X ∪ {z, zr, zl̄}. The three extra clocks are used
to verify timing constraints in the formula: z is used to handle subscripts ∼c in
U modalities (as in TCTL model checking) and the clock zl̄ (resp zr) is used to
measure time elapsing when the left (resp. right) part in Uk modalities is false
(resp true). Thus these new clocks are used as observers and do not modify the
behavior of A.

Let MΦ be the maximal constant occurring in the timing constraints in
Φ and km be the maximal k occurring in a modality Uk in Φ. Let M be
max(MA,MΦ + km).

The region graph RA,Φ = (V,→, l, F ) for A and Φ is defined as usual over
X∗ and M [1]: its set of states V is {(q, γ) | q ∈ QA and γ ∈ RX∗

/∼=M}, the
transitions correspond to action transitions (→a) in A or delay transitions (→t,
leading to the successor region denoted by succ(γ)). The states are labeled with
atomic propositions AP and we also use additional propositions for the extra
clocks: a state (q, γ) is labeled with the proposition �y∼ a� with y ∈ {z, zl̄, zr}
and 0 ≤ a ≤ M , when γ |= y ∼ a. Moreover we use the proposition Pb to mark
boundary regions. And F is a fairness constraint to enforce time divergence
(see [1,9] for the detailed construction of RA,Φ).

Labeling algorithm. We label the vertices of RA,Φ with the subformulae of Φ
they satisfy, starting from the subformulae of length 1 and length 2 and so on.
Here we only consider the Uk modalities.

Consider a formula Ψ of the form EϕlU
k
∼cϕr or AϕlU

k
∼cϕr. At this step we

know for every state (q, γ) of RA,Φ whether it satisfies (or not) ϕl and ϕr (i.e.
whether any (q, v) with v ∈ γ satisfies ϕl or/and ϕr). First we define a variant of
RA,Φ, called Rϕl,ϕr

A,Φ , where some transitions are modified according to the truth
value of ϕl and ϕr:

1. we replace the transitions (q, γ) →t (q, succ(γ)) by (q, γ) →a (q, γ[zl̄ ← 0])
when (q, γ) |= ϕl, (q, succ(γ)) |= ¬ϕl and γ �|= zl̄ = 0.

2. we replace the transitions (q, γ) →a (q′, γ′) by (q, γ) →a (q′, γ′[zl̄ ← 0]) when
(q, γ) |= ϕl, (q′, γ′) |= ¬ϕl.

3. we replace the transitions (q, γ) →t (q, succ(γ)) by (q, γ) →a (q, γ[zr ← 0])
when (q, γ) |= ¬ϕr, (q, succ(γ)) |= ϕr and γ �|= zr = 0.

4. we replace the transitions (q, γ) →a (q′, γ′) by (q, γ) →a (q′, γ′[zr ← 0])
when (q, γ) |= ¬ϕr, (q, γ′) |= ϕr.

Due to these changes, in Rϕl,ϕr

A,Φ , the clock zl̄ (resp. zr) measures the time
elapsed since ¬ϕl (resp. ϕr) is true : they are reset when the truth value of the
corresponding formula changes. Thus given a path ρ in Rϕl,ϕr

A,Φ and a state (q, γ)
along ρ, we have (q, γ) |= ¬ϕl∧�zl̄ ≤ k� iff there was (along ρ) a region satisfying
ϕl “just before” (q, γ) where “just before” means “in less than k time units”.

In the following we will use two abbreviations:

�·· �ϕl
def= ϕl ∨ �zl̄ ≤ k� �−−�ϕr

def= ϕr ∧ �zr > k�



Timed Temporal Logics for Abstracting Transient States 345

The first one states that ϕl holds or did hold less than k t.u. ago. And the
second one states that ϕr lasts for more than k t.u. We will also use the abbre-
viation to �−− �¬ϕl to denote ¬ϕl ∧ �zl̄ > k� : the formula ¬ϕl has held for more than

k t.u. And we use �··· · �¬ϕr for ¬ϕr ∨ �zr ≤ k�. In this context, we have: �·· �ϕ ≡ ¬
�−−− �
(¬ϕ).

Thus the region graph Rϕl,ϕr

A,Φ allows us to decide �·· �ϕl ,
�−−−−�
(¬ϕl), �−−�ϕr and

�······ · �
(¬ϕr).

Now we distinguish different cases depending on the modality rooted in Ψ :

– Ψ
def= EϕlU

k
∼cϕr. We label a state (q, γ) of RA,Φ by Ψ iff (q, γ[z, zl̄, zr ← 0])

satisfies in Rϕl,ϕr

A,Φ the following CTL-formula:

Ψ1
def= E �·· �ϕl U

(
�z∼c� ∧ (after-a ∨ Pb ∨ �·· �ϕl ) ∧ E ϕr U�−−�ϕr

)
where after-a holds for a state s along a path when the last transition per-
formed (before reaching s) is an action transition. This is not, properly speak-
ing, an atomic proposition since it depends on the way used to reach the state
but it can easily be obtained either by using an EX modality or by changing
RA,Φ in order to use an atomic proposition.
Note that for labeling the TCTL formula EϕlU∼cϕr, one use the following
formula: E ϕl U

(
�z∼ c� ∧ ϕr ∧ (after-a ∨ Pb ∨ ϕl)

)
. This formula states that

there exists a path leading to a state s satisfying �z∼c� (i.e. the amount of
elapsed time since (q, γ[z, zl̄, zr ← 0]) satisfies ∼ c), ϕr and either after-a, Pb

or ϕl: this last requirement is necessary because when s is not a boundary
region and it has been reached via a delay transition, the formula ϕl has to
hold also for this state [1].
The formula Ψ1 used for EϕlU

k
∼cϕr is based on the same structure, except

that ϕl is replaced by ϕl ∨ �zl̄ ≤ k� (we allow short periods –of duration less
than k – where ¬ϕl holds) and we also specify that ϕr has to hold during
more than k time units (i.e. ϕr ∧ �zr > k� has to hold).
The notion of fair runs (used to ensure time divergence) is handled in the
same manner as for TCTL.

– Ψ
def= AϕlU

kϕr. We label a state (q, γ) by Ψ iff (q, γ[z, zl̄, zr ← 0]) satisfies

in Rϕl,ϕr

A,Φ the CTL-formula Ψ2
def= Ψ ′2 ∧ Ψ ′′2 ∧ Ψ ′′′3 with:

Ψ ′2
def= AF(�−− �ϕr)

Ψ ′′2
def= ¬E

(
¬ �−−�ϕr

)
U
(�−−−− �
(¬ϕl) ∧ ¬A(ϕrU

�−−�ϕr)
)

Ψ ′′′2
def= ¬E

(
¬ �−−�ϕr

)
U
(
Pb ∧ ¬ϕr ∧ EX(¬Pb ∧ ¬

�··· · �
(ϕl))

)
Ψ ′2 states that along any path, eventually ϕr holds for at least k t.u. Ψ ′′2
expresses that it is not possible to have ¬ϕl for more than k t.u. unless
either ϕr has already been verified for k t.u. before, or the current state
belongs to the interval σ witnessing �−− �ϕr . Finally Ψ ′′′2 is used to specify that,
in the last case, if the first region of σ is a not a boundary region and if it
has been reached via a delay transition, then it also has to satisfy �·· �ϕl (for
the same reason as for the E U modality).



346 H. Bel Mokadem et al.

– Ψ
def= AϕlU

k
<cϕr. For dealing with this case, we first consider the formula

AFk
<cϕr and more precisely we consider the dual modality EGk

<c.
The formula EGk

<cψ expresses that there exists an execution (from the cur-
rent state s) where any subrun σ s.t. (1) µ̂(σ) > k and (2) σ contains states
located before c t.u. from s, contains a state satisfying ψ. Thus states sat-
isfying ψ have to occur “often” (at least every k t.u.) during c + k t.u.
Therefore we label states (q, γ) by EGk

<cψ iff (q, γ[z, zl̄, zr ← 0]) satisfies the

CTL-formula E(
�·· �
ψ )U�z = c+ k�.

For labeling AFk
<cϕr, we can then use: Ψ3

def= ¬E
�······ · �
(¬ϕr) U �z = c+k� for

(q, γ[z, zl̄, zr ← 0]) in Rϕl,ϕr

A,Φ .
Therefore we label states (q, γ) by Ψ iff (q, γ[z, zl̄, zr ← 0]) satisfies the CTL-
formula Ψ3 ∧ Ψ ′′2 ∧ Ψ ′′′2 : compared with Ψ2, we just have to require that ϕr

holds before c t.u. (for more than k t.u.).

– Ψ
def= AϕlU

k
≤cϕr . One just has to consider the following formula: Ψ4

def=

¬E
�······ · �
(¬ϕr) U �z>c+k�. And we label states (q, γ) by Ψ iff (q, γ[z, zl̄, zr ← 0])

satisfies the CTL-formula Ψ4 ∧ Ψ ′′2 ∧ Ψ ′′′2 in Rϕl,ϕr

A,Φ .

– Ψ
def= AϕlU

k
≥cϕr. We label a state (q, γ) by Ψ iff (q, γ[z, zl̄, zr ← 0]) satisfies

in Rϕl,ϕr

A,Φ the formula: Ψ5
def= A�·· �ϕl U

(
�z=c� ∧ AF(�−− �ϕr) ∧ Ψ ′′2 ∧ Ψ ′′′2

)
. Ψ5 states

that along any run, ϕr will hold for more than k t.u. beyond a position where
z=c, and that ¬ϕl does not hold for more than k t.u. except after or in the
interval witnessing �−−�ϕr etc.

– Ψ
def= AϕlU

k
>cϕr. We label a state (q, γ) by Ψ iff (q, γ[z, zl̄, zr ← 0]) satisfies

the formula: Ψ6
def= A(�z≤c� ∧ �·· �ϕl )U

(
�z>c� ∧ AF(�−− �ϕr) ∧ Ψ ′′2 ∧ Ψ ′′′2

)
– Ψ

def= AϕlU
k
=cϕr. If c ≥ k, we label a state (q, γ) by Ψ iff (q, γ[z, zl̄, zr ← 0])

satisfies in Rϕl,ϕr

A,Φ the following CTL-formula:

Ψ7
def= A�·· �ϕlU�z=c� ∧ ¬E �z<c� U

(
�z=c� ∧ E ¬�−− �ϕr U �z>c+k�

)
︸ ︷︷ ︸

Ψ8

The first term ensures that ¬ϕl does not hold for a duration greater than k
before the position z=c. And the formula Ψ8 states that it is not possible to
avoid �−− �ϕr between the position z=c and the position z>c+ k: thus any run
has some interval (of duration greater than k) satisfying ϕr and containing
a position located at duration c from the initial state.
If c < k, then we label (q, γ) by Ψ iff (q, γ[z, zl̄, zr ← 0]) satisfies Ψ8.

This algorithm is correct:

Lemma 1 (Correctness of the labeling algorithm). Given a TA A, a
TCTL∆ formula Φ and Ψ a subformula of Φ, the labeling algorithm labels (q, γ)
with Ψ in RA,Φ iff (q, v) |= Ψ for any v ∈ γ.



Timed Temporal Logics for Abstracting Transient States 347

Proof (sketch). The proof is done by induction over the formulae. We only deal
with the modalities E Uk

∼c and A Uk .
First consider Ψ = EϕlU

k
∼cϕr.

⇒ Assume that the procedure labels (q, γ) with Ψ . Then in Rϕl,ϕr

A,Φ , (q, γ[z, zl,

zr ← 0]) satisfies Ψ1
def= E �·· �ϕl U

(
�z∼ c� ∧ (after-a ∨ Pb ∨ �·· �ϕl ) ∧ E ϕr U�−− �ϕr

)
Thus

there exists a path ρ̄ in Rϕl,ϕr

A,Φ leading to some (q′, γ′) satisfying the right-hand
side of Ψ1. From ρ̄ one can build a run ρ in A from any (q, v) with v ∈ γ (as
it is done in the TCTL case). Before (q′, γ′), the states along ρ̄ verify �·· �ϕl , that
is ϕl ∨ �zl̄ ≤ k�: given the definition of Rϕl,ϕr

A,Φ this means that the durations of
the corresponding (¬ϕl)-subruns in ρ are less than k. Finally the state (q′, γ′) is
located at duration ∼ c from the initial state (ρ̄ starts from a region where z is
equal to 0) and from this point, it is possible to verify ϕr for some time ensuring
that (q′, γ′) belongs to an ϕr-subrun of duration greater than k. This ensures
that the corresponding run in A satisfies ϕlU

k
∼cϕr.

⇐ Assume (q, v) |= Ψ . From the run ρ witnessing ϕlU
k
∼cϕr , on can build in

Rϕl,ϕr

A,Φ a path ρ̄ from (q, γ[z, zl, zr ← 0]) leading to a position located at duration
∼ c (then �z∼ c� holds) and belonging to a ϕr-subrun of duration greater than
k: then EϕrU(ϕr ∧ �zr > k�) holds. Moreover since the run ρ contains no (¬ϕl)-
subrun of duration greater than k, the path ρ̄ never goes through a region where
¬ϕl ∧ �zl̄ > c� is true. This gives the result.

Now consider the case Ψ = AϕlU
kϕr .

⇒ Assume (q, γ) is labeled by Ψ . Thus (q, γ[z, zl, zr ← 0]) satisfies Ψ ′2∧Ψ ′′2 ∧Ψ ′′′2 .
Let v be a valuation in γ. Any run ρ from (q, v) has a corresponding run ρ̄ in
Rϕl,ϕr

A,Φ . From Ψ ′2, we know that ρ has to contain an interval σ of duration greater
than k satisfying ϕr.

Now Ψ ′′2 states that before reaching σ, it is not possible to verify ¬ϕl for a
duration greater than k except if we have entered the interval σ witnessing �−− �ϕr .
In this last case, we also have to ensure that if the first region of σ is not a
boundary region and if it has been reached via a delay transition, then it also
has to satisfy �·· �ϕl : this is done by the formula Ψ ′′′2 .

⇐ Assume (q, v) |= AϕlU
kϕr. We clearly have (q, γ[z, zl, zr ← 0]) |= AF�−− �ϕr .

Now assume ¬Ψ ′′2 holds for (q, γ[z, zl, zr ← 0]). Then there exists a path ρ̄ in

Rϕl,ϕr

A,Φ satisfying (¬�−− �ϕr)U(
�−−−−�
(¬ϕl) ∧ ¬AϕrU

�−− �ϕr). Thus the corresponding path ρ
from (q, v) contains an interval σ′ of duration greater than k where ¬ϕl holds,
and from σ′ there is a run ρ′ leading to some state satisfying ¬ϕr before reaching
the interval σ witnessing ϕr: the run ρ · ρ′ does not satisfy ϕlU

kϕr (σ′ precedes
strictly σ).

If ¬Ψ ′′′2 holds for (q, γ[z, zl, zr ← 0]). Let (q′, γ′) be the region satisfying the

right-hand side of the U, and let (q′′, γ′′) be its successor satisfying ¬Pb ∧ ¬
�··· · �
(ϕl)

along a path ρ̄. The transition from (q′, γ′) to (q′′, γ′′) is a delay transition (the
truth value of Pb goes from * to ⊥). Moreover the corresponding run ρ from
(q, v) has to contain an interval σ witnessing �−− �ϕr ; in ρ̄ this interval cannot be
before (q′, γ′), it is either after (q′′, γ′′) or it starts from (q′′, γ′′). Thus for any
position p in σ along ρ, there will be states preceding p in the non-boundary



348 H. Bel Mokadem et al.

region (q′′, γ′′) and since ¬�·· �ϕl holds for this region, the formula ϕlU
kϕr cannot

hold for ρ. ��

Finally we have:

Theorem 2 (Complexity of model checking). Given a TA A and a TCTL∆

formula Φ, deciding whether Φ holds for A is a PSPACE-complete problem.

PSPACE-hardness comes from TCTL, and the PSPACE-membership can be ob-
tained by using an on-the-fly algorithm over the region graph.

5 Undecidability Result for the Global Semantics

In this section we propose an alternative semantics for the logic, denoted by
TCTL∆

Σ , which can also be viewed as an extension of TCTLext [9]. Now we require
that the sum of all delays during which the property does not hold is bounded
by some constant. The syntax of TCTL∆

Σ is the same as for TCTL∆ but ϕUk
∼cψ

is now interpreted as follows:

ρ |= ϕUk
∼cψ iff there exists a subrun σ, a position p ∈ σ s.t

Time(ρ≤p) ∼ c ∧ µ̂(σ) > k ∧ ∀p′ ∈ σ sp′ |= ψ
and µ̂({p′ | p′ <ρ p ∧ sp′ �|= ϕ}) ≤ k

Consider the “leaking gas burner” example, often used for verification with
hybrid automata. As depicted by the TA below, the system can be in one of
two modes, either leaking or not leaking, and it is initially leaking. Leakages are
detected and stopped within 1 second and, once a leakage has been stopped, the
burner is guaranteed not to leak again until at least 30 seconds later. The usual
requirement for the gas burner states that, if at least 60 seconds have passed,
then the gas burner has been leaking for less than one fifth of the total elapsed
time. Using the atomic proposition L for the leaking mode, we can express this
property in TCTL∆

Σ by the formula: AG(A(¬L)U12
≥60*): any period of duration

greater than 60s has to include less than 12s of leaking.

q0
x ≤ 1

L

q1
¬L

x ≤ 1, x := 0

x ≤ 30, x := 0

This problem is usually modeled with a stopwatch with respective slopes 1
in state q0 and 0 in state q1, in order to compute the leaking duration. But
recall that model-checking is undecidable for hybrid automata. Moreover con-
sidering costs also makes verification undecidable (see for example the case of
WCTL [10]). However, we need to be careful because of some positive results:
for instance in [3,18,7,8,11], some duration-bounded reachability problems are
proved to be decidable. Indeed, this kind of results can be obtained when the



Timed Temporal Logics for Abstracting Transient States 349

cost variables are only used as observers. Our case is even simpler because there
is only one slope which is equal to the rate of time and TCTL∆

Σ is clearly less
expressive than a logic like WCTL. For example, deciding the formula EP1U

kP2

– with P1, P2 ∈ AP – interpreted with the global semantics can easily be done by
using the procedure to check the duration bounded reachability proposed in [3];
the technique can also be adapted to handle formulas like EP1U

k
≤cP2. Unfortu-

nately, we still have the following result:

Theorem 3. Model-checking TCTL∆
Σ over timed automata is undecidable.

The proof of this theorem consists in a reduction from the halting problem of a
two-counter machine. The construction we present here is adapted from [10].

Let M be a two-counter machine. We build a timed automaton AM with
initial location qinit and a TCTL∆

Σ formula ϕ such that M halts iff (qinit, vinit) |= ϕ.
The two counters c1 and c2 will be alternatively encoded by three clocks x, y and
z. The value of c1 and c2 are encoded respectively by h1 = 1/2c1 and h2 = 1/2c2

with h1, h2 ∈ {x, y, z}. We use an extra clock t as a “tick”.

We first explain how to encode the incrementation of counter c1 with the
module on the next figure (it corresponds to instruction i, going to instruction j
after the counter operation). We assume that x = 1/2c1 and y = 1/2c2 when this
module is entered (which means that counter c1 is encoded by x and counter c2
by y).

Si P

test(x=2z)

Sj
t:=0

y=1,y:=0

x=1,x:=0

y=1,y:=0

x>0,y<1

z:=0

t=1,t:=0

t=0

t=0

In this module, because of the constraints, it is easy to check that the values
of the clocks when arriving in state labeled by P (or similarly Sj) are x = 1/2c1,
y = 1/2c2, and z = γ where γ ∈ [0, 1) depends on the time at which the transition
labeled by “x > 0, y < 1, z := 0” is taken. The test module “test(x = 2z)”
(described later) checks that γ is half the value of x, i.e. γ = 1/2c1+1 which will
ensure that z correctly encodes the value of the first counter at the end of the
incrementation instruction (whereas counter c2 is correctly encoded by clock y).

Before describing the test module test(x = 2z), we present the timed automa-
ton add(x, z, p) below:

p ¬p
t=0 x=1,x:=0 t=1,t:=0

z=1,z:=0 z=1,z:=0

In this automaton, if α ∈ [0, 1] is the initial value of x when entering the mod-
ule, then we stay (1−α) time units in the location labeled by atomic proposition
p and α time units in the location labeled by ¬p.



350 H. Bel Mokadem et al.

Finally the test module “test(x = 2z)” is depicted below:

L add(z,x,p) add(z,x,p) add(x,z,¬p) H
t=0 t=0 t=0 t=0

This test module has only one path which reaches the location labeled by H .
If α and γ are the respective values of x and z on entering the module, this path
will stay 2 ·(1−γ)+α time units in locations labeled by p and 2 ·γ+(1−α) time
units in locations labeled by ¬p. Moreover the global time elapsed between L
and H is exactly 3 time units. Thus, if formula L∧ E(pU1H)∧ E(¬pU2H) holds
in state L, this will ensure that 2 · (1− γ) +α ≤ 2 and 2 · γ+ (1−α) ≤ 1, which
implies 2 · (1 − γ) + α = 2 and 2 · γ + (1 − α) = 1, thus γ = α/2.

The simulation of a decrementation for a counter is very similar to the simula-
tion of the incrementation, and we assume that we have constructed a module for
every instruction (with the correct test module attached to state P , depending
on what constraint we want to check) and that we have correctly glued the mod-
ules together. Then the formula that we want to check on the global automaton
is E(ψUSHalt) where ψ is equal to P ⇒ E

[
(P ∨L)U(L∧E(pU1H)∧E(¬pU2H))

]
,

which ensures that for each instruction we correctly store the value of the counter
in the clocks. The correctness of the global reduction is a consequence of the pre-
vious discussion.

6 Conclusion

We have proposed an extension of TCTL in order to abstract transient events,
where the notion of transient properties is parameterized by an integer k. We
proved that model-checking for the new logic TCTL∆ is still PSPACE-complete.
We also proposed to interpret k-modalities with a global semantics but then we
showed that model checking becomes undecidable. As future work, we plan to
look for decidable fragments of TCTL∆

Σ , beyond the simple EP1U
k
≤cP2.

References

1. R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Infor-
mation and Computation, 104(1):2–34, 1993.

2. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(1):3–34, 1995.

3. R. Alur, C. Courcoubetis, and T. A. Henzinger. Computing accumulated delays
in real-time systems. Formal Methods in System Design, 11(2):137–156, 1997.

4. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

5. R. Alur, T. Feder, and Th. A. Henzinger. The benefits of relaxing punctuality.
J. ACM, 43(1):116–146, 1996.



Timed Temporal Logics for Abstracting Transient States 351

6. R. Alur and Th. A. Henzinger. Logics and models of real-time: a survey. In Real-
Time: Theory in Practice, Proc. REX Workshop, Mook, NL, June 1991, vol. 600
of LNCS, p. 74–106. Springer, 1992.

7. R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed automata.
In Proc. 4th Int. Workshop Hybrid Systems: Computation and Control (HSCC
2001), Roma, Italy, Mar. 2001, vol. 2034 of LNCS, p. 49–62. Springer, 2001.

8. G. Behrmann, A. Fehnker, Th. Hune, K. G. Larsen, P. Pettersson, J. Romijn,
and F. Vaandrager. Minimum-cost reachability for priced timed automata. In
Proc. 4th Int. Workshop Hybrid Systems: Computation and Control (HSCC 2001),
Roma, Italy, Mar. 2001, vol. 2034 of LNCS, p. 147–161. Springer, 2001.

9. H. Belmokadem, B. Bérard, P. Bouyer, and F. Laroussinie. A new modality for
almost everywhere propeties in timed automata. In Proc. 16th International Con-
ference on Concurrency Theory (CONCUR05), vol. 3653 of LNCS, p. 110–124.
Springer, 2005.

10. P. Bouyer, T. Brihaye, and N. Markey. Improved Undecidability Results on Priced
Timed Automata. Information Processing Letters, 98(5):188–194, 2006.

11. P. Bouyer, E. Brinksma, and K. G. Larsen. Staying alive as cheaply as possible.
In Proc. 7th Int. Workshop on Hybrid Systems: Computation and Control (HSCC
2004), Philadelphia, PA, USA, Mar. 2004, vol. 2993 of LNCS, p. 203–218. Springer,
2004.

12. Th. Brihaye, V. Bruyère, and J.-F. Raskin. Model-checking for weighted timed
automata. In Proc. Joint Conf. Formal Modelling and Analysis of Timed Systems
(FORMATS 2004) and Formal Techniques in Real-Time and Fault-Tolerant Sys-
tems (FTRTFT 2004), Grenoble, France, Sep. 2004, vol. 3253 of LNCS, p. 277–292.
Springer, 2004.

13. V. Bruyère, E. Dall’Olio, and J.-F. Raskin. Durations, parametric model-checking
in timed automata with presburger arithmetic. In Proc. 20th Ann. Symp. Theo-
retical Aspects of Computer Science (STACS 2003), Berlin, Germany, Feb. 2003,
vol. 2607 of LNCS, p. 687–698. Springer, 2003.

14. Z. Chaochen, C. Hoare, and A. Ravn. A calculus of duration. Information Pro-
cessing Letters, 40(5):269–276, 1991.

15. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model-checker for hybrid
systems. Journal of Software Tools for Technology Transfer, 1(1–2):110–122, 1997.

16. Th. A. Henzinger. The theory of hybrid automata. In Proc. 11th IEEE Symp.
Logic in Computer Science (LICS ’96), New Brunswick, NJ, USA, July 1996, p.
278–292. IEEE Comp. Soc. Press, 1996.

17. Th. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model-checking
for real-time systems. Information and Computation, 111(2):193–244, 1994.

18. Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Decidable integration graphs.
Information and Computation, 150(2):209–243, 1999.

19. R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time
Systems, 2(4):255–299, 1990.

20. K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Journal of Software
Tools for Technology Transfer, 1(1–2):134–152, 1997.

21. J. Ouaknine and J. Worrell. On the decidability of Metric Temporal Logic. In
Proc. 20th IEEE Symp. Logic in Computer Science (LICS 2005), Chicago, IL,
USA, June 2005, p. 188–197. IEEE Comp. Soc. Press, 2005.

22. S. Yovine. Kronos: A verification tool for real-time systems. Journal of Software
Tools for Technology Transfer, 1(1–2):123–133, 1997.



Predicate Abstraction of Programs with

Non-linear Computation

Songtao Xia1, Ben Di Vito2, and Cesar Munoz3

1 NASA Postdoc at NASA Langley Research Center, Hampton, VA
2 NASA Langley Research Center, Hampton, VA
3 National Institute of Aerospace, Hampton, VA

Abstract. Verification of programs relies on reasoning about the com-
putations they perform. In engineering programs, many of these com-
putations are non-linear. Although predicate abstraction enables model
checking of programs with large state spaces, the decision procedures that
currently support predicate abstraction are not able to handle such non-
linear computations. In this paper, we propose an approach to model
checking a class of data-flow properties for engineering programs that
contain non-linear products and transcendental functions. The novelty of
our approach is the integration of interval constraint solving techniques
into the automated predicate discovery/predicate abstraction process,
which extends the expressive power of predicate abstraction-based model
checking. Using this approach, we construct a prototype model checker
for C programs called VISA (Verification of Industrial-Strength Appli-
cations). VISA is built on top of Berkeley’s BLAST and University of
Nantes’ Realpaver. We successfully apply VISA to scientific computa-
tion libraries and avionics applications to verify the absence of certain
runtime arithmetic errors.

1 Introduction

Software systems are notoriously bug-ridden. Formal techniques have become
increasingly popular in verification, bug-hunting, and automatic test case gen-
eration. In this paper, we are interested in safety properties of a particular set
of engineering programs from the avionics industry. These programs have two
distinct features. First, their state space consists of hundreds, or thousands of,
inputs to the system. Second, these programs may perform non-linear compu-
tations. More specifically, in avionics systems, input variables participate in the
computation of control signals to be sent to actuators. The laws of electron-
ics, dynamics, and geometry on which these computations are based constantly
involve mathematical expressions that include non-linear products and transcen-
dental functions.

An example of the domain of interest is given in Figure 1, taken from KB3D,
an aircraft conflict detection and resolution program [18]. We are interested in
the ability to prove that the variable a is non-zero at Line 5 (We ignore the issues
caused by floating point arithmetic for now.). A brief argument for the property

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 352–368, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Predicate Abstraction of Programs with Non-linear Computation 353

is as follows: If a is zero, then both vx and vy have to be zero. Therefore, the first
two terms in the assignment to d are zeros. The right hand side of the assignment
is a subtraction from zero the sum of products of square numbers, which means
d must be less than or equal to zero, which contradicts with the test in Line 4.

1 : d = 2∗ sx ∗vx∗ sy ∗vy + sq (D)∗ ( sq ( vx)+sq ( vy ) )
2 : − ( sq ( sx )∗ sq ( vy ) + sq ( sy )∗ sq ( vx ) ) ;
3 : a = sq (vx ) + sq ( vy ) ;
4 : i f (d>0) {
5 : theta1 = 1/a ;
6 : }

Fig. 1. Code snippet from a conflict detection program

The challenge is to verify the kinds of properties automatically (with little
or no human interaction) and accurately (with few or no false alarms). Among
available techniques, some of which will be discussed in the related Section 7, we
will focus on software model checking because it offers a high degree of automa-
tion. A major obstacle to software model checking is the large (infinite in most
cases) state spaces. Predicate abstraction [21,10,19,7,15,40,36] has been success-
ful in reducing the state explosion problem in model checking. This technique
is particularly appealing when combined with counter-example driven predicate
discovery techniques [6, 12, 16, 4, 25], because together they provide a (nearly)
push-button process that, given a program and a property, will either verify the
property or report a counter-example. The method is incomplete, but in practice,
it has a high rate of success, especially when the cause of the bug (or the absence
thereof) puts a virtual limit on the state space to be searched. Unfortunately,
the decision procedures [9,17,20] used by predicate abstraction tools are not able
to decide the satisfiability of formulas that contain non-linear computations.

This paper proposes a solution to predicate abstraction of programs with non-
linear computations: instead of using a traditional cooperative decision procedure
to answer the queries that occur during predicate abstraction and predicate
discovery, we use constraint solvers based on interval analysis. Modern constraint
solvers [28, 24, 34, 42] adopt a branch and prune strategy to search the solution
space and apply interval computations [31,2,1] to reveal possible inconsistencies.
Although incompleteness and slow convergence are intrinsic to these solvers, they
are accurate, making them good candidates to be used in predicate abstraction.

Based on this approach, we extend Berkeley’s BLAST [26] to construct a
model checker for C programs with non-linear products and transcendental func-
tions. Among possible applications, we present a prototype tool called VISA
(Verification of Industrial-Strength Applications) that detects potential run-time
violations such as division by zero and verifies the absence of these violations un-
der certain conditions. Another application of this approach is in automated test
case generation [43]. We have applied VISA to software (often of tens of thou-
sands of lines of code) taken from the scientific computing community and from



354 S. Xia, B. Di Vito, and C. Munoz

the avionics industry, including legacy code from a Boeing 737 autopilot simu-
lator and KB3D. Our model checker is able to verify (or find a counter-example
of) properties that involves non-linear computation fully automatically. This
automation is not accomplished by any other tool to the best of our knowledge.

The rest of the paper is organized as follows. Technical background is intro-
duced in Section 2, where we focus on software model checking based on predi-
cate abstraction and predicate discovery based on counter-example analysis. The
challenge posed by programs with non-linear computation and our resorting to
numerical approaches are discussed in Section 3. The overview of our solution
is presented in Section 4. This section also discusses the soundness and incom-
pleteness issues relevant to different types and configurations of the numerical
constraint solvers. The implementation of VISA is described in Section 5. Sec-
tion 6 reports experimental results. We discuss related work in Section 7.

2 Background

We present predicate abstraction and counter-example based predicate discovery
in a general framework that is not tied to a particular programming language.
Most of the material presented in this section is a review of well-known concepts.

2.1 Definitions

A (concrete) state of a program is a type preserving value assignment to program
variables, which includes artificial ones such as pc. We denote by E[s] the value
of expression E evaluated at state s. We also write s |= P if the predicate P
holds at state s.

A (concrete and later, abstract) program can be organized as a control flow
graph (CFG) (N,E,M,A), where N is a set of nodes that correspond to program
locations, E is a set of edges N ×N , M is a set of moves, and A is a mapping of
edges to moves. A move, concrete or abstract, is an abstraction of one semantic
step in the program that changes (a model checker’s) knowledge of the current
(abstract) state. For a program without function calls, there are two kinds of
moves: assignments and assumptions. An assignment move represents one or
more assignment statements in a program. Assumptions model branch conditions
of an if statement. One assumption is represented by a predicate showing the
result of testing the if- condition; it labels the edge from the testing to the
corresponding branch in the CFG. Given a state and a move, executing the
move will result in the next state. We write ↪→ (m, s) for the state after the
move m is executed in state s.

The CFG for the code above is illustrated in Figure 2 with edges labeled with
moves. Concrete (directly corresponding to C statements) and corresponding
abstract moves (explained in the next section) are listed alongside.

To reason about moves, weakest preconditions are used. We write WP(m,P )
for the weakest precondition of P with respect to move m. We write WP(m̄, P )
as the weakest precondition with respect to the sequence of moves m̄. A counter-
example m̄ is a sequence of moves. A counter-example m̄ is feasible if WP(m̄, P )



Predicate Abstraction of Programs with Non-linear Computation 355

Move Concrete Abstract
E1: d= 2*sx*vx*sy*vy b1= 1

+sq(D)*(sq(vx)+sq(vy))
-(sq(sx)*sq(vy)+ sq(sy)*sq(vx))

E2: a = sq(vx) + sq(vy) b2 = 1
E3: d<=0 not b3
E4: d>0 (b1 ∧ b2)?

b3 ∧ ¬ b4 : b3
E5: theta = 1/a nop
E6, E7 nop nop

E1

E2

E3 E4

E5

E6

E7

1

2

4

3 5

6

7

Fig. 2.

is satisfiable. A formula is satisfiable if there is a value assignment to the variables
so that the formula is true under a certain interpretation.

2.2 Predicate Abstraction

We give an operational definition of predicate abstraction partially following
that of Ball’s [4]. Predicate abstraction accepts as input a move m and a set Φ of
predicates, and outputs a function (called abstraction transition) that maps one
abstract state to another. An abstract state is represented as a bit vector. Every
bit1 in the vector represents the truth value (plus another value ∗ representing a
non-deterministic choice) of a predicate in Φ. We denote by sΦ the abstract state
of s with respect to the set of predicates Φ. We overload the operator ↪→ (m, sΦ)
to denote the next abstract state of sΦ after move m is followed (by a model
checker). We extend this operator to sets of states (concrete and abstract) in the
natural way.

The computation of the abstraction transition relation is performed for each
move. Informally, the effect of a move m over a predicate Pi ∈ Φ can be written
as an assignment 2 :

bi = WP ′(m,Pi)

where we use bi for the bit corresponding to Pi, WP ′(m,P ) = WP(m,P ) if
m is an assignment, or Q ⇒ P if m is assume(Q). Standard computation of
predicate abstraction computes an approximation of WP(m,P ) as WPΦ(m,P ),
which is implemented by calling a theorem prover to check the unsatisfiability
of Q ∧ ¬WP(m,P ).

The abstraction of our example with respect to four predicates (listed below)
is shown on the right hand side of Figure 2.

1 Strictly speaking not a bit, but a variable ranging over values from a free lattice over
{true, false}.

2 Conventionally, an assumption is represented by a predicate. But as far as model
checking is concerned, it is equivalent to this assignment form.



356 S. Xia, B. Di Vito, and C. Munoz

b1 : d = 2 ∗ sx ∗ vx ∗ sy ∗ vy+ sq(D) ∗ (sq(vx) + sq(vy)) −
(sq(sx ∗ sq(vy) + sq(sy) ∗ sq(vx))

b2 : a = sq(vx) + sq(vy)
b3 : d > 0
b4 : a = 0

Note that the branch of d > 0 is computed this way: WP ′(d > 0, d > 0) is
d > 0 ⇒ d > 0, so b3 will always be true. WP(d > 0,¬a = 0) is d > 0 ⇒ ¬a = 0,
which is implied by:

a = sq(vx) + sq(vy) ∧
d = 2 ∗ sx ∗ vx ∗ sy ∗ vy+ sq(D) ∗ (sq(vx) + sq(vy)) −

(sq(sx ∗ sq(vy) + sq(sy) ∗ sq(vx))

Note that, because non-linear computation is involved, the implication above
cannot be proven by the cooperative decision procedures used in previous pred-
icate abstraction methods. We will return to this issue in Section 3.

2.3 Predicate Discovery

Based on counter-example feasibility testing, counter-example driven predicate
discovery allows the model checker to incrementally discover a suitable set of
predicates, starting with an initial value of Φ. This procedure is known as predi-
cate refinement and is in general incomplete (c.f., [4]). Let m̄ = m1, . . . ,mn be a
counter-example. Iteratively, we compute the weakest preconditions P1, . . . , Pn:

P1 = WP(mn, φ)
Pi+1 = WP(mn−i+1, Pi)

We check whether Pi is satisfiable. If, for some j, Pj is not satisfiable, we
attempt to find new predicates from the path from mj to mn. One way to find
new predicates is to collect all the predicates involved or use certain heuristics to
select the new predicates. A better approach is to use Craig interpolation [29,25].

Again, in our example, we will need to check the satisfiability of non-linear
formulas. The challenge and possible solutions are discussed in the next section.

3 Reasoning About Non-linear Computation

As revealed by the example in Section 2, reasoning about non-linear computa-
tion is an integral part of the abstraction and model checking mechanism. Un-
fortunately, the decision procedures used in counter-example driven predicate
abstraction have trouble deciding the satisfiability of such formulas. They tend
to work in a weaker theory of arithmetic. For example, in bug-hunting applica-
tions such as SLAM [7] and BLAST [26], the forms of the constraints are limited
to propositional logic and quantifier free predicate logic with uninterpreted func-
tions. When verifying hybrid systems, stronger decision procedures that accept



Predicate Abstraction of Programs with Non-linear Computation 357

linear equations and inequalities are used. For example, d/dt [3] uses the Lp solve
software package. Verification of non-linear programs in general is hard because
non-linear arithmetic is not decidable over mixed (integer and real) variables
and the satisfiability problem for formulas involving transcendental functions is
not decidable even for reals.

3.1 Existing Tools

Existing decision procedures, such as ICS and CVC-lite [20, 9], also attempt
to decide the satisfiability of non-linear products. Due to the nature of these
cooperative decision procedures, such an attempt is made only during an early
phase of an arithmetic sub-theory to rule out simple unsatisfiable cases. From
our experience, the current versions of these tools cannot solve constraints that
appear in our predicate abstraction.

Based on a variation of the simplex method [35] and computation of Gröbner
basis [41], Tiwari’s non-linear decision package [39] can solve many non-linear
constraints very efficiently. Still the current version cannot handle unsatisfiable
constraints that involve perfect squares.

None of these procedures mentioned above solves constraints that involve
transcendental functions; in the best case, they can solve such constraints with-
out interpreting these transcendental functions (for example, they can decide
that formula sin(x) = sin(x) + 1 is not satisfiable).

3.2 Numeric Decision Procedures

Modern constraint solvers, pioneered by Numerica [24], adopt a branch-and-
prune technique to either find a set of intervals that contain a solution or report
that no solution is possible. In constraint solvers, the set of ranges where a
variable is defined is called a box. The band-and-prune algorithm takes as ar-
guments a set of constraints, an initial set of boxes for each variable appearing
in the constraints, and a precision. If during the search, all the boxes contain
intervals that are smaller than the precision, then the search stops. The internal
loop of the algorithm consists of two stages: prune and branch. Prune removes
boxes that are not in the solution space and branch splits one box into two or
more boxes. The prune stage enforces local consistency conditions by reducing
intervals associated with the variables. Typically, the constraints are evaluated
using interval arithmetic [31].

A group of local constraint satisfaction techniques with polynomial time worst
case complexity are also used. They can be applied to non-linear, non-square, and
heterogeneous systems. Furthermore, numerical methods are adopted to process
either a sub-problem or a sub-class of problems. For example, a Newton method
can be used for an equation of the form f(x) = 0, where function f is square and
differentiable [1]. Moreover, systems of inequalities can be handled by a version
of the Simplex method [27].



358 S. Xia, B. Di Vito, and C. Munoz

4 Approach

The goal of VISA is to detect potential runtime safety bugs for C programs. Like
BLAST, it allows a user to specify the property that she wants to check. The
property specification is instrumented with the source code (at the CFG level)
to form a new CFG where a violation will be reported when a special error node
is reached during model checking.

The model checker will take this instrumented CFG as input. The model
checking is based on the procedures described in Section 2. First, predicate ab-
straction is performed using an enhanced theorem prover, which will behave just
like a traditional theorem prover if the candidate theorem (constraints) does not
contain non-linear computation, and will behave like a wrapper of a constraint
solver when attempting to prove a non-linear candidate theorem. Then, model
checking is performed over the abstract model. When the model checker con-
cludes the (artificial) error label is not reachable, VISA will report that the code
is safe. Otherwise, if a counter example is discovered by the model checker, the
same enhanced theorem prover will be used to determine its feasibility. If the
error path is feasible, VISA will report an error. Otherwise, VISA attempts to
refine the error trace to find a new predicate to repeat the abstraction/model
checking process. Figure 3 illustrates the architecture of VISA.

4.1 Instrumentation

In VISA, a source program is first instrumented with respect to a property spec-
ification. In the instrumented program, an error node (in the CFG) is reachable
if and only if the specified error condition is true in the source program.

We have designed a specification language that is similar to that of BLAST’s
[11]. A cut-point is a program location (strictly speaking, not a program location,
but a node in CFG, see Section 5) where we may want to insert a check for a
certain operation where we may insert a check; all cut-points that are pertaining
to the operation are called (a not-entirely-misuse of term) aspect. A pattern
is associated with a cut-point, which will match the actual expressions that
participate in the operation of concern.

In VISA, the checking of division by zero is instrumented by first querying
the patterns associated with division operations that we want to check. Such
a pattern includes a divident and a divisor. We assert that this divisor must
not be zero before division takes place. There is practically no restriction on the
form of the formula being asserted. For example, a user may also choose to check
whether the divisor’s abstract value is less than a small positive constant.

Next, an instrumentor of VISA will scan the internal representation of the
syntax tree (the CFG in BLAST), add an artificial test at an appropriate place
per the specification, for example, before the division of interest. The assertion
that specified by the user will be tested; if it is not true, an artificial error node
is reached.

Once the code is instrumented, the model checker will check to see if the error
node is reachable. The impact of using constraint solvers in such a model checker
is discussed in the next subsection.



Predicate Abstraction of Programs with Non-linear Computation 359

Abstraction

Predicate 

Refinement

Feasibility

Analysis

Model Checking

Program

Traditional D.P.

Sat. CheckerUnsat.

Checker

Abstract Model

Candidate Error Trace

Infeasible Path

New Predicates

Constraints

Satisfiable?

Satisfiable?

Constraints

Property Holds

Unable To Proceed

Feasible Path, Error

Instrumenter

Instrumented Program

Fig. 3. Architecture of VISA

4.2 Using Constraint Solvers in Model Checking

In the approaches described above, the model checker uses the constraint solvers
to process non-linear constraints at two different places (computing the abstract
transition relation and testing/refining a candidate error trace). There are var-
ious configurations/types of numerical constraint solvers. Each solver behaves
differently with regard to soundness, completeness or performance and is suit-
able only for certain applications.

Satisfiability vs. Unsatisfiability. Ideally, a constraint solver may return
three possible answers: Satisfiable, Unsatisfiable, and Don’t Know. In practice,
a tool may return two answers (Satisfiable/Don’t Know, or Unsatisfiable/Don’t
Know). For example, Realpaver, which is used in our prototype implementation,
will either declare that a set of constraints is not satisfiable or give a set of
boxes that might contain a solution. The latter should be considered as Don’t
Know. We will call a constraint solver that returns Satisfiable/Don’t Know as
a satisfiability checker while one that returns Unsatisfiable/Don’t Know as an
unsatisfiability checker.

– When testing whether an error path is feasible, an unsatisfiability checker
may return a Don’t know. Then we cannot detect an unfeasible path and can
only raise a false alarm. Conversely, a satisfiability checker may return Don’t
know on a feasible path, which further contributes to the incompleteness of
the system.

– When computing predicate abstraction, we should always use an unsatisfia-
bility checker. As long as the Unsatisfiable answer is trusted, the soundness
of predicate abstraction is preserved. Of course, Don’t know answers further
contributes to the imprecision that already exists in predicate abstraction.

It is also worth mentioning that the precision of a tool is adjustable. The more
precise the tool is, the slower it is.



360 S. Xia, B. Di Vito, and C. Munoz

Floating Point vs. Real Numbers. It is also important to know exactly what
satisfiability problem a particular solver aims to solve. In particular, whether the
problem domain is real numbers or floating point numbers has a profound impact
on the soundness and completeness of the system.

In theory, interval-based techniques can solve satisfiability problems for both
floating point numbers and real numbers. If the satisfiability is interpreted as the
existence of a floating point solution, because the domain is finite, the procedure
always terminates; if the satisfiability is interpreted on reals, then the procedure
may not terminate. But the unsatisfiability check can be highly accurate [22,34].
So far, the majority of the tools have been focused on solving real constraints.
As a result, our experience has focused on these solvers.

When using a solver for real numbers, the result of both verification and bug-
hunting must be treated with care. If the model checker signals that there is no
error, then if we do not consider rounding errors, this answer is sound provided
that the over-approximation condition is (as expected) satisfied. On the other
hand, if the model checker finds a violation based on the fact that there is a real
solution to a constraint, then this real solution may not correspond to a floating
point number solution, in which case we have a false alarm.

It is hard for constraint solvers to maintain a semantics that exactly matches
that of the floating point arithmetics of the machine; in reality, they rarely do.
When an unsatisfiability checker decides that a particular set of boxes does not
contain a solution, due to rounding error, there could still be a solution that
causes the constraints to be satisfied. Here we must not confuse the interval
arithmetic used in determining the unsatisfiability with the interval arithmetic
used in controlling rounding error. In practice, a constraint solver extensively
uses the former but seldom uses the latter.

The implication of this problem with rounding error is that we cannot claim
full verification without the assumption of absence of rounding errors.

4.3 Example of VISA Approach

In Figure 2, suppose we are interested in Line 5, where a division takes place.
To decide whether a could be zero, a counter-example driven approach will start
the initial value of Φ to be {a = 0.0}. Line 1 does not affect this predicate. Line 3
assigns the sum of two square numbers to a. The precondition of a = 0.0, for
example, will be:

0 = sq(vx) + sq(vy)

The predicate abstractor will attempt to decide whether combinations of predi-
cates imply this precondition. This decision is made by calling an unsatisfiability
checker. If the combination is a = 0.0, then we decide whether constraint:

(a = 0.0) ∧
¬(0 = sq(vx) + sq(vy))

is satisfiable to see if a = 0.0 should be included in the approximation. The
constraint is acquired as a conjunction of a = 0.0 and the negation of the pre-
condition (the conclusion of the implication). This constraint is satisfiable, which



Predicate Abstraction of Programs with Non-linear Computation 361

means the implication does not hold. Repeating this for ¬(a = 0.0), Line 3 will be
translated into b = ∗, where b is the Boolean variable corresponding to a = 0.0.

Suppose that we have a test that checks whether a is 0 between Line 4 and
Line 5. Because a is ∗, there will be a path in which a = 0.0 could be true. This
way we have a counter-example. By analyzing this trace, we will find out that
the following constraint, which is computed using weakest preconditions, is not
satisfiable (note that the counter-example contains a test of a at the end, which
is not reflected in the figure):

a = 0.0 ∧
0.0 = sq(vx) + sq(vy) ∧
0.0 < d ∧
0.0 < 2 ∗ sx ∗ vx ∗ sy ∗ vy+ sq(D) ∗ (sq(vx) + sq(vy)) −

(sq(sx ∗ sq(vy) + sq(sy) ∗ sq(Idvx))
A satisfiability constraint solver will decide that the constraint is not sat-

isfiable. Thus the error trace is not feasible. Then related predicates (the four
predicates described earlier) are added into Φ. This time, when the model checker
reaches Line 4, in addition to d > 0, the predicate abstraction will also notice
that ¬(0.0 = a) must be true because the constraint below is not satisfiable. This
constraint is the conjunction of the negation of formula above, that is, a = 0.0,
the combination of predicates being tested and d > 0, which is introduced by
computation of the precondition (details on how the constraints is computed are
described earlier in Section 2.2).

d = 2 ∗ sx ∗ vx ∗ sy ∗ vy + sq(D) ∗ (sq(vx) + sq(vy)) −
(sq(sx ∗ sq(vy) + sq(sy) ∗ sq(Idvx)) ∧
a = sq(vx) + sq(vy) ∧ d > 0 ∧ a = 0.0

Then, between Line 4 and Line 5 the predicate abstractor will recognize that
a = 0.0 must be false. Therefore the program will not cause division by zero.

5 Implementation of VISA

We implement our model checker based on two existing systems, BLAST from
Berkeley [26] and Realpaver from University of Nantes [28]. BLAST provides a
reachability test framework for a C program; Realpaver can be used to determine
the unsatisfiability of a set of non-linear constraints. We extend Realpaver to
a decision procedure of the Nelson and Oppen flavor. We then plug the new
decision procedure into BLAST, replacing the decision procedures used there.

5.1 Extending BLAST

With C programs, many problems must be addressed before or during model
checking. Function calls, pointers, various data types and a programmer’s ten-
dency to explore their flexibility are just some of them. Using CIL (C Interme-
diate Language) [30], BLAST handles full C syntax and represents different C



362 S. Xia, B. Di Vito, and C. Munoz

syntax structure in a uniform and less ambiguous way. BLAST also provides
context free analysis and alias analysis in a best-effort manner. Therefore, we do
not focus on the issues mentioned above and rely on BLAST to cope with these
for us, albeit pointers remain a major source of problems.

One extension (besides the interface to theorem provers, which will be covered
in the next subsection) to BLAST is an instrumentation API that allows a user
to specify the properties that they want to check. The specification language of
VISA can be viewed as a front end using this API. A user can query about a cut-
point and use the matching pattern to define a check using both the specfication
language (as we have shown earlier) or equivalently, the API. Besides division,
VISA supports the following aspects: addition, function call/return, array access,
and assignment.

A cut-point in VISA is a finer-grained event that is of interest to a property
comparing that in BLAST. For example, in BLAST, all function calls, are pos-
sible cut-points to verify the correct use of APIs. But this specification language
cannot be used in VISA because the cut-points do not include arithmetic (and
other) operations.

Other parts of BLAST that are particularly useful (some of which require
re-programming) in VISA include:

– Lazy abstraction. The cost of predicate abstraction is exponential in the
number of predicates. One of the important features of BLAST is lazy ab-
straction, where a predicate is included in the computation only in a part of
the model checking tree where it is necessary. This is especially useful when
clusters of predicates are locally relevant to the property only in certain parts
of the search path. Such a pattern is found frequently in the programs of
interest.

– Soundness issue. BLAST provides several options to compute the predicate
abstraction. For speed considerations, the most commonly used ones are not
conservative with respecct to aliases because alias-safe predicate abstraction
is too expensive to be practical and alias analysis in general is not precise
enough. Although the abstraction may be unsound and not suitable for strict
verification, it is still good for bug-hunting.

– Trace Slicing. This is arguably one of the most useful features of BLAST. The
idea is to slice the candidate error path to a portion of it that maintains same
feasibility characteristics. Because the constraints generated in this stage are
normal large and become a bottleneck for the constraint solver. Slicing the
path will often generate a surprisingly small constraint. When combined with
Craig interpolation, this feature is useful for dealing with counter-based loops
(such as a for loop), which are sometimes used in initialization parts of the
code and a major cause of unfeasible error trace.

5.2 Realpaver

We use Realpaver [28] as the numerical constraint solver. Based on interval
computations, Realpaver solves non-linear formulas over the real numbers. The
inputs to Realpaver are



Predicate Abstraction of Programs with Non-linear Computation 363

– a finite list of real variables V = {x1, . . . , xn},
– a list of constraints (that can contain nonlinear products and transcendental

functions), and
– an initial set of of interval domains x1, . . .xn (called a box) for the variables

in V .

Under the assumption xi ∈ xi, for 1 ≤ i ≤ m, Realpaver returns either a
no solution in the initial box message or a list of boxes, included in the initial
box, that contain solutions to the conjunction of the constraints. Realpaver also
returns a flag that indicates whether the resolution process was reliable or not.
A non-reliable output means that some solutions may be lost during the process.

Realpaver is claimed to satisfy the following property [28].

Proposition 1 (Reliability). Realpaver computes a union of boxes that con-
tains all the solutions of the original constraint satisfaction problem. Therefore,
if no box is computed by Realpaver, the constraint satisfaction problem has no
solutions.

This property means that Realpaver can be used as the basis for an unsatisfia-
bility decision procedure.

We use an ad hoc method to integrate Realpaver into a cooperative decision
procedure (cvc-lite [9]). Specifically, the core engine of a cooperative decision
procedure uses variable abstraction to divide input formulas (of multiple the-
ories) into formulas of different sub-theories. That is, these formulas do not
contain sub-formulas that involve functions or predicates of a different theory.
For each sub-theory, a combination of so-called solver and canonizer will find
equalities and dis-equalities; this information is propagated to the core engine to
find either a solution or inconsistency. Realpaver cannot be a solver as needed
by such cooperative decision procedures because it cannot discover equality or
dis-equality in an easy way. However, because it can discover inconsistencies, it
is possible to put Realpaver into an arithmetic sub-theory before the solvers of
this sub-theory is called and signal the core engine only when inconsistency is
found. Modern cooperative decision procedures already use different heuristics
to find simple inconsistency early at that stage (for speed considerations) [8]. In
this sense, Realpaver can be considered as another heuristic.

6 Experience

In a preliminary case study, we apply VISA to a set of public domain scien-
tific computation libraries. We choose these programs because 1) as scientific
computation applications, they resemble the engineering programs in aviation
industry, the domain of our interest; 2) these programs are actively maintained
public domain program and are considered programs with reasonable quality; 3)
they might not be as good in quality as the programs in the aviation industry,
which makes them a good target to improve. We primarily look for division by
zero violations. Table 4 below lists a few representative programs, their sizes,



364 S. Xia, B. Di Vito, and C. Munoz

the number of divisions, model checking time, and the number of runs when
the model checker fail to terminate (failure runs column in the table). The size
of the program is measured by the numbers of lines of syntactically reachable
functions with comments removed. The model checking time is the mean time
in seconds for all terminating runs (we configure VISA to run once per division).
The data reported here is on executing VISA on a commodity laptop (Pentium
M 1.73GHz, 512Mb).

Program Size No. of Div. MC Time Failure Runs

anneal.c 12602 27 210 3

conjdir.c 24134 20 288 1

cube.c 1834 10 65 0

spmat.c 18517 11 60 0

Fig. 4. Representative Runs of VISA

We found division-by-zero traces for three of these programs (anneal.c, con-
jdir.c and cube.c). Human inspection of the error trace proves that these are all
not false alarms. When there are no alarms, through reasoning about the source
code (and the model checking trace produced by VISA) manually, we are able
to double-justify the absence of division-by-zero.

Also, we apply VISA to KB3D. The correctness of this program, including
the safety with regard to division-by-zero, has been previously verified using the
theorem prover PVS [32]; thus the program is considered of high quality. KB3D
is a small program of a few thousand lines and contains predominantly geometric
computations. KB3D contains a number of good examples that demonstrate the
capability of VISA. We are able to verify that this program is free of division-by-
zero. The computation time is usually within a minute. We conjecture that other
tools either are not be able to handle KB3D due to large number of non-linear
computations or report false alarms.

VISA and its test suites are available on line at
http://www.nianet.org/m̃unoz/VISA.

7 Related Work and Conclusion

7.1 Program Analysis

In computer science folklore, data flow analysis has been treated as model check-
ing over abstract domains [37]. Yet predicate abstraction can be viewed as a
systematic way of designing abstract interpretation, and the counter-example
driven approach is strongly connected with the widening operator. Abstraction
based on interval analysis has been studied by Cousot’s group to reduce runtime
errors in C programs. Their tool, ASTREE [14], is based on such abstraction
domains as octagon, ellipsoid and decision trees. ASTREE has been success-
fully applied to large embedded, command and control, safety critical real-time



Predicate Abstraction of Programs with Non-linear Computation 365

software. Differences between VISA and ASTREE are: First, VISA essentially
provides an abstraction mechnism for a non-linear domain, which is a substantial
(and practically useful) gain of expressive power; second, VISA does not handle
the rounding errors, while ASTREE does; third, VISA is fully automatic (for all
programs) while ASTREE needs to be trained to work on a family of programs;
and fourth, VISA inherits unsound factors (such as pointers) and incomplete-
ness from BLAST, which is not an issue with ASTREE because of its selected
application domain.

Combining different aspects from VISA and ASTREE is a promising research
direction. ASTREE researchers have pointed out that certain abstractions can-
not be achieved using a counter-example based approaches; the problem that we
had with counters is another example where other forms of abstract interpreta-
tion (different from predicate abstraction) are more efficient.

7.2 Decision Procedures

The decidability issue of real arithmetic dates back to the 1930’s. Tarski [38]
shows the first order theory of real numbers with addition and multiplication
is decidable through quantifier elimination. Collins shows that quantifier elimi-
nation can be done through Cylindrical Algebraic Decomposition [13]. Adding
different functions to the theory is different case by case. For example, adding
periodic functions such as sin will cause the theory to be undecidable, while
adding exp is decidable conditionally (if Schanuel’s conjecture holds). Numerical
decision procedures (for so-called stable formulas) are studied by Ratschan [33].

Cooperative decision procedures are mostly based on proposals by Shostak
and by Nelson and Oppen. Various systems are used in practice, such as ICS [20],
CVC-Lite [9], Simplify [17], Euclid, etc. Microsoft’s Zapato [5] is designed specifi-
cally to solve formulas for predicate abstraction and is used in Microsoft’s SLAM.
Zapato uses Nelson and Oppen’s method to combine a theory of uninterpreted
functions with a solver for conjoined (linear) integer constraints based on Har-
vey and Stuckey’s method [23], which is complete and linear in time. Zapato
also takes advantage of fast propositional SAT solvers to first try an abstracted
version of the original constraints.

8 Conclusion

This paper extends the current practice of automated software model check-
ing to checking data-flow properties for real, engineering programs that contain
non-linear products and transcendental functions. We propose the adoption of
interval constraint solvers as the (un)satisfiability checkers used in predicate ab-
straction and predicate discovery. The soundness and completeness issues are
discussed under both theoretical and practical settings. Factors that affect these
issues are identified. Based on our proposed approach, a practical system is built
for bug-hunting/verification. This prototype shows the potential applications
of our model checking framework. The effectiveness of the prototype system is
demonstrated on real programs from the avionics industry.



366 S. Xia, B. Di Vito, and C. Munoz

We feel that the framework of our method and the initial success of our
prototypes constitute a reasonable contribution to state-of-the art in predicate
abstraction research. Our preliminary case studies demonstrated the expressive
power of this approach in verifying arithmetic safety. The prototypes that we
implemented are valuable complements to the existing tools in the respective
communities. We expect the approach to be integrated with other approaches as
part of a collective method to prove or disprove run-time errors in an accurate
and static way.

References

1. A. Neumaier. Interval Methods for System of Equations. Cambridge University
Press, 1990.

2. G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic
Press, 1983.

3. E. Asarin, T. Dang, and O. Maler. The d/dt tool for verification of hybrid systems.
In CAV, pages 365–370, 2002.

4. T. Ball. Formalizing counter-example driven predicate refinement with weakest
preconditions. Technical Report MSR-TR-2004-134, Microsoft Research, 2004.

5. T. Ball, B. Cook, S. K. Lahiri, and L. Zhang. Zapato: Automatic theorem proving
for predicate abstraction refinement. In CAV, pages 457–461, 2004.

6. T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic Predicate Ab-
straction of C Programs. In Proceedings of Programming Languages Design and
Implementation (PLDI) 2001, pages 268–283. ACM, 2001.

7. T. Ball and S. Rajamani. Automatically Validating Temporal Safety Properties of
Interfaces. In SPIN2001, Lecture Notes in Computer Science 2057, pages 103–122.
Springer-Verlag, May 2001.

8. C. Barret and C. Tinelli. Theory and practice of decision procedures for combina-
tions of theories. Slides of Talk Given at CAV 2005.

9. C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating
validity checker. In R. Alur and D. A. Peled, editors, CAV, Lecture Notes in
Computer Science. Springer, 2004.

10. S. Bensalem, Y. Lakhnech, and S. Owre. Computing Abstractions of Infinite State
Systems Compositionally and Automatically. In Proceedings of Conference on
Computer Aided Verification (CAV) 98, Lecture Notes in Computer Science 1427,
pages 319–331, June 1998.

11. D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. The BLAST
query language for software verification. In Proceedings of the 11th International
Static Analysis Symposium (SAS 2004), LNCS 3148, pages 2–18. Springer-Verlag,
2004.

12. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided ab-
straction refinement. In Proceedings of Conference on Computer Aided Verification
(CAV) 00. Springer-Verlag, 2000.

13. G. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In Proceedings of the Second GI Conference on Automata Theory
and Formal Languages, volume 33 of Lecture Notes in Computer Science, pages
134–183. Springer-Verlag, 1975.



Predicate Abstraction of Programs with Non-linear Computation 367

14. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
The ASTREE analyser. In Proceedings of The European Symposium on Program-
ming, pages 21–30, 2005.

15. S. Das, D. Dill, and S. J. Park. Experience with Predicate Abstraction. In Pro-
ceedings of Conference on Computer Aided Verification(CAV) 99, Lecture Notes in
Computer Science 1633, pages 160–171, Trento, Italy, July 1999.

16. S. Das and D. L. Dill. Counter-example based predicate discovery in predicate
abstraction. In Proceedings of Conference on Formal Methods in Computer-Aided
Design, Portland, Oregon, November 2002.

17. D. Detlefs, G. Nelson, and J. Saxe. Simplify: A theorem prover for program check-
ing, 2003.

18. G. Dowek, A. Geser, and C. Muñoz. Tactical conflict detection and resolution in
a 3-D airspace. In Proceedings of the 4th USA/Europe Air Traffic Management
R&DSeminar, ATM 2001, Santa Fe, New Mexico, 2001. A long version appears as
report NASA/CR-2001-210853 ICASE Report No. 2001-7.

19. M. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. Pasareanu, R. Visser, and
H. Zheng. Tool-supported Program Abstraction for Finite-state Verification.

20. J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: Integrated Canonizer and
Solver. In G. Berry, H. Comon, and A. Finkel, editors, Proceedings of the 13th
International Conference on Computer Aided Verification (Paris, France), volume
2102 of Lecture Notes in Computer Science, pages 246–249. Springer-Verlag, July
2001.

21. S. Graf and H. Saidi. Construction of Abstract State Graphs with PVS. In Pro-
ceedings of Conference on Computer Aided Verification (CAV) 97, Lecture Notes
in Computer Science 1254, pages 72–83, Haifa, Israel, June 1997. Springer-Verlag.

22. L. Granvilliers. On the combination of interval constraint solvers. Reliable Com-
puting, 7(6):467–483, 2001.

23. W. Harvey and P. J. Stuckey. Constraint representation for propagation. Lecture
Notes in Computer Science, 1520:235–245, 1998.

24. P. V. Hentenryck, L. Michel, and Y. Deville. Numerica, A Modeling Language for
Global Optimization. The MIT Press, 1997.

25. T. Henzinger, R. Jhala, R. Majumdar, and K. McMillan. Abstraction from Proofs.
In Proceedings of ACM SIGPLAN-SIGACT Conference on Principles of Program-
ming Languages (POPL), pages 232–244, 2004.

26. T. Henzinger, R. Jhala, R. Majumdar, G. Necula, G. Sutre, and W. Weimer.
Temporal-Safety Proofs for Systems Code. In Proceedings of Conference on
Computer-Aided Verification (CAV), pages 526–538, 2002.

27. K. Yamamura, H. Kawata and A. Tokue. Interval analysis using linear program-
ming. Proceedings of BIT 38, pages 188–201, 1998.

28. L. Granvilliers and F. Benhamou. Realpaver: An interval solver using constraint
satisfaction techniques. ACM Transactions on Mathematical Software. Accepted
for publication.

29. K. L. McMillan. Craig interpolation and reachability analysis. In SAS, page 336,
2003.

30. S. McPeak, G. C. Necula, S. P. Rahul, and W. Weimer. CIL: Intermediate Lan-
guages and Tools for C Program Analysis and Transformation. In Proceedings of
Conference on Compiler Construction (CC’02), March 2002.

31. R. Moore. Interval Analysis. Prentice-Hall, 1966.
32. S. Owre, J. Rushby, and N. Shankar. Pvs: A prototype verification system, 1992.
33. S. Ratschan. Slides, available at http://www.mpi-sb.mpg.de/~ratschan/

decproc1.pdf.



368 S. Xia, B. Di Vito, and C. Munoz

34. S. Ratschan. Continuous first-order constraint satisfaction. In Proceedings of Ar-
tificial Intelligence and Symbolic Computation, LNCS. Springer, 2002.

35. W. Rudin. Principles of Mathematical Analysis (Third Edition). McGraw-Hill,
1976. Chapter 10.

36. H. Saidi and N. Shankar. Abstract and Model-check While You Prove. In Pro-
ceedings of Conference on Computer Aided Verification (CAV) 99, Lecture Notes
in Computer Science 1633, pages 443–454. Springer-Verlag, July 1999.

37. D. Schmidt. Data Flow Analysis is Model Checking of Abstract Interpretation.
In Proceedings of SIGPLAN Symposium on Principles of Programming Languages
(POPL) 98, 1998.

38. A. Tarski. Logic, Semantics, Metamathematics, papers from 1923 to 1938. Hackett
Publishing Company, 1983. English Version, original in Polish.

39. A. Tiwari. An algebraic approach for the unsatisfiability of nonlinear constraints.
In L. Ong, editor, Computer Science Logic, 14th Annual Conf., CSL 2005, volume
3634 of LNCS, pages 248–262. Springer, Aug. 2005.

40. W. Visser, S. Park, and J. Penix. Applying Predicate Abstraction to Model Check
Object-oriented Programs. In Proceedings of the 33rd ACM SIGSOFT Workshop
on Formal Methods in Software Practice.

41. W. Adams and P. Loustaunau. An Introduction to Gröbner Bases. American
Mathematical Society, 1994.

42. M. Wallace, S. Novello, and J. Schimpf. ECLiPSe: A platform for constraint logic
programming, 1997.

43. S. Xia, B. D. Vito, and C. Muñoz. Automated test case generations for non-linear
engineering programs. In Proceedings of the Nineenth International Conference on
Automated Software Engineering, 2005.



A Fresh Look at Testing for Asynchronous

Communication�

Puneet Bhateja1, Paul Gastin2, and Madhavan Mukund1

1 Chennai Mathematical Institute, Chennai, India
{puneet,madhavan}@cmi.ac.in

2 LSV, ENS de Cachan & CNRS, France
Paul.Gastin@lsv.ens-cachan.fr

Abstract. Testing is one of the fundamental techniques for verifying if
a computing system conforms to its specification. We take a fresh look at
the theory of testing for message-passing systems based on a natural no-
tion of observability in terms of input-output relations. We propose two
notions of test equivalence: one which corresponds to presenting all test
inputs up front and the other which corresponds to interactively feeding
inputs to the system under test. We compare our notions with those stud-
ied earlier, notably the equivalence proposed by Tretmans. In Tretmans’
framework, asynchrony is modelled using synchronous communication
by augmenting the state space of the system with queues. We show that
the first equivalence we consider is strictly weaker than Tretmans’ equiv-
alence and undecidable, whereas the second notion is incomparable. We
also establish (un)decidability results for these equivalences.

1 Introduction

Testing is a fundamental activity in verifying the correctness of systems. In this
paper, we focus on testing in the restricted context of reactive systems. A theoret-
ical foundation for testing labelled transition systems was laid in the framework
of process algebra, where an operational notion of testing was defined and shown
to have an extensional semantic characterization in terms of failures [7,8]. These
ideas were expanded and elaborated in the work of Tretmans [16,17], in the form
of an extensive theory of conformance testing—testing when an implementation
conforms to its specification. This theory has been used to develop automated
tools for testing, such as the TGV system [13].

The initial focus on formalizing testing for labelled transition systems was
on synchronous communication, where the send and receive actions for each
communication occur simultaneously. However, most communication protocols
are based on asynchronous communication, or message-passing via buffers that
can be modelled as queues. Many questions remain unanswered about the testing
process for such systems. In addition to the usual problem of optimizing the size

� Partially supported by Timed-DISCOVERI, a project under the Indo-French Net-
working Programme.

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 369–383, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



370 P. Bhateja, P. Gastin, and M. Mukund

of test suites without sacrificing coverage, there are also additional issues to be
considered, such as the possibility of distributing tests [12].

The first major effort to develop an effective theory of testing for asynchronous
communication originated in the thesis of Tretmans [16], in which asynchronous
communication is reduced to synchronous communication in a model augmented
with infinite queues. A refined version of this theory is presented in [17], in terms
of input-output transition systems that interact synchronously.

In parallel, asynchronous communication has also been an active area of study
in the field of process algebra. A process algebra with asynchronous communi-
cation, whose semantics is given in terms of auxiliary data structures such as
queues to store the channel state, has been formulated in [5,6]. The focus of
this work is to identify semantic equivalences that are congruences with respect
to process algebraic operators, rather than to formalize testing equivalence per
se. Later papers have considered testing equivalence for process algebras with
asynchronous communication [4,2]. In these approaches, there are no explicit
channels between processes. Instead, all messages are emitted into a shared pool
and can be consumed in any order by receiving processes. This approach towards
modelling asynchronous communications is more suitable for name-passing cal-
culi such as the π-calculus, but it is difficult to import any intuition or results to
our setting in which processes with a fixed network topology exchange messages
through point-to-point queues.

Our approach to testing is to consider a natural notion of observability for
systems based on input-output pairs. Using this notion, we propose two notions
of test equivalence. The first corresponds to presenting all test inputs up front
while the other corresponds to interactively feeding inputs to the system under
test. We show that the first equivalence is strictly weaker than Tretmans’ equiv-
alence, whereas the second notion is incomparable. Our work is closely related
to the queued quiescent trace approach of [14], as explained in Section 4.

We also establish decidability results for these equivalences. We show that
the weaker equivalence that we define is undecidable for finite-state systems, as
is the equivalence proposed by Tretmans. However, the stronger equivalence is
decidable for well-structured transition systems. We also show that our weaker
notion of equivalence is decidable if we record the input-output behaviour of a
system as an unlabelled message sequence chart [11].

The paper is organized as follows. In the next section, we introduce our formal
model of asynchronously communicating systems. Three notions of asynchronous
testing are introduced in Section 3. We describe the interrelationships between
these notions in Section 4 and prove decidability and undecidability results in
Section 5. We conclude with a brief discussion on directions for future work.

2 The Model

We work in the setting of labelled transition systems. A labelled transition system
is a structure TS = (S, I,Σ,→) where S is a set of states with a subset I of



A Fresh Look at Testing for Asynchronous Communication 371

initial states, Σ is an alphabet of actions and → ⊆ S × Σ × S is a labelled
transition relation. We will write s a−→ s′ to denote that (s, a, s′) ∈ →.

We are interested in asynchronous systems that interact with their environ-
ment by sending and receiving messages. We represent this interaction abstractly
by partitioning Σ into two sets: Σi, the set of input actions, and Σo, the set of
output actions. We normally use a, b, c to denote input actions, x, y, z to denote
output actions and Greek letters α, β to denote generic actions from Σ.

An action α is said to be enabled at a state s ∈ S if there is some transition
s

α−→ s′. We write s α−→ to denote that α is enabled at s and s α
� to denote that

α is not enabled at s. We can extend this to sets of actions: for X ⊆ Σ, s X−→ if
s

α−→ for some α ∈ X and s X
� if s α

� for every α ∈ X . A state s is said to refuse
a set X ⊆ Σ of actions if s X

�. A state s is quiescent if it refuses Σo.
A run of the transition system TS is a sequence of transitions of the form

s0
α1−→ s1

α2−→ · · · αm−−→ sm where s0 ∈ I. We call this a run of TS over the word
α1α2 . . . αm. Let L(TS) = {w ∈ Σ∗ | TS admits a run over w}. It is easy to see
that L(TS) is a prefix-closed language.

Without loss of generality, we assume that in the transition systems we con-
sider, there is no loop s0

x1−→ s1
x2−→ · · · xm−−→ sm = s0 labelled by a sequence

of output labels x1x2 . . . xm ∈ Σ∗o . Such a loop would generate an unbounded
behaviour of the system that does not require any input from the environment.
This kind of spontaneous infinite behaviour is not normally expected from the
class of systems we are interested in. In particular, this restriction implies that
every transition system we consider has at least one quiescent state.

Asynchronous systems are normally assumed to be receptive—at each state
s, every input action a should be possible. In practice, a system description will
limit itself to providing moves for “useful” input actions at each state. One way
to deal with missing inputs is to assume a dead state sd that refuses Σo and has
a self loop sd

a−→ sd for every input a. Whenever a state s refuses an input a, we
add a move s a−→ sd. In this interpretation of receptiveness, unexpected inputs
cause the system to hang. Our semantics will implicitly capture this version of
receptiveness, without requiring the explicit addition of such a dead state. An
alternative approach, which we do not consider, is to allow the system to swallow
unexpected inputs and continue with normal execution. This can be modelled
by adding a self-loop labelled a at any quiescent state that refuses an input a.

In [3], Bourdonov et al study test equivalence for asynchronous systems with
forbidden or refused inputs (for instance, an interactive form in which some but-
tons are disabled). They focus on adapting the testing formalism of [17] to such
systems, with specific emphasis on compositionality. Here, on the other hand,
we concentrate on expressiveness and decidability, rather than compositionality.

Queue semantics. In [16], a queue semantics is defined for transition systems
with asynchronous communication which is used to transfer notions from the
theory of testing for synchronous systems to the asynchronous framework.

Let TS = (S, I,Σ,→) be a transition system, where Σ = Σi ) Σo. A con-
figuration of TS is a triple (s, σi, σo) where s is a state in S and σi ∈ Σ∗i and
σo ∈ Σ∗o are the input and output queues associated with the system.



372 P. Bhateja, P. Gastin, and M. Mukund

Initially, the system is in a configuration (i, ε, ε), where i is an initial state and
both queues are empty. Each input/output move of the original system breaks
up into a visible move that alters the input/output queue without changing the
internal state and an invisible move in which the input/output action updates
the internal state as per the transition relation of the original system.

First, we have two rules describing how the queue based system reads inputs.

Input (s, σi, σo)
a−→ (s, σia, σo) s

a−→ s′

(s, aσi, σo)
τ−→ (s′, σi, σo)

External inputs are appended to the input queue, leaving the internal state
unchanged. The system can then silently consume the action at the head of the
input queue and update its state using a transition of the original system.

Similarly, we have two rules for output actions.

Output s
x−→ s′

(s, σi, σo)
τ−→ (s′, σi, σox)

(s, σi, xσo)
x−→ (s, σi, σo)

Any output action of the original system results in a silent internal move that
changes the state of the system and appends the action to the output queue.
The system can then spontaneously emit the action at the head of output queue.

This semantics implies that, at the visible level, output actions can always be
postponed. A path of the form s

a−→ s1
x−→ s2

b−→ s′ in the original system may be
observed asynchronously as a sequence abx by delaying the output x.

We denote by Q(TS) the transition system whose states are the configurations
of TS and whose transitions are governed by the queue semantics.

3 Asynchronous Testing Equivalence

Our main aim is to formalize what we can observe about the behaviour of an
asynchronous system through testing. We define two natural notions of testing
for asynchronous systems based on input-output pairs.

3.1 IO Behaviours

If w ∈ Σ∗ and X ⊆ Σ, we denote by w↓X the subword obtained by erasing all
letters not in X . We also write / for the prefix relation on words.

As usual, let TS = (S, I,Σ,→) be a transition system, where Σ = Σi ) Σo.
A maximal run of TS is an execution sequence i α1−→ s1

α2−→ · · · αn−−→ sn such
that i ∈ I and sn is quiescent. If TS has a maximal run over a word w, we call
w a δ-trace (sometimes referred to in the literature as a quiescent trace) of TS,
written δTS(w). Let δtraces(TS) denote the δ-traces of TS.

The IO-behaviour of TS corresponds to an operational model of testing where,
for each test case, the tester generates a sequence of inputs, supplies them up
front, and observes the effect. This corresponds, roughly, to static test generation.
Formally, IOBeh(TS) is the set of pairs (u, v) ∈ Σ∗i ×Σ∗o such that, in TS, there



A Fresh Look at Testing for Asynchronous Communication 373

is a maximal run i w−→ s labelled w with w↓Σo
= v, and either w↓Σi

= u or
w↓Σi

a / u and s refuses a for some a ∈ Σi.
The condition that s refuses a for the case w↓Σi

a / u implicitly captures the
first notion of receptiveness, where unexpected inputs lead the system to hang.
Formally, this means that if we add a dead state sd to TS as described earlier,
the resulting system will have the same IO-behaviours as the original system.

We can provide additional discriminating power to the tester by assuming that
inputs are supplied incrementally, instead of being provided up front, analogous
to on-the-fly test case generation.

A block observation of TS is a sequence (u1, v1) · · · (un, vn) ∈ (Σ∗i ×Σ∗o)(Σ+
i ×

Σ∗o )∗ such that there is a run s0
w1−−→ s1 · · ·

wk−−→ sk with 1 ≤ k ≤ n starting from
an initial state s0 ∈ I and going through quiescent states s1, . . . , sk with:

– vj = wj↓Σo
for all 1 ≤ j ≤ n, and vj = ε for all k < j ≤ n, and

– uj = wj↓Σi
for all 1 ≤ j < k, and either (k = n and un = wn↓Σi

) or
(wk↓Σi

a / uk for some a ∈ Σi such that sk refuses a).

A block observation consists of supplying inputs in blocks u0u1 . . . un and
observing the incremental output associated with each block. The first input
block is permitted to be empty, to account for a spontaneous initial output v0.
Let IOBlocks(TS) denote the set of block observations of TS.

Definition 1. We define two testing equivalences on asynchronous systems, cor-
responding to IO-behaviours and block observations.

TS ∼io TS
′ def

= IOBeh(TS) = IOBeh(TS′)

TS ∼ioblock TS
′ def

= IOBlocks(TS) = IOBlocks(TS′)

3.2 Synchronous Testing on Queues

In contrast to our direct definition of testing based on the observed input-output
behaviour of asynchronous systems, the approach taken in [16] is to reduce asyn-
chronous testing to synchronous testing via the queue semantics. Two systems
are said to be testing equivalent in an asynchronous sense if the corresponding
interpretations with queues are testing equivalent in a synchronous sense.

Let ∼Q denote asynchronous testing equivalence under the queue semantics
and ∼syn denote the normal synchronous testing equivalence, which coincides
with failures semantics [7,8]. Then,

TS ∼Q TS′
def= Q(TS) ∼syn Q(TS′).

We do not recall the formal definition of synchronous testing equivalence,
because we do not require this branching-time formulation of ∼Q . Instead, it
turns out that ∼Q admits a linear-time characterization (Corollary 5.15 in [16]).

Theorem 2. TS ∼Q TS′ iff L(Q(TS)) = L(Q(TS′)) and δtraces(Q(TS)) =
δtraces(Q(TS′)).

In the rest of this section, we define some notions related to L(Q(TS)) and
δtraces(Q(TS)) that will prove useful in later analysis.



374 P. Bhateja, P. Gastin, and M. Mukund

Tracks. We begin by defining an ordering @ on words. Intuitively, w @ w′ (read
as “w is aped by w′”) if w can be observed as w′ by postponing some outputs.
In the process, w′ could accept additional inputs. Formally, w @ w′ if:

– w↓Σi
/ w′↓Σi

.
– w↓Σo

= w′↓Σo
.

– For every pair of prefixes wj , w
′
j of w,w′ of length j, w′j↓Σo

/ wj↓Σo
.

The relation @ is a partial order on Σ∗. It is easy to see that L(Q(TS)), the
prefix closed language of TS under the queue semantics, is upward-closed with
respect to @: if w ∈ L(Q(TS)) and w @ w′ then w′ ∈ L(Q(TS)).

A track is an @-minimal word in L(Q(TS)). It is shown in [16] that every
track is actually a word in L(TS), the original transition system interpreted
without the queue semantics. Moreover, since L(Q(TS)) is upward-closed with
respect to @, the set of tracks completely determines the set of traces. Note
that not every word in L(TS) is a track: for instance, TS could explicitly have
execution sequences axby and abxy. Since axby @ abxy, abxy is not a track. Let
Tracks(TS) denote the set of tracks of TS.

Empty and blocked deadlocks. We can classify quiescent traces into two
groups. Recall that we have assumed a receptive model of asynchronous commu-
nication in which input actions are always enabled but unexpected inputs cause
the system to hang. This gives rise to two possible scenarios when a system
deadlocks. In the first scenario, the system is waiting for input with an empty
input queue and can potentially make progress if a suitable input arrives. In
the second scenario, the system has received an unexpected input and can never
recover. We refer to these as empty and blocked deadlocks, respectively.

To define empty and blocked deadlocks formally, we need a new relation. We
say that w ∈ Σ∗ is strictly aped by w′ ∈ Σ∗, denoted w |@| w′, if w @ w′ and
|w| = |w′|. We can then define the empty and blocked deadlocks of Q(TS).

δempty(Q(TS)) = {w ∈ Σ∗ | ∃ i w′
−→ s in TS with i ∈ I,

s quiescent and w′ |@| w}.

δblock(Q(TS)) = {w ∈ Σ∗ | ∃ i w′
−→ s in TS with i ∈ I,∃ a ∈ Σi such that

s refuses Σo ∪ {a} and w′a @ w}.

Observe that δempty(Q(TS)) is |@|-upward closed and consists of traces w such
that (i, ε, ε) w−→ (s, ε, ε) in Q(TS) with s quiescent. Similarly, δblock(Q(TS)) is @-
upward closed and consists of traces w such that (i, ε, ε) w−→ (s, aσi, ε) in Q(TS)
where s refuses Σo ∪ {a}. It is not difficult to see that

δtraces(Q(TS)) = δempty(Q(TS)) ∪ δblock(Q(TS)).

However, note that the sets δempty(Q(TS)) and δblock(Q(TS)) may overlap. In
fact, it is even possible TS1 ∼Q TS2 but δempty(Q(TS1)) �= δempty(Q(TS2)) or
δblock(Q(TS1)) �= δblock(Q(TS2)) [16]. Despite these shortcomings, we will find
these notions very useful.



A Fresh Look at Testing for Asynchronous Communication 375

4 Comparing the Three Equivalences

Our first set of results compare the three testing equivalences we have introduced
earlier. We show that ∼io is strictly weaker than ∼Q and ∼ioblock , but ∼Q and
∼ioblock are incomparable.

Proposition 3. If TS1 ∼ioblock TS2, then TS1 ∼io TS2.

Proof. This follows from the fact that IOBeh(TS) = IOBlocks(TS)∩ (Σ∗i ×Σ∗o)
for any transition system TS. ��

Proposition 4. If TS1 ∼Q TS2, then TS1 ∼io TS2.

Proof. Let TS1 and TS2 be two transition systems such that TS1 ∼Q TS2. We
show that TS1 ∼io TS2. Let (u, v) ∈ IOBeh(TS1) and let i w−→ s be a maximal
run in TS1 labelled w, with w↓Σo

= v, and either w↓Σi
= u or w↓Σi

a / u and
s refuses a for some a ∈ Σi.

Case 1: Suppose w↓Σi
= u. By definition of the empty deadlocks, we obtain

w ∈ δempty(Q(TS1)). Since TS1 ∼Q TS2, we have w ∈ δtraces(Q(TS2)).

If w ∈ δempty(Q(TS2)) then, in TS2, there is a maximal run i′ w′
−→ s′ with

w′ |@| w. Since w′↓Σi
= w↓Σi

= u and w′↓Σo
= w↓Σo

= v, we have (u, v) ∈
IOBeh(TS2).

If w ∈ δblock(Q(TS2)) then, in TS2, there is a maximal run i′ w′
−→ s′ where s′

refuses Σo ∪ {b} and w′b @ w for some b ∈ Σi. Since (w′b)↓Σi
/ w↓Σi

= u and
w′↓Σo

= w↓Σo
= v, we have (u, v) ∈ IOBeh(TS2).

Case 2: Suppose w↓Σi
a / u and s refuses a ∈ Σi. As above, by definition of the

blocked deadlocks we get wa ∈ δblock(Q(TS1)). Let u′ be such that u = w↓Σi
au′.

We have wa @ wau′ and we obtain wau′ ∈ δblock(Q(TS1)) since this set is @-
upward closed. Since TS1 ∼Q TS2 we deduce wau′ ∈ δtraces(Q(TS2)).

If wau′ ∈ δempty(Q(TS2)) then, in TS2, there is a maximal run i′ w′
−→ s′ with

w′ |@| wau′. Since w′↓Σi
= w↓Σi

au′ = u and w′↓Σo
= w↓Σo

= v, we have
(u, v) ∈ IOBeh(TS2).

If wau′ ∈ δblock(Q(TS2)) then, in TS2, there is a maximal run i′ w′
−→ s′ where

s′ refuses Σo∪{b} and w′b @ wau′ for some b ∈ Σi. Since w′↓Σi
b / w↓Σi

au′ = u
and w′↓Σo

= w↓Σo
= v, we have (u, v) ∈ IOBeh(TS2). ��

The implications we have proved are strict. Below, we show two systems that
are related by ∼io but not by ∼Q . Here Σi = {a} and Σo = {x}. For both sys-
tems, the IO-behaviours are given by {(ε, ε), (a, x), (a, xx)}∪ {(an, x), (an, x2),
(an, x3) | n > 1}, so TS1 ∼io TS2. However, notice that axaxx ∈ Tracks(TS1) \
Tracks(TS2) because axxax ∈ L(TS2) and axxax @ axaxx. Hence, TS1 �∼Q

TS2. This example also establishes that ∼io is strictly weaker than ∼ioblock

since (a, x)(a, xx) ∈ IOBlocks(TS1) \ IOBlocks(TS2).



376 P. Bhateja, P. Gastin, and M. Mukund

TS1
a

x

a

x

x

a

x

a

x

x

TS2
a

x

a

x

x

a

x

x

a

x

The equivalences ∼Q and ∼ioblock are incomparable. Below, we show two sys-
tems that are related by ∼Q but not by ∼ioblock . Here, Σi = {a} and Σo =
{w, x, y, z}. We have Tracks(TS1) = Tracks(TS2) = {ε, ax, axy, axyaz, axaw}.
Also, the set of empty deadlocks for both systems is the |@|-upper closure of
{ε, ax, axy, axyaz, axaw}. Finally, the set of blocked deadlocks for both sys-
tems is the @-upper closure of {axyaza, axawa}. Hence TS1 ∼Q TS2. However,
(a, x)(a, yz) is in IOBlocks(TS1) \ IOBlocks(TS2), so TS1 �∼ioblock TS2.

TS1
a

x

y

a

z

a

x

a

y

z

w

TS2
a

x

y

a

z

a

x

a

w

Similarly, we give below two systems that are related by ∼ioblock but not by
∼Q . We have axax ∈ δtraces(Q(TS1)) \ δtraces(Q(TS2)), so TS1 �∼Q TS2. On the
other hand, TS1 ∼ioblock TS2 since the block observations of TS1 and TS2 are

{(ε, ε)} ∪ {(an, x), (an, xy), (aan, x2) | n ≥ 1} · (a+ × {ε})
∪ {(ε, ε)} · {(an, x), (an, xy), (aan, x2) | n ≥ 1} · (a+ × {ε})

TS1
a

x

a

x

x

y

TS2
a

a

x

x

x
x

y

Queued Quiescent Traces. Our equivalences ∼io and ∼ioblock correspond
to the notions queued quiescent trace equivalence and queued suspension trace



A Fresh Look at Testing for Asynchronous Communication 377

equivalence, respectively, defined in [14]. While we directly provide extensional
characterizations of these equivalences, the corresponding notions are developed
in [14] via an intensional definition of testing that uses a variant of IO-automata
with queues, from which an extensional definition is derived.

In [14], queued quiescent trace equivalence is compared with an equivalence
called ioco, defined by Tretmans in [17], which differs slightly from the queue
equivalence ∼Q that we consider here. It is shown, by examples, that some sys-
tems distinguished by ioco are equated by queued quiescent trace equivalence
and that some systems equated by queued quiescent trace equivalence are dis-
tinguished by queued suspension trace equivalence. However, there is no formal
characterization of the relative expressive powers of these three equivalences.

5 Decidability of Asynchronous Test Equivalence

We now examine the decidability of test equivalence for finite-state systems.

5.1 Undecidability of ∼io

We prove this result using a reduction from the equivalence problem for rational
relations [1,15]. We start by recalling some definitions. Let A,B be two finite
alphabets. With componentwise concatenation, the set A∗ ×B∗ is a monoid. A
rational relation over A and B is a rational subset R of A∗×B∗. Equivalently, R
is a mapping from A∗ to P(B∗) where u ∈ A∗  → R(u) = {v ∈ B∗ | (u, v) ∈ R}.

Le (K,+,×, 0, 1) be a semiring. A K-automaton over A is a tuple A =
(S, λ, µ, γ) with S a finite set of states, λ, γ ∈ KS and µ(a) ∈ KS×S for each
a ∈ A. Intuitively, the automaton outputs λi when it is entered in state i, then
it outputs µ(a)i,j whenever a transition labelled a from i to j is taken and
finally, it outputs γj when the input word has been completely read and we
exit the automaton in state j. The value (A, u) computed by A on the input
word u = a1 · · · ak ∈ A∗ is the sum over all paths i0, . . . , ik ∈ S of the prod-
ucts λi0µ(a1)i0,i1 · · ·µ(ak)ik−1,ik

γik
. Since K is a semiring, the set of matrices

KS×S equipped with matrix multiplication is a monoid and we can extend µ
to a monoid morphism µ : A∗ → KS×S. Viewing λ as a row vector and γ as
a column vector, we have (A, u) = λµ(u)γ for each u ∈ A∗. Without loss of
generality, we may assume that λi �= 0 implies λi = 1 for each state i ∈ S.

The set K = Rat(B∗) equipped with union as addition and concatenation as
multiplication is a semiring with ∅ as zero element and {ε} as unit. A relation
R ⊆ A∗ × B∗ is rational if and only if it can be realized by some Rat(B∗)-
automaton. We denote by R(A) the rational relation realized by A and for
u = a1 · · ·ak ∈ A∗ we have (u, v) ∈ R(A) iff v ∈ λi0µ(a1)i0,i1 · · ·µ(ak)ik−1,ik

γik

for some i0, . . . , ik ∈ S. The equivalence problem for rational relations given
by Rat(B∗)-automata is undecidable [1,15]. This undecidability holds even for
rational relation for which |B| = 1 and given by a K-automaton where K is the
semiring Pfin(B∗) of finite subsets of B∗. So in the following we assume that
B = {b} is a singleton and that K = Pfin(B∗).



378 P. Bhateja, P. Gastin, and M. Mukund

We prefer to avoid ε-transitions. We call a K-automaton A = (S, λ, µ, γ) strict
if none of the sets µ(a)p,q and γq contain the empty word ε. We show that the un-
decidability still holds for rational relations given by strictK-automata. Let A =
(S, λ, µ, γ) be a K-automaton. Define As = (S, λ, µs, γs) by µs(a)p,q = bµ(a)p,q

and γs
q = bγq. Then, As is strict and for each u ∈ A∗ we have λµs(u)γs =

b|u|+1λµ(u)γ (recall that B = {b} so the semiring K is commutative). Then,
R(A) = R(B) if and only if R(As) = R(Bs). Therefore, equivalence is undecid-
able for rational relations given by strict K-automata.

We now associate to a strictK-automaton A = (S, λ, µ, γ) a transition system
A′ over Σ with Σi = A and Σo = B ) {#} where # is a new output letter. For
each (p, a, q) ∈ S × A × S we consider an automaton Ap,a,q recognizing µ(a)p,q

and such that Ap,a,q has a unique initial state ip,a,q with no ingoing transition,
a unique final state fp,a,q with no outgoing transition and all other states have
outgoing transitions. To construct A′, we first take the disjoint union of the
automata Ap,a,q for (p, a, q) ∈ S × A × S. Then, for each q ∈ S, we merge all
states fp,a,q with (p, a) ∈ S ×A into a single state denoted simply by q. Finally,
for each (p, a, q) ∈ S ×A× S, we add the transition p a−→ ip,a,q. Thus we obtain
the transition system A′ = (S′, I, Σ,→) with I = {i ∈ S | λi �= ∅}. Note that in
A′, all transitions leaving the states in S are labelled with input letters and all
transitions leaving states in S′ \ S are labelled with output letters. Hence, the
deadlocked states in A′ are exactly those in S.

For each pair of states p, q ∈ S we consider the relation

Tp,q = {(w↓A, w↓B) ∈ A∗ ×B∗ | p w−→ q in A′}.

The following lemma is a standard result from the theory of rational relations
and K-automata.

Lemma 5. For each p, q ∈ S, we have

Tp,q = {(u, v) ∈ A∗ ×B∗ | v ∈ µ(u)p,q}.

For each q ∈ S we consider an automaton Aq recognizing γq# and such that Aq

has a unique initial state iq with no ingoing transition, a unique final state fq

with no outgoing transition and all other states have outgoing transitions. We
let A+

q be Aq with the additional transitions fq
a−→ f ′q for a ∈ A and f ′q

#−→ fq so
that fq does not refuse any input letter. Finally, we let A′′ be the disjoint union
of A′ together with the automata A+

q for q ∈ S and the additional transitions

x
b−→ iq for each transition x b−→ q of A′. Note that the deadlocked states of A′′

are S ∪ {fq | q ∈ S}.

Lemma 6. IOBeh(A′′) = IOBeh(A′) ∪R(A) · {(x,#1+|x|) | x ∈ A∗}.

Proof. First, maximal paths in A′ are of the form p
w−→ q for p ∈ I and q ∈ S.

These are also maximal paths in A′′. Moreover, a state q ∈ S refuses exactly the
same input letters in A′ and in A′′. Hence, IOBeh(A′) ⊆ IOBeh(A′′). Conversely,
the maximal paths in A′′ which do not use the letter # cannot enter one of the



A Fresh Look at Testing for Asynchronous Communication 379

automata Aq. Hence, they are also maximal paths in A′ and we deduce that
IOBeh(A′′) ∩A∗ ×B∗ = IOBeh(A′).

Second, let (u, v) ∈ R(A). We have v ∈ λµ(u)γ hence we find p, q ∈ S
with v ∈ λpµ(u)p,qγq. It follows that λp �= ∅ (i.e., p ∈ I), which implies λp =
{ε} by our assumption on K-automata. Hence we can write v = v′v′′ with
v′ ∈ µ(u)p,q and v′′ ∈ γq. By Lemma 5 we find a path p

w−→ q in A′ with

u = w↓A and v′ = w↓B. Replacing the last transition x b−→ q of this path by

x
b−→ iq we find a path p

wv′′#−−−−→ fq in A′′. For x = a1 · · ·ak, this path can be

extended with fq
w′
−→ fq where w′ = a1# · · · ak#. We have ux = (wv′′#w′)↓Σi

and v#1+|x| = (wv′′#w′)↓Σo
. Since fq is a deadlocked state we deduce that

(ux, v#1+|x|) ∈ IOBeh(A′′).
Conversely, let (u′, v′) ∈ IOBeh(A′′) \ A∗ × B∗. Let p w′

−→ s be a run in A′′
with p ∈ I, s deadlocked, w′↓Σo

= v′ and either w′↓Σi
= u′ or w′↓Σi

a / u′

and s refuses a ∈ Σi. Since v′ /∈ B∗, we must have s = fq for some q ∈ S
and w′ = w#a1# · · · ak# with w ∈ (A ∪ B)∗ and x = a1 · · ·ak ∈ A∗. Since
s = fq does not refuse any input letter, we get w′↓Σi

= u′. With u = w↓Σi
and

v = w↓Σo
we have v′ = v#1+k and u′ = ux. The path p w′

−→ fq can be split in

p
w1−−→ iq

w2#−−−→ fq
a1#···ak#−−−−−−−→ fq so that p w1−−→ q is a path in A′ and iq

w2#−−−→ fq

is a path in Aq and w = w1w2. We deduce that w2 ∈ γq, u = w1↓A and
v = (w1↓B)w2. By Lemma 5 we have w1↓B ∈ µ(u)p,q. Therefore, v ∈ µ(u)p,qγq.
Since p ∈ I we have λp = {ε} and we obtain v ∈ λµ(u)γ = R(A)(u). ��

If we have another rational relation defined by a strict K-automaton B then we
define similarly B′ and B′′.

Theorem 7. A′ ) B′′ ∼io A′′ ) B′ if and only if R(A) = R(B). Therefore, the
∼io equivalence is undecidable.

Proof. The result follows from the following equations obtained from Lemma 6.

IOBeh(A′ ) B′′) = IOBeh(A′) ∪ IOBeh(B′) ∪R(B){(x,#1+|x|) | x ∈ A∗}
IOBeh(A′′ ) B′) = IOBeh(A′) ∪ IOBeh(B′) ∪R(A){(x,#1+|x|) | x ∈ A∗}

��
5.2 Undecidability of ∼Q

Let A and B be two finite alphabets and let f, g : A+ → B+ be two morphisms
corresponding to an instance of Post’s Correspondence Problem (PCP). The
PCP instance has a solution if and only if we have f(u) = g(u) for some u ∈ A+.

We consider a new symbol $ and define the input and output alphabets as
Σi = A ∪ {$} and Σo = B. We then construct two transition systems from the
ingredients shown in the figure on the next page.

The transition system Sf corresponds to the morphism f and has one loop
ab1b2 . . . bk for each a ∈ A such that f(a) = b1b2 . . . bk. Formally the set of states



380 P. Bhateja, P. Gastin, and M. Mukund

S0

I

∆0

A

A

B

B

$

A, $

B

B

Sf

I · · ·

X Y

Z′

Z

∆f

F

a b1 b2 bk−1

bk

A
b1 b2

bk−1¬b1 ¬b2 ¬bk−1 ¬bk bk

B

A

A, B

B$ $ $

A, $

B

B

of Sf is Qf = {I, F,X, Y, Z, Z ′, ∆f} ∪ {(a, i) | a ∈ A, 0 < i ≤ |f(a)|} and its
initial state is I. The transitions between states in {I, F,X, Y, Z, Z ′, ∆f} are
precisely given in the picture above, which also contains the intuition for the
other transitions defined, for each a ∈ A with f(a) = b1b2 · · · bk, by:

– I
a−→ (a, 1) b1−→ (a, 2) b2−→ (a, 3) · · · (a, k − 1)

bk−1−−−→ (a, k) bk−→ I,
– (a, i) b−→ Y if 1 ≤ i ≤ k and b ∈ B \ {bi},
– (a, i) bi−→ X if 1 ≤ i < k, and (a, k) bk−→ Z ′.

For the morphism g, we construct an analogous system Sg. We want to compare
the following two systems, where Si + Sj denotes the disjoint union of the two
systems with multiple initial states.

– M1 = S0 + Sf + Sg

– M2 = Sf + Sg

The only deadlocked state in S0 is ∆0. Since this state does not refuse any
input letter, δblock(S0) = ∅. Similarly, the only deadlocked states in Sf are
X and ∆f and neither refuses any input letter, so δblock(Sf ) = ∅. Therefore,
δtraces(M1) = δempty(S0)∪δempty(M2) and δtraces(M2) = δempty(M2) andM1 ∼Q

M2 if and only if Tracks(M1) = Tracks(M2) and δempty(S0) ⊆ δempty(M2).

Lemma 8. Tracks(M1) = Tracks(M2) = Tracks(Sf ) = B∗.

Proof. First, let v ∈ B+. Then v is @-minimal and I v−→ F in Sf . Therefore,
B∗ ⊆ Tracks(Sf ). Since any word w ∈ Σ∗ apes its projection on the output
alphabet B, we deduce that Tracks(Sf ) = B∗. ��

Lemma 9. δempty(S0) is the |@|-upper closure of A+B+$.



A Fresh Look at Testing for Asynchronous Communication 381

Proof. Follows from the definition of δempty and the fact that the set of words

w′ ∈ Σ∗ having a run I w′
−→ ∆0 in S0 is A+B+$. ��

Lemma 10. Let u ∈ A+ and v ∈ B+. Then, uv$ ∈ δempty(Sf ) iff v �= f(u).

Proof. If v �= f(u), the construction of Sf guarantees that there is some witness-
ing interleaving w of u and v that leads to one of the states X , Y or Z. Formally,
assuming that v �= f(u) with u = a1 · · · ap, we distinguish three cases:

1. If v ≺ f(u), let j be such that f(a1 · · · aj−1) / v ≺ f(a1 · · · aj). Consider
w = a1f(a1) · · · aj−1f(aj−1)aj(f(a1 · · ·aj−1)−1v)aj+1 · · · ap. Then w |@| uv
and I w−→ X in Sf .

2. If v = f(a1 · · · aj−1)v′bv′′ with v′ ≺ f(aj), b ∈ B and v′b �/ f(aj). Consider
w = a1f(a1) · · · aj−1f(aj−1)ajv

′bv′′aj+1 · · · ap. Then w |@| uv and I w−→ Y
in Sf .

3. If f(u) ≺ v. Consider w = a1f(a1) · · · apf(ap)(f(u)−1v). Then w |@| uv and
I

w−→ Z in Sf .

Hence, there is a run I w$−−→ ∆f in Sf . Since w$ |@| uv$, uv$ ∈ δempty(Sf ).

Conversely, let I w′
−→ s be a run in Sf with s deadlocked and w′ |@| uv$.

Since $ must occur in w′ we deduce that s = ∆f and w′ = w$ with w |@| uv.
Moreover, there is a run in Sf labelled w going from I to one of the states X ,
Y or Z. Let u = a1 · · · ap.

1. If I w−→ X then we have
w = a1f(a1) · · · aj−1f(aj−1)aj(f(a1 · · ·aj−1)−1v)aj+1 · · ·ap for some j such
that f(a1 · · ·aj−1) / v ≺ f(a1 · · · aj) and we deduce that v �= f(u).

2. If I w−→ Y then we have w = a1f(a1) · · · aj−1f(aj−1)ajv
′bw′′ for some j such

that v′ ≺ f(aj), b ∈ B and v′b �/ f(aj). We deduce that v �= f(u).
3. If I w−→ Z then we have w = a1f(a1) · · · apf(ap)v′ with v′ ∈ B+ and we

deduce that v �= f(u). ��

Theorem 11. M1 ∼Q M2 iff the PCP instance (f, g) has no solution.

Proof. First, assume that the PCP instance (f, g) has a solution and let u ∈ A+

be such that v = f(u) = g(u). Then, uv$ ∈ δempty(S0)\δempty(M2) by Lemmas 9
and 10. Therefore, M1 �∼Q M2.

Conversely, if the PCP instance (f, g) has no solution, then for every u ∈ A+

and v ∈ B+ we have either v �= f(u) or v �= g(u). Hence, uv$ ∈ δempty(M2) by
Lemma 10. Using Lemma 9 we deduce that δempty(S0) ⊆ δempty(M2) since these
sets are |@|-upward closed. Therefore, M1 ∼Q M2. ��

5.3 Decidability of ∼ioblock for Well Structured Systems

Let α and β be block-observations. We say that α is finer than β, denoted α / β,
if β can be obtained from α by merging consecutive blocks. More precisely,



382 P. Bhateja, P. Gastin, and M. Mukund

if α = (u1, v1) · · · (un, vn) and 0 < j1 < · · · < jp = n (p ≥ 1) then α is
finer than β = (u1 · · ·uj1 , v1 · · · vj1) · · · (u1+jp−1 · · ·ujp , v1+jp−1 · · · vjp). Clearly,
if α ∈ IOBlocks(TS) and α / β then β ∈ IOBlocks(TS).

We say that a block observation α = (u1, v1) · · · (un, vn) is reduced if u1 = ε
and uj ∈ Σi for 1 < j ≤ n. A transition system is well structured (WS) if
each state either refuses Σi or refuses Σo. A transition system is receptive if no
quiescent state s refuses an input: s a−→ for all a ∈ Σi.

Lemma 12. Assume that TS is WS. If β ∈ IOBlocks(TS) then there exists α ∈
IOBlocks(TS) reduced with α / β. Therefore, IOBlocks(TS) is characterized by
its reduced block-observations.

Let Lδ(TS) be the language accepted by TS with quiescent states as final.

Lemma 13.

1. Assume that TS is WS. If w = v1a2v2 · · ·anvn ∈ Lδ(TS) with vj ∈ Σ∗o and
aj ∈ Σi then (ε, v1)(a2, v2) · · · (an, vn) ∈ IOBlocks(TS).

2. Let TS be WS and receptive. If (ε, v1)(a2, v2) · · · (an, vn) ∈ IOBlocks(TS)
with vj ∈ Σ∗o and aj ∈ Σi then w = v1a2v2 · · · anvn ∈ Lδ(TS).

We deduce from the lemmata above that ∼ioblock is decidable for WS and re-
ceptive transition systems since for these systems ∼ioblock amounts to language
equivalence: TS1 ∼ioblock TS2 iff Lδ(TS1) = Lδ(TS2).

For a ∈ Σi, we define Lδ,a(TS) as the language accepted by TS when the
final states are all the quiescent states that refuse a.

Lemma 14. Assume that TS is WS. If w = v1a2v2 · · · akvk ∈ Lδ,ak+1(TS)
with vj ∈ Σ∗o for 1 ≤ j ≤ k and aj ∈ Σi for 2 ≤ j ≤ n (k < n) then
(ε, v1)(a2, v2) · · · (an, vn) ∈ IOBlocks(TS).

From this we derive a sufficient condition for ∼ioblock .

Lemma 15. Assume that TS1 and TS2 are well-structured and that Lδ(TS1) =
Lδ(TS2) and Lδ,a(TS1) = Lδ,a(TS2) for all a ∈ Σi. Then, TS1 ∼ioblock TS2.

5.4 Decidability of ∼io for Unlabelled MSC Tests

A message sequence chart, or MSC, visually represents a sequence of communi-
cations between a set of agents [11]. In an MSC, processes are represented by
vertical lines, with time flowing downward, and messages are drawn as arrows
connecting the vertical lines. One way of characterizing patterns of communica-
tions is in terms of the MSCs they generate. For these characterizations, message
labels are often omitted, as in the treatment of regular MSC languages in [10].
When restricted to the communications between the tester and the system under
test, this corresponds to a setting in which the input and output alphabets are
both singletons, since all messages to and from the system under test are un-
labelled. The reduction used to prove Theorem 7 allows us to model ∼io using
rational relations. It is known that equality is decidable for rational relations
over a pair of unary alphabets. Hence, we have the following.

Theorem 16. For tests described using unlabelled MSCs, ∼io is decidable.



A Fresh Look at Testing for Asynchronous Communication 383

6 Future Work

We have presented two intuitive notions of asynchronous testing and compared
their expressive power with the definition due to Tretmans. Much work remains
to be done to apply these new notions to make testing more effective. As men-
tioned in the introduction, the key problem remains that of identifying efficient
yet exhaustive test sets for a given system. There is also the question of how to
efficiently represent a family of such tests—see for instance [9]. Another inter-
esting issue is to see how testing can be done in a distributed manner, extending
the work reported in [12].

References

1. J. Berstel: Transductions and Context-Free Languages, Teubner Studienbücher, In-
formatik (1979).

2. M. Boreale, R. de Nicola and R. Pugliese: Trace and Testing Equivalence in Asyn-
chronous Processes, Inf. and Comput., 172 (2002), 139–164.

3. I.B. Bourdonov, A.S. Kossatchev and V.V. Kuliamin, : Formal Conformance Test-
ing of Systems with Refused Inputs and Forbidden Actions, MBT 2006, Vienna,
Austria, ENTCS, Elsevier (2006).

4. I. Castellani and M Hennessy: Testing Theories for Asynchronous Languages, Proc.
FSTTCS ’98, Springer LNCS 1530 (1998) 90–101.

5. F.S. de Boer, J.W. Klop and C. Palamidessi: Asynchronous communication in pro-
cess algebra, Proc. 7th IEEE Logics in Computer Science (LICS), IEEE Computer
Society Press (1992) 137–147.

6. F.S. de Boer, J.N. Kok, C. Palamidessi and J.J.M.M. Rutten: The failure of fail-
ures: Towards a paradigm for asynchronous communication, Proc. CONCUR 91,
Springer LNCS 527 (1991) 111–126.

7. R. de Nicola and M. Hennessy: Testing equivalences for processes, Theor. Comput.
Sci., 34 (1984) 83–133.

8. R.J. van Glabbeek: The linear time-branching time spectrum I: The semantics
of concrete, sequential processes, in Handbook of Process Algebra, J.A. Bergstra,
A. Ponse and S.A. Smolka, eds., Elsevier (2001) 3–99.

9. O. Henniger: On test case generation from asynchronously communicating state
machines, Proc. IWTCS’97 Cheju Island, South Korea, (1997).

10. J.G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni and P.S. Thiagarajan:
A Theory of Regular MSC Languages, Inf. and Comput., 202(1) (2005) 1–38.

11. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS, Geneva
(1997).

12. C. Jard: Synthesis of distributed testers from true-concurrency models of reactive
systems, Information & Software Technology, 45(12) (2003) 805–814.

13. C. Jard and T. Jéron: TGV: theory, principles and algorithms, Software Tools for
Technology Transfer, 7(4)(2005) 297–315.

14. A. Petrenko, N. Yevtushenko and J.L. Huo: Testing Transition Systems with Input
and Output Testers, Proc TestCom 2003, Sophia Antipolis, France, (2003) 129–145.

15. J. Sakarovitch: Eléments de théorie des automates, Vuibert (2003).
16. J. Tretmans: A formal approach to conformance testing, PhD Thesis, University of

Twente, The Netherlands (1992).
17. J. Tretmans: Test Generation with Inputs, Outputs and Repetitive Quiescence,

Software—Concepts and Tools, 17(3) (1996) 103–120.



Proactive Leader Election in Asynchronous

Shared Memory Systems

M.C. Dharmadeep and K. Gopinath

Computer Science and Automation,
Indian Institute of Science,
Bangalore 500012, India

dharma@csa.iisc.ernet.in, gopi@csa.iisc.ernet.in

Abstract. In this paper, we give an algorithm for fault-tolerant proactive
leader election in asynchronous shared memory systems, and later its for-
mal verification. Roughly speaking, a leader election algorithm is proactive
if it can tolerate failure of nodes even after a leader is elected, and (sta-
ble) leader election happens periodically. This is needed in systems where
a leader is required after every failure to ensure the availability of the sys-
tem and there might be no explicit events such as messages in the (shared
memory) system. Previous algorithms like DiskPaxos[1] are not proactive.

In our model, individual nodes can fail and reincarnate at any point in
time. Each node has a counter which is incremented every period, which
is same across all the nodes (modulo a maximum drift). Different nodes
can be in different epochs at the same time. Our algorithm ensures that
per epoch there can be at most one leader. So if the counter values of
some set of nodes match, then there can be at most one leader among
them. If the nodes satisfy certain timeliness constraints, then the leader
for the epoch with highest counter also becomes the leader for the next
epoch(stable property). Our algorithm uses shared memory proportional
to the number of processes, the best possible. We also show how our
protocol can be used in clustered shared disk systems to select a primary
network partition. We have used the state machine approach to represent
our protocol in Isabelle HOL[3] logic system and have proved the safety
property of the protocol.

1 Introduction and Motivation

In certain systems, a leader is required after every failure to ensure progress of
the system. This can be solved in shared memory systems by electing a leader
every period. This problem admits a trivial solution: let T mod n be the leader
for T th epoch, where n is the number of nodes. There are problems with this
solution.

– Electing a different leader for each epoch is costly. For example, in clustered
shared disk systems, recovery has to be done every time primary network
partition changes. We need a “stable” leader election[7]: failures of nodes
other than the leader should not change the leader.

– Failed nodes are also elected as leaders in some epochs.

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 384–398, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Proactive Leader Election in Asynchronous Shared Memory Systems 385

In this paper, we use the concept of a proactive leader election in the context
of asynchronous shared memory systems. In such an election, a leader renews a
lease every so often. The stable leader election[7], appropriate in asynchronous
network systems, differs from proactive leader election, as in the latter no failures
are needed to trigger leader election; leaders are “elected” on a regular beat.
This is needed in the systems we are interested in such as clustered shared disk
systems where there are no interrrupts to notify events that happen through the
shared medium; all the communication is through shared disks.

Network partition is a possibility in a clustered shared disk system. A primary
network partition is selected to ensure consistency of data on the shared disk.
This is ensured by using a rule such as: the number of nodes in the primary
network partition is atleast

⌊
n
2

⌋
+1, where n is the total number of nodes in the

cluster.
Another way of selecting a primary network partition is by the use of fence

devices. Fencing is used in clustered shared disk systems to prevent nodes in the
non-primary network partitions from accessing disks (to ensure mutual exclusion
for shared resources such as disks). Examples of fencing methods are: reboot
nodes not in primary partition, disable ports corresponding to nodes not in the
primary partition in the network, etc. However, even in this case, there is still a
chance that all nodes get fenced. Moreover, once a primary partition is selected,
if the nodes in primary network partition fail, then the system comes to halt
even if there are nodes that are alive in a different partition.

Consider a simple case of a network containing two nodes.

– Suppose we assign unequal weights to the nodes and require the total weight
of nodes in the primary partition to be strictly greater than that of the
smaller one. If the node with higher weight dies, the system comes to halt
in spite of the node with lower weight being alive.

– Suppose fencing is used. Let us suppose fencing succeeds after a network
partition and a primary partition is selected. Now if the only node in primary
network partition dies, then the system comes to halt.

Networks with higher number of nodes can also run into similar situations.
In this paper, we give an algorithm for fault-tolerant proactive leader election

in asynchronous shared memory systems, and later its formal verification. For
example, in the second case, because of leases used in our algorithm, even if the
node in the primary partition dies and the other node has already been fenced,
in the subsequent epochs, the previously fenced node will get elected as the
leader and the system becomes available again. Our work has been inspired by
Paxos[2] and DiskPaxos[1] protocols; however, these protocols do not have the
lease framework1 incorporated into them.

We assume a model in which individual nodes can fail and reincarnate (this
happens if the fencing method is reboot in clustered shared disk systems) at
any point in time. Nodes have access to reliable shared memory2. There is no
1 The Paxos paper mentions the use of leases but no details are given.
2 We believe this not to be a serious constraint. There are methods for implementing

fault tolerant wait free objects from atomic read/write registers[5]; they can be used



386 M.C. Dharmadeep and K. Gopinath

global clock accessible to all the nodes, but each node has access to a local
counter which is incremented every T secs (whose accuracy has to be within the
limits of a drift parameter) and restarts the protocol; for the current leader, this
is extending the lease. The set of nodes which have the same counter value are
said to be in the same epoch. It is quite possible that at a given instant, different
nodes are in different epochs. In this paper, we propose a protocol that elects a
leader for each epoch. We guarantee that there is at most one leader per epoch.
Moreover, if the nodes in the system satisfy certain timeliness conditions, then
the leader for the epoch with highest counter value also becomes the leader for
the next epoch.

The rest of the paper is organized as follows. In section 2, we describe the
related work. In section 3, we describe the model and algorithm informally. In
section 4, we give details of the algorithm. In section 5, we discuss the encoding
in Isabelle and the main invariant used in proving the safety property. In section
6, we discuss implementation issues. And we conclude with section 7.

2 Related Work

It is is well-known that there is no algorithm to solve consensus in asynchronous
systems [13,14,15]. Failure detectors have been proposed to solve the problem in
weaker models. The failure detector Ω for asynchronous network systems can be
used to implement a leader oracle. Roughly speaking, the leader oracle running
at each node outputs a node which it thinks is operational at that point in time.
Moreover, if the network stabilizes after a point, then there is a time after which
all operational nodes output the same value. Implementations of the the leader
oracle and failure detectors in asynchronous network systems augmented with
different kinds of assumptions are described in several works including [2,9,10,11].

The leader oracle (Ω) augmented with view numbers introduced in [7] is
similar to the problem considered here. Here, in addition, a view changes if
either the current leader, or the network links or both do not satisfy certain
timeliness conditions. But we are interested in asynchronous shared memory
systems that are more suited for clustered shared disk systems. Consensus in
asynchronous shared memory systems with various failure detectors is studied
in [12]. DiskPaxos[1], which has inspired this work, is similar to our protocol
except that it does not have the lease framework.

Light weight leases for storage centric coordination is introduced in [6] that
requires O(1) shared memory (independent of the number of nodes). Their paper
assumes a model similar to the timed asynchronous model [18] with the safety
property involving certain timeliness conditions. We prove the safety property
of our protocol assuming asynchronous shared memory model but it requires
n units of shared memory. This matches the lower bound in Chockler and
Malkhi[16], where they introduce a new abstract object called ranked register

for constructing reliable shared memory. Also, in clustered shared disk systems,
shared “memory” can be realized with some extra effort by using hot swappable
mirrored disk (RAID) devices with hot spares.



Proactive Leader Election in Asynchronous Shared Memory Systems 387

to implement the Paxos algorithm and show that it cannot be realized using less
than n read/write atomic registers.

3 An Informal Description of the Model and Algorithm

We consider a distributed system with n > 1 processes. Each node has a area
allocated in the shared memory (actually, a shared disk) to which only it can
write and other nodes can read. Processes can fail and reincarnate at any point
in time. We call a system stable3 in [s, t] if at all times between s and t the
following hold:

– The drift rate between any two nodes or drift rate of any node from real
time is bounded by δ.

– The amount of time it takes for a single node to read a block from the shared
memory and process it or write a block to the shared memory is less than r
secs.

– The time it takes to change the state after a read or write is negligible
compared to r.

We require the second assumption, because in our case shared disk serves as
the shared memory. We assume that the system is stable infinitely often and for
a sufficient duration so that leader election is possible. We assume that each of
the nodes know the value of δ and r. Each node has access to a local timer which
times out every T secs. We assume T >> 3nr(1 + δ); this will be motivated
later.

The counter value of each node is stored in local memory as well in the shared
memory; it is first written to the shared memory area and then written to the
local memory. The counter values of all nodes are initialized to 0. When a process
reincarnates, it reads the counter value from its shared memory area and then
starts the timer. When the timer at a node expires, it increments its counter
value and restarts the timer.

Each node is associated with a node id which is drawn from the natural
number set. We assume that each node knows the mapping nodeid between the
shared memory addresses and the node ids. We assume that the shared memory
is reliable1.

3.1 Safety Property

The safety property of the protocol requires that if a node with counter value v
becomes leader, the no other node with counter value v ever becomes leader.

3.2 Informal Description of Algorithm

Each block in shared memory allocated to a node consists of a counter value,
a ballot number and proposed leader node id. When the counter of a node is
3 Please note that this is different from the meaning of stable in “stable leader elec-

tion”. Context should make clear what is being meant.



388 M.C. Dharmadeep and K. Gopinath

incremented, it starts the protocol for the new epoch. During each of the phases,
if a node finds a block with higher counter value, it sleeps for that epoch.

– In Phase 0, each node reads the disk blocks of all other nodes and moves to
phase 1.

– In Phase 1, a node writes a ballot number to the disk. It chooses this ballot
number that is greater than any ballot number read in the previous phase.
If none of the blocks read after writing to the disk have a higher ballot
number, the node moves to phase 2. If the node finds a block with higher
ballot number, it restarts Phase1. This phase can viewed as selecting a node
which proposes the leader node id.

– In Phase 2, a node proposes the node id of the leader and writes it to disk.
This value is chosen so that all nodes that have finished the protocol for
the current epoch agree on the same value. If none of the blocks read after
writing the proposed value to the disk have a higher ballot number, the node
completes the protocol for this epoch. If there is a block with a higher ballot
number, it goes back to Phase1. If the proposed value is same as that of this
node id, this node is the leader. Otherwise, it sleeps for this epoch.

4 The Algorithm

Each node’s status (nodestatus) can be in one of the five states: Suspended,
Dead, Leader, PreviousLeader, Participant.

– A node is in Suspended state, if it withdrew from the protocol for the current
epoch.

– A node is in Dead state, if it has crashed.
– A node is in Leader state, if it is the leader for the current epoch.
– A node is in PreviousLeader state, if it was the leader for the previous epoch

and is participating in the protocol for the current epoch.
– A node is in Participant state, if it is participating in the protocol for the

current epoch and is not the leader for the previous epoch.

A block in the shared memory location allocated to a node is of form (ctrv d,
pbal, bal, val), where ctrv d is the counter value of the node (in the shared
memory (actually, disk)) which has write permission to it, pbal is the proposed
ballot number of that node, and bal is equal to the proposed ballot number pbal
for which val was recently set. After each read or write to the shared memory,
depending of whether some condition holds or not, the system moves from one
phase to another. In each of the phases, phase0, phase1 and phase2, before
reading the blocks from the shared memory, each node clears its existing blocks
read in the previous phase. To make our algorithm concise, we have used the
phrase “Node n rereads disk blocks of all nodes” in each of the phases; this
operation need not be atomic in our model.



Proactive Leader Election in Asynchronous Shared Memory Systems 389

We use disk s n to represent the block of node n in the shared memory in
state s. Also, let blocksRead s n represent the blocks of nodes present at node
n in state s. The state of the system is made up of: state of each of the nodes,
blocks of each of the nodes in shared memory, phase of each of the nodes, the
counter value of each of the nodes and blocksRead of each of the nodes.

Let A(disk s n) denote the projection of component A of block disk s n. For
example, pbal(disk s n) denotes the pbal component of block disk s n. Similarly,
A(B :: set) denotes the set composed of projection of component A of all blocks
in set B. We use ctrv s n, nodestatus s n and phase s n to denote the counter
value, state and phase of node n in state s respectively. Note that ctrv is the
value at the node whereas ctrv d is the value at the disk.

There is an implicit extra action in each phase (omitted in the given specifi-
cation for brevity): Phase{i}Read s s′ n m, which says that node n in phase{i}
reads the block of node m and the system moves from state s to state s′. State
variables not mentioned in a state transition below remain unchanged across the
state transition.

For facilitating the proof, we use a history variable LeaderChosenAtT, but
actually not needed in the algorithm: LeaderChosenAtT s t = k if k is the leader
for epoch t in state s. Also, LeaderChosenAtT s′ t = LeaderChosenAtT s t
unless the value for t is changed explicitly.

Phase0
Action: Node n (re)reads disk blocks of all nodes including itself.

Changes the state to Suspended if there exists a
node with higher counter value. Otherwise, moves to
phase 1. Formally,

Case: ∃ br ∈ blocksRead s n. ctrv d(br) > ctrv s n
Outcome: nodestatus s′ n = Suspended.

Case: ¬∃ br ∈ blocksRead s n. ctrv d(br) > ctrv s n.
Outcome: phase s′ n = 1

Phase1
Action: Write a value greater than pbals of

all blocks read in previous phase to the disk. Formally,
disk s′ n = (ctrv s n, pbal′, bal(disk s n), val(disk s n))
where pbal′ = Max(pbal(blocksRead s n)) + 1.

Node n rereads disk blocks of all the nodes.
If there exists a block with higher counter value, move
to Suspended state. If there exists a block with
higher pbal, restart phase 1. Otherwise, move to
phase 2. Formally,

Case: ∃ br ∈ blocksRead s n. ctrv d(br) > ctrv s n.
Outcome: nodestatus s′ n = Suspended.



390 M.C. Dharmadeep and K. Gopinath

Case: ∃ br ∈ blocksRead s n. ctrv d(br) = ctrv s n
& ((pbal(br) > pbal(disk s n))

| (pbal(br) = pbal(disk s n)
& nodeid(br) > n))

Outcome: Node n restarts Phase1.

Case: ¬∃ br ∈ blocksRead s n. ctrv d(br) > ctrv s n
| ((ctrv d(br) = ctrv s n)

& (pbal(br) > pbal(disk s n)))
| ((ctrv d(br) = ctrv s n)

& (pbal(br) = pbal(disk s n))
& (nodeid(br) > n))

Outcome: phase s′ n = 2 .
Phase2

Action: Write the proposed leader node id to the disk,
where the node id is chosen as follows: if no other
node with same counter value has proposed a value, set
it to this node id; otherwise, set it to the value of
the block with highest bal whose proposed value
is non-zero. Formally,
disk s′ n = (ctrv s n, pbal(disk s n), pbal(disk s n), proposedv)

where proposedv =
n if (∀ br ∈ blocksRead s n. ctrv d(br) = ctrv s n

−→ val(br) = 0)
else

m where (m = val(br)
& bal(br) = Max(bal({br| br ∈ blocksRead s n

& ctrv d(br) = ctrv s n
& val(br) �= 0})))

Node n rereads the blocks of all the nodes.
If there exists a node with higher counter value, move to
Suspended state. If there exists a node with higher
pbal restart from phase 1. Otherwise, if the proposed
node id is same as the id of this node, this node is the leader.
If the proposed node id is not same as the id of this node,
move to Suspended state. Formally,

Case: ∃ br ∈ blocksRead s n. ctrv d(br) > ctrv s n.
Outcome: nodestatus s′ n = Suspended.

Case: ∃ br ∈ blocksRead s n. ctrv d(br) = ctrv s n
& ((pbal(br) > pbal(disk s n)

| (pbal(br) = pbal(disk s n)
& nodeid(br) > n))

Outcome: Node n restarts Phase1.



Proactive Leader Election in Asynchronous Shared Memory Systems 391

Case: ¬∃ br ∈ blocksRead s n. ctrv d(br) > ctrv s n
| ((ctrv d(br) = ctrv s n)

& (pbal(br) > pbal(disk s n))
| ((ctrv d(br) = ctrv s n)

& (pbal(br) = pbal(disk s n))
& (nodeid(br) > n))

Outcome: if val(disk s n) = n
then nodestatus s′ n = Leader

& LeaderChosenAtT s′ (ctrv s n) = n
else nodestatus s′ n = Suspended).

Fail
Outcome: nodestatus s′ n = Dead

ReIncarnate
Outcome: nodestatus s′ n = Suspended

IncrementTimer
Case:Node n timer expires.
If this node is the leader in previous epoch, update the
counter value on disk and move to phase 2. Otherwise,
update the counter value on disk, reset bal and
val on disk and move to phase 0.Formally,

Outcome: if nodestatus s n = Leader
then nodestatus s′ n = PreviousLeader

disk s′ n =
(ctrv s n + 1, pbal(disk s n), bal(disk s n),
val(disk s n))
& ctrv s′ n = ctrv s n + 1
& phase s′ n = 2

else nodestatus s′ n = Participant
& disk s′ n = (ctrv s n + 1, pbal(disk s n), 0, 0)
& ctrv s′ n = ctrv s n + 1
& phase s′ n = 0

Note that with our protocol, it is quite possible that a particular block on disk
and the block corresponding to it in blocksRead of some node do not match.
But this doesn’t compromise the safety property mentioned below. However, for
any node n, if the block corresponding to disk s n is in its blocksRead, it will
be same as that of disk s n.

safety property: LeaderChosenAtT s t �= 0 −→
∀ s′, m. (( m �= LeaderChosenAtT s t

& ctrv s′ m = t)
−→ nodestatus s′ m �= Leader)

The safety property of the protocol says that if a node with counter value T
becomes leader then no other node with counter value T ever becomes leader.



392 M.C. Dharmadeep and K. Gopinath

To ensure liveness of the protocol in Timed Asynchronous Model, one can
use leader election oracle mentioned in [6] with ∆ equal to T, and δ equal to
r, to choose a node in IncrementTimer. If a node is not elected by the leader
oracle, it sleeps for approximately 3nr(1 + δ) secs and then starts the protocol.
If the leader oracle succeeds in electing a single leader, that particular node has
to write to its block and read all other blocks, at most thrice, so the execution
would take at most 3nr(1 + δ) in a stable period. Actually, this number can be
reduced to (n+1)r(1+ δ), if the output of the leader oracle in previous epoch is
same as that of leader’s id for current epoch. This is because the previous epoch
leader directly moves to phase2 after it increments its timer. So, if no other
node is in Participant state when the previous epoch leader is participating in
the protocol, it at most has to write to its block twice and read blocks of all other
nodes once. This would take at most (n+1)r(1+δ) secs in a stable period. While
proving the safety property of the protocol in asynchronous model, the timing
constraints are not required. Hence, in the actual specification of the algorithm
in Isabelle, we have not encoded the timing constraints.

5 Encoding in Isabelle and Its Proof

We have used the state machine approach to specify the protocol in Isabelle[3].
The encoding of the state machine in Isabelle is similar to the one given in [4].
Note that in phase1 and phase2, we first write to the disk and then read the
blocks of all nodes. Furthermore, in the specification of the algorithm above, we
have used the phrase “Node n restarts from phase1”. We have realized this by
associating a boolean variable diskWritten with each node. We require it to be
true, as a precondition for any of the cases to hold. When a node writes to the
disk in phase1 or phase2, it sets diskWritten s′ n to true and sets blocksReads′ n
to empty set. In addition, we require all blocks to be read as a precondition for
any of the cases to hold. And by a node n restarting from phase 1, we mean that
diskWritten s′ n is set to false and phase s′ n is set to 1.

In the specification of the protocol in Isabelle, we have three phases while we
had only two phases in the informal description. This is not essential, but we
have done it for better readability of the specification. In the 3rd phase, a node
does nothing except changing its state to Leader or Suspended. Furthermore, in
the specification for phase0, we deliberately split the case 2 of phase0 into two
cases anticipating optimizations later.

The proof is by method of invariants and bottom-up. However unlike [1], the
only history variable we have used is LeaderChosenAtT, where LeaderChosen-
AtT(t) is the unique leader, if any exists, for the epoch t, otherwise it is zero. The
specification of the protocol, the invariants used and the lemmas can be found
in [17]. The proof of the lemmas is quite straightforward, but lengthy because
of the size of the protocol.

The main invariant used in the proof is the AFTLE INV 4 &
AFTLE INV 4k. AFTLE INV 4 requires that, if a node is in phase greater
than 1 and has written its proposed value to the disk, then either MaxBalInp



Proactive Leader Election in Asynchronous Shared Memory Systems 393

is true or there exists a block br, either in blocksRead, or on disk which it is
about to read, which will make this node to restart from phase1. Formally,

AFTLE INV 4 s ≡
∀ p. ((phase s p >= 2)

& (diskWritten s p = True)) −→
((MaxBalInp s (bal(disk s p)) p val(disk s p))
| (∃ br. ((br ∈ blocksRead s p)

& Greaterthan br (disk s p)))
| (∃ n. ((¬hasRead s p n)

& Greaterthan (disk s n) (disk s p)))

where

– Greaterthan br br′ ≡
((ctrv d(br) > ctrv d(br′))
| ((ctrv d(br) = ctrv d(br′))

& (pbal(br) > pbal(br′)))
| ((ctrv d(br) = ctrv d(br′))

& (pbal(br) = pbal(br′))
& (id(br) > id(br′))))

– MaxBalInp requires that, if the proposed value of node n is val, then any
other node with same counter value as that of n and (bal, nodeid) greater
than that of node n, has val as its proposed value. Formally,

MaxBalInp s b m val ≡
(∀ n. ((val > 0)

& (ctrv s n = ctrv s m)
& ((bal(disk s n) > b)

| ((bal(disk s n) = b)
& (n > m)))) −→

val(disk s n) = val)
& (∀ n. (∀ br. ((val > 0)

& (br ∈ blocksRead s n)
& (ctrv s m = ctrv s n)
& (ctrv d(br) = ctrv s n)
& ((bal(br) > b)

| ((bal(br) = b)
& (nodeid(br) > m))) −→

val(br) = val)))

– hasRead s p q ≡
(∃ br ∈ (blocksRead s p). nodeid(br) = q)

AFTLE INV 4k requires that, if a node n is not the leader in previous epoch,
then for any node distinct from n which is in phase greater than 1 and whose



394 M.C. Dharmadeep and K. Gopinath

counter value is less than that of n, one of the following hold: its pbal is less than
pbal of n, it moves to Suspendedor Dead state, moves to phase 1. Formally,

AFTLE INV 4k s ≡
∀ p. (∀ n. ((n �= p)

& (ctrv s n > ctrv s p)
& (phase s p >= 2)
& (diskWritten s p)
& (val(disk s p) = p)
& ((phase s n > 1)

| ((phase s n = 1)
& (diskWritten s n)))) −→

((pbal(disk s n) > pbal(disk s p))
| (pbal(disk s n) = pbal(disk s p)
& (n > p))
|(∃ br ∈ blocksRead s p. Greaterthan br (disk s p))
| (¬hasRead s p n)))

First we proved that the invariant holds for the initial state and then we
proved that if the invariant holds before a state transition, then it also holds
after a state transition.

The first part of the invariant AFTLE INV 4 is similar to the main in-
variant in [1]. The second part AFTLE INV 4k is new. We could not prove
AFTLE INV 4 by itself; we had to strengthen it by adding AFTLE INV 4k to
be able to be prove it. The place where this invariant is needed is in Increment-
Timer. The need for strengthening arises due to the one round optimization in
the protocol. If a node A is the leader for epoch T , another node B is the leader
for epoch T + 1 with pbal smaller than that of A’s and A increments its counter
value and moves to Phase2, then this invariant could be violated. This is what
is ruled out by AFTLE INV 4k. ATFLE INV 4k says that if node A is the
leader for a particular epoch, then any node other than A, which has a counter
value greater than that of A and which had written to the disk in Phase1, has
pbal greater than that of A. We could not prove AFTLE INV 4k alone either.
When incrementTimer event occurs, if two nodes with same ctrv d are leaders
in s, then this invariant could be violated. This is exactly what is ruled out by
AFTLE INV 4.

The following are the only assumptions we used in the proof, apart from
the axioms that each of the possible values of nodestatus are distinct from one
another. Let us denote the set of all nodeids by S.

S �= {}, f inite S, s ∈ S −→ s �= 0

Note that as a consequence, our protocol holds even if the number of nodes
participating in the protocol is 1. But, in this case, leader election is trivial. We



Proactive Leader Election in Asynchronous Shared Memory Systems 395

need the second assumption because we are often required to use the following
rule which had that assumption as one of the premises.

finite A; A �= {}; x ∈ A =⇒ x <= Max A

We have used HOL-Complex logic instead of just HOL logic of Isabelle antici-
pating use of real set later.

In the protocol specification, we chose nodeids from the natural number set.
In spite of that, we had to state that none of the nodeid’s is equal to 0 as a axiom.
Futhermore, for each state transition, we had to mention the state variables that
do not change along with those that change. There are some results which we
could not prove using Isabelle, like

nodestatus s �= (nodestatus s)(n := Leader) ⇒ nodestatus s n �= Leader

which was created during the proof of a lemma by a method named auto. In
such cases, we had to backtrack to find a alternate path which avoids such a
situation. Futhermore, we had to explicitly prove and pass certain results to the
theorem prover because it could not recognize these patterns. (The method auto
could prove these results.)

One such example is the following.

(∀ x ∈ P. Q(x)) =⇒ (∀ x. (x ∈ P ) −→ Q(x))

More such examples can be found in the proof given in [17].

6 Selecting a Primary Network Partition in Clustered
Shared Disk Systems

One can use the above protocol to select the primary network partition in clus-
tered shared disk systems. In the following discussion, we assume that the nodes
in the same network partition are loosely time synchronized, i.e., modulo the
drift parameter. Once consensus is reached on node id of the leader, each node
can check if the node id is present in its membership set. If it is present, it knows
that it is part of the primary partition.

Note that in the asynchronous shared memory model, it is quite possible in
our protocol that two different nodes in two different network partitions become
leaders for different epochs at the same time instant (due to drift), although likely
to happen only infrequently in practice. But, in clustered shared disk systems,
once a primary partition is selected, nodes in network partitions other than the
primary partition are fenced before the recovery is done. So even if two nodes
from two different network partitions become leaders at the same time, at most
one network partition would access the disk.

With existing methods, fencing does not work always correctly. In the process
of implementing the protocol on Redhat Cluster GFS, we realized that there is



396 M.C. Dharmadeep and K. Gopinath

a way in which fencing can always be made to work with Brocade fibre chan-
nel switches4 that allow only one admin telnet login at a time. So each node
can login into every switch first in a predefined order (for example in the or-
der in which they appear in the configuration file), then check if it has been
fenced in any switch, if so logout from all switches and return a error; otherwise
fence all the nodes which are not in its partition, unfence ones in its partition,
and once finished then logout of all the switches. Although this method works
with Brocade switches, it need not work in general. Note that even this method
can fail if the only node in the current primary partition fails in a two node
cluster.

Our protocol requires some set of disks to be outside the fencing domain
which it can use as the shared memory. We think such a scenario is not rare
because when different nodes are accessing different disks, no fencing is required
between them. If fencing uses the Brocade switch property, when a leader gets
elected for a new epoch, it can use the fencing method mentioned above with
the modification that before returning an error it unfences itself. Example two
node network and the fencing method is illustrated in Figure 1.

server 1 server 2

port# 8

port# 9port# 3

port# 11

JBOD1

Sample two node configuration

JBOD2(Shared disk)

Zones
zone1  port#s 3,8,11
zone2  port#s 9,8,11

(non−shared
partitions and
blocks needed
for our protocol)

1) Login into all the switches in some 
     predefined order.

2) For each switch, check if the shared disk
     is in our zone. If not, add it to zone, logout 
     from all the switches and return an error.

      (This causes cluster software to block 
        operations).

3)  If the shared disk is part of our zone,
      remove it from zones of all nodes not

       in our network partition, logout from all 
       switches and return   sucess.

Fencing for nodeid n

Brocade 3800 switches

Fig. 1. Example two node cluster configuration

4 Fibre Channel (FC) is a specialized data link layer for storage devices. FC switches
are similar in function to gigabit ethernet switches.



Proactive Leader Election in Asynchronous Shared Memory Systems 397

Note as a consequence of the safety property, if the highest ctrv d in the system
is T, then recovery/fencing would have been done at most T times. Futhermore,
once a primary partition is selected and the leader in the primary partition is
in the epoch with highest counter value and no more partitions/failures occur
in the primary partition, then the leader for this epoch will be elected as the
leader for the next epoch if the system is in stable period. In this case, fencing
and recovery need not be done again. Furthermore, one more optimization that
could be done in Phase0 : when a node finds that there exists a block with higher
pbal or same pbal from a higher node id, it changes its state to Suspended. We
believe similar optimizations can be done in Phase1 and Phase2 too. But this
would require that once a node is selected as a leader, it inform the nodes in its
partition through the network which otherwise can be avoided assuming nodes
in same network partition are (loosely) time synchronized.

7 Conclusion

In this paper, we have given a protocol for proactive leader election in asyn-
chronous shared memory systems. We have specified the protocol and proved
the safety property of the protocol using Isabelle [3] theorem prover. We have
also shown how one can use the protocol to choose a primary network partition
in clustered shared disk systems. As a part of future work, we intend to specify
the leader oracle protocol mentioned in [6] using Isabelle and also use it to prove
the liveness property of our protocol with the the leader oracle in timed asyn-
chronous model. We also intend to incorporate the fencing part in the protocol
and prove its correctness. A prototype implementation is currently in progress
and we intend to experimentally understand the relationship between δ, r and
the number of nodes n. The complete theory files along with the technical report
are accessible at http://agni.csa.iisc.ernet.in/˜dharma/ATVA06/.

Acknowledgements

We thank V.H.Gupta for reviewing the earlier draft. We thank anonymous re-
viewers for their comments.

References

1. E. Gafni and L. Lamport. “Disk Paxos,” In Proceedings of the International Sym-
posium on Distributed Computing, pages 330-344,2000.

2. L. Lamport. “The part-time parliament,” ACM Transactions on Computer systems
16 (1998) 133-169.

3. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. “Isabelle/HOL – A
Proof Assistant for Higher-Order Logic,” volume 2283 of LNCS. Springer, 2002.

4. “http://afp.sourceforge.net/browser info/current/HOL/DiskPaxos/”
5. Prasad Jayanti, Tushar Deepak Chandra, and Sam Toueg. “ Fault-tolerant wait-

free shared objects,” In Proceedings of the 33rd Annual Symposium on Foundations
of Computer Science, 1992.



398 M.C. Dharmadeep and K. Gopinath

6. Chockler, Gregory and Dahlia Malkhi. “Light-Weight Leases for Storage-Centric
Coordination,” MIT-LCS-TR-934 Publication Date: 4-22-2004.

7. Marcos K. Aquilera, Carole Delporte-Gallet, Huques Fauconnier and Sam Toueg.
“Stable Leader Election,” In Proceedings of the 15th International Conference on
Distributed Computing, 2001. Pages: 108-122.

8. Lampson, B. “How to build a highly available system using consensus,” In Dis-
tributed Algorithms, ed. Babaoglu and Marzullo, LNCS 1151, Springer , 1996, 1-17.

9. R. De Prisco, B. Lampson, and N. Lynch. “Revisiting the Paxos algorithm,” In
Proceedings of the 11th Workshop on Distributed Algorithms (WDAG), pages 11-
125,Saarbrücken, September 1997.

10. M. Larrea, A. Fernández, and S. Arévalo. “Optimal implementation of the weakest
failure detector for solving consensus,” In Proceedings of the 19th IEEE Symposium
on Reliable Distributed Systems, SRDS 2000, pages 52-59, Nurenberg, Germany,
October 2000.

11. F. Chu. “Reducing Ω to �W ,” Information Processing Letters, 67(6):293-298,
September 1998.

12. Wai-Kau Lo and Vassos Hadzilacos. “Using Failure Detectors to Solve Consensus
in Asynchronous Shared-Memory Systems,” In Proceedings of the 8th International
Workshop in Distributed Algorithms, 1994. Pages: 280-295.

13. Michael J. Fischer, Nancy A. Lynch and Michael S. Paterson. “Impossibility of dis-
tributed consensus with one faulty process,” Journal of the Association for Com-
puting Machinery, 32(2): 374-382, April 1985.

14. Danny Dolev, Cynthia Dwork and Larry Stockmeyer. “On the minimal synchro-
nism needed for distributed consensus,” Journal of the ACM, 34(1):77-97 , January
1987.

15. Michael C. Loui and Hosame H. Abu-Amara. “Memory requirements for agreement
among unreliable asynchronous processes,” In advances in Computer Research,
volume 4, pages 163-183. JAI Press Inc., 1987.

16. G. Chockler and D. Malkhi. “Active Disk Paxos with Infinitely Many Processes,”
Proceedings of the 21st ACM Symposium on Principles of Distributed Computing.
(PODC), August 2002.

17. “http://agni.csa.iisc.ernet.in/˜dharma/ATVA06/document.pdf”
18. F. Cristian and C. Fetzer. “The timed asynchronous system model,” iin Proceed-

ings of the 28th Annual International Symposium on Fault-Tolerant Computing,
Munich, Germany, June 1998, pp. 140-149.



A Semantic Framework for Test Coverage

Laura Brandán Briones1, Ed Brinksma1,2, and Mariëlle Stoelinga1

1 Faculty of Computer Science, University of Twente, The Netherlands
2 Embedded Systems Institute, The Netherlands

{marielle,brandanl}@cs.utwente.nl, Ed.Brinksma@esi.nl

Abstract. Since testing is inherently incomplete, test selection has vital
importance. Coverage measures evaluate the quality of a test suite and
help the tester select test cases with maximal impact at minimum cost.
Existing coverage criteria for test suites are usually defined in terms of
syntactic characteristics of the implementation under test or its specifi-
cation. Typical black-box coverage metrics are state and transition cov-
erage of the specification. White-box testing often considers statement,
condition and path coverage. A disadvantage of this syntactic approach
is that different coverage figures are assigned to systems that are behav-
iorally equivalent, but syntactically different. Moreover, those coverage
metrics do not take into account that certain failures are more severe
than others, and that more testing effort should be devoted to uncover
the most important bugs, while less critical system parts can be tested
less thoroughly.

This paper introduces a semantic approach to black box test coverage.
Our starting point is a weighted fault model (or WFM), which augments
a specification by assigning a weight to each error that may occur in an
implementation. We define a framework to express coverage measures
that express how well a test suite covers such a specification, taking
into account the error weight. Since our notions are semantic, they are
insensitive to replacing a specification by one with equivalent behaviour.
We present several algorithms that, given a certain minimality criterion,
compute a minimal test suite with maximal coverage. These algorithms
work on a syntactic representation of WFMs as fault automata. They are
based on existing and novel optimization problems. Finally, we illustrate
our approach by analyzing and comparing a number of test suites for a
chat protocol.

1 Introduction

After years of limited attention, the theory of testing has now become a widely
studied, academically respectable subject of research. In particular, the applica-
tion of formal methods in the area of model-driven testing has led to a better
understanding of the notion of conformance between an implementation and a
specification. Automated generation methods for test suites from specifications
[15,16,4,13] have been developed, which have lead to a new generation of pow-
erful test generation and execution tools such as SpecExplorer[6], TorX[3] and
TGV[8].

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 399–414, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



400 L. Brandán Briones, E. Brinksma, and M. Stoelinga

A clear advantage of a formal approach to testing is the provable soundness of
the generated test suites, i.e. the property that each generated test suite will only
reject implementations that do not conform to the given specification. In many
cases also a completeness or exhaustiveness result is obtained, i.e. the property
that for each non-conforming implementation a test case can be generated that
will expose its errors by rejecting it (cf. [15]).

In practice, the above notion of exhaustiveness is usually problematic, since
exhaustive test suites will contain infinitely many tests. This raises the question
of test selection, i.e. the selection of well-chosen, finite test suites that can be
generated (and executed) within the available resources. Test case selection is
naturally related to a measure of coverage, indicating how much of the required
conformance is tested for by a given test selection. In this way, coverage measures
can assist the tester in choosing test cases with maximal impact against some
optimization criterion (i.e. number of tests, execution time, cost).

Typical coverage measures used in black-box testing are the number of states
and/or transitions of the specification that would be visited by executing a test
suite against it [17,9,12]; white-box testing often considers the number of state-
ments, conditional branches, and paths through the implementation code that
are touched by the test suite execution [10,11,1]. Although these measures do
indeed help with the selection of tests and the exposure of faults, they share two
shortcomings:

1. The approaches are based on syntactic model features, i.e. coverage figures
are based on constructs of the specific model or program used as a reference.
Therefore, we may get different coverage results when we replace the model
in question with a behaviorally equivalent, but syntactically different one.

2. The approaches fail to account for the non-uniform gravity of failures,
whereas it would be natural to select test cases in such a way that the
most critical system parts are tested most thoroughly.

It is important to realize that the weight of a failure cannot be extracted
from a purely behavioral model, as it may depend in an essential way on the
particular application of the implementation under test (IUT). The importance
of the same bug may vary considerably between, say, its occurrence as part of
an electronic game, and that as part of the control of a nuclear power plant.

Overview. This paper introduces a semantic approach for test coverage that
aims to overcome the two points mentioned above. Our point of departure is
a WFM that assigns a weight to each potential error in an implementation.
We define our coverage measures relative to these WFMs. Since WFMs are
augmented specifications, our coverage framework qualifies as black box.

Since WFMs are infinite semantic objects, we need to represent them finitely
if we want to model them or use them in algorithms. We provide such represen-
tations by fault automata (Section 4). Fault automata are rooted in ioco test
theory [15] (recapitulated in Section 3), but their principles apply to a much
wider setting.



A Semantic Framework for Test Coverage 401

We provide two ways of deriving WFMs from fault automata, namely the
finite depth WFMs (Section 4.1) and the discounted WFMs (Section 4.2). The
coverage measures obtained for these fault automata are invariant under behav-
ioral equivalence. For both fault models, we provide algorithms that calculate
and optimize test coverage (Section 5). These can all be studied as optimization
problems in a linear algebraic setting. In particular, we compute the (total, abso-
lute and relative) coverage of a test suite w.r.t. a weighted fault model (WFM).

We apply our theory to a small chat protocol (Section 6) and end by provid-
ing conclusions and suggestions for further research (Section 7). Due to space
restrictions, we refer the reader to [5] for the full version of this paper.

2 Coverage Measures in Weighted Fault Models

Preliminaries. Let L be any set. Then L∗ denotes the set of all finite sequences
over L, which we also call traces over L. The empty sequence is denoted by ε and
|σ| denotes the length of a trace σ ∈ L∗. We use L+ = L∗ \ {ε}. For σ, ρ ∈ L∗,
we say that σ is a prefix of ρ and write σ 0 ρ, if ρ = σσ′ for some σ′ ∈ L∗. If
σ is a prefix of ρ, then ρ is a suffix of σ. We call σ a proper prefix of ρ and ρ a
proper suffix of σ if σ 0 ρ, but σ �= ρ.

We denote by P(L) the power set of L and for any function f : L → R, we
use the convention that

∑
x∈∅ f(x) = 0 and

∏
x∈∅ f(x) = 1.

2.1 Weighted Fault Models

A weighted fault model specifies the desired behavior of a system by not only
providing the correct system traces, but by also giving the severity of the erro-
neous traces. In this section, we work with a fixed action alphabet L.

Definition 1. A weighted fault model (WFM) over L is a function f : L∗ →
R≥0 such that 0 <

∑
σ∈L∗ f(σ) <∞.

Thus, a WFM f assigns a non-negative error weight to each trace σ ∈ L∗.
If f(σ) = 0, then σ represents correct system behavior; if f(σ) > 0, then σ
represents incorrect behavior and f(σ) denotes the severity of the error. So, the
higher f(σ), the worse the error. We sometimes refer to traces σ ∈ L∗ with
f(σ) > 0 as error traces and traces with f(σ) = 0 as correct traces in f .

We require the total error weight
∑

σ∈L∗ f(σ) to be finite and non-zero, in
order to define coverage measures relative to the total error weight.

2.2 Coverage Measures

This section abstracts from the exact shape of test cases and test suites. Given
a WFM f over action alphabet L, we only use that a test is a trace set, t ⊆ L∗;
and a test suite is a collection of trace sets, T ⊆ P (L∗). In this way we define the
absolute and relative coverage w.r.t. f of a test and for a test suite. Moreover, our
coverage measures apply in all settings where test cases can be characterized as



402 L. Brandán Briones, E. Brinksma, and M. Stoelinga

trace sets (in which case test suites can be characterized as collections of trace
sets). This is a.o. true for tests in TTCN [7], ioco test theory [15] and FSM
testing [17,9].

Definition 2. Let f : L∗ → R≥0 be a WFM over L, let t ⊆ L∗ be a trace set
and let T ⊆ P(L∗) be a collection of trace sets. We define

• abscov(t, f) =
∑

σ∈t f(σ) and abscov(T, f) = abscov(∪t∈T t, f)
• totcov(f) = abscov(L∗, f)
• relcov(t, f) = abscov(t,f)

totcov(f) and relcov(T, f) = abscov(T,f)
totcov(f)

The coverage of a test suite T w.r.t. f measures the total weight of the errors
that can be detected by tests in T . The absolute coverage abscov(T, f) simply
accumulates the weights of all error traces in T . Note that the weight of each trace
is counted only once, since one test case is enough to detect the presence of an
error trace in an IUT. The relative coverage relcov(T, f) yields the error weight
in T as a fraction of the weight of all traces in L∗. Since absolute (coverage)
numbers have meaning only if they are put in perspective of a maximum or
average; we advocate that the relative coverage yields a good indication for the
quality of a test suite.

Completeness of a test suite can easily be expressed in terms of coverage.

Definition 3. A test suite T ⊆ P(L∗) is complete w.r.t. a WFM f : L∗ → R≥0

if relcov(T, f) = 1.

3 Test Cases in Labeled Input-Output Transition
Systems

This section recalls some basic theory about test derivation from labeled input-
output transition systems, following ioco testing theory [15]. It prepares for the
next section that treats an automaton-based formalism for specifying WFMs.

3.1 Labeled Input-Output Transition Systems

Definition 4. A labeled input-output transition system (LTS) A is a tuple
〈S, s0, L,∆〉, where

• S is a finite set of states
• s0 ∈ S is the initial state
• L is a finite action alphabet. We assume that L = LI ∪LO is partitioned

(i.e. LI ∩ LO = ∅) into a set LI of input labels (also called input actions
or inputs) and a set LO of output labels LO (also called output actions or
outputs). We denote elements of LI by a? and elements of LO by a!

• ∆ ⊆ S × L × S is the transition relation. We require ∆ to be deterministic,
i.e. if (s, a, s′), (s, a, s′′) ∈ ∆, then s′ = s′′. The input transition relation ∆I

is the restriction of ∆ to S×LI ×S and the output transition relation ∆O is
the restriction of ∆ to S×LO ×S. We write ∆(s) = {(a, s′) | (s, a, s′) ∈ ∆}
and similarly for ∆I(s) and ∆O(s). We denote by outdeg(s) = |∆(s)| the
outdegree of state s, i.e. the number of transitions leaving s



A Semantic Framework for Test Coverage 403

We denote the components of A by SA, s0A, LA, and ∆A. We omit the subscript
A if it is clear from the context.

We have required A to be deterministic only for technical simplicity. This is not
a real restriction, since we can always determinize A. We can also incorporate
quiescence (i.e. the absence of outputs), by adding a self loop s δ−→s labeled
with a special label δ to each quiescent state s, i.e. each s with ∆O(s) = ∅ and
considering δ as an output action. But, since quiescence is not preserved under
determinization, we must first determinize and then add quiescence.

Example 1. Figure 1 a) presents a LTS of a MP3 player: if the user pushes the
play-button, a song should be played. In b), we see the extension with quiescence.
Since δ is not enabled in state q1, we explicitly forbid the absence of outputs in
q1, i.e. a song must be played. The double circles represent the initial state.

a)

s0

�play?

s1

� song!
� play?

b)

s0

�play?

� δ s1

� song!
� play?

c)

�
play?

�
δ

�
song!

fail

�
play?

�
δ

�
song!

fail pass

d)

s0

�

play?

� δ

�
song!

10

s1

�

song!

�play?

�
δ

5

Fig. 1. A MP3 player: 1) its specification as a LTS; b) its extension with quiescence;
c) a possible tests case t1; and d) its fault automaton

We introduce the usual language theoretic concepts for LTSs.

Definition 5. Let A be a LTS, then

• A path in A is a finite sequence π = s0a1s1 . . . sn such that s0 = s0 and, for
all 1 ≤ i ≤ n, we have (si−1, ai, si) ∈ ∆. We denote by pathsA the set of all
paths in A and by last(π) = sn the last state of π.

• The trace of a path π, trace(π), is the sequence a1a2 . . . an of actions occur-
ring in π. We write tracesA = {trace(π)|π ∈ pathsA} for the set of all traces
in A.

• Let σ ∈ L∗ be any trace, not necessarily one from A. We write reachk
A(σ)

for the set of states that can be reached in A in exactly k steps by following
σ, i.e. s′ ∈ reachk

A(s) if |σ| = k and there is a path π ∈ pathsA such that
trace(π) = σ and last(π) = s′. We write reachA(σ) for the set of states
that can be reached via trace σ in any number of steps, i.e. reachA(σ) =
∪k∈N reachk

A(σ); we write reachk
A for the set of states that can be reached in

k number of steps, by following any trace, i.e. reachk
A = ∪σ∈L∗ reachk

A(σ);
and reachA = ∪σ∈L∗ reachA(σ) for the set of all reachable states in A.

As before, we leave out the subscript A if it is clear from the context.



404 L. Brandán Briones, E. Brinksma, and M. Stoelinga

Definition 6. Let A be a LTS and s ∈ S be a state in A, then A[s] denotes the
LTS 〈S, s, L,∆〉.
Thus, A[s] is the same as A, but with s as initial state. This notation allows us
to speak of paths, traces, etc, in A starting from a state that is not the initial
state. For instance, pathsA[s] denotes the set of paths starting from state s.

3.2 Test Cases

Test cases for LTSs are based on ioco test theory [15]. As in TTCN, ioco test
cases are adaptive. That is, the next action to be performed (observe the IUT,
stimulate the IUT or stop the test) may depend on the test history, that is,
the trace observed so far. If, after a trace σ, the tester decides to stimulate the
IUT with an input a?, then the new test history becomes σa?; in case of an
observation, the test accounts for all possible continuations σb! with b! ∈ LO

an output action. Ioco theory requires that tests are ”fail fast”, i.e. stop after
the discovery of the first failure, and never fail immediately after an input. If
σ ∈ tracesA, but σa? /∈ traceA, then the behavior after σa? is not specified in s,
leaving room for implementation freedom. Formally, a test case consists of the
set of all possible test histories obtained in this way.

Definition 7. • A test case (or test) t for a LTS A is a finite, prefix-closed
subset of L∗A such that
− if σa? ∈ t, then σb /∈ t for any b ∈ L with a? �= b
− if σa! ∈ t, then σb! ∈ t for all b! ∈ LO

− if σ /∈ tracesA, then no proper suffix of σ is contained in t
We denote the set of all tests for A by T (A).

• The length |t| of test t is the length of the longest trace in t, i.e. |t| =
maxσ∈t |σ|. We denote by T k(A) the set of all tests for A with length k.

Example 2. Figure 1 c) shows a test case for the MP3 player from Figure 1,
represented as a tree and augmented with verdicts pass and fail. The prefix
closed trace set is obtained by taking all traces in the tree.

Since each test of A is a set of traces, we can apply Definition 2 and speak of
(absolute, total and relative) coverage of a test case (or a test suite) of A, w.r.t
to a WFM f . However, not all WFMs are consistent with the interpretation that
traces of A represent correct system behavior, and that tests are ”fail fast” and
do not fail after an input.

Definition 8. Let A be a LTS and let f : L∗ → R≥0 be a WFM. Then f is
consistent with A if L = LA and for all σ ∈ L∗A we have

• If σ ∈ tracesA, then f(σ) = 0 (correct traces have weight 0).
• f(σa?) = 0 (no failure occurs after an input).
• If f(σ) > 0 then f(σρ) = 0 for all ρ ∈ L+

A (at most one failure per trace).

The following result states that the set containing all possible test cases has
complete coverage.

Theorem 1. Let A be a LTS and f be a WFM consistent with A. Then, the
set T (A) of all test cases for A is complete w.r.t. f .



A Semantic Framework for Test Coverage 405

4 Fault Automata

Weighted fault models are infinite, semantic objects. This section introduces
fault automata, which provide a syntactic format for specifying WFMs. A fault
automaton is a LTS A augmented with a state weight function r. The LTS A
is the behavioral specification of the system, i.e. its traces represent the correct
system behaviors. Hence, these traces will be assigned error weight 0; traces not
in A are erroneous and get an error weight through r, as explained below.

Definition 9. A fault automaton (FA) F is a pair 〈A, r〉, where A is a LTS and
r : S ×LO → R≥0. We require that, if r(s, a!) > 0, then there is no a!-successor
of s in F , i.e. there is no s′ ∈ S such that (s, a!, s′) ∈ ∆. We define r : S → R≥0

as r(s) =
∑

a∈LO(s) r(s, a). Thus, r̄ accumulates the weight of all the erroneous
outputs in a state. We denote the components of F by AF and rF and leave out
the subscripts F if it is clear from the context. We lift all concepts and notations
(e.g. traces, paths, etcetera) that have been defined for LTSs to FAs.

Example 3. Figure 1 d) presents a FA for our MP3 example. We give error weight
5 if in state q0 a song is played; and weight 10 if in state q1 no song occurs.

We wish to construct a WFM f from the FA F , using r to assign weights to
traces not in A. If there is no outgoing a!-transition in s, then the idea is that,
for a trace σ ending in s, the (incorrect) trace σa! gets weight r(s, a!). Doing so,
however, could cause the total error weight totcov(f) to be infinite.

We consider two solutions to this problem. First, finite depth WFMs (Sec-
tion 4.1) consider, for a given k ∈ N, only faults in traces of length k or smaller.
Second, discounted WFMs (Section 4.2) obtain finite total coverage through dis-
counting, while considering error weight in all traces. The solution presented
here are only two potential solutions, there are many other ways to derive a
WFM from a fault automaton.

4.1 Finite Depth Weighted Fault Models

As said before, the finite depth model derives a WFM from a FA F , for a given
k ∈ N, by ignoring all traces of length longer than k, i.e. by putting their error
weight to 0. For all other traces, the weight is obtained via the function r. If σ
is a trace of F ending in s, but σa! is not a trace in F , then σa! gets weight
r(s, a!).

Definition 10. Given a FA F , and a number k ∈ N, we define the function
fk
F : L∗ → R≥0 by

fk
F(ε) = 0 fk

F (σa) =

{
r(s, a) if s ∈ reachk

F (σ) ∧ a ∈ LO

0 otherwise

Note that this function is uniquely defined because F is deterministic, so that
there is at most one s with s ∈ reachk

F(σ). Also, if fk
F(σa) = r(s, a) > 0, then

σ ∈ tracesF , but σa /∈ tracesF .



406 L. Brandán Briones, E. Brinksma, and M. Stoelinga

The following proposition states that fk
F is a WFM consistent with F , pro-

vided that F contains as most one state with a positive accumulated weight and
that is reachable within k steps.

Proposition 1. Let F be a FA, and k ∈ N. If there is an i ≤ k and a state
s ∈ reachi

F with r(s) > 0, then fk
F is a WFM consistent with F .

Example 4. Given the FA F from Figure 1 d), Figure 2 shows the function fk
F for

k = 3. Using t the test presented in Figure 1 c), we can obtain abscov(t, fk
F) = 5.

	

song!



play?

�

δ

10

�

song!


play?

�

δ

�

song!

�
play?



δ

5 10

�

song!

�
play?

�

δ

10 0 0
�

song!

�
play?

�

δ

0 0 5
�

song!

�
play?

�

δ

0 0 5
�

song!

�
play?

�

δ

10 0 0

Fig. 2. Function fk
F , for k = 3 and F from Figure 1 b)

4.2 Discounted Weighted Fault Models

While finite depth WFMs achieve finite total coverage by considering finitely
many traces, discounted WFMs take into account the error weights of all traces.
To do so, only finitely many traces may have weight greater than ε, for any ε > 0.
One way to do this is by discounting: lowering the weight of a trace proportional
to its length. The rationale behind this is that errors in the near future are worse
than errors in the far future, and hence, the latter should have higher weights.

In its basic form, a discounted WFM f for an FA F sets the weight of a trace
σa! to α|σ|r(s, a!), for some discount factor α ∈ (0, 1). If we take α small enough,
then one can easily show that

∑
σ∈L∗ f(σ) < ∞. To be precise, we take α < 1

d ,
where d is the branching degree of F (i.e. d = maxs∈S outdeg(s)). Indeed, let
αd < 1 and M = maxs r(s, a)/α. Then f(σ) ≤ α|σ|M . Since there are at most
dk traces of length k in F , it follows that∑

σ∈L∗
f(σ) =

∑
k∈N

∑
σ∈Lk

αkM ≤
∑
k∈N

dkαkM =
M

1 − dα <∞

To obtain more flexibility, we allow the discount to vary per transition. That
is, we work with a discount function α : S×L×S → R≥0 that assigns a positive
weight to each transition of F . Then we discount the trace a1 . . . ak obtained
from the path s0a1s1 . . . sk by α(s0, a1, s1)α(s1, a2, s2) · · ·α(sk−1, ak, sk). The
requirement that α is small enough now becomes:

∑
a∈L,s′∈S α(s, a, s′) < 1, We



A Semantic Framework for Test Coverage 407

can even be more flexible and, in the sum above, do not range over states in
which all paths are finite, as in these states we have finite total coverage anyway.
Thus, if InfF is the set of all states in F with at least one outgoing infinite path,
we require for all states s:

∑
a∈L,s′∈Inf F

α(s, a, s′) < 1.

Definition 11. Let F be a FA. The set Inf F ⊆ SF of states with at least one
infinite path is defined as Inf F = {s ∈ S | ∃π ∈ pathsF [s] . |π| > |S|}.

Definition 12. Let F be a FA. Then a discount function for F is a function
α : SF × LF × SF → R≥0 such that
• For all s, s′ ∈ SF , and a ∈ LF we have α(s, a, s′) = 0 iff (s, a, s′) /∈ ∆F .
• For all s ∈ SF , we have:

∑
a∈LF ,s′∈Inf F

α(s, a, s′) < 1.

Definition 13. Let α be a discount function for the FA F . Given a path π =
s0a1 . . . sn in F , we define α(π) as

∏n
i=1 α(si−1, ai, si).

Definition 14. Let F be a FA, s ∈ S, and α a discount function for F . We
define the function fα

F : L∗ → R≥0 by
fα
F(ε) = 0

fα
F(σa) =

{
α(π) · r(s, a) if s ∈ reachF (σ) ∧ a ∈ LO ∧ trace(π) = σ

0 otherwise

Since F is deterministic, there is at most one π with trace(π) = σ and at most
one s ∈ reach(σ). Hence, the function above is uniquely defined.

The following proposition states that fα
F is a WFM consistent with F , if F

contains as most one reachable state with a positive accumulated weight.

Proposition 2. Let F be a FA and α a discount function for F . If there is a
state s ∈ reachF with r(s) > 0, then fα

F is a WFM consistent with F .

	

song!



play?

�

δ

γ10

�

song!


play?

�

δ

�

song!

�
play?



δ

γ25 γ210

�

song!

�
play?

�

δ

γ310

· · · · · ·

�

song!

�
play?

�

δ

· · · · · ·

γ35

�

song!

�
play?

�

δ

· · · · · ·

γ35

�

song!

�
play?

�

δ

γ310

· · · · · ·

Fig. 3. Function fα
F for F from Figure 1 b) and α(s, a, s′) = γ



408 L. Brandán Briones, E. Brinksma, and M. Stoelinga

Example 5. Figure 3 presents function fα
F for F from Figure 1 b) and α(s, a, s′) =

γ for every transition (s, a, s′) ∈ ∆. Using t the test presented in Figure 1 c), we
can obtain abscov(t, fα

F) = γ25.

It is not difficult to see that our coverage notions are truly semantic in that they
are invariant under r-preserving bisimilarity. More precisely, suppose states s,
s′ in F are bisimilar, and that bisimilar states are required to have the same
r-value (i.e. r(s) = r(s′)). Then fk

F [s] = fk
F [s′] and fα

F [s] = fα
F [s′] for all α and k.

We refer the reader to [5] for more details.

4.3 Calibration

Discounting weighs errors in short traces more than in long traces. Thus, if we
discount too much, we may obtain very high test coverage just with a few short
test cases. The calibration result (Theorem 2) presented in this section shows
that, for any FA F and any u > 0, we can choose the discounting function in
such a way that test cases of a given length k or longer are needed to achieve
test coverage higher than a coverage bound 1−u. That is, we show that for any
given k and u, there exists a discount function α such that the relative coverage
of all test cases of length k or shorter is less than u. This means that, to get
coverage higher than 1 − u, one needs test cases longer than k.

For technical reasons, the weight assignment function of a FA have to be fair,
i.e. all states in Inf must be able to reach some state with a positive weight.

Definition 15. A FA F has fair weight assignment if for all s ∈ Inf F , there
exists state s′ ∈ reachF [s] with r(s′) > 0.

Theorem 2. Let F be a FA with fair weight assignment. Then there exists a
family of discount functions {αu}u∈(0,1) for F such that for all k ∈ N we have
limu↓0 relcov(T k(fαu

F ), fαu

F ) = 0.

5 Algorithms

This section represents various algorithms for computing and optimizing cover-
age for a given FA, interpreted under the finite depth or discounted weighted
fault model.

In particular, Section 5.1 presents algorithms to calculate the absolute cover-
age in a test suite of a given FA. In Section 5.2 we give algorithms that yield the
total coverage in a weighted fault model derived from a FA. Section 5.3 provides
two optimization algorithms. The first one finds a test case of length k with
maximal coverage; the second one finds a test suite with n test cases of length
k and maximal coverage.

We use the following notation. Recall that F [s] denotes the FA that is the
same as F , but with s as initial state. When F is clear from the context, we



A Semantic Framework for Test Coverage 409

write respectively fk
s and fα

s for the weighted fault models fk
F [s] and fα

F [s] derived
from F . Moreover, given a FA F = 〈A, r〉, we write AF for the multi-adjacency
matrix of A, containing at position (s, s′) the number of edges between s and
s′, i.e. (AF )ss′ =

∑
a:(s,a,s′)∈∆ 1. If α is a discount function for F , then Aα

F is a
weighted version of AF , i.e. (Aα

F )ss′ =
∑

a∈L α(s, a, s′). We omit the subscript
F if it is clear from the context.

5.1 Absolute Coverage in a Test Suite

Given test suite T , a FA F , and either a discounting function α for F or a number
k, we desire to compute abscov(T, f) = abscov(∪t∈T t, f), where f = fk

F or fα
F .

Given two tests t and t′ and an action a, we write at for {aσ | σ ∈ t} and t+ t′

for the union t∪ t′. We call a supertest (Stest) the union of any number of tests.
Now, we can write each test as t = ε; or t = at1 in case a is an input; or

t = b1t1 + · · ·+ bntn when b1, · · · , bn are all output actions of F . Each supertest
can be written as a1t

′
1 + · · · + akt

′
k + b1t

′′
1 + · · · + bnt

′′
n where ai are inputs and

bi are all outputs and t′i, t
′′
j are supertests.

To compute the union ∪t∈T t, we recursively merge all tests in T into a su-
pertest using the infix operator ) : Stest× test → Stest. Then we add the error
weights of all traces in ∪t∈T t via the function ac.

Merging of Tests. Let t′ be a Stest, t′ = a1t
′
1 + · · · + akt

′
k + b1t′′1 + · · · + bnt′′n

and t be a test, then t = ε or t = at1 or t = b1t
′
1 + · · · + bnt′n

t′ ) t =⎧⎪⎨⎪⎩
a1t

′
1 + · · +aj(t′j ) t1) + · · +akt

′
k + b1t′′1 + · · +bnt′′n if t = at1 ∧ a = aj

a1t
′
1 + · · +akt

′
k + b1(t′′1 ) t1) + · · +bn(t′′n ) tn) if t=b1t′1 + · · +bnt′n

t′ + t otherwise

We write ){t1, t2, . . . tn} for t1 ) t2 ) . . . tn.

Absolute Coverage in a Stest. Given a Stest t of F and a state s on F , then

ac(ε, s) = 0 ac(t, s) =
∑n

i=1aux (aiti, s)

where aux (aiti, s) =

{
α(s, ai, δ(s, ai)) · ac(ti, δ(s, ai)) if ai ∈ δ(s)
r(ai, s) otherwise

The correctness of this algorithm is stated in the following theorem.

Theorem 3. Given a FA F , a state s ∈ V , a number k ∈ N, a function α :
S × L× S → [0, 1] and T a test suite, then

• If α is a discount function for F , then abscov(T, fα
s ) = ac()T, s)

• If k ≥ maxt∈T |t| and α(s, a, s′) = 1 for all transitions (s, a, s′) in F , then
abscov(T, fk

s ) = ac()T, s).



410 L. Brandán Briones, E. Brinksma, and M. Stoelinga

5.2 Total Coverage

Total Coverage in Discounted FA. Given a FA F , a state s ∈ S and a
discounting function α for F , we desire to calculate totcov(fα

s ) =
∑

σ∈L∗ fα
s (σ).

We assume that from each state in F we can reach at least one error state
(i.e. ∀s ∈ S : ∃s′ ∈ reachF [s] : r(s) > 0). In this way, fα

s is a WFM for every s.
The basic idea behind the computation method is that the function tc : S →

[0, 1] (“total coverage”) given by s  → totcov(fα
s ) satisfies the following set of

equations.

tc(s) = r(s) +
∑

a∈L,s′∈S

α(s, a, s′) · tc(s′) = r(s) +
∑
s′∈S

Aα
s s
′ · tc(s′) (*)

These equations express that the total coverage in state s equals the weight
r(s) of all immediate errors in s, plus the weights in all successors s′ in s,
discounted by

∑
a∈L α(s, a, s′). Using matrix-vector notation, we obtain tc =

r+Aα · tc. In [5] it is shown that the matrix I−Aα is invertible. Thus, we obtain
the following result; in particular, tc is the unique solution of the equations (*)
above.

Theorem 4. Let F be a FA such that for all s ∈ S there exists a state s′ ∈
reachF [s] with r(s′) > 0, and let α be a discount function for F . Then tc =
(I −Aα)−1 · r.

Complexity. The complexity of the method above is dominated by matrix inver-
sion, which can be computed in O(|S|3) with Gaussian elimination, O(|S|log27)
with Strassen’s method or even faster with more sophisticated techniques.

Total Coverage in Finite Depth FA. Given a FA F , a state s ∈ S and a
depth k ∈ N, we desire to compute totcov(fk

s ) =
∑

σ∈L∗ fk
s (σ). We assume that

from each state, there is at least one error reachable in k steps (i.e. ∀s ∈ S :
∃s′ ∈ reachk

F [s] : r(s′) > 0). This makes that fk
s is a weighted fault model for

any s.
The basic idea behind the computation method is that the function tck : S →

[0, 1] given by s  → totcov(fk
s ) satisfies the following recursive equations.

tc0(s) = 0

tck+1(s) = r(s) +
∑

(a,s′)∈∆(s)

tck(s′) = r(s) +
∑

a∈L,s′∈S

As,s′ · tck(s′)

Or, in matrix-vector notation, we have tc0 = 0 and tck+1 = r +A · tck.

Theorem 5. Let F be a FA, a state s ∈ S and k ∈ N. If ∀s ∈ S : ∃s′ ∈
reachk

F [s] : r(s′) > 0, then tck =
∑k−1

i=0 A
i · r.

Complexity. Using Theorem 5 with sparse matrix multiplication, or iterating
the equations just above it, tck can be computed in time O(k · |∆| + |S|).



A Semantic Framework for Test Coverage 411

Remark 1. A similar method to the one above can be used to compute the weight
of all tests of length k in the discounted weighted fault model, i.e. abscov(T k, fα

s ),
for T k (i.e. the set of all tests of length k in F).

The recursive equations for computing abscov(T k, fα
s ) are obtained by re-

placing A in Equation (*) by Aα. Since I −Aα is (unlike I − A) invertible, the
analogon of Theorem 5 becomes abscov(T k, fα

s ) =
∑k−1

i=0 (Aα)ir = (I − Aα)−1 ·
(I − (Aα)k) · r.

Relative Coverage. Combining the algorithms for computing total and ab-
solute coverage from the previous sections, one easily computes relcov(T, f) =
abscov(T,f)
totcov(f) for a testsuite T and f = fk

s or f = fα
s .

5.3 Optimization

Optimal Coverage in a Test Case. Given a FA F and a length k, we compute
the best test case with length k (i.e. the one with highest coverage). We treat the
finite depth and discounted model at once by fixing, in the finite depth model
α(s, a, s′) = 1 if (s, a, s′) is a transition in ∆ and α(s, a, s′) = 0 otherwise. A
function alpha is call extended discount function if it is a discount function or it
is obtained from a finite depth model in the presented previous way.

The optimization method is again based on recursive equations. We write
acoptk(s) = maxt∈T k{abscov(t, s)} (“optimal absolute coverage”). Consider a
test case of length k+ 1 that in state s applies an input a? and in the successor
state s′ applies the optimal test of length k. The (absolute) coverage of this
test case is α(s, a?, s′) · acoptk(s′). The best coverage that we can obtain by
stimulating the IUT is given by max(a?,s′)∈∆I(s) α(s, a?, s′) · acoptk(s′).

Now, consider the test case of length k + 1 that in state s observes the IUT
and in each successor state s′ applies the optimal test of length k. The coverage
of this test case is r(s) +

∑
(b!,s′)∈∆O(s) α(s, b!, s′) · acoptk(s′). The optimal test

acopt(s) of length k+ 1 is obtained from acoptk by selecting from these options
(i.e. inputing an action a? or observing) the one with the highest coverage.

Theorem 6. Let F be a FA, α be an extended discount function, and k ∈ N test
length. Then acoptk satisfies the following recursive equations. acopt0(s) = 0 and
acoptk+1(s) = max{r(s) +

∑
(b!,s′)∈∆O(s) α(s, b!, s′) · acoptk(s′),max(a?,s′)∈∆I(s)

α(s, a?, s′) · acoptk(s′)}.

Complexity. Based on Theorem 6, we can compute acoptk in time O(k(|S|+|∆|)).

Shortest Test Case with High Coverage. We can use the above method
not only to compute the test case of a fixed length k with optimal coverage, but
also to derive the shortest test case with coverage higher than a given bound c.
We iterate the equations in Theorem 6 and stop as soon as we achieve coverage
higher than c, i.e. at the first n with acoptk(s) > c.

We have to take care that the bound c is not too high, i.e. higher than what
is achievable with a single test case. In the finite depth model, this is easy: if the



412 L. Brandán Briones, E. Brinksma, and M. Stoelinga

test length is the same as c then we can stop, since this is the longest test we
can have. In the discounted model, however, we have to ensure that c is strictly
smaller than the supremum of the coverage of all tests in single test case.

Let mw(s) = suppt∈T abscov(t, s), i.e. the maximal absolute weight of a single
test case. Then mw is again characterized by a set of equations.

Theorem 7. Let F be a FA, and α be a discount function for F . Then mw is the
unique solution of the following set of equations: mw(s) = max{max(a?,s′)∈∆I(s)

α(s, a?, s′) · mw(s′), r(s) +
∑

(b!,s′)∈∆O(s) α(s, b!, s′) · mw(s′)}.

The solution of these equations can be found by linear programming (LP).

Theorem 8. Let F be a FA, and α be a discount function. Then mw is the
optimal solution of the following LP problem: minimize

∑
s∈S mw(s) subject to

mw(s) ≥ α(s, a?, s′) · mw(s′) (a?, s′) ∈ ∆I(s)

mw(s) ≥ r(s) +
∑

(b!,s′)∈∆O(s)

α(s, b!, s′) · mw(s′) s ∈ S

Complexity. The above LP problem contains |S| variables and |S|+|∆I | inequal-
ities. Thus, solving this problem is polynomial in |S|, |S| + |∆I | and the length
of the binary encoding of the coefficients [14]. In practice, the exponential time
simplex method outperforms existing polynomial time algorithms.

Optimal Coverage in n Cases. The first algorithm in this section for com-
puting the best test case of length k can be extended to a method for computing
the best n test cases with optimal coverage: the previous algorithm picks the best
test case with length k. To pick the second best test case, we apply the same
procedure, except that we exclude the first choice from all possible options, for
the third best choice, we exclude the previous two, etc. See [5] for more details.

6 Application: A Chat Protocol

This section applies our theory to a practical example, namely a chat protocol,
also used as a conference protocol [2]. This protocol provides a multi-cast service
to users engaged in a chat session. Each user can send messages to and receive
messages from all other partners participating in the same chat session. The chat
participants are dynamic, as the chat service allows them to join and leave the
chat at any moment in time. Different chats can exist at the same time, but each
user can only participate in at most one chat at a time.

Based on the LTS model in [2], we have created an FA F for this protocol.
Our model considers two chat sessions and three users and has 39 states and 95
transitions. The complete model and the transition weight function can be found
in [5]. We interpret F as a discounted WSM under different discount functions,
α1, α2 and α3. If θ = (s, a, s′) is a transition in F leaving from state s with
outdegree d, we use α1(θ) = 1

8 ; α2(θ) = 1
d − 1

100 ; and α3(θ) = 1
d − 1

10000 .



A Semantic Framework for Test Coverage 413

tc tck, k = 2 rck, k = 2 tck, k = 4 rck, k = 4 tck, k = 50 rck, k = 50

α1 99.134 89.750 91% 97.171 98% 99.134 100%

α2 511.369 130.607 25% 239.025 47% 510.768 100%

α3 743.432 132.652 18% 249.320 34% 733.540 99%

Fig. 4. Total coverage (tc); absolute (tck) and relative coverage (rck) of the test suite
containing all tests of length k

test tk
1 test tk

2 test tk
3 test tk

4 test tk
5 test tk

6 test tk
7 test tk

8 test tk
9 test tk

10 suite T k

k = 30 15.3% 4.6% 14.0% 5.3% 15.3% 4.6% 14.2% 8.5% 15.3% 4.9% 63.1%

k = 35 14.1% 15.3% 15.3% 8.5% 8.6% 5.3% 15.3% 8.5% 8.5% 4.9% 69.1%

k = 40 5.3% 14.0% 14.2% 15.3% 5.3% 14.1% 15.3% 5.3% 14.0% 15.3% 72.8%

k = 45 5.0% 8.5% 14.0% 5.0% 8.5% 15.3% 4.9% 15.3% 4.5% 14.2% 47.2%

k = 50 5.3% 14.2% 5.3% 4.9% 14.0% 5.3% 14.2% 5.3% 14.0% 15.3% 54.2%

Fig. 5. Relative coverage, as a percentage, of tests generated by TorX, using α2

Figure 4 gives the total coverage in F (column 1) and the absolute (columns
2, 4, 6) and relative (columns 3, 5, 7) coverage of the test suites containing all
tests of length k, for k = 2, 4, 50 and α1, α2, α3. These results were obtained
by applying the first (total coverage in discounted FA) and third algorithm
(Remark 1) from Section 5.2. We used Maple 9.5 to resolve the matrix equations
in these algorithms.

Figure 5 displays the relative coverage for test suites that have been gen-
erated automatically with TorX, using discount function α2. For test lengths
k = 30, 35, 40, 45, 50, TorX has generated a test suite T k, consisting of 10 tests
tk1 , . . . t

k
10 of length k. We used Algorithm 5.1 to calculate the relative coverage

of T k. Figure 5 lists the coverage of each individual test tki as well as for the test
suites T k.

The running times of all computations were very small, in the order of a few
seconds. Note how the figures show the influence of the discount factor and the
test length on the coverage numbers.

7 Conclusions and Future Research

Semantic notions of test coverage have long been overdue, while they are much
needed in the selection, generation and optimization of test suites. In this paper,
we presented semantic coverage notions based on WFMs. We introduced fault
automata, FA, to syntactically represent (a subset of) WFMs and provided algo-
rithms to compute and optimize test coverage. This approach is purely semantic
since replacing a FA with a semantically equivalent one (i.e. r-preserving bisim-
ilar) leaves the coverage unchanged. Our experiments with the chat protocol
indicate that our approach is feasible for small protocols. Larger case studies
should evaluate the applicability of this framework for more complex systems.



414 L. Brandán Briones, E. Brinksma, and M. Stoelinga

Our weighted fault models are based on (adaptive) ioco test theory. We expect
to be easy to adapt our approach to different settings, such as FSM testing or
on-the-fly testing. Furthermore, our optimization techniques use test length as
an optimality criterion. To accommodate more complex resource constraints (e.g
time, costs, risks/probability) occurring in practice, it is relevant to extend our
techniques with these attributes. Since these fit naturally within our model and
optimization problems subject to costs, time and probability are well-studied,
we expect that such extensions are both feasible and useful.

References

1. Ball, T. A theory of predicate-complete test coverage and generation. In Pro-
ceedings of FMCO’04 (2004), pp. 1–22.

2. Belinfante, A., Feenstra, J., Vries, R., Tretmans, J., Goga, N., Feijs, L.,
Mauw, S., and Heerink, L. Formal test automation: A simple experiment. In
Int. Workshop on Testing of Communicating Systems 12 (1999), pp. 179–196.

3. Belinfante, A., Frantzen, L., and Schallhart, C. Tools for test case gener-
ation. In Model-Based Testing of Reactive Systems (2004), pp. 391–438.

4. Brandán Briones, L., and Brinksma, E. A test generation framework for
quiescent real-time systems. In FATES’04 (2004), pp. 64–78.

5. Brandán Briones, L., Brinksma, E., and Stoelinga, M. A semantic frame-
work for test coverage (extended version). Tech. Rep. TR-CTIT-06-24, Centre for
Telematics and Information Technology, University of Twente, 2006.

6. Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann,
N., and Veanes, M. Model-based testing of object-oriented reactive systems.
Tech. Rep. MSR-TR-2005-59, 2005.

7. ETSI. Es 201 873-6 v1.1.1 (2003-02). Methods for testing and specification (mts).
In The Testing and Test Control Notation version 3: TTCN-3 Control Interface
(TCI). ETSI Standard (2003).

8. Jard, C., and Jéron, T. TGV: theory, principles and algorithms. STTT 7, 4
(2005), 297–315.

9. Lee, D., and Yannakakis, M. Principles and methods of testing finite state
machines - A survey. In Proceedings of the IEEE (1996), vol. 84, pp. 1090–1126.

10. Myers, G. The Art of Software Testing. Wiley & Sons, 1979.
11. Myers, G., Sandler, C., Badgett, T., and Thomas, T. The Art of Software

Testing. Wiley & Sons, 2004.
12. Nachmanson, L., Veanes, M., Schulte, W., Tillmann, N., and Grieskamp,

W. Optimal strategies for testing nondeterministic systems. In International Sym-
posium on Software Testing and Analysis (2004), ACM Press, pp. 55–64.

13. Nicola, R., and Hennessy, M. Testing equivalences for processes. In Proceedings
ICALP (1983), vol. 154.

14. Tardos, E. A strongly polynomial minimum cost circulation algorithm. Combi-
natorica 5, 3 (1985), 247–255.

15. Tretmans, J. Test generation with inputs, outputs and repetitive quiescence.
Software-Concepts and Tools 17, 3 (1996), 103–120.

16. Tretmans, J., and Brinksma, E. TorX: Automated model-based testing. In
First European Conference on Model-Driven Software Engineering (2003).

17. Ural, H. Formal methods for test sequence generation. Computer Communica-
tions Journal 15, 5 (1992), 311–325.



Monotonic Set-Extended Prefix Rewriting and

Verification of Recursive Ping-Pong Protocols

Giorgio Delzanno1, Javier Esparza2,�, and Jǐŕı Srba3,��

1 Dipartimento di Informatica e Scienze dell’Informazione
Università di Genova, Italy

2 Institut für Formale Methoden der Informatik
Universität Stuttgart, Germany

3 BRICS� � �, Department of Computer Science
Aalborg University, Denmark

Abstract. Ping-pong protocols with recursive definitions of agents, but
without any active intruder, are a Turing powerful model. We show that
under the environment sensitive semantics (i.e. by adding an active in-
truder capable of storing all exchanged messages including full analysis
and synthesis of messages) some verification problems become decidable.
In particular we give an algorithm to decide control state reachability, a
problem related to security properties like secrecy and authenticity. The
proof is via a reduction to a new prefix rewriting model called Mono-
tonic Set-extended Prefix rewriting (MSP). We demonstrate further ap-
plicability of the introduced model by encoding a fragment of the ccp
(concurrent constraint programming) language into MSP.

1 Introduction

Motivation and Related Work. In recent years there has been an increasing
interest in formal analysis of cryptographic protocols. Even under the perfect
encryption hypothesis (an intruder cannot exploit weaknesses of the encryption
algorithm itself) a number of protocols presented in the literature were flawed,
which escalated the need for automatic verification of protocol properties like
secrecy and authenticity. Unfortunately, the general problem for fully featured
languages like the spi-calculus [1] is undecidable and hence finding a decidable yet
reasonably expressive subset of such Turing-powerful formalisms is desirable. We
contribute to this area by investigating the decidability borderline for protocols
with a restricted set of cryptographic primitives while still preserving complex
control-flow structures and with no restriction on the length of messages.

Recently, in [4,12,13] this kind of study has been carried out for models of cryp-
tographic protocols with the basic ping-pong behaviour as introduced by Dolev

� Partially supported by the DFG project “Algorithms for Software Model Check-
ing”.

�� Partially supported by the research center ITI, project No. 1M0021620808, and
by the grant MSM 0021622419 of Ministry of Education, Czech Republic.

� � � Basic Research In Computer Science, Danish National Research Foundation.

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 415–429, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



416 G. Delzanno, J. Esparza, and J. Srba

and Yao [10]. In a ping-pong protocol a message is a single piece of data (plain
text) possibly encrypted with a finite sequence of keys. Agents are memory-
less. The ping-pong communication mechanism can be naturally modelled using
prefix rewriting over finite words. The connection is based on the idea of repre-
senting a piece of data d encrypted, e.g., with k1, k2 and then k3, as the word
k3k2k1d. On reception of a message, an agent can only apply a finite sequence
of keys to decrypt the message, and then use another sequence of keys applied
to the decrypted message to forge the reply. For example the prefix rewrite rule
k3k2 → k4 transforms k3k2k1d into k4k1d (the suffix k1d of the first word is
copied into the reply).

In [9] Dolev, Even and Karp showed that secrecy properties are decidable in
polynomial time for finite ping-pong protocols under an environment sensitive
semantics (active attacker) used to model possibly malicious agents. (Where fi-
nite means that the length of all computations is syntactically bounded.) In the
context of cryptographic protocols, the aim of the attacker is to augment his/her
initial knowledge by listening on the communication channels, e.g., to learn some
of the secrets exchanged by the honest agents. A general way of defining active
attackers was introduced by Dolev and Yao in [10], now commonly known as the
Dolev-Yao intruder model. In this model, the communication among the agents
is asynchronous. The attacker can store and analyze all messages exchanged
among the agents using the current set of compromised keys. The attacker can
also synthesize new messages starting from the stored messages and compro-
mised keys. In [4] Amadio, Lugiez and Vanackère extended the result of [9] by
showing that secrecy is decidable in polynomial time for ping-pong protocols
with replication. The replication operator !P is peculiar of process algebraic lan-
guages. The agent !P can generate an arbitrary number of identical copies of P
operating in parallel. This work was later extended to protocols with a limited
use of pairing [3,8].

A more powerful way of extending the class of finite ping-pong protocols is
to allow for recursive process definitions, as in CCS. Loosely speaking, recursion
allows to define processes with arbitrary flow-graphs; the finite case [10,9] corre-
sponds to acyclic graphs. Recursive definitions are more powerful than replicative
ones, in particular recursive protocols are not memory-less any more as every
agent can be seen as an automaton with finite memory. This enables to verify
not only secrecy but also authenticity. The combination of ping-pong behaviour
with recursive definitions and finite memory enables us to encode several proto-
cols studied in the literature, including features like a limited notion of pairing,
public key encryption and others.

A process algebra for recursive ping-pong protocols was introduced in [12,13]
where it was proved that the resulting model (without any notion of an attacker)
is Turing powerful.

Novel Contribution. The results from [12,13] were obtained for protocols in
the absence of an attacker. In this paper, we show that, maybe surprisingly,
the control state reachability problem for recursive ping-pong protocols in the
presence of a Dolev-Yao intruder is decidable (in particular, this new model is no



MSP Rewriting and Verification of Recursive Ping-Pong Protocols 417

longer Turing powerful). Since secrecy/authenticity properties can be reduced
to the control state reachability problem by adding new control points that can
be reached if and only if secrecy/authenticity is violated, this also implies the
decidability of these properties.

Our main decidability result is consistent with the results on tail-recursive
cryptographic protocols from [3]. Indeed the necessary (but not sufficient) con-
ditions defined in [3] (locality, linearity and independency) for decidability of
control state reachability are all satisfied by recursive ping-pong protocols.

Methodology: Reduction to a New Computational Model. In order to achieve
this result, we first introduce a new model called Monotonic Set-extended Prefix
rewriting system (MSP). Configurations in MSPs have the form (p, T ) where p
is a control state and T is a set of words (the current store or pool). MSP rules
enrich prefix rewrite rules with the update of the control state. Control states
are partially ordered, and a state update can only lead to states that are greater
or equal than the current one, like for instance in weak Büchi automata [17,14],
or weak Process Rewrite Systems (wPRSs) [16]. Furthermore, when a rule is
applied to a word w in the current store T with the result w′, both w and w′

are included in the new store. Thus, the store can only grow monotonically. In
our application to ping-pong protocols, T represents the current knowledge of
the attacker (modulo analysis and synthesis). More generally, it can be viewed
as a monotonic store used for agent communication in languages like ccp [19].

Technical Contribution. As a main technical contribution, we will show that
known results on prefix rewrite systems, namely the efficient representation
of predecessor sets of words in prefix rewriting by nondeterministic finite au-
tomata [5], can be used to decide the control state reachability problem for MSPs.
Furthermore, we will demonstrate how to reduce the control state reachability
problem for recursive ping-pong protocols with Dolev-Yao attacker model to the
control state reachability problem for MSPs. This reduction gives us an EXP-
TIME algorithm to decide the control state reachability problem for recursive
ping-pong protocols. We also show that the problem is NP-hard. Closing the gap
between both results is left for future research. Finally, we also demonstrate that
an (infinite) fragment of the concurrent constraint programming language [19]
can be naturally encoded into our MSP formalism.

Note. A full version of the paper, including complete proofs and examples of
the modelling power of ping-pong protocols, is available as a BRICS technical
report at http://www.brics.dk/publications/.

2 Facts About Prefix Rewriting on Words

Let us first state some standard facts about prefix rewriting.
Let Γ be a finite alphabet. A prefix rewriting system is a finite set R of rules

such that R ⊆ Γ ∗ × Γ ∗. For an element (v, w) ∈ R we usually write v −→ w.
The system R generates a transition system via the standard prefix rewriting.



418 G. Delzanno, J. Esparza, and J. Srba

(v −→ w) ∈ R, t ∈ Γ ∗
vt −→R wt

Proposition 1 (see, e.g., [6,11]). Let T ⊆ Γ ∗ be a regular set of words. Then
the sets preR(T ) def= {u′ ∈ Γ ∗ | ∃u ∈ T. u′ −→R u} and pre∗R(T ) def= {u′ ∈
Γ ∗ | ∃u ∈ T. u′ −→∗

R u} are also regular sets. Moreover, if T is given by a
nondeterministic finite automaton A then we can in polynomial time construct
the automata for preR(T ) and pre∗R(T ) of polynomial size w.r.t. to A.

3 Monotonic Set-Extended Prefix Rewriting

In this section we shall introduce a new computational model called Monotonic
Set-extended Prefix rewriting (MSP). First, we provide its definition and then
we argue for the decidability of control state reachability in MSP.

Let Γ be a finite alphabet and let Q be a finite set of control states together
with a partial ordering relation ≤⊆ Q×Q. By p < q we denote that p ≤ q and
p �= q. A monotonic set-extended prefix rewriting system (MSP) is a finite set R
of rules of the form pv −→ qw where p, q ∈ Q such that p ≤ q and v, w ∈ Γ ∗.

Assume a fixed MSP R. A configuration of R is a pair (p, T ) where p ∈ Q and
T ⊆ Γ ∗. The semantics is given by the following rule.

(pv −→ qw) ∈ R, vt ∈ T
(p, T ) −→R (q, T ∪ {wt})

Let (p0, T0) be an initial configuration of MSP R such that T0 �= ∅ is a regular
set and let pG ∈ Q. The control state reachability problem is to decide whether
(p0, T0) −→∗

R (pG, T ) for some T .
We will demonstrate the decidability of control state reachability for MSPs.

From now on assume a fixed MSP R with an initial configuration (p0, T0) and
a goal control state pG. We proceed in three steps. First, we give some prelimi-
naries on the relationship between MSPs and prefix rewriting systems. Then we
introduce several notions: control path, π-scheme, and feasibility of a π-scheme.
We show that the control state reachability problem reduces to the feasibility
problem of π-schemes. Finally, we give an algorithm for feasibility of π-schemes,
and give an upper bound on the complexity of the control state reachability
problem.

Preliminaries. Given a rule r = pv → qw of R, we denote by u1 −→r u2 the
fact that qu2 can be obtained from pu1 by applying r, i.e., that there is t ∈ Γ ∗
such that u1 = vt and u2 = wt. Furthermore, for every state p ∈ Q we define
the set Rp of rules from R that start from p and do not change the control

state, i.e., Rp
def= {pv −→ pw | (pv −→ pw) ∈ R}, and write v −→∗

Rp
w to

denote that there is a sequence v −→r1 v1 −→r2 . . . −→rn w such that ri ∈ Rp

for every i ∈ {1, . . . , n}. We have the following obvious connection between
(p, T ) −→∗

Rp
(p, T ′) and v −→∗

Rp
w.



MSP Rewriting and Verification of Recursive Ping-Pong Protocols 419

Lemma 1. If (p, T ) −→∗
Rp

(p, T ′) then for every w ∈ T ′ there is v ∈ T such
that v −→∗

Rp
w.

Control Paths and π-Schemes. Assume a given MSP R. A control path is a
sequence π = p0r1p1r2p2 . . . pn−1rnpn, where n ≥ 0, satisfying the following
properties:

– pi ∈ Q for i ∈ {0, . . . , n} and rj ∈ R for every j ∈ {1, . . . n},
– p0 < p1 < p2 < · · · < pn, and
– for every j ∈ {1, . . . n}, rj is a rule of the form pj−1v −→ pjw for some v

and w.

Note that the length of π is bounded by the length of the longest chain in (Q,≤).
An execution of R starting at (p0, T0) conforms to π if the sequence of rules used
in it belongs to the regular expression E(π) = R∗p0

r1R
∗
p1
. . . R∗pn−1

rn (for n = 0,
to the regular expression ε). Obviously, pG is reachable from (p0, T0) if and only
if there is a control path π = p0r1 . . . rn−1pn such that pn = pG and some
execution of R ending in pG conforms to π.

In the next lines, we will need to distinguish more precisely to which words
the rules from a control path are applied in a particular computation of R. For
this we introduce the notions of a π-scheme and feasibility of π-schemes.

A π-scheme is a labelled directed acyclic graph S = (N,E, λ) where N
is a finite set of nodes, E ⊆ N × N is a set of edges, and λ : E → X is
a function that assigns to each edge e an element λ(e) from the set X =
{R∗p0

, r1, R
∗
p1
, . . . , R∗pn−1

, rn}. Moreover, S satisfies the following properties

(where n l−→n′ denotes that S has an edge from n to n′ labelled by l):

(a) every node has at most one predecessor (i.e., S is a forest) and there are no
isolated nodes,

(b) for every i ∈ {1, . . . , n}, there is exactly one edge labelled by ri, and
(c) for every path n0

l1−−→n1 . . .nk−1
lk−−→nk leading from a root to a leaf, the

sequence l1 . . . lk can be obtained from E(π) by deleting 0 or more, but not
all, of r1, r2, . . . , rn, and there are no two different paths with the same
sequence of labels.

Figure 1 shows a π-scheme for the control path π = p0r1 . . . p3r4p4. Intuitively, a
π-scheme describes what type of words were necessary to perform the changes of
control states described by a given control path. In our example, the first upper
chain means that in order to employ the rule r4 which changes a control state p3
into p4, we need to take some word from the initial pool T0, modify it possibly
by the rules from R∗p0

, . . . , R∗p3
(in this order) and finally use the resulting word

to enable the application of the rule r4. In general, the situation can be more
complicated as demonstrated in the lower part of Figure 1 for the remaining
rules r1, r2 and r3. A word resulting from an initial word taken from the set T0

and possibly modified by R∗p0
is used to enable the application of the rule r1.

The resulting word is later on necessary for both the application of the rule r2
and r3.



420 G. Delzanno, J. Esparza, and J. Srba

•
R∗

p0 �� •
R∗

p1 �� •
R∗

p2 �� •
R∗

p3 �� • r4 �� •

•
R∗

p2 �� • r3 �� •
R∗

p3 �� •
•

R∗
p0 �� • r1 �� •

R∗
p1 ��DDDDDDD

R∗
p1

��FFFF
FFF

•
r2

�� •
R∗

p2

�� •
R∗

p3

�� •

Fig. 1. A π-scheme for π = p0r1 . . . r4p4

Two π-schemes are isomorphic if they are equal up to renaming of the nodes.
Note that every π-scheme is finite and there are only finitely many
non-isomorphic π-schemes. We obtain a very rough upper bound on the number
of π-schemes for a given control path π.

Lemma 2. Let π = p0r1p1r2p2 . . . rnpn be a control path. There are at most
nO(n) π-schemes up to isomorphism.

We shall now formally define feasibility of π-schemes. A π-scheme is feasible from
T ⊆ Γ ∗ if there is a function f : N → Γ ∗ such that

(d) if n is a root, then f(n) ∈ T , and

(e) if n
R∗

pi−−−→n′, then f(n) −→∗
Rpi

f(n′), and if n ri−−→n′, then f(n) −→ri f(n′).

Intuitively, the function f determines which particular words are used in order
to realize a given π-scheme by some concrete execution in R.

Proposition 2. Let π be a control path. There is an execution of R starting
from (p0, T0) and conforming to π iff some π-scheme is feasible from T0.

Proposition 2 and Lemma 2 lead to the following algorithmic idea for deciding
if there is a set T such that (p0, T0) −→∗

R (pG, T ):

– enumerate all control paths π = p0r1 . . . rnpn such that pn = pG (their
number is finite, because the length of a control path is bounded by the
length of the longest ≤-chain in Q),

– for each control path π, enumerate all π-schemes (their number is finite by
Lemma 2), and

– for each π-scheme S, decide if S is feasible.

Checking Feasibility of π-Schemes. To check feasibility of a π-scheme S, we first
need to define the feasibility of a node n for a word v ∈ Γ ∗. Let n be a node of
S, and let Nn denote the set of all descendants of n. We say that n is feasible
for v ∈ Γ ∗ if there is a function fn : Nn → Γ ∗ satisfying condition (e) of the
definition of feasibility of a π-scheme, and such that fn(n) = v. Now, let W (n)
denote the set of all words v such that n is feasible for v. By Proposition 2, S is
feasible from a set T ⊆ Γ ∗ iff T ∩W (n) �= ∅ for every root n of S.



MSP Rewriting and Verification of Recursive Ping-Pong Protocols 421

An apparent complication to compute the set W (n) is the fact that it may
be infinite, which prevents us from enumerating its elements in finite time. We
solve this problem by showing that W (n) is always a regular language, and that
it is possible to effectively construct a nondeterministic automaton recognizing
it. The key is the following characterization of W .

Proposition 3. Let n be a node of a π-scheme S, then

W (n) = Γ ∗ ∩
⋂

n
Rp

∗
−−−→n′

pre∗Rp
(W (n′)) ∩

⋂
n

r−→n′

prer(W (n′))

where prer(T ) def= pre{v−→w}(T ) such that r is of the form pv −→ qw.

Notice that if n is a leaf then W (n) = Γ ∗. Let n0 and n1 be the upper
and lower root in the π-scheme of Figure 1. If we abbreviate the expression
pre∗Rpi

(pre∗Rpi+1
(. . . (pre∗Rpj

(T )) . . .) to pre∗i...j(T ) for i ≤ j, we get

W (n0) = pre∗0123(prer4
(Γ ∗))

W (n1) = pre∗0
(
prer1

(
pre∗12(prer3

(pre∗3(Γ
∗))) ∩ pre∗1(prer2

(pre∗23(Γ
∗)))

))
.

Proposition 3 allows us to compute W (n) bottom-up, starting at the leaves
of S, and computing W (n) after having computed W (n′) for every immediate
successor of n. By Proposition 1, the pre∗ and pre operations preserve regu-
larity, and are effectively computable. Since regular languages are closed under
intersection, W (n) is effectively computable.

Hence control state reachability of monotonic set-extended prefix rewriting
systems is decidable.

Theorem 1. Control state reachability of monotonic set-extended prefix rewrit-
ing systems is decidable.

Finally, we also establish a singly exponential upper bound of the running time
of the algorithm.

Proposition 4. Let R be an MSP over a finite alphabet Γ and a set of control
states (Q,≤) and let c be the length of the longest ≤-chain. Let m be the maxi-
mum over all p, q ∈ Q, p �= q, of the number of rules of the form pv −→ qw in R.
Let T0 ⊆ Γ ∗ be a regular set of words represented by a nondeterministic automa-
ton of size a. We can decide if there is a set T such that (p0, T0) −→∗

R (pG, T )
for a given control state pG in deterministic time (|Q| +m+ |Γ |)O(c) · a.

4 Recursive Ping-Pong Protocols

In this section we define the class of recursive ping-pong protocols.
Let K be a set of symmetric encryption keys. A word w ∈ K∗ naturally repre-

sents an encrypted message with the outer-most encryption on the left hand-side.



422 G. Delzanno, J. Esparza, and J. Srba

For example k1k2k represents the plain text message (key) k encrypted first by
the key k2, followed by the key k1. In the usual notation k1k2k hence stands
for {{k}k2}k1 . The analysis of a set of messages T ⊆ K∗ is the least set A(T )
satisfying

A(T ) = T ∪ {w | kw ∈ A(T ), k ∈ K ∩ A(T )}. (1)

The synthesis of a set of messages T ⊆ K∗ is the least set S(T ) satisfying

S(T ) = T ∪ {kw | w ∈ S(T ), k ∈ K ∩ S(T )}. (2)

Lemma 3. Let n be a natural number, T ⊆ K∗ and let Qi ∈ {A,S} for all i,
1 ≤ i ≤ n. It holds that Q1(Q2(. . . (Qn(T )) . . .)) ⊆ S(A(T )).

Proof. This standard fact (see also [4, Prop. 2.1]) follows directly from the fol-
lowing straightforward laws: S(S(T )) = S(T ); A(A(T )) = A(T ); A(S(T )) ⊆
S(A(T )); and T1 ⊆ T2 implies S(T1) ⊆ S(T2). ��

The set of compromised keys C(T ) ⊆ K for a given set T ⊆ K∗ of messages is
defined by C(T ) def= K ∩ A(T ). A recursive ping-pong protocol is a finite set ∆
of process definitions over a finite set Const of process constants such that for
every P ∈ Const the set ∆ contains exactly one process definition of the form

P
def=
∑
i∈I

[?vi	 .!wi	].Pi

where I is a finite index set such that Pi ∈ Const and vi, wi ∈ K∗ for all i ∈ I.
We shall denote the empty sum as Nil. The intuition is that for any i ∈ I the
process P can input a message of the form vit ∈ K∗, output wit, and behave as
Pi. The symbol ’?’ represents the input prefix, ’!’ the output prefix, and ’	’ the
rest (suffix) of the communicated message.

A configuration of a ping-pong protocol ∆ is a pair (P, T ) where P ∈ Const
and T ⊆ K∗. The set T is also called a pool. The reduction semantics is defined
by the following rule.

P
def=
∑
i∈I

[?vi	 .!wi	].Pi, i ∈ I, vit ∈ S(A(T ))

(P, T ) −→∆ (Pi, T ∪ {wit})

Definition 1. Let (P0, T0) be a given initial configuration such that T0 �= ∅ is
a regular set and let PG ∈ Const. The control state reachability problem is to
decide whether (P0, T0) −→∗

∆ (PG, T ) for some T .

Example 1. Let ∆ be a protocol consisting of P0
def= [?k1k2	 .!k2k1	].P1, P1

def=
[?k2k1 	 .!k∗k2	].P2, and P2

def= Nil. Let T0 = {k∗, k1k2} be the initial pool
in which k∗ is the only compromised key. Then, (P0, T0) −→∆ (P1, T1) −→∆

(P2, T2) where T1 = T0 ∪ {k2k1}, and T2 = T1 ∪ {k∗k2}. At control point P2

(but not before) the attacker can learn the keys k1 and k2. Indeed, he can use



MSP Rewriting and Verification of Recursive Ping-Pong Protocols 423

the compromised key k∗ to extract k2 from the last message k∗k2 exchanged
in the protocol, and k2 to extract k1 from the message k2k1. Thus, we have
that C(T2) = {k∗, k1, k2}. Suppose that messages are always terminated by
the symbol ⊥. In order to test if the attacker has uncovered, e.g., the key k1,
we can add (using +) to each process definition the observer process defined as
[?k1⊥	.!k1⊥	].Error . Reachability of the control state Error denotes a violation
of secrecy for our protocol.

Remark 1. Since we allow nondeterminism in the definitions of process
constants, the control state reachability problem for a parallel composition of
recursive ping-pong processes can be reduced (using a standard product con-
struction) to control state reachability for a single recursive process. For ex-
ample assume that Const = {P1, P2, P

′
2} such that P1

def= [?k1 	 .!k2	].P1,
P2

def= [?k1	 .!	].P ′2 + [?k2	 .!	].P2, and P ′2
def= [?k1k2	 .!k2k1	].P2.

The parallel composition P1 ‖ P2 as defined e.g. in [3] can be modelled by the
following protocol with Const = {(P1, P2), (P1, P

′
2)}, where

(P1, P2)
def= [?k1	 .!k2	].(P1, P2) + [?k1	 .!	].(P1, P

′
2) + [?k2	 .!	].(P1, P2)

(P1, P
′
2)

def= [?k1	 .!k2	].(P1, P
′
2) + [?k1k2	 .!k2k1	].(P1, P2) .

Note that by applying the reduction above, there is a possible exponential
state-space explosion (however, it is exponential only in the number of parallel
agents; in many protocols this number is fixed and small). In what follows we
measure our complexity results in terms of the flat (single process) system.

5 Translating Recursive Ping-Pong Protocols to MSP

In this section we provide a reduction from control state reachability for recursive
ping-pong protocols to control state reachability for MSP.

There are two main problems: (i) How can the analysis and synthesis be
captured by prefix rewriting rules? and (ii) How to ensure that the control state
unit is monotonic even for arbitrary recursive ping-pong protocols?

We shall now provide answers to these problems. Intuitively, problem (i) can
be solved by keeping track of the set of compromised keys. The set of compro-
mised keys grows monotonically and can be stored as a part of the control state.
The rules for analysis and synthesis can then use the knowledge of the currently
compromised keys and once a new compromised key is discovered, the control
state unit is updated accordingly. Problem (ii) is more challenging. We can-
not simply store the current process constant in the control state as this would
destroy monotonicity (we allow arbitrary recursive behaviour in the protocol).
Instead, we observe that a recursive ping-pong protocol is essentially a directed
graph where nodes are process constants and edges are labelled by actions of
the form α = [?v	 .!w	]. Once a certain action was taken due to some message
present in the pool then it is permanently enabled also any time in the future
(messages added to the pool T are persistent). Assume that there is a cycle of



424 G. Delzanno, J. Esparza, and J. Srba

length � (counting the number of edges) in the graph such that all the actions
α1, . . . , α
 on this cycle were already taken in the past. Then it is irrelevant in
exactly which process constant on the cycle we are as we can freely move along
the cycle as many times as needed. This essentially means that we can replace
such a cycle with !(α1) ‖ · · · ‖!(α
) where ! is the operator of replication. This
observation can be further generalized to strongly connected components in the
graph.

Let ∆ be a recursive ping-pong protocol with a set of process constants
Const and encryption keys K. We shall formally demonstrate the reduction men-
tioned above. First, we introduce some notation. Let T def= {(P, αi, Pi) | P ∈
Const, P

def=
∑

i∈I αi.Pi, i ∈ I} be a set of directed edges between process con-
stants labelled by the corresponding actions. Let E ⊆ T . We write P =⇒E P ′

whenever there is some α such that (P, α, P ′) ∈ E. Assume that P ∈ Const and
E ⊆ T . We define a strongly connected component in E represented by a process
constant P as Scc(P,E) def= {P ′ ∈ Const | P =⇒∗

E P
′ ∧ P ′ =⇒∗

E P}.
Let us now define an MSP R. The alphabet is Γ def= K ∪ {⊥} where ⊥ is a

fresh symbol representing the end of messages. The control states of R are of
the form 〈S,E,C〉 where

– S ⊆ Const is the current strongly connected component,
– E ⊆ T is the set of already executed edges, and
– C ⊆ K is the set of compromised keys.

There are four types of rules in R called (analz), (synth), (learn) and (comm).
The first three rules represent intruder’s capabilities and the fourth rule models
the communication with the environment.

(analz) 〈S,E,C〉k −→ 〈S,E,C〉ε for all k ∈ C
(synth) 〈S,E,C〉ε −→ 〈S,E,C〉k for all k ∈ C
(learn) 〈S,E,C〉k⊥−→〈S,E,C ∪ {k}〉k⊥ for all k ∈ K
(comm) 〈S,E,C〉v−→〈Scc(P ′, E′), E′, C〉w where E′ = E ∪ {(P, α, P ′)}

whenever there exists P ∈ S and
(P, α, P ′) ∈ T such that
α = [?v	 .!w	]

It is easy to define an ordering on states such that R is monotonic. The second
and third component in the control states are non-decreasing w.r.t. ⊆ and T
and K are finite sets. For a fixed second coordinate E the strongly connected
components (i.e. the values that the first coordinate S in the control state can
take) form a directed acyclic graph. Let T ⊆ K∗. By T⊥ we denote the set
{w⊥ | w ∈ T }, i.e., the end symbol ⊥ is appended to every message from T .

Lemma 4. Let P0, P ∈ Const and T0 ⊆ K∗. If (P0, T0) −→∗
∆ (P, T ) for some T

then (〈{P0}, ∅, ∅〉, T⊥0 ) −→∗
R (〈S,E,C〉, T ′⊥) for some S, E, C and T ′ such that

P ∈ S and T⊥ ⊆ T ′⊥.

We will now proceed to prove the other implication. In order to do that we
will need the following straightforward proposition which essentially says that



MSP Rewriting and Verification of Recursive Ping-Pong Protocols 425

(i) messages are persistent and once a certain step from a process constant P
in the protocol was possible in the past then it is permanently enabled also in
any future configuration in the control location P , and (ii) that the set C in the
control state is always a subset of the compromised keys.

Proposition 5. If (〈{P0}, ∅, ∅〉, T⊥0 ) −→∗
R (〈S,E,C〉, T⊥) for some S, E, C and

T then (i) for any (P, α, P ′) ∈ E there is some T ′ such that (P, T ) −→∆ (P ′, T ′)
by using the transition (P, α, P ′), and (ii) C ⊆ C(T ).

Lemma 5. Let P0 ∈ Const and T0 ⊆ K∗. If we have (〈{P0}, ∅, ∅〉, T⊥0 ) −→∗
R

(〈S,E,C〉, T⊥) for some S, E, C and T then for all P ∈ S also (P0, T0) −→∗
∆

(P, T ′) such that T ⊆ S(A(T ′)).

The next theorem states the correctness of our reduction and follows directly
from Lemma 4 and Lemma 5.

Theorem 2. Let P0, P ∈ Const and T0 ⊆ K∗. It holds that (P0, T0) −→∗
∆ (P, T )

for some T if and only if (〈{P0}, ∅, ∅〉, T⊥0 ) −→∗
R (〈S,E,C〉, T ′⊥) for some S, E,

C and T ′ such that P ∈ S.

Hence control state reachability for recursive ping-pong protocols is reducible to
control state reachability for monotonic set-extended prefix rewriting systems,
which is decidable by Theorem 1. We also obtain the following complexity upper
bound.

Corollary 1. Control state reachability for recursive ping-pong protocols is de-
cidable in deterministic time 2O(n4) ·a where n is the size of the protocol written
as a string and a is the size of a nondeterministic automaton representing the
pool T0.

Finally, we show that control state reachability for recursive ping-pong protocols
is at least NP-hard.

Theorem 3. Control state reachability of recursive ping-pong protocols is NP-
hard.

Proof. By reduction from the satisfiability problem of boolean formulae in CNF.
Let C = C1 ∧C2 ∧ . . . ∧ Ck be a formula over boolean variables x1, . . . , xn such
that for all i, 1 ≤ i ≤ k, Ci is a disjunction of literals. We shall construct a
ping-pong protocol ∆ where Const

def= {X1, . . . , Xn+1, Y1, . . . , Yk+1} and K =
{C1, . . . , Ck,⊥}. Let for all i, 1 ≤ i ≤ n, ti be the sequence of keys Ci1Ci2 · · ·Ci�

such that 1 ≤ i1 < i2 < · · · < i
 ≤ k and Ci1 , Ci2 , . . . , Ci�
are all the clauses

where xi occurs positively, and let fi be the sequence of keys Ci1Ci2 · · ·Ci�
such

that 1 ≤ i1 < i2 < · · · < i
 ≤ k and Ci1 , Ci2 , . . . , Ci�
are all the clauses where xi

occurs negatively. The set ∆ of process definitions is given as follows.

Xi
def= [?⊥	 .!ti⊥	].Xi+1 + [?⊥	 .!fi⊥	].Xi+1 for all i, 1 ≤ i ≤ n

Xn+1
def= [?⊥	 .!⊥	].Y1

Yi
def= [?Ci	 .!	].Yi+1 +

∑
1≤j<i

[?Cj 	 .!	].Yi for all i, 1 ≤ i ≤ k



426 G. Delzanno, J. Esparza, and J. Srba

It is now easy to observe that the given formula C is satisfiable if and only if
(X1, {⊥}) −→ ∗(Yk+1, T ) for some T . The computation from (X1, {⊥}) starts by
going through the sequence of control constants X1, . . . , Xn+1 where for every i,
1 ≤ i ≤ n, there is a choice, whether ti⊥ or fi⊥ (but not both) is added to the
pool of messages. This corresponds to selecting a truth assignment. Then the
control constant is changed fromXn+1 to Y1 without modifying the pool and the
second (verification) phase starts. The move from Yi to Yi+1 is possible only if
the key Ci is present somewhere in the pool (which means that the corresponding
clause is satisfied). The second summand in the definition of Yi enables to remove
duplicate clauses from the messages in order to access Ci. The control constant is
not changed if the second summand of Yi is used. Observe that the operations of
analysis and synthesis cannot add any of the keys C1, . . . , Ck to the pool, unless
the protocol does it itself. Hence we can reach the control constant Yk+1 if and
only if it was possible to satisfy all the clauses by the given truth assignment
generated during the first phase. ��

6 MSP and Concurrent Constraint Programming

We shall now outline some further applicability of our model of monotonic set-
extended prefix rewriting. The MSP model shares some similarities with the ccp
(concurrent constraint programming) language [19]. The ccp language is based
on the notion of a monotonic store which is used by a collection of agents as a
common blackboard to communicate by means of two primitives: ask to query
the store without removing information, and tell to add information to the store.

This feature of the ccp semantics is similar in spirit to the way we defined
the semantics of MSP. In an MSP configuration (p, T ) the component T can be
viewed as the current store. Since prefix rules never remove information from T ,
we can view them as a special case of the ask and tell operations. To make the
connection between ccp and MSP more informal, we define next a fragment of
ccp whose semantics can be directly encoded in MSP.

For this purpose, given a finite alphabet A, we will consider an instance of
the ccp framework in which the constraint store is a set of strings T ⊆ A∗.
Furthermore, we consider only one type of constraint formula of the form v · x
where v is a string and x is a variable. If T is a set of strings (the current store),
then T |= v · x via the binding x 
 w if vw ∈ T .

Concerning the syntax of our ccp instance, we will restrict ourselves to pro-
cesses defined as follows. A process declaration is defined as p ← A where p is
a process constant taken from a finite set P , and A is an agent. Agents (and
actions) are defined by the following grammar.

A ::= stop | Σk
i=1 Acti

Act ::= ask(v · x) → p | ask(v · x) → tell(w · x) → p

Given a finite set of declarations D = {D1, . . . , Dn}, a process P is defined as
the (bounded) parallel compositions of � agents, i.e., P = A1 || . . . || A
. We
assume that || is associative and commutative. The operational semantics of a



MSP Rewriting and Verification of Recursive Ping-Pong Protocols 427

process P is defined in accordance with the semantics of ccp. Configurations are
pairs 〈P, T 〉 where P is a process and T is a store. The transition relation is
defined as follows.

1. 〈P1||P2, T 〉 → 〈P ′1||P2, T
′〉 if 〈P1, T 〉 → 〈P ′1, T ′〉

2. 〈p, T 〉 → 〈A, T 〉 if p← A ∈ D
3. 〈Σk

i=1Acti, T 〉 → 〈p, T 〉 if Acti = ask(v · x) → p and vz ∈ T for 1 ≤ i ≤ k

4. 〈Σk
i=1Acti, T 〉 → 〈p, T ∪ {wz}〉 if Acti = ask(v · x) → tell(w · x) → p

and vz ∈ T for 1 ≤ i ≤ k

Remark 2. The seemingly nonstandard action ask(v ·x) → tell(w ·x) → p can be
in full ccp encoded as ask(v · x) → ∃n.

(
tell(w · x & tok(n)) || ask(tok(n)) → p

)
where tok(x) is a new type of constraint with one argument x.

Following the reduction schemes of the recursive definition of ping-pong pro-
cesses, we know that we can extract a set of partially ordered locations from the
parallel control flow graph of n recursive processes (by using the idea of strongly
connected components). Under this assumption, we can focus our attention on
the way we can model ccp agents and actions. Actions can be naturally mapped
into prefix rules:

– The definition a ← ask(v · x) → b for the i-th thread is mapped to a rule
like pv → qv in which p and q are related by the change of the local state of
the i-th thread from a to b.

– The definition a← ask(v ·x) → tell(w ·x) → b for the i-th thread is mapped
to a rule like pv → qw in which p and q are related by the change of the
local state of the i-th thread from a to b.

Although quite limited with respect to the original ccp model (e.g. it is not pos-
sible to spawn new processes), this instance is still nontrivial since the constraint
store can grow unboundedly during the execution of a process.

The decidability of the control reachability problem for this instance of the
ccp framework follows then from our result for MSP. Further extensions of the
restricted ccp formalism are left for future work.

7 Conclusion

We proved that the control state reachability problem for recursive ping-pong
protocols with Dolev-Yao attacker is decidable in deterministic exponential time.
This result may seem surprising when one observes that recursive ping-pong
protocols without any attacker are Turing powerful [12,13]. However, a similar
phenomenon occurs in FIFO-channel systems (automata whose transitions may
add or retrieve items from channels, modelled as unbounded queues): if the
channels are perfect, then the model is Turing powerful, but if one assumes that
the channels are lossy, i.e., that the queues can spontaneously lose messages,
then several important verification problems become decidable [7,2].



428 G. Delzanno, J. Esparza, and J. Srba

We have used our results to prove (in the full version of the paper, available
as a BRICS technical report) the authenticity of Woo and Lam’s protocol; to
find a flaw in Otway and Rees’ key distribution protocol and prove secrecy of a
corrected version for arbitrarily many sessions; and to prove secrecy of Bull and
Otway’s recursive authentication protocol. To the best of our knowledge, no other
method in the literature can deal simultaneously with these three problems in a
fully automatic way. The approach of Rusinowitch and Turuani [18] can be used
to prove authenticity of Woo and Lam’s protocol, and Küsters has used regular
transducers to automatically verify Bull and Otway’s protocol [15]. However,
these techniques can only deal with a bounded number of protocol sessions.
In order to find the flaw in Otway and Rees’ protocol they have to guess the
right number of sessions, and they cannot directly prove secrecy of the corrected
version. The replicative calculus of Amadio, Lugiez and Vanackère [4] can be used
to model protocols with an unbounded number of sessions. However, the model
over-approximates the semantics, i.e., there are executions of the model that do
not correspond to executions of the protocol. Due to this over-approximation
the secrecy or authenticity analysis can report false attacks.

Since our technique does not over-approximate the semantics, it is strictly
more powerful than that of [4], at the price of a higher complexity (the algorithm
of [4] runs in polynomial time), and it is incomparable with the techniques of
[18,15]. On the one hand, it provides an exact analysis for an arbitrary number
of sessions; on the other hand, it is restricted to prefix rewriting, which can only
deal with very restricted forms of pairing. Our model also allows only a bounded
number of nonces. The distinguishing feature of our technique seems to be the
possibility to model open-ended protocols with messages of unbounded length,
in combination with an unrestricted (cyclic) communication structure.

Our work also opens several venues for further research. MSPs are a rather
natural computational model, which may have further applications, in particu-
lar in the area of coordination-based languages. To demonstrate this, we have
presented an encoding of a fragment of the ccp language into MSP.

Acknowledgments. The second and the third author acknowledge a support from
the Alexander von Humboldt Foundation.

References

1. M. Abadi and A.D. Gordon. A bisimulation method for cryptographic protocols.
Nordic Journal of Computing, 5(4):267–303, 1998.

2. P.A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. Infor-
mation and Computation, 127(2):91–101, 1996.

3. R.M. Amadio and W. Charatonik. On name generation and set-based analysis in
the Dolev-Yao model. In Proceedings of the 13th International Conference on Con-
currency Theory (CONCUR’02), volume 2421 of LNCS, pages 499–514. Springer-
Verlag, 2002.

4. R.M. Amadio, D. Lugiez, and V. Vanackère. On the symbolic reduction of processes
with cryptographic functions. Theoretical Computer Science, 290(1):695–740,
October 2002.



MSP Rewriting and Verification of Recursive Ping-Pong Protocols 429

5. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking. In Proceedings of the 8th International
Conference on Concurrency Theory (CONCUR’97), volume 1243 of LNCS, pages
135–150. Springer-Verlag, 1997.

6. J.R. Büchi. Regular canonical systems. Arch. Math. Logik u. Grundlagenforschung,
6:91–111, 1964.

7. G. Cécé, A. Finkel, and S. Purushothaman Iyer. Unreliable channels are easier to
verify than perfect channels. Information and Computation, 124(1):20–31, 1996.

8. H. Comon, V. Cortier, and J. Mitchell. Tree automata with one memory, set
constraints, and ping-pong protocols. In Proceedings of the 28th International
Colloquium on Automata, Languages and Programming (ICALP’01), volume 2076
of LNCS, pages 682–693. Springer-Verlag, 2001.

9. D. Dolev, S. Even, and R.M. Karp. On the security of ping-pong protocols. Infor-
mation and Control, 55(1–3):57–68, 1982.

10. D. Dolev and A.C. Yao. On the security of public key protocols. Transactions on
Information Theory, IT-29(2):198–208, 1983.

11. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for
model checking pushdown systems. In Proceedings of the 12th International Con-
ference on Computer Aided Verification (CAV’00), volume 1855 of LNCS, pages
232–247. Springer-Verlag, 2000.

12. H. Hüttel and J. Srba. Recursive ping-pong protocols. In Proceedings of the 4th
International Workshop on Issues in the Theory of Security (WITS’04), pages
129–140, 2004.

13. H. Hüttel and J. Srba. Recursion vs. replication in simple cryptographic proto-
cols. In Proceedings of the 31st Annual Conference on Current Trends in Theory
and Practice of Informatics (SOFSEM’05), volume 3381 of LNCS, pages 175–184.
Springer-Verlag, 2005.

14. O. Kupferman and M. Vardi. Weak alternating automata are not that weak. ACM
Transactions on Computational Logic, 2(3):408–429, 2001.

15. R. Küsters. On the decidability of cryptographic protocols with open-ended data
structures. In Proceedings of the 13th International Conference on Concurrency
Theory (CONCUR’02), volume 2421 of LNCS, pages 515–530. Springer-Verlag,
2002.

16. M. Křet́ınský, V. Řehák, and J. Strejček. Extended process rewrite systems: Ex-
pressiveness and reachability. In Proceedings of the 15th International Conference
on Concurrency Theory (CONCUR’04), volume 3170 of LNCS, pages 355–370.
Springer-Verlag, 2004.

17. D.E. Muller, A. Saoudi, and P.E. Schupp. Weak alternating automata give a simple
explanation of why most temporal and dynamic logics are decidable in exponential
time. In Proceedings of the 3rd Annual IEEE Symposium on Logic in Computer
Science (LICS’88), pages 422–427. IEEE Computer Society Press, 1988.

18. M. Rusinowitch and M. Turuani. Protocol insecurity with a finite number of
sessions and composed keys is NP-complete. TCS: Theoretical Computer Science,
299, 2003.

19. V.A. Saraswat. Concurrent Constraint Programming. The MIT Press, Cambridge,
Massachusetts, 1993.



Analyzing Security Protocols in Hierarchical

Networks

Ye Zhang and Hanne Riis Nielson

Informatics and Mathematical Modelling, Technical University of Denmark
Richard Petersens Plads bldg 321, DK-2800 Kongens Lyngby, Denmark

{yez,riis}@imm.dtu.dk

Abstract. Validating security protocols is a well-known hard problem
even in a simple setting of a single global network. But a real network
often consists of, besides the public-accessed part, several sub-networks
and thereby forms a hierarchical structure. In this paper we first present
a process calculus capturing the characteristics of hierarchical networks
and describe the behavior of protocols on such networks. We then develop
a static analysis to automate the validation. Finally we demonstrate how
the technique can benefit the protocol development and the design of
network systems by presenting a series of experiments we have conducted.

1 Introduction

With the fast development of the communication technology, thousands of in-
tranets of companies, colleges, etc. are connected via the Internet. The network
structure may even change dynamically as exemplified when relocating a laptop
from one place to another. Consider the example on the left of Figure 1 where
gateways are inserted between local networks so that the locally exchanged mes-
sages are not available outside. A tree that represents the network structure is
presented on the right of the figure; here the internal nodes denote the networks
and the leaves represent the agents. The network hierarchy, therefore, requires
that all messages sent between the server and the laptop must go through the
office network.

The fact that the communication varies from place to place increases the com-
plexity of protocol analysis. Also such networks present us with a new challenge
of defining the attacker capabilities since the classical Dolev-Yao model [9] was
originally proposed by assuming the existence of a single global network, the
Internet. In this paper we shall present our approach to deal with these issues.

Overview of the Paper. In Section 2 we present a variant of the Ambient calcu-
lus [7,4,5] to model hierarchical networks as well as security protocols; in order to
formalize authentication properties we syntactically add annotations for declar-
ing authentication intentions of the protocol. In Section 3 we develop a control
flow analysis [15,18] for tracking the interested property. Regarding the commu-
nication environment considered in this paper, we declare the attacker capability

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 430–445, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Analyzing Security Protocols in Hierarchical Networks 431

Fig. 1. Hierarchical network: an example

based on the Dolev-Yao conditions in Section 4. Our analysis is fully automatic
and always terminating; in Section 5 we sketch the implementation and show its
running-time is polynomial in the size of ambient processes. Section 6 reports
our experimental results on a series of virtual networks and protocols. Finally we
conclude with a brief assessment of our approach and a comparison with related
work in Section 7.

2 ABoxed Ambients

We base ourselves on Boxed Ambients [4] and customize it in several ways. First
we remove nil capability ε and concatenation M1.M2 from Boxed Ambients.
Then we extend the calculus with annotations for specifying the authentication
intentions of protocols explicitly. Finally our calculus deviates from all other am-
bient calculi, e.g. Mobile Ambients [7] and Discretionary Ambients [18], in having
attacker processes that are used to declare the locations accessible to attackers.

The syntax of processes P , communication directions η, and capabilities M is
given by Table 1. While most constructs are standard, the further explanation
goes to the restriction and input primitives. The two restriction constructs have
same effect on all processes except for attacker processes: suppose an attacker
is inside P , restriction (v n)P allows the value n to be part of initial knowledge
of the attacker while secret restriction (vk n)P keeps the value unknown to
the attacker. For the simplicity of the presentation, we assume that a subset
C ⊆ Name of names is kept for constants and demand that the name introduced
by two restriction constructs are constants. For input constructs we, inspired
by Lysa [2], use a simple form of patterns, (M ′

1, · · · ,M ′
j ;xj+1, · · · , xk)η, to be

matched against a k-tuple of values (M1, · · · ,Mk). The idea is that the matching
succeeds if the first 1 ≤ i ≤ j values M ′

i pairwise correspond to the values Mi; if
so, the remaining k−j values are bound to the variables xj+1, · · · , xk respectively.
For the sake of simplicity, we shall enforce that xi ∈ V where V = Name \ C.



432 Y. Zhang and H.R. Nielson

Table 1. Syntax of ABoxed Ambients

P ::= (v n)P restriction
| (vk n)P secretrestriction
| 0 inactiveprocess
| P1|P2 composition
| !P replication
| n[P ] ambient
| M.P movement
| 〈M1, · · · ,Mk〉η output
| (M1, · · · ,Mj; xj+1, · · · , xk)η.P input
| • attacker

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

η ::= n child
| ↑ parent
| ◦ local

M ::= in n enter n
| out n exit n
| n name

We assume perfect cryptography in this paper and make use of two processes,
local-output and input-from-child, to model encryption and decryption respec-
tively. The intuition is that in order to read the mailbox of a child a parent must
have known his child’s name (encryption key). To check protocol intentions, we
syntactically annotate the pair by:

〈M1, · · · ,Mk〉◦
 [dest L]
(M

′
1, · · · ,M

′
j ;xj+1, · · · , xk)n


 [orig L]

where label � (called crypt-point) is from some enumerable set D disjoint from
Name and is added to program points where encryption and decryption happen.
The assertion [dest L] specifies a set of crypt-points L ⊆ D where the message
is intended to be decrypted. Similarly [orig L] lists all desired crypt-points at
which M is allowed to have been encrypted. A more detailed discussion on how
to encode encryption and decryption with ambient calculus can be found in [19].

To simplify the analysis definition in Section 3, we shall suppose that each
name has a canonical name !n" ∈ Name and require the alpha-renaming pre-
serves the canonical name; therefore only the canonical version of a name will be
recorded in the analysis. Similarly we write !M" for the canonical capability ofM
where the name or variable is replaced with its canonical version. To formulate
protocols and networks more precisely and get better analysis results, we clas-
sify ambients into two classes: site ambients which formalize local networks and
computers, and packet ambients which describe data objects moving between
sites. The programs of interest are then ambients in the form of n�[P�] where
n� /∈ fn(P�) and the function fn(P�) collects the free names of P�. Formally P�

satisfies the conjunction of the following conditions:

– any free name of P� is from C; formally !fn(P�)" ⊆ C;
– P� is well-formed with respect to C; formally C 5 wf s(P�).

Here the canonicity operation !·" is extended in a pointwise manner; the well-
formedness basically demands: (1) sites are not movable and thereby the network
structure is static; (2) packets are simple data objects moving between sites, and



Analyzing Security Protocols in Hierarchical Networks 433

Table 2. Structural congruence: P ≡ Q is the least congruence

Alpha− renaming :

P ≡Q if P are disciplined α −equivalent to Q

Replication :

!P ≡ P |!P
!0 ≡ 0

Reordering of paralle processes :

P |Q ≡ Q|P
(P |Q)|R ≡ P |(Q|R)

P |0 ≡ P

Scope rules for name bindings :

(v n)0 ≡ 0
(v n)(v n′)P ≡ (v n′)(v n)P if n �= n′

(v n)(P |Q)≡P |(v n)Q if n /∈ fn(P )
(v n)(n[P ])≡n[(v n)P ] ifn /∈ fn(n)
(v n)P ≡ (v m)(P{n/m}) if m /∈ fn(P )

(3) attacker processes are as expressive as sites. A formal definition of the well-
formedness can be found in [19] for your reference.

Semantics. The semantics follows the approach of [7,4] and is specified by the
structural congruence relation P ≡ Q in Table 2 and the reduction relation
P →R Q in Table 3; there are two variants of reduction semantics: (1) the
standard semantics (→) in which R is universally true and thus can be ignored;
(2) the reference monitor semantics (→RM) that deals with annotations by taking
RM(�,L′,�′,L) = (� ∈ L′ ∧ �′ ∈ L); thus decryptions may happen only at crypt-
points designated when the corresponding encryptions were made, otherwise the
execution is aborted. As stated in Table 2, the structural congruence relation
allows rearranging the syntactic appearance of processes; especially we enforce
that α − renaming preserves canonicity. The movement interactions give rise
to re-structuring ambients while the communication interactions do not change
their hierarchy but modify the process to reflect the new binding of names. Here
we adopt the standard notion P [M/x] for substitution. If reference monitor
semantics is concerned, the condition RM(�,L′,�′,L) is checked by some rules.
While the syntax requires us to annotate every process of local-output and input-
from-child, they may be used for non-cryptographic purposes. If that is the case,
we reserve a special label ε for those processes and adopt the set D to ensure
annotations are trivial ones, formally

〈M1, · · · ,Mk〉◦ε [dest D]
(M ′

1, · · · ,M ′
j;xj+1, · · · , xk)n

ε [orig D].P

Example 1. We consider the version of Wide Mouthed Frog (WMF) [6] below.

1. A→ S : A, [B,K]KA

2. S → B : [A,K]KB

3. A→ B : [M ]K

It establishes a secret session key K between the initiator A and the responder
B, who share master keys KA and KB with a trusted server S respectively. Its



434 Y. Zhang and H.R. Nielson

Table 3. Transition relation: P → Q

Movement of ambients

(In) m [ in n. P |Q] |n [R] →R n [ m [P |Q] |R]

(Out) n [ m [ out n. P |Q] |R] →R m [P |Q] |n [R]

Execution in context :

P →R Q

(v n)P →R (v n)Q

P →R Q

(vk n)P →R (vk n)Q

P ≡ P ′ ∧ P ′ →R Q′ ∧ Q′ ≡ Q

P →R Q

P →R Q

P |R →R Q |R
P →R Q

n [P ] →R n [Q]

Communication :

(Com 1)

∧j
i=1Mi = M ′

i ∧ R(�, {ε},ε,L)

〈M1, · · ·, Mk〉◦� [dest L] | (M ′
1, · · ·, M ′

j ; xj+1, · · ·, xk)◦.P
→R P{Mj+1/xj+1} · · · {Mk/xk}

(Com 2)

∧j
i=1Mi = M ′

i

〈M1, · · ·, Mk〉n | n[(M ′
1, · · ·, M ′

j ; xj+1, · · ·, xk)◦.P |Q]
→R n[P{Mj+1/xj+1} · · · {Mk/xk}| Q]

(Com 3)

∧j
i=1Mi = M ′

i ∧R(�, {ε},ε,L)

〈M1, · · ·, Mk〉◦� [dest L] | n[(M ′
1, · · ·, M ′

j ; xj+1, · · ·, xk)↑.P |Q]
→R n[P{Mj+1/xj+1} · · · {Mk/xk}| Q]

(Com 4)

∧j
i=1Mi = M ′

i

(M ′
1, · · ·, M ′

j ; xj+1, · · ·, xk)◦.P | n[〈M1, · · ·, Mk〉↑|R]
→R P{Mj+1/xj+1} · · · {Mk/xk} | n[R]

(Com 5)

∧j
i=1Mi = M ′

i ∧R(�,L′,�′,L)

(M ′
1, · · ·, M ′

j ; xj+1, · · ·, xk)n
�′ [orig L′].P | n[〈M1, · · ·, Mk〉◦� [dest L]|R]

→R P{Mj+1/xj+1} · · · {Mk/xk} | n[R]

ABoxed Ambients specification is then given by:

(v KA)(v KB)
( A[(v K) KA[out A. in S. (〈A〉↑|〈B, K〉◦A1

[dest S1])] |
(v M) K[out A. inB. 〈M〉◦A2

[dest B2]]
|
S[(A; )◦.(B; yK)KA

S1
[orig A1].

KB[out S. in B.〈A, yK〉◦S2
[dest B1]]

|
B[(A; zK)KB

B1
[orig S2].(; z)

zK

B2
[orig A2]])



Analyzing Security Protocols in Hierarchical Networks 435

At first A generates a new session key K by the restriction (v K) and then sends
S a packet named by the key KA. After the packet KA moves into S, the plain
message A is delivered to server’s mailbox while the encrypted values (B,K)
can be read only by the enclosing ambient knowing the master key KA. On the
other side, the server acquires and checks initiator’s name A by local-input and
then decrypts the encrypted part of the message with input-from-child where
the reference monitor checks the authentication intentions. If the decryption
succeeds, the server continues checking whether B is the responder’s name; if
that is the case, it stores the session key K in the placeholder yK . The left
part of the process is encoded in the similar way as illustrated above and the
explanation, therefore, is straightforward. �

3 Control Flow Analysis

The aim of our analysis is to safely estimate when RM can cease the computation
of a process. To achieve this goal, we shall develop an analysis for extracting the
following information:

– γ: C → P(C ∪ !M" ) that for every ambient name approximates which
ambients and capabilities may be contained.

– κ: C → P((C∪ !M" )∗) that for every ambient name records the tuples of
messages that may show up in an ambient’s mailbox.

– ρ: V → P(C ∪ !M" ) that for every variable records the tuples of possible
values including names and capabilities.

– ϕ: P(D ×D) that describes the possible violation of authenticity.

The judgement of the analysis takes the form

(γ,κ,ρ) |=µ P : ϕ

and says that when the subprocess P (of P�) is enclosed within an ambient µ
then as P evolves γ will reflect the contents of the ambients , κ will contain the
messages of ambients’ mail boxes, ρ will approximate all the bindings of names,
and ϕ (of the form (�, �′)) indicates something encrypted at � was unexpectedly
decrypted at �′. The analysis is specified in Table 4 for all non-communication
primitives and in Table 5 for communication related ones.

In Table 4 the rules for restriction, replication and parallel composition ensure
the analysis is valid for the immediate subprocesses while the rule for the inactive
process enforces no restriction on the analysis result.

For an ambient process the analysis first records that the ambient n is in-
side the ambient ∗ and then continues analyzing the process P within the
updated environment. Here the auxiliary functions Mρ : M → P(!M") and
Nρ : Name → P(C) map a variable to a set of canonical capabilities and values
respectively

Nρ(x) = ρ(!x") ∩ C Nρ(c) = {!c"}

Mρ(in n) = {in µ | µ ∈ Nρ(n)}
Mρ(out n) = {in µ | µ ∈ Nρ(n)}

Mρ(x) = ρ(!x")
Mρ(c) = {!c"}



436 Y. Zhang and H.R. Nielson

Table 4. Analysis specification (1): (γ, κ, ρ) |=∗ P

(γ,κ,ρ) |=∗ (v n)P : ϕ iff (γ,κ,ρ) |=∗ P : ϕ

(γ,κ,ρ) |=∗ (vk n)P : ϕ iff (γ,κ,ρ) |=∗ P : ϕ

(γ,κ,ρ) |=∗ 0 : ϕ iff true

(γ,κ,ρ) |=∗ P1| P2 : ϕ iff (γ,κ,ρ) |=∗ P1 : ϕ ∧ (γ,κ,ρ) |=∗ P2 : ϕ

(γ,κ,ρ) |=∗ !P : ϕ iff (γ,κ,ρ) |=∗ P : ϕ

(γ,κ,ρ) |=∗ n[P ] : ϕ iff ∀µ ∈ Nρ(n) : µ ∈ γ(∗) ∧ (γ,κ,ρ) |=µ P : ϕ

(γ,κ,ρ) |=∗ in n.P : ϕ iff Mρ(in n) ⊆ γ(∗) ∧ (γ,κ,ρ) |=∗ P : ϕ∧
∀in µ ∈ Mρ(in n) : ϕin(µ)

(γ,κ,ρ) |=∗ out n.P : ϕ iff Mρ(out n) ⊆ γ(∗) ∧ (γ,κ,ρ) |=∗ P : ϕ∧
∀out µ ∈ M(out n) : ϕout(µ)

(γ,κ,ρ) |=∗ n.P : ϕ iff Mρ(n) ∩M ⊆ γ(∗) ∧ (γ,κ,ρ) |=∗ P : ϕ∧
∀in µ ∈ Mρ(n) : ϕin(µ)∧
∀out µ ∈ Mρ(n) : ϕout(µ)

The last three clauses deal with prefixed processes. In each case all potential
capabilities inside the current ambient are recorded by γ and then the continua-
tion process is analyzed; the following closure conditions referred by the clauses
serve the purpose of reflecting the semantics of in- and out- capabilities into the
analysis.

ϕin(µ) iff ∀µa, µp : in µ ∈ γ(µa) ∧ µa ∈ Cp

∧µa ∈ γ(µp) ∧ µ ∈ γ(µp) ⇒ µa ∈ γ(µ)

ϕout(µ) iff ∀µa, µp : out µ ∈ γ(µa) ∧ µa ∈ Cp

∧µa ∈ γ(µ) ∧ µ ∈ γ(µg) ⇒ µa ∈ γ(µg)

Now turn to the clauses in Table 5. The clause for local-output first collects
the potential values M(Mi) of every capability Mi in a message and records
all k-tuples of such messages 〈v1, v2, · · · , vk〉 into the local mailbox. Compared
to local-output, the clauses for output-to-parent and out-to-child do not update
local mailbox but store messages into the mailboxes of possible parents and
children of the current ambient respectively.

The clause for local-input (M1, · · · ,Mj ;xj+1, · · · , xk)◦.P retrieves the local
mailbox to look for the k-tuple messages whose first j elements are pointwise
inside Mρ(Mi) for 1 ≤ i ≤ j. Then the new bindings of names are recorded
by the analysis component ρ for variables xj+1, · · · , xk respectively. Finally
RM(�,D, ε,L) is checked for authentication; the special crypt-point ε and set
D are inserted by the rule of local-input to check if any encrypted message may



Analyzing Security Protocols in Hierarchical Networks 437

Table 5. Analysis specification (2): (γ, κ, ρ) |=∗ P

(γ,κ,ρ) |=∗ 〈M1, · · · , Mk〉◦� [dest L] :ϕ iff ∀v1, · · · , vk: ∧k
i=1 vi ∈ Mρ(Mi)

⇒ 〈v1, · · · , vk〉�[dest L] ∈ κ(∗)
(γ,κ,ρ) |=∗ 〈M1, · · · , Mk〉N :ϕ iff ∀µ ∈ Nρ(N) : µ ∈ γ(∗) ∧

∀v1, · · · , vk: ∧k
i=1 vi ∈ Mρ(Mi)

⇒ 〈v1, · · · , vk〉ε[dest D] ⊆ κ(µ)

(γ,κ,ρ) |=∗ 〈M1, · · ·, Mk〉↑ : ϕ iff ∀µ : ∗∈γ(µ)∧∀v1, · · · , vk:∧k
i=1 vi∈Mρ(Mi)

⇒ 〈v1, · · ·, vk〉ε[dest D] ⊆ κ(µ)

(γ,κ,ρ) |=∗ (M1, · · · , Mj ; xj+1, · · · , xk)◦.P :ϕ iff

〈v1, · · ·, vk〉�[dest L] ∈ κ(∗): ∧j
i=1 vi ∈ Mρ(Mi)

⇒∧k
i=j+1vi∈ρ(xi)∧(¬RM(�,D, ε,L)⇒ (�, ε)∈ϕ)∧(γ,κ,ρ) |=∗P :ϕ

(γ,κ,ρ) |=∗ (M1, · · · , Mj ; xj+1, · · · , xk)N
�′ [orig L′].P :ϕ iff

∀µ ∈ Nρ(N) : µ ∈ γ(∗) ∧ ∀〈v1, · · ·, vk〉�[dest L] ∈ κ(µ) : ∧j
i=1 vi ∈ Mρ(Mi)

⇒ ∧k
i=j+1vi ∈ ρ(xi) ∧ (¬RM(�,L′, �′,L) ⇒ (�, �′) ∈ ϕ) ∧ (γ,κ,ρ) |=∗ P :ϕ

(γ,κ,ρ) |=∗ (M1, · · · , Mj ; xj+1, · · · , xk)↑.P :ϕ iff

∀µ : ∗ ∈ γ(µ) ∧ ∀〈v1, · · ·, vk〉�[dest L] ∈ κ(µ)) : ∧j
i=1 vi ∈ Mρ(Mi)

⇒ vj+1 ∈ ρ(xj) ∧ · · · ∧ vk ∈ ρ(xk) ∧ (¬RM(�,D, ε,L) ⇒ (�,ε) ∈ ϕ) ∧ (γ,κ,ρ) |=∗ P :ϕ

be read unexpectedly. For the rule of input-from-parent and input-from-child
we retrieve the mailboxes of possible parents and children of the current ambi-
ent respectively. The left part of the rule is quite similar to that of local-input
except that no annotations are implicitly added in the rule of input-from-child
as they have been declared explicitly. Especially we do not need a rule for the
attacker process as it could be any processes (well-formed) whose analysis has
been declared as above.

Semantic Properties. We prove the correctness of the analysis w.r.t. the oper-
ational semantics of ABoxed Ambients. It is convenient to prove the following
lemmata. The first says that estimates keep valid for substitution of closed terms
for variables. The second states that an estimate valid for a process P is also
valid for every process congruent to P .

Lemma 1. (γ, κ, ρ) |=µ P : ϕ and !M"∈ρ(!x") imply (γ, κ, ρ) |=µ P{M/x} : ϕ.

Lemma 2. If P ≡ Q then (γ, κ, ρ) |=µ P : ϕ iff (γ, κ,ρ) |=µ Q : ϕ.

We are now ready to state the subject reduction result, which says our analysis
is semantically correct for both two variants of semantics:



438 Y. Zhang and H.R. Nielson

Theorem 1. If P →R Q and (γ,κ,ρ) |=µ P : ϕ then (γ,κ,ρ) |=µ Q : ϕ.

Finally we conclude that the analysis can correctly predict when we can safely
remove the reference monitor:

Theorem 2. If (γ,κ,ρ) |=µ P : ∅ then RM can not abort P .

Example 2. For the ABoxed Ambients specification of WMF specified in Ex-
ample 1, an estimate satisfying (γ, κ, ρ) |=� WMF : ϕ is given by

γ : n�  → {A,S,B,KA,KB,K} A  → {KA,K}
S  → {KA,KB} B  → {KB,K}
KA  → {out A, in S} K  → {out A, in B}
KB  → {out S, in B}

κ : A  → {〈A〉ε[dest D]} B  → ∅
S  → {〈A〉ε[dest D]} KA  → {〈B,K〉A1 [dest S1]}
K  → {〈M〉A2 [dest B2]} KB  → {〈A,K〉S2 [dest B1]}

ρ : yK  → {K} zK  → {K}
z  → {M}

and ϕ = ∅ predicting that RM can not abort the process computation. �

4 Modelling Network Attacker

Protocols are executed in a multi-location environment where there may be
malicious attackers in some of places. In a flat space of network, we usually
take the form n�[P | •] in which P and • represent the implementation of a
system and its working environment respectively. For the hierarchical network,
however, there may be several local networks accessible to the attacker. Thus
we must provide our assumption about which local networks the attacker may
reside in. Suppose the attacker is on the network represented by the distinguished
ambient n� or a site ambient a, we declare attacker processes as one of top level
processes of them, formally n�[P | •] or a[Q | •]. Below we shall call a process
without attackers inside target process. We can use Psys[0/•] to get the target
process from a system implementation Psys.

To characterize all capabilities of network attackers, we aim at finding a
parameterized formula FA DY

RM (∗) ; whenever an estimate (γ, κ, ρ, ϕ) satisfies
FA DY

RM (∗) then (γ, κ, ρ) |=∗ R : ϕ for all attackers R. Before we proceed to
define such a formula, we must declare attackers’ power on the network at first.
The pioneering research in [9] describes the attacker capabilities as four condi-
tions: (1) receiving messages by eavesdropping, (2) decrypting messages using
the key they know, (3) constructing new messages (encrypted or plain), and
(4) sending messages they have. Here the conditions (1) and (4) are not clear
enough if the principal of local networks are concerned. For the first condition
we need to provide assumption that which location(s) the attacker can overhear;
for the fourth one we should clarify that which location(s) the attacker can send



Analyzing Security Protocols in Hierarchical Networks 439

message to. We turn to the following adjusted Dolev-Yao condition; the design
idea is that to guarantee any flaw of a protocol can be detected, the attacker
should be able to control over any network resource he might gain in the real
world.

a. Eavesdropping on any messages presenting in the attacker-nested location
(declared by the attacker process);

b. Decrypting messages using the key the attacker knows;
c. Constructing both encrypted and plain messages;
d. Sending messages to any attacker-reachable sites;
e. Initially the attacker has some knowledge and a private channel is allocated

for all attackers to share information with each other.

While the first three conditions are straightforward, we explain the last two in
detail. The forth item declares that the attacker can deliver messages to any
reachable site. We define the concept ”reachable” based on the knowledge of the
attacker: there is a route (consists of a series of sites) from attacker-nested place
to a destination along which each name of the site is known by the attacker.
For example, consider the network in Figure 1 again and suppose the attacker
resides in the office. We then colored the tree in Figure 1 as below.

where grey nodes denotes attacker-invisible sites and white nodes represent the
sites whose names are knowable to the attacker. As the figure shows, Compu-
tation Center is not reachable to the attacker-composed messages. Neither is
Server although its name is known by the bad guy. Finally the fifth item allows
attackers attack system by collusion. This is a strong assumption about at-
tacker’s capability: it always takes time to broadcast messages among attackers
in reality; also we maximize attacker’s power by assuming all malicious entities
share information with each other. However, this only implies that we may get
over-estimates but no flaw of a security protocol can be left over.

We follow the approach of [2] and state that a target process P is of type
(Nf ,AK) whenever: (1) P is closed, (2) its free names are in Nf , and (3) all
the arities used by input and output are in AK. We can easily find minimal Nf

and AK so that P is of type (Nf ,AK). To charatacterise all attackers R, we
have adopted a few assumptions and applied techniques to translate R into its
semantically equivalent process R in order to have control over the infinite names
and labels that attackers may have. Accordingly we have specified the formula
FA DY

RM (∗); the idea is to add a series of constraints to an estimate so that the



440 Y. Zhang and H.R. Nielson

adjusted conditions can be implied from the estimate. For detailed description,
please refer to [19].

We can establish the correctness of the adjusted Dolev-Yao condition for
ABoxed Ambients in the following two theorems. The first state that estimates
satisfying FA DY

RM (∗) are also valid for all attackers in site ∗.

Theorem 3. If an estimate (γ,κ,ρ, ϕ) satisfies FA DY
RM (∗) of type (Nf ,AK) then

(γ,κ,ρ) |=∗ R: ϕ for all well-formed processes R of type (Nf ,AK).

Now assume n�[Psys] is the implementation of a system and a set of attacker-
nesting places of Psys is in the set I, we prove that estimates satisfying
∧∗∈IFA DY

RM (∗) are valid for all attackers in the system:

Theorem 4. If (γ,κ,ρ) |=� Psys[0/•] : ϕ and (γ,κ,ρ, ϕ) satisfies ∧∗∈IFA DY
RM (∗)

of type (Nf ,AK), then (γ,κ,ρ) |=� Psys[R/•] : ϕ for all attackers R.

5 ABox-Ambients Tool

We aim at developing an automatic tool to compute our control flow analysis
correctly and efficiently. It can be shown that there always is a least estimate
of γ, κ, ρ and ϕ for any process P such that (γ,κ,ρ) |=� P : ϕ. The aim of the
tool is to compute such a least (γ, κ, ρ, ϕ) for a given process. The generic strat-
egy of implementing constraint-based analysis is to translate an analysis into a
suitable constraint language and then compute the least estimate of these con-
straints with a standard constraint solver. We adopt Succinct Solver 2.0 [16],
an expressive fragment of first-order predicate logic, as our constraint solver to
obtain an efficient tool. The solver takes constraints encoded with Alternation-
free Least Fixed Point logic (ALFP) as input and gives the least solution of a
program analysis as output. The transforming of the analysis into ALFP pro-
ceeds in three steps. First we transform the analysis from succinct form into
its verbose form [17] so that every analysis component has global scope. This
is because the ALFP recognized by Succinct Solver can not provide scoping
mechanisms for predicates. Second we translate the analysis and the attacker
formulae into ALFP. This is conducted in a series of straightforward encodings,
for instance, representing sets as predicates, and encoding annotations in com-
munication primitives. Finally the analysis and the attacker formulae are turned
into a generation function G that takes a process as argument and returns its
analysis in the form of ALFP formulae.

As explained in [16], the time for solving a formula in Succinct Solver is
polynomial in the size of a finite universe of atomic values, e.g. canonical names
and capabilities, over which a formula is interpreted. Suppose the size of the
universe is N , then a simple worst-case estimate of execution time is about
O(N1+τ ) where τ is the maximal nesting depth of quantifiers in the clause. For
our implementation, the depth of nesting is mainly given by the length of the
sequences specified in communication.



Analyzing Security Protocols in Hierarchical Networks 441

6 Protocol Validation

Protocol validation is usually based on many assumptions. For instance, most
formal techniques assume that cryptography is perfect, the master keys are al-
ways securely stored and retrieved. In this section we first discuss how to use
our calculus to model key-store and key-retrieving and thereby protocols can be
validated under fewer assumptions. By doing so, we expect that the approach
can provide system designer more useful information. We then validate WMF
and its two variants in a series of configurations, a set of assumptions about
the network hierarchy, the locations of different roles and attackers. In all the
experiments we have taken the number of each role (except server) to be 3 in
order to ensure that the man-in-the-middle attack can be modeled.

Validating Protocol with Key-retrieving. Our first attempt is to model a data
file storing master keys on the server in plain text. This can be formalised as:

KeyTable = datafile[!〈n1,K1〉◦ε [dest D]]| · · · |!〈nm,Km〉◦ε [dest D]]

where ni and Ki are the identity of a principle and its key respectively. Replica-
tion ‘!’ is used to present the data of the table is persistent. Querying the table
can be encoded as:

Keytable|(ni; yk)datafile
ε [destD]. · · · .yk · ··

where we take advantage of pattern match to check the name ni in input and
acquire its key by variable binding. Following this design idea, we can update
the specification of Example 1 and validate WMF under the configuration whose
ambient representation is visualized as:

The experiment result shows no flaw is found in the system. Next suppose there
are a large amount of secret keys to store and then a dedicated database server
is assigned to support the service of an authentication server. In the real life the
two servers are usually located in a secure area, e.g. a local network, to which no
attackers can physically access. We then validate WMF on the network whose
ambient structure is presented as below.

Here the database query is described by narration

1. S → DBS: A
2. DBS → S: A,KA



442 Y. Zhang and H.R. Nielson

Our experiment result shows that the protocol may be flawed and ϕ is

{(A2i, �•)|1 ≤ i ≤ n} ∪ {(S2, �•)} ∪ {(�•, S1)}
∪{(�•, B1j)|1 ≤ j ≤ n} ∪ {(�•, B2j)|1 ≤ j ≤ n}

Actually the protocol is flawed as illustrated by below two attacks.

(i) MA → S : A, [B,KM1 ]KM2

MDB → S : A,KM2

S → B : [A,KM1 ]KB

MA → B : [m]KM1

(ii) A → S : A, [B,K]KA

MDB → S : B,KM

S →MB : [A,K]KM

A → B : [m]K

For attack (i), B finally believes that he is getting message from A but he is
actually reading messages composed by the attacker. For attack (ii) the attacker
cheats the server S by sending it a fake master key KM and finally the attacker
can decrypt any message sent from A to B. The root cause of the flaw is that the
authentication server can not distinguish the packets from the database server
with those from attackers. We can fix the problem by either encrypting messages
sent between the servers or simply modifying their communication as:

1. S → DBS: A
2. DBS → S: u,A,KA

where a new name u is introduced and initially known only by the two servers.
Our experiment shows that the protocol is flawless for both the two solutions.

Optimizing Protocol in Hierarchical Networks. We now consider two variants of
WMF: one where the first message (A→ S) is not encrypted and one where the
second message (S → B) is not encrypted; the protocol narration is as below.

Variant 1 : A→ S : u1, A,B,K
S → B : [A,K]KB

A→ B : [m]K

Variant 2 : A→ S : A, [B,K]KA

S → B : u2, A,K
A→ B : [m]K

Here we assume u1 is initially only known by A and S while u2 is restricted
over B and S. We validate the two protocols in a number of configurations; the
experiment results are summarized in Table 6.

As shown in the first line of the table, the analysis reports that both the two
variants are flawed since the session key K can be acquired by the attacker. For
the second configuration, we assume the initiators and the server are located
in the office that is not accessible to the attacker. Now the validation results
show the first variant is still flawed but this time the second is secure. This
is because the attacker can not overhear or intercept messages on the office
network and that actually provides a private channel for the initiators and the
server. Now we state Variant 2 has advantages over WMF in efficiency and
space-consumption considering both of them are secure because (1) the variant
saves time in encrypting and decrypting values that is usually the most time-
consuming operations in security protocol, and (2) it sharply reduces the size of a
data file or data base by storing much less master keys than before. Similarly we



Analyzing Security Protocols in Hierarchical Networks 443

Table 6. Experiments on validating protocols in hierarchical networks

switch the position of the initiators for the responders in the third configuration;
this time the first variant is secure as expected (see third row of Table 6).

The fourth configuration assumes the responders may appear on both the
Internet and the office while the last one supposes a malicious guy gain access
to the office. In both the two cases the variants are flawed as the attacker can
acquire the session key K and thus the security of the protocols is compromised.

Summarizing the results of the experiment, we conclude that it is possible to
optimize a protocol by considering network structures and principals’ locations;
in particular, the analysis can help system designers check whether the adapted
protocol still guarantee authentication and provide information to track flaws if
there are any.

7 Conclusion

We have shown that hierarchical networks and protocols applied on such net-
works may be formalized as ABoxed Ambients processes so that a static analysis
can pinpoint a wide-variety of errors in security protocols. We have also presented
a new attacker model based on the Dolev-Yao model in order to comply with
the special network considered in this paper. We have argued that the model
gives the attacker reasonable abilities to conduct passive and positive attack to
protocols.



444 Y. Zhang and H.R. Nielson

The analysis has been implemented using the Succinct Solver 2.0 and has then
been applied to a number of examples. We would like to extend our calculus to
deal with asymmetric cryptography. Also it would be interesting to see how the
approach scales to a large protocol which is developed for the environment of
hierarchial networks.

Comparison with related work. A number of formal methods have been devel-
oped in the field of protocol analysis. We shall compare them with our work in
two aspects: the approaches of protocol formalism and the analysis techniques
used to validate protocols. Many papers have considered to formulate protocols
with process calculi such as CSP [12], CCS [10], Lysa [2,3] and ambient calculus
[18]. We consider ambient calculi as a proper choice with regard to the network
of interest; the scope of the message of local communication is clearly given
by the boundary of ambients. With CSP, CCS and Lysa, one may use private
channels to model local communication between principals. But the resulting
specification would be harder to understand compared to the original topology
of the modelled network. Ambients, however, can formulate the principle of local
networks in a quite nature way.

Boxed Ambients is first used to model security protocol in [18] where a control
flow analysis is also developed to track communication happening on different
locations. But there is no attacker defined to model the realistic environment. We
also have modified the calculus for the purpose of protocol validation specially,
e.g. extending the input with a pattern match to model value-checking, adding
annotations to declare protocol intentions explicitly.

Based on formal protocol specification, a lot of techniques have been developed
to analyze protocols automatically. Two of main trends close to our approach
are type systems and model checking. Type systems have been developed for
security protocol analysis, e.g. by Abadi [1] and by Gordon and Jeffery [11].
The results show that type checking in these systems can be done in polynomial
time while type inference takes exponential time. In comparison, the control flow
analysis presented here retains polynomial time.

Model checking is a method that explores each state in a protocol; see e.g.
FDR [13], Interrogator [14] and Brutus [8]. Since the state space for security
protocol is usually infinite, the approach based on state space exploration can
not guarantee termination while our approach adopts approximation to deal
with arbitrarily long execution sequences. On the other hand, model checking
techniques are often quite efficient in finding flaws if there is any in a protocol.
Thus it can be seen as complementary to control flow analysis techniques.

The major advantages of static analysis approach taken here can be sum-
marized as: first, the least solution always exists and can be computed in low
polynomial time; second, the approach is operational oriented so that the cor-
rectness of the analysis can be established w.r.t. a formal operation semantics;
last but not least, the approach can be fully automated.



Analyzing Security Protocols in Hierarchical Networks 445

References

1. M. Abadi. Secrecy by typing in security protocols. Journal of the ACM, 46(5):749–
786, 1999.

2. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. R. Nielson. Static validation
of security protocols. Journal of Computer Security, 13(3):347–390, 2005.

3. M. Buchholtz, H. R. Nielson, and F. Nielson. A calculus for control flow analysis
of security protocols. Int. J. Inf. Sec., 2(3-4):145–167, 2004.

4. M. Bugliesi, G. Castagna, and S. Crafa. Boxed Ambients. In TACS, pages 38–63,
2001.

5. M. Bugliesi, G. Castagna, and S. Crafa. Reasoning about security in mobile am-
bients. In CONCUR, pages 102–120, 2001.

6. M. Burrows, M. Abadi, and R. M. Needham. A logic of authentication. In SOSP,
pages 1–13, 1989.

7. L. Cardelli and A. D. Gordon. Mobile ambients. Theor. Comput. Sci., 240(1):177–
213, 2000.

8. E. M. Clarke, S. Jha, and W. Marrero. Verifying security protocols with Brutus.
ACM Transactions on Software Engineering and Methodology, 9(4):443–487, 2000.

9. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(2):198–207, 1983.

10. R. Focardi and R. Gorrieri. A taxonomy of security properties for process algebras.
Journal of Computer Security, 3(1):5–34, 1995.

11. A. D. Gordon and A. Jeffrey. Authenticity by typing for security protocols. Journal
of Computer Security, 11(4):451–520, 2003.

12. G. Lowe. An attack on the Needham-Schroeder public-key authentication protocol.
Inf. Process. Lett., 56(3):131–133, 1995.

13. G. Lowe. Breaking and fixing the needham-schroeder public-key protocol using
FDR. In TACAS, pages 147–166, 1996.

14. J. K. Millen. The interrogator: A tool for cryptographic protocol security. In IEEE
Symposium on Security and Privacy, pages 134–141, 1984.

15. F. Nielson, H. R. Nielson, and R. R. Hansen. Validating firewalls using flow logics.
Theor. Comput. Sci., 283(2):381–418, 2002.

16. F. Nielson, H. Seidl, and H. R. Nielson. A succinct solver for ALFP. Nord. J.
Comput., 9(4):335–372, 2002.

17. H. R. Nielson and F. Nielson. Flow Logic: A multi-paradigmatic approach to static
analysis. In The Essence of Computation, pages 223–244, 2002.

18. H. R. Nielson, F. Nielson, and M. Buchholtz. Security for Mobility. In FOSAD,
pages 207–265, 2002.

19. Y. Zhang. Static analysis for protocol validation in hierarchical networks. Master’s
thesis, Technical University of Denmark, 2005.



Functional Analysis of a Real-Time Protocol
for Networked Control Systems

Colin Fidge and Yu-Chu Tian

School of Software Engineering and Data Communications
Queensland University of Technology

Australia

Abstract. Traditional real-time control systems are tightly integrated into the
industrial processes they govern. Now, however, there is increasing interest in
networked control systems. These provide greater flexibility and cost savings by
allowing real-time controllers to interact with industrial processes over existing
communications networks. New data packet queuing protocols are currently be-
ing developed to enable precise real-time control over a network with variable
propagation delays. We show how one such protocol was formally modelled us-
ing timed automata, and how model checking was used to reveal subtle aspects
of the control system’s dynamic behaviour.

1 Introduction

Process controllers for automated industrial plants must sample data from sensors,
calculate appropriate responses, and send signals to actuators, all within strict timing
bounds. The computations performed by such controllers implicitly rely on the assump-
tions that sensor data is received, and the controller software is invoked, periodically
with very little ‘jitter’ (timing variability). Traditional control theory [4] assumes that
the controller and the industrial process it governs are co-located, allowing communi-
cation between the sensors, controller and actuators to be treated as instantaneous.

Now, however, there is increasing interest in the greater flexibility and cost savings
made possible by distributing the system’s components, with the computer-based con-
troller connected to the physical sensor and actuator devices via a standard communica-
tions network [12]. In practice, doing this introduces two significant problems. Firstly,
transmission of data between the controller and the devices may suffer variable propaga-
tion delays. This can affect the accuracy of timing-dependent calculations in the control
software. Secondly, communication over the network may be unreliable. Occasional
data packet ‘dropouts’ can leave the controller with little or no information on which
to base its control decisions. Both problems can significantly degrade the controller’s
performance [11].

As part of a project developing real-time protocols for networked control systems
we needed to evaluate data packet queuing mechanisms intended to compensate for
the effects of network-induced delays and data packet dropouts. In previous work we
successfully analysed the timing characteristics of one such protocol using a network
simulator [14,13], but these performance profiles did not tell us how the proposed pro-
tocol affects the functionality of the whole system.

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 446–460, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Functional Analysis of a Real-Time Protocol for Networked Control Systems 447

In this paper we explain how we used a real-time model checker to evaluate the
behaviour of a proposed control algorithm for networked systems. To do this we con-
structed a simple finite-state model of the control system and a discrete approximation
of its physical environment. The resulting model proved to be a highly effective and ef-
ficient way of discovering potential system behaviours. In particular, it quickly revealed
situations in which the controller can become unstable.

2 Previous Work

Our goal in this research was to use model checking to analyse the functional behaviour
of a networked control system. In this section we briefly review some relevant prior
work on model checking and analysis of real-time control systems.

Model checking [6] involves constructing a model of a system from one or more
finite state automata and then exploring the model’s reachable states. Each automaton in
the model consists of a number of locations and transitions between them. Transitions
are guarded by predicates which determine when they may fire, and assignments to
variables may be performed during the transition from one state to the next. Automata
are nondeterministic when more than one transition is ready to fire at the same time.

Model checkers analyse such a model by exploring its state space, looking for par-
ticular states, or state sequences, of interest. The user usually describes states of interest
using temporal logic formulæ. The model checker then performs proofs by refutation—
it searches for a counterexample to a claimed property [9]. Since it is impractical to
exhaustively explore models with large state spaces, much of the research in model
checking has been on ways of optimising this process. Even so, users of model check-
ers are obliged to ensure that their model captures the essential properties of the system
of interest, but without producing a state space that is too large to analyse.

Since we were concerned with real-time systems we decided to use the UPPAAL

model checker [3], which is based on timed automata theory. It extends traditional
state-machine notations with time-valued ‘clock’ variables. All clocks progress syn-
chronously, which allows implicit synchronisation between automata. Explicit synchro-
nisation is supported via shared ‘channels’. UPPAAL has been optimised for analysis of
time-dependent systems through the use of continuous intervals for modelling clocks,
rather than discrete ‘ticks’ [2]. The UPPAAL toolkit has been used to analyse many real-
time systems [10], including proposed real-time protocols for wireless networks [15],
although not the kind of networked control system we consider here.

Analysis of real-time control systems is, of course, a well-explored topic. ‘Hybrid’
approaches are often used to account for the fact that a digital controller’s behaviour is
discrete, whereas its physical environment is continuous. Recently, for instance, Dubey
et al. described a toolkit for analysis of real-time control systems [7]. They distinguish
‘symbolic’ analysis approaches, which construct executable models for directly simu-
lating continuous behaviours, from ‘reductionist’ methods, which produce a discretized
approximation to the continuous behaviour. Their ReachLab toolkit takes the former
approach whereas, as explained below, we adopt the latter model. In their conclusion,
Dubey et al. note that modelling ‘networked hybrid automata’ is an area for future work
in their system [7]. Rather than attempting to devise an entirely new hybrid approach for



448 C. Fidge and Y.-C. Tian

networked control systems, we show below that a carefully constructed discrete model
is sufficient to produce useful experimental results.

With respect to analysis of networked control systems, Martı́ et al. discuss the effects
of network-induced timing delays on real-time controllers [11]. They stress the impor-
tance of integrating the controller model with that of the physical environment when
analysing such systems. Their studies showed how network delays can create instabil-
ity in the control system’s responses. As shown in Section 4 below, our model confirms
these findings.

Most recently, Andersson et al. used their TrueTime network simulator to analyse
the behaviour of wireless networked control systems communicating with a continuous
environment [1]. In our own work, we have similarly profiled the performance of a
proposed networked control system protocol using the NS2 simulator [14,13]. However,
our interest in this paper is in automatic exploration of all possible states through model
checking, rather than examining individual traces using simulation.

In this paper we combine the lessons learned from all of this previous work. Mindful
of the requirements of networked control system analysis [11], and informed by previ-
ous models of real-time systems [1,8,7], we develop a simple model that allows efficient
and accurate exploration of possible networked control system behaviours using an off-
the-shelf model checker.

3 Modelling a Networked Control System

In this section we explain how we modelled a proposed real-time queuing protocol for a
networked control system as a set of timed automata. UPPAAL’s timed-automata syntax
is introduced as needed. Firstly, we briefly describe the proposed protocol (Section 3.1).
The model then comprises three parts: a simple abstraction of the network’s ability to
deliver packets in time (Section 3.2); the components of the real-time controller itself
(Section 3.3); and a discrete approximation of the physical environment (Section 3.4).

3.1 A Proposed Real-Time Queuing Protocol

In a previous paper [14] we outlined a simple queuing protocol for a ‘smart’ process
controller which communicates with an industrial processing plant via an unreliable
communications network with significant propagation delays. The controller receives
sensor readings as data packets sent over the network and calculates responses to be
sent to an actuator. As usual in such systems we assume that the controller’s software is
implemented as a simple computational ‘task’, or ‘process’, which is invoked at fixed
intervals. The start of each such period is called the task invocation’s ‘arrival’ time.

To allow for the possibility that a data packet arrives earlier than expected, the con-
troller has a buffer, sample, which stores each data packet received until needed. (This
could be implemented in latching hardware or using a software interrupt handler.) To
allow for the possibility that a data packet arrives too late or not at all, the controller
also has a queue, previous, which holds several previous data packets. These can be
used to calculate responses when packets ‘drop out’. Typically queue previous would



Functional Analysis of a Real-Time Protocol for Networked Control Systems 449

hold at least three previous data values, to allow meaningful extrapolations to be cal-
culated. The way in which this queue is updated and used depends on the particular
control algorithm.

The controller performs various actions within fixed intervals relative to the arrival
(starting) time of each period. These intervals are bounded by four constants.

1. Earliest is the earliest time at which a data packet sent from the sensor to the con-
troller could possibly arrive.

2. Latest is the latest time at which a data packet is expected. Packets arriving after
this time are ignored.

3. Compute is the time at which the controller will start using the received data packets
to compute an output to send to the actuator.

4. Deadline is the time by which the controller must send its response to the actuator.

These constants are related as follows.

Earliest < Latest ≤ Compute < Deadline

Our previous work on performance profiling of the protocol considered how to calibrate
these constants [14,13], but did not analyse the system’s overall functionality.

3.2 Finite State Model of the Communications Network

To formally analyse such a system our aim was to model its essential features without
introducing irrelevant detail that would create a state-space ‘explosion’ during model
checking. Although we could have modelled the passage of data packets from the sen-
sor to the controller in detail, the only aspect of the network’s behaviour that actually
concerns us is whether or not packets arrive in time.

Therefore, our models of different network behaviours were simple state machines
which indicate the status of each data packet. One such model is shown in Fig. 1.
This particular model was one of several constructed to describe different network be-
haviours. Others included a relatively uncongested network in which each tardy packet
is separated from the next by at least two punctual packets. The simplest model was of
a totally reliable network which delivers all packets on time.

The particular automaton in Fig. 1 uses synchronisation channels OnTime and
TooLate to say whether or not the packet for the current period arrived in time, re-
spectively. The ‘!’ decorations mean that these are ‘output’ synchronisations [3]. The
corresponding inputs can be seen in Fig. 2. The finite state machine in Fig. 1 comprises
three locations, denoted by circles, and several transitions, indicated by arrows [3]. Dis-
tinguished location NetworkOK, marked by a double circle, is the initial one in which
the model begins. Transitions are annotated with the synchronisation events that allow
them to fire. Since this (untimed) automaton is fully synchronised with the timed au-
tomaton in Fig. 2, there is no need for any explicit timing constraints in Fig. 1.

The particular network model in Fig. 1 represents a heavily congested network in
which two consecutive data packets may arrive late. If the network is in location Net-
workOK, a packet can be delivered late, leaving the network in location Congested.
A second packet can then be delivered late, leaving the network in location StillCon-
gested. After this, however, the next packet must arrive on time. The other network



450 C. Fidge and Y.-C. Tian

NetworkOK

StillCongested

Congested

OnTime!

OnTime!

OnTime!

TooLate!

TooLate!

Fig. 1. Finite state machine model (one of several) of a heavily congested network

models used during the experiments made different assumptions about the separation
between packet ‘dropout’ events and the number of consecutive dropouts allowed.

3.3 Timed Automata Model of the Real-Time Control System

As explained in Section 3.1, there are two consecutive phases of the controller’s opera-
tion in each period: queuing received data packets and computing values to send to the
actuator based on the available data. We chose to model these two phases as two dis-
tinct timed automata (Figs. 2 and 3), since this allowed us to experiment with different
combinations of queuing protocols and response calculations.

Correct interleaving of the transitions performed by the two automata is guaranteed
by the timing constraints on their transitions. Each automaton maintains its own clock
variable, time, and uses this to determine when to perform transitions. Thanks to UP-
PAAL’s synchronous time model there was no need to explicitly synchronise the two
automata. However, the two automata share global state variables sample and previous.

Fig. 2 shows the automaton that models how the controller queues data packets. It
has a single location QueuesReady and two transitions, both of which are synchronised
with those of the network model in Fig. 1. The uppermost transition may occur when
the network model says that a data packet arrives on time and the lower transition may
occur when the packet arrives too late. Time-valued variable arrival is used to determine
the time at which transitions may fire.

In UPPAAL’s semantics time progresses while automata are in locations; transitions
are instantaneous. Locations can be annotated with predicates which must be true for the
automaton to remain in the location. Transitions may be guarded by predicates which
must be true for the transition to fire, and may perform assignments to state and clock
variables. Here we write guarded assignments as ‘guard → assignments’ and individual
assignments as ‘variable := expression’.

In Fig. 2 location QueuesReady is accompanied by an invariant which says that the
automaton may stay in this location no later than the arrival time of the current period,



Functional Analysis of a Real-Time Protocol for Networked Control Systems 451

QueuesReady
time arrival + Latest

OnTime?

TooLate?

time arrival + Earliest

time arrival + Earliest

arrival := arrival + Period;

sample := flow;

previous := insert(sample, previous)

arrival := arrival + Period;

sample := NoPacket

Fig. 2. Timed automaton model of the controller’s data queues

represented by variable arrival, plus constant Latest. Both transitions are guarded by
a predicate that says that they may fire no earlier than the arrival time of the period
plus constant Earliest. In effect, the invariant combined with the guards ensures that
the transitions fire between Earliest and Latest seconds from the arrival time of the
period. When they fire, both transitions add constant Period, the separation between
task invocations, to the arrival time in readiness for the next task invocation.

Importantly, the automaton in Fig. 2 models the way the data packet queues in the
networked controller are updated [14]. If the data packet arrives on time the sampled
sensor reading, flow (see Section 3.4), is both stored in buffer sample and inserted onto
the front of queue previous. If the data packet arrives too late the only action is to store
the special constant NoPacket in buffer sample.

The timed automaton which models the way the controller calculates responses for
the actuator, shown in Fig. 3, uses its own local time and arrival variables to model
its periodic invocation. In this case the invariants associated with the locations and
the guards attached to transitions ensure that the automaton leaves location Awaiting-
Data exactly Compute seconds after the arrival time of the period, and leaves location
PreparingOutput at Deadline seconds after arrival.

When in location AwaitingData there are two transitions the controller can take,
depending on whether or not a data packet was successfully received in this period, as
indicated by the absence or presence of constant NoPacket in buffer sample. The spe-
cific assignments performed depend on which type of controller algorithm we are mod-
elling, as discussed in Section 4. In general, though, if no packet has arrived (rightmost
transition in Fig. 3), we need to update buffer sample and queue previous with some
default or calculated value. If a data packet has arrived (middle transition in Fig. 3)
no special action is required because we can use the value placed in variable sam-
ple by the queuing automaton in Fig. 2. In both transitions we may calculate an error
value, for use when computing a response when packets are dropped, as discussed in
Section 4.

When the automaton leaves location PreparingOutput it means that the calculation
is complete and the value in buffer sample can be sent to the actuator (leftmost transition
in Fig. 3). The arrival time is then set to the beginning of the next period.



452 C. Fidge and Y.-C. Tian

AwaitingData
time arrival + Compute

time arrival + Deadline

time arrival + Compute

sample = NoPacket

arrival := arrival + Period;

actuator := sample

sample := … see text;

previous := insert(sample,

previous);

error := … see text

PreparingOutput
time arrival + Deadline

time arrival + Compute

sample NoPacket

error := … see text

Fig. 3. Timed automaton model of the controller’s main computation

3.4 Timed Automaton Model of the Physical Environment

To demonstrate the actual behaviour of a given controller algorithm we need to put it in
the context of its anticipated physical environment. Consider a controller for a chemical
processing plant which is required to monitor the flow of liquid through a pipe. A flow
meter embedded within the pipe measures the (instantaneous) rate of flow of liquid
through the pipe and this data is sent periodically to the controller, via a network. The
controller uses the flow readings received to generate a suitable output to an actuator or
display device.

When modelling such an environment we must devise a discrete approximation of
its continuous dynamic properties. Brinksma and Mader, in their own work on model
checking a chemical plant controller, noted the difficulty of devising a suitable dis-
cretization of the plant’s continuous behaviour [5]. Based on our previous experience in
modelling control systems and their environments [8], we resolved to develop a model
which allowed us to precisely control the range, velocity and acceleration of the ob-
served physical property.

As shown in Fig. 4, the model’s main purpose is to update variable flow, which repre-
sents the rate at which liquid is currently flowing through the pipe, measured in litres per
second. (Global variable flow is read by the controller model in Fig. 2.) Clock variable
delay is used to determine when this variable is updated. Since the controller samples
sensor readings periodically, it is sufficient to update flow at the same rate. Thus, each
location in Fig. 4 has an invariant which says that the automaton may remain in the
location for no longer than the period, and each transition is guarded by a condition that
allows it to fire no later than the period’s duration since the last transition. When each
transition occurs, the delay variable is reset to zero. In effect, transitions in Fig. 4 fire
exactly every Period seconds.



Functional Analysis of a Real-Time Protocol for Networked Control Systems 453

delay Period

inertia MinSlowChange

delay := 0;  inertia := 1

ConstantFlow
delay Period

SlowDecrease
delay Period

SlowIncrease
delay Period

MaximumIncrease
delay Period

delay Period

inertia MinNoChange

delay := 0;  inertia := 1;

flow := min(MaxFlow,

             flow + SlowChange)

delay Period

inertia MinMediumChange

flow < MaxFlow Rebound

delay := 0;  inertia := 1;

flow := min(MaxFlow,

             flow + MaxChange)

delay Period

inertia MinSlowChange

delay := 0;  inertia := 1

delay Period

delay := 0;

inertia := inertia + 1

delay Period

inertia MinNoChange

delay := 0;  inertia := 1;

flow := max(MinFlow,

             flow SlowChange)

delay Period

delay := 0;

inertia := inertia + 1;

flow := min(MaxFlow,

             flow + SlowChange)

delay Period

inertia MinMediumChange

delay := 0;  inertia := 1;

flow := min(MaxFlow,

             flow + SlowChange)

delay := 0;

inertia := inertia + 1;

flow := min(MaxFlow,

             flow + MaxChange)

delay Period

flow < MaxFlow Rebound

…
…

Fig. 4. Part of the timed automaton model of the physical environment



454 C. Fidge and Y.-C. Tian

Bounding the range of the observed flow of liquid was achieved easily by ensuring
that variable flow does not go outside an interval defined by constants MinFlow and
MaxFlow each time it is updated.

To ensure that the flow rate changes smoothly, the model consists of a sequence of
locations, each of which represents the situation in which the flow of liquid through
the pipe is increasing or decreasing at a particular rate. The model begins in location
ConstantFlow. While in this location, variable flow remains unchanged. However, if
the automaton moves to location SlowIncrease the rate of flow is increased by constant
SlowChange in each period. From here it can move to location MediumIncrease (not
shown) which results in variable flow increasing by a larger constant in each period,
and so on. Conversely, if the automaton moves from location ConstantFlow to location
SlowDecrease the flow rate decreases in each period. Thus, the model cannot jump
directly from a low rate of increase to a high one or vice versa—it must progress through
a series of intermediate stages. In total there were seven such locations in the particular
model used for the experiments shown in Section 4.

Strictly speaking, the separate locations in Fig. 4 could be collapsed into a single
one, by adding an additional state variable that represents the current rate of increase.
However, having separate locations made simulation traces displayed with UPPAAL’s
graphical user interface much easier to understand because the user could follow the
progression of the rate of flow through the different locations.

As well as the strict sequence of locations which governs acceleration, counter vari-
able inertia was used to limit the speed with which the automaton can move from one
location to the next. As its name suggests, this variable models resistance to change
in the flow rate of liquid through the pipe, i.e., the liquid’s inherent sluggishness. For
instance, if the model is in location SlowIncrease then variable inertia is incremented
at each transition. Guards on the outgoing transitions then ensure that the automaton
can leave this location only if inertia equals or exceeds constant MinSlowChange, thus
forcing the rate of increase to remain the same for a minimum number of periods.
Adjusting constants MinSlowChange, MinMediumChange, etc, gave us precise control
over the rate of changes to observed variable flow.

The final feature of the environment model is constant Rebound which appears in
guards on transitions leading to the two locations at the extreme ends of the sequence,
MaximumIncrease and MaximumDecrease. This constant is used to prevent the au-
tomaton from entering or staying in a location modelling a high rate of change when
the flow rate is near the limits of its range. In effect, the Rebound constant models the
‘pushback’ caused by turbulence when the pipe is nearing its capacity and the residual
trickle of liquid when the pipe is emptying. This feature was not part of our original
model, but we introduced it to exclude unrealistic behaviours in which the liquid was
seen to approach its maximum and minimum flow rate at impossibly high accelerations.

4 Experimental Results

Our goal in this research was to develop a model for assessing the effectiveness of pro-
posed controller algorithms (Figs. 2 and 3) given particular behaviours of the physical
environment (Fig. 4) and of the network connecting the two (Fig. 1). In this section we



Functional Analysis of a Real-Time Protocol for Networked Control Systems 455

0 0.8 1.6 2.4 3.2 4

5

10

15

Fl
ow

 (
lit

re
s 

pe
r 

se
co

nd
)

Elapsed time (seconds)

Measured flow

Actuator output

Fig. 5. Simulation showing poor behaviour of the simple controller due to packet dropouts

describe the results of a variety of experiments conducted with the model in Section 3.3
using UPPAAL’s simulator and model checker. For ease of comparison between the
controller’s inputs and outputs, we assume here that our controller is merely required
to forward sampled flow measurements to a display device. More generally, though, the
controller’s output would be some function of its inputs.

As a benchmark, we began with the simplest possible form of controller, one which
merely reuses the last value seen when a sensor reading fails to arrive in time. In the
rightmost transition in Fig. 3 this means that buffer sample is assigned the value at the
head of queue previous, i.e.,

sample := previous[0]

where index zero accesses the first item the queue. (The error variable is not used yet.)
A typical simulation in this situation is shown in Fig 5, assuming a controller running

at a frequency of 5 hertz, and a maximum rate of flow through the pipe of 15 litres per
second. In the particular trace shown the measured flow of liquid begins at zero litres
per second, quickly approaches the maximum capacity of the pipe, and then begins
to decrease. The networked control system attempts to mirror this behaviour but cannot
due to packet dropouts that occur in the periods beginning at times 1.0, 1.2, 1.8, 2.4, 2.6,
3.4 and 3.6 seconds after the start of the simulation. This causes the actuator’s output
to be lower than the actual flow when the rate is increasing and to exceed the true flow
when the rate is decreasing, as we would expect.

To compensate for the effects of packet dropouts, we then developed a model of a
controller which calculates a new value to replace a dropped one by extrapolating from
the most recent values seen. In Fig. 3 the update to buffer sample in this case is

sample := previous[0] + (previous[0] − previous[1]) .

In other words, this ‘extrapolating’ controller adds the difference between the last two
sensor readings displayed to the most recently displayed value when a sample is not
received.



456 C. Fidge and Y.-C. Tian

0 0.8 1.6 2.4 3.2 4

5

10

15

Fl
ow

 (
lit

re
s 

pe
r 

se
co

nd
)

Elapsed time (seconds)

Measured flow

Actuator output

Fig. 6. Improved behaviour by the ‘extrapolating’ controller in the same circumstances as Fig. 5

To confirm the effectiveness of this control strategy we then simulated the revised
system’s behaviour as shown in Fig. 6. As hoped, the extrapolating controller’s output
is a much closer fit to the desired behaviour than that of the simple controller. It success-
fully compensates for dropped data packets except in situations where two successive
packets are dropped while the rate of flow is changing.

Although this single simulation would seem to suggest that the extrapolating con-
troller is adequate for our needs, the true advantage of using a model checking tool
such as UPPAAL is that we can ask it to automatically explore a wide range of possi-
ble behaviours. Therefore, we asserted (using an appropriate temporal logic expression)
that the controller’s output will always stay within 4 litres per second of the actual flow
of liquid and challenged the model checker to find a counterexample. Fig. 7 shows the
result.

Here the model checker has found a particular network behaviour that causes the
controller’s output to become unstable. Even though there are no long sequences of
consecutive packet dropouts, the counterexample reveals that a particular pattern of
dropped packets can cause the extrapolating controller to successively overestimate and
underestimate the flow values. Even worse, it can be made to do so with a cumulative
error. Thus a dropped packet at time 1.2 caused the controller to underestimate the flow
by one litre per second (extrapolating from the samples at times 0.8 and 1.0). The next
packet dropout, at time 1.6, caused the controller to overestimate the value by 2 litres
per second (extrapolating from the estimated value at time 1.2 and the sampled value at
time 1.4), and so on.

With hindsight, it is apparent that the extraordinary controller behaviour in Fig. 7
is due to the presence of estimated values in queue previous. Each time a packet is
dropped, an estimated replacement value is produced. This value is placed in queue pre-
vious in lieu of the missing packet (rightmost transition in Fig. 3), and can thus lead to
a cumulative error in the next such calculation. Indeed, this kind of instability is well
known in control theory, confirming the accuracy of our model.

Next we resolved to define a more sophisticated form of controller, to overcome the
undesirable effects just seen. The new controller ‘adapts’ its behaviour by calculating



Functional Analysis of a Real-Time Protocol for Networked Control Systems 457

0 0.8 1.6 2.4 3.2 4

5

10

15

Fl
ow

 (
lit

re
s 

pe
r 

se
co

nd
)

Elapsed time (seconds)

Measured flow

Actuator output

Fig. 7. Counterexample produced by the model checker showing instability in the ‘extrapolating’
controller caused by a repetitive pattern of dropped packets

the error between its own estimates and actual samples received. This error measure-
ment is then used to adjust the extrapolated values when packets are dropped.

In the middle transition in Fig. 3, which models the controller’s actions when a data
packet has been successfully received, the error value is calculated as follows.

error := sample − (previous[1] + (previous[1] − previous[2]))

Here term ‘previous[1] + (previous[1] − previous[2])’ is an extrapolation from
previously-displayed values and ‘sample’ is the actual value received. The error is thus
the difference between the two.

For the rightmost transition in Fig. 3, which models the controller’s actions when a
data packet is dropped, the calculations of the replacement sample value and the error
are as follows.

sample := max((previous[0] + (previous[0] − previous[1]) − (error/2)), 0)

error := 0

The controller’s output value is calculated by extrapolating from the
previously-displayed values, as before, but corrected by a proportion of the error found
in the preceding extrapolation. Through experimentation we found that using one half
of the error value worked well. The error value for the next period is set to zero in this
case since there is no actual sample to compare with the extrapolation.

To confirm that this control strategy has the desired effect we then simulated the
‘adaptive’ controller in the same situation that caused the unstable behaviour using a
simple extrapolation. As shown in Fig. 8 the results were encouraging. The adaptive
controller successfully avoided the cumulative oscillations that occurred previously.

As a final check, however, we once again challenged the model checker to find a
counterexample to our assertion that the controller’s output always stays close to the
sampled input values. As shown in Fig. 9, the model checker responded with a remark-
able counterexample where a particular pattern of dropped packets again causes the



458 C. Fidge and Y.-C. Tian

0 0.8 1.6 2.4 3.2 4

5

10

15

Fl
ow

 (
lit

re
s 

pe
r 

se
co

nd
)

Elapsed time (seconds)

Measured flow

Actuator output

Fig. 8. Improved behaviour by the ‘adaptive’ controller in the same circumstances as Fig. 7

controller’s output to oscillate with cumulative error around the desired values. Unlike
Fig. 7, however, this behaviour could not be produced by isolated dropouts, but only
by having sequences of two successive dropped packets, combined with a particular
pattern of variations in the flow rate.

Once again the root cause of the problem is the presence of estimated, rather than ac-
tual, values in queue previous. To create instability in the adaptive controller, however, it
proved necessary for the queue to contain at least two estimated values, in effect mean-
ing that the majority of the values used to perform calculations were estimates. Thus,
although the adaptive controller was shown to be more robust than the extrapolating
one, it was still found to be vulnerable to certain extreme environmental behaviours.

Although obvious with hindsight, this result surprised us at first since it revealed
that the relatively sophisticated ‘adaptive’ controller can have worse behaviour than the
‘simple’ one we began with. In Fig. 5 the simple controller performs comparatively well
when the network drops sequences of packets, even when the rate of increase is steep,
whereas Fig. 9 shows that the adaptive controller can become unstable even when the
flow is increasing slowly overall.

Of course, a network that is dropping as many packets as shown in Fig. 9 would not
be used in practice as a basis on which to make critical control calculations. Normally
a separate fail-safe mechanism in the overall system design would shut the plant down
or set it to some neutral state if the network was seen to be behaving like this.

5 Conclusion

Networked control systems are an emerging and increasingly important technology for
governing industrial processes. Given that many such systems are safety-critical, it is
important that their dynamic behaviours can be predicted before they are deployed.
Model checking offers the ability to automatically explore a system’s state space, poten-
tially revealing extreme behaviours that could be overlooked during manually-guided
simulations.



Functional Analysis of a Real-Time Protocol for Networked Control Systems 459

0 0.8 1.6 2.4 3.2 4

5

10

15
Fl

ow
 (

lit
re

s 
pe

r 
se

co
nd

)

Elapsed time (seconds)

Measured flowActuator output

Fig. 9. Counterexample produced by the model checker showing instability in the ‘adaptive’ con-
troller due to consecutive sequences of dropped packets

We have shown how we used model checking to explore the behaviour of a proposed
‘smart’ controller for networked control systems. This was done by modelling signifi-
cant characteristics of the controller, network and physical environment. The network
and controller models were fairly simple, although linked rather intricately by shared
variables, channels and timing characteristics, while the environment model was com-
paratively large, due to the need to approximate a continuous behaviour, but had a sim-
ple regular structure. The UPPAAL model checker proved highly effective and efficient
at finding undesirable system behaviours. All of the model checking results presented
above were produced in a few minutes of processor time.

The approach can be adapted easily to analysis of other time-dependent systems.
At the time of writing we are working on a model which will allow two different ver-
sions of a periodic software task to be directly compared by simulating both versions
simultaneously within the same environment. This will be used to determine if a newly-
developed controller is an adequate replacement for a legacy one.

Acknowledgements. We wish to thank the anonymous ATVA 2006 reviewers for their
many helpful comments and corrections. This work was supported by Australian Re-
search Council Discovery-Projects grants DP0449773, Verified Emulation of Legacy
Mission Computer Systems, and DP0559111, Wavelet-Based Modelling And Model Pre-
dictive Control Of Complex Multidimensional Crystallisation Processes.

References

1. M. Andersson, D. Henriksson, A. Cervin, and K.-E. Årzén. Simulation of wireless networked
control systems. In Proceedings of the 44th IEEE Conference on Decision and Control and
the European Control Conference (CDC-ECC 2005), pages 476–481. IEEE, 2005.

2. G. Behrmann, J. Bengtsson, A. David, K. G. Larsen, P. Petterson, and W. Yi. UPPAAL

implementation secrets. In Proceedings of the Seventh International Symposium on Formal
Techniques in Real-Time and Fault Tolerant Systems (FTRTFT’02), 2002.



460 C. Fidge and Y.-C. Tian

3. G. Behrmann, A. David, and K. G. Larsen. A tutorial on UPPAAL. Technical report, Depart-
ment of Computer Science, Aalborg University, November 2004.

4. C. C. Bissell. Control Engineering, volume 15 of Tutorial Guides in Electronic Enginering.
Chapman and Hall, second edition, 1994.

5. E. Brinksma and A. Mader. Model checking embedded system designs. In Proceedings of
the Sixth International Workshop on Discrete Event Systems (WODES’02), October 2002.
Extended Abstract.

6. E. M. Clarke and B.-H. Schlingloff. Model checking. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning. Elsevier, 1999.

7. A. Dubey, X. Wu, H. Su, and T. J. Koo. Computation platform for automatic analysis of
embedded software systems using model based approach. In D. A. Peled and Y.-K. Tsay,
editors, Automated Technology for Verification and Analysis: Third International Symposium
(ATVA 2005), volume 3707 of Lecture Notes in Computer Science. Springer-Verlag, 2005.

8. C. J. Fidge and P. Cook. Model checking interrupt-dependent software. In Proceedings
of the Twelfth Asia-Pacific Software Engineering Conference (APSEC 2005), pages 51–58.
IEEE Computer Society Press, 2005.

9. M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning About Systems.
Cambridge University Press, second edition, 2004. ISBN 0-521-54310-X.

10. T. K. Iversen, K. J. Kristoffersen, K. G. Larsen, M. Laursen, R. G. Madsen, S. K. Mortensen,
P. Pettersson, and C. B. Thomasen. Model-checking real-time control programs: Verifying
LEGO MINDSTORMS systems using UPPAAL. In H. Toetenel, editor, Twelfth EuroMicro Con-
ference on Real-Time Systems (ECRTS’00), pages 147–156. IEEE Computer Society Press,
2000.

11. P. Martı́, J. M. Fuertes, and G. Fohler. An integrated approach to real-time distributed control
systems over fieldbuses. In Eighth IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA 2001), pages 177–182, 2001.

12. P. Martı́, R. Villá, J. M. Fuertes, and G. Fohler. Networked control systems overview. In
R. Zurawski, editor, The Industrial Information Technology Handbook. CRC Press, 2005.

13. Y.-C. Tian, Q.-L. Han, C. J. Fidge, M. Tadé, and T. Gu. Communication architecture design
for real-time networked control systems. In Proceedings of the Fourth IEEE International
Conference on Communications, Circuits and Systems (ICCCAS 2006), pages 1840–1845,
2006.

14. Y.-C. Tian, D. Levy, M. Tadé, T. Gu, and C. J. Fidge. Queuing packets in communication
networks for networked control systems. In Proceedings of the Sixth World Congress on
Intelligent Control and Automation (WCICA 2006), pages 205–209. IEEE Computer Society
Press, 2006.

15. T. Watteyne, I. Augé-Blum, and S. Ubéda. Proposition of a hard real-time MAC protocol
for wireless sensor networks. In Proceedings of the Thirteenth IEEE International Sympo-
sium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS 2005), pages 533–536. IEEE Computer Society, 2005.



Symbolic Semantics for the Verification of

Security Properties of Mobile Petri Nets�

Fernando Rosa-Velardo and David de Frutos-Escrig

Dpto. de Sistemas Informáticos y Programación
Universidad Complutense de Madrid

{fernandorosa, defrutos}@sip.ucm.es

Abstract. We study Mobile Synchronizing Petri Nets (MSPN), that
allow the description of systems composed of a collection of interacting
mobile components. Unlike in other models of modular or mobile Petri
Nets, we focus on security issues. For that purpose, we introduce a fresh
name generation mechanism to provide special authentication tokens.
These names are treated in an abstract way, which allows us to retain
the decidability of some properties that hold for Place/Transition nets
(P/T nets). In this paper, we are interested in checking that the de-
sired security properties of a system still hold, even when in an arbitrary
malicious environment. However, since we are dealing with security prop-
erties, we must regard that some names of the system are assumed to
be secret, which restricts the set of possible environments. We develop
a symbolic semantics that takes into account the behaviour of any of
those environments, though in an abstract way. We establish the desired
relations between the original and the symbolic semantics to conclude
that the latter is correct and complete with respect to the former.

1 Introduction and Related Work

The Internet has become in the last years a computational infrastructure that is
available all around the world, and of which many applications may take great
advantage. Moreover, the utopia of Ubiquitous Computing [21] is progressively
becoming a reality. The combination of both trends has been called Global Ubiq-
uitous Computing [13]. The study of the resulting engineered artifact remains as
a challenge for Computer Science. Some of the issues that arise in this context
(many of them already thoroughly studied separately) are cooperation, coor-
dination, mobility and security. We still need to develop a whole theory that
allows us to design and build systems in this context. In particular, in the set-
ting of Global Ubiquitous Computing, we want services to be offered globally
and uniformly. Thus, we need methods to reason about our systems in the pres-
ence of an unknown, unreliable or even hostile environment, so that their safety,
trustworthiness, robustness, etc., can be guaranteed even in these situations.

� Work partially supported by the Spanish projects MIDAS TIC 2003-01000, MAS-
TER TIC 2003-07848-C02-01 and PROMESAS-CAM S-0505/TIC/0407.

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 461–476, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



462 F. Rosa-Velardo and D. de Frutos-Escrig

We think that Petri Nets offer a good starting point for the study of these is-
sues, due to their amenable graphical representation but mainly to their solid the-
oretical basis. Moreover, the fact that P/T-nets are not Turing-complete makes
them rather manageable, since there are many decidability results for powerful
infinite-state systems, which do not hold in other Turing-complete models.

Several models for mobility based on Petri Nets have been proposed. In [1]
Mobile Petri Nets are introduced. Token colours are tuples of place names, so
that tokens at the preconditions of some transitions can specify their destination
place. Elementary Object Systems [20] are composed of a system net and one
or more object nets that move along the former like ordinary tokens. In Nested
Petri Nets [10] the number of these net tokens, as well as the level of nestedness,
is unlimited, thus obtaining multi-level nested systems. Other related models
are Hypernets [3] or the Mobile Systems in [12]. In most of these formalisms the
model of localities is more elaborated than the one that we consider, because
they allow either movement or creation of localities.

However, the previous models do not consider security aspects, which are cer-
tainly crucial in this setting, nor any other Petri net based model for mobility,
up to our knowledge. To overcome this limitation, we defined our Mobile Syn-
chronizing Petri Nets (MSPN) [14, 15], a model consisting of a set of localized
labelled coloured Petri Nets that can perform synchronizations between them
and fire movement transitions. MSPN systems deal with mobility in a flat topol-
ogy, so that the permission to access a location is granted by the knowledge
of its name. Then, in a similar way as in [6], we represent connectivity be-
tween components, although in a dynamic way, since we also consider different
locations. Apart from a colour for localities, we introduced a colour for authen-
tication tickets and a special transition capable of producing new identifiers in
a secure way. The security issues dealt with in this paper center on the man-
agement of these identifiers. Thus, the security model is mainly implemented
in a similar way as in the π-calculus or the Ambient Calculus [5], by means
of the generation of fresh identifiers and the restriction of synchronizations to
happen in the same location, and only between components with the required
permissions.

In [15] we studied the expressiveness of MSPN systems. We proved several
decidability results, such as the decidability of coverability, that can be used to
specify security properties such as integrity or confidentiality. However, these
results were obtained when considering an MSPN system as a closed system.
Whenever a system is designed as an open system which can interact somehow
with an unknown environment, then it is clearly desirable to develop an alter-
native semantics that takes into account the existence of such an environment.

Some of the previous related models have a modular nature, as our MSPN
systems. There have been several works [4, 9] to model the behaviour of open
systems in the context of Petri Nets, but in them the authors have concentrated
their interest in the modularity of systems, thus looking for reusable open com-
ponents. In general, the compositional semantics would guarantee that we can
replace any component of a system by any other having the same semantics,



Symbolic Semantics for the Verification of Security Properties 463

without altering the semantics of the whole system. Moreover, it is interesting
to notice that in all these models, the notion of composition of components is
completely static, in the sense that the way in which the different components
of a system cooperate is fixed, which entails a static architecture and the fact
that the interfaces to connect two components cannot be dynamically reused by
other users, as desired in an ubiquitous system.

Instead, we take a security oriented approach, namely that of proving that
a certain property holds for a system, whatever its environment is. In this way
we may obtain security properties even in the presence of malicious opponents.
Therefore, although we are considering component-based systems, and we are
defining an open semantics to consider the behaviour of the unknown environ-
ment, the existing compositional semantics for component-based net systems are
not adequate for us. This is because, whenever we want to prove some security
properties of a complex system we need to globally consider the interactions
between its components. For instance, as far as the intended users are not con-
sidered a part of the system, they cannot be distinguished from the malicious
users and, thus, we cannot make any assumption about their expected behaviour.

In this paper we introduce a new open semantics, the secure semantics, that
considers the behaviour of the system in every possible context. However, since
we are interested in the verification of security properties, we must assume that
the environment does not know any name of the system considered to be secret.
Thus, every security property must be parameterized by the set of private (or
public) names. Though that condition restricts the set of admissible environ-
ments, we still have a quantifier over the infinite set of admissible environments,
which makes the secure semantics rather unmanageable. This is why we also
present a symbolic semantics, which represents the environment in an abstract
way, thus getting a finitary representation. Next we prove that it is correct and
complete with respect to the secure semantics, so that we can use the symbolic
semantics in order to prove the properties of the original one. In particular, we
have proved in [17] that the coverability problem for the symbolic semantics is
decidable. Therefore, any security property that can be expressed in terms of
coverabilities would also be decidable.

The rest of the paper is structured as follows. Sect. 2 gives a brief overview of
MSPN systems. Sect. 3 presents an example of an MSPN system. Sect. 4 defines
our secure semantics. The symbolic semantics is developed in Sect. 5, as well as
the relation between the secure and the symbolic semantics. Finally, conclusions
and directions for further study are discussed in Sect. 6.

2 Mobile Synchronizing Petri Nets: Overview

In this section we will describe our Mobile Synchronizing Petri Nets (for more
details see [14] or [15]). An MSPN N = (P, T, F, λ, C) is a special kind of labelled
coloured Petri Net [11], that is, P is a finite set of places, T is a finite set of
transitions, F is a partial function that defines as its domain the set of arcs, and
labels those arcs with variables taken from a set Var = VarL∪Var Id ∪{ε}. Each



464 F. Rosa-Velardo and D. de Frutos-Escrig

k k

a

l l

x y

y x

k

k k

s!

l l

x z

y x

h

s?

h

z

k

Fig. 1. Autonomous (left) and synchronizing (right) transitions

one of these three sets corresponds to one of the three different colour types that
MSPN places may have: one for localities, taken from a set L, one for identifiers,
taken from a set Id , with both L and Id infinite, and a singleton colour type
{•} for ordinary black tokens. Sometimes we will just write • to denote that
singleton. We will use the symbol T to range over the set {•,L, Id}, Tokens
to denote the union L ∪ Id ∪ {•} and CTokens to denote the set of coloured
tokens, that is, L ∪ Id . The function C : P → {•,L, Id} establishes a partition
in the set of places. We will denote by PT the subset of places of colour T, that
is, C−1(T), and we will call locality and identifier places to the elements in PL

and PId , respectively. Finally, according to λ : T → A ∪ Sync, MSPN’s may
have two different kinds of transitions, autonomous (those with λ(t) ∈ A) and
synchronizing transitions (those with λ(t) ∈ Sync). The set A of autonomous
labels has two distinguished labels new and go. The set Sync of synchronizing
labels is the disjoint union of S? = {s? | s ∈ S} and S! = {s! | s ∈ S}, where S
is a set of service names. Intuitively, s! is the offer of a service s, while s? is the
request of that service, although formally they are just the two symmetric sides
of a synchronization.

Unlike in ordinary Coloured Petri Nets, where arbitrary expressions over some
syntax can label arcs, we only allow variables to specify the flow of tokens from
preconditions to postconditions. In particular, this means that only equality of
identifiers can be imposed by matching, but not any other relation between them
(even if using natural numbers as identifiers).

For homogeneity we are assuming in the definition that every arc (every pair
(p, t) or (t, p) in the domain of F ) is labelled by a variable. However, since we
only need variables to distinguish between different locality tokens and identifier
tokens, we introduce the special variable ε, that labels every arc that is adjacent
to an ordinary black-token place. Moreover, variables from VarL will only be
used for arcs that are adjacent to locality places and those from Var Id only for
arcs next to an identifier place. In this way, we guarantee that the different types
of tokens are never mixed.

We use post(t) to denote the set of variables in arcs going from t to some
place, i.e., going out of t (except for ε). Analogously, we use pre(t) to denote
the set of variables in arcs reaching t. We take Var(t) = post(t) ∪ pre(t). If
t is an autonomous transition with λ(t) �= new then it must be the case that
post(t) ⊆ pre(t), so that autonomous transitions can only move or delete locality
and identifier tokens, but not create them. As usual in P/T nets, we denote by
t• and •t the set of postconditions and preconditions of t, respectively.



Symbolic Semantics for the Verification of Security Properties 465

k

kgo

•

l k l k



k

•go

•

Fig. 2. Movement transitions

Then, an MSPN system S is just a pair (N,M), where N is a set of disjoint
nets and M is the initial marking of N. A marking of N is a pair (M, loc), where
M is a function that maps each place to an element in MSf (Tokens), that is,
to a finite multiset of tokens, and loc : N → L maps each net to its current
location, taken from the set L. We will denote by ) and − the multiset union
and the multiset difference, respectively, to distinguish them from ∪ and \, the
corresponding operations over sets. We will usually write TS to denote the union
of the transitions in each net of the system.

Since our nets are a particular class of coloured nets [11], their transitions fire
relative to a mode, that chooses in an adequate way the particular tokens to be
taken from the set of precondition places. Modes are defined as mappings from
Var(t) to Tokens , assigning values in T to variables in VarT . We will denote
modes with σ, σ′, σ1, σ2, . . .

Autonomous transitions t with λ(t) /∈ {new , go} work as ordinary transitions
in coloured nets (see Fig. 1 left). Movement transitions, those labelled by go, are
autonomous transitions that change the location of the net firing it. For that pur-
pose, every movement transition has a single distinguished locality precondition
to specify the destination of the net (see Fig. 2). Name-creating transitions, those
labelled by new , have exactly one identifier postcondition. They are autonomous
transitions that generate a fresh identifier in its identifier postcondition.

Instead, the firing of a synchronizing transition needs the presence of a com-
patible transition in the same location, that will be fired at the same time. For a
pair of synchronizing transitions t1 and t2 we denote by post(t1, t2) = post(t1)∪
post(t2), pre(t1, t2) = pre(t1)∪pre(t2) and V ar(t1, t2) = post(t1, t2)∪pre(t1, t2).
The compatibility conditions are merely syntactical: On the one hand, their la-
bels must be complementary, s? and s! for some s ∈ S; On the other hand,
the pair of transitions must meet together the same constraint imposed to au-
tonomous transitions, that is, post(t1, t2) ⊆ pre(t1, t2) (see Fig. 1 right); Fi-
nally, whenever an authentication variable (a variable in VarAuth ⊂ Var Id )
appears in a precondition arc, then it must also appear in a precondition arc
of its compatible transitions; This is the way the mechanism for authentica-
tion is implemented, by forcing the matching of two identifers. Intuitively, we
can see the label s of the synchronizing transition as the public information
about the offer-request of that service (as its name, or even the particular pro-
tocol used). However, the secret information, that establishes a secure channel
between both parties, as in π-calculus, is specified by the set of authentica-
tion tickets in authentication preconditions (those linked to the transition with



466 F. Rosa-Velardo and D. de Frutos-Escrig

variables in VarAuth ). These primitives are enough to capture the most widely
used authentication policy in Ubiquitous Computing, namely Transient Secure
Association [19].

In order to fire a pair of compatible synchronizing transitions t1 and t2 they
must be co-located and separately fireable according to the ordinary firing rule,
but relative to a common mode σ, so that in the case of synchronizing transitions
are mappings from Var(t1, t2) to Tokens .

In order to have a more compact notation we will use u, u′, u1, u2, . . . to range
both over autonomous transitions and pairs of compatible synchronizing transi-
tions, thus writing M[u(σ)〉M′ if M′ is the reached state after the firing of u with
mode σ. We represent by �S� the set of traces of S, where a trace of length n ≥ 0
is any sequence M0[u1(σ1)〉 · · · [un(σn)〉Mn starting from the initial marking M0

of S. If tr1 is a trace ending in a marking M1, tr2 is a trace starting in M2 and
M1[u(σ)〉M2, we will write tr1[u(σ)〉tr2 to denote the trace that results from
the firing of all the transitions in tr1, followed by u(σ) and ending with those
in tr2.

3 Access Control Protocol

As a simple but illustrative example, we present a system that describes the
selling of tickets and the access control mechanism for a concert at a theatre.
The system is composed of three principals: a ticket office, the theatre staff and
an agent that updates the theatre database with the tickets that have been sold.
The ticket office and the forwarder agent are shown in Fig. 3, that represents the
locality named k, and the theatre is shown in Fig. 4, that represents the locality
named l. The ticket office simply generates new tickets and sells them, so that
they are ready to be forwarded to the theatre. The forwarder agent (composed
of two unconnected components, inside the dotted line) moves alternatively be-
tween the locations where the ticket office and the theatre are located, k and l,
respectively. When it is co-located with the ticket office, it is willing to receive
new valid tickets and when it is co-located with the theatre, it is willing to output
those tickets. Notice that the ticket office and the forwarder agent communicate
using the private shared key K1, while the agent and the theatre use key K2.
This is formalized by assuming that the variable c is an authentication variable,
that is, c ∈ VarAuth , so that whenever it appears in one of the parts of a pair of
compatible synchronizing transitions, then it must also appear in the other part.
The theatre holds in DB all the sold tickets, those that clients may exhibit to
enter the concert. The theatre has two entrances: a normal entrance, door1, and
another one for people accompanied by a child, door2. Anyone entering through
the latter may use a single seat for him and his child. People entering by any of
the doors arrive at the same lounge, where an usher takes them to their seat.

We want to avoid the situation in which two clients are seated in the same
place, if they entered through the normal entrance, or more than two, otherwise.
This property (access control) can be stated in terms of coverability: Suppose
some client has a ticket η and accesses through the normal door. In that case



Symbolic Semantics for the Verification of Security Properties 467

• new a1 t! K1a1

a1 sold

f !

x

ticket forward
c

c
xx x

a1

f?

K1

u! K2

go �, k

c c

x

x

c

c

forward

update

k

Fig. 3. Ticket office and forwarder agent

•
list1 •

stalls

K2 u?

update

•
DB

d1?

door1

•
lounge

usher

• d2?

door2

•

• list2

DB2

d2? door2

st

st st

c

c

st st

st

st

st

st

st m

m

�

Fig. 4. Theatre

η will be annotated in the normal list, represented by the place named list1 , so
that the property is broken for that client if some marking in which η appears
both in that list, and at least twice in the stalls, is reachable. Analogously, any
client that enters by the other door will expect that any marking in which his
ticket appears in place list2 and more than twice in stalls cannot be covered.
Moreover, it could be checked that any ticket exhibited by those who access the
theatre was indeed one that was sold at the ticket office (integrity).

Of course, the system in isolation is trivially secure, since in the absence
of clients none of the previous facts can happen (the system is blocked after
the ticket office generates the first unsold ticket, except for the forwarder agent
jumping between localities l and k). Thus, in order to study the security of the
system, we must consider that clients are part of the environment, so that they
can range from honorable parents to ruthless scalpers. All we must assume about
clients is that they do not know K1 or K2, the private keys that the different
components use to communicate, but they may know (in fact, they must know)
the locations where the ticket office and the theatre reside.

We may also add to the system well behaved clients that we expect to interact
with the theatre, like the one in Fig. 5, which simply goes to the ticket office,
buys a ticket, moves to the theatre and uses the ticket to enter the theater. In



468 F. Rosa-Velardo and D. de Frutos-Escrig

k

go •

•
bought

t?

ticket

• go l

• d1 !

•
show

door1

•st

x

k ′

Fig. 5. Possible client

this way we may study properties that deal with these particular clients. For
instance, we could be interested in checking whether it is always possible to see
the show after visiting the ticket office (availability), which could be formalized
as a home space property [8]. Once again, we want to guarantee this property
even when other possible clients (or scalpers) are present.

4 Verification of Security Properties in MSPN Systems

We are interested in verifying properties of our systems when they are in an
unknown, unreliable or possibly malicious environment. Thus, we need to define
a way to merge a system with another system, that can be considered as its
environment. In our setting, to merge is simply to put in parallel. Given the
modular nature of our systems, the parallel composition of two MSPN systems
is defined straightforwardly. In the following definition, + denotes the disjoint
union of maps with disjoint domain.

Definition 1. Let S1 = (N1,M01) and S2 = (N2,M02) be two MSPN systems
with M0i = (Mi, loci) for i = 1, 2. Denoting by M01 + M02 the pair (M1 +
M2, loc1 + loc2), if N1 and N2 have disjoint sets of places and transitions then
(N1 ∪ N2,M01 + M02) is also an MSPN system, that will be called the parallel
composition of S1 and S2, denoted by S1 | S2.

If (Mi, loci) is a marking of Si, then (M1 + M2, loc1 + loc2) is a marking of
S1 | S2 and, conversely, if (M, loc) is a marking of S1 | S2 then (M |PNi

, loc|Ni)
is a marking of Ni, for i ∈ {1, 2}. Next we introduce an auxiliary definition, to
denote the set of locality and identifier tokens appearing in some marked net.

Definition 2. Let M = (M, loc) be a marking of an MSPN system S = (N,M0).
We define locs(M) as the set of localities at M, that is, locs(M) = {k ∈ L | ∃p ∈
PL, k ∈ M(p)} ∪ loc(N). Analogously, we define Ids(M) = {a ∈ Id | ∃p ∈
PId , a ∈ M(p)}. We denote the union of these two sets by cl(M). Moreover, we
take locs(S) = locs(M0), Ids(S) = Ids(M0), and cl(S) = cl(M0).

In the following definition we introduce our notion of admissible environment.

Definition 3. Let S be an MSPN systemandΦ ⊆ CTokens. A (Φ, S)-environment
is a MSPN -system P disjoint with S such that cl(S) ∩ cl(P) ⊆ Φ. We denote by
Env(Φ, S) the set of (Φ, S)-environments.



Symbolic Semantics for the Verification of Security Properties 469

Next we use these environments to define an alternative semantics of MSPN
systems, that will allow us to deal with open systems. Intuitively, we consider as
open trace of a system, relative to Φ, any trace in the original semantics that is
produced by the system when put in any environment whose initial knowledge
about the system is contained in Φ. First, we give an auxiliary definition.

Definition 4. Let tr be a trace of an MSPN system S | P with S = (N,M0).
We define the projection of tr over N, that we denote by tr|S, by induction on
the length of tr, as follows:

– (M, loc)|S = (M |PN
, loc|N), with PN the set of places in N.

–
(
tr[u(σ)〉M

)
|S = tr|S if u ∈ TP ∪ TP × TP.

–
(
tr[u(σ)〉M

)
|S = tr|S[u(σ)|S〉M|S if u /∈ TP ∪ TP × TP.

where u(σ)|S is defined as

– u(σ)|S = u(σ) if u ∈ TS ∪ TS × TS.
– (t, t′)(σ)|S = t(σ|Var(t)) if t ∈ TS and t′ ∈ TP.
– (t, t′)(σ)|S = t′(σ|Var(t′)) if t′ ∈ TS and t ∈ TP.

Definition 5. Let S = (N,M0) be an MSPN system and Φ ⊆ CTokens. We say
that a sequence otr = M0[u1(σ1)〉M1 . . .Mn−1[un(σn)〉Mn is a Φ-open trace of
S if there are P ∈ Env(Φ, S) and tr ∈ �S | P� such that otr = tr|S. If a Φ-open
trace ends in a marking M we say that M is Φ-reachable.

Let us comment on the different concepts appearing in the definitions above.
A Φ-open trace is the projection over N of a traces that S can generate in the
presence of some environment, provided its initial knowledge about the system
is in Φ. This fact is formalized by the condition cl(P) ∩ cl(S) ⊆ Φ, on (Φ, S)-
environments, meaning that any identifier or locality token appearing in P, that
also appears in S, is in the set of public names Φ.

As defined above, the composition S | P is an MSPN system with its ordi-
nary trace semantics. However, we are not interested in the behaviour of these
environments, but only in that of S. For that, we take the projections of such
traces over N, removing the transitions fired autonomously by the environment
and also any information about P in markings, modes and transitions. Once this
is done, we can find as part of a trace steps like M[t(σ)〉M′, with λ(t) ∈ Sync,
meaning that S has synchronized with its environment.

Though the system in Sect. 3 is (almost) blocked according to the original
semantics, that is not the case at all under the secure semantics. As said before,
we can assume that the only values in the system that the environment may know
in its initial state are k and l. Therefore, we are interested in its behaviour as a
{k, l}-open system, that is, in its {k, l}-open traces. Notice that, if we consider
S to be the system constituted by the ticket office, the agent and the theatre,
then the client in Fig. 5 can be regarded as a ({k, l}, S)-environment.

Once we have introduced the secure semantics, we can use it as foundation
for the study of the behaviour of our systems in any valid environment. For
instance, we can define the following properties in the new setting.



470 F. Rosa-Velardo and D. de Frutos-Escrig

Definition 6. The Φ-reachability problem consists on deciding, given a marking
M of an MSPN system S, if M is Φ-reachable. Analogously, the Φ-coverability
problem consists on deciding, given a marking M, if any marking covering M is
Φ-reachable. Finally, the Φ-home space problem consists on deciding, given a set
of markings and a Φ-open trace otr if there exists a Φ-open trace that extends
otr and ends in a marking in that set.

By using these notions we can study several interesting security properties of
open systems. In particular, the properties discussed in the example in Sect. 3 can
be characterized by means of {k, l}-coverability and {k, l}-home space problems.
For instance, two clients entering by door1 cannot be seated in the same place
if and only if the marking containing only one token η in list1 and two tokens η
in stalls cannot be {k, l}-covered.

5 Symbolic Semantics of MSPN Systems

In order to make the secure semantics for MSPN systems manageable, we need
a way to eliminate the quantifier in the environments that appears in its def-
inition. For that purpose we have developed a symbolic trace semantics for
MSPN systems, that takes into account in an abstract way any possible en-
vironment. The key idea to develop this semantics is to allow the firing of
a synchronizing transition even if the synchronizing counterpart is not in the
system, whenever it is legal according to Φ (which intuitively means that it
could actually be fired in the environment), together with all other normal syn-
chronizations. Therefore, Φ will represent the knowledge about the system ac-
cumulated by the environment along their history. Since this knowledge can
change due to the interactions between the system and the environment, we
must consider it as part of our markings. Therefore, we add a third component
to the markings of MSPN systems, that now will have the form (M, loc, Φ),
where Φ represents the knowledge that the environment has about the system.
We will call those triples symbolic markings and we denote them by MΦ, with
M = (M, loc).

By “knowledge about the system” we mean the part of the set of tokens in the
system that the environment knows. This knowledge comes from two different
sources: The system may output some tokens that the environment does not
know yet. Dually, the environment itself may give to the system a token that
the system did not previously have. Such tokens become part of the system, and
obviously they are already known by the environment. In order to distinguish
between these two sources of knowledge we will split each Φ in Φout and Φin, so
that Φ = (Φin, Φout). We will denote by Φio the union of Φout and Φin.

The definition of the symbolic semantics is based on the notion of symbolic
firing of an MSPN system. In [14] we did not need modes of synchronizing
transitions, since they were never fired in isolation, but always in pairs. Now we
need to define the symbolic mode of a synchronizing transition, which is simply
done as expected.



Symbolic Semantics for the Verification of Security Properties 471

Definition 7. Let S be an MSPN system and t ∈ T such that λ(t) ∈ Sync. A
symbolic mode of t is any mapping σ : V ar(t) → Tokens such that σ(x) ∈ T ⇔
x ∈ VarT for T ∈ {•,L, Id}.

Notice that synchronizing transitions were not syntactically restricted as au-
tonomous transitions were, regarding the set of variables in its adjacent arcs: It
can be the case that there is some variable x in an arc going out of a transition
but not in an incoming arc, that is, x ∈ post(t)\pre(t). In such a case a symbolic
mode for that transition can assign any value of the corresponding colour to that
variable. Next we proceed with the definition of symbolic firings:

Definition 8. Let S = (N,M0) be an MSPN system, Φ=(Φin, Φout) ⊆ CTokens
×CTokens with Φin∩Φout=∅. Let us also consider N=(PN , TN , FN , λN , CN )∈N.
We define [u(σ)〉# as the least relation on symbolic markings such that:

1. If M1[t(σ)〉M2 with λ(t) ∈ A \ {new} then MΦ
1 [t(σ)〉#MΦ

2 .
2. If M1[t(σ)〉M2 with λ(t) = new and σ(F (t, p)) /∈ Φio for all p ∈ t•∩C−1(Id),

then MΦ
1 [t(σ)〉#MΦ

2 .
3. If M1[(t, t′)(σ)〉M2 with λ(t) ∈ Sync, then MΦ

1 [(t, t′)(σ)〉#MΦ
2 .

4. Let t ∈ TN , λ(t) ∈ Sync, σ a symbolic mode for t and M1 a marking of S such
that σ(F (p, t)) ∈M1(p) for all p ∈ PN . If loc1(N) ∈ Φio, σ(x) ∈ Φio for every
x ∈ pre(t) ∩ V arAut and σ(x) /∈ cl(M1) \ Φio for every x ∈ post(t) \ pre(t),
then considering
– M2(p) =

(
M1(p) − {σ(F (p, t))}

)
) {σ(F (t, p))} for every p ∈ P .

– Φ2 =
(
Φin ∪ (σ(post(t)) \ Φio), Φout ∪ (σ(pre(t)) \ Φio)

)
.

and taking M2 = (M2, loc1) we have that MΦ
1 [t(σ)〉#MΦ2

2 is a symbolic step.

We say that a marking MΦ is symbolically Φ0-reachable if there is a sequence of
symbolic steps, that we will call symbolic trace, ending in MΦ:

MΦ0
0 [u1(σ1)〉#MΦ1

1 · · ·MΦn−1
n−1 [un(σn)〉#MΦ

Let us comment on the previous definition. Whenever the MSPN system per-
forms a (internal) step it also performs a symbolic step, without changing the
knowledge of the environment, as stated in items 1, 2 and 3. In item 2, we also
say that when the system creates a new name, it must not be in Φio. This con-
dition imposes no restriction on the set of possible firings, but only on the set of
produced names: any name not in Φio could be chosen as fresh.

In 4 we recreate the other synchronizing transition needed to perform a step,
even when only one of the synchronizing transitions is enabled. The environ-
ment, that intuitively fires the compatible transition, must meet a number of
conditions to be able to synchronize. First, it must know the locality where the
synchronization takes place, that is, loc1(Ni) ∈ Φio. Second, if there is any au-
thentication arc labelled by x, then the synchronizing counterpart must know
how to match the value of x, that is, it must be the case that σ(x) ∈ Φio. Third,
the environment cannot offer the system an identifier or a locality it does not
know, so that no arc going to a postcondition can be labelled by a variable x



472 F. Rosa-Velardo and D. de Frutos-Escrig

a •

•

•s1? s2?

aut

t1 t2

x

x

y

z

z

q1 q2

q3

q4

Fig. 6. Example 1

instantiated to a value known to the system but not to the environment, that
is, σ(x) /∈ cl(M) \ Φio. The marking obtained by the symbolic step is the result
of firing t without its counterpart; besides, the knowledge of the environment
is increased by the values in the arcs from preconditions, those that the system
offers to the environment, and by the values in the arcs to postconditions, those
that the environment offers to the system, that were not previously part of that
knowledge.

Now let us study the relation between both semantics. In Sect. 4 we used sets
Φ ⊆ CTokens to represent the knowledge of the environment. However, in the
definition of the symbolic semantics in Sect. 5 we split that knowledge in two
sets Φin and Φout, to distinguish the two ways in which the environment can
get to know names in the system. Now, if we want to move from the symbolic
frame to the open frame, all we must do is to forget that distinction, by merging
both sets. Conversely, when we have Φ0 ⊆ CTokens and we want to move to the
symbolic frame we must choose a way to split that knowledge. We will denote
by split(Φ) the set of pairs in which Φ can be split.

Certainly, we could get a uniform presentation of both semantics by intro-
ducing also the distinction between Φin and Φout in the definition of secure
semantics or by removing that distinction in the definition of symbolic seman-
tics. However, we have not done the former because we think that establish-
ing that distinction at that point would be a bit ad-hoc, since at the initial
state the intuition of “how a name was learnt by the environment” does not
exist. And we have not done the latter either, because whenever we have in-
deed that distinction, it is clear that names in both sets play a different role.
For instance, we can specify confidentiality properties by using the names in
Φout, which does not have sense without the distinction between both sources of
knowledge.

Proposition 1. Given an MSPN system, if MΦ is symbolically Φ0-reachable
then M is Φ0-reachable.

The previous result states that every symbolic trace is obtained by adding the
corresponding Φ components to the markings of an open trace. We illustrate its
proof by means of a simple example.

Example 1. Let us consider the system S shown in Fig. 6, composed of a single
net and with no movement transition, so that we can disregard the locality
component from its markings. We will represent these markings in the formM =
(M1,M2,M3,M4), where M i = M(qi) ∈ MSf(Tokens). Let us also consider its
symbolic trace MΦ0

0 [t1(σ1)〉#MΦ1
1 [t2(σ2)〉#MΦ2

2



Symbolic Semantics for the Verification of Security Properties 473

• • •

• b

s1! s2!

x x

x

y

y

t′1 t′2

p0 p1 p2

p(a) p(b)

Fig. 7. (∅, S)-environment P for trace in Example 1

where M0 = ({a}, ∅, ∅, ∅) Φ0 = (∅, ∅) σ1 = [x→ a]

M1 = (∅, {a}, ∅, ∅) Φ1 = (∅, {a}) σ2 = [x→ a, y → b]

M2 = (∅, ∅, {a}, {b}) Φ2 = ({b}, {a})
It can be checked that it is indeed a legal symbolic trace, obtained by applying

rule 4 twice in the definition of symbolic firings. In the first step of the trace
the environment receives the token a by synchronizing with the system on s1, so
that it gets to know a. Then, in the second firing, the environment gives a back
to the system, together with a new token b, previously unknown to the system.

Given a symbolic trace, we have to construct a legal environment that would
generate the corresponding ∅-open trace. Since the trace has two steps that use
rule 4, the environment must have two synchronizing transitions, compatible
with those in S and meant to be fired in a row (this is why we add p0, p1 and p2
as done). Then we add to the environment two places p(a) and p(b), that it will
use to store a and b, respectively, together with arcs that allow the environment
to receive a after the first synchronization, and arcs that allow the environment
to output the tokens a and b after the second synchronization. Notice that the
initial marking of the environment may contain b, but not a, since it is a token
of the system not in Φ0. The result of this construction is shown in Fig. 7.

The previous result says that the symbolic semantics is correct with respect to
the secure semantics. Next we state the corresponding completeness result.

Proposition 2. Given an MSPN system, if M is Φ0-reachable and Φ′0∈ split(Φ0)
then there is exactly one Φ such that MΦ is symbolically Φ′0-reachable.

Therefore, every Φ-open trace can be represented in the symbolic framework by
a symbolic trace. This is true whatever the way in which we choose to split Φ,
since enabledness of symbolic transitions only depends on Φio.

The two previous results prove that the symbolic semantics is in fact a tag-
ging [16] of the secure semantics. A tagged semantics is a conservative extension
of the original semantics with a number of tags, that capture information about
the runtime history of the system. This is formalized in [16] by characterizing
tagged systems as quotients of the reachability tree, by identifying those traces
that capture the same information about their histories. In our case, tags are
the Φ component of symbolic markings, that capture the information about the
system accumulated by the environment along its execution.

Once we have established the relation between both semantics we can use
the symbolic semantics for the proof of results about the secure semantics. For



474 F. Rosa-Velardo and D. de Frutos-Escrig

instance, if we prove the decidability of coverability for the symbolic semantics
we immediately get the decidability of Φ-coverability. In fact, we have already
done it in [17], though unfortunately we cannot show the details here for lack of
space, since they are rather involved.

Proposition 3. The coverability problem for the symbolic semantics is decid-
able. Therefore, the Φ-coverability problem is decidable.

Just to give a small hint about the proof, having defined the symbolic semantics
directly as a transition system between symbolic markings, we can talk about
predecessors without explicitly mentioning the environment. This also generates
a more compact state space so that we can apply the techniques based on well
quasi-orders developed in [2]. Thus, according to Prop. 3, the security proper-
ties discussed in Sect. 3 that are expressed in terms of coverability, could be
automatically verified.

6 Conclusions and Future Work

Though several models for mobility based on Petri Nets have been proposed, we
think that the important issue of security has not been properly addressed yet
within this framework. For that reason we introduced MSPN systems, composed
of a particular class of Petri Nets with transitions that can generate fresh names
to be used as security primitives and to establish security properties of the sys-
tems. In this paper we have defined an alternative semantics for MSPN systems,
called secure semantics, that makes possible their study from a security point of
view.

In order to have a manageable definition of the secure semantics, we have
defined a symbolic semantics, that is based on an extended firing relation on
markings that takes into account any possible environment in an abstract way.
We have established the relation between the secure semantics and the symbolic
semantics, namely that the symbolic semantics is correct and complete with re-
spect to the secure semantics. More precisely, we have proved that every symbolic
trace comes from the corresponding open trace (by erasing the Φ component)
and that for every open trace there exists a symbolic trace that represents it.
Since the symbolic semantics is a tagging of the secure semantics, we conclude
that the symbolic semantics is a conservative extension of the secure one, and
that this extension is also complete regarding the piece of history of our systems
considered: the knowledge accumulated by the environment.

We have recently developed a prototype of a tool for the integrated design and
verification of systems based in our MSPN’s [18]. As supporting language for the
implementation we have chosen Maude [7], that is a reflective programming lan-
guage based on rewriting logic. Our prototype includes a decision procedure for
the ordinary coverability problem in MSPN systems. We are currently extending
our tool so that it can also deal with Φ-coverability.

In this paper we have emphasized the security properties that can be expressed
in terms of coverability. However, we have seen that this is not the case for all



Symbolic Semantics for the Verification of Security Properties 475

properties, as when they imply some sort of liveness, as availability does. We plan
to study which security properties can be stated in terms of usual properties in
Petri Nets and whether they can be verified in our framework. Regarding the
latter, we want to study whether the existing results about coverability in the
well quasi-order theory can be extended to the home space property.

Besides, we plan to try to extend our results, both concerning symbolic seman-
tics and decidability of properties, to more elaborated models where processes
can replicate, locations can be created or dynamically nested, although we al-
ready know that whenever we combine too many features then decidability of
coverability, in particular, is lost. This would lead us to search to what extent
we can combine some of these features while preserving the decidability of the
security properties of the definable systems.

References

[1] A. Asperti, and N. Busi. Mobile Petri Nets. Technical Report UBLCS-96-10,
University of Bologna, 1996.

[2] P. Aziz Abdulla, K. Cerans, and B. Jonsson. Algorithmic Analysis of Programs
with Well Quasi-Ordered Domains. Inf. Comput., 160(1-2):109–127, 2000.

[3] M.A. Bednarczyk, L. Bernardinello, W. Pawlowski, and L. Pomello. Modelling
Mobility with Petri Hypernets. WADT’04. LNCS vol. 3423, Springer, 2004.

[4] P. Baldan, A. Corradini, H. Ehrig and R. Heckel. Compositional semantics for
open Petri Nets based on deterministic processes. Mathematical Structures in
Computer Science 15(1), 2005, pp. 1-35. Cambridge University Press.

[5] L. Cardelli and A. D. Gordon. Mobile ambients. In Foundations of Software
Science and Computation Structures, LNCS vol. 1378, pp. 140-155. Springer, 1998.

[6] S.Christensen and N.D.Hansen. Coloured Petri Nets Extended with Channels for
Synchronous Communication. 15th Int. Conference on Application and Theory
of Petri Nets, ICATPN’94. LNCS vol. 815, pp. 159-178. Springer, 1994.

[7] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer and C.
Talcott. The Maude 2.0 System. In Proc. Rewriting Techniques and Applications,
2003. LNCS vol. 2706, pp. 76–87. Springer, 2003.

[8] C. Johnen. Decidability of Home Space Property. Petri Net Newsletter(29), 1988.

[9] E. Kindler. A Compositional Partial Order Semantics for Petri Net Components.
ICATPN’94. LNCS vol. 815, pp. 159-178. Springer, 1994.

[10] I.A. Lomazova. Nested Petri Nets; Multi-level and Recursive Systems. Fundamenta
Informaticae vol.47, pp.283-293. IOS Press, 2002.

[11] K. Jensen. Coloured Petri Nets.Basic Concepts, Analysis Methods and Prac-
tical Use. Volume 1,Basic Concepts. Monographs in Theor. Comp. Science.
Springer,1997.

[12] C. Lakos. A Petri Net View of Mobility. Formal Techniques for Networked and
Distributed Systems, FORTE’05. LNCS vol. 3731, pp. 174-188. Springer, 2005.

[13] R. Milner. Theories for the Global Ubiquitous Computer. Foundations of Software
Science and Computation Structures, LNCS vol.2987, pp.5-11. Springer, 2004.

[14] F. Rosa-Velardo, O. Marroqúın-Alonso and D. de Frutos-Escrig. Mobile Syn-
chronizing Petri Nets: a choreographic approach for coordination in Ubiquitous
Systems. In MTCoord’05. ENTCS vol.150, Issue 1. Elsevier,2006.



476 F. Rosa-Velardo and D. de Frutos-Escrig

[15] F. Rosa-Velardo, D. de Frutos-Escrig and O. Marroqúın-Alonso. On
the expressiveness of Mobile Synchronizing Petri Nets. 3rd Int. Work-
shop on Security Issues in Concurrency, SecCo’05. ENTCS (to appear).
http://kimba.mat.ucm.es/∼frosa.

[16] F. Rosa-Velardo, C. Segura-Dı́az and D. de Frutos-Escrig. Tagged systems: a
framework for the specification of history dependent properties. ENTCS vol.
137(1), Elsevier, 2005.

[17] F. Rosa-Velardo, and D. Frutos-Escrig. Deciding Coverability in Open Petri Net
Systems (submitted). http://kimba.mat.ucm.es/∼frosa.

[18] F. Rosa-Velardo. Coding Mobile Synchronizing Petri Nets into Rewriting Logic.
7th International Workshop on Rule-Based Programming, RULE’06. ENTCS (to
appear). http://kimba.mat.ucm.es/∼frosa.

[19] F. Stajano. Security for Ubiquitous Computing. Wiley Series in Communications
Networking & Distributed Systems. John Wiley & Sons, 2002.

[20] R. Valk. Petri Nets as Token Objects: An Introduction to Elementary Object Nets.
App. and Theory of Petri Nets 1998, LNCS vol.1420, pp.1-25. Springer, 1998.

[21] M. Weiser. Some Computer Science Issues in Ubiquitous Computing. Comm. of
the ACM vol.36(7), pp.74-84. ACM Press, 1993.



Sigref – A Symbolic Bisimulation Tool Box�

Ralf Wimmer1, Marc Herbstritt1, Holger Hermanns2,
Kelley Strampp1, and Bernd Becker1

1 Albert-Ludwigs-University Freiburg, Germany
{wimmer,herbstri,strampp,becker}@informatik.uni-freiburg.de

2 Saarland University, Saarbrücken, Germany
hermanns@cs.uni-sb.de

Abstract. We present a uniform signature-based approach to compute
the most popular bisimulations. Our approach is implemented symbol-
ically using BDDs, which enables the handling of very large transition
systems. Signatures for the bisimulations are built up from a few generic
building blocks, which naturally correspond to efficient BDD operations.
Thus, the definition of an appropriate signature is the key for a rapid
development of algorithms for other types of bisimulation.

We provide experimental evidence of the viability of this approach by
presenting computational results for many bisimulations on real-world
instances. The experiments show cases where our framework can handle
state spaces efficiently that are far too large to handle for any tool that
requires an explicit state space description.

1 Introduction

The infamous state space explosion problem is an omnipresent phenomenon in
state-based verification. One promising approach to combat this problem is based
on bisimulation minimization, where the state space is compressed by building
the quotient under some appropriate notion of bisimulation. In the presence of
internal activities and composition operators the benefits of this technique are
particularly impressive [2,3,4]. The algorithmic workhorse for this minimization
is a partition refinement algorithm [5,6].

Binary decision diagrams (BDDs) are another powerful approach to handle
extremely large state spaces. With BDDs such state spaces can be represented
symbolically in a compact way. It is well-known that only the application of
symbolic methods opened the gates for model checking of large systems [7].

This paper explores the seemingly obvious idea to combine BDDs and bisim-
ulation minimization. This idea is not new. To our knowledge, [8,9] were the
first to apply BDD techniques to bisimulation minimization whereas Bouali [10]
introduced the term “symbolic bisimulation minimization”. Other recent work

� This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for more
information.

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 477–492, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



478 R. Wimmer et al.

in the context of efficient bisimulation minimization algorithms has focussed
on parallel implementations, most notably the work of Blom and Orzan [11],
who introduce a parallel, signature-based, branching bisimulation minimization
algorithm. A signature is a concise characteristic function for the bisimulation.

The basic notion of bisimulation is Milner’s strong bisimulation [12], which
does not abstract from internal activities. In the quest for such an abstraction,
very many weak bisimulation relations have been coined in the past 20 years
[12,13,14,15,16,17,18,19,20]. Van Glabbeek’s seminal overview paper [21] lists 28
different variations in the spectrum between weak and branching bisimulation,
and there are many more, considering for instance similar variations for safety
[20], progressing [19] and orthogonal bisimulation [17]. When it comes to apply-
ing bisimulation minimization in practice, the first question is which of the many
candidate bisimulations to pick. There are some canonical ones (like ordinary
weak or branching bisimulation), but certain circumstances (such as maximal
progress or priority [22,17]) may force one to opt for others. A second step is
then to design an appropriate minimization algorithm for the particular choice.

We attack the second of the above problems by means of an efficient, fully
symbolic and very flexible implementation of bisimulation minimization in the
style of [5]. The flexibility of our algorithm stems from the fact that it is paramet-
ric in the signature used, i. e., by providing the appropriate signature, one can
rapidly obtain a tailored, and efficient bisimulation minimization algorithm. For
this purpose, signatures are built up from some generic building blocks, which
naturally correspond to efficient BDD operations. We believe, that this approach
exploits the full potential of a symbolic implementation. To validate this claim
we provide experimental evidence with signatures for all the core bisimulations
mentioned above. The results show that our approach can compete with the
most efficient explicit algorithms but can handle much larger instances.

The paper is structured as follows. In Section 2 we introduce basic notations
and definitions of the most important types of bisimulation. Additionally, Section
2 gives an overview of all considered bisimulations by presenting references to the
original work as well as a discussion of algorithms that are different to the ap-
proach presented in this work. Then, in Section 3 we present our signature-based
framework by stating the signatures for all bisimulations of interest. Section 4 de-
scribes the implementation of our signature-based approach that is implemented
symbolically, i. e., by means of BDDs. Experimental results and a discussion of
them are presented in Section 5. Finally, Section 6 concludes the paper and
suggests topics for future work.

2 Preliminaries

Bisimulations typically define equivalent behavior of states in a discrete state
space. In general, either state-based systems are used or transition-oriented sys-
tems like labelled transition systems. In this work, we focus on the latter.

Definition 1. A labelled transition system (LTS) is a triple M = (S,A, T )
where S is a finite non-empty set of states, A is a set of actions that may



Sigref – A Symbolic Bisimulation Tool Box 479

contain the so-called non-observable action τ , and T ⊆ S × A × S is a relation
that defines labelled transitions between states.

The usage of τ -actions depends on the application. E. g., it can serve as an
abstraction mechanism to hide irrelevant actions that are internal to the system
model and thus unobservable for the user. Also, in case of non-τ -actions that do
not impact the property to be verified, these actions may be mapped to τ .

A bisimulation partitions the original state space into disjoint parts called
blocks that contain those states that are equivalent regarding the applied bisim-
ulation. It is well-known that each partition induces an equivalence relation
and vice versa. Therefore, we do not distinguish between partitions and equiv-
alence relations. We use the following notations for a partition P and an LTS
M = (S,A, T ):

– s
a−→ t for (s, a, t) ∈ T and s a∗

−→ t for the reflexive transitive closure of a−→.
– s

a−→
P
t if s a−→ t and s and t are contained in the same block of P . Then, the

transition s a−→ t is called inert.
– s

a∗
−→
P
t for the reflexive transitive closure of a−→

P
.

Bisimulations are equivalence relations on the state space of an LTS, and will
be denoted in the following by B∗ ⊆ S × S whereby ∗ indicates the type of the
bisimulation. In the absence of τ -actions all the different notions of bisimulation
considered in this work are equivalent. Otherwise, there are several ways how
τ -actions can characterize the possible behavior of a state. We focus on the fol-
lowing bisimulations:

– Strong Bisimulation [23,13]
– Weak Bisimulation [13,14,12]
– Progressing Bisimulation [19]
– Branching Bisimulation [15]

– Orthogonal Bisimulation [17]
– Delay Bisimulation [18]
– η-Bisimulation [16]
– Safety Bisimulation [20].

Strong bisimulation treats τ -actions like any other action. It is due to Park
[23] and in a different formulation already to Milner [13]. Among others, it has
the important property to preserve the validity of CTL* formulae and thus all
interesting system properties.

Definition 2. Bs is a strong bisimulation if for all s, s′, t ∈ S the following
holds: If (s, t) ∈ Bs then s a−→ s′ implies that there exists t′ ∈ S with t a−→ t′ and
(s′, t′) ∈ Bs.

Based on the Kanelakis/Smolka algorithm [5], a symbolic algorithm for strong
bisimulation has been proposed by Bouali and de Simone [10]. Dovier et al. have
suggested an improvement in the form of a preprocessing step, tailored to non-
strongly connected systems [24]. Since it reduces the number of iterations needed
by both Bouali/deSimone’s and by our algorithm in the same way we do not
consider it further. There is also a symbolic O(n logn) algorithm for strong
bisimulation [25] which relies on backward pointers, which are not part of popular



480 R. Wimmer et al.

BDD packages (e. g., CUDD [26]). Furthermore, the algorithm of Klarlund is
designed for strong bisimulation only, and thus it is not obvious how to extend
it to other kinds of bisimulation.

Weak Bisimulation was introduced by Milner (see [13,14,12]) to characterize
the observable behavior of a transition system.

Definition 3. Bw is a weak bisimulation if for all s, s′, t ∈ S the following
holds: If (s, t) ∈ Bw then s a−→ s′ implies either a = τ and (s′, t) ∈ Bw or there

exist t′, t′′, t′′′ ∈ S with t τ∗
−→ t′

a−→ t′′
τ∗
−→ t′′′ and (s′, t′′′) ∈ Bw.

A stronger version of weak bisimulation, called progressing bisimulation, was
obtained by Montanari and Sassone [19] by requiring that sequences of τ -steps
may be compressed but not omitted completely:

Definition 4. Bp is a progressing bisimulation if for all s, s′, t ∈ S and a ∈ A
the following holds: If (s, t) ∈ Bp then s a−→ s′ implies that there exist t′, t′′, t′′′ ∈
S with t τ∗

−→ t′
a−→ t′′

τ∗
−→ t′′′ and (s′, t′′′) ∈ Bp.

Please note that in the definition of progressing bisimulation a = τ is allowed –
even if it is an inert τ -step. This is the difference to weak bisimulation.

Branching bisimulation was introduced by van Glabbeek and Weijland [15] to
overcome the problem of weak bisimulation that it does not preserve the branch-
ing structure. Branching bisimulation is comparable to stuttering equivalence on
Kripke structures and preserves CTL* without next state quantifier.

Definition 5. Bb is a branching bisimulation if for all s, s′, t ∈ S the following
holds: If (s, t) ∈ Bb then s a−→ s′ implies either a = τ and (s′, t) ∈ Bb or there

exist t′, t′′, t′′′ ∈ S with t τ∗
−−→
Bb

t′
a−→ t′′

τ∗
−−→
Bb

t′′′ and (s′, t′′′) ∈ Bb.

The fastest known explicit algorithm for computing the coarsest branching bisim-
ulation of a transition system is that of Groote and Vaandrager [27].

Bergstra et al. [17] suggest a refinement of branching bisimulation called or-
thogonal bisimulation. While branching bisimulation allows sequences of τ -steps
not only to be compressed but even to be omitted completely, orthogonal bisim-
ulation does not. A state with a τ -transition cannot be orthogonally equivalent
to a state without τ -transition while they may be branching equivalent.

Definition 6. Bo is an orthogonal bisimulation if for all s, s′, t ∈ S and a ∈ A
the following holds: If (s, t) ∈ Bo then s a−→ s′ implies if a �= τ then there is a
t′ ∈ S with t a−→ t′ and (s′, t′) ∈ Bo and if a = τ then there exist t′, t′′ ∈ S with

t
τ∗
−−→
Bo

t′
τ−→ t′′ and (s′, t′′) ∈ Bo.

Delay bisimulation was introduced by Milner in 1981 [18].

Definition 7. Bd is a delay bisimulation if for all s, s′, t ∈ S the following
holds: If (s, t) ∈ Bd then s a−→ s′ implies either a = τ and (s′, t) ∈ Bd or there

exist t′, t′′, t′′′ ∈ S with t τ∗
−→ t′

a−→ t′′
τ∗
−−→
Bd

t′′′ and (s′, t′′′) ∈ Bd.



Sigref – A Symbolic Bisimulation Tool Box 481

a

a

a

a

τ

τ

τ

00 01

10 11

0

a

t0t0

t1 t1

s0 s0 s0

s1

1

Fig. 1. An LTS and its symbolic representation

The notion of η-bisimulation was introduced by Baeten and van Glabbeek [16].

Definition 8. Bη is an η-bisimulation if for all s, s′, t ∈ S the following holds:
If (s, t) ∈ Bη then s a−→ s′ implies either a = τ and (s′, t) ∈ Bd or there exist

t′, t′′, t′′′ ∈ S with t τ∗
−→ t′

a−→ t′′
τ∗
−→ t′′′ and (t, t′) ∈ Bη and (s′, t′′′) ∈ Bη.

Safety Bisimulation has been introduced by Bouajjani et al. in [20]. It preserves
the reachability of actions, but not the branching structure of an LTS. It is useful
when verifying safety properties where only reachability of states is of interest
and not the way how they are reached.

Definition 9. Bsafe is a safety bisimulation if for all s, s′, s′′, s′′′, t ∈ S the
following holds: If (s, t) ∈ Bsafe then s τ∗

−→ s′
a−→ s′′

τ∗
−→ s′′′ and a �= τ imply that

there exist t′, t′′, t′′′ ∈ S with t τ∗
−→ t′

a−→ t′′
τ∗
−→ t′′′ and (s′′′, t′′′) ∈ Bsafe.

A key concept of our algorithm is the usage of binary decision diagrams (BDDs)
[28] as a symbolic data structure for the representation of LTSs. BDDs are
acyclic directed graphs that represent boolean functions over a predefined set of
variables. They are obtained from binary decision trees by sharing subtrees as
much as possible. By fixing the variable order on all paths from the root of the
graph to a leaf, BDDs become a canonical representation of boolean functions.
There exist efficient algorithms for the synthesis of BDDs. Since the mid-1980s,
BDDs have become a standard data structure for automated analysis of large
systems on the symbolic level. For a comprehensive treatment of BDDs and BDD
algorithms, we refer to [29]. BDDs can be used for the representation of a finite
set M ⊆ {0, 1}n through its characteristic function χM : {0, 1}n → {0, 1} with
χM (x) = 1 iff x ∈ M . Fig. 1 shows an example of an LTS and the symbolic
representation of its transition relation as a BDD. The states are encoded using
two bits: The variables (s1, s0) are used for the present state and (t1, t0) for the
next state of a transition. The variable a denotes the transition label with a = 0
denoting τ .

3 Signature-Based Computation of Bisimulations

In [11], Blom and Orzan have presented a distributed explicit algorithm for
the computation of branching bisimulation. It is based on the computation of



482 R. Wimmer et al.

signatures of the states. A signature sig(s) can be considered as a kind of “fin-
gerprint” of the state s ∈ S that characterizes reachable transitions which are
relevant for the bisimulation. States with different signatures are not equivalent
regarding the considered bisimulation.

Starting with the initial partition P 0 = {S} of S, we compute for i = 0, 1, . . . a
new partition by putting those states into a block that have the same signature:

P i+1 = sigref(P i) := {{t ∈ S | sig(s) = sig(t)}
∣∣ s ∈ S}

until a fixpoint is reached, i. e., an n ≥ 0 with Pn = Pn+1. Using the signature
for branching bisimulation as given below, Blom and Orzan were able to show
that this algorithm indeed computes the coarsest branching bisimulation.

We now give signatures for all eight types of bisimulations as introduced
in Section 2 (see Fig. 2 for an illustration). The proofs of correctness can be
established in a similar way as in [11] for branching bisimulation. Due to page
limitation, these proofs are omitted, but are contained in [30]. In the following
B denotes a block of the current partition P .
– Strong Bisimulation:

sigs(s) = {(a,B) | ∃s′ ∈ B : s a−→ s′}
– Orthogonal Bisimulation:

sigo(s) = {(a,B) | (a �= τ ∧ ∃t ∈ B : s a−→ t)∨
(a = τ ∧ ∃s′ ∈ S, s′′ ∈ B : s τ∗

−→
P
s′

τ−→ s′′)}
– Branching Bisimulation:

sigb(s) = {(a,B) | ∃s′ ∈ S, s′′ ∈ B : s τ∗
−→
P
s′

a−→ s′′ ∧ (a �= τ ∨ (s, s′′) �∈ P )}
– η-Bisimulation:

sigη(s) = {(a,B) | ∃s′, s′′ ∈ S, s′′′ ∈ B : s τ∗
−→ s′

a−→ s′′
τ∗
−→ s′′′∧

(s, s′) ∈ P ∧ (a �= τ ∨ (s, s′′′) �∈ P )}
– Delay Bisimulation:

sigd(s) = {(a,B) | ∃s′ ∈ S, s′′ ∈ B : s τ∗
−→ s′

a−→ s′′ ∧ (a �= τ ∨ (s, s′′) �∈ P )}
– Progressing Bisimulation:

sigp(s) = {(a,B) | ∃s′, s′′ ∈ S, s′′′ ∈ B : s τ∗
−→ s′

a−→ s′′
τ∗
−→ s′′′}

– Weak Bisimulation:
sigw(s) = {(a,B) | ∃s′, s′′ ∈ S, s′′′ ∈ B : s τ∗

−→ s′
a−→ s′′

τ∗
−→ s′′′∧

(a �= τ ∨ (s, s′′′) �∈ P )}
– Safety Bisimulation:

sigsafe(s) = {(a,B) | ∃s′, s′′ ∈ S, s′′′ ∈ B : s τ∗
−→ s′

a−→ s′′
τ∗
−→ s′′′ ∧ a �= τ}

4 Symbolic Computation

We will now present how this signature-based algorithm described above can
be implemented symbolically. To do so, we explain in detail the BDD repre-
sentation of the LTS, the symbolic computation of the signatures, the symbolic
refinement, and finally the bisimulation quotient w. r. t. a given partition of the
state space.



Sigref – A Symbolic Bisimulation Tool Box 483

a

Bi Bk

s

a �= τ

Bi Bk

s

τ ∗

τ

or

Bi = Bk allowed

a

Bi Bk

s

τ ∗

a �= τ or Bi �= Bk

(a) Strong (b) Orthogonal (c) Branching

a

Bi Bk

s
τ ∗

a �= τ or Bi �= Bk

τ ∗

a

Bi Bk

s τ ∗

a �= τ or Bi �= Bk

a

Bi Bk

s τ ∗ τ ∗

a arbitrary

(d) η (e) Delay (f) Progressing

a

Bi Bk

s τ ∗ τ ∗

a �= τ or Bi �= Bk

a

Bi Bk

s τ ∗ τ ∗

a �= τ

(g) Weak (h) Safety

Fig. 2. Illustration of the signatures

4.1 Representation of the Data

We have to represent the following sets: the state space S of the LTS, its tran-
sition relation T , the partition P and the signatures sig. We use a binary en-
coding for the states (using variables s for the present state, variables t for the
next state, and x as auxiliary variables) and the actions (variables a). Then,
the state space is represented by a BDD S with S(s) = 1 iff s ∈ S. Analo-
gously, we have a BDD T for the transition relation with T (s, a, t) = 1 iff s a−→ t.
We have chosen an uncommon way for the representation of the partition P :
We assigned a unique number to each block of P (encoded using variables k)
and represented P by a BDD P with P(s, k) = 1 iff s ∈ Bk. All other sym-
bolic algorithms for bisimulations typically use a BDD P ′(s, t) with P ′(s, t) = 1
iff (s, t) ∈ P . Our representation has two advantages: First, our experiments
have shown that mostly P ′ is much larger than P . Second, given T and P , it
is easy to compute the quotient w. r. t. P symbolically (see section 4.4). . We
represent the signatures accordingly and create a BDD σ with σ(s, a, k) = 1 iff
(a,Bk) ∈ sig(s).

4.2 Computation of the Signatures

Now we describe the computation of the BDDs for the signatures of all eight
kinds of bisimulation. For the computation we provide several “ingredients”
which are listed in Table 1. The table contains a description of each operation
and an expression for the BDD-based implementation.



484 R. Wimmer et al.

Table 1. Basic operations for the signature computation

Operation BDD expression

τ -transitions T .Cofactor(a = τ )
inert τ -transitions T .Cofactor(a = τ ) ∧ ∃k : P(s, k) ∧ P(t, k)
non-τ - or non-inert transitions T (s, a, t) ∧ ¬(inertτ (s, t) ∧ a ≡ τ )
reflexive transitive closure of R(s, t) Closure(R)
concatenation of R1(s, t) and R2(s, t) ∃x : R1(s, x) ∧ R2(x, t)
substitute t in R(s, t) by its block number ∃t : R(s, t) ∧ P (t, k)

Algorithm 1. Signature for Branching Bisimulation

1: procedure SigBranching
2: inert(s, t) ← T .Cofactor(a = τ ) ∧ ∃k : P(s, k) ∧ P(t, k)
3: rel(s, t) ← T (s, a, t) ∧ ¬(inert(s, t) ∧ a ≡ τ )
4: return ∃x, t : Closure(inert(s, x)) ∧ rel(x, a, t) ∧ P(t, k)

There exist several symbolic algorithms for the computation of the reflexive
transitive closure of a relation (e. g. [31]). We apply the iterative squaring method

of [32] to compute τ∗
−−→
(P )

.

Finally we can present the algorithm for the computation of the signatures.
As an example that uses all of the mentioned techniques, algorithm 1. sketches
the computation of the signature for branching bisimulation.

At first, all pairs of states that are connected by an inert τ -transition are
computed. In line 3 we extract all transitions that are either not inert or not
labelled with τ . In the third step we put things together: the arbitrary sequence
of inert τ -steps, the relevant transitions and the block numbers. The signatures
for the remaining bisimulations can be computed in a similar way. Please note
that everything that does not depend on the current partition, like the closure
of all τ -steps (needed for weak, progressing, safety, η-, and delay bisimulation),
can be computed as a preprocessing step.

4.3 Computation of the Refinement

We assume that we have already computed the BDD for the signatures of all
states as described above. Now, we have to compute the refined partition where
all states with the same signature are merged into one block.

The variable order of the BDD has to satisfy the following constraint: the si
variables must be placed at the top of the variable order, followed by the aj and
kl variables, i. e., level(si) < level(aj) and level(si) < level(kl) for all i, j, and l.

Then we can exploit the following observation: Let s be the encoding of a
state. If we follow the path given by s in the BDD, we reach a node v. The sub-
BDD at node v represents the signature of s. Furthermore, all states with the
same signature as s lead to v. To get the refined partition, we have to substitute
all nodes that represent the signature of a state s ∈ S by the BDD for the
encoding of a new block number k. This is sketched in algorithm 2..



Sigref – A Symbolic Bisimulation Tool Box 485

Algorithm 2. Partition Refinement

1: procedure Refine(signatures σ)
2: if σ ∈ ComputedTable then return ComputedTable[σ]
3: x ← topVar (σ)
4: if x = si then
5: low ← Refine(σ.Cofactor (x = 0)), high ← Refine(σ.Cofactor (x = 1))
6: result ← returnBDDnode(x,high, low)
7: else result ← newBlockNumber()
8: ComputedTable[σ] ← result
9: return result

The algorithm relies on a function newBlockNumber() that returns a BDD
with exactly one path from the root node to the leaf 1. The values of the variables
on that path are the binary encoding of a block number that has not been used
in the current iteration. It is reset each time we call refine.

Furthermore, we use a dynamic programming approach to store all interme-
diate results in a so-called ComputedTable. By this, we can detect whether a
node was reached before. If we reach a node already contained in the Comput-
edTable, then we return the stored result. Otherwise, if the node is labelled with
a state variable si, the algorithm is called recursively for the two sons. If the
label of the node is not a state variable, then the node is the root of a sub-
BDD representing a signature. This node must be substituted with a new block
number.

4.4 Computation of the Quotient LTS

After we have reached the fixpoint of the signature refinement, we have to extract
the bisimulation quotient. It is defined as follows:

Definition 10. Let M = (S,A, T ) be a labelled transition system. Let P =
{B1, . . . , Bm} be a bisimulation. Then the quotient of M w. r. t. P (denoted
M/P ) is an LTS M/P = (SP , AP , TP ) with SP = {B1, . . . , Bm}, AP = A, and
(B, a,B′) ∈ TP iff there are s ∈ B and s′ ∈ B′ with (s, a, s′) ∈ T .

Let P be a partition (represented as BDD) with sigref(P) = P . We use the
notation [k → s] to denote the renaming of the k-variables to the corresponding
s-variables. To extract the bisimulation quotient w. r. t. this partition, we use
the block numbers as encoding for the new states: SP = [k → s](∃s : P(s, k)).
Then, the transition relation can be computed as follows:

R(s, a, t) := [k → t](∃t : T (s, a, t) ∧ P(t, k))
TP (s, a, t) := [k → s](∃s : R(s, a, t) ∧ P(s, k))

4.5 Improvements

During our experiments we observed that the BDD for the expression ∃k :
P(s, k) ∧ P(t, k), which is used for the computation of the inert τ -transitions,



486 R. Wimmer et al.

is considerably larger than the BDD for P(s, k). This expensive step can be
avoided by computing the signatures and the refinement only for one block at
a time. To do so, the function Sig gets an additional parameter for the states
for which we have to compute the signatures. Then, a transition is inert iff the
source state as well as the target state are contained in this block. We apply
this technique to all bisimulations where the signature depends on the current
partition (this is not the case for strong, safety, and progressing bisimulation).

The sequential refinement enables us to apply a dedicated optimization tech-
nique that we call block forwarding: After the refinement of one block, the current
partition is updated with the result of this refinement. Hence, during the refine-
ment of the remaining blocks this information can be used already in the same
iteration. Block forwarding substantially reduces the number of iterations to the
fixpoint. Both techniques result in a large speedup for almost all of our examples.

5 Experimental Results

We have implemented our approach in a tool, called Sigref, that relies on the
popular BDD-package CUDD [26]. For comparison, we also implemented the
strong bisimulation algorithm presented by Bouali/deSimone in [10]. Addition-
ally, we extended Bouali/de Simone’s algorithm to weak and branching bisimu-
lation, as it was briefly suggested in their paper. We were also able to extend
Bouali/deSimone’s algorithm to safety bisimulation. For comparison with bisim-
ulation tools requiring an explicit state space representation, we use BcgMin
[33] which is part of the protocol verification toolbox Cadp [34].

For the evaluation, we use examples stemming from two quite different
domains: compositional process algebraic system descriptions and Statemate
designs that are extended by failure-behavior. Regarding the meaning of the
τ -action, for process algebraic descriptions τ is typically used to hide synchro-
nization of the involved components. Our Statemate descriptions are designed
to allow a quantitive analysis of the malfunctioning of the system, and therefore
nominal non-failure-actions are exchanged by the τ -action, since only failure-
actions are of interest. In [35] you will find more about our approach for quan-
titative analysis of Statemate designs.

Kanban Production System. Here, we use a process-algebraic description of a
Kanban system [36] that models a production environment with four machines
each having a parameterizable buffer of workpieces. From this description we gen-
erated a BDD representation of the transition system using the Caspa tool [37].
Caspa allows action-hiding, and therefore, as an example, we have hidden all
internal actions that are not involved in the synchronization of the machines.
This is the appropriate configuration when only inter-process communication
will be analyzed.

Table 2 shows details for the generated LTSs as well as the size of the bisim-
ulation quotient for all considered bisimulations. |S| (|T |) denotes the number
of states (transitions), respectively. For entries denoted with ’n. a.’, none of the
algorithms, i. e., Bouali/de Simone, BcgMin, or Sigref, were able to compute



Sigref – A Symbolic Bisimulation Tool Box 487

Table 2. Size of the LTS for the Kanban system with different number of workpieces

p Original Strong Orthogonal Branching η Delay Progressing Weak Safety

1
|S| 256 148 52 24 24 24 52 24 24
|T | 904 472 111 42 42 42 111 42 42

2
|S| 63772 5725 1005 206 206 206 561 206 206
|T | 231424 30860 3556 552 552 552 1869 552 552

3
|S| 1024240 85356 8838 872 872 872 2643 872 872
|T | 4651520 601650 40708 2968 2968 2968 11015 2968 2968

4
|S| 16020316 778485 51805 2785 2785 2785 8964 2785 2785
|T | 74424320 6419550 278059 10932 10932 10932 42576 10932 10932

5
|S| 16772032 5033631 n. a. 7366 7366 7366 24643 7366 7366
|T | 133938560 46071311 n. a. 31795 31795 31795 127604 31795 31795

6
|S| 264515056 n. a. n. a. 17010 17010 17010 58463 17010 17010
|T | 1689124864 n. a. n. a. 78584 78584 78584 321931 78584 78584

7
|S| 268430272 n. a. n. a. 35456 35456 35456 124311 35456 35456
|T | 2617982976 n. a. n. a. 172382 172382 172382 716829 172382 172382

8
|S| 4224876912 n. a. n. a. 68217 68217 68217 242858 68217 68217
|T | 29070458880 n. a. n. a. 345128 345128 345128 1451590 345128 345128

Table 3. CPU runtimes of the three tools applied to the Kanban benchmark

1 2 3 4 5 6 7 8

Strong
Sigref 0.01 2.23 93.77 1814.81 22862.70 ML ML ML
bouali 0.07 152.69 13110.80 TL TL TL TL TL
BcgMin 0.14 1.36 99.08 2335.86 18164.83 ML ML ML

Orthogonal Sigref 0.01 6.02 388.79 16836.10 TL TL TL TL

Branching
Sigref 0.01 0.51 12.13 107.90 617.71 2685.59 15020.50 53725.40
bouali 0.01 0.12 0.93 5.71 25.33 77.15 770.83 141591.00
BcgMin 0.21 0.51 10.01 193.25 559.89 ML ML ML

η Sigref < 0.01 0.24 4.73 42.19 219.32 946.48 6636.97 22743.90
delay Sigref < 0.01 0.18 3.44 33.28 183.13 806.34 4736.58 13206.90
Progressing Sigref < 0.01 0.14 1.44 9.55 69.17 347.21 2400.08 5824.31

Weak
Sigref < 0.01 0.19 3.63 33.91 173.86 773.24 5711.58 14970.10
bouali < 0.01 0.11 0.89 5.49 25.05 71.83 622.29 146971.00

Safety
Sigref < 0.01 0.03 0.25 1.49 5.78 21.62 120.22 543.96
bouali 0.01 0.12 0.90 5.48 27.95 71.92 709.25 140730.00

the bisimulation quotient. All bisimulations result in impressive reductions of
the state space. E. g., for 8 workpieces, branching bisimulation reduces |S| by a
factor of nearly 62.000, and |T | by a factor of about 82.000.

Table 3 gives the runtimes1 of all three algorithms, i. e., the explicit tool Bcg-
Min, Bouali/de Simone’s BDD algorithm, and our signature-based approach Si-
gref. Please note: BcgMin only provides strong and branching bisimulation.
Typically, algorithms that use an explicit state space representation are faster
than symbolic ones. Therefore, it is very interesting that Sigref is competitive
to BcgMin for both strong and branching bisimulation. However, in contrast
to BcgMin, Sigref is able to handle branching bisimulation for very large in-
stances, i. e., for 5 workpieces or more. Compared to the algorithm of Bouali/
de Simone, Sigref performs much more efficient, in particular for large in-
stances. Except strong and orthogonal bisimulation, Sigref is able to compute

1 All experiments in this work were performed on an AMD Opteron 2.4 GHz CPU. We
have set a time limit of 160.000 seconds and a main memory limit of 2 GB. Entries
“TL” and “ML” mean that the time or memory limit was exceeded, respectively.



488 R. Wimmer et al.

Table 4. Size of the Statemate benchmarks

Input Original Strong Orthog. Branch. η Delay Progress. Weak Safety

etcs-1
|S| 1057 51 51 51 50 50 50 50 50
|T | 15058 749 749 749 731 731 731 731 1172

etcs-2
|S| 428113 1312 1312 1312 1154 1214 1102 1102 1102
|T | 16589262 48848 48848 48848 42291 45352 40540 40540 71298

etcs-3
|S| 158723041 35842 35842 35842 30173 31999 28451 28451 28451
|T | 16658393318 3128876 3128876 3128876 2628447 2808983 2492665 2492665 4459877

bs-p
|S| 184865921 1469 1469 1177 856 951 847 847 847
|T | 10025344274 60483 60483 42830 31970 36351 31700 31700 165312

ctrl
|S| 139623 14614 14615 9627 8077 8093 7427 7427 7427
|T | 11867888 1033582 1033582 653303 523989 525402 482866 482866 1005666

all remaining kinds of bisimulation completely. Clearly, we have to admit that for
large instances Sigref requires a huge amount of time. However, these bisimula-
tions cannot be computed by either BcgMin or Bouali/deSimone’s algorithm.
As a summary, the results of Table 3 show that Sigref can efficiently handle
a large variety of bisimulations. Even compared to explicit state algorithms, Si-
gref performs very competitive, and from an application point of view much
more robust.

Failure-Enhanced Statemate Descriptions. As a second benchmark suite we
analyzed LTSs that were generated from Statemate descriptions [38] that were
extended by some failure-behavior. The first example describes a train control
system stemming from the ETCS specification and models a scenario regard-
ing the communication between trains and the Radio Block Centers (RBCs)
(see [39] for details about ETCS which is part of ERTMS). The analysis tack-
les the problem of colliding trains on the same track. The example is scalable
in the number of trains whereby we used 1, 2, and 3 trains, resulting in three
benchmarks etcs-1, etcs-2, and etcs-3. Especially etcs-3 samples a realistic sce-
nario. Furthermore, we used an example, bs-p, from the ARP 4761 case study
[40] that models a braking system from an airplane. It is about the correctness
of the pilot’s braking pedal and the hydraulic pressure given to the wheels of
the airplane. The benchmark ctrl describes a redundancy controller of an in-
dustrial avionics project. A detailed description of all benchmarks can be found
in [35].

Table 4 shows for each Statemate example the size of the LTS and of the
corresponding quotient, depending on the applied bisimulation. Table 5 gives the
CPU runtimes for the different algorithms. The dominant performance of Sigref
is obvious. Only the computation of branching bisimulation for the ctrl example
shows an advantage of BcgMin. However, Sigref is still able to handle this
example. A rough estimate of the CPU runtimes of Bouali/deSimone’s algorithm
shows that it performs two orders of magnitude worse than Sigref. And for
both examples bs-p and ctrl, the algorithm of Bouali/de Simone is not able to
compute any of the provided bisimulations. Therefore, Table 4 again shows,
but now in a much more impressive manner, that Sigref is not only able to
outperform existing approaches, but that it is applicable to a wider range of
applications.



Sigref – A Symbolic Bisimulation Tool Box 489

Table 5. Runtimes for the Statemate benchmarks

etcs-1 etcs-2 etcs-3 bs-p ctrl

Strong
Sigref 0.04 8.96 958.93 21.44 106.73
bouali 0.20 1880.16 82749.40 TL TL
BcgMin 0.27 16.27 ML ML 848.94

Orthogonal Sigref 0.08 49.56 16706.20 348.85 3849.29

Branching
Sigref 0.06 49.76 20912.00 276.78 1701.22
bouali 0.31 2594.10 98897.90 TL TL
BcgMin 0.28 22.63 ML ML 378.55

η Sigref 0.18 133.59 16162.10 25992.50 1124.90
Delay Sigref 0.08 75.63 16336.60 1328.60 1026.80
Progressing Sigref 0.09 43.59 2177.10 13739.50 81.03

Weak
Sigref 0.12 99.55 13434.40 13938.40 956.00
bouali 0.43 4340.91 113336.00 TL TL

Safety
Sigref 0.11 42.62 2214.39 16653.60 76.29
bouali 0.38 4383.46 112802.00 TL TL

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1  2  3  4  5  6  7  8  9
 1

 10

 100

 1000

 10000

 100000

C
P

U
 ti

m
e

B
D

D
 s

iz
e 

of
 p

ar
tit

io
n

iteration

bouali-CPU
bouali-BDD
sigref-CPU
sigref-BDD

Fig. 3. Bouali/de Simone vs. Sigref for branching bisimulation on the etcs2 example

To get an insight why Bouali/de Simone’s algorithm performs so badly, we
had a detailed look at the CPU runtimes and the size of the BDDs for the rep-
resentation of the partition during the iterative refinement. Figure 3 shows the
corresponding data for Sigref and the algorithm of Bouali/de Simone, respec-
tively. The left y-axis denotes the CPU runtime and the right y-axis depicts the
size of the BDD for the partition (in logarithmic scale). The x-axis corresponds
to the iterations during the refinement. It it obvious that the BDD size is much
more moderate for Sigref. This directly impacts the CPU runtime. The dif-
ference between Sigref and Bouali/deSimone’s algorithm is that Sigref relies
on a predicate P(s, k) for storing the information that state s is contained in
block k. The algorithm of Bouali/de Simone, however, uses a predicate P(s, t)
denoting that state s and state t are contained in the same block. The advantage
of Sigref’s predicate P(s, k) seems to be the sharing of the block number k,
i. e., the signature refinement algorithm only needs to efficiently decide whether
there are multiple states in a block k, but it is enough to implicitly store the
information which states are in the same block. Put another way, the inher-
ent symmetry of the predicate P ′(s, t) of Bouali/deSimone’s algorithm, i. e.,
P ′(s, t) ⇔ P ′(t, s), is more than needed for our signature-based approach. This
information overhead results in huge BDDs, which consequently leads to bad
runtimes.



490 R. Wimmer et al.

6 Conclusion and Future Work

In this work, we have presented a uniform and easily extendible framework for the
computation of several kinds of bisimulation. We have evaluated our approach
on examples from process algebra as well as from Statemate descriptions. Fur-
thermore, we compared our algorithm to other state-of-the-art algorithms.

Our experiments show that in almost all cases our implementation Sigref can
handle much larger systems than other algorithms, thereby requiring less time.
We found that the algorithm of Bouali/de Simone suffers from the redundant
representation of partitions. On the other hand, Sigref gains from dedicated
optimizations, e. g. block forwarding. The experiments clearly show that the
signature-based approach coupled with BDDs outperforms other state-of-the-
art algorithms with respect to (1) the size of the system under analysis, (2) the
variety of applicable models, and (3) the CPU runtimes.

As future work, we will check whether Sigref can be extended by some input
language for signatures such that new types of bisimulation can be defined with-
out significant programming effort. Furthermore, we are investigating how the
signature-based approach can be extended to compute stochastic bisimulations
defined on Interactive Markov Chains (IMCs) [41].

Acknowledgments. We would like to thank the whole AVACS::S3 team for its
fruitful cooperation. Especially, we’d like to thank Thomas Peikenkamp and
Eckard Böde for providing the Statemate examples. Additionally, we are deeply
grateful to Markus Siegle and Matthias Kuntz for the supply of the CASPA tool.

References

1. Wimmer, R., Herbstritt, M., Becker, B.: Minimization of Large State Spaces us-
ing Symbolic Branching Bisimulation. In: Proc. of IEEE Workshop on Design &
Diagnostics of Electronic Circuits & Systems (DDECS). (2006) 9–14

2. Chehaibar, G., et al.: Specification and Verification of the PowerScaleTM Bus
Arbitration Protocol: An Industrial Experiment with LOTOS. In: Proc. of FORTE.
Volume 69. (1996) 435–450

3. Giannakopoulou, D.: Model Checking for Concurrent Software Architectures. PhD
thesis, Imperial College, University of London (1999)

4. Graf, S., Steffen, B., Luttgen, G.: Compositional minimisation of finite state sys-
tems using interface specifications. Formal Asp. of Comp. 8(5) (1996) 607–616

5. Kanellakis, P., Smolka, S.: CCS expressions, finite state processes, and three prob-
lems of equivalence. Information and Computation 86(1) (1990) 43–68

6. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM Jour. on
Computing 16(6) (1987) 973–989

7. Burch, J., et al.: Symbolic Model Checking: 1020 States and Beyond. Information
and Computation 98(2) (1992) 142–170

8. Bouajjani, A., Fernandez, J.C., Halbwachs, N.: Minimal model generation. In:
Proc. of CAV. Volume 531 of LNCS., Springer (1991) 197–203

9. Bouajjani, A., Fernandez, J.C., Halbwachs, N., Ratel, C., Raymond, P.: Minimal
state graph generation. Science of Computer Programming 18 (1992) 247–269



Sigref – A Symbolic Bisimulation Tool Box 491

10. Bouali, A., de Simone, R.: Symbolic Bisimulation Minimisation. In: Proc. of CAV.
Volume 663 of LNCS., Springer (1992) 96–108

11. Blom, S., Orzan, S.: Distributed Branching Bisimulation Reduction of State Spaces.
ENTCS 89(1) (2003) 990–113

12. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
13. Milner, R.: A Calculus of Communicating Systems. Volume 92 of LNCS. (1980)
14. Milner, R.: Lectures on a Calculus for Communicating Systems. In: Proc. Seminar

on Concurrency. Volume 197 of LNCS., Springer (1984) 197–220
15. van Glabbeek, R., Weijland, W.: Branching Time and Abstraction in Bisimulation

Semantics. Journal of the ACM 43(3) (1996) 555–600
16. Baeten, J., van Glabbeek, R.: Another Look at Abstraction in Process Algebra.

In: Proc. of ICALP. Volume 267 of LNCS., Springer (1987) 84–94
17. Bergstra, J.A., Ponse, A., van der Zwaag, M.B.: Branching time and orthogonal

bisimulation equivalence. Theor. Comp. Sci. 309 (2003) 313–355
18. Milner, R.: A Modal Characterization of Observable Machine-Behaviour. In: Proc.

of CAAP. Volume 112 of LNCS., Springer (1981) 25–34
19. Montanari, U., Sassone, V.: Dynamic congruence vs. progressing bisimulation for

CCS. Fundam. Inform. 16(1) (1992) 171–199
20. Bouajjani, A., et al.: Safety for Branching Time Semantics. In: Proc. of ICALP.

Volume 510 of LNCS., Springer (1991) 76–92
21. van Glabbeek, R.J.: The linear time – branching time spectrum II. In: Proc. of

CONCUR. Volume 715 of LNCS., Springer (1993) 66–81
22. Hermanns, H., Lohrey, M.: Priority and maximal progress are completely axioma-

tisable. In: Proc. of CONCUR. Volume 1466 of LNCS., Springer (1998) 237–252
(Extended Abstract).

23. Park, D.: Concurrency and automata on infinite sequences. In: GI Conf. on
Theor. Comp. Sci. Volume 104 of LNCS., Springer (1981) 167–183

24. Dovier, A., Gentilini, R., Piazza, C., Policriti, A.: Rank-based symbolic bisimula-
tion (and model checking). ENTCS 67 (2002)

25. Klarlund, N.: An n log n algorithm for online BDD refinement. In: Proc. of CAV.
Volume 1254 of LNCS., Springer (1997) 107–118

26. Somenzi, F.: CUDD: CU Decision Diagram Package Release 2.4.1. University of
Colorado at Boulder (2005)

27. Groote, J.F., Vaandrager, F.W.: An Efficient Algorithm for Branching Bisimulation
and Stuttering Equivalence. In Paterson, M., ed.: Proc. of ICALP. Volume 443 of
LNCS., Springer (1990) 626–638

28. Bryant, R.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. on Comp. 35(8) (1986) 677–691

29. Wegener, I.: Branching programs and binary decision diagrams. SIAM Monographs
on Discrete Mathematics and Applications. SIAM (2000)

30. Strampp, K.: Symbolische Berechnung von Bisimulationen. Diploma thesis, Albert-
Ludwigs-University Freiburg, Germany (2006)

31. Matsunaga, Y., McGeer, P.C., Brayton, R.K.: On computing the transitive closure
of a state transition relation. In: Proc. of DAC, ACM Press (1993) 260–265

32. Burch, J.R., et al.: Sequential circuit verification using symbolic model checking.
In: Proc. of DAC, ACM Press (1990) 46–51

33. Garavel, H., Hermanns, H.: On Combining Functional Verification and Perfor-
mance Evaluation using CADP. In: Proc. of FME. Volume 2391 of LNCS. (2002)

34. Fernandez, J.C., et al.: CADP: A Protocol Validation and Verification Toolbox.
In: Proc. of CAV. Volume 1102 of LNCS. (1996) 437–440



492 R. Wimmer et al.

35. Herbstritt, M., Wimmer, R., Peikenkamp, T., Böde, E., Adelaide, M., Johr, S., Her-
manns, H., Becker, B.: Analysis of Large Safety-Critical Systems: A quantitative
Approach. Reports of SFB/TR 14 AVACS 8 (2006) ISSN: 1860-9821.

36. Ciardo, G., Tilgner, M.: On the use of Kronecker operators for the solution of
generalized stochastic Petri nets. Technical Report 96-35, ICASE (1996)

37. Kuntz, M., Siegle, M., Werner, E.: Symbolic Performance and Dependability Eval-
uation with the Tool CASPA. In: FORTE Workshops. Volume 3236 of LNCS.,
Springer (2004) 293–307

38. Harel, D., Politi, M.: Modelling Reactive Systems with Statecharts: The State-
mate Approach. McGraw-Hill (1998)

39. ERTMS: Project Website (May 16, 2006) http://ertms.uic.asso.fr/etcs.html.
40. ARP 4761: Guidelines and Methods for Conducting the Safety Assessment Process

on Civil Airborne Systems and Equipment. Aerospace Recommended Practice,
Society of Automotive Engineers, Detroit, USA (1996)

41. Hermanns, H.: Interactive Markov Chains: The Quest for Quantified Quality.
Volume 2428 of LNCS. Springer (2002)



Towards a Model-Checker for Counter Systems�

S. Demri1, A. Finkel1, V. Goranko2, and G. van Drimmelen2

1 LSV/CNRS UMR 8643 & INRIA Futurs projet SECSI & ENS Cachan
{demri, finkel}@lsv.ens-cachan.fr

2 University of the Witwatersrand, Johannesburg
{govert, goranko}@maths.wits.ac.za

Abstract. This paper deals with model-checking of fragments and ex-
tensions of CTL* on infinite-state Presburger counter systems, where
the states are vectors of integers and the transitions are determined by
means of relations definable within Presburger arithmetic. We have iden-
tified a natural class of admissible counter systems (ACS) for which we
show that the quantification over paths in CTL* can be simulated by
quantification over tuples of natural numbers, eventually allowing trans-
lation of the whole Presburger-CTL* into Presburger arithmetic, thereby
enabling effective model checking. We have provided evidence that our
results are close to optimal with respect to the class of counter systems
described above. Finally, we design a complete semi-algorithm to verify
first-order LTL properties over trace-flattable counter systems, extend-
ing the previous underlying FAST semi-algorithm to verify reachability
questions over flattable counter systems.

1 Introduction

Background. Model-checking of infinite-state systems (for a survey see [BCMS01])
is a rapidly growing area of formal verification. It has been successfully applied
to real-time and hybrid systems, concurrent systems, Petri nets, asynchronous
communication devices (unbounded FIFO channels), infinite and unbounded data
structures (counters, queues, lists), etc. The single most important property of
practical interest in infinite-state transition systems is state reachability which is
often undecidable in structures with otherwise decidable first-order theories, such
as e.g., automatic structures. Therefore, intensive research has been devoted to
identifying classes of finitely presentable infinite structures with decidable reach-
ability and related safety properties.

Transition systems defined by Presburger relations provide a large natural
class of infinite-state transition systems [BFLS05], suitable for modeling in
various applications such as TTP Protocol (embedded system) [BFL04] and
broadcast protocols [EFM99], to quote a few examples. Important cases of
such transition systems with computable reachability have been established in
[Iba78, FO97, CJ98, FL02]. The method of acceleration for computing reacha-
bility has been developed in [Boi98, FL02] and completely implemented in the
verification tool FAST [BFL04].
� Supported by CNRS/NRF project No 15469.

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 493–507, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



494 S. Demri et al.

Motivation. For practical (computer-aided) model-checking, an infinite-state
system must be provided with an effective finitary presentation, and in par-
ticular, must admit a symbolic representation of sets of states and transitions.
Presburger arithmetic is a particularly appropriate platform for symbolic repre-
sentation of a wide variety of infinite state systems, such as counter systems (see
[BFLP03]) where vectors of integers are subjected to linear transformations from
finite control graph. These strongly extend counter automata and even very sim-
ple examples of counter systems can have notoriously difficult and unpredictable
behaviour, a witness being the Syracuse problem, see e.g. [Lag85]. An important
and natural class of counter systems, in which various practical cases of infinite
state systems (e.g. broadcast protocols [FL02]) can be modelled, are those with
a flat control graph, i.e, those where no control state occurs in more than one
simple cycle (see [Boi98, CJ98, CC00, FL02, BFLP03, Ler03]). Strong results
on verifying safety and reachability properties on flat counter systems have been
obtained in [CJ98, FL02]. However, so far such properties have not been consid-
ered in the framework of any formal specification language, and thus a natural
question that arises is to identify expressive logical languages in which formal
specification and verification of properties of counter systems can be conducted.

On the other hand, most of the studies on CTL�-model checking are restricted
to (unfoldings of) finite transition systems, and few decidability results for CTL�-
model checking on essentially infinite state systems are known [BEM97]. Actu-
ally, most of these results are immediate consequences of stronger results about
decidable modal mu-calculus, or even the whole monadic second order logic in
such systems, see e.g. [Wal01]. It is therefore important to search for larger
classes of effectively generated infinite state systems [without necessarily decid-
able MSO], but in which natural first-order extensions of CTL� have decidable
model-checking.

Our Contribution. We address jointly both problems described above, and we ob-
tain a nearly optimal solution of them. Our main contributions are the
following:

1. We introduce a Presburger extension of CTL�, where atomic propositions
range over Presburger-definable sets of configuration states; we interpret
that extension over Presburger counter systems, thus proposing a very pow-
erful specification language for them. Presburger counter systems are under-
stood as infinite-state transition systems with states being vectors of integers
(counter values) and transition relations definable in Presburger arithmetic.
This class of models naturally includes Minsky machines.

2. We identify a class of Presburger counter systems, on which local model
checking problem for the Presburger-CTL� is decidable. These are Pres-
burger counter systems defined over flat control graphs with arcs labelled by
Presburger formulae for which counting acceleration over every cycle in the
control graph is Presburger definable.

3. We show that the decidability result described above persists in a strong ex-
tension with a class of temporal operators defined by means of CQDD (see
[BH99]) in a way analogous to Wolper’s Extended temporal logic [Wol83].



Towards a Model-Checker for Counter Systems 495

4. We provide evidence that our results are close to optimal wrt the class of
Presburger counter systems described above, by showing that small relax-
ations of each of the conditions lead to undecidability.

5. We design a complete semi-algorithm to check whether a given Presburger
counter system satisfies a Presburger-LTL formula extending the underlying
reachability semi-algorithm used in the tool FAST [BFL04].

Related Work. On the logical side, temporal logics with Presburger constraints
have been developed in [BEH95, BGP97, CC00, SS04, BDR03], some of which
have quite expressive decidable fragments. However, undecidability of the reacha-
bility problem can be proved for quite restricted counter systems, see e.g. [Cor02]
while at the same time very few classes of counter systems are decidable for CTL�

(see e.g. [FWW97] for one-counter systems). A logical formalism closer to the one
developed in this paper is presented in [BGP97] where an undecidable temporal
logic with CTL-like operators and atomic formulae in Presburger arithmetic is
introduced and the models are counter systems. Model checking discrete timed
automata with parametric timed CTL is also shown decidable by translation
into Presburger arithmetic in [BDR03].

2 Preliminaries

Flat graphs. A directed labelled graph G = 〈Σ,Q,E〉 is a structure such that Q
is a non-empty set,Σ is a non-empty finite alphabet andE ⊆ Q×Σ×Q. As usual,
〈q, a, q′〉 ∈ E is also denoted by q a−→ q′. A cycle in a directed labelled graph
is a closed path (where the initial and final vertices coincide) with no repeating
edges. A simple cycle is a cycle in which the only repeated vertex is the initial

(and final) vertex. We define the length of a path λ = q0
ψ0−→ q1 . . .

ψn−1−−→ qn
(each qi ∈ Q, ψi ∈ Σ), denoted |λ|, as n. A graph is flat if every cycle in it is a
simple cycle. Graphs with a singleton alphabet are the standard directed graphs.

Presburger arithmetic. This is the first-order theory of the structure 〈N,+〉.
Given a Presburger formula ψ(x1, . . . , xn) with free variables in x = 〈x1, . . . , xn〉,
and a = 〈a1, . . . , an〉 ∈ Nn, the truth of ψ(x1, . . . , xn) with respect to the in-
terpretation a is denoted by a |= ψ(x). Elements of Nn will be usually denoted
by a, b, c, . . . and vectors of variables will be denoted by x, y, z, t, . . . (pos-
sibly decorated). A set X ⊆ Nn is said to be Presburger definable iff there
is a Presburger formula ψ(x) with free variables x = 〈x1, . . . , xn〉 such that
X = {a ∈ Nn : a |= ψ(x)}. A binary relation of dimension n > 0 is a
relation R ⊆ Nn × Nn; thus R is Presburger definable iff there is a Presburger
formula ψ(x,x′) with free variables x = 〈x1, . . . , xn〉 and x′ = 〈x′1, . . . , x′n〉 such
that R = {〈a,b〉 ∈ Nn × Nn : a,b |= ψ(x,x′)}. Presburger arithmetic is known
to be decidable and therefore, all the problems in the forthcoming sections that
can be reduced to Presburger arithmetic are decidable.

Definition 1. Let f be a partial function from Nn to Nn whose domain is
dom(f).



496 S. Demri et al.

– f is a translation if there exists b ∈ Zn such that for every a ∈ dom(f) we
have f(a) = a + b.

– f is linear if if there exist a matrix A ∈ Nn×n and b ∈ Zn such that for
every a ∈ dom(f) we have f(a) = Aa + b.

– f is piecewise-linear if there exists a finite partition of the domain dom(f)
=
⋃k

i=1Di so that the restriction on each Di is linear.
– f is Presburger definable iff the graph of f is a Presburger definable

relation.

3 Temporal Logics for Presburger Counter Systems

In this section, we introduce a Presburger variant of standard temporal logic
CTL∗ interpreted over Presburger transition systems.

3.1 Presburger Counter Systems

The infinite-state systems for which we investigate model checking are finitely
represented by Presburger counter systems.

Definition 2. A Presburger counter system (PCS) of dimension n, C =
〈Σ,Q, T 〉, is a tuple consisting of a finite set of control states Q, a finite
set Σ composed of Presburger formulae of the form ψ(x,x′) encoding binary
Presburger relations of dimension n and a set of control transitions T ⊆
Q×Σ ×Q.

– C is functional if every element in Σ defines a partial function.
– a functional PCS C, is linear [resp. piecewise-linear] if every element in
Σ defines a linear [resp. piecewise-linear] function.

– a functional PCS C is a counter automaton if every element in Σ defines
a translation.

A PCS is therefore a labelled graph with alphabet made of specific Presburger
formulae. A PCS is flat if its underlying control graph is flat.

Proposition 1. It is decidable whether a given PCS is functional, linear, or a
counter automaton.

Every PCS C = 〈Σ,Q, T 〉 of dimension n naturally induces a graph 〈SC ,→C〉
(called a Presburger transition system) such that SC = Q × Nn (set of con-
figurations) and 〈q, a〉 →C 〈q′,a′〉 iff there is 〈q, ψ(x,x′), q′〉 ∈ T such that
a,a′ |= ψ(x,x′). Wlog, we can assume that SC is a subset of Nn+1. Depending on
the context, the configurations of SC are indifferently written as a ∈ Nn+1 (con-
trol state encoded in the first element of a), 〈q, a〉 ∈ Q×Nn or as 〈q, a〉 ∈ Q×Nn+1

(with redundancy). A configuration path in C is an infinite path in the Pres-
burger transition system of C.



Towards a Model-Checker for Counter Systems 497

3.2 A Presburger Temporal Logic FOCTL�(Pr)

We now define a version of first-order CTL� that is appropriate for reasoning
about Presburger transition systems of Presburger counter systems. The logic
FOCTL�(Pr) differs from standard CTL� in the definition of atomic formulae.
Whereas propositional variables are used in the propositional CTL�, we will use
Presburger predicates, interpreted on the set of configurations, as the atomic
formulae in FOCTL�(Pr). We introduce a countable set of individual variables,
say VAR = {y, z, t . . .}, for quantification over counter values. Elements of VAR
are distinct from the distinguished ones in {x0, x1, . . . , xn} that are free vari-
ables interpreted by the values of counters on configurations (the control state
is encoded by x0). In order to match the dimension of the models where such
formulae will be interpreted, the Presburger predicates must have a matching
number of free variables, thus giving a family of logics FOCTL�(Pr)[n] parame-
terised by the dimension n ≥ 1. When the dimension n is clear from the context,
we just refer to FOCTL�(Pr). Atomic formulae are Presburger formulae of the
form ψ(x,y) where x = x0, x1, . . . , xn and y is a vector of variables from VAR.

Formulae of FOCTL�(Pr)[n] are defined as follows:

ϕ ::= ψ(x,y) | ¬φ | ϕ ∧ ϕ | Xϕ | ϕUϕ | A ϕ | ∃ y ϕ,

where y ∈ VAR. We shall freely use standard abbreviations such as the existential
quantifier E , the always operator G and the sometimes operator F. The LTL
fragment of FOCTL�(Pr) is made of formulae of the form either E φ′ or A φ′ where
φ′ has no path quantifiers. We define the strict EF fragment of FOCTL�(Pr)
as the set of FOCTL�(Pr) formulae containing only the temporal operator E F
and no nested occurrences of E F.

Let π be an infinite configuration path of the system. Denote by π≤i the initial
part of π up to and including position i. Denote by πi+ the suffix of π starting
at position i. We will give semantics of FOCTL�(Pr) over Presburger transition
systems. To avoid the technical complications arising from terminating paths,
we will impose the additional assumption that every configuration has some
successor. This requirement can be satisfied by adding additional ‘idle’ states
and corresponding ‘idle’ transitions. The satisfaction relation |= is parameterized
by an environment ρ that is a map VAR → N in order to interpret the free
variables from VAR that occur in formulae (we omit it when irrelevant). For a
PCS C = 〈Σ,Q, T 〉 with Presburger transition system 〈SC ,→C〉, the satisfaction
relation |= is defined at position i of configuration path π as follows:

– π, i |=ρ ψ(x,y) iff π(i), ρ |= ψ(x,y) in Presburger arithmetic,
– π, i |= ¬ϕ iff π, i �|= ϕ, π, i |= ϕ ∨ ϕ′ iff π, i |= ϕ or π, i |= ϕ′,
– π, i |= Xϕ iff π, i+ 1 |= ϕ,
– π, i |= ϕUϕ′ iff there is some j ≥ i such that π, j |= ϕ′ and for each k, if
i ≤ k < j then π, k |= ϕ,

– π, i |= A ϕ iff for every infinite configuration path π′ such that π′≤i = π≤i we
have π′, i |= ϕ,

– π, i |=ρ ∃yϕ iff there is m ∈ N such that π, i |=ρ[y←m] ϕ where ρ[y ← m] is
the environment obtained from ρ by only forcing y to be interpreted by m.



498 S. Demri et al.

Apart from standard temporal properties encoded in CTL∗ (like liveness for
instance) here are a few interesting properties that can be expressed by adding
quantification over counter values:

Determinism: The graph restricted to the set of configurations reachable from
the initial one is deterministic: A G

∧
0≤i≤n ¬∃y(E X(xi = y) ∧ E X(xi �= y)).

Boundedness: The transition graph restricted to the set of configurations
reachable from the initial configuration is finite: ∃yA G

∧
1≤i≤n xi ≤ y.

We define below our basic problems. In the local model-checking problem
considered here, we assume that all variables of the FOCTL�(Pr)[n] formula,
except those in x, are bound. We will call such formulae semi-closed. In that
way, we do not need to specify an environment in the statement below.

1. local model checking: Given an PCS C with Presburger transition sys-
tem 〈SC ,→C〉, a configuration 〈q, a〉 ∈ SC , and a FOCTL�(Pr)[n] formula
φ, determine if for every path π such that π(0) = 〈q, a〉, we have π, 0 |= φ
(noted C, 〈q, a〉 |= φ).

2. validity checking with an initial condition: Given a PCS C with
Presburger transition system 〈SC ,→C〉, a Presburger formula ψ0(x) and a
FOCTL�(Pr)[n] formula φ, check whether for every configuration 〈q, a〉 sat-
isfying ψ0(x), for every configuration 〈q′,a′〉 reachable from 〈q, a〉, we have
C, 〈q′,a′〉 |= φ.

Variants of these problems can be defined by considering subclasses of PCS
or other specification languages.

4 Towards Verification of Flattable PCS

Local model checking of FOCTL�(Pr) over the whole class of PCS is known to be
highly undecidable even though reachability can be decided for many classes of
counter systems, see e.g. [ISD+00, CJ98, FL02, DPK03]. In the tool FAST, such
a problem is solved by enumerating flattenings of some initial PCS and checking
whether there is a flattening with the same reachability set. Many systems arising
from applications do not have the desired flatness property, but are equivalent
(in terms of the reachability relation) to flat systems. Such flattable systems,
studied in [LS05], include e.g., reversal-bounded counter automata [Iba78]. In
this section, we go one step further and propose a notion of flattening that can
preserve sets of traces.

4.1 PCS with Decidable Reachability

Apart from flatness, Presburger counting acceleration property defined below
is a key property to handle model-checking of PCS with a rich specification
language as FOCTL�(Pr).



Towards a Model-Checker for Counter Systems 499

Definition 3. For relation R ⊆ Nn ×Nn we define the counting acceleration
of R, as a relation RCA ⊆ Nn×N×Nn such that 〈a, i,b〉 ∈ RCA iff 〈a,b〉 ∈ Ri.
R has a Presburger counting acceleration if its counting acceleration is
Presburger definable.

The cycle relation Rλ of a cycle λ in a PCS is the composition of local transition
relations of the transitions on the cycle. More formally, a cycle λ is a sequence
t1, . . . , tα of transitions of the form ti = qi

ψi−→ q′i such that for 0 ≤ i ≤ α − 1,
qi+1 = q′i and q1 = q′α. We define the local relation Rti as the set of pairs
{〈〈qi,a〉, 〈q′i,a′〉〉 : a,a′ |= ψi(x,x′)}. The relation Rλ is then Rt1 ◦ · · · ◦ Rtα

(α − 1 compositions). A cycle has the Presburger counting acceleration
property if its cycle relation has a Presburger counting acceleration.

Definition 4. A PCS C has the Presburger counting acceleration prop-
erty if every cycle in the control graph of C has that property.

Observe that if a PCS C has the Presburger counting acceleration property, we
can effectively compute the Presburger formula associated to each cycle. It is
sufficient to enumerate Presburger formulae ψ(x, i,y) and test whether

∀x,x′ (ψ(x, 0,x′) ⇔ (x = x′))∧(∀ x,x′, i ψ(x, i+1, x′) ⇔ (∃x′′ ψ(x, i,x′′)∧ψ′(x′′,x′)))

is valid, where ψ′(x,y) is the effect of a given cycle. This is an instance of a
more general result from [Ler06]. We also know that there exist counter systems
of dimension 1 that do not have the Presburger counting acceleration property
(for instance, consider the update x′1 = 2x1). In general, we expect that deter-
mining whether a counter system has a Presburger counting acceleration is an
undecidable problem by extending similar results from [Ler06].

Flatness is another key property for PCS. For instance, every flat and linear
PCS with the finite monoid property has the Presburger counting acceleration
property [FL02] where a linear PCS has the finite monoid property if for every
cycle λ in the system, the multiplicative monoid generated by the matrix of the
linear function defining Rλ is finite (linear functions are closed under compo-
sition). Consequently, the Presburger formula defining the reachability relation
in every flat and linear PCS with the finite monoid property is effectively com-
putable. This consequence is incomparable with the main result from [CJ98].
Indeed, flatness is assumed in [CJ98] but not the finiteness of the monoid. More-
over [CJ98] and [FL02] have different and incomparable Presburger formulae
labelling the transitions. For instance, transition relations in [CJ98] are not nec-
essarily functional but they are restricted to relations on two variables. In Def-
inition 5, the systems are more general than the ones in [CJ98] since we allow
richer Presburger transition formulae.

Here we identify a large and natural class of Presburger counter systems for
which model-checking of CTL* is decidable in addition to reachability.

Definition 5. An admissible Presburger counter system (ACS) is a flat,
functional PCS, that has the Presburger counting acceleration property.



500 S. Demri et al.

In particular, every flat and linear PCS with the finite monoid property is admis-
sible. As observed in [FL02], flatness is the key property to be able to compute
the reachability relation.

Proposition 2. For every flat PCS satisfying the Presburger counting accel-
eration property (including ACS), one can effectively compute the reachability
relation →∗

C for 〈SC ,→C〉.
The proof of Proposition 2 is based on the fact that essentially there is a finite
number of types of configuration paths (see details later on) and one can effec-
tively compute Presburger formulae associated to cycles. Definition 5 is close to
optimal because relaxing any of the conditions for admissibility could easily lead
to undecidability of the reachability problem, as indicated below.

Proposition 3. The reachability problem is not decidable for all: (1) flat linear
PCSs [Cor02], (2) linear PCSs with the finite monoid property (even counter
automata) [Min67] and (3) flat piecewise-linear PCSs with a single control state
and control transition [Min67].

As a matter of fact, any counter automaton can be encoded as a flat piecewise-
linear PCS with a single control state q0 and control transition. Indeed, suppose
that q x:=x+1−−−−→ q′ is a transition in the counter automaton with the integer n [resp.
n′] attached to q [resp. q′], then in the piecewise-linear PCS the unique transition

is of the form q0
(x0=n∧x′

0=n′∧x′=x+1)∨...−−−−−−−−−−−−−−−−−→ q0. There is an obvious correpondence
between the transitions in the original counter automaton and the number of
disjuncts in the Presburger formula labelling the unique transition.

4.2 Model-Checking for Three Main Classes of Flattable Systems

We establish in Section 5 that ACS have numerous desirable properties. For
instance, FOCTL�(Pr) local model checking is decidable. However, it should not
come as a surprise that the class of ACS forms a quite restricted subclass of PCS
and numerous abstractions of communication protocols, concurrent systems and
the like are not exactly ACS. More interestingly, many questions on specific
classes of PCS can be reduced in a systematic way to reachability questions on
ACS, see e.g. [FO97, CJ98, BFLP03] and a more thorough study in [LS05]. In
this section, we provide the basis to understand how our results on ACS can be
used to verify more general classes of PCS and under which hypotheses (see also
Section 5.2). The most standard way to reduce a PCS to an ACS is via a graph
homomorphism, aka a flattening [BFLS05].

Definition 6. Let C = 〈Σ,Q, T 〉 and C′ = 〈Σ′, Q′, T ′〉 be PCS of the same
dimension and f be a function f : Q′ → Q. C′ is a f -flattening of C iff C′ is
flat, Σ′ ⊆ Σ, for every 〈q, ψ(x,x′), q′〉 ∈ T ′, we have 〈f(q), ψ(x,x′), f(q′)〉 ∈ T .

When C′ is a f -flattening of C, C can be viewed as an abstraction of C′.
The tool FAST [BFL04] generates flattenings via an exhaustive search algo-

rithm. However, verification of FOCTL�(Pr) properties of C by using a flattening



Towards a Model-Checker for Counter Systems 501

C′ can only be done for those FOCTL�(Pr) properties that are preserved under
such flattenings. Hence, it is important to determine which FOCTL�(Pr) proper-
ties are preserved when C and C′ satisfy given relationships (see Theorem 1). The
most common relationship is precisely the equality of reachability sets (leading
to the notion of post∗-flattening). Let C = 〈Σ,Q, T 〉 be a PCS. The reachability
sets from a configuration and from a set of Presburger definable configurations
are defined as follows: post∗C(〈q, a〉)

def= {〈q′,a′〉 : 〈q, a〉 →∗ 〈q′, a′〉 in SC} and
post∗C(q, ψ(x)) def=

⋃
〈q,a〉|=ψ(x) post∗C(〈q, a〉).

Definition 7. 〈C′, q′〉 is a f -post∗-flattening (post∗-flattening for short) of
〈C, q〉 wrt ψ(x) iff post∗C(q, ψ(x)) = f(post∗C′(q′, ψ(x))) and C′ is a f -flattening
of C (f is naturally extended to states of 〈SC ,→C〉).
Even though it is undecidable whether a PCS has a post∗-flattening [BFLS05,
Theorem 4.9], we can decide if a PCS is a post∗-flattening of another one.

Lemma 1. Let 〈C′, q′〉 be an f -flattening of 〈C, q〉 such that C′ is an ACS. It is
decidable to check whether 〈C′, q′〉 is a post∗-flattening of 〈C, q〉 wrt ψ(x).

Let C = 〈Σ,Q, T 〉 be a PCS. A trace for 〈q, a〉 is a (possibly infinite) sequence
of the form 〈q0,a0〉 〈q1,a1〉 〈q2,a2〉 . . . such that 〈q0, a0〉 = 〈q, a〉, and for every
i, 〈qi,ai〉 → 〈qi+1,ai+1〉 in 〈SC ,→C〉. The set of traces for 〈q, a〉 in C is denoted
by tracesC(〈q, a〉). By extension, tracesC(q, ψ(x)) def=

⋃
〈q,a〉|=ψ(x) tracesC(〈q, a〉).

Definition 8. 〈C′, q′〉 is a f -trace-flattening (trace-flattening for short) of 〈C, q〉
wrt ψ(x) iff tracesC(q, ψ(x)) = f(tracesC′(q′, ψ(x))) and C′ is a f -flattening of C.

We can decide if a PCS is a trace-flattening of another PCS as stated below.

Lemma 2. Let 〈C′, q′〉 be an f -flattening of 〈C, q〉 such that C′ is an ACS. It is
decidable to check whether 〈C′, q′〉 is a trace-flattening of 〈C, q〉 wrt ψ(x).

Here is the more elaborate notion of flattenings but difficult to check.

Definition 9. 〈C′, q′〉 is a f -bisimulation-flattening (bisimulation-flattening
for short) of 〈C, q〉 with respect to ψ(x) iff C′ is a f -flattening of C and for every
a such that a |= ψ(x), 〈post∗C′(〈q′,a〉),→a

C′ 〉 where →a
C′ is the restriction of →C′

to post∗C(〈q, a〉) is bisimilar to 〈post∗C(〈q, a〉),→a
C〉.

Lemma 3 below states a few easy results about flattenings and their hierarchy.

Lemma 3. Let 〈C′, q′〉 be an f -flattening of 〈C, q〉.
(I) For any ψ(x), f(post∗C′(q′, ψ(x))) ⊆ post∗C(q, ψ(x)).
(II) For any ψ(x), f(tracesC′(q′, ψ(x))) ⊆ tracesC(q, ψ(x)).
(III) Every bisimulation-flattening [resp. trace-flattening] is a trace-flattening

[resp. post∗-flattening].

Based on standard properties of temporal logics, we provide below sufficient
conditions to verify flattable PCS that are not necessarily ACS.

Theorem 1. Let 〈C′, q′〉 be a post∗-flattening [resp. trace-flattening, bisimulation-
flattening] of the PCS 〈C, q〉 wrt a. Then, for every formula φ in the strict EF frag-
ment [resp. the LTL fragment, FOCTL�(Pr)[n]], C′, 〈q′, a〉 |= φ iff C, 〈q, a〉 |= φ.



502 S. Demri et al.

5 Model-Checking Flattable Counter Systems

Herein, we show decidability of model checking FOCTL�(Pr) over ACS and we
propose a complete semi-algorithm for model checking FOLTL(Pr) formulae over
trace-flattable PCS, extending what is done in [BFLS05] for post*-flattable PCS.

5.1 A FOCTL�(Pr) Decision Procedure to Verify ACS

Throughout this section, let C = 〈Σ,Q, T 〉 be ACS of dimension n. Recall that
all cycles in an ACS are simple cycles.

Definition 10. A control path in C is any infinite path in C. A path segment
in C is a single transition t ∈ T or a cycle in C, and so is uniformly described as a
finite sequence of control states. A path schema in C is a sequence 〈σ0, . . . , σk〉
of different path segments in C such that: (1) for every 0 ≤ i ≤ k − 1, the last
control state of σi is the first control state of σi+1, (2) any path segment occurs
at most once and (3) σk is a cycle. Cycles in a path schema that are not the
final segment are called interior cycles of the schema.

From now on we fix an enumeration λ1, . . . , λM of all the cycles in C and assume
that M > 0. Since an ACS is flat and has a finite number of control states, the
following holds:

Proposition 4. In every ACS C, there is a finite number of path schemas.

The number of path schemas is generally exponential in the size of the ACS.
Hereafter we fix an enumeration 〈1, . . . , P 〉 of the path schemas of C. A path
schema with at least one interior cycle corresponds to infinitely many different
control paths, since any interior cycle in the schema may be repeated an arbitrary
number of times on the control path. The number of repetitions of a given cycle
in a control path is called the cycle count of that cycle. Thus, every control
path is completely characterised by its underlying path schema and the cycle
counts for its interior cycles. The next definition formalises this idea.

Definition 11. Let the ACS C have M > 0 cycles and P path schemas. A
cycle count vector c is a tuple 〈c1, . . . , cM 〉 ∈ NM , where cr represents the
cycle count for the cycle λr. A control path description α is a pair α = 〈p, c〉
where p ∈ {1, . . . , P} denotes the path schema, c is the cycle count vector for the
control path being described, ci > 0 for every interior cycle λi and ci = 0 for any
cycle λi in C which is not interior in the path schema p. Hereafter a control path
description, may be written as 〈p, c1, . . . , cM 〉. We write α0 for the path schema
associated with control path description α.

The following is immediate from the flatness condition on ACS.

Proposition 5. For every control path in C there is a unique control path
description.

Without risk of confusion, we identify every control path with its description.



Towards a Model-Checker for Counter Systems 503

Every configuration path is uniquely described by the pair 〈α, 〈q, a〉〉 where
α is its control path and 〈q, a〉 is the initial configuration. Conversely, due to
the functionality of C, every such pair 〈α, 〈q, a〉〉 describes a unique path in the
configuration graph starting at 〈q, a〉, and progressing according to the transi-
tions of the control path α. Note, however, that such a path may terminate and
therefore not be considered as a configuration path. There exists a Presburger
formula that exactly describes the configuration path associated with a control
path and initial configuration as stated below.

Theorem 2. Given the ACS C of dimension n with M > 0 cycles, one can
compute a Presburger formula PathConfigC(ξ,x, i,y) such that for all α ∈ NM+1,
a ∈ Nn+1, m ∈ N and b ∈ Nn+1 α,a,m,b |= PathConfigC(ξ,x, i,y) iff α is a
valid control path description and the mth configuration of the configuration path
〈α,a〉 is b.

Now we are ready to show that model-checking FOCTL�(Pr)[n] can be reduced
to satisfiability in Presburger arithmetic.

Theorem 3. Given an ACS C of dimension n with Presburger transition system
〈SC ,→C〉, for every FOCTL�(Pr)[n] formula ϕ, one can compute a Presburger
formula ψ(x) such that for every 〈q, a〉 ∈ SC, 〈q, a〉 |= ψ(x) iff C, 〈q, a〉 |= ϕ.

For a fixed ACS, the size of ψ(x) is linear in the size of ϕ.

Theorem 4. The two problems in Section 3.2 are decidable.

Theorem 4 can be easily extended to allow past-time operators such as ‘previous’
X−1 and ‘since’ S. By contrast, we state below an undecidability result for a fixed
PCS that is almost an ACS. We present a PCS Cu that is obtained from an
ACS by only adding a reset transition while preserving the Presburger counter
acceleration property and functionality (see below).

q0 q1 q2
id id

x′1 = x′2 = x′3 = 0

x′1 = x1 + 1 x′2 = x2 + 1 x′3 = x3 + 1

Cu is of dimension 4 with counters x0, x1, x2 and x3 and x0 is the counter
related to the control state. “id” denotes the identity function on the counters
x1, x2 and x3.

Theorem 5. Local model-checking on Cu with FOLTL�(Pr)[3] is Σ1
1-hard.

Observe that Cu admits a post∗-flattening with an ACS and therefore the strict
EF fragment has a decidable local model-checking problem for Cu.



504 S. Demri et al.

5.2 Model-Checking of Trace-Flattable Counter Systems

Suppose we have a functional PCS C with the Presburger counting acceleration
property. Typically, C can be a linear PCS with finite monoid. Let 〈q, a〉 be a
configuration for which we want to check a FOLTL(Pr) formula φ. We propose
below the basis of a semi-algorithm model-check to verify whether C, 〈q, a〉 |= φ.

Procedure. model-check(C, 〈q, a〉, φ)
1. found := false;
2. while not found do

(a) Choose fairly a flattening 〈C′, q′〉 of 〈C, q〉;
(b) if 〈C′, q′〉 is a trace-flattening of 〈C, q〉 then found := true;

3. return C′, 〈q′,a〉 |= φ.

To become efficient, the semi-algorithm has to be refined in order to obtain
an efficient enumeration of the flat PCS as that is done with the tool FAST. As
a first step, heuristics implemented in FAST can be used, see e.g. [BFLS05]. The
semi-algorithm model-check extends the underlying FAST algorithm [BFLS05]
to trace-flattable Presburger counter systems and LTL temporal properties which
paves the way to design the new generation of the tool. Using previous re-
sults shown in the paper, we can establish the following key result of the
paper.

Theorem 6. (I) model-check(C, 〈q, a〉, φ) terminates iff C has a trace-flattening
wrt to 〈q, a〉. (II) When model-check(C, 〈q, a〉, φ) terminates, it returns whether
C, 〈q, a〉 |= φ holds true.

Proof. It is sufficient to observe the following facts:

– Checking whether 〈C′, q′〉 is a flattening of 〈C, q〉 can be done in exponential-
time.

– Checking whether C′ is an ACS is easy since C has the Presburger counting
acceleration property and it is functional. Hence C is an ACS and one can
compute effectively the Presburger formulae related to cycles.

– Checking whether 〈C′, q′〉 is a trace-flattening of 〈C, q〉 is decidable as a con-
sequence of Lemma 2.

– Checking whether C′, 〈q′,a〉 |= φ is decidable by Theorem 4.
– Finally, C′, 〈q′,a〉 |= φ iff C, 〈q, a〉 |= φ by Theorem 1. ��

We do not know yet how to extend the above complete semi-algorithm to deal
with bisimulation-flattening. Indeed, in order to have a decision procedure for
the step (3) with bisimulation, we would need decidability of some kind of modal
mu-calculus over ACS, which is open so far.

5.3 Decidable Extension with CQDD Patterns

We present below an extension of FOCTL�(Pr)[n] for which model-checking
over ACS can be also encoded into Presburger satisfiability. In a seminal paper,



Towards a Model-Checker for Counter Systems 505

Wolper extends LTL to an extended temporal logic that has the same power
as Büchi automata [Wol83]. In this section, we extend the set of path formulae
from FOCTL�(Pr)[n] by allowing temporal operators defined by another class
of language acceptors, namely the CQDD (constrained queue-content decision
diagrams) [BH99]. This formalism has been introduced for representing sym-
bolically infinite sets of configurations in FIFO automata. Our use of CQDD is
different and non-regular languages can be defined with CQDD. Moreover, the
model-checking problem for LTL augmented with operators defined from CQDD
is undecidable [Dem06] unlike the extension with regular languages [Wol83]. By
contrast, we show that the model-checking problem for FOCTL�(Pr)[n] extended
with CQDD-based operators is decidable over ACS. Regain of decidability is due
to the flatness restriction in CQDD. Hence, we show evidence in this section
that we can take advantage of flatness in models and in formulae. A CQDD is
a structure A = 〈Σ,S, S0, E, l, ψ(y1, . . . , ym), F 〉 such that:

– Σ is a finite alphabet and S is a finite set of states,
– S0 ⊆ S [resp. F ⊆ S] is the set of initial [resp. final] states,
– E ⊆ S ×Σ × S is a set of transitions of cardinality m and 〈S,E〉 is flat,
– l is a bijection from E to {1, . . . ,m} and ψ(y1, . . . , ym) is a Presburger

formula.

An accepting run is a sequence q0
a0−→ q1

a1−→ q2 . . .
ak−1−−→ qk such that q0 ∈ S0, qk ∈

F , for every i ∈ {0, . . . , k−1}, 〈qi, ai, qi+1〉 ∈ E, and n1, . . . , nm |= ψ(y1, . . . , ym)
in Presburger arithmetic, where each ni is the number of occurrences of the tran-
sition l−1(i) in the sequence. The word σ ∈ Σ∗ is accepted by the accepting run
q0

a0−→ q1
a1−→ q2 . . .

ak−1−−→ qk whenever σ = a0a1a2 . . . ak−1. The word σ is also said
to be accepted by the automaton A. We write L(A) to denote the set of words
accepted by A.

Let A = 〈Σ,S, S0, E, l, ψ(y1, . . . , ym), F 〉 be a CQDD with the letters from
Σ linearly ordered: a1 < . . . < ak. The extension EFOCTL�(Pr)[n] of the logic
FOCTL�(Pr)[n] consists in considering formulae of the form A(φ1, . . . , φk) de-
fined as follows: π, i |= A(φ1, . . . , φk) iff: either ε ∈ L(A), or there is a finite
word ai1ai2 . . . ain ∈ L(A) such that for every 1 ≤ j ≤ n, π, i + (j − 1) |= φij .
For instance, in EFOCTL�(Pr)[n] we can state that there is a path and some
n �= 0 such that φ1 holds true at the n first positions, then φ2 holds true at the
n next positions and then neither φ1 nor φ2 holds true forever. It is known that
ETL is more expressive that LTL [Wol83] and this result can be lifted between
FOCTL�(Pr)[n] and EFOCTL�(Pr)[n]. Theorem 3 can be extended by allowing
CQDD-based operators.

Theorem 7. Given an ACS C of dimension n with Presburger transition system
〈SC ,→C〉, for every EFOCTL�(Pr)[n] formula ϕ, one can compute a Presburger
formula ψ(x) such that for every 〈q, a〉 ∈ SC, 〈q, a〉 |= ψ(x) iff C, 〈q, a〉 |= ϕ.

As a corollary, local model-checking problem for EFOCTL�(Pr)[n] over ACS is
decidable.



506 S. Demri et al.

6 Concluding Remarks

We have designed a complete semi-algorithm to verify first-order LTL properties
over trace-flattable counter systems, extending the underlying semi-algorithm to
verify reachability questions over post∗-flattable systems in the tool FAST. We
expect a smooth extension of FAST [BFLS05] to deal with trace-flattable sys-
tems. This result takes strongly advantage of the decidability of model-checking
FOCTL�(Pr) over admissible counter systems, a new result we establish in the
paper. Hence, we have improved the decidability boundary for model-checking
ACS with CTL�-like languages. The decidability of model-checking question is
open when adding fixed-point operators (Presburger mu-calculus) or monadic
second-order quantification over ACS. Another direction for further work is to
analyze and extend further the class of ACS. For instance, giving up the func-
tionality assumption on transitions that do not belong to a cycle preserves de-
cidability, while it is open whether giving up the full functionality assumption
still preserves decidability in the absence of first-order quantification. Finally,
we plan to verify experimentally which post∗-flattable case studies [BFLS05] are
indeed trace-flattable.

References

[BCMS01] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification of infinite
structures. In Handbook of Process Algebra, pages 545–623. Elsevier, 2001.

[BDR03] V. Bruyère, E. Dall’Olio, and J.F. Raskin. Durations, parametric model-
checking in timed automata with presburger arithmetic. In STACS’03,
volume 2607 of LNCS, pages 687–698. Springer, 2003.

[BEH95] A. Bouajjani, R. Echahed, and P. Habermehl. On the verification problem
of nonregular properties for nonregular processes. In LICS’95, pages 123–
133, 1995.

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown
automata: Application to model checking. In CONCUR’97, volume 1243
of LNCS, pages 135–150. Springer, 1997.

[BFL04] S. Bardin, A. Finkel, and J. Leroux. FASTer acceleration of counter au-
tomata in practice. In TACAS’04, volume 2988 of LNCS, pages 576–590.
Springer, March 2004.

[BFLP03] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Fast Acceleration
of Symbolic Transition systems. In CAV’03, volume 2725 of LNCS, pages
118–121. Springer, 2003.

[BFLS05] S. Bardin, A. Finkel, J. Leroux, and P. Schnoebelen. Flat acceleration
in symbolic model checking. In ATVA’05, volume 3707 of LNCS, pages
474–488. Springer, 2005.

[BGP97] T. Bultan, R. Gerber, and W. Pugh. Symbolic model checking of infinite
state systems using Presburger arithmetic. In CAV’97, volume 1254 of
LNCS, pages 400–411. Springer, 1997.

[BH99] A. Bouajjani and P. Habermehl. Symbolic reachability analysis of FIFO-
channel systems with nonregular sets of configurations. TCS, 221(1–
2):211–250, 1999.



Towards a Model-Checker for Counter Systems 507

[Boi98] B. Boigelot. Symbolic methods for exploring infinite state spaces. PhD
thesis, Université de Liège, 1998.

[CC00] H. Comon and V. Cortier. Flatness is not a weakness. In CSL’00, volume
1862 of LNCS, pages 262–276. Springer, 2000.

[CJ98] H. Comon and Y. Jurski. Multiple counters automata, safety analysis and
Presburger analysis. In CAV’98, volume 1427 of LNCS, pages 268–279.
Springer, 1998.

[Cor02] V. Cortier. About the decision of reachability for register machines. The-
oretical Informatics and Applications, 36(4):341–358, 2002.

[Dem06] S. Demri. Temporal logics. Lecture notes for MPRI, 2005/2006.
www.lsv.ens-cachan.fr/∼demri/.

[DPK03] Z. Dang, P. San Pietro, and R. Kemmerer. Presburger liveness verification
of discrete timed automata. TCS, 299:413–438, 2003.

[EFM99] J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast
protocols. In LICS’99, pages 352–359, 1999.

[FL02] A. Finkel and J. Leroux. How to compose Presburger accelerations: Ap-
plications to broadcast protocols. In FST&TCS’02, volume 2256 of LNCS,
pages 145–156. Springer, 2002.

[FO97] L. Fribourg and H. Olsén. Proving safety properties of infinite state sys-
tems by compilation into presburger arithmetic. In CONCUR’97, volume
1243 of LNCS, pages 213–227. Springer, 1997.

[FWW97] A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to
model checking pushdown systems (extended abstract). In INFINITY’97,
volume 9 of ENTCS. Elsevier Science, 1997.

[Iba78] O. Ibarra. Reversal-bounded multicounter machines and their decision
problems. JACM, 25(1):116–133, 1978.

[ISD+00] O. Ibarra, J. Su, Z. Dang, T. Bultan, and A. Kemmerer. Counter ma-
chines: Decidable properties and applications to verification problems. In
MFCS’00, volume 1893 of LNCS, pages 426–435. Springer, 2000.

[Lag85] J. Lagarias. The 3x + 1 problem and its generalizations. The American
Mathematical Monthly, 92(1):3–23, 1985.

[Ler03] J. Leroux. Algorithmique de la vérification des systèmes à compteurs. Ap-
proximation et accélération. Implémentation de l’outil FAST. PhD thesis,
ENS de Cachan, France, 2003.

[Ler06] J. Leroux. Regular acceleration for number decision diagrams. Technical
Report 1385-06, LABRI, January 2006.

[LS05] J. Leroux and G. Sutre. Flat counter systems are everywhere! In ATVA’05,
volume 3707 of LNCS, pages 489–503. Springer, 2005.

[Min67] M. Minsky. Computation, Finite and Infinite Machines. Prentice Hall,
1967.

[SS04] T. Schuele and K. Schneider. Global vs. local model checking: A compari-
son of verification techniques for infinite state systems. In SEFM’04, pages
67–76. IEEE, 2004.

[Wal01] I. Walukiewicz. Pushdown processes: games and model-checking. I & C,
164(2):234–263, 2001.

[Wol83] P. Wolper. Temporal logic can be more expressive. I & C, 56:72–99, 1983.



The Implementation of Mazurkiewicz Traces in

POEM

Peter Niebert and Hongyang Qu

Laboratoire d’Informatique Fondamentale de Marseille, Université de Provence
{niebert, hongyang}@cmi.univ-mrs.fr

Abstract. We present the implementation of trace theory in a new
model checking tool framework, POEM, that has a strong emphasis on
Partial Order Methods. A tree structure is used to store trace systems,
which allows sharing common prefixes among traces and therefore re-
duces memory cost. This structure is easy to extend to incorporate ad-
ditional features. Two applications are shown in the paper: An extended
structure to support a new adequate order for Local First Search, and an
acceleration of event zone based state space search for timed automata.

1 Introduction

POEM (Partial Order Environment of Marseille) is a new model checking
tool (framework) that has a strong emphasis on Partial Order Methods
[19,7,17,10,13,18,6,14,12]. The motivation for adding POEM to the world of
model checkers is the authors work on algorithms that have a common basis
concerning concurrency, but which are not reflected in a single existing tool.
Moreover, by allowing commonly used specification languages as input languages
and allowing decent connections to analysis backends, we aim to build a platform
that allows direct comparisons of different algorithms on the same model.

The formal basis of many “partial order” approaches in model checking are
Mazurkiewicz traces [4]. The starting point is the notion of commutation of pairs
of independent transitions which, by definition, lead to the same state indepen-
dent of their order of execution. This structural property, frequently observed in
asynchronous systems, can be applied to state exploration algorithms in order
to remove redundant transitions or, if the search goal in question permits, even
states, without changing the validity of the property. The (transitive closure
of) communation of independent transitions yields a congruence relation on the
free monoid of transition sequences. The congruence classes, which are called
“Mazurkiewicz traces”, have a natural representation as partial orders, hence
the name of the domain, “partial order methods”. Another representation close
to Mazurkiewicz traces are prime event structures [20].

Whereas some methods (e.g. the ample set method [17], or the sleep set method
[8]) only use Mazurkevicz traces as a theoretical justification, other algorithms
actually use traces as a data structure in one form or another. This is the case in
particular for the class of Petri net unfolding algorithms [13,6], which use event
structures (an explicit graph representation of the partial orders, with sharing of

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 508–522, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



The Implementation of Mazurkiewicz Traces in POEM 509

common prefixes). Local First Search [2] requires explicit access to Mazurkiewicz
traces and their partial orders. Other algorithms, like [12] can profit from the
identification of previously visited traces for speedup, but are not compatible
with the sleep set method.

Our basic motivation for the development of a library for traces was the im-
plementation of Local First Search. Previously published results were based on
an inefficient prototype that only allowed to estimate the reduction potential
of the method, but was not competitive in run time. Like Petri net unfolding
algorithms, Local First Search requires, among other operations the test of an
“adequate order” relation between traces. In the literature on Petri net un-
foldings, the adequate order is identified as both a theoretical difficulty and a
practical concern: The run time of unfolding algorithms critically depends on
the efficiency of this test.

Other aspects of the Local First Search implementation concern the extraction
of partial orders from traces.

In this work, we thus present data structures and algorithms for trace systems,
prefix closed sets of Mazurkiewicz traces, that make moderate use of memory
and allow fast operations for

– Extension (computation of successor traces).
– Equality testing.
– Adequate order.

The data structure we chose is based on a simple normal form of Mazurkiewicz
traces, the lexicographically least representative. Prefix closed sets of traces are
represented in a tree like structure with sharing. Moreover, we develop an ade-
quate order well adapted to this structure. Apart of the theoretical presentation,
we also give experimental results for two application domains, our new imple-
mentation of LFS and acceleration achieved with the library for timed automata
state exploration with event zones [12].

The paper is structured as follows: In Section 2, we introduce the new model
checker framework, POEM. In Section 3, we introduce the formal basis of
Mazurkievicz traces. In Section 4, we present our data structure and algorithms
for traces. In Section 5, we show the extension of the data structure for use with
LFS, in particular we give the adequate order suited for our data structure. In
Section 6, we briefly report experimental results obtained for the application
to timed automata state exploration with event zones. In Section 7, we give
conclusions and an outlook.

2 POEM - Partial Order Environment of Marseille

The purpose of POEM is to allow the application of certain partial order oriented
algorithms to a number of input languages with different sets of features, while
allowing at the same time basic analysis algorithms. This gives a basic structure
of POEM derived tools as “compilers”, each consisting of a frontend (syntactic
and semantic analysis), a middle (model transformation), and a backend which



510 P. Niebert and H. Qu

passes the model to the aimed analysis algorithm and allows to interpret results.
For instance, “if2c” consists of a frontend for Verimag’s IF2.0 [3] language, static
analysis for identifying the transitions and dependency, and finally a backend
generating C-code for exploration. This kind of architecture is frequently used
in model checkers and originally introduced in Spin [9]. The implementation
language of POEM is Objective Caml (OCaml). This choice is due to the advan-
tages of functional programming languages for compiler writing, the efficiency
of OCaml and the availability of non-functional features.

We also intend to continue the development of POEM to be a common frame-
work for several input languages and analysis methods:

– On the specification language side, a frontend for Promela [9] is close to pro-
totype status and a frontend for UppAal [1] is in planning. We also consider
the addition of a frontend for certain Petri net formats.

– On the analysis side, state exploration as with Spin is implented, together
with two partial order methods: Local First Search [2,11] for discrete systems
and timed automata state exploration with event zones [12]. A backend for
reduction to SAT based “bounded model checking” is in planning.

The goal driving the design of POEM is to have as much reuse of code as possible
given these different front ends and backends. Reuse is essential for development
effort and code quality. It is achieved in the following ways:

– Given that most of the mentioned specification languages use some kind of
interleaving model of automata with shared variables and certain kinds of
communication, POEM uses a common data structure as an abstract speci-
fication language (it does not have a concrete syntax) that allows relatively
easy translation of specification languages into a unique meta “language”.

– Since many partial order methods are based on Mazurkiewicz trace the-
ory, static analysis and backends dealing with independence can be reused.
Realized examples of such reuse include the computation of an efficient rep-
resentation of independence, and the representation of Mazurkiewicz traces
that is the main topic of this article.

3 Basic Trace Theory

Let Σ be an alphabet, (Σ∗, ◦) the free monoid. We write letters a, b, c ∈ Σ, and
words u, v, w, . . . ∈ Σ∗. The concatenation of a word u and a letter a is denoted
by u ◦ a. Let I ⊆ Σ ×Σ be an irreflexive and symmetric independence relation,
and D = Σ × Σ − I the dual dependency relation. For two words u, v ∈ Σ∗,
write u ≡1

I v if there exist words w1, w2 and letters a, b such that (a, b) ∈ I,
u = w1abw2 and v = w1baw2, i.e. if u is obtained from v by exchanging the
order of two adjacent independent letters. Let ≡I be the reflexive and transitive
closure of the relation ≡1

I . We say that u and v are trace equivalent [4, Chapter 2]
over (Σ, I) if u ≡I v. That is, u is trace equivalent to v if u can be obtained from
v by repeatedly commuting adjacent independent letters. ≡I is a congruence



The Implementation of Mazurkiewicz Traces in POEM 511

with respect to concatenation and we call the quotient monoid Σ/ ≡I the trace
monoid of (Σ, I). We write [u] = {v | u ≡I v} for the congruence classes and for
the traces. In particular, for concatenation, we obtain [u][v] = [uv]. We call [u]
a prefix of [v] iff there exists some w such that [uw] = [v]. A trace system is a
(non-empty) prefix closed set of traces.

Let <alph be the alphabetical order defined over Σ. For any two different
letters a, b ∈ Σ, either a <alph b or b <alph a. We also extend <alph for words,
i.e. for two words u and v, u <alph v iff (1) v = uaw or (2) u = wau′ and
v = wbv′ and a <alph b. Thus, lex([u]), a lexicographically least representive as
the normal form of a trace [u] is defined as follows:

lex([u]) ∈ [u] and for any word v ∈ [u] with lex([u]) �= v, lex([u]) <alph v.

In the rest of paper, a trace and its normal form are used interchangeably when
the context allows.

For a trace u, we concider occurrences of letters such that u = a1a2 . . . an.
Let E = {(a1,m1), (a2,m2), . . . , (an,mn)} be the set of occurrences of letters in
u, where mi is the cardinality of the set {j|j ≤ i, ai = aj}, and λ the function
mapping occurrences to letters. Let (E,≺, λ) be a finite (Σ-labeled) partial order,
where ≺ is the transitive closure of

{〈ei, ej〉|ei = (ai,mi) ∈ E, ej = (aj ,mj) ∈ E, i < j, λ(ei) D λ(ej)}.

Therefore, traces can be viewed as partial orders based on the one-to-one corre-
spondence [4, Chapter 2]. For two occurrences e, f ∈ E, e ≺ f iff 〈e, f〉 ∈≺. An
element e ∈ E is maximal if there is no f ∈ E such that e ≺ f .

4 The Basic Data Structure for Trace Systems

We aim to design a data structure for trace systems that minimizes memory
usage. Prefix sharing is a key element to reduce the memory cost, i.e. for any two
traces that have a common prefix w, only one copy of w is allowed to be allocated
in memory. Therefore, it is natural to choose a tree structure to build a trace
system. For the representation of partial spanning trees in search algorithms, this
technique is commonly used. However, a trace with several maximal elements
also has several predecessors, so a design decision has to be made on what is the
predecessor of a trace: The prefix relation is by nature not a tree but a partial
order. Event structure implementations as used in unfolding algorithms [6] follow
the actual partial order of events and do not explicitely reprensent traces, which
correspond to “configurations” in event structures.

Our choice here is to use the normal form introduced in Section 3 as a basis
for a tree-like structure to store trace systems: Any node in a tree corresponds
to a normal form of a trace, its lexicographically least representative, defined
in Section 3. So the root vertex corresponds to the empty word/trace and every
other node corresponds to a representative ua, i.e. is associated with an action
a and has a unique predecessor (parent) corresponding to the representative u.



512 P. Niebert and H. Qu

A node may or may not have successors (children). Even if the trace system
contains a successor [ub] of [u], it need not contain a b-labeled successor if ub is
not the lexicographically least representative of [ub].

A path in a tree starting at the root, to the node associated with action a1,
then to the node a2, until the node an, represents the trace a1a2 . . . an.

Figure 1 illustrates the tree structure. A node has three fields: “predecessor” is
a pointer to its predecessor, “lastaction” is the associated action, and “children”
is a pointer to a link list such that each element in the list has two fields: “first”
points to a child node and “rest” points to the next element. This structure is
easy to be extended to facilitate complex trace systems by adding more fields
into a node. We will see in Section 5 a kind of extension.

children

extension

first rest

extension

first rest

predecessor

children

lastaction

predecessor

lastaction

children

Fig. 1. The basic data structure

The following lemma and corollary show how to generate the normal form
when appending an action to a trace.

Lemma 1. Let u = lex([u]) be the normal form of [u]. Then for a ∈ Σ we get
lex([ua]) = w1aw2 such that u = w1w2 and for all b with |w2|b > 0 we have
a I b.

Proof. First note that there is a unique decomposition of lex([ua]) with lex([ua])
= w1aw2 with [u] = [w1w2] and for all b with |w2|b > 0 we have a I b. By
definition, u ≤alph w1w2 and hence ua ≤alph w1w2a, but on the other hand
w1aw2 ≤alph ua. Let u = u1u2 such that |u1| = |w1|. We obtain from the above
inequalities that u1 ≤alph w1 ≤alph u1, hence u1 = w1. Hence, [u2] = [w2] and
by the definition of lex, it is easy to see that u2 = lex([u2]) and w2 = lex([w2]).
Hence u2 = w2. �

Corollary 1. lex([ua]) with u = lex([u]) can be generated in three steps:

1. Find a suffix w of u, i.e. u = u′w, such that for any letter in w is independent
of a, and if u′ �= ε, i.e. u′ = u′′b, we have ¬(a I b).



The Implementation of Mazurkiewicz Traces in POEM 513

2. Find a prefix w′ of w, i.e. w = w′w′′, such that for any c with |w′|c > 0,
c <alph a, and if w′′ �= ε, i.e. w′′ = dv, we have a <alph d.

3. Insert a after w′, i.e. lex([ua]) = u′w′aw′′.

Proof. It is easy to see that for any other decomposition u = u1u2 such that
a I b for any b in u2, we obtain u1au2 <alph lex([ua]). �

In this trace structure, a trace t = a1a2 . . . an is accessed through its last node an

and following the predecessor pointer of each node of the trace. A trace system
is generated from an initial trace t0, which includes only the root node — a
node respresenting an empty trace, by extending t0 one action after another.
Algorithm 1 describes the general steps, w.r.t. Corollary 1, to extend a trace t
by an action a. In the algorithm, a stack S and three stack functions are used:
POP (S) gets rid of the top element of S; TOP (S) accesses the top element;
PUSH(a, S) puts the action a onto the top of S. Note that in Algorithm 1, a
variable t represents both a trace conceptually and its last node when we access
the trace.

Algorithm 1. Extending a trace t by an action a using a stack S
1: et ← t, pos ← 0, S ← empty
2: while t �= root and ¬(t.lastaction D a) do
3: pos ← pos + 1, PUSH(t.lastaction, S), t ← t.predecessor
4: end while
5: while pos > 0 and a < TOP (S) do
6: POP (S), pos ← pos − 1
7: end while
8: for all i such that 0 ≤ i ≤ pos do
9: et ← et.predecessor

10: end for
11: PATH SUCCESSOR(et, a)
12: while S is not empty do
13: eptr ← TOP (S), POP (S), et ← PATH SUCCESSOR(et, eptr)
14: end while
15: return et

The function PATH SUCCESSOR in Algorithm 2 inserts a node with a
given action into its parents’s children list. The list is sorted in the ascending
order on children’s associated actions. When there is a node in the list that has
been associated with the action already, this node is returned by the function.
Otherwise, a new node is created, inserted into the list and returned.

Proposition 1. Algorithm 1 and 2 are correct and preserve prefix sharing when
appending an action a to a trace t.

Proof. Correctness is an immediate consequence of Lemma 1 and Corollary 1
concerning the lexicographically least representative.

Let t = uv where a is inserted in between u and v, such as t ◦ a = uav. Lines
(1)-(10) in Algorithm 1 returns the last node x of u, and put v in the stack.



514 P. Niebert and H. Qu

Algorithm 2. Function PATH SUCCESSOR(t : trace, a : action)
1: tl ← t.children, previous ← NULL
2: while tl �= NULL and tl.first.lastaction < a do
3: previous ← tl, tl ← tl.rest
4: end while
5: if tl �= NULL and tl.first.lastaction = a then
6: return tl.first
7: end if
8: new t.predecessor ← t, new t.lastaction ← a, new t.children ← NULL
9: new child.rest ← tl, new child.first = new t

10: if previous �= NULL then
11: previous.rest ← new child
12: else
13: t.children ← new child
14: end if
15: return new t

The proposition is proved by induction on insertion of t′ = av, which is done by
Lines (11)-(14) of Algorithm 1.

In the basis step, we check by Lines (1)-(4) of Algorithm 2 if a node y asso-
ciated with a is already in the children list of x. If y exists, it is returned by
Lines (5)-(7) of Algorithm 2, and therefore, there is only one copy of the prefix
ua in the tree structure. Otherwise, y is created and inserted into the list, and
returned by Lines (8)-(15) of Algorithm 2. In this case, ua is not a prefix of any
other traces.

In the induction step, assume w = av′ has been inserted and prefix sharing
is preserved. Let t′ = wv′ and b the first action in v′. Similar to the basis step,
insertion of b maintains prefix sharing. �

From the discussion above, we know that in the worst case, an action may be
inserted at the beginning of a trace. Hence, the complexity of appending an
action to a trace is O(n), where n is the length of the trace.

5 Extending Trace Systems for Local First Search

Local First Search [2,14] is a partial order method to seach for local properties.
For a property ϕ, a visible action causes the system to move from a state not
satisfying ϕ to a state satisfying it, or vice versa. When all visible actions are
pairwise dependent, such a property is a local property. In [14], it is shown that
prime traces, i.e. traces with a single maximal element, suffice to search for local
properties; in turn, to approximate all prime traces, it suffices to consider only
traces with a logarithmic number of maximal elements (compared to the overall
parallelism in the system); this number is called LFS -bound.

LFS uses a breadth-first search algorithm, which is described as follows. Con-
sider a state in the search queue is explored with an enabled action in this
state. Let t be the trace leading to the state and a the action. If the number of



The Implementation of Mazurkiewicz Traces in POEM 515

maximal elements of t ◦ a succeeds the LFS-bound, then the trace t ◦ a is aban-
doned; else, a state s reached by t ◦ a is generated. If s is not visited by other
traces, it is put into the queue. Otherwise, let u be the trace reaching s with
u �= t ◦ a. We need to compare u and t ◦ a with respect to a total adequate
order and use the smaller trace to explore s. The adequate order implemented
in POEM is presented below.

5.1 The Adequate Order for POEM

An adequate order [6] on Σ∗/ ≡I is a partial order 0⊆ (Σ∗/ ≡I ×Σ∗/ ≡I) such
that the following properties are satisfied:

– [u] 0 [uv], i.e. it refines the prefix relation on traces;
– [u] 0 [v] implies [uw] 0 [vw];
– 0 is well-founded, i.e. there is no infinite strictly descending chain [u1] �

[u2] � . . ..

The most straight forward (partial) adequate orders are:

– The prefix relation itself, i.e. [u] 0 [v] iff there exists v1 with [v] = [uv1].
– The length order : [u] 0 [v] iff |u| ≤ |v|.

The first order is included in the second order. For application purposes, let us
just say here that the bigger the order (in ordering more pairs), the better. The
ideal case is that of total adequate orders. The first total adequate order was
proposed in [6] and in the prototype used in [2] applied the order proposed in [5],
which is claimed to be optimized for product systems. However, the adequate
order of [6,5] are oriented towards Petri net unfoldings and evaluated on partial
orders, whereas LFS deals with interleavings. Here we propose a new adequate
order for interleavings, which is thus potentially better suited for use with LFS.

The order is constructed in several steps based on some total order ≤alph

on Σ. Moreover, let |[u]| = |u| denote the length of u, and let |[u]|a = |u|a
denote the number of occurrences of a in u (a property invariant under ≡I).
The Parikh vector [16] p(u) of u or [u] is the function p(u) : Σ −→ N such that
p(u)(a) := |u|a. The ≤alph-induced lexicographical order on Parik-vectors, which
was already used in [6], is defined as follows: u <p v: iff

– either |u| < |v|
– or |u| = |v| and for some b ∈ Σ it holds that

• |u|b > |v|b and
• for all a ∈ Σ with a <alph b it holds that |u|a = |v|a.

If neither u <p v nor v <p u then obviously p(u) = p(v).
Based on the unique representatives lex([v]), which is generated with respect

to Lemma 1, we define 0⊆ (Σ∗/ ≡I ×Σ∗/ ≡I) as follows:
[u] 0 [v] iff

– either u <p v (Parikh order).
– or p(u) = p(v) and lex([u]) ≤alph lex([v]).



516 P. Niebert and H. Qu

The construction of 0 follows the lines of the order in [6] except that there,
the lexicographical order on the Foata normal form of traces is used rather than
lex([u]) ≤alph lex([v]). That order thus requires the computation of the Foata
normal form for each comparison, which is considered the time consuming aspect.

Proposition 2. 0 is a total adequate order.

Proof. First observe that <p is an adequate order.
Second, observe that ≤alph is total on Σ∗ such lex([u]) ≤alph lex([v]) defines

a total order on traces, in particular those with the same Parikh vector. Hence
0 is total. Wellfoundedness of 0 results from the fact that <p is wellfounded,
that the number of traces with the same Parikh vector is finite (permutations)
and that lex([u]) ≤alph lex([v]) defines a total order on traces.

[u] 0 [uv] is also obvious since either v = ε (the empty sequence, obviously 0
is reflexive) or |u| < |uv|.

The difficult step is to prove that [u] � [v] implies [uw] � [vw] in the case that
p(u) = p(v) (otherwise, the fact that <p is adequate is sufficient). It is sufficient
to check that [u] � [v] implies [ua] � [va] and use induction for the general case.

So let [u] � [v], p(u) = p(v) and for simplicity assume that u = lex([u]) and
v = lex([v]), i.e. u and v are the lexicographically least representatives of [u] and
[v] respectively. Let u = wbu′ and v = wcv′ with b <alph c.

Obviously p([ua]) = p([va]). Let lex([ua]) = u1au2 with u = u1u2 and
lex([va]) = v1av2 with v = v1v2 according to Lemma 1.

Now we have to compare the different decompositions of v1v2 = wcv′. If |v1| ≤
|w| then let u = v1u

′
2 the according decomposition of u where p(v2) = p(u′2) and

hence ua ≡I v1au
′
2 (the importance of the same Parikh-vector here is that a

commutes with all letters in u′2) and we obtain u1au2 ≤alph v1au
′
2 and we know

that u′2 <alph v2 hence u1au2 <alph v1av2. If |v1| > |w| then v1 = wcv′1 and we
obtain u1au2 ≤alph ua = wbu′a <alph wcv

′
1av2 = v1av2. �

Clearly, the worst case complexity of testing [u] 0 [v] is O(min(min(|u|, |v|) ·
log |Σ|, |Σ|): The computation of the Parikh-vector of u means running through
the word and counting the letters. For this, a letter indexed array can be used
with initialisation time O(|Σ|), increasing time (log |Σ|), and |u| increases. If the
two traces are dealt with in parallel and the length turns out to be different, we
can stop. However, in POEM we decided to compute Parikh vectors incremen-
tally by storing them (in a compressed form), as indicated in the next section.

5.2 The Extended Data Structure

For incremental computation of Parikh vectors for faster adequate order test-
ing, the basic trace structure can be extended as follows. Figure 2 depicts the
extension, where a node has three additional fields: “parikh vector sum” records
the number of actions in the trace that is from the root to the current node,
“parikh vector” points a dynamically allocated memory to store the parikh vec-
tor. “peak vector” is very particular to Local First Search, see [14] for details.
The parikh vector has a field “length” and an array “vector”. The length field



The Implementation of Mazurkiewicz Traces in POEM 517

records the length of the array, and each element in the array is the number
of occurrences of an action in the trace. The array in the peak vector stores
maximal actions in the trace.

peak_vector

length
vector

length
vector

parikh_vector_sum

parikh_vector

Fig. 2. The extension to the basic data structure

LFS requires to compare two traces with respect to the adequate order during
state space search. In a comparison, one trace is an “old” one that has been
explored, while the other is the “new” one currently being explored, i.e. it is
created by appending an action to a trace. The procedure of comparison is
shown in Algorithm 3 according to the definition of the adequate order:

1. Compare the length of two traces (Lines (2)-(6)). If they are equal, go to 2.
2. Compare their parikh vectors (Lines (7)-(19)). If they are still equal, go to 3.
3. Compare the lexicographical representives of these traces (Lines (20)-(30)).

The complexity of the new test now consists of two parts:

– in successor computation, increasing the “parikh vector sum” (logarithmic in
theory, practically near constant time), updating the “parikh vector”O(|Σ|).

– in comparison, there are three cases:
• The length is different, detected in constant time.
• Otherwise, the Parikh vectors are different, detected in O(|Σ|).
• Otherwise, the lexicographic comparison has to be done in O(|u|) in the

worst case, but our data structure avoids running through the common
prefix of u and v.

This means that for many cases, the comparison of the words and the successor
computation is actually avoidable. The tradeoff is increased memory usage for
storing Parikh vectors.

Note that a temporary trace stored in a stack is generated for t2 ◦ a during
the comparison. If the result shows t1 � t2 ◦a, the temporary trace is discarded.
Otherwise, it is written into the tree structure. In this case, it is easy to know
that t1 and t2 ◦ a have the same length, and therefore, the last node of t1 is in
the search queue waiting for process. Removing this node, naming it as x, from
the queue first and then appending a new node, say y, for t2 ◦ a to the end of
queue cause difficulties on maintenance of the queue. During the implementation
of LFS, we chose to reuse the space of x for y, and afterwards, remove x from
the children list of the father node of x.

Also note that due to the breadth first search basis of Local First Search,
Parikh vectors need to be stored only for two levels of search depth at a time.
So the memory for Parikh vectors can be reused.



518 P. Niebert and H. Qu

Algorithm 3. Compare two traces t1 and t2 ◦ a w.r.t. the adequate order
1: Return Value: 1 ⇒ [t1] > [t2 ◦ a]; 0 ⇒ [t1] = [t2 ◦ a]; −1 ⇒ [t1] < [t2 ◦ a]
2: if t1.parikh vector sum > t2.parikh vector sum + 1 then
3: return 1
4: else if t1.parikh vector sum < t2.parikh vector sum + 1 then
5: return -1
6: end if
7: generate a new parikh vector new pv for t2 ◦ a
8: for all i such that i ≥ 0 ∧ i ≤ t1.parikh vector.length ∧ i ≤ new pv.length do
9: if t1.parikh vector.vector[i].act < new pv.vector[i].act then

10: return -1
11: else if t1.parikh vector.vector[i].act > new pv.vector[i].act then
12: return 1
13: end if
14: if t1.parikh vector.vector[i].num < new pv.vector[i].num then
15: return -1
16: else if t1.parikh vector.vector[i].num > new pv.vector[i].num then
17: return 1
18: end if
19: end for
20: temp trace ← t2 ◦ a
21: while t1.predecessor �= temp trace.predecessor do
22: t1 ← t1.predecessor, temp trace ← temp trace.predecessor
23: end while
24: if t1.lastaction < temp trace.lastaction then
25: return -1
26: else if t1.lastaction > temp trace.lastaction then
27: return 1
28: else
29: return 0
30: end if

5.3 An Experiment

We use an experiment1 to illustrate the efficiency of the implementation of the
tree structure. The experiment was performed on the famous dining philosopher
example. A philosopher pick up a fork randomly from his left side or right side
when both forks are available, but always drops down the left fork first. The
experiment were carried out in a machine with two 2.8GHz Xeon CPUs, 2GB
memory and Fedora core 4 Linux.

In the experiment, we compare the memory and the time cost for a naive state
space search without any reduction, the LFS reduction and SPIN with partial
order reductions (which are ineffective on both handed philosophers). The naive
one does not use traces, thus its memory space per state is less than that in
LFS. The LFS column uses the data structures outlined above, including parikh

1 This experiment was also done in [11]. But here we consider the data from a different
angle.



The Implementation of Mazurkiewicz Traces in POEM 519

vectors and peak vectors. Visibly, the memory overhead of the trace structure
is not heavy; even compared with SPIN, which uses memory compression tech-
nique, it is not too much to be tolerable. Time cost shows the strength of the
implementation from a different angle. As the system is getting bigger, the pro-
cess time per state of LFS is closer to that of the naive search, and because SPIN
uses partial order reduction, it is slower than LFS. Profiling shows that the im-
plementation may spend up to 40% of the time in dealing with the adequate
order which justifies the incremental implementation with stored parikh vectors.
Given the exponential savings of the LFS method, we consider this percentage
a proof of success of the approach and the data structures used.

Number of No reduction LFS bound SPIN PO red
philosophers states time memory states time memory states time memory

(s) (m) (s) (m) (s) (m)
2 13 0.01 4.1 13 0.01 4.6 13 0.00 2.6
3 51 0.01 4.1 49 0.01 4.7 51 0.00 2.6
4 193 0.01 4.1 191 0.01 4.7 193 0.01 2.6
5 723 0.01 4.1 651 0.01 4.7 723 0.02 2.6
6 2701 0.02 4.4 1937 0.02 4.8 2701 0.02 2.7
7 10083 0.05 5.4 5041 0.05 5.4 10083 0.09 3.1
8 37633 0.22 9.3 25939 0.25 8.8 37633 0.35 7.9
9 140451 1.02 25.6 70225 0.76 17.3 140451 1.59 43.8
10 524173 4.52 91.6 173031 2.13 38.1 524173 7.03 74.1
11 1956243 21.06 357.5 392701 5.28 84.9 1956243 31.03 325.1
12 7300801 106.49 1422.5 830415 12.33 183.5 7300801 127.40 1030.1
13 — — — 1652587 26.99 378.3 — — —
14 — — — 3121147 56.44 743.9 — — —
15 — — — 5633381 111.55 1399.0 — — —

Fig. 3. Results of the philosophers example

6 Application to the Event Zone Approach for Timed
Automata

Event zone automata [12] are a partial order based approach to reduce one source
of clock explosion, interleaving semantics. It uses vectors of event (action) oc-
currences, namely, event zones, instead of classical clock zones, to express clock
constraints. The independence relation in event zone approach is based on read-
ing and writing of shared variables: If for some clock x, transition a resets x
and transition b has a condition on x or if both a and b reset x, then they
must be dependent. Based on Mazurkiewicz trace theory and the independence
relation, event zone approach successfully avoids zone splitting in a typical situ-
ation. transitions a resetting clock x and b resetting y are independent, and both
enabled in a state. Executing the sequence ab and ba results two incomparable
clock zones, while only one event zone: The independence relation is preserved
in the symbolic automaton. We won’t go into the details of the method, let us
just state that it can result in dramatic savings compared to classical timed
automata exploration as in UppAal when sufficient concurrency is involved.

However, computing successors and in particular checking “zone inclusion”
is the most time consuming part in any timed automata exploration. Given



520 P. Niebert and H. Qu

that equivalent sequences lead to the same event zone, we can avoid this costly
procedure in many cases if we do a test for a visited trace before.

This is where the data structure of this paper can help: We store the visited
traces and before computing a successor and searching for a bigger zone, we test
if we have tried a different interleaving of the same trace before. To achieve
this, the trace structure in POEM supports automatic detection of equivalent
traces by a minor modification of Algorithm 1 and 2: PATH SUCCESSOR
sets a flag is old trace if it finds out that there is a node in the children list
that has been associated with the given action, and Algorithm 1 sets another
flag to indicate an equivalent trace is found by checking whether each calling of
PATH SUCCESSOR sets is old trace.

This approach does not change the number of visited symbolic states, but the
experiment indicated below shows that it can save a considerable amount of time.
In order to demonstrate the effect of improvement, we made two experiments
to compare the time cost before and after applying the improvement. These
experiments were performed on the same machine as the one in Section 5.3.

think

foodless <= starved

hungry
foodless <= starved and 
myclock <= patience

leftfork
myclock <= patience and
foodless <= starved

eat

myclock <= eatingtime

dropotherfork

myclock <= patience

myclock >= concentrated
myclock := 0

afork[myindex] == 1
afork[myindex] := 0, 
myclock := 0

afork[(myindex+1)%num] == 1
afork[(myindex+1)%num] := 0, 
myclock := 0, foodless := 0

myclock >= eatingtime
afork[myindex] := 1, 
foodless := 0, 
myclock := 0

afork[(myindex+1)%num] := 1, 
myclock := 0

myclock >= patience
myclock := 0, 
afork[myindex] := 1

onestate

time<=timelimit

finalstate

time<=timelimit

time==timelimit

done := 1

Fig. 4. The automata of a philosopher (left) and the timestopper (right)

The first experiment is a timed version of dining philosophers. There are
a group of philosophers and a timestopper process, which is used to stop the
execution of the system when time progresses to a limit. The automata of a
philosopher and the timestopper are shown in Figure 4, respectively2. Figure 5
shows the results generated by POEM. The data under the title “Testing” were
obtained by testing if the current trace has been seen before; the data with
“No Testing” were obtained without such testing. These two methods generated
exactly the same state space and we only have a switch to turn on or of the
test, but the trace structure is computed in both cases. Thus only one column
of memory usage is listed and we have no data for the memory overhead of the
trace structure, which should be of the same order as for discrete systems in
Section 5.3.

2 Figure 4 were produced by UppAal.



The Implementation of Mazurkiewicz Traces in POEM 521

Number of Memory Time
philosophers Testing No Testing

2 16m 0.03s 0.02s
3 16m 0.05s 0.05s
4 17m 0.31s 0.52s
5 22m 5.01s 9.58s
6 72m 78.12s 173.33s
7 540m 1168.92s 2840.52s

Fig. 5. Results of the philosophers

Number of Memory Time
lanes Testing No Testing

1 16m 0.03s 0.03s
2 16m 0.03s 0.03s
3 16m 0.03s 0.04s
4 17m 0.09s 0.12s
5 19m 1.27s 2.31s
6 36m 10.79s 22.96s
7 118m 87.46s 211.78s
8 466m 554.34 1490.43s

Fig. 6. Results of the highway

The second experiment was performed on the following example from [15]. A
multi lane highway with cars on each lane and a rabbit who wants to cross. The
rabbit has some freedom of going slower or faster and so do the cars. Can - with
the help of the car drivers - the rabbit reach the other side of the highway alive?
To model this by a network of timed automata, we choose to model the highway
as a checker board of lanes and positions on lanes as indicated in the picture,
cars move in the horizontal direction and the rabbit in the vertical direction.
Each car and the rabbit is realised by an individual automaton. The freedom
of going slower or faster is modeled by a time interval in which the rabbit can
advance by one lane and an interval in which the car can advance for one unit
length on a discretized highway. If a car and the rabbit are in the same field of
the checker board at the same time, an accident occurs. The results are listed
in Figure 6. The advantage of testing known traces in this experiment is more
explicit than the first one.

7 Conclusion

We discussed the design and implementation of the trace structure in the new
model checking framework POEM. On the fundamental level, we have con-
tributed a new definition of an adequate order [6] on interleavings that shows to
work very well with our implementation. While intended for Local First Search
[2], it can be used by other partial order related state exploration algorithms.

We also presented the application of our data structures and algorithms to the
Local First Search and the Event Zone approach to timed automata [12]. These
applications show the good adaptability of the structure. The bottom line of the
experiments conducted is a decent performance both in time and memory usage of
a component that allows for dramatic savings in severalmodel checking algorithms.

It is planned to release a first version of POEM in the near future so as to
make our implementation available to the research community.

Acknowledgements

Thanks go to Marcos Kurban for detecting a bug in an earlier version of the defi-
nition of the adequate order and in general for his comments on the
implementation.



522 P. Niebert and H. Qu

References

1. G. Behrmann, A. David, K. G. Larsen, O. Moeller, P. Pettersson, and W. Yi.
Uppaal - present and future. In Proc. of 40th IEEE Conference on Decision and
Control. IEEE Computer Society Press, 2001.

2. S. Bornot, R. Morin, P. Niebert, and S. Zennou. Black box unfolding with local
first search. In TACAS, LNCS 2280, pages 386–400. Springer, 2002.

3. M. Bozga, S. Graf, and L. Mounier. If-2.0: A validation environment for component-
based real-time systems. In CAV, LNCS 2404, pages 343–348. Springer, 2002.

4. V. Diekert and G. Rozemberg, editors. The Book of Traces. World Scientific
Publishing Co. Pte. Ltd., 1995.

5. J. Esparza and S. Römer. An unfolding algorithm for synchronous products of
transition systems. In CONCUR, LNCS 1664, pages 2–20. Springer, 1999.

6. J. Esparza, S. Römer, and W. Vogler. An improvement of mcmillan’s unfolding
algorithm. Formal Methods in System Design, 20(3):285–310, 2002.

7. P. Godefroid and P. Wolper. A partial approach to model checking. In Logic in
Computer Science, pages 406–415, 1991.

8. P. Godefroid and P. Wolper. Using partial orders for the efficient verification of
deadlock freedom and safety properties. Formal Methods in System Design, 2:149–
164, 1993.

9. G. Holzmann. The Spin Model Checker, Primer and Reference Manual. Addison-
Wesley, Reading, Massachusetts, 2003.

10. G. Holzmann and D. Peled. Partial order reduction of the state space. In First
SPIN Workshop, Montrèal, Quebec, 1995.

11. M. E. Kurbán, P. Niebert, H. Qu, and W. Vogler. Stronger reduction criteria for
local first search. Technical report, 2006. submitted to ICTAC 2006.

12. D. Lugiez, P. Niebert, and S. Zennou. A partial order semantics approach to
the clock explosion problem of timed automata. Theoretical Computer Science,
345(1):27–59, 2005.

13. K. L. McMillan. A technique of state space search based on unfolding. Form.
Methods Syst. Des., 6(1):45–65, 1995.

14. P. Niebert, M. Huhn, S. Zennou, and D. Lugiez. Local first search: a new
paradigm in partial order reductions. In CONCUR, LNCS 2154, pages 396–410.
Springer, 2001.

15. P. Niebert and H. Qu. Adding invariants to event zone automata. Technical report,
2006. submitted to FORMATS 2006.

16. R. J. Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, 1966.
17. D. Peled. All from one, one for all: on model checking using representatives. In

CAV, pages 409–423, 1993.
18. W. Penczek and R. Kuiper. Traces and logic. In Diekert and Rozemberg [4].
19. A. Valmari. Stubborn sets for reduced state space generation. In Applications and

Theory of Petri Nets, pages 491–515, 1989.
20. G. Winskel. Event structures. In Advances in Petri Nets 1986, Part II, LNCS 255,

pages 325–392. Springer, 1987.



Model-Based Tool-Chain Infrastructure for

Automated Analysis of Embedded Systems

Hang Su1, Graham Hemingway1, Kai Chen2, and T. John Koo3,�

1 Department of Electrical Engineering and Computer Science
Vanderbilt University, Nashville, TN, USA

{hang.su,graham.hemingway}@vanderbilt.edu
2 Motorola Labs, Motorola Inc.

Schaumburg, IL, USA
kai.chen@motorola.com

3 Departments of Electronics Engineering and Computer Science
Shantou University, Shantou, Guangdong, China

johnkoo@stu.edu.cn

Abstract. In many safety-critical applications of embedded systems,
the system dynamics exhibits hybrid behaviors. To enable automatic
analysis of these embedded systems, many analysis tools have been de-
veloped based on hybrid automata model. These tools are constructed
by their own domain-specific modeling languages (DSMLs) but they are
different in various aspects. To enable meaningful semantic interpreta-
tion of DSMLs, we propose an infrastructure for semantic anchoring that
facilitates the transformational specification of DSML semantics. In the
semantic anchoring infrastructure, the semantics of a DSML can be an-
chored to a well-defined semantic unit, which captures the operational
semantics of hybrid automaton, via model transformation. The Abstract
State Machine (ASM) is used as the underlying formal framework for
the semantic unit. The semantics of a DSML is defined by specifying the
transformation between the abstract syntax metamodel of the DSML
and that of the semantic unit. The infrastructure can also enable model
exchange among DSMLs while referring to the common semantic unit.
Hence, hybrid automata based DSMLs can be integrated to form a mean-
ingful tool chain by deploying this proposed infrastructure. In this paper,
we demonstrate how effective the tool-chain infrastructure is by con-
sidering a practical case study involving the hybrid automata DSMLs,
HyVisual and ReachLab.

1 Introduction

In many safety-critical applications of embedded systems such as avionics, auto-
mobiles and medical devices, the computational processes are strongly coupled
with the physical processes and hence the system dynamics exhibit tight in-
teraction between the discrete and continuous dynamics. However, embedded

� Corresponding author.

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 523–537, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



524 H. Su et al.

software for these embedded systems has been produced without the necessary
system models, theories, design methods, and software tools that consider the
hybrid nature of the systems in order to provide guarantees for satisfying safety,
security and reliability requirements.

Hybrid automata [10,11,12] have been successfully used as the model for the
embedded systems which exhibit hybrid behaviors at the system level. Many
model-based tools have been developed for the analysis of hybrid automata. An
excellent survey of the model-based tools and a comparison of their capabilities
can be found in [15]. However, the model-based tools are constructed using their
own domain-specific modeling languages (DSMLs) which capture the modeling
concepts, relationships, integrity constraints, and semantics of the application
domain and allow users to program declaratively through model construction.
Although these tools are designed for hybrid automata, each tool has its own
DSML based on the objectives, capabilities, constraints, theoretical foundations,
and computation methods considered in the tool. Therefore, the use of these
DSMLs with tightly integrated analysis tool chains leads to the accumulation
of design assets as models defined in a DSML. Consequently, users run a high
risk of being “locked-in” to a particular tool chain and this may prevent the
organization from adopting new modeling and model analysis methods. Inter-
change languages for hybrid systems have been proposed in [14] and [15,16] for
enabling the integration of analysis tools by enabling model exchange. In [14], the
interchange format syntax is defined to enable model exchange among diverse
tools but these tools have significant differences in their semantics due to their
objectives. In [15,16], the semantics of the interchange format is defined at an
abstract level so that various concrete semantics, each capturing the model used
by a different language for the specification of hybrid systems, can be refined
from the abstract semantics. However, it is unclear how some relevant properties
can be preserved in the refinement process.

To enable meaningful semantic interpretation of DSMLs, in our former papers
[3,4,5], we proposed and demonstrated an infrastructure for semantic anchoring
that facilitates the transformational specification of DSML semantics. The se-
mantic anchoring infrastructure includes a set of well-defined “semantic units”
that capture the operational semantics of basic models of computations (MOCs)
[9] by using Abstract State Machines [8] as the underlying formal framework,
whose language is called AsmL. The semantics of a DSML are defined by speci-
fying the transformation between the abstract syntax metamodel of the DSML
and that of the semantic unit. Leveraging our prior work with semantic units,
including finite state machines and timed automata, a semantic unit for hybrid
automata is developed. The semantics of the semantic unit for hybrid automata
are precisely specified by using the execution definitions defined in [13]. In the
semantic anchoring framework, the Generic Modeling Environment (GME) tool
suite [1] is employed for defining the abstract syntax metamodels for DSMLs
using the UML/OCL - based MetaGME as the metamodeling language. The
semantic anchoring is defined by model transformation rules expressed in the
UMT (Unified Model Transformation) language of the GReAT tool suite [2]. In



Model-Based Tool-Chain Infrastructure 525

UMT, model transformations are expressed as graph transformations that can
be executed (both in interpreted and compiled form) by the GReAT engine.
The semantic anchoring infrastructure enables us to define the semantics of a
DSML by referring to that of the semantic unit via specifying model transforma-
tion rules from the metamodel of the DSML to the Abstract Data Model of the
semantic unit. The infrastructure can also enable meaningful model exchange
among tools. Hence, various hybrid automata based DSMLs can be integrated
to form a meaningful tool-chain by deploying this proposed infrastructure.

In this paper, we demonstrate how effective the tool-chain infrastructure is
by considering a practical case study involving the hybrid automata DSMLs,
HyVisual and ReachLab. HyVisual[7] is a hybrid systems modeling tool and has
its own DSML called the Modeling Markup Language (MoML) while ReachLab
[6] is an MIC-based analysis tool for hybrid automata and its DSML is called
Hybrid System Analysis and Design Language (HADL). The rest of this paper
is organized as follows. In section 2, several key concepts, such as hybrid au-
tomata, model-integrated computing, domain-specific modeling language, and
semantic anchoring, are defined. In section 3, the tool-chain infrastructure for
automated hybrid automata design and analysis is proposed and discussed in de-
tail. In section 4, the effectiveness and efficiency of the proposed infrastructure
is demonstrated by using the hybrid automaton for a DC-DC boost converter.
And in section 5, we conclude our work.

2 Background

In the following, we will first explain model-integrated computing (MIC), meta-
model transformations, and semantic anchoring, and then the definition of hybrid
automata is introduced.

2.1 Definition of Hybrid Automaton

Hybrid automata belong to a special class of dynamical systems and the evolu-
tion of a hybrid automaton can be described in time by the values of a set of
discrete and continuous state variables. The formal definition of hybrid automa-
ton is given as:

Definition 1 (Hybrid Automaton[12,13]). A hybrid automaton H is a col-
lection H = 〈Q,X, f, Init,D,E,G, R〉, where Q is a finite set of discrete
states; X ⊆ Rn is a set of continuous states; f : Q × X → Rn assigns
each discrete state a vector field; Init ⊆ Q × X is a set of initial states;
D : Q → P (X) assigns each discrete state a domain; E ⊆ Q × Q is a set of
edges; G : E → P (X) assigns each edge with a guard; R : E ×X → P (X) is
a reset.

The hybrid state of H is referred to as (q, x) ∈ Q×X . An acceptable evolution
of the state of a hybrid automaton is called an execution, which could involve
some combinations of continuous flow and discrete jump. The continuous flow



526 H. Su et al.

for the continuous state is determined by the vector field and the domain while
the discrete jump is determined by the associated directed graph defined by
the discrete states, edges, the guard and the reset. A hybrid automaton can
accept multiple executions if either there is a choice between continuous flow
and discrete jump, or if a discrete jump can lead to multiple destinations. The
collection of all the executions from an initial set is called (forward) reachable set.
The algorithm developed in [6] can be used to compute the forward reachable
set. Such reachable sets are useful for verifying the safety property of hybrid
automata.

Example 1. DC-DC Boost Converter In [17], a DC-DC boost converter is
modeled as a hybrid automaton, H . There are two discrete states, q1 and q2.
which correspond to the configurations of the transistors. The continuous state
of the system is defined as x = [iL vC ]T , and the operating region of the circuit
is defined by X = [iL0 , iL1] × [vC0 , vC1 ]. In each discrete state, the continuous
evolution of the continuous state is governed by a differential equation where

ẋ = Aix+b for i = 1, 2, in which A1 =
[
0 0
0 − 1

RC

]
, A2 =

[
0 − 1

L
1
C − 1

RC

]
, b =

[
vin

L
0

]
.

The domains for the discrete states are defined as: D(q1) = [iL0 , iL1 ] × [vd −
δ, vC1 ], D(q2) = [iL0 , iL1 ]× [vC0 , vd +δ]. There are two edges between the discrete
states and the guard is defined as: G(q1, q2) = {x ∈ X |vC ≤ vd − ε}, G(q2, q1) =
{x ∈ X |vC ≥ vd + ε}. The reset maps are the identity map, i.e. R(q1, q2, x) =
R(q2, q1, x) = x. Given a desired voltage, vd, this hybrid automaton keeps vC

oscillating between the range of vd ± ε, and thus implements the DC-DC boost
converter function.

2.2 Domain Specific Modeling Language (DSML)

The MIC approach eases the complicated task of embedded software and system
design by equipping developers with DSMLs tailored to the particular constraints
and assumptions of their various application domains. A well-made DSML cap-
tures the concepts, relationships, integrity constraints, and semantics of the
application domain and allows users to program declaratively through model
construction. Formally, a DSML can be defined as a 5-tuple.

Definition 2 (Domain Specific Modeling Language). A DSML is a 5-tuple
L = 〈A,C, S,Ms,Mc〉, where A is an abstract syntax, defining the language
concepts, their relationships, and well-formedness rules available in the language;
C is a concrete syntax, defining the specific notations (graphical, textual, or
mixed) used to express models; S is a semantic domain, defined in some for-
mal, mathematical framework, in terms of which the meaning of the models is
explained; Ms : A → S is a semantic mapping, which relates syntactic con-
cepts to those of the semantic domain; Mc : C → A is a syntactic mapping,
which assigns syntactic constructs to elements in the abstract syntax.

However, different tools have their own DSMLs, which exhibit different syntax
as well as semantics.



Model-Based Tool-Chain Infrastructure 527

2.3 Framework of Semantic Anchoring

Although DSMLs use many different modeling and model composition concepts
and notations for accommodating needs of domains and user communities, se-
mantic domains for expressing fundamental types of dynamic behaviors are more
limited. Broad categories of component behaviors can be represented by behav-
ioral abstractions, such as hybrid automata. This observation led us to propose a
semantic anchoring infrastructure for defining behavioral semantics for DSMLs.
The development and use of the semantic anchoring infrastructure includes the
following tasks:

1. Definition of a set of modeling languages {Li} for capturing semantics of the
basic behavioral abstractions and development of the precise specifications
for all components of Li = 〈Ci, Ai, Si,MSi,MCi〉. We use the term “semantic
units” to describe these basic modeling languages.

2. Definition of the behavioral semantics of an arbitrary Lj = 〈Cj , Aj ,
Sj ,MSj ,MCj〉 DSML is accomplished by specifying the MAji : Aj → Ai

mapping to a predefined semantic unit Li. The MSji : Aj → Si semantic
mapping of Lj is then defined by the compositionMSji = MSi ◦MAji , which
indicates that the semantics of Lj is anchored to the Si semantic domain of
the Li modeling language.

Fig. 1. Framework of Semantic Anchoring

Fig. 1 shows the framework to facilitate DSML design through semantic anchor-
ing. It comprises (1) the ASM-based common semantic framework for specifying
semantic units and (2) the MIC modeling and model transformation tool suites
that support the specification of transformations between the DSML metamod-
els and the Abstract Data Models used in the semantic units. In the framework,
MAji refers to the model transformation rules from Aj to Ai; Tji refers to the
model transformation from Cj to Ci; andMi refers to the semantic translation in
DSMLi, which corresponds toMSi ◦MCi. In particular, as we demonstrate in the
next section, we use i ∈ {H}, where H represents the semantic unit DSML for
hybrid automata, and j ∈ {V, V ′, R}, where V represents the HyVisual DSML
in GME, V ′ represents the HyVisual MoML, and R represents ReachLab DSML
(HADL). Each semantic unit must be anchored to a formal framework using a
formal language. This framework must be broad enough to incorporate all three
portions of the MS : A → S definition for a DSML but flexible enough not to
limit its definition or execution. There are a number of possible frameworks from
which to choose.



528 H. Su et al.

We selected Abstract State Machine (ASM), formerly called Evolving Alge-
bras, as a formal framework for the specification of semantic units. General forms
of behavioral semantics can be encoded as (and simulated by) an abstract state
machine. AsmL, developed by Microsoft Research, provides specification lan-
guage simulator, test-case generation and model checking tools for ASMs. Also,
previous work on the semantic units for FSM and TA both utilized ASM as the
framework for formal specification. While the execution or simulation of a hy-
brid automata is more complex than either of these other models of computation,
ASM is still a capable framework. For this reason we decided to continue using
ASM. For a discussion of ASM and other possible anchoring frameworks, please
refer to [3] In summary, semantic anchoring specifies DSML semantics by the
operational semantics of selected semantic units (defined in AsmL) and by the
transformation rules (defined in UMT). The integrated tool suite ensures that
domain models defined in a DSML are simulated according to their “reference
semantics” by automatically transforming them into AsmL data models using
the transformation rules.

3 Tool-Chain Infrastructure

In this section, the tool-chain infrastructure for automated hybrid automata
design and analysis is proposed and discussed.

3.1 Infrastructure Overview

In order to better demonstrate our semantic anchoring infrastructure, we choose
HyVisual [7] and ReachLab [6] as two model-based tools that will be applied
to this infrastructure. HyVisual is a typical modeling and simulation tool for
hybrid automata, and ReachLab is an algorithmic analysis tool for hybrid au-
tomata. Although they are both model-based tools developed for hybrid au-
tomata, HyVisual is based on MoML language for modeling, which is XML
based, while ReachLab is an MIC-based DSML. In this paper, we will show
that they can be incorporated automatically by using our semantic anchoring
framework.

Fig. 2 shows the semantic anchoring infrastructure that incorporates HyVi-
sual and ReachLab. A general semantic unit (H) is presented in the center of
the figure. It possesses a more general form of abstract syntax and semantics.
HyVisual and ReachLab DSMLs (V and R) are inter-connected through the se-
mantic unit. Model transformation rules between HyVisual DSML V and H , i.e.
MAV H , and between H and R, i.e. MAHR , are created by using the GReAT tool,
which can automatically generate model translators TV H and THR. These model
translators are used to transform from models in V to models in H , and then
to models in R. The inter-connection of V and R via H is bi-directional, pro-
vided another set of transformation rules, MARH andMAHV are created. In each
DSML k (k ∈ {H,V,R}), a semantic translator Mk can be created to translate
from Ck to Sk. For example, in H , MH can be used to generate AsmL specifica-
tion for the given hybrid automaton model, and in R, Matlab or C++ code can



Model-Based Tool-Chain Infrastructure 529

Fig. 2. Tool-chain infrastructure for hybrid automata design and analysis

be generated by different semantic translators MR. Another translator TV ′V in
this infrastructure is used to import HyVisual, MoML models into V models. For
more general cases, a set of different tools in the tool-chain can be represented as
DSMLs (in the form of metamodels) in the GME environment, which are inter-
connected through the HA semantic unit by using model translators. In each of
these DSMLs, semantic translators can be created to generate executable mod-
els. Separate translators can be used to import models from the actual format
of these tools to models in their corresponding DSMLs. In the following subsec-
tions, the construction of the metamodels for HyVisual and ReachLab DSMLs,
the model translators, and the semantic translators are explained in details.

3.2 Metamodeling of Semantics Units and DSMLs: AH , AV and AR

In this subsection, metamodels for the DSML of the semantic unit (H), HyVisual
(V ), and ReachLab (R) are defined and explained.
AH : Metamodel of HA semantic unit. Fig. 3 shows the metamodel for the

HA semantic unit. This metamodel comes directly from the mathematical defini-
tion of hybrid automaton (Definition 1). In this metamodel, a HybridAutomaton
model is composed of several Locations (corresponding to Q in HA definition).
Each Location contains a DomainSet (corresponding to D) and a VectorFieldSet
(corresponding to f), and Locations are connected through Edges (correspond-
ing to E), which contain GuardSet (corresponding to G) and ResetSet (corre-
sponding to R). An AnalysisSet (corresponding to X) is also defined inside the
HybridAutomaton, which defines the real variables, and their domains. An at-
tribute in each Location is used to specify whether this Location is the initial
Location. In addition, a set of Options can be specified in a HybridAutomaton
model, which are in the form of key-value pairs, to define system parameters.
This metamodel is very straightforward and directly related to the mathematical
definition of hybrid automata. It is also very general, so that it can be used to
anchor many different tools.



530 H. Su et al.

Fig. 3. AH : Metamodel of hybrid automata semantic unit

AV : Metamodel of HyVisual. Fig. 4(a) shows the metamodel for HyVi-
sual created in the GME environment. This is a compact version of the HyVisual
DSML, since it only contains the blocks necessary for modeling a hybrid automa-
ton. In HyVisual, hybrid automata can be modeled by using Modal Models, with
Refinements for continuous computation in each discrete state. This metamodel
directly reflects this modeling scheme in HyVisual, and important HyVisual
blocks are directly mapped to the blocks in this metamodel.

(a) (b)

Fig. 4. (a) AV : Metamodel of HyVisual DSML; (b) AR: Metamodel of ReachLab for
HA modeling

AR: Metamodel of ReachLab. In [6], we explained the language of Reach-
Lab (HADL) in detail. ReachLab’s metamodel for modeling a hybrid automaton
is shown in Fig. 4(b). It is also straightforward, but different from the semantic
unit metamodel, since Invariants (which corresponds to DomainSet in seman-
tic unit metamodel) connects to DiscreteModes (which corresponds to Location
in semantic unit metamodel), instead of contained inside. Also, most specifica-
tions are stored in files in ReachLab, rather than expressions as in the semantic
unit metamodel. Furthermore, ReachLab uses an InitialContinuousSet block to
indicate the initial discrete state by connecting this block directly to the corre-
sponding DiscreteMode. Besides hybrid automata modeling, ReachLab also has
a programming aspect, which allows users to design analysis algorithms for the
given hybrid automaton.



Model-Based Tool-Chain Infrastructure 531

3.3 Graph-Based Transformation Rules: MAV H , TV H and MAHR,
THR

In this subsection, model transformation rules between DSMLs of different tools
and the DSML of the semantic unit are defined and explained. These trans-
formation rules are implemented in the GReAT tool, which can automatically
generate model translators.

Fig. 5. TV H : GReAT framework for the transformation from HyVisual DSML (AV ) to
the semantic unit DSML (AH)

GReAT takes two DSMLs, which are in form of metamodels, as source and
destination DSMLs. It takes one input file, representing a model in the source
DSML, and by applying transformation rules as the input model flows through
these rules, an output model in the format of the destination DSML is generated
automatically. Fig. 5 shows that a HyVisual model, stored in a HyVisual file, is
used as the input, and by applying the “FirstRule” (which corresponds to TV H

transformation rules, an output model, in the format of semantic unit DSML, is
generated and written to an output file.

Inside “FirstRule”, detailed transformation rules are defined. Both the input
and the output files are used as input to the rules, as shown in Fig. 5. By
applying pattern matching and replacement of the matched blocks, each rule
block makes some modifications to the output model, and creates new objects
within the output model. Each rule block then passes the modified model to the
next rule block, similar to an assembly line. After all the rules have been applied,
the model transformation is complete. Detailed rules in “FirstRule” (MAV H ) are
defined as follows:

RootRule: Transform “ModalModel” in V to “HybridAutomaton” in H . Insert a
new “AnalysisSet” block.

LocationRule: Transform each “State” in V to “Location” in H . Insert “Vector-
FieldSet” and “DomainSet” for each newly created Location block.

VariableRule: Transform each “Output” in V to “RealVariable” in H , and transform
the corresponding variable domains as attributes of “RealVariable” blocks.

EdgeRule: Transform each “Edge” in V to “Edge” in H . Connect this newly created
Edge to its corresponding Locations. Create new “GuardSet” and “ResetSet” for



532 H. Su et al.

the newly created Edge block, and transform the corresponding guard and reset
expressions from HyVisual model to semantic unit expressions.

VectorFieldRule: Transform the “Expression” in each “State” in V to “Vector-
FieldExpression” in H .

DomainRule: Since HyVisual does not have the concept of domain of each real
variable, create a new “DomainExpression” block inside each newly created “Do-
mainSet” block in H , and set the variable domain expression to “true”.

GuardRule: Transform the “Guard” in each “Edge” in V to “GuardExpression”
in H .

ResetRule: Transform the “Reset” in each “Edge” in V to “ResetExpression” in H .

For the transformation from the semantic unit DSML (H) to ReachLab DSML
(R), rules (MAHR) can be created in a similar way. After creating the transforma-
tion rules, GReAT allows automatically generating a model translator according
to these rules, which can be used to automatically translate models from the
source DSML to models in the destination DSML.

3.4 Semantic Translators: MH and MR

The last important component in the infrastructure in Fig. 2 is the semantic
translator. GME supplies a rich set of APIs that allows these semantic translators
to interact with the DSML and graphical models directly via COM (Component
Object Model). The key technique in constructing a semantic translator is model
traversal, which traverses the entire model, and generates corresponding code. In
[6], detailed traversal algorithms have been proposed for the semantic translator
for ReachLab (MR), which generates executable code for hybrid automata anal-
ysis. The semantic translator for the semantic unit (MH) traverses the semantic
unit model and records all the Locations and their relationships. Then, it gener-
ates corresponding AsmL data structures for this hybrid automaton, and inputs
the hybrid automaton to the pre-defined AsmL behavioral rules, which specifies
the behavioral semantics of hybrid automaton. The semantic translator for the
HyVisual DSML in GME (MV ) is used to translate HyVisual models in GME
into corresponding Java executable code. The development of this translator is
still in progress.

3.5 Miscellaneous: TV ′V

Another translator, TV ′V , has been written to translate models in HyVisual
MoML (V ′), to models in V in GME. As in [18], since MoML is an XML mod-
eling markup language, and provides a concrete syntax for the GSRC abstract
syntax, this translator can be implemented as an XML schema translator, which
directly converts XML files in the MoML format into the GME schema. The
complete version of this translator is still under development, but a subset that
can be used to translate some specific types of hybrid automata models is already
finished.



Model-Based Tool-Chain Infrastructure 533

4 Case Study

In this section, we will use the DC-DC boost converter introduced in Example
1 along with some parameters1 as an example of a hybrid automaton to demon-
strate how the proposed tool-chain infrastructure enables automatic analysis of
hybrid automata among different tools.

The transformation flow in this case study starts from the HyVisual model
of the DC-DC boost converter hybrid automaton in the MoML format. First,
the MoML model is imported into the HyVisual DSML in GME. Then, it is
transformed to the semantic unit model by using the model translator generated
automatically with GReAT. By applying the semantic translator for the seman-
tic unit, AsmL specification can be automatically generated. Then, the model is
transformed to the ReachLab DSML by using another model translator gener-
ated by GReAT. Finally, Matlab or C++ executable code can be automatically
generated by the semantic translator for ReachLab for analysis purposes. The
the HyVisual model for the DC-DC boost converter is shown in Fig. 6(a). The
following gives the intermediate results in the tool-chain transformation flow.

(a)

(b)

Fig. 6. (a) Model of the DC-DC boost converter in HyVisual; (b) HyVisual model in
the GME HyVisual DSML, translated from HyVisual model in MoML

Results for importing HyVisual model: TV ′V . After applying the XML
translator (TV ′V ), the HyVisual model has been imported into GME in our
HyVisual DSML. The corresponding HyVisual model in GME is shown in Fig.
6(b). This translation, as explained before, is a direct XML translation based on
the MoML schema and the GME HyVisual DSML schema.

Results for model transformation to the semantic unit: TV H . By
applying the model translator, TV H , introduced in Section 3, the model in the
1 The parameters used in this example is specified by iL0 = 1.1, iL1 = 1.3, vC0 = 3.25,

vC1 = 3.35, vd = 3.3, ε = 0.02 and δ = 0.02. Circuit parameters are L = 150 µH ,
C = 110 µF , R = 6 Ω and vin = 1.5 v.



534 H. Su et al.

(a)
(b)

Fig. 7. (a) Semantic unit model generated from the model translation on the HyVisual
DSML model; (b) AsmL specification generated from this semantic unit model by using
the semantic translator MH

(a)

(b)

Fig. 8. (a) ReachLab model, transformed from the semantic unit model; (b) ReachLab
model for the forward reachable set problem algorithm

HyVisual DSML is transformed into the semantic unit model, as shown in Fig.
7(a). This model translator is automatically generated with GReAT by using
the rules MAV H .

Results for semantic translation to AsmL specification: MH. Then,
the semantic unit model can be translated into AsmL specification by applying
the semantic translator MH , which is also introduced in Section 3. The gener-
ated AsmL specification is shown in Fig. 7(b), which specifies the operational
semantics of the hybrid automaton model. The AsmL tools [8] developed by
Microsoft Research can directly simulate the behavior of the model.

Results for model transformation to ReachLab: THR. By applying
model translator THR, the semantic unit model is transformed to ReachLab
model, as shown in Fig. 8(a).



Model-Based Tool-Chain Infrastructure 535

Fig. 9. A portion of the Matlab executable code generated from the semantic translator
MR and the execution result of this Matlab code

Results for semantic translation to Matlab code: MR. The hybrid
automaton model in ReachLab only represents the system aspect, which models
the hybrid system. In order to perform analysis on this system, an analysis
algorithm needs to be attached to the programming aspect of ReachLab. In [6],
we proposed a forward reachable set algorithm, which can be used to verify the
safety property of the system. In this case study, we also use this algorithm
to check the safety property of the DC-DC boost converter. The corresponding
analysis algorithm for the forward reachable set problem in ReachLab is given
in Fig. 8(b). By applying the semantic translator MR, this algorithm along with
the hybrid automaton model in the system aspect is translated into Matlab
executable code, as shown in Fig. 9.

Results for ReachLab verification. The execution result of the generated
Matlab executable code is shown in Fig. 9. The dark region in the figure is
the forward reachable set of the initial set [0.98, 1.02]× [3.38, 3.42] (gray box in
the figure). By providing a set of bad states, and checking the intersection of the
computed forward reachable set with this bad set, the system safety property can
be verified. The forward reachable set correctly represents the initial climbing
(dropping) and the oscillation afterwards, which means that the transformation
from HyVisual to ReachLab correctly maintains the semantics of the hybrid
automata.

As the entire transformation flow has been demonstrated, by applying our
tool-chain infrastructure for hybrid automata analysis based on the semantic an-
choring technique, the transformation from HyVisual to ReachLab is conducted
automatically and correctly, and both simulation and analysis of the example
hybrid automaton are performed. This case study shows the effectiveness and
efficiency of the proposed tool-chain infrastructure.



536 H. Su et al.

5 Conclusion

Various analysis tools based on the hybrid automata model have been devel-
oped to enable automatic analysis of safety-critical embedded systems which
exhibit hybrid behaviors. These tools are constructed using their own DSMLs
but they are different in various aspects. The lack of formally specified seman-
tics of DSMLs for the analysis tools and semantic mismatch between DSMLs
of analysis tools may result in ambiguity in safety analysis or may produce
conflicting results across different tools. We believe semantic anchoring can pro-
vide a theoretically solid yet practical solution for constructing a model-based
tool-chain for analysis purposes. In the semantic anchoring infrastructure, the
semantics of a DSML can be anchored to a well-defined semantic unit, which
captures the operational semantics of hybrid automaton, via model transforma-
tions. The semantics of a DSML are defined by specifying the transformation
between the abstract syntax metamodel of the DSML and that of the semantic
unit. The infrastructure can also enable model exchange among DSMLs while
referring to the common semantic unit. Hybrid automata based DSMLs can be
integrated to form a meaningful tool chain by deploying this proposed infrastruc-
ture. In this paper, we demonstrate how effective the tool-chain infrastructure
is by considering a practical case study involving the hybrid automata DSMLs,
HyVisual and ReachLab. HyVisual is a modeling and simulation tool for hy-
brid automata, while ReachLab is an analysis tool for hybrid automata. The
case study illustrates how rigorous modeling and analysis of the hybrid model
can be automatically performed on both tools by using our semantic anchoring
infrastructure.

Acknowledgments

This work is supported by the National Science Foundation Faculty Early Ca-
reer Development (CAREER) Program, Award No. CNS-0448234, the National
Science Foundation Information Technology Research Project, Award No. CCR-
0225610, the Li Ka Shing Foundation and Shantou University.

References

1. G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-Integrated Develop-
ment of Embedded Software. Proceedings of the IEEE, Vol. 91, No. 1, pp.145-164,
January, 2003.

2. G. Karsai, A. Agrawal, and F. Shi. On the Use of Graph Transformations for the
Formal Specification of Model Interpreters. Journal of Universal Computer Science,
Vol. 9, Issue 11, pp. 1296-1321, November, 2003.

3. K. Chen, J. Sztipanovits, S. Neema, M. Emerson, and S. Abdelwahed. Toward A
Semantic Anchoring Infrastructure For Domain-Specific Modeling Languages. The
5th ACM International Conference on Embedded Software, September 2005.

4. K. Chen, J. Sztipanovits, S. Abdelwahed, and E. Jackson. Semantic Anchoring
With Model Transformations. ECMDA-FA, pp. 115-129, 2005.



Model-Based Tool-Chain Infrastructure 537

5. K. Chen, J. Sztipanovits, and S. Abdelwahed. A Semantic Unit for Timed Au-
tomata Based Modeling Languages. The 12th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium, pp. 347-360, 2006.

6. A. Dubey, X. Wu, H. Su, and T. J. Koo. Computation Platform for Automatic
Analysis of Embedded Software Systems Using Model Based Approach. Third
International Symposium on Automated Technology for Verification and Analy-
sis. Lecture Notes in Computer Science , Vol. 3707, pp. 114-128, Springer-Verlag,
Taipei, Taiwan, October 4-7, 2005.

7. A. Cataldo, C. Hylands, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer, and H. Zheng.
HyVisual: A Hybrid System Visual Modeler. Technical Report Technical Memo-
randum UCB/ERL M03/30, University of California, Berkely, 2003.

8. AsmL. http://www.research.microsoft.com/fse/asml.
9. E. A. Lee, and A. Sangiovanni-Vincentelli. A Framework for Comparing Models of

Computation, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 17(12):1217-1229, December 1998.

10. R. Alur, and D. L. Dill. A Theory Of Timed Automata. Theoretical Computer
Science 126, pp. 183–235, 1994.

11. T. Henzinger. The Theory Of Hybrid Automata. Proceedings of the 11th Annual
IEEE Symposium on Logic in Computer Science, pp. 278–292, 1996.

12. J. Lygeros. Lecture Notes on Hybrid Systems. Cambridge, 2003.
13. J. Lygeros, K. H. Johansson, S. N. Simic, J. Zhang, and S. S. Sastry. Dynamical

Properties of Hybrid Automata. IEEE Transactions on Automatic Control, 48(1):2-
17, January 2003.

14. J. Sprinkle, G. Karsai, and A. Lang. Hybrid Systems Interchange Format v.4.1.8,
ISIS Technical Report, Vanderbilt University, 2004.

15. A. Pinto, A. L. Sangiovanni-Vincentelli, L. P. Carloni, and R. Passerone. Inter-
change Formats for Hybrid Systems: Review and Proposal. Hybrid Systems: Com-
putation and Control, LNCS, volume 3414, pages 526-541, 2005.

16. A. Pinto, L. P. Carlon, R. Passerone, and A. L. Sangiovanni-Vincentelli. Inter-
change Formats for Hybrid Systems: Abstract Semantics. Hybrid Systems: Com-
putation and Control, LNCS, volume 3927, pages 491-506, 2006.

17. M. Senesky, G. Eirea, and T. John Koo, Hybrid Modelling and Control of Power
Electronic. Hybrid Systems : Computation and Control, Lecture Notes in Computer
Science, volume 2623, pages 450-465, 2003.

18. E. A. Lee and S. Neuendorffer. MoML - A Modeling Markup Language in XML -
Version 0.4. Technical report, University of California at Berkeley, March, 2000.



Author Index

Abdulla, P.A. 24
Alur, R. 170
Aminof, B. 125

Ball, T. 8
Becker, B. 477
Bel Mokadem, H. 337
Bérard, B. 337
Bhateja, P. 369
Bouyer, P. 292, 337
Brinksma, E. 399
Brandán Briones, L. 399

Cachat, T. 215
Cassez, F. 307
Chatain, T. 307
Chen, K. 523
Chen, Y.-R. 67
Chung, M.-Y. 51
Ciardo, G. 51
Corporaal, H. 260

Damm, W. 276
de Frutos-Escrig, D. 461
Delzanno, G. 415
Demri, S. 493
Dharmadeep, M.C. 384
Disch, S. 276
Di Vito, B. 352
Donaldson, A.F. 9

Esparza, J. 141, 415

Fecher, H. 322
Fidge, C. 446
Finkel, A. 493

Gastin, P. 369
Geilen, M. 260
Gopinath, K. 384
Goranko, V. 493
Gu, M. 39
Gupta, A. 82

Haddad, S. 292
He, F. 39
Helmert, M. 200
Hemingway, G. 523
Henda, N.B. 24
Herbstritt, M. 477
Hermanns, H. 477
Hsiung, P.-A. 67
Huang, C.-H. 67
Huang, J. 260
Hungar, H. 276
Huth, M. 322

Ivančić, F. 82

Jard, C. 307

Koo, T. John 523
Kupferman, O. 110, 125

La Torre, S. 96
Lampert, R. 110
Laroussinie, F. 337
Liao, H.-W. 67
Lin, C.-S. 67
Lin, S.-W. 67

Mattmüller, R. 200
Mayr, R. 24
Miller, A. 9
Mukund, M. 369
Munoz, C. 352
Myers, C.J. 229

Nam, W. 170
Napoli, M. 96
Niebert, P. 508
Nielson, H.R. 430

Pang, J. 276
Parente, M. 96
Pigorsch, F. 276

Qu, H. 508

Reynier, P.-A. 292
Rosa-Velardo, F. 461



540 Author Index

Sandberg, S. 24

Schewe, S. 200, 245
Scholl, C. 276
Schwoon, S. 141
Song, X. 39, 154
Srba, J. 415
Stoelinga, M. 399
Strampp, K. 477
Su, H. 523
Sun, H.-Y. 67
Sun, J. 39
Suwimonteerabuth, D. 141

Tian, Y.-C. 446

van Drimmelen, G. 493
Voeten, J. 260

Waldmann, U. 276
Wang, B.-Y. 186
Wang, C. 82
Wimmer, R. 477
Wirtz, B. 276

Xia, S. 352
Xie, F. 154

Yang, G. 154
Yang, J. 6
Yang, Z. 82
Yannakakis, M. 1
Yeh, J.-J. 67
Yoneda, T. 229
Yu, A.J. 51

Zhang, Y. 430


	Frontmatter
	Keynote Speeches
	Analysis of Recursive Probabilistic Models
	Verification Challenges and Opportunities in the New Era of Microprocessor Design
	Automated Abstraction of Software

	Regular Papers
	Symmetry Reduction for Probabilistic Model Checking Using Generic Representatives
	Eager Markov Chains
	A Probabilistic Learning Approach for Counterexample Guided Abstraction Refinement
	A Fine-Grained Fullness-Guided Chaining Heuristic for Symbolic Reachability Analysis
	Model Checking Timed Systems with Urgencies
	Whodunit? Causal Analysis for Counterexamples
	On the Membership Problem for Visibly Pushdown Languages
	On the Construction of Fine Automata for Safety Properties
	On the Succinctness of Nondeterminism
	Efficient Algorithms for Alternating Pushdown Systems with an Application to the Computation of Certificate Chains
	Compositional Reasoning for Hardware/Software Co-verification
	Learning-Based Symbolic Assume-Guarantee Reasoning with Automatic Decomposition
	On the Satisfiability of Modular Arithmetic Formulae
	Selective Approaches for Solving Weak Games
	Controller Synthesis and Ordinal Automata
	Effective Contraction of Timed STGs for Decomposition Based Timed Circuit Synthesis
	Synthesis for Probabilistic Environments
	Branching-Time Property Preservation Between Real-Time Systems
	Automatic Verification of Hybrid Systems with Large Discrete State Space
	Timed Unfoldings for Networks of Timed Automata
	Symbolic Unfoldings for Networks of Timed Automata
	Ranked Predicate Abstraction for Branching Time: Complete, Incremental, and Precise
	Timed Temporal Logics for Abstracting Transient States
	Predicate Abstraction of Programs with Non-linear Computation
	A Fresh Look at Testing for Asynchronous Communication
	Proactive Leader Election in Asynchronous Shared Memory Systems
	A Semantic Framework for Test Coverage
	Monotonic Set-Extended Prefix Rewriting and Verification of Recursive Ping-Pong Protocols
	Analyzing Security Protocols in Hierarchical Networks
	Functional Analysis of a Real-Time Protocol for Networked Control Systems
	Symbolic Semantics for the Verification of Security Properties of Mobile Petri Nets
	{\sc Sigref} -- A Symbolic Bisimulation Tool Box
	Towards a Model-Checker for Counter Systems
	The Implementation of Mazurkiewicz Traces in POEM
	Model-Based Tool-Chain Infrastructure for Automated Analysis of Embedded Systems

	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice




