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Abstract. The Java Modeling Language (JML) is used to specify detailed de-
signs for Java classes and interfaces. It has a particularly rich set of features for
specifying methods. This paper describes those features, with particular empha-
sis on the features related to specification inheritance. It shows how specification
inheritance in JML forces behavioral subtyping, through a discussion of seman-
tics and examples. It also describes a notion of modular reasoning based on static
type information, supertype abstraction, which is made valid in JML by method-
ological restrictions on invariants, history constraints, and initially clauses and by
behavioral subtyping.

1 Introduction

Work on formal methods is interesting for at least two reasons: it can lead to practical
tools (such as runtime assertion checkers or model checkers) and it can be used to give
insight into informal programming practice. Both of these reasons drive the work on the
Java Modeling Language, JML [10, 12, 44, 45, 47]. While JML is technically limited to
precisely describing the syntactic interfaces and functional behavior of sequential Java
classes and interfaces at the detailed design level, its rich set of specification constructs
can be used to explain concepts that can be informally applied in other settings. This
paper attempts to give such an explanation for ideas related to behavioral subtyping.

1.1 Context

JML builds on the ideas of Eiffel [58, 59] and the Larch family of behavioral interface
specification languages [17, 30, 39, 81]. While JML also uses ideas from other sources
[8, 35, 48, 49, 61, 62, 67, 71, 79], at its core it blends these two language traditions.

From Eiffel JML takes the idea of writing assertions (e.g., pre-and postconditions)
in program notation; hence JML assertions are written as Java expressions. This helps
make JML easy to read by Java programmers.

From Larch JML takes the idea of using mathematical values to specify complete
functional behavior. These mathematical values are specified in JML as the values of
“model fields” [18, 48]. (Examples of model fields are given below.) Because model
fields are only used in assertions, their time and space efficiency is not important. (One
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can always turn off assertion checking to gain efficiency.) Thus the type of a model field
can be something closer to mathematics, such as a set, sequence, or relation, instead of
a binary search tree, an array, or a hash table. This allows users to focus on clarity.

JML has been successful in attracting researchers working with formal methods at
the level of detailed design for Java. To date there are at least 19 groups doing research
with JML. (See http://www.jmlspecs.org/ for a list.)

1.2 JML’s Tools

Part of JML’s attraction for researchers is that they can build on a rich language and use
several different tools [10]. This set of tools helps researchers be more productive. For
example, since program verification with a theorem prover is time-consuming, it helps
to use other tools to find bugs first.

While JML’s tools could use more polish, they have been used in several college
classes and in work on Java smart cards [9, 10, 11, 33, 57].

The JML research community is dedicated to finding ways to help make the cost
of writing specifications worthwhile for its users by providing added value through
tools. This includes basic tools such as a documentation generator (jmldoc), and a run-
time assertion checker (jmlc) [14, 16]. There are also several tools designed to do for-
mal verification with interactive theorem provers, including LOOP [33, 34], JACK [9],
KRAKATOA [57], Jive [73], and KeY [1]. One of JML’s principal design goals is to
support the use of both runtime assertion checking and formal verification with theorem
provers. But JML is also supported by several other novel tools, including:

– ESC/Java2 [36], a descendant of the extended static checker ESC/Java [29], which
statically detects bugs and uses specifications to improve the accuracy of bug re-
ports,

– Daikon [27], a tool that mines execution traces to find likely program invariants,
which can synthesize specifications,

– The jmlunit tool [15], which uses JML specifications to decide the success or failure
of unit tests, and

– SpEx-JML [77], which uses the model checker Bogor [76] to check properties of
JML specifications.

Most of these tools are open source products. The JML community itself is also open
and encourages more participation from the formal methods community.

1.3 Overview

JML has evolved from its roots in Larch and Eiffel into a language with a rich set of
features. The goal of this paper is to use a subset of these features to help explain the
ideas connected with behavioral subtyping in a way that will help readers apply them
in programming practice, e.g., in documenting and informally reasoning about object-
oriented programs. A secondary goal is to aid readers who would like to use some of
the JML tools or would like to reuse or build on the ideas of JML’s language design.
This paper assumes the reader is familiar with basic concepts in formal methods, such
as first-order logic and pre- and postconditions [25, 30, 31, 59, 60].

http://www.jmlspecs.org/
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This paper focuses on behavioral subtyping [2, 3, 4, 23, 28, 38, 41, 42, 43, 55, 59, 74]
for several reasons. The first is because of its utility in organizing and reasoning about
object-oriented software [19, 37, 43, 53, 59]. The second is that JML embodies a set
of features that make working with behavioral subtyping particularly convenient, but
these features and their combination in JML have not previously had a focused expla-
nation. While the key language design ideas of specification cases [80] and their use in
specification inheritance [79] to force behavioral subtyping have been explained in the
context of Larch/C++ [23, 40], they are found in a simpler and thus more understandable
form in JML. And while these ideas have been previously explained from a theoretical
perspective [42], their embodiment in JML makes the explanation more concrete and
accessible to the practice of programming and specification language design.

2 Background: JML Specifications for Methods and Types

This section gives background on JML and several examples. This background is neces-
sary to explain the concept of supertype abstraction in the context of JML, since super-
type abstraction involves reasoning about specifications. The examples in this section
will also be used in the remainder of the paper.

2.1 JML Basics

For example, take the Java interface Gendered given in Fig. 1. Gendered’s behavior is
specified in its JML annotations.1

public interface Gendered {
//@ model instance String gender;

//@ ensures \result <==> gender.equals("female");
/*@ pure @*/ boolean isFemale();

}

Fig. 1. A JML specification of the interface Gendered. The JML annotations are written in com-
ments that start with an at-sign (@). The rest of the JML notation is explained in the text.

The second line of the figure is an annotation that declares a field gender. In that
declaration, the modifier model says that the field is a specification-only field that is
an abstraction of some concrete state [18, 48]. The modifier instance means that this
abstraction is based on instance fields, and thus this modeling feature can be thought of
as a field in each object that implements the Gendered interface.

In JML, specifications for methods precede the header of the method being specified.
In Fig. 1, the ensures clause, specifies the postcondition of the method isFemale. This
postcondition says that the value returned by the method, \result, is equivalent (writ-
ten <==>) to whether the model field gender equals the string "female". The isFemale
method is also specified using the modifier pure, which says that the method cannot
have side effects and may thus be used in assertions.

1 JML annotations should not be confused with Java 5’s annotations, which are quite different.
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2.2 Specification for Fields

The class Animal in Fig. 2 will be used to explain JML’s features related to fields. Since
Animal is a subtype of Gendered, it inherits the model instance field gender (declared
in Fig. 1). Inheritance of instance fields means that specifications for instance methods
written in supertypes make sense when interpreted in their subtypes. For example, the
ensures clause of the method isFemale specified in the interface Gendered makes sense
in its subtype Animal.2

public class Animal implements Gendered {
protected boolean gen; //@ in gender;
//@ protected represents gender <- (gen ? "female" : "male");

protected /*@ spec_public @*/ int age = 0;

//@ requires g.equals("female") || g.equals("male");
//@ assignable gender;
//@ ensures gender.equals(g);
public Animal(final String g) { gen = g.equals("female"); }

public /*@ pure @*/ boolean isFemale() { return gen; }

/*@ requires 0 <= a && a <= 150;
@ assignable age;
@ ensures age == a;

@ also
@ requires a < 0;
@ assignable age;

@ ensures age == \old(age); @*/
public void setAge(final int a) { if (0 <= a) { age = a; } }

}

Fig. 2. Class Animal from the file Animal.java. In a multi-line annotation at-signs at the begin-
nings of lines are ignored. The other new JML features are explained in the text.

The in clause, which occurs immediately after the declaration of the protected boolean
field gen, is used to declare datagroup membership. It says that gen is in gender’s data
group [49]. The data group of a field f can be thought of as a set of fields that are allowed
to be assigned to when f is mentioned in an assignable clause. The data group of a model
field f includes all the fields needed to determine f ’s value, but may also include other
fields. Thus the in clause in the declaration of gen tells JML that: (a) the value of gender
may depend on the value of gen and (b) gen may be assigned whenever gender is al-
lowed to be assigned by a method. For example the constructor’s assignable clause lists
gender, which means that it may assign to all locations in gender’s data group, which
includes gen. (See below for more about assignable clauses.)

2 Inherited specifications make sense even if there are shadowing field declarations in subtypes.
However, in this paper I will assume that there is no such field shadowing, as this simplification
does not lose any generality.
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The represents clause gives an expression for the value of the model field gender.
Thus, whenever gender occurs in a specification, such as in the constructor’s postcon-
dition, its value is the value of the expression (gen ? "female": "male"). However, not
only is gender more concise, it is public, whereas gen and the design decision about how
gender is represented are hidden from clients. This illustrates how model fields in JML
can be used to hide design details [18, 48]. The represents clause specifies an abstraction
function [32] from part of the concrete state of an Animalobject to a model field. Since the
model field gender is inherited from Gendered, this abstraction function can be thought
of as mapping part of the state of an Animal object to the state of a Gendered object [55].

The spec_public modifier in the declaration of age can be thought of as shorthand
for the declaration of a public model field (named age), and clauses saying that the
protected field (renamed to, say, _age) is in the model field’s data group, and that the
model field’s value is the value of the concrete field. Use of spec_public is often con-
venient when documenting existing code. It allows the protected field that is used in the
representation to be changed (e.g., renamed) at a later date without affecting the speci-
fication’s clients. If such a change is made in the future, at that time one has to unpack
these shorthands and rename all uses of the protected field.

The requires clauses in the constructor and method specifications of Fig. 2 specify
preconditions. For example, the precondition of the constructor says that the argument
g must be either "female" or "male".

An assignable clause gives a frame axiom [6, 62]. It lists the fields whose data
groups may be assigned during the execution of the method. All locations that are not
in the data group of a listed field are not allowed to be even temporarily changed. (In
this sense JML’s assignable clauses are more strict than the modifies clauses found in
Larch.) Such frame axioms are important for formal verification [6, 12]. An assignable
clause can be thought of as syntactic sugar for part of the method’s postcondition. For
example the assignable clause of the constructor can be thought of as shorthand for
adding \only_assigned(gender) to the constructor’s postcondition. The method mod-
ifier pure is, in part, a shorthand for the clause assignable \nothing and hence can
also be thought of as shorthand for part of a postcondition.

2.3 Joining Specification Cases with also

The setAge method in Fig. 2 on the preceding page has a specification with two speci-
fication cases connected by also. A JML specification case consists of several clauses,
including requires, assignable, and ensures clauses [47]. Each specification case has a
precondition (which might default to true), that tells when that specification case applies
to a call. JML’s also joins together specification cases in a way that makes sure that,
whenever a specification case’s precondition holds for a call, its postcondition must also
hold. That is, in general a JML method specification may consist of several specification
cases, and all these specification cases must be satisfied by a correct implementation.

One reason for using also and separate specification cases is to make distinct exe-
cution scenarios clear to the specification’s reader. In the setAge example, a call that
satisfies the first specification case’s precondition must set age to the value of the ar-
gument a. The second specification case describes the method’s behavior for negative
arguments. In this case the value of the age field must be unchanged. This is specified
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with the postcondition age == \old(age), which says that the post-state value of age
must equal its pre-state value, \old(age). The \old() operator is often used in the
postconditions for methods that change the state of an object [59].

I will refer to the combination of two method specifications with also as their “join,”
since it is technically the join with respect to the refinement ordering on method speci-
fications [42, 50, 64]. (It is also easier to talk about “joining” specification cases.)

To define the join operation precisely I will use a bit of notation. As we have seen,
specification cases are essentially pairs of pre- and postconditions (the assignable clause
being shorthand for part of a postcondition, as explained above). So, in what follows, I
will write T � (pre, post) for a specification case of an instance method that type checks
when its receiver (this) has static type T . Thus you can think of T � spec as being
written in type T . In JML, T � spec will also type check in a context where this has
some subtype of T . I omit the receiver’s type when it is clear from context. Also, since
there is little difference between a simple method specification and a specification case,
I will often just call them method specifications. With this notation, the definition of the
join operation for specification cases is as follows [23, 40, 42, 50, 64, 80].

Definition 1 (Join of JML method specifications, �U ). Let T ′ � (pre′, post′) and T �
(pre, post) be specifications of an instance method m. Let U be a subtype of both T ′ and
T . Then the join of (pre′, post′) and (pre, post) for U , written (pre′, post′)�U (pre, post),
is the specification U � (p, q) with precondition p:

pre′ || pre (1)

and postcondition q:

(\old(pre′) ==> post′) && (\old(pre) ==> post). (2)

In the above definition, the precondition of the join of two method specifications is their
disjunction (with || as in Java). The postcondition of the join is a conjunction of impli-
cations (written ==> in JML’s notation), which says that when one of the preconditions
holds (in the pre-state), then the corresponding postcondition must hold.

The ability to join method specification cases is useful in specification inheritance,
which joins specification cases from subtypes with those inherited from supertypes.
However, when the join’s receiver type is clear from context, I omit the superscript U .

For example, the join of the two specification cases for setAge in Fig. 2 on page 5
is equivalent to the specification case shown in Fig. 3. Of course, one could write
this specification directly, but when one compares it to the specification of setAge in
Fig. 2, one can see that the postcondition of Fig. 3 contains within it a repetition of the

//@ requires (0 <= a && a <= 150) || a < 0;

//@ assignable age;
/*@ ensures (\old(0<=a && a<=150) ==> age==a)

@ && (\old(a<0) ==> age==\old(age)); @*/

public void setAge(final int a);

Fig. 3. The join of the specification cases for the setAge method from Fig. 2 on page 5
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preconditions from Fig. 2. This repetition is a maintenance problem and distracts from
the clarity of the specification. JML’s also avoids these problems.

2.3.1 Using \same to Make Refinements
Often in writing a method specification in a subtype, one wants the precondition of the
overriding method to be the same as that of the specification of the method being over-
ridden. This often occurs for a method m in a subclass that calls super.m and then does
something extra. JML’s predicate \same can be used in the precondition of such a spec-
ification to say that the method’s precondition is the same as that of the method being
overridden [47]. For example, in Fig. 4, the precondition of the given specification case
for setAge is equal to that in the specification of setAge in Animal. In this example, that
precondition is equivalent to the disjunction of setAge’s preconditions from the two spec-
ification cases in Figure 2 (as shown in Fig. 3), and is thus is equivalent to a <= 150.

public class Person extends Animal {

protected /*@ spec_public @*/ boolean ageDiscount = false; //@ in age;

/*@ also
@ requires \same;
@ assignable age, ageDiscount;
@ ensures 65 <= age ==> ageDiscount; @*/

public void setAge(final int a) {

super.setAge(a);
if (65 <= age) { ageDiscount = true; }

}

//@ requires g.equals("female") || g.equals("male");
//@ assignable gender;

//@ ensures gender.equals(g);
public Person(final String g) { super(g); }

}

Fig. 4. A JML specification of the class Person. The notation \same is explained in the text. In
JML, also must be used in a method specification whenever one overrides a method, to remind
the specification’s reader about specification inheritance, as will be explained later.

2.4 Invariants, History Constraints, and Initially Clauses

In addition to field declarations and method specifications, a type specification in JML
may also contain invariants, history constraints, and initially clauses.3 An invariant
[32] is a predicate that should hold in all visible states, i.e., in the pre-state and post-
state of each (non-helper4) method execution [47, 63], and in the post-state of each
constructor execution. Invariants are one-state predicates; i.e., they cannot use \old().
By contrast a history constraint [55, 56] is a two-state predicate that uses \old() to
state a monotonic relationship between pre-states and post-states. A history constraint

3 This list is a simplification, but it covers the most important features.
4 In JML a private method or constructor can be declared with the modifier helper. This exempts

it from having to preserve invariants, or establish history constraints and initially clauses.
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must hold in the post-state of every (non-helper) method execution [47]. An initially
clause [26] is a predicate that should hold in all post-states of (non-helper) constructors.
Initially clauses are one-state predicates.

In JML all of these clauses may be omitted (as in the examples given previously), in
which case a default predicate, true, is used. These defaults allow us to speak of “the
invariant” etc. declared by a type, even if none is explicitly declared.

2.4.1 Invariants
To explain invariants in JML, consider Fig. 5. This figure has two invariant clauses,
both of which declare public (client-visible) instance invariants. Declaring two invari-
ants is equivalent to declaring a single invariant whose predicate conjoins the predicates
declared in the two clauses. The first invariant clause says that the value of the age field
is always between 0 and 150 (inclusive). Although this invariant is true for objects
whose dynamic type is exactly Animal, it is not necessarily true for subtypes of Animal;
a subtype could declare a method that would allow values outside this range to be as-
signed to age. Thus it is necessary to explicitly declare this invariant [55]. In effect, this
invariant prohibits methods that set age outside the range specified in the invariant.

import java.util.*;

public class Patient extends Person {
//@ public invariant 0 <= age && age <= 150;

protected /*@ spec_public rep @*/ List history;
/*@ public initially history.size() == 0;

@ public invariant (\forall int i; 0 <= i && i < history.size();

@ history.get(i) instanceof rep String);
@ public constraint \old(history.size()) <= history.size();
@ public constraint (\forall int i; 0 <= i && i < \old(history.size());
@ history.get(i).equals(\old(history.get(i))));
@*/

/*@ requires !obs.equals("");
@ assignable history.theCollection;
@ ensures history.size() == \old(history.size()+1)
@ && history.get(\old(history.size()+1)).equals(obs); @*/

public void recordVisit(String obs) {
history.add(new /*@ rep @*/ String(obs));

}

//@ requires g.equals("female") || g.equals("male");
//@ assignable gender, history;

//@ ensures gender.equals(g);
public Patient(String g) { super(g); history = new /*@ rep @*/ ArrayList(); }

}

Fig. 5. A JML specification of the class Patient. The invariant clause in a class declares an
invariant, and constraint declares a history constraint. The rep annotations declare ownership
properties. JML’s specification of List includes a data group named theCollection.
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The second invariant clause in part documents a design decision, since it says that
all elements of the List history are instances of type String. So it is closely related to
what some authors call a “representation invariant” [32, 54]. However, since history
is public for specification purposes, the invariant is public and visible to clients.

JML distinguishes instance invariants from static invariants. Instance invariants can
refer to the state of an instance of the enclosing type using the keyword this and the
names of instance (non-static) fields. Static invariants cannot refer to the state of an
instance. Both of the invariants in Fig. 5 are instance invariants.

2.4.2 History Constraints
History constraints are taken from Liskov and Wing’s work [55, 56], and specify a very
simple kind of temporal property. They are used to declare monotonic relationships that
are preserved by methods of a type.

The two constraint clauses in Fig. 5 declare two history constraints for the type
Patient. (Again, having two history constraints is equivalent to having one constraint
which conjoins the two predicates.) The first constraint says that the size of the history
list never shrinks; that is, the size of history is monotonically non-decreasing. The
second says that elements in the history list are never deleted.

In JML history constraints can be used to collect common postconditions, in much
the same way that invariants can be used to collect common pre- and postconditions.
For example, the ensures clause of the recordVisit method does not need to specify
that the elements of history are preserved, as this is implicit in the second history
constraint. This helps make specifications more understandable.

2.4.3 Initially Clauses
The initially clause in Fig. 5 on the preceding page gives a predicate that is to be true
in the post state of each (non-helper) constructor. It can thus be thought of as conjoined
to the postcondition for Patient’s constructor. In JML initially clauses can be used
to collect postconditions from constructors. While initially clauses are not involved in
reasoning about dynamic dispatch, they are useful for reasoning with invariants and
history constraints. When used with the invariants declared in a type, they provide a
basis for datatype induction. When used with history constraints the provide a basis
for computing the set of reachable object states. When an object is created its state
must satisfy each declared initially clause. When its state is mutated, the method doing
the mutation must satisfy each history constraint. Thus using an initially clause and a
history constraint one may restrict the set of reachable states for a type and its subtypes
in a way that would otherwise not be expressible.

In JML a type may have several initially clauses. As with invariants and history
constraints, writing multiple initially clauses in a type specification is equivalent to
writing one initially clause with the conjunction of their predicates. In the following the
phrase “the initially predicate” for a type refers to this conjunction.

2.5 Specification Inheritance

In JML specifications of subtypes inherit not only fields and methods from their super-
types, but also specifications. Thus, to fully understand the examples given so far, you
need to understand how JML’s specification inheritance works.
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To explain specification inheritance it helps to fix a bit of notation for type specifica-
tions. For a type T , let added_invT be the invariant predicate declared in T ’s specifica-
tion (i.e., without inheritance), let added_hcT be the history constraint declared in T ’s
specification, and let added_initT be the initially predicate declared in T ’s specification.
Let supers(T ) be the set of all supertypes of T (including T ) and let methods(T ) be the
set of all instance method names declared in the specifications of the types in a set T .
(For simplicity, I assume that statically overloaded methods have been distinguished by
adding to each method name a list of the method’s argument types; thus each method
name is associated unambiguously with a list of argument types. I also assume that there
is no shadowing of fields and that all overriding methods use the same formal parameter
names as the methods they override; these assumptions can also be made with no loss
of generality by use of renamings.)

For methods, I use the notation added_specT
m = (added_preT

m, added_postTm) for
the pre/post specification declared in type T for method m. Such a specification is the
join of the specification cases specified in type T for m. If there are no specification
cases in type T for method m, this notation should still be defined, but one has to dis-
tinguish two cases. If m is declared in T with no specification and is not overriding any
methods in T , then added_specT

m = (true, true). This corresponds to the JML default
specification, which places no limits on callers or on the implementation. However, if
m is not declared in T (and hence has no specification in T ), then we want a method
specification that will not affect the join of other method specifications. Hence in this
case we define added_specT

m = (false, true), which is the identity with respect to the
join of method specifications. Appropriately, this least useful specification is also the
join of the empty set of method specifications,

⊔
∅.

As in Java, a JML specification for a type inherits instance field declarations from
its proper supertypes, including the modifiers (such as spec_public) and data group
declarations that are part of such field declarations. This inheritance applies to model
(and ghost) fields, as well as Java fields. As noted earlier, inheritance of such declara-
tions is important for making sense of predicates inherited from supertypes. Represents
clauses, which specify how to retrieve the values of model fields are also inherited in
JML. Overriding of (functional) represents clauses in subtypes presents semantic prob-
lems [52], and thus I will assume that the type checker prohibits it. Since represents
clauses and fields are merely collected and not combined like method specifications or
invariants, I omit them from the definition below.

With these conventions, the mechanism JML uses to inherit specifications can be
explained by constructing an extended specification [23, 42].

Definition 2 (Extended specification). Suppose T has supertypes supers(T ), which
includes T itself. Then the extended specification of T is a specification such that:

methods: for all methods m ∈ methods(supers(T )), the extended specification of m
is the join of all added specifications for m in T and all its proper supertypes:

ext_specT
m =

⊔T
{added_specU

m | U ∈ supers(T )},
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invariant: the extended invariant of T is the conjunction of all added invariants in T
and its proper supertypes:

ext_invT =
∧

{added_invU | U ∈ supers(T )},

history constraint: the extended history constraint of T is the conjunction of all added
history constraints in T and its proper supertypes:

ext_hcT =
∧

{added_hcU | U ∈ supers(T )},

initially predicate: the extended initially predicate of T is the conjunction of all added
initially predicates in T and its proper supertypes:

ext_initT =
∧

{added_initU | U ∈ supers(T )}.

2.6 Examples of Specification Inheritance

Specification inheritance for invariants, history constraints, and initially clauses is sim-
ple. It simply conjoins the appropriate predicates from a type and its supertypes. For
example, the type FemalePatient specified in Fig. 6 would inherit these clauses from
Patient (see Fig. 5 on page 9). The history constraints and initially predicates are in-
herited without change. However, the invariant of FemalePatient is the conjunction of
the invariant added in Fig. 6 and the invariant of Patient (which is the conjunction of
the two invariants in Fig. 5).

public class FemalePatient extends Patient {
//@ public invariant gender.equals("female");

//@ assignable gender;
public FemalePatient() { super("female"); }

}
Fig. 6. A JML specification of the class FemalePatient

Specification inheritance for methods simply joins together all the method speci-
fications from a type and its supertypes. For example, the extended specification of
the isFemale method of Gendered from Fig. 1 on page 4 is just the specification
(true, Q), where Q is the postcondition from that figure. This is the extended speci-
fication because isFemale is not specified in any supertypes of Gendered. This same
specification for isFemale, (true, Q), is inherited unchanged by Animal, because Fig. 2
does not have any added specification cases for isFemale, so added_specAnimalisFemale is
the identity specification (false, true). Thus the extended specification for isFemale is⊔

{(true, Q), (false, true)}, which equals (true, Q). Similarly, isFemale has the same
extended specification in the classes Person and Patient.

A more interesting example is the setAge method. This method is specified for the
type Animal in Fig. 2 on page 5, and in its subtype Person in Fig. 4 on page 8. The
extended specification of setAge in type Person is thus the join of these two specifi-
cations. (This join is also inherited by the type Patient specified in Fig. 5 on page 9.)
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Using the definitions given above, one can compute a single specification case that is
equivalent to this join. However, when reading a JML specification with multiple spec-
ification cases, it is not necessary to calculate the specification of their join. Instead, the
reader of such a specification just has to remember that each specification case must be
obeyed by a correct implementation. For this reason, the jmldoc tool shows the join us-
ing also instead of the more complex, calculated specification. For example, compare
the specification in Fig. 7 to that in Fig. 3 on page 7.

/@ requires 0 <= a && a <= 150; // from Animal
@ assignable age;

@ ensures age == a;
@ also
@ requires a < 0;

@ assignable age;
@ ensures age == \old(age);
@ also
@ requires \same; // from Person
@ assignable age, ageDiscount;
@ ensures 65 <= age ==> ageDiscount; @*/

public void setAge(int a);

Fig. 7. The join of the 3 specification cases for setAge for the type Person, presented as a join
of specification cases. In such contexts the precondition \same means the disjunction of the other
(non-\same) preconditions.

With specification inheritance it is impossible to make a method’s precondition strictly
stronger than what is inherited. Consider the class Senior specified in Fig. 8 on the next
page. At first glance, the setAge method in Fig. 8 seems to specify a method with a
stronger precondition than setAge’s extended precondition in Person, which is a <=
150. However, taking specification inheritance into account, the extended precondition
of setAge in Senior is the disjunction of a <= 150 and the precondition in the added
specification case, and hence is equivalent to a <= 150. Thus the argument to setAge can
legally be 18, for example, and in this case the Senior’s age will be set to 18.

Findler and Felleisen [28] note that it might be better for the specification language
to point out this situation as a problem. Since it is not possible with specification in-
heritance to strengthen an inherited precondition, it would be reasonable to disallow
what seem like attempts to strengthen a method’s precondition if there is no good use
for writing such a precondition. One reason for stating a stronger precondition would
be to say that some extra effects happen in a subset of the cases in which the method
may be called, as shown in Fig. 9 on the following page. However, such examples can
be specified without changing the precondition, as shown in Fig. 4 on page 8. Another
reason for writing a stronger precondition would be to redundantly specify some effect
of the method, to bring it to the reader’s attention. However, JML has a way to mark
redundant specification cases explicitly, by putting them in the implies_that section
or for_example sections of a method specification [40, 47]. So it may be sensible for
JML to at least give a warning if such a non-redundant method specification strengthens
the inherited precondition.
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public class Senior extends Person {
/*@ also

@ requires 65 < a && a <= 150;

@ assignable age;
@ ensures age == a;
@*/

public void setAge(final int a) { super.setAge(a); }

//@ requires g.equals("female") || g.equals("male");
//@ assignable gender, age;

//@ ensures gender.equals(g) && age == 66;
public Senior(final String g) { super(g); age = 66; ageDiscount = true; }

}

Fig. 8. A JML specification of the class Senior

/*@ also
@ requires 65 <= age;
@ assignable age, ageDiscount;

@ ensures ageDiscount; @*/
public void setAge(final int a);

Fig. 9. Specifying an extra effect in Person’s setAge method when 65 <= age

3 Supertype Abstraction

Subtyping causes a fundamental problem for reasoning about object-oriented programs.
The problem is that since one generally does not know the dynamic (runtime) type of
an object, the specification the object obeys is also unknown. Early discussions of this
problem focused on reasoning about dynamically-dispatched method calls [3, 4, 38, 43,
53], but the problem also applies to invariants, history constraints, and initially clauses.

To explain the reasoning problems caused by dynamic dispatch, consider Fig. 10 on
the next page. In that example, the isFemale method of the Gendered interface is called
on each element of the List argument s. This works even if the List contains objects of
different dynamic (runtime) types, thanks to dynamic dispatch.

The pre- and postconditions in this specification use universal quantifiers. In JML
a universal quantifier has the form (\forall T x; R(x); B(x)), which is true when
for all x of type T , if the range predicate R(x) holds, then B(x) holds. The modifier
nullable in the precondition is used to allow e to range over null as well as other
objects. By default declarations in JML do not allow null as a value, but null is a pos-
sible element of a List in Java. Thus the precondition says that all the elements of the
argument s must be instances of the type Gendered (and in particular not null). The
postcondition says that all elements of the result were in the argument s and are female.

To reason about the functional correctness of the females method in Fig. 10 one has
to know how to reason about calls to methods with possibly unknown specifications. For
example, e.isFemale() calls a method with a possibly unknown specification because
the exact dynamic type of e is unknown; all that is known is that it implements the
interface Gendered. The receiver e could represent a person, animal, or German noun.
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/*@ requires (\forall nullable Object e; s.contains(e);

@ e instanceof Gendered);
@ ensures (\forall Gendered e; \result.contains(e);
@ s.contains(e) && e.gender.equals("female")); @*/

public List females(List s) {

List r = new ArrayList();
Iterator elems = s.iterator();
while (elems.hasNext()) {

Gendered e = (Gendered)elems.next();
if (e.isFemale()) { r.add(e); }

}

return r;
}

Fig. 10. A method that extracts a list of females

The technique of supertype abstraction [42, 43] uses the specification of the static
type of the receiver to reason about such calls. Thus, since e’s static type is Gendered,
supertype abstraction tells us to reason about the call e.isFemale() using the speci-
fication given in Fig. 1 on page 4. This specification has no precondition, so we can
conclude that the call returns true just when the gender of e is "female". This allows us
to conclude that e is only added to r if it is female, which helps establish the postcon-
dition of the method females.

However, supertype abstraction and the problems it solves are not limited to rea-
soning about method calls. The same technique of using static type information solves
problems in reasoning that uses invariants and history constraints [55] and also in rea-
soning that uses initially predicates. For example, if p is a variable that has static type
Patient (see Fig. 5 on page 9), then using supertype abstraction, one could look at the
invariant declared in type Patient, and conclude that p.age <= 150. Without super-
type abstraction this conclusion could only be made if one knew the invariant of the
dynamic type of p. Similarly, supertype abstraction works with history constraints. For
example, it would allow one to conclude, after invoking a method with receiver p of
static type Patient, that the size of p.history has not become smaller. Finally, su-
pertype abstraction works with initially predicates. For example, it would allow one to
prove the assertion in the following code fragment.

Patient p;
if (B) { p = new Patient("male"); } else { p = new FemalePatient(); }
//@ assert p.history.size() == 0;

Supertype abstraction was essentially invented by the first object-oriented program-
mers. It embodies the idea that objects of all subtypes of a type (including that type
itself) can be treated uniformly.5 These programmers reasoned (informally) that when-
ever they added a new proper subtype of an existing type to their program, unchanged
code would continue to work correctly even when it operated on these new objects. For

5 Conversely, reasoning using supertype abstraction embodies this treatment of each method
name and type as standing for a common behavior.
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example, if they added a proper subtype of Gendered to the program, they would expect
that the method females would still work correctly on objects of this new type.

Supertype abstraction is so ingrained in object-oriented thinking that it is hard to
imagine alternative ways of reasoning about dynamic dispatch. Yet doing so helps il-
lustrate the benefits (and limitations) of supertype abstraction.

An alternative to using supertype abstraction is to use the specification of each possi-
ble dynamic type of an expression’s value. For example, suppose we know that in a call
to the method females, the argument s only contains objects of type Person (which
must be a subtype of Gendered). Then we could use the specification of Person’s
method isFemale to reason about the call e.isFemale(). If e might have dynamic
types Person and GermanNoun, then we would have to consider two cases in the proof,
one for each of these specifications. In general, if e can have n different types, we
would have to consider n cases. The advantage of using supertype abstraction is that
we avoid this case analysis, since we only use a single specification, namely the one as-
sociated with Gendered. The disadvantage of supertype abstraction is that, since it does
no case analysis, it cannot exploit special properties of these subtypes, such as Person
or GermanNoun. Supertype abstraction thus trades specificity and reasoning power for
uniformity and simplicity of reasoning.

However, there is a way to sidestep this disadvantage of supertype abstraction by
moving the case analysis into the program’s code, using downcasts and type tests. An ex-
ample of this idea is given in Fig. 11, which takes an object of static type Gendered that
must dynamically have type GermanNoun (see Fig. 12 on the next page) or GreekNoun
(which is similar, but not shown). In Fig. 11 instanceof tests are used to do a case
analysis, and within the different cases the code does downcasts. Due to these down-
casts, one can again use supertype abstraction to reason about the variables gern and
grkn. In particular one can reason about the call gern.isMale() using the specification
of isMale() in the type GermanNoun. And one can use the invariant of GermanNoun to
conclude that if gern is neither female nor male, then it must be neuter. This shows how
case analysis (in code) and supertype abstraction (in reasoning) can be used together.
Thus insisting on supertype abstraction is not as limiting as it might at first appear.

Another advantage of supertype abstraction is that it permits reasoning with fe-
wer assumptions. In particular, reasoning that uses supertype abstraction can be valid

/*@ requires n instanceof GermanNoun || n instanceof GreekNoun;

@ ensures \result <==> n.gender.equals("neuter"); @*/
public boolean isNeuter(final Gendered n) {

if (n instanceof GermanNoun) {

GermanNoun gern = (GermanNoun) n;
return !(gern.isFemale() || gern.isMale());

} else {

GreekNoun grkn = (GreekNoun) n;
return !(grkn.isFemale() || grkn.isMale());

}

}

Fig. 11. A method that uses downcasts so that reasoning about calls can use both the special
properties of the dynamic types GermanNoun, GreekNoun, and supertype abstraction
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public interface GermanNoun extends Gendered {

/*@ public instance invariant gender.equals("female")
@ || gender.equals("male") || gender.equals("neuter"); @*/

//@ ensures \result <==> gender.equals("male");

/*@ pure @*/ boolean isMale();
}

Fig. 12. A JML specification of a type GermanNoun. The type GreekNoun is similar

without assuming knowledge of all possible dynamic subtypes. In other words, super-
type abstraction does not need knowledge of a whole program, and permits reasoning
about programs that are open to the addition of new subtypes. For example, supertype
abstraction allows reasoning about the correctness of the method females using the
specifications of Gendered, without the need to know what dynamic subtypes are pos-
sible. Supertype abstraction allows reasoning about calls such as e.isFemale() even
before subtypes of Gendered, such as Person, have been written. In this sense super-
type abstraction is a modular reasoning technique.

4 Behavioral Subtyping

JML is designed to make supertype abstraction valid by making each type a behavioral
subtype of each of its supertypes. To do this, it uses specification inheritance [23, 42,
45, 47, 75, 79] and methodological restrictions on invariants, etc. [24, 62, 63].

Much of the material below is adapted from my work with Dhara [23] and Naumann
[42]. Interested readers should consult the latter [42] for details and proofs. I follow it in
defining behavioral subtyping using the concept of refinement of method specifications,
and in discussing the property needed from a methodology for invariants, etc.

4.1 Refinement of Method Specifications

Refinement is a binary relation on method specifications [42, 61]. Recall that T � spec
is a specification of a method that type checks with a receiver of static type T .

Definition 3 (refinement w.r.t. T ′, �T ′
). Let T ′ � spec′ and T � spec be specifications

of an instance method m, such that T ′ is a subtype of T . Then spec′ refines spec with
respect to T ′, written spec′ �T ′

spec, if and only if for all calls of m where the receiver’s
dynamic type is a subtype of T ′, every correct implementation of spec′ satisfies spec.

The refining specification, spec′ is stronger than spec in the sense that it restricts im-
plementations more than does spec. Thus it may be that fewer implementations satisfy
spec′ compared to those that satisfy spec. >From a client’s point of view, spec′ may be
more useful, while from the implementor’s point of view spec′ may be more difficult.

In the above definition, the condition on the receiver’s dynamic type allows a speci-
fication for method m in a subtype to refine m’s specification in one of its supertypes.



18 G.T. Leavens

(This condition would be dropped if one were considering refinement of Java static
methods or constructors, which have no receiver.)

For an example of refinement, I will show that the first specification case of setAge
in Fig. 2 on page 5 is refined by the specification given in Fig. 3 on page 7.6 Showing
this refinement means showing that if an implementation satisfies the specification in
Fig. 3, then it satisfies the specification for setAge given in Fig. 2. This is true, for
example, of the implementation given in Fig. 2, which satisfies both specifications, due
to the conditional. However, if this conditional were omitted and the method’s body
always assigned to age, then the body would still be a correct implementation of the
specification in Fig. 2. However, it would not correctly implement the specification in
Fig. 3. For example, with the omitted conditional, a call such as setAge(-1) would
assign to age, possibly violating the first conjunct of the ensures clause in Fig. 3. It
follows that the specification in Fig. 2 is not a refinement of the specification in Fig. 3.

4.1.1 Proving Refinements
To show that the specification in Fig. 3 really is a refinement of the first specification
case in Fig. 2, one must show that every implementation that satisfies this specification
satisfies the specification given in Fig. 2.

A general way to do such a proof is to prove a relationship between the specifications
in question. Java and JML’s type checking implies that if T ′ � (pre′, post′) is to refine
T � (pre, post), then T ′ must be a subtype of T . Furthermore, in Java, both must have
the same argument types. For simplicity, I will assume that the formal parameter names
are the same. I will also use the notation Spec(T ′) � P to mean that P is provable
using the semantics of Java and the specification of T ′. (Also, the notation && means
logical conjunction as in JML.) With these conventions we have the following theorem
[13, 42, 50, 64, 68].

Theorem 1. Let T ′ � (pre′, post′) and T � (pre, post) be specifications of an instance
method m, where T ′ is a subtype of T . Then (pre′, post′) �T ′

(pre, post) if and only if
the following two conditions hold:

Spec(T ′) � pre && (this instanceof T ′) =⇒ pre′ (3)

Spec(T ′) � \old(pre&&(this instanceof T ′)) =⇒ (post′ =⇒ post). (4)

Condition (3) says that the refinement’s precondition pre′ cannot make more assump-
tions than pre, except perhaps about the receiver’s type. Since subtypes inherit the fields
of their supertypes, pre makes sense for all objects of type T ′. Note that if both spec-
ifications are for the same type, T ′, then Java guarantees the receiver is an instance
of T ′ (or a subtype), and so in this case (3) just says that pre implies pre′. Condition
(4) says that whenever a call whose receiver has type T ′ satisfies pre, and the refine-
ment’s postcondition post′ is true, then post must hold. It can also be simplified if the
receiver types are the same (T ′), since in that case we can again ignore the conjunct
(this instanceof T ′).

6 This comparison ignores the second specification case in Fig. 2.
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In the setAge example, we can prove (3), because 0 <= a && a <= 150 implies the
disjunction of that condition and a <= 150. And we can prove (4) because whenever
0 <= a && a <= 150 holds in the pre-state, and the postcondition of Fig. 3 holds, it
follows that age == a. We can ignore the assignable clauses in this proof, since they
are identical and in such a case JML’s semantics implies that the translation of the
assignable clauses will be the same.

An important point is that simplifying (4) by omitting its dependence on pre makes
the notion of refinement too restrictive (i.e., unable to prove some refinements that meet
the definition). For example, note that the postcondition of setAge in Fig. 3 does not
imply the postcondition in the first specification case of Fig. 2. To see this, consider
what happens if a is -1, in which case in the postcondition in Fig. 3 simplifies to
age == \old(age), which does not imply the postcondition in the first specification
case of Fig. 2, age == a. However, as we have just shown, (4) does hold for this ex-
ample. Thus a refining specification is unconstrained for states that do not satisfy the
precondition of the specification it refines.

4.1.2 Refinement and Assignable Clauses
Although assignable clauses can be considered as shorthand for part of a postcondition,
it is useful to be able to treat them separately in a proof of refinement. To do this,
suppose that the assignable clause of spec′ has the list L′ and that the assignable clause
of spec is L. Then one has to prove:

Spec(T ′) � \old(pre && (this instanceof T ′))
=⇒ (\only_assigned(L′) =⇒ \only_assigned(L)).

(5)

Doing this allows one to omit the translation of the assignable clauses in the proof of
(4). Informally, (5) means that the frame of spec′ can be more restrictive than that of
spec, but data group membership has to be decided based on the specification of the
refinement’s receiver type, T ′. That data group membership matters can be seen by
considering Fig. 13, where the subtype Animal’s specification is needed to show that
gen is a member of gender’s data group, and hence when at most the locations in the
data groups of gender and gen are assigned, then at most the locations in gender’s data
group are assigned [49].

//@ refines "Animal.refines-jml";
public class Animal implements Gendered {
/*@ also

@ protected behavior
@ assignable gender, gen;
@ ensures gen == g.equals("female"); @*/

public Animal(String g);

}

Fig. 13. A JML refinement file that refines the specification of the constructor in Fig. 2 on page 5.
The refines directive says that this file is to be used to refine the file Animal.java. The annota-
tion protected behavior says that this is a specification of protected visibility.
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4.1.3 Refinement of Binary Methods Such as equals
“Binary” methods, which operate on one or more arguments of the same type as the
receiver [7], pose special pitfalls for refinement (and hence for behavioral subtyp-
ing [55]).

These pitfalls can be demonstrated by considering Java’s equals(Object) method.
For example, consider a specification for Gendered’s equals method as in Fig. 14.
This is almost certainly an overly strong specification, since it allows no variation in
refinements (and hence in subtypes). The specification says that when two objects that
are subtypes of Gendered are compared, the method must return true just when their
genders are equal, and it must return false otherwise. Thus, this specification says that
the only attribute of an object of any subtype of Gendered that matters for equals is
the object’s gender. However, as in real life, other attributes do matter. For example, we
might wish to distinguish two objects of type Animal if they have different ages or if
they have different identities (i.e., if they are not ==). But, as the reader can check, such
specifications are not refinements of the one in Fig. 14.

A better way to specify the equals(Object) method is shown in Fig. 15. This is
a looser specification, since it allows the method to always return false. This freedom
allows refinements (and hence subtypes) to specialize the method by considering other
attributes of Gendered objects, such as their age or object identity. The specification in
Fig. 15 says (in the first ensures clause) that for the case where the argument obj is
an instance of Gendered, when the method returns true, then the argument must have
the same gender as the receiver. The reader should check that this allows the method to
return false even if the argument is an instance of Gendered and the genders are equal.

Two equivalent ways of writing this specification are given in the implies_that
section of Fig. 15 [40, 47]. The first ensures clauses following implies_that says that
when the argument is a Gendered object with a different gender, then the method returns

/*@ also
@ ensures obj instanceof Gendered
@ ==> \result == gender.equals(((Gendered)obj).gender); @*/

public /*@ pure @*/ boolean equals(/*@ nullable @*/ Object obj);

Fig. 14. A bad (unrefinable) specification of the equals method of type Gendered

/*@ also
@ ensures obj instanceof Gendered
@ ==> (\result ==> gender.equals(((Gendered)obj).gender));
@ implies_that
@ ensures obj instanceof Gendered

@ ==> (!gender.equals(((Gendered)obj).gender) ==> !\result);
@ ensures obj instanceof Gendered && \result
@ ==> gender.equals(((Gendered)obj).gender); @*/

public /*@ pure @*/ boolean equals(/*@ nullable @*/ Object obj);

Fig. 15. A good (refinable) specification of the equals method for the type Gendered. The section
following implies_that states redundant consequences of the specification. This implies_that
section can be omitted without changing the meaning of the specification.
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false. The last redundant ensures clause is a logically equivalent way of writing the non-
redundant ensures clause that follows also.

This problem of overspecifying the equals method mainly affects types with im-
mutable objects, because for a type with mutable objects, the equals method should
usually be specified to compare object identities. However, this problem does occur in
real examples. For instance when we first specified the type java.util.Date we used
a specification of its equals method that only allowed comparison of the millisecond
times (written in a way similar to Fig. 14 on the previous page). However, this was too
strong because there could be subtypes, that need to distinguish objects based on other
attributes, such as a number of nanoseconds.

4.1.4 Using also to Make Refinements
JML makes sure that an implementation refines all specification cases given for it by
joining them together. This is the reason for the using also in the syntax to connect
specification cases. The connection between the join of specification cases using also
and refinement is shown in the following nice little theorem [13, 23, 40, 42, 50, 64, 80].
The proof assumes that \old() is monotonic in the sense that: (Q =⇒ P ) =⇒
(\old(Q) =⇒ \old(P)).

Theorem 2. Suppose \old() is monotonic. Let T ′ � (pre′, post′) and T � (pre, post) be
specifications of an instance method m, where T ′ is a subtype of T . Then

((pre′, post′) �T ′
(pre, post)) �T ′

(pre, post).

Proof: Let m, T ′ � (pre′, post′), and T � (pre, post), be as stated. Theorem 1 gives
two conditions to prove using Spec(T ′). To show (3) we can calculate as follows.

pre && (this instanceof T ′)
=⇒ 〈by (P && I) =⇒ P 〉

pre
=⇒ 〈by P =⇒ (P ′ || P )〉

(pre′ || pre)

To show (4) assume that \old(pre && this instanceof T ′) holds. Since \old() is
monotonic by assumption, \old(pre) holds. Now we can calculate as follows.

(\old(pre′) ==> post′) && (\old(pre) ==> post)
=⇒ 〈by (X ′ && X) =⇒ X〉

\old(pre) ==> post
=⇒ 〈by assumption that \old(pre) holds〉

post

A more involved proof is needed to show that there is no better definition of the join
of method specifications; i.e., that the join of method specifications is their least upper
bound in the refinement ordering [13, 42, 50, 64]. This justifies the notation “�”.

4.1.5 Methodologies for Invariants
Besides refinement of method specifications, behavioral subtyping involves the other
elements of a type specification. Initially clauses and history constraints have not been
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studied in much detail in academic papers, but they are similar enough to invariants that
most research on invariants should apply to them. By contrast, invariants have been the
subject of much recent research in object-oriented programming methodology [5, 51,
62, 63, 65, 66]. The reason that invariants are such a focus of research is that they have
interesting interactions with aliasing, reentrance, and subtyping.

Aliasing can cause problems if objects contained in an object o are exposed to clients,
who may break o’s invariant without calling one of o’s methods.

Reentrance causes problems for invariants when a method being run on some re-
ceiver object o breaks an invariant temporarily, and then while still running, makes a
call that (eventually) runs a method whose receiver is o. In such a situation, the invari-
ant may not hold in the pre-state of the call back to o.

Subtyping causes problems because, in a subtype, invariants can be strengthened
[55]. However, since they can also be thought of as conjoined to the preconditions (and
postconditions) of instance methods, this means that a stronger invariant in a subtype
will strengthen the subtype’s precondition. But, as described in condition (3) of The-
orem 1 on page 18, strengthening the precondition of a refining specification is not
allowed. To see the problem, consider the dynamic dispatch code in Fig. 10 on page 15.
When the call is made to e.isFemale() and e has dynamic type Patient, how do we
know that the invariant of Patient holds in the pre-state of the execution of isFemale?

To resolve these problems, the essential insight is that some set of restrictions on pro-
grams, i.e., a programming methodology, is needed. A programming methodology must
validate the implicit assumption that each invariant holds in each (non-helper) method’s
pre-state [42, §2.3]. A programming methodology that allows one to safely assume in-
variants in pre-states is needed to validate reasoning with supertype abstraction, even if
invariants cannot be weakened in behavioral subtypes [42, Lemma 23].

There are, broadly speaking two general approaches that are being investigated for
such programming methodologies in the context of JML-like specification languages.

The first is the relevant invariant semantics [62, 63], which is based on an owner-
ship type system [24]. Ownership is used both to prevent problems of representation
exposure [54, 62, 66] and to deal with layered abstractions. Reentrance is dealt with by
mandating that invariants are established at the point of calling a (non-helper) method.

This approach is being investigated in the context of JML. Dietl and Müller have
integrated the Universe type system [24] into the JML checker, which can use owner-
ship annotations to check that specifications follow the methodology. In particular the
checker uses the rep annotations to indicate when contained objects are owned by an
enclosing object. For example, in Fig. 5 the rep annotation in the declaration of history
says that history is owned by the enclosing Patient object; i.e., that history is part
of the representation of Patient. The construction of a rep String object in the body
of recordVisit places the newly created string in the Patient object’s universe (own-
ership domain). Similarly, the rep annotation in the constructor’s new expression says
that the new object is in its owner’s universe. Type checking ensures that invariants
only depend on the state of owned objects and are never violated outside of the classes
in which they are declared. For example, the type system checks that the object referred
to by history is never exposed directly to clients, which would allow them to mutate it
in ways that would violate the invariant or history constraint of Patient.
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The second approach is the “Boogie” methodology [5, 51, 65], which is used in the
specification language Spec#. To explain the Boogie methodology briefly, I will trans-
late it into JML terms. Suppose each object has a ghost field, which I will call validFor.
This ghost field could be declared in JML’s specification of Object as follows.

//@ public ghost Class validFor = null;

In JML a ghost field is a specification-only field, like a model field, but which is
not an abstraction of concrete fields. Instead, a ghost field is manipulated by using set
statements, which are written in annotations and thus considered part of the program’s
specification. However, the validFor field is special in that the Boogie methodology
only allows it to be assigned by two special statements pack(T ) and unpack(T ).

This field is used to weaken each declared invariant as follows. Suppose a type T
declares an instance invariant invT . The Boogie methodology transforms this invariant
into an implication: this.validFor <: \type(T ) ==> invT . (In JML the operator <:
means “is a subtype of” and \type() is used to enclose type names in expressions.)
Thus this transformed invariant says that the declared invariant, invT , only has to hold
when this.validFor is a subtype of T . In the Boogie methodology, this transformed
invariant holds in every state, including the pre-state of each method. This is fundamen-
tal to solving the invariant problems.

In the Boogie methodology, one can only assign to the fields of an object o that are
declared in a type T when an object is “unpacked for T ,” meaning that o.validFor is
not a subtype of T . Unpacking an object is the job of the unpack(T ) statement. When
done changing an object’s fields, one uses the pack(T ) statement to check invT and
to set validFor to T . Thus, whenever the program is able to assign to the fields of an
object, that object must be unpacked, and hence the declared invariant does not have
to hold. This may seem complicated, but the special statements are often implicitly
wrapped around the body of a method using default annotations in Spec#.

Because it is based on dynamic manipulations of the validFor field, the Boogie
methodology is more flexible than the relevant invariant approach. For example, the de-
clared invariants do not have to be re-established on each call to a (non-helper) method,
since the object’s validFor field can be used to dynamically test whether the declared
invariant holds. However, as one can see from this translation, some of these ideas (like
the dependency of an invariant of part of a program’s state) can be used in JML to gain
some of the flexibility of the Boogie methodology. Whether these approaches can be
usefully blended together is an interesting problem for future research.

Fortunately, the validity of supertype abstraction does not depend on the details of
these methodologies. All that is needed is that they allow one to safely assume invariants
in the pre-states of non-helper methods [42].

4.1.6 Semantic Implication for Objects of a Type
Predicates used in invariants, history constraints, and initially clauses written in the
specification of a type T are written to use the fields (including model fields) and in-
stance methods of that type. Because these are inherited by all subtypes of T , they make
sense for all subtypes of T . In the following we will say that a predicate P is for T to
describe this association between a predicate and this type context; technically P is for
T if P type checks in the context of T , assuming that this has static type T . Note that
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if P is for T and T is a supertype of T ′, then P is also for T ′. This notion is used in
comparing the relative strength of invariants and history constraints.

Definition 4 (Implies for objects of type T ′). Let P ′ and P be predicates that are for
a type T ′. Then P ′ implies P for objects of type T ′ if and only if whenever this has a
dynamic type that is a subtype of T ′ and P ′ holds, then P holds.

It is a corollary that P ′ implies P for objects of type T ′ if and only if:

Spec(T ′) � this instanceof T ′ =⇒ (P ′ =⇒ P ). (6)

4.2 A Definition of Behavioral Subtyping for JML

The following definition of behavioral subtyping strays a bit beyond the technical re-
sults in Leavens and Naumann’s recent work [42] because the definition also treats
history constraints and initially clauses. They only prove define behavioral subtyping
for types with pre/post method specifications and invariants. However, in adapting their
definition to JML I have followed the ideas in their work, which should again be con-
sulted for details.

JML supports two notions of behavioral subtyping. There is an experimental notion
of “weak behavioral subtyping” [20, 22, 23]. However, that notion relies on an untested
programming methodology [21] which JML does not currently enforce. Thus the most
important notion of behavioral subtyping for JML, which corresponds to Liskov and
Wing’s constraint-based definition [55, p. 1823], is the following.

Definition 5 (strong behavioral subtype). Let T ′ be a type specification and let T be
a specification for a supertype of T ′. Then T ′ is a strong behavioral subtype of T if and
only if:

methods: for all instance methods m in T , the method specification for m in T ′ refines
that of m in T with respect to T ′,

invariant: the instance invariant of T ′ implies the instance invariant of T for objects
of type T ′,

history constraint: the instance history constraint of T ′ implies the instance history
constraint of T for objects of type T ′, and

initially predicate: the initially predicate of T ′ implies the initially predicate of T for
objects of type T ′.

Notice that the definition above says nothing directly about constructors and thus ap-
plies equally well to Java interfaces. However, as Liskov and Wing emphasized [55, 56],
constructors are constrained by the invariant of each type. Furthermore, the initially
predicate in a type specification also constrains constructors.

Normally the concept defined above will be referred to as “behavioral subtyping.”
However, it is useful to keep in mind that the above definition is designed for JML and
how one reasons about JML programs using supertype abstraction. As discussed in the
next subsection, when working with a specification language X , one needs a definition
of behavioral subtyping that validates X’s notion of supertype abstraction [2, 38]. Thus
there really is no single, normative definition of behavioral subtyping.
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4.3 Connection to Supertype Abstraction

The fundamental property of a definition of behavioral subtyping is that it makes super-
type abstraction valid [38, 42, 43]. Ideally, a definition would also be no stronger than
needed to make supertype abstraction valid. For example, since calls to constructors
and static methods are not directly involved in reasoning using supertype abstraction,
there is no need for a syntactic (or type) relationship between the constructors and
static methods of a behavioral subtype and its supertypes. However, the definition must
indirectly limit constructors and static methods (e.g., by enforcing invariants) so that
supertype abstraction is valid.

Thus, ideally, behavioral subtyping would be both necessary and sufficient for super-
type abstraction to be valid. To prove a theorem about this requires a precise formulation
of supertype abstraction. Leavens and Naumann [42] have given such a precise formula-
tion for reasoning with pre/post specifications about dynamically dispatched calls (i.e.,
in the absence of invariants, history constraints, and initially predicates). Their formu-
lation uses two semantics for such calls, the normal (dynamic) one and a static one.
With this notion of supertype abstraction, they shown that it is both necessary and suf-
ficient that each (non-abstract) class be a behavioral subtype of all its supertypes [42,
Corollary 13]. Somewhat surprisingly, it turns out that it is not necessary to have an in-
terface (or an abstract class) be a behavioral subtype of its supertypes. They conjecture
that with a suitable definition of supertype abstraction (i.e., one that allows reasoning
about invariants based on static type information) there is again such an equivalence for
specifications with invariants. However, their formal treatment only gives soundness in
this case, using some invariant methodology that validates the assumption of invariants
in method pre-states (see Section 4.1.5 on page 21).

The notion of supertype abstraction for JML described in this paper involves reason-
ing using pre/post specifications, invariants, history constraints, and initially predicates.
The definition of behavioral subtyping is designed to make the following true.

Conjecture 1 (Supertype abstraction valid). Suppose JML enforces sensible method-
ological restrictions on invariants, history constraints, and initially predicates.

Then supertype abstraction for JML is valid if and only if each non-abstract class C
is a behavioral subtype of all of its supertypes.

Proving a technically precise version of this conjecture would be an important check
on the definitions of the programming methodology, supertype abstraction, and strong
behavioral subtyping.

Although it is not necessary for the soundness of supertype abstraction, most treat-
ments of behavioral subtyping make interfaces and abstract classes also be behavioral
subtypes of their supertypes. JML does this also, through specification inheritance.

4.4 Connection to Specification Inheritance

With specification inheritance each subtype is forced to be a behavioral subtype of each
of its supertypes [23, 42]. The following uses the notation from Section 2.5 on page 10.

Theorem 3 (Specification inheritance forces behavioral subtyping). Let T and V
be types where T is a subtype of V . Then the extended specification of T is a strong
behavioral subtype of the extended specification of V .
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Proof: Let T and V ∈ supers(T ) be given. We must show that the extended specifica-
tions of T and V satisfy Definition 5 on page 24.

methods: Let m be an instance method in methods(V ). We show that ext_specT
m re-

fines ext_specV
m with respect to T by the following calculation.

ext_specT
m

= 〈by Definition 2〉
⊔T {added_specU

m | U ∈ supers(T )}
= 〈by set theory, to separate out V and its supertypes〉

⊔T {added_specU
m | U ∈ ((supers(T ) \ supers(V )) ∪ supers(V ))}

= 〈by definition of join with respect to T 〉(⊔T {added_specU
m | U ∈ (supers(T ) \ supers(V ))}

)

�T
(⊔V {added_specW

m | W ∈ supers(V )}
)

�T 〈by Theorem 2 on page 21, since T is a subtype of V 〉
⊔V {added_specW

m | W ∈ supers(V )}
= 〈by Definition 2〉

ext_specV
m

invariant: We calculate as follows.

ext_invT

= 〈by Definition 2〉∧
{added_invU | U ∈ supers(T )}

= 〈by set theory, to separate out V and its supertypes〉∧
{added_invU | U ∈ ((supers(T ) \ supers(V )) ∪ supers(V ))}

= 〈by definition of conjunction〉(∧
{added_invU | U ∈ (supers(T ) \ supers(V ))}

)

∧
(∧

{added_invW | W ∈ supers(V )}
)

⇒ 〈by A ∧ B =⇒ B〉∧
{added_invW | W ∈ supers(V )}

= 〈by Definition 2〉
ext_invV

history constraint and initially predicate: these implications follow by the same rea-
soning as the implication for the invariant above.

4.5 Examples of Behavioral Subtyping

The above theorem shows that, with specification inheritance, subtypes may only refine
and strengthen specifications they inherit from their supertypes. However, specification
inheritance can easily cause subtypes to not be satisfiable. For example, the invariant of
class OldAnimal specified in Fig. 16 on the next page can be violated by the inherited
setAge method, which is unsatisfiable, since no implementation of setAge will be able
to both satisfy the inherited specification case and the added invariant.

However, it is possible to strengthen an invariant without making the specification
unsatisfiable, as shown in the type FemalePatient from Fig. 6 on page 12. Liskov
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public class OldAnimal extends Animal {

//@ public invariant 65 < age;

//@ requires g.equals("female") || g.equals("male");
//@ assignable gender, age;

//@ ensures gender.equals(g) && age == 66;
public OldAnimal(String g) { super(g); age = 66; }

}

Fig. 16. A JML specification of the class OldAnimal

public abstract class Dog extends Animal {

public static final int D2PY = 7; // conversion factor
private /*@ spec_public @*/ int dogAge = 0; //@ in age;
//@ public invariant dogAge == D2PY*age;

//@ assignable \nothing;
//@ ensures \result == dogAge;
public int getDogAge() { return dogAge; }

public void setAge(final int a) { super.setAge(a); dogAge = D2PY*age; }
/* ... */

}

Fig. 17. A JML specification of the class Dog

and Wing would call this type a “constrained” behavioral subtype [55] of Patient (see
Fig. 5 on page 9). FemalePatient’s invariant limits the values of the model field gender
to be the string "female". Unlike the situation with the strengthened invariant in the
type OldAnimal, there are no inherited methods that can change the gender, and hence
this added invariant does not make the extended specification unsatisfiable.

In addition to constraining choices allowed by supertypes, a behavioral subtype may
also add information and methods. Such a type is an “extension subtype” in Liskov and
Wing’s terminology [55]. The class Dog, given in Fig. 17, extends the type Animal in
this sense. Dog’s added invariant allows the specification of the method setAge to be
inherited without change. This invariant implies that in its supertype, since by specifi-
cation inheritance it is the conjunction of the added invariant and Animal’s invariant,
which is just the default (true). This subtype also adds method getDogAge.

5 Related Work

The present paper is based on a recent semantical account that has a formal treatment
of supertype abstraction and proves results about its connection to behavioral subtyping
and specification inheritance [42]. The following draws on that paper’s more detailed
discussion of related work.
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Several program logics for sequential Java incorporate a notion of supertype abstrac-
tion [62, 69, 70, 72]. They mostly require each overriding method implementation in a
type to satisfy the corresponding specification in each of its supertypes, which is effec-
tively the same as specification inheritance.

Liskov and Wing’s paper [55] also discusses the idea of supertype abstraction to
some extent. Their “subtype requirement” [55, p. 1812], says that properties of a su-
pertype hold for all subtypes. However, the properties they consider are only those
obtainable by inductive reasoning with invariants and history constraints, because they
consider concurrent programs and do not require alias control. Due to concurrency their
subtype requirement does not encompass the use of supertype abstraction to do pre/post
reasoning about the correctness of method implementations, although their definition of
behavioral subtyping is adequate for such reasoning if one were to consider a sequential
language and impose a methodology to deal with the problems of invariants described
in Section 4.1.5 on page 21. Liskov and Wing’s formalization of behavioral subtyping
uses abstraction functions. Abstraction functions are not needed in the formalization
presented here, because all fields (including model fields) are inherited in JML, which
makes the predicates used to specify supertypes automatically meaningful in subtypes.
They give many interesting examples of their notion of behavioral subtyping.

Dhara and Leavens [23] explained specification inheritance for Larch/C++ and gave
the first proof that it forces behavioral subtyping.

Wills introduced the idea of specification inheritance for combining “capsules” in
his Fresco system [79]. In Fresco one can write several “capsules” for a method, which
must all be obeyed by a correct implementation. Specification cases in JML are based
on this idea. The idea of combining separate specification cases first appeared in Wing’s
dissertation [80]. That work introduced the Larch family of behavioral interface speci-
fication languages [30, 81], which were a precursor of JML.

Eiffel [59], another precursor of JML, also has behavioral subtyping and a form of
specification inheritance. Mitchell and McKim describe an idea similar to the join of
method specifications in their chapter on inheritance [60, Chapter 6].

Early work on behavioral subtyping is surveyed in a paper by Leavens and Dhara
[41], including the work of America [3, 4], which has the first proof of the soundness
of reasoning in the context of behavioral subtyping.

6 Conclusions

JML is a cooperative effort to enhance the utility of specification languages and as-
sociated tools. While the concepts presented in this paper seem well established, many
challenges remain [46]. The main future work related to the present paper is limiting the
notion of specification inheritance by warning where it appears that the specifier is try-
ing to strengthen the precondition of an overriding method’s specification [28]. Static
analysis tools for JML could also warn when a subtype’s specification was inconsis-
tent, due to conflicts between inherited and added specifications. More work on JML’s
semantics, including a proof of Conjecture 1 on page 25 would also be interesting.

Specification inheritance in JML forces all subtypes to be behavioral subtypes. This
ensures that one can use supertype abstraction to do modular reasoning using static type
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information. The key feature of JML that supports specification inheritance is JML’s
also, which automatically produces a refinement of the specification cases that it joins.

These ideas can also be used informally [54]. For example, when writing informal
documentation for a method, one can mimic JML’s use of also by starting with a phrase
like “In addition to the inherited behavior, this method . . . ”

Similarly, when designing a type as a subtype of various classes and interfaces, one
can keep in mind the demands of behavioral subtyping [19, 37, 59]. For example one
has to be careful not to strengthen the invariant of a class in a way that would con-
tradict the specification of inherited methods. One should be especially careful not to
overspecify when specifying binary methods, such as the equals method, which would
make behavioral subtypes unable to consider additional attributes.

Finally, the notion of behavioral subtyping validates informal reasoning based on
static type information. When the specifications associated with static types are not
sufficient to draw a desired conclusion, one can use type tests and downcasts to record
the need for stronger assumptions about the types of objects. This blends special case
reasoning with the uniformity of supertype abstraction.
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