

Lecture Notes in Computer Science 4260
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Zhiming Liu Jifeng He (Eds.)

Formal Methods and
Software Engineering

8th International Conference
on Formal Engineering Methods, ICFEM 2006
Macao, China, November 1-3, 2006
Proceedings

13

Volume Editors

Zhiming Liu
The United Nations University
International Institute for Software Technology
UNU-IIS, Casa Silva Mendes Ext. do Engenheiro Trigo No. 4
P.O. Box 3058, Macao SAR, China
E-mail: z.liu@iist.unu.edu

Jifeng He
East China Normal University
Software Engineering Institute
3663 Zhongshan Road (North), Shanghai 200062, China
E-mail: jifeng@sei.ecnu.edu.cn

Library of Congress Control Number: 2006934465

CR Subject Classification (1998): D.2.4, D.2, D.3, F.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-47460-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-47460-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11901433 06/3142 5 4 3 2 1 0

Preface

Formal methods for the development of computer systems have been extensively re-
searched and studied. A range of semantic theories, specification languages, design
techniques, and verification methods and tools have been developed and applied to the
construction of programs of moderate size that are used in critical applications. The
challenge now is to scale up formal methods and integrate them into engineering devel-
opment processes for the correct construction and maintenance of computer systems.
This requires us to improve the state of the art by researching the integration of methods
and their theories, and merging them into industrial engineering practice, including new
and emerging practice.

ICFEM, the International Conference on Formal Engineering Methods, aims to
bring together those interested in the application of formal engineering methods to
computer systems. Researchers and practitioners, from industry, academia, and govern-
ment, are encouraged to attend, and to help advance the state of the art. The conference
particularly encourages research that aims at a combination of conceptual and method-
ological aspects with their formal foundation and tool support, and work that has been
incorporated into the production of real systems.

This volume contains the proceedings of ICFEM 2006, which was the 8th ICFEM
and held in Macao SAR, China on 1-3 November 2006. The Program Committee re-
ceived 108 submissions from over 30 countries and regions. Each paper was reviewed,
mostly by at least three referees working in relevant fields, but by two in a few cases.
Borderline papers were further discussed during an online meeting of the Program
Committee. A total of 38 papers were accepted based on originality, technical sound-
ness, presentation and relevance to formal engineering and verification methods. We
sincerely thank all the authors who submitted their work for consideration. We thank
the Program Committee members and the other referees for their effort and professional
work in the reviewing and selecting process. In addition to the regular papers, the pro-
ceedings also include contributions from the keynote speakers: Zhou Chaochen, Gary
T. Leavens and John McDermid.

Three associated events were held: an Asian Working Conference on Verified Soft-
ware (AWCVS06, 29-31 October), a Refinement Workshop (REFINE06, 31 October)
and a Workshop on Formal Methods for Interactive Systems (FMIS06, 31 October). We
thank the organizers for bringing their events to ICFEM 2006.

ICFEM 2006 was jointly organized and sponsored by the International Institute for
Software Technology of the United Nations University (UNU-IIST), the University of
Macau, and Macao Polytechnic Institute. We would like to thank all the members of
staff and students who helped in the organization, in particular Pun Chong Iu, Pun Ka,
Sandy Lee, Ho Sut Meng, Chan Iok Sam, Hoi Iok Wa, and Lu Yang. Acknowledgement
also goes to Formal Method Europe for its support to the FME Keynote Speaker.

August 2006 Zhiming Liu and He Jifeng

Organization

Conference Chairs

Honorary Chair: Vai Pan Iu (Rector, University of Macau, Macao)
Conference Chairs: Yiping Li (University of Macau, Macao)

George Michael Reed (UNU-IIST, Macao)
Program Chairs: He Jifeng (East China Normal University, China)

Zhiming Liu (UNU-IIST, Macao)

Organization Chairs: Iontong Iu (UNU-IIST, Macao)
Xiaoshan Li (University of Macau, Macao)

Publicity Chair: Chris George (UNU-IIST, Macao)
Workshop Chair: Bernhard K. Aichernig (Graz Univ. of Tech., Austria)

Program Committee

Farhad Arbab Mathai Joseph Peter H. Schmitt
Ralph Back Kung-Kiu Lau Klaus-Dieter Schewe
Luis Soares Barbosa Xuandong Li Wolfram Schulte
Tommaso Bolognesi Tiziana Margaria Joseph Sifakis
Jonathan P. Bowen Hong Mei H Joao Pedro Sousa
Manfred Broy Huaikou Miao Sofiene Tahar
Michael Butler Ernst-Ruediger Olderog T.H. Tse
Ana Cavalcanti Shengchao Qin Farn Wang
Yoonsik Cheon Zongyan Qiu Mark Utting
Philippe Darondeau Anders P. Ravn Martin Wirsing
Jim Davies Ken Robinson Qiwen Xu
Colin Fidge Abhik Roychoudhury Hongseok Yang
John Fitzgerald Motoshi Saeki Wang Yi
Marc Frappier Hassen Saidi Jian Zhang
Marcelo Frias Augusto Sampaio
Atsushi Igarashi Davide Sangiorgi

External Referees

Poonam Agarwal Leonid Kof Katharina Spies
Frank Atanassow Pavel Krcal David Streader
Richard Banach Marco Kuhrmann Kim Solin
Pontus Boström Vinay Kulkarni Jun Sun
Judy Bowen Shrawan Kumar Bernhard Thalheim

VIII Organization

Jeremy Bryans Daan Leijen Bernhard Schaetz
Michael Butler Quan Long Natalia Sidorova
Gustavo Cabral Robi Malik Colin Snook
Cristina Cershi-Seceleanu Herve Marchand Edward Turner
Jessica Chen Joao Marques-Silva Margus Veanes
Yiyun Chen Leonid Mokrushin R.Venkatesh
Tom Chothia Mohammad Reza Mousavi Phan Cong Vinh
Dave Clarke Ravindra D. Naik Hai Wang
Mehdi Dastani Girish Keshav Palshikar Shuling Wang
David Faitelson Matthew Parkinson Zheng Wang
Mauro Gaspari Yu Pei Ji Wang
Amjad Gawanmeh Paul Pettersson James Welch
Blaise Genest Mike Poppleton Harro Wimmel
Thomas Genet Viorel Preoteasa Divakar Yadav
Olga Grinchtein Stephane Lo Presti Hongli Yang
Ali Habibi Rodrigo Ramos Shaofa Yang
Tobias Hain Nuno F. Rodrigues Mohamed Zaki
Osman Hasan Jan Romberg Yan Zhang
Jounaidi Ben Hassen Carlos Rubio Jane Zhao
Roland Kaschek Mehrnoosh Sadrzadeh Jianhua Zhao
Stephanie Kemper Amer Samara Xiangpeng Zhao
Linas Laibinis Thiago Santos Sergiy Zlatkin

Ping Zhu

Steering Committee

Chair: He Jifeng (East China Normal University, China)
Members: Keijiro Araki (Kyushu University, Japan)

Jin Song Dong (National University, Singapore)
Chris George (UNU-IIST, Macao)
Mike Hinchey (NASA, USA)
Shaoying Liu (Hosei University, Japan)
John McDermid (University of York, UK)
Tetsuo Tamai (University of Tokyo, Japan)
Jim Woodcock (University of York, UK)

Table of Contents

Keynote Talks

Program Verification Through Computer Algebra . 1
Chaochen Zhou

JML’s Rich, Inherited Specifications for Behavioral Subtypes 2
Gary T. Leavens

Three Perspectives in Formal Engineering . 35
John McDermid, Andy Galloway

Specification and Verification

A Method for Formalizing, Analyzing, and Verifying Secure User
Interfaces . 55

Bernhard Beckert, Gerd Beuster

Applying Timed Interval Calculus to Simulink Diagrams 74
Chunqing Chen, Jin Song Dong

Reducing Model Checking of the Few to the One . 94
E. Allen Emerson, Richard J. Trefler, Thomas Wahl

Induction-Guided Falsification . 114
Kazuhiro Ogata, Masahiro Nakano, Weiqiang Kong,
Kokichi Futatsugi

Verifying χ Models of Industrial Systems with Spin 132
Nikola Trčka

Stateful Dynamic Partial-Order Reduction . 149
Xiaodong Yi, Ji Wang, Xuejun Yang

Internetware and Web-Based Systems

User-Defined Atomicity Constraint: A More Flexible Transaction
Model for Reliable Service Composition . 168

Xiaoning Ding, Jun Wei, Tao Huang

X Table of Contents

Environment Ontology-Based Capability Specification for Web
Service Discovery . 185

Puwei Wang, Zhi Jin, Lin Liu

Scenario-Based Component Behavior Derivation . 206
Yan Zhang, Jun Hu, Xiaofeng Yu, Tian Zhang,
Xuandong Li, Guoliang Zheng

Verification of Computation Orchestration Via Timed
Automata . 226

Jin Song Dong, Yang Liu, Jun Sun, Xian Zhang

Towards the Semantics for Web Service Choreography
Description Language . 246

Jing Li, Jifeng He, Geguang Pu, Huibiao Zhu

Type Checking Choreography Description Language 264
Hongli Yang, Xiangpeng Zhao, Zongyan Qiu, Chao Cai,
Geguang Pu

Concurrent, Communicating, Timing
and Probabilistic Systems

Formalising Progress Properties of Non-blocking Programs 284
Brijesh Dongol

Towards a Fully Generic Theory of Data . 304
Douglas A. Creager, Andrew C. Simpson

Verifying Statemate Statecharts Using CSP and FDR 324
A.W. Roscoe, Z. Wu

A Reasoning Method for Timed CSP Based on Constraint
Solving . 342

Jin Song Dong, Ping Hao, Jun Sun, Xian Zhang

Mapping RT-LOTOS Specifications into Time Petri Nets 360
Tarek Sadani, Marc Boyer, Pierre de Saqui-Sannes,
Jean-Pierre Courtiat

Reasoning Algebraically About Probabilistic Loops . 380
Larissa Meinicke, Ian J. Hayes

Table of Contents XI

Object and Component Orientation

Formal Verification of the Heap Manager of an Operating System
Using Separation Logic . 400

Nicolas Marti, Reynald Affeldt, Akinori Yonezawa

A Statically Verifiable Programming Model for Concurrent
Object-Oriented Programs . 420

Bart Jacobs, Jan Smans, Frank Piessens,
Wolfram Schulte

Model Checking Dynamic UML Consistency . 440
Xiangpeng Zhao, Quan Long, Zongyan Qiu

Testing and Model Checking

Conditions for Avoiding Controllability Problems in Distributed
Testing . 460

Jessica Chen, Lihua Duan

Generating Test Cases for Constraint Automata by Genetic
Symbiosis Algorithm . 478

Samira Tasharofi, Sepand Ansari, Marjan Sirjani

Checking the Conformance of Java Classes Against Algebraic
Specifications . 494

Isabel Nunes, Antónia Lopes, Vasco Vasconcelos, João Abreu,
Lúıs S. Reis

Incremental Slicing . 514
Heike Wehrheim

Assume-Guarantee Software Verification Based on Game
Semantics . 529

Aleksandar Dimovski, Ranko Lazić

Optimized Execution of Deterministic Blocks in Java PathFinder 549
Marcelo d’Amorim, Ahmed Sobeih, Darko Marinov

Tools

A Tool for a Formal Pattern Modeling Language . 568
Soon-Kyeong Kim, David Carrington

XII Table of Contents

An Open Extensible Tool Environment for Event-B 588
Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede,
Laurent Voisin

Tool for Translating Simulink Models into Input Language
of a Model Checker . 606

Meenakshi B., Abhishek Bhatnagar, Sudeepa Roy

Fault-Tolerance and Security

Verifying Abstract Information Flow Properties in Fault Tolerant
Security Devices . 621

Tim McComb, Luke Wildman

A Language for Modeling Network Availability . 639
Luigia Petre, Kaisa Sere, Marina Waldén

Multi-process Systems Analysis Using Event B: Application to Group
Communication Systems . 660

J. Christian Attiogbé

Specification and Refinement

Issues in Implementing a Model Checker for Z . 678
John Derrick, Siobhán North, Tony Simons

Taking Our Own Medicine: Applying the Refinement Calculus
to State-Rich Refinement Model Checking . 697

Leo Freitas, Ana Cavalcanti, Jim Woodcock

Discovering Likely Method Specifications . 717
Nikolai Tillmann, Feng Chen, Wolfram Schulte

Time Aware Modelling and Analysis of Multiclocked VLSI Systems 737
Tomi Westerlund, Juha Plosila

SALT—Structured Assertion Language for Temporal Logic 757
Andreas Bauer, Martin Leucker, Jonathan Streit

Author Index . 777

Program Verification Through Computer Algebra

Zhou Chaochen

Laboratory of Computer Science
Institute of Software

Chinese Academy of Sciences
Beijing, China

zcc@ios.ac.cn

Abstract. This is to advocate the approach to reducing program verification to
the algebraic symbolic computation. Recent advances indicate that various veri-
fication problems can be reduced to semi-algebraic systems (SAS for short), and
resolved through computer algebra tools. In this talk, we report our encouraging
attempts at applying DISCOVERER to program termination analysis and state
reachability computation. DISCOVERER is a Maple program implementing an
algorithm of real solution classification and isolation for SAS, which is based on
the discovery of complete discrimination systems of parametric polynomials. The
talk also concludes that this approach deserves further attention from the program
verification community.

For theoretical and technical details of the work, we refer the reader to
[1,2,3,4,5].

References

1. B. Xia and L. Yang. An algorithm for isolating the real solutions of semi-algebraic systems. J.
Symbolic Computation, 34:461–477, 2002.

2. L. Yang. Recent advances on determining the number of real roots of parametric polynomials.
J. Symbolic Computation, 28:225–242, 1999.

3. L. Yang, X. Hou and Z. Zeng. A complete discrimination system for polynomials. Science in
China (Ser. E), 39:628–646, 1996.

4. L. Yang and B. Xia. Real solution classifications of a class of parametric semi-algebraic sys-
tems. In Proc. of Int’l Conf. on Algorithmic Algebra and Logic, pp. 281–289, 2005.

5. L. Yang, N. Zhan, B. Xia and C. Zhou. Program verification by using DISCOVERER. To
appear in the Proc. VSTTE’05 held in Zürich, Oct. 10-Oct. 13, 2005.

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

JML’s Rich, Inherited Specifications
for Behavioral Subtypes�

Gary T. Leavens

Department of Computer Science, Iowa State University
229 Atanasoff Hall, Ames, IA 50011-1041, USA

leavens@cs.iastate.edu

Abstract. The Java Modeling Language (JML) is used to specify detailed de-
signs for Java classes and interfaces. It has a particularly rich set of features for
specifying methods. This paper describes those features, with particular empha-
sis on the features related to specification inheritance. It shows how specification
inheritance in JML forces behavioral subtyping, through a discussion of seman-
tics and examples. It also describes a notion of modular reasoning based on static
type information, supertype abstraction, which is made valid in JML by method-
ological restrictions on invariants, history constraints, and initially clauses and by
behavioral subtyping.

1 Introduction

Work on formal methods is interesting for at least two reasons: it can lead to practical
tools (such as runtime assertion checkers or model checkers) and it can be used to give
insight into informal programming practice. Both of these reasons drive the work on the
Java Modeling Language, JML [10, 12, 44, 45, 47]. While JML is technically limited to
precisely describing the syntactic interfaces and functional behavior of sequential Java
classes and interfaces at the detailed design level, its rich set of specification constructs
can be used to explain concepts that can be informally applied in other settings. This
paper attempts to give such an explanation for ideas related to behavioral subtyping.

1.1 Context

JML builds on the ideas of Eiffel [58, 59] and the Larch family of behavioral interface
specification languages [17, 30, 39, 81]. While JML also uses ideas from other sources
[8, 35, 48, 49, 61, 62, 67, 71, 79], at its core it blends these two language traditions.

From Eiffel JML takes the idea of writing assertions (e.g., pre-and postconditions)
in program notation; hence JML assertions are written as Java expressions. This helps
make JML easy to read by Java programmers.

From Larch JML takes the idea of using mathematical values to specify complete
functional behavior. These mathematical values are specified in JML as the values of
“model fields” [18, 48]. (Examples of model fields are given below.) Because model
fields are only used in assertions, their time and space efficiency is not important. (One

� This work was supported by NSF grant CCF-0429567.

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 2–34, 2006.
© Springer-Verlag Berlin Heidelberg 2006

JML’s Rich, Inherited Specifications for Behavioral Subtypes 3

can always turn off assertion checking to gain efficiency.) Thus the type of a model field
can be something closer to mathematics, such as a set, sequence, or relation, instead of
a binary search tree, an array, or a hash table. This allows users to focus on clarity.

JML has been successful in attracting researchers working with formal methods at
the level of detailed design for Java. To date there are at least 19 groups doing research
with JML. (See http://www.jmlspecs.org/ for a list.)

1.2 JML’s Tools

Part of JML’s attraction for researchers is that they can build on a rich language and use
several different tools [10]. This set of tools helps researchers be more productive. For
example, since program verification with a theorem prover is time-consuming, it helps
to use other tools to find bugs first.

While JML’s tools could use more polish, they have been used in several college
classes and in work on Java smart cards [9, 10, 11, 33, 57].

The JML research community is dedicated to finding ways to help make the cost
of writing specifications worthwhile for its users by providing added value through
tools. This includes basic tools such as a documentation generator (jmldoc), and a run-
time assertion checker (jmlc) [14, 16]. There are also several tools designed to do for-
mal verification with interactive theorem provers, including LOOP [33, 34], JACK [9],
KRAKATOA [57], Jive [73], and KeY [1]. One of JML’s principal design goals is to
support the use of both runtime assertion checking and formal verification with theorem
provers. But JML is also supported by several other novel tools, including:

– ESC/Java2 [36], a descendant of the extended static checker ESC/Java [29], which
statically detects bugs and uses specifications to improve the accuracy of bug re-
ports,

– Daikon [27], a tool that mines execution traces to find likely program invariants,
which can synthesize specifications,

– The jmlunit tool [15], which uses JML specifications to decide the success or failure
of unit tests, and

– SpEx-JML [77], which uses the model checker Bogor [76] to check properties of
JML specifications.

Most of these tools are open source products. The JML community itself is also open
and encourages more participation from the formal methods community.

1.3 Overview

JML has evolved from its roots in Larch and Eiffel into a language with a rich set of
features. The goal of this paper is to use a subset of these features to help explain the
ideas connected with behavioral subtyping in a way that will help readers apply them
in programming practice, e.g., in documenting and informally reasoning about object-
oriented programs. A secondary goal is to aid readers who would like to use some of
the JML tools or would like to reuse or build on the ideas of JML’s language design.
This paper assumes the reader is familiar with basic concepts in formal methods, such
as first-order logic and pre- and postconditions [25, 30, 31, 59, 60].

4 G.T. Leavens

This paper focuses on behavioral subtyping [2, 3, 4, 23, 28, 38, 41, 42, 43, 55, 59, 74]
for several reasons. The first is because of its utility in organizing and reasoning about
object-oriented software [19, 37, 43, 53, 59]. The second is that JML embodies a set
of features that make working with behavioral subtyping particularly convenient, but
these features and their combination in JML have not previously had a focused expla-
nation. While the key language design ideas of specification cases [80] and their use in
specification inheritance [79] to force behavioral subtyping have been explained in the
context of Larch/C++ [23, 40], they are found in a simpler and thus more understandable
form in JML. And while these ideas have been previously explained from a theoretical
perspective [42], their embodiment in JML makes the explanation more concrete and
accessible to the practice of programming and specification language design.

2 Background: JML Specifications for Methods and Types

This section gives background on JML and several examples. This background is neces-
sary to explain the concept of supertype abstraction in the context of JML, since super-
type abstraction involves reasoning about specifications. The examples in this section
will also be used in the remainder of the paper.

2.1 JML Basics

For example, take the Java interface Gendered given in Fig. 1. Gendered’s behavior is
specified in its JML annotations.1

public interface Gendered {
//@ model instance String gender;

//@ ensures \result <==> gender.equals("female");
/*@ pure @*/ boolean isFemale();

}

Fig. 1. A JML specification of the interface Gendered. The JML annotations are written in com-
ments that start with an at-sign (@). The rest of the JML notation is explained in the text.

The second line of the figure is an annotation that declares a field gender. In that
declaration, the modifier model says that the field is a specification-only field that is
an abstraction of some concrete state [18, 48]. The modifier instance means that this
abstraction is based on instance fields, and thus this modeling feature can be thought of
as a field in each object that implements the Gendered interface.

In JML, specifications for methods precede the header of the method being specified.
In Fig. 1, the ensures clause, specifies the postcondition of the method isFemale. This
postcondition says that the value returned by the method, \result, is equivalent (writ-
ten <==>) to whether the model field gender equals the string "female". The isFemale
method is also specified using the modifier pure, which says that the method cannot
have side effects and may thus be used in assertions.

1 JML annotations should not be confused with Java 5’s annotations, which are quite different.

JML’s Rich, Inherited Specifications for Behavioral Subtypes 5

2.2 Specification for Fields

The class Animal in Fig. 2 will be used to explain JML’s features related to fields. Since
Animal is a subtype of Gendered, it inherits the model instance field gender (declared
in Fig. 1). Inheritance of instance fields means that specifications for instance methods
written in supertypes make sense when interpreted in their subtypes. For example, the
ensures clause of the method isFemale specified in the interface Gendered makes sense
in its subtype Animal.2

public class Animal implements Gendered {
protected boolean gen; //@ in gender;
//@ protected represents gender <- (gen ? "female" : "male");

protected /*@ spec_public @*/ int age = 0;

//@ requires g.equals("female") || g.equals("male");
//@ assignable gender;
//@ ensures gender.equals(g);
public Animal(final String g) { gen = g.equals("female"); }

public /*@ pure @*/ boolean isFemale() { return gen; }

/*@ requires 0 <= a && a <= 150;
@ assignable age;
@ ensures age == a;

@ also
@ requires a < 0;
@ assignable age;

@ ensures age == \old(age); @*/
public void setAge(final int a) { if (0 <= a) { age = a; } }

}

Fig. 2. Class Animal from the file Animal.java. In a multi-line annotation at-signs at the begin-
nings of lines are ignored. The other new JML features are explained in the text.

The in clause, which occurs immediately after the declaration of the protected boolean
field gen, is used to declare datagroup membership. It says that gen is in gender’s data
group [49]. The data group of a field f can be thought of as a set of fields that are allowed
to be assigned to when f is mentioned in an assignable clause. The data group of a model
field f includes all the fields needed to determine f ’s value, but may also include other
fields. Thus the in clause in the declaration of gen tells JML that: (a) the value of gender
may depend on the value of gen and (b) gen may be assigned whenever gender is al-
lowed to be assigned by a method. For example the constructor’s assignable clause lists
gender, which means that it may assign to all locations in gender’s data group, which
includes gen. (See below for more about assignable clauses.)

2 Inherited specifications make sense even if there are shadowing field declarations in subtypes.
However, in this paper I will assume that there is no such field shadowing, as this simplification
does not lose any generality.

6 G.T. Leavens

The represents clause gives an expression for the value of the model field gender.
Thus, whenever gender occurs in a specification, such as in the constructor’s postcon-
dition, its value is the value of the expression (gen ? "female": "male"). However, not
only is gender more concise, it is public, whereas gen and the design decision about how
gender is represented are hidden from clients. This illustrates how model fields in JML
can be used to hide design details [18, 48]. The represents clause specifies an abstraction
function [32] from part of the concrete state of an Animalobject to a model field. Since the
model field gender is inherited from Gendered, this abstraction function can be thought
of as mapping part of the state of an Animal object to the state of a Gendered object [55].

The spec_public modifier in the declaration of age can be thought of as shorthand
for the declaration of a public model field (named age), and clauses saying that the
protected field (renamed to, say, _age) is in the model field’s data group, and that the
model field’s value is the value of the concrete field. Use of spec_public is often con-
venient when documenting existing code. It allows the protected field that is used in the
representation to be changed (e.g., renamed) at a later date without affecting the speci-
fication’s clients. If such a change is made in the future, at that time one has to unpack
these shorthands and rename all uses of the protected field.

The requires clauses in the constructor and method specifications of Fig. 2 specify
preconditions. For example, the precondition of the constructor says that the argument
g must be either "female" or "male".

An assignable clause gives a frame axiom [6, 62]. It lists the fields whose data
groups may be assigned during the execution of the method. All locations that are not
in the data group of a listed field are not allowed to be even temporarily changed. (In
this sense JML’s assignable clauses are more strict than the modifies clauses found in
Larch.) Such frame axioms are important for formal verification [6, 12]. An assignable
clause can be thought of as syntactic sugar for part of the method’s postcondition. For
example the assignable clause of the constructor can be thought of as shorthand for
adding \only_assigned(gender) to the constructor’s postcondition. The method mod-
ifier pure is, in part, a shorthand for the clause assignable \nothing and hence can
also be thought of as shorthand for part of a postcondition.

2.3 Joining Specification Cases with also

The setAge method in Fig. 2 on the preceding page has a specification with two speci-
fication cases connected by also. A JML specification case consists of several clauses,
including requires, assignable, and ensures clauses [47]. Each specification case has a
precondition (which might default to true), that tells when that specification case applies
to a call. JML’s also joins together specification cases in a way that makes sure that,
whenever a specification case’s precondition holds for a call, its postcondition must also
hold. That is, in general a JML method specification may consist of several specification
cases, and all these specification cases must be satisfied by a correct implementation.

One reason for using also and separate specification cases is to make distinct exe-
cution scenarios clear to the specification’s reader. In the setAge example, a call that
satisfies the first specification case’s precondition must set age to the value of the ar-
gument a. The second specification case describes the method’s behavior for negative
arguments. In this case the value of the age field must be unchanged. This is specified

JML’s Rich, Inherited Specifications for Behavioral Subtypes 7

with the postcondition age == \old(age), which says that the post-state value of age
must equal its pre-state value, \old(age). The \old() operator is often used in the
postconditions for methods that change the state of an object [59].

I will refer to the combination of two method specifications with also as their “join,”
since it is technically the join with respect to the refinement ordering on method speci-
fications [42, 50, 64]. (It is also easier to talk about “joining” specification cases.)

To define the join operation precisely I will use a bit of notation. As we have seen,
specification cases are essentially pairs of pre- and postconditions (the assignable clause
being shorthand for part of a postcondition, as explained above). So, in what follows, I
will write T � (pre, post) for a specification case of an instance method that type checks
when its receiver (this) has static type T . Thus you can think of T � spec as being
written in type T . In JML, T � spec will also type check in a context where this has
some subtype of T . I omit the receiver’s type when it is clear from context. Also, since
there is little difference between a simple method specification and a specification case,
I will often just call them method specifications. With this notation, the definition of the
join operation for specification cases is as follows [23, 40, 42, 50, 64, 80].

Definition 1 (Join of JML method specifications, �U). Let T ′ � (pre′, post′) and T �
(pre, post) be specifications of an instance method m. Let U be a subtype of both T ′ and
T . Then the join of (pre′, post′) and (pre, post) for U , written (pre′, post′)�U (pre, post),
is the specification U � (p, q) with precondition p:

pre′ || pre (1)

and postcondition q:

(\old(pre′) ==> post′) && (\old(pre) ==> post). (2)

In the above definition, the precondition of the join of two method specifications is their
disjunction (with || as in Java). The postcondition of the join is a conjunction of impli-
cations (written ==> in JML’s notation), which says that when one of the preconditions
holds (in the pre-state), then the corresponding postcondition must hold.

The ability to join method specification cases is useful in specification inheritance,
which joins specification cases from subtypes with those inherited from supertypes.
However, when the join’s receiver type is clear from context, I omit the superscript U .

For example, the join of the two specification cases for setAge in Fig. 2 on page 5
is equivalent to the specification case shown in Fig. 3. Of course, one could write
this specification directly, but when one compares it to the specification of setAge in
Fig. 2, one can see that the postcondition of Fig. 3 contains within it a repetition of the

//@ requires (0 <= a && a <= 150) || a < 0;

//@ assignable age;
/*@ ensures (\old(0<=a && a<=150) ==> age==a)

@ && (\old(a<0) ==> age==\old(age)); @*/

public void setAge(final int a);

Fig. 3. The join of the specification cases for the setAge method from Fig. 2 on page 5

8 G.T. Leavens

preconditions from Fig. 2. This repetition is a maintenance problem and distracts from
the clarity of the specification. JML’s also avoids these problems.

2.3.1 Using \same to Make Refinements
Often in writing a method specification in a subtype, one wants the precondition of the
overriding method to be the same as that of the specification of the method being over-
ridden. This often occurs for a method m in a subclass that calls super.m and then does
something extra. JML’s predicate \same can be used in the precondition of such a spec-
ification to say that the method’s precondition is the same as that of the method being
overridden [47]. For example, in Fig. 4, the precondition of the given specification case
for setAge is equal to that in the specification of setAge in Animal. In this example, that
precondition is equivalent to the disjunction of setAge’s preconditions from the two spec-
ification cases in Figure 2 (as shown in Fig. 3), and is thus is equivalent to a <= 150.

public class Person extends Animal {

protected /*@ spec_public @*/ boolean ageDiscount = false; //@ in age;

/*@ also
@ requires \same;
@ assignable age, ageDiscount;
@ ensures 65 <= age ==> ageDiscount; @*/

public void setAge(final int a) {

super.setAge(a);
if (65 <= age) { ageDiscount = true; }

}

//@ requires g.equals("female") || g.equals("male");
//@ assignable gender;

//@ ensures gender.equals(g);
public Person(final String g) { super(g); }

}

Fig. 4. A JML specification of the class Person. The notation \same is explained in the text. In
JML, also must be used in a method specification whenever one overrides a method, to remind
the specification’s reader about specification inheritance, as will be explained later.

2.4 Invariants, History Constraints, and Initially Clauses

In addition to field declarations and method specifications, a type specification in JML
may also contain invariants, history constraints, and initially clauses.3 An invariant
[32] is a predicate that should hold in all visible states, i.e., in the pre-state and post-
state of each (non-helper4) method execution [47, 63], and in the post-state of each
constructor execution. Invariants are one-state predicates; i.e., they cannot use \old().
By contrast a history constraint [55, 56] is a two-state predicate that uses \old() to
state a monotonic relationship between pre-states and post-states. A history constraint

3 This list is a simplification, but it covers the most important features.
4 In JML a private method or constructor can be declared with the modifier helper. This exempts

it from having to preserve invariants, or establish history constraints and initially clauses.

JML’s Rich, Inherited Specifications for Behavioral Subtypes 9

must hold in the post-state of every (non-helper) method execution [47]. An initially
clause [26] is a predicate that should hold in all post-states of (non-helper) constructors.
Initially clauses are one-state predicates.

In JML all of these clauses may be omitted (as in the examples given previously), in
which case a default predicate, true, is used. These defaults allow us to speak of “the
invariant” etc. declared by a type, even if none is explicitly declared.

2.4.1 Invariants
To explain invariants in JML, consider Fig. 5. This figure has two invariant clauses,
both of which declare public (client-visible) instance invariants. Declaring two invari-
ants is equivalent to declaring a single invariant whose predicate conjoins the predicates
declared in the two clauses. The first invariant clause says that the value of the age field
is always between 0 and 150 (inclusive). Although this invariant is true for objects
whose dynamic type is exactly Animal, it is not necessarily true for subtypes of Animal;
a subtype could declare a method that would allow values outside this range to be as-
signed to age. Thus it is necessary to explicitly declare this invariant [55]. In effect, this
invariant prohibits methods that set age outside the range specified in the invariant.

import java.util.*;

public class Patient extends Person {
//@ public invariant 0 <= age && age <= 150;

protected /*@ spec_public rep @*/ List history;
/*@ public initially history.size() == 0;

@ public invariant (\forall int i; 0 <= i && i < history.size();

@ history.get(i) instanceof rep String);
@ public constraint \old(history.size()) <= history.size();
@ public constraint (\forall int i; 0 <= i && i < \old(history.size());
@ history.get(i).equals(\old(history.get(i))));
@*/

/*@ requires !obs.equals("");
@ assignable history.theCollection;
@ ensures history.size() == \old(history.size()+1)
@ && history.get(\old(history.size()+1)).equals(obs); @*/

public void recordVisit(String obs) {
history.add(new /*@ rep @*/ String(obs));

}

//@ requires g.equals("female") || g.equals("male");
//@ assignable gender, history;

//@ ensures gender.equals(g);
public Patient(String g) { super(g); history = new /*@ rep @*/ ArrayList(); }

}

Fig. 5. A JML specification of the class Patient. The invariant clause in a class declares an
invariant, and constraint declares a history constraint. The rep annotations declare ownership
properties. JML’s specification of List includes a data group named theCollection.

10 G.T. Leavens

The second invariant clause in part documents a design decision, since it says that
all elements of the List history are instances of type String. So it is closely related to
what some authors call a “representation invariant” [32, 54]. However, since history
is public for specification purposes, the invariant is public and visible to clients.

JML distinguishes instance invariants from static invariants. Instance invariants can
refer to the state of an instance of the enclosing type using the keyword this and the
names of instance (non-static) fields. Static invariants cannot refer to the state of an
instance. Both of the invariants in Fig. 5 are instance invariants.

2.4.2 History Constraints
History constraints are taken from Liskov and Wing’s work [55, 56], and specify a very
simple kind of temporal property. They are used to declare monotonic relationships that
are preserved by methods of a type.

The two constraint clauses in Fig. 5 declare two history constraints for the type
Patient. (Again, having two history constraints is equivalent to having one constraint
which conjoins the two predicates.) The first constraint says that the size of the history
list never shrinks; that is, the size of history is monotonically non-decreasing. The
second says that elements in the history list are never deleted.

In JML history constraints can be used to collect common postconditions, in much
the same way that invariants can be used to collect common pre- and postconditions.
For example, the ensures clause of the recordVisit method does not need to specify
that the elements of history are preserved, as this is implicit in the second history
constraint. This helps make specifications more understandable.

2.4.3 Initially Clauses
The initially clause in Fig. 5 on the preceding page gives a predicate that is to be true
in the post state of each (non-helper) constructor. It can thus be thought of as conjoined
to the postcondition for Patient’s constructor. In JML initially clauses can be used
to collect postconditions from constructors. While initially clauses are not involved in
reasoning about dynamic dispatch, they are useful for reasoning with invariants and
history constraints. When used with the invariants declared in a type, they provide a
basis for datatype induction. When used with history constraints the provide a basis
for computing the set of reachable object states. When an object is created its state
must satisfy each declared initially clause. When its state is mutated, the method doing
the mutation must satisfy each history constraint. Thus using an initially clause and a
history constraint one may restrict the set of reachable states for a type and its subtypes
in a way that would otherwise not be expressible.

In JML a type may have several initially clauses. As with invariants and history
constraints, writing multiple initially clauses in a type specification is equivalent to
writing one initially clause with the conjunction of their predicates. In the following the
phrase “the initially predicate” for a type refers to this conjunction.

2.5 Specification Inheritance

In JML specifications of subtypes inherit not only fields and methods from their super-
types, but also specifications. Thus, to fully understand the examples given so far, you
need to understand how JML’s specification inheritance works.

JML’s Rich, Inherited Specifications for Behavioral Subtypes 11

To explain specification inheritance it helps to fix a bit of notation for type specifica-
tions. For a type T , let added_invT be the invariant predicate declared in T ’s specifica-
tion (i.e., without inheritance), let added_hcT be the history constraint declared in T ’s
specification, and let added_initT be the initially predicate declared in T ’s specification.
Let supers(T) be the set of all supertypes of T (including T) and let methods(T) be the
set of all instance method names declared in the specifications of the types in a set T .
(For simplicity, I assume that statically overloaded methods have been distinguished by
adding to each method name a list of the method’s argument types; thus each method
name is associated unambiguously with a list of argument types. I also assume that there
is no shadowing of fields and that all overriding methods use the same formal parameter
names as the methods they override; these assumptions can also be made with no loss
of generality by use of renamings.)

For methods, I use the notation added_specT
m = (added_preT

m, added_postTm) for
the pre/post specification declared in type T for method m. Such a specification is the
join of the specification cases specified in type T for m. If there are no specification
cases in type T for method m, this notation should still be defined, but one has to dis-
tinguish two cases. If m is declared in T with no specification and is not overriding any
methods in T , then added_specT

m = (true, true). This corresponds to the JML default
specification, which places no limits on callers or on the implementation. However, if
m is not declared in T (and hence has no specification in T), then we want a method
specification that will not affect the join of other method specifications. Hence in this
case we define added_specT

m = (false, true), which is the identity with respect to the
join of method specifications. Appropriately, this least useful specification is also the
join of the empty set of method specifications,

⊔
∅.

As in Java, a JML specification for a type inherits instance field declarations from
its proper supertypes, including the modifiers (such as spec_public) and data group
declarations that are part of such field declarations. This inheritance applies to model
(and ghost) fields, as well as Java fields. As noted earlier, inheritance of such declara-
tions is important for making sense of predicates inherited from supertypes. Represents
clauses, which specify how to retrieve the values of model fields are also inherited in
JML. Overriding of (functional) represents clauses in subtypes presents semantic prob-
lems [52], and thus I will assume that the type checker prohibits it. Since represents
clauses and fields are merely collected and not combined like method specifications or
invariants, I omit them from the definition below.

With these conventions, the mechanism JML uses to inherit specifications can be
explained by constructing an extended specification [23, 42].

Definition 2 (Extended specification). Suppose T has supertypes supers(T), which
includes T itself. Then the extended specification of T is a specification such that:

methods: for all methods m ∈ methods(supers(T)), the extended specification of m
is the join of all added specifications for m in T and all its proper supertypes:

ext_specT
m =

⊔T
{added_specU

m | U ∈ supers(T)},

12 G.T. Leavens

invariant: the extended invariant of T is the conjunction of all added invariants in T
and its proper supertypes:

ext_invT =
∧
{added_invU | U ∈ supers(T)},

history constraint: the extended history constraint of T is the conjunction of all added
history constraints in T and its proper supertypes:

ext_hcT =
∧
{added_hcU | U ∈ supers(T)},

initially predicate: the extended initially predicate of T is the conjunction of all added
initially predicates in T and its proper supertypes:

ext_initT =
∧
{added_initU | U ∈ supers(T)}.

2.6 Examples of Specification Inheritance

Specification inheritance for invariants, history constraints, and initially clauses is sim-
ple. It simply conjoins the appropriate predicates from a type and its supertypes. For
example, the type FemalePatient specified in Fig. 6 would inherit these clauses from
Patient (see Fig. 5 on page 9). The history constraints and initially predicates are in-
herited without change. However, the invariant of FemalePatient is the conjunction of
the invariant added in Fig. 6 and the invariant of Patient (which is the conjunction of
the two invariants in Fig. 5).

public class FemalePatient extends Patient {
//@ public invariant gender.equals("female");

//@ assignable gender;
public FemalePatient() { super("female"); }

}
Fig. 6. A JML specification of the class FemalePatient

Specification inheritance for methods simply joins together all the method speci-
fications from a type and its supertypes. For example, the extended specification of
the isFemale method of Gendered from Fig. 1 on page 4 is just the specification
(true, Q), where Q is the postcondition from that figure. This is the extended speci-
fication because isFemale is not specified in any supertypes of Gendered. This same
specification for isFemale, (true, Q), is inherited unchanged by Animal, because Fig. 2
does not have any added specification cases for isFemale, so added_specAnimalisFemale is
the identity specification (false, true). Thus the extended specification for isFemale is⊔
{(true, Q), (false, true)}, which equals (true, Q). Similarly, isFemale has the same

extended specification in the classes Person and Patient.
A more interesting example is the setAge method. This method is specified for the

type Animal in Fig. 2 on page 5, and in its subtype Person in Fig. 4 on page 8. The
extended specification of setAge in type Person is thus the join of these two specifi-
cations. (This join is also inherited by the type Patient specified in Fig. 5 on page 9.)

JML’s Rich, Inherited Specifications for Behavioral Subtypes 13

Using the definitions given above, one can compute a single specification case that is
equivalent to this join. However, when reading a JML specification with multiple spec-
ification cases, it is not necessary to calculate the specification of their join. Instead, the
reader of such a specification just has to remember that each specification case must be
obeyed by a correct implementation. For this reason, the jmldoc tool shows the join us-
ing also instead of the more complex, calculated specification. For example, compare
the specification in Fig. 7 to that in Fig. 3 on page 7.

/@ requires 0 <= a && a <= 150; // from Animal
@ assignable age;

@ ensures age == a;
@ also
@ requires a < 0;

@ assignable age;
@ ensures age == \old(age);
@ also
@ requires \same; // from Person
@ assignable age, ageDiscount;
@ ensures 65 <= age ==> ageDiscount; @*/

public void setAge(int a);

Fig. 7. The join of the 3 specification cases for setAge for the type Person, presented as a join
of specification cases. In such contexts the precondition \same means the disjunction of the other
(non-\same) preconditions.

With specification inheritance it is impossible to make a method’s precondition strictly
stronger than what is inherited. Consider the class Senior specified in Fig. 8 on the next
page. At first glance, the setAge method in Fig. 8 seems to specify a method with a
stronger precondition than setAge’s extended precondition in Person, which is a <=
150. However, taking specification inheritance into account, the extended precondition
of setAge in Senior is the disjunction of a <= 150 and the precondition in the added
specification case, and hence is equivalent to a <= 150. Thus the argument to setAge can
legally be 18, for example, and in this case the Senior’s age will be set to 18.

Findler and Felleisen [28] note that it might be better for the specification language
to point out this situation as a problem. Since it is not possible with specification in-
heritance to strengthen an inherited precondition, it would be reasonable to disallow
what seem like attempts to strengthen a method’s precondition if there is no good use
for writing such a precondition. One reason for stating a stronger precondition would
be to say that some extra effects happen in a subset of the cases in which the method
may be called, as shown in Fig. 9 on the following page. However, such examples can
be specified without changing the precondition, as shown in Fig. 4 on page 8. Another
reason for writing a stronger precondition would be to redundantly specify some effect
of the method, to bring it to the reader’s attention. However, JML has a way to mark
redundant specification cases explicitly, by putting them in the implies_that section
or for_example sections of a method specification [40, 47]. So it may be sensible for
JML to at least give a warning if such a non-redundant method specification strengthens
the inherited precondition.

14 G.T. Leavens

public class Senior extends Person {
/*@ also

@ requires 65 < a && a <= 150;

@ assignable age;
@ ensures age == a;
@*/

public void setAge(final int a) { super.setAge(a); }

//@ requires g.equals("female") || g.equals("male");
//@ assignable gender, age;

//@ ensures gender.equals(g) && age == 66;
public Senior(final String g) { super(g); age = 66; ageDiscount = true; }

}

Fig. 8. A JML specification of the class Senior

/*@ also
@ requires 65 <= age;
@ assignable age, ageDiscount;

@ ensures ageDiscount; @*/
public void setAge(final int a);

Fig. 9. Specifying an extra effect in Person’s setAge method when 65 <= age

3 Supertype Abstraction

Subtyping causes a fundamental problem for reasoning about object-oriented programs.
The problem is that since one generally does not know the dynamic (runtime) type of
an object, the specification the object obeys is also unknown. Early discussions of this
problem focused on reasoning about dynamically-dispatched method calls [3, 4, 38, 43,
53], but the problem also applies to invariants, history constraints, and initially clauses.

To explain the reasoning problems caused by dynamic dispatch, consider Fig. 10 on
the next page. In that example, the isFemale method of the Gendered interface is called
on each element of the List argument s. This works even if the List contains objects of
different dynamic (runtime) types, thanks to dynamic dispatch.

The pre- and postconditions in this specification use universal quantifiers. In JML
a universal quantifier has the form (\forall T x; R(x); B(x)), which is true when
for all x of type T , if the range predicate R(x) holds, then B(x) holds. The modifier
nullable in the precondition is used to allow e to range over null as well as other
objects. By default declarations in JML do not allow null as a value, but null is a pos-
sible element of a List in Java. Thus the precondition says that all the elements of the
argument s must be instances of the type Gendered (and in particular not null). The
postcondition says that all elements of the result were in the argument s and are female.

To reason about the functional correctness of the females method in Fig. 10 one has
to know how to reason about calls to methods with possibly unknown specifications. For
example, e.isFemale() calls a method with a possibly unknown specification because
the exact dynamic type of e is unknown; all that is known is that it implements the
interface Gendered. The receiver e could represent a person, animal, or German noun.

JML’s Rich, Inherited Specifications for Behavioral Subtypes 15

/*@ requires (\forall nullable Object e; s.contains(e);

@ e instanceof Gendered);
@ ensures (\forall Gendered e; \result.contains(e);
@ s.contains(e) && e.gender.equals("female")); @*/

public List females(List s) {

List r = new ArrayList();
Iterator elems = s.iterator();
while (elems.hasNext()) {

Gendered e = (Gendered)elems.next();
if (e.isFemale()) { r.add(e); }

}

return r;
}

Fig. 10. A method that extracts a list of females

The technique of supertype abstraction [42, 43] uses the specification of the static
type of the receiver to reason about such calls. Thus, since e’s static type is Gendered,
supertype abstraction tells us to reason about the call e.isFemale() using the speci-
fication given in Fig. 1 on page 4. This specification has no precondition, so we can
conclude that the call returns true just when the gender of e is "female". This allows us
to conclude that e is only added to r if it is female, which helps establish the postcon-
dition of the method females.

However, supertype abstraction and the problems it solves are not limited to rea-
soning about method calls. The same technique of using static type information solves
problems in reasoning that uses invariants and history constraints [55] and also in rea-
soning that uses initially predicates. For example, if p is a variable that has static type
Patient (see Fig. 5 on page 9), then using supertype abstraction, one could look at the
invariant declared in type Patient, and conclude that p.age <= 150. Without super-
type abstraction this conclusion could only be made if one knew the invariant of the
dynamic type of p. Similarly, supertype abstraction works with history constraints. For
example, it would allow one to conclude, after invoking a method with receiver p of
static type Patient, that the size of p.history has not become smaller. Finally, su-
pertype abstraction works with initially predicates. For example, it would allow one to
prove the assertion in the following code fragment.

Patient p;
if (B) { p = new Patient("male"); } else { p = new FemalePatient(); }
//@ assert p.history.size() == 0;

Supertype abstraction was essentially invented by the first object-oriented program-
mers. It embodies the idea that objects of all subtypes of a type (including that type
itself) can be treated uniformly.5 These programmers reasoned (informally) that when-
ever they added a new proper subtype of an existing type to their program, unchanged
code would continue to work correctly even when it operated on these new objects. For

5 Conversely, reasoning using supertype abstraction embodies this treatment of each method
name and type as standing for a common behavior.

16 G.T. Leavens

example, if they added a proper subtype of Gendered to the program, they would expect
that the method females would still work correctly on objects of this new type.

Supertype abstraction is so ingrained in object-oriented thinking that it is hard to
imagine alternative ways of reasoning about dynamic dispatch. Yet doing so helps il-
lustrate the benefits (and limitations) of supertype abstraction.

An alternative to using supertype abstraction is to use the specification of each possi-
ble dynamic type of an expression’s value. For example, suppose we know that in a call
to the method females, the argument s only contains objects of type Person (which
must be a subtype of Gendered). Then we could use the specification of Person’s
method isFemale to reason about the call e.isFemale(). If e might have dynamic
types Person and GermanNoun, then we would have to consider two cases in the proof,
one for each of these specifications. In general, if e can have n different types, we
would have to consider n cases. The advantage of using supertype abstraction is that
we avoid this case analysis, since we only use a single specification, namely the one as-
sociated with Gendered. The disadvantage of supertype abstraction is that, since it does
no case analysis, it cannot exploit special properties of these subtypes, such as Person
or GermanNoun. Supertype abstraction thus trades specificity and reasoning power for
uniformity and simplicity of reasoning.

However, there is a way to sidestep this disadvantage of supertype abstraction by
moving the case analysis into the program’s code, using downcasts and type tests. An ex-
ample of this idea is given in Fig. 11, which takes an object of static type Gendered that
must dynamically have type GermanNoun (see Fig. 12 on the next page) or GreekNoun
(which is similar, but not shown). In Fig. 11 instanceof tests are used to do a case
analysis, and within the different cases the code does downcasts. Due to these down-
casts, one can again use supertype abstraction to reason about the variables gern and
grkn. In particular one can reason about the call gern.isMale() using the specification
of isMale() in the type GermanNoun. And one can use the invariant of GermanNoun to
conclude that if gern is neither female nor male, then it must be neuter. This shows how
case analysis (in code) and supertype abstraction (in reasoning) can be used together.
Thus insisting on supertype abstraction is not as limiting as it might at first appear.

Another advantage of supertype abstraction is that it permits reasoning with fe-
wer assumptions. In particular, reasoning that uses supertype abstraction can be valid

/*@ requires n instanceof GermanNoun || n instanceof GreekNoun;

@ ensures \result <==> n.gender.equals("neuter"); @*/
public boolean isNeuter(final Gendered n) {

if (n instanceof GermanNoun) {

GermanNoun gern = (GermanNoun) n;
return !(gern.isFemale() || gern.isMale());

} else {

GreekNoun grkn = (GreekNoun) n;
return !(grkn.isFemale() || grkn.isMale());

}

}

Fig. 11. A method that uses downcasts so that reasoning about calls can use both the special
properties of the dynamic types GermanNoun, GreekNoun, and supertype abstraction

JML’s Rich, Inherited Specifications for Behavioral Subtypes 17

public interface GermanNoun extends Gendered {

/*@ public instance invariant gender.equals("female")
@ || gender.equals("male") || gender.equals("neuter"); @*/

//@ ensures \result <==> gender.equals("male");

/*@ pure @*/ boolean isMale();
}

Fig. 12. A JML specification of a type GermanNoun. The type GreekNoun is similar

without assuming knowledge of all possible dynamic subtypes. In other words, super-
type abstraction does not need knowledge of a whole program, and permits reasoning
about programs that are open to the addition of new subtypes. For example, supertype
abstraction allows reasoning about the correctness of the method females using the
specifications of Gendered, without the need to know what dynamic subtypes are pos-
sible. Supertype abstraction allows reasoning about calls such as e.isFemale() even
before subtypes of Gendered, such as Person, have been written. In this sense super-
type abstraction is a modular reasoning technique.

4 Behavioral Subtyping

JML is designed to make supertype abstraction valid by making each type a behavioral
subtype of each of its supertypes. To do this, it uses specification inheritance [23, 42,
45, 47, 75, 79] and methodological restrictions on invariants, etc. [24, 62, 63].

Much of the material below is adapted from my work with Dhara [23] and Naumann
[42]. Interested readers should consult the latter [42] for details and proofs. I follow it in
defining behavioral subtyping using the concept of refinement of method specifications,
and in discussing the property needed from a methodology for invariants, etc.

4.1 Refinement of Method Specifications

Refinement is a binary relation on method specifications [42, 61]. Recall that T � spec
is a specification of a method that type checks with a receiver of static type T .

Definition 3 (refinement w.r.t. T ′, �T ′
). Let T ′ � spec′ and T � spec be specifications

of an instance method m, such that T ′ is a subtype of T . Then spec′ refines spec with
respect to T ′, written spec′ �T ′

spec, if and only if for all calls of m where the receiver’s
dynamic type is a subtype of T ′, every correct implementation of spec′ satisfies spec.

The refining specification, spec′ is stronger than spec in the sense that it restricts im-
plementations more than does spec. Thus it may be that fewer implementations satisfy
spec′ compared to those that satisfy spec. >From a client’s point of view, spec′ may be
more useful, while from the implementor’s point of view spec′ may be more difficult.

In the above definition, the condition on the receiver’s dynamic type allows a speci-
fication for method m in a subtype to refine m’s specification in one of its supertypes.

18 G.T. Leavens

(This condition would be dropped if one were considering refinement of Java static
methods or constructors, which have no receiver.)

For an example of refinement, I will show that the first specification case of setAge
in Fig. 2 on page 5 is refined by the specification given in Fig. 3 on page 7.6 Showing
this refinement means showing that if an implementation satisfies the specification in
Fig. 3, then it satisfies the specification for setAge given in Fig. 2. This is true, for
example, of the implementation given in Fig. 2, which satisfies both specifications, due
to the conditional. However, if this conditional were omitted and the method’s body
always assigned to age, then the body would still be a correct implementation of the
specification in Fig. 2. However, it would not correctly implement the specification in
Fig. 3. For example, with the omitted conditional, a call such as setAge(-1) would
assign to age, possibly violating the first conjunct of the ensures clause in Fig. 3. It
follows that the specification in Fig. 2 is not a refinement of the specification in Fig. 3.

4.1.1 Proving Refinements
To show that the specification in Fig. 3 really is a refinement of the first specification
case in Fig. 2, one must show that every implementation that satisfies this specification
satisfies the specification given in Fig. 2.

A general way to do such a proof is to prove a relationship between the specifications
in question. Java and JML’s type checking implies that if T ′ � (pre′, post′) is to refine
T � (pre, post), then T ′ must be a subtype of T . Furthermore, in Java, both must have
the same argument types. For simplicity, I will assume that the formal parameter names
are the same. I will also use the notation Spec(T ′) � P to mean that P is provable
using the semantics of Java and the specification of T ′. (Also, the notation && means
logical conjunction as in JML.) With these conventions we have the following theorem
[13, 42, 50, 64, 68].

Theorem 1. Let T ′ � (pre′, post′) and T � (pre, post) be specifications of an instance
method m, where T ′ is a subtype of T . Then (pre′, post′) �T ′

(pre, post) if and only if
the following two conditions hold:

Spec(T ′) � pre && (this instanceof T ′) =⇒ pre′ (3)

Spec(T ′) � \old(pre&&(this instanceof T ′)) =⇒ (post′ =⇒ post). (4)

Condition (3) says that the refinement’s precondition pre′ cannot make more assump-
tions than pre, except perhaps about the receiver’s type. Since subtypes inherit the fields
of their supertypes, pre makes sense for all objects of type T ′. Note that if both spec-
ifications are for the same type, T ′, then Java guarantees the receiver is an instance
of T ′ (or a subtype), and so in this case (3) just says that pre implies pre′. Condition
(4) says that whenever a call whose receiver has type T ′ satisfies pre, and the refine-
ment’s postcondition post′ is true, then post must hold. It can also be simplified if the
receiver types are the same (T ′), since in that case we can again ignore the conjunct
(this instanceof T ′).

6 This comparison ignores the second specification case in Fig. 2.

JML’s Rich, Inherited Specifications for Behavioral Subtypes 19

In the setAge example, we can prove (3), because 0 <= a && a <= 150 implies the
disjunction of that condition and a <= 150. And we can prove (4) because whenever
0 <= a && a <= 150 holds in the pre-state, and the postcondition of Fig. 3 holds, it
follows that age == a. We can ignore the assignable clauses in this proof, since they
are identical and in such a case JML’s semantics implies that the translation of the
assignable clauses will be the same.

An important point is that simplifying (4) by omitting its dependence on pre makes
the notion of refinement too restrictive (i.e., unable to prove some refinements that meet
the definition). For example, note that the postcondition of setAge in Fig. 3 does not
imply the postcondition in the first specification case of Fig. 2. To see this, consider
what happens if a is -1, in which case in the postcondition in Fig. 3 simplifies to
age == \old(age), which does not imply the postcondition in the first specification
case of Fig. 2, age == a. However, as we have just shown, (4) does hold for this ex-
ample. Thus a refining specification is unconstrained for states that do not satisfy the
precondition of the specification it refines.

4.1.2 Refinement and Assignable Clauses
Although assignable clauses can be considered as shorthand for part of a postcondition,
it is useful to be able to treat them separately in a proof of refinement. To do this,
suppose that the assignable clause of spec′ has the list L′ and that the assignable clause
of spec is L. Then one has to prove:

Spec(T ′) � \old(pre && (this instanceof T ′))
=⇒ (\only_assigned(L′) =⇒ \only_assigned(L)).

(5)

Doing this allows one to omit the translation of the assignable clauses in the proof of
(4). Informally, (5) means that the frame of spec′ can be more restrictive than that of
spec, but data group membership has to be decided based on the specification of the
refinement’s receiver type, T ′. That data group membership matters can be seen by
considering Fig. 13, where the subtype Animal’s specification is needed to show that
gen is a member of gender’s data group, and hence when at most the locations in the
data groups of gender and gen are assigned, then at most the locations in gender’s data
group are assigned [49].

//@ refines "Animal.refines-jml";
public class Animal implements Gendered {
/*@ also

@ protected behavior
@ assignable gender, gen;
@ ensures gen == g.equals("female"); @*/

public Animal(String g);

}

Fig. 13. A JML refinement file that refines the specification of the constructor in Fig. 2 on page 5.
The refines directive says that this file is to be used to refine the file Animal.java. The annota-
tion protected behavior says that this is a specification of protected visibility.

20 G.T. Leavens

4.1.3 Refinement of Binary Methods Such as equals
“Binary” methods, which operate on one or more arguments of the same type as the
receiver [7], pose special pitfalls for refinement (and hence for behavioral subtyp-
ing [55]).

These pitfalls can be demonstrated by considering Java’s equals(Object) method.
For example, consider a specification for Gendered’s equals method as in Fig. 14.
This is almost certainly an overly strong specification, since it allows no variation in
refinements (and hence in subtypes). The specification says that when two objects that
are subtypes of Gendered are compared, the method must return true just when their
genders are equal, and it must return false otherwise. Thus, this specification says that
the only attribute of an object of any subtype of Gendered that matters for equals is
the object’s gender. However, as in real life, other attributes do matter. For example, we
might wish to distinguish two objects of type Animal if they have different ages or if
they have different identities (i.e., if they are not ==). But, as the reader can check, such
specifications are not refinements of the one in Fig. 14.

A better way to specify the equals(Object) method is shown in Fig. 15. This is
a looser specification, since it allows the method to always return false. This freedom
allows refinements (and hence subtypes) to specialize the method by considering other
attributes of Gendered objects, such as their age or object identity. The specification in
Fig. 15 says (in the first ensures clause) that for the case where the argument obj is
an instance of Gendered, when the method returns true, then the argument must have
the same gender as the receiver. The reader should check that this allows the method to
return false even if the argument is an instance of Gendered and the genders are equal.

Two equivalent ways of writing this specification are given in the implies_that
section of Fig. 15 [40, 47]. The first ensures clauses following implies_that says that
when the argument is a Gendered object with a different gender, then the method returns

/*@ also
@ ensures obj instanceof Gendered
@ ==> \result == gender.equals(((Gendered)obj).gender); @*/

public /*@ pure @*/ boolean equals(/*@ nullable @*/ Object obj);

Fig. 14. A bad (unrefinable) specification of the equals method of type Gendered

/*@ also
@ ensures obj instanceof Gendered
@ ==> (\result ==> gender.equals(((Gendered)obj).gender));
@ implies_that
@ ensures obj instanceof Gendered

@ ==> (!gender.equals(((Gendered)obj).gender) ==> !\result);
@ ensures obj instanceof Gendered && \result
@ ==> gender.equals(((Gendered)obj).gender); @*/

public /*@ pure @*/ boolean equals(/*@ nullable @*/ Object obj);

Fig. 15. A good (refinable) specification of the equals method for the type Gendered. The section
following implies_that states redundant consequences of the specification. This implies_that
section can be omitted without changing the meaning of the specification.

JML’s Rich, Inherited Specifications for Behavioral Subtypes 21

false. The last redundant ensures clause is a logically equivalent way of writing the non-
redundant ensures clause that follows also.

This problem of overspecifying the equals method mainly affects types with im-
mutable objects, because for a type with mutable objects, the equals method should
usually be specified to compare object identities. However, this problem does occur in
real examples. For instance when we first specified the type java.util.Date we used
a specification of its equals method that only allowed comparison of the millisecond
times (written in a way similar to Fig. 14 on the previous page). However, this was too
strong because there could be subtypes, that need to distinguish objects based on other
attributes, such as a number of nanoseconds.

4.1.4 Using also to Make Refinements
JML makes sure that an implementation refines all specification cases given for it by
joining them together. This is the reason for the using also in the syntax to connect
specification cases. The connection between the join of specification cases using also
and refinement is shown in the following nice little theorem [13, 23, 40, 42, 50, 64, 80].
The proof assumes that \old() is monotonic in the sense that: (Q =⇒ P) =⇒
(\old(Q) =⇒ \old(P)).

Theorem 2. Suppose \old() is monotonic. Let T ′ � (pre′, post′) and T � (pre, post) be
specifications of an instance method m, where T ′ is a subtype of T . Then

((pre′, post′) �T ′
(pre, post)) �T ′

(pre, post).

Proof: Let m, T ′ � (pre′, post′), and T � (pre, post), be as stated. Theorem 1 gives
two conditions to prove using Spec(T ′). To show (3) we can calculate as follows.

pre && (this instanceof T ′)
=⇒ 〈by (P && I) =⇒ P 〉

pre
=⇒ 〈by P =⇒ (P ′ || P)〉

(pre′ || pre)

To show (4) assume that \old(pre && this instanceof T ′) holds. Since \old() is
monotonic by assumption, \old(pre) holds. Now we can calculate as follows.

(\old(pre′) ==> post′) && (\old(pre) ==> post)
=⇒ 〈by (X ′ && X) =⇒ X〉

\old(pre) ==> post
=⇒ 〈by assumption that \old(pre) holds〉

post

A more involved proof is needed to show that there is no better definition of the join
of method specifications; i.e., that the join of method specifications is their least upper
bound in the refinement ordering [13, 42, 50, 64]. This justifies the notation “�”.

4.1.5 Methodologies for Invariants
Besides refinement of method specifications, behavioral subtyping involves the other
elements of a type specification. Initially clauses and history constraints have not been

22 G.T. Leavens

studied in much detail in academic papers, but they are similar enough to invariants that
most research on invariants should apply to them. By contrast, invariants have been the
subject of much recent research in object-oriented programming methodology [5, 51,
62, 63, 65, 66]. The reason that invariants are such a focus of research is that they have
interesting interactions with aliasing, reentrance, and subtyping.

Aliasing can cause problems if objects contained in an object o are exposed to clients,
who may break o’s invariant without calling one of o’s methods.

Reentrance causes problems for invariants when a method being run on some re-
ceiver object o breaks an invariant temporarily, and then while still running, makes a
call that (eventually) runs a method whose receiver is o. In such a situation, the invari-
ant may not hold in the pre-state of the call back to o.

Subtyping causes problems because, in a subtype, invariants can be strengthened
[55]. However, since they can also be thought of as conjoined to the preconditions (and
postconditions) of instance methods, this means that a stronger invariant in a subtype
will strengthen the subtype’s precondition. But, as described in condition (3) of The-
orem 1 on page 18, strengthening the precondition of a refining specification is not
allowed. To see the problem, consider the dynamic dispatch code in Fig. 10 on page 15.
When the call is made to e.isFemale() and e has dynamic type Patient, how do we
know that the invariant of Patient holds in the pre-state of the execution of isFemale?

To resolve these problems, the essential insight is that some set of restrictions on pro-
grams, i.e., a programming methodology, is needed. A programming methodology must
validate the implicit assumption that each invariant holds in each (non-helper) method’s
pre-state [42, §2.3]. A programming methodology that allows one to safely assume in-
variants in pre-states is needed to validate reasoning with supertype abstraction, even if
invariants cannot be weakened in behavioral subtypes [42, Lemma 23].

There are, broadly speaking two general approaches that are being investigated for
such programming methodologies in the context of JML-like specification languages.

The first is the relevant invariant semantics [62, 63], which is based on an owner-
ship type system [24]. Ownership is used both to prevent problems of representation
exposure [54, 62, 66] and to deal with layered abstractions. Reentrance is dealt with by
mandating that invariants are established at the point of calling a (non-helper) method.

This approach is being investigated in the context of JML. Dietl and Müller have
integrated the Universe type system [24] into the JML checker, which can use owner-
ship annotations to check that specifications follow the methodology. In particular the
checker uses the rep annotations to indicate when contained objects are owned by an
enclosing object. For example, in Fig. 5 the rep annotation in the declaration of history
says that history is owned by the enclosing Patient object; i.e., that history is part
of the representation of Patient. The construction of a rep String object in the body
of recordVisit places the newly created string in the Patient object’s universe (own-
ership domain). Similarly, the rep annotation in the constructor’s new expression says
that the new object is in its owner’s universe. Type checking ensures that invariants
only depend on the state of owned objects and are never violated outside of the classes
in which they are declared. For example, the type system checks that the object referred
to by history is never exposed directly to clients, which would allow them to mutate it
in ways that would violate the invariant or history constraint of Patient.

JML’s Rich, Inherited Specifications for Behavioral Subtypes 23

The second approach is the “Boogie” methodology [5, 51, 65], which is used in the
specification language Spec#. To explain the Boogie methodology briefly, I will trans-
late it into JML terms. Suppose each object has a ghost field, which I will call validFor.
This ghost field could be declared in JML’s specification of Object as follows.

//@ public ghost Class validFor = null;

In JML a ghost field is a specification-only field, like a model field, but which is
not an abstraction of concrete fields. Instead, a ghost field is manipulated by using set
statements, which are written in annotations and thus considered part of the program’s
specification. However, the validFor field is special in that the Boogie methodology
only allows it to be assigned by two special statements pack(T) and unpack(T).

This field is used to weaken each declared invariant as follows. Suppose a type T
declares an instance invariant invT . The Boogie methodology transforms this invariant
into an implication: this.validFor <: \type(T) ==> invT . (In JML the operator <:
means “is a subtype of” and \type() is used to enclose type names in expressions.)
Thus this transformed invariant says that the declared invariant, invT , only has to hold
when this.validFor is a subtype of T . In the Boogie methodology, this transformed
invariant holds in every state, including the pre-state of each method. This is fundamen-
tal to solving the invariant problems.

In the Boogie methodology, one can only assign to the fields of an object o that are
declared in a type T when an object is “unpacked for T ,” meaning that o.validFor is
not a subtype of T . Unpacking an object is the job of the unpack(T) statement. When
done changing an object’s fields, one uses the pack(T) statement to check invT and
to set validFor to T . Thus, whenever the program is able to assign to the fields of an
object, that object must be unpacked, and hence the declared invariant does not have
to hold. This may seem complicated, but the special statements are often implicitly
wrapped around the body of a method using default annotations in Spec#.

Because it is based on dynamic manipulations of the validFor field, the Boogie
methodology is more flexible than the relevant invariant approach. For example, the de-
clared invariants do not have to be re-established on each call to a (non-helper) method,
since the object’s validFor field can be used to dynamically test whether the declared
invariant holds. However, as one can see from this translation, some of these ideas (like
the dependency of an invariant of part of a program’s state) can be used in JML to gain
some of the flexibility of the Boogie methodology. Whether these approaches can be
usefully blended together is an interesting problem for future research.

Fortunately, the validity of supertype abstraction does not depend on the details of
these methodologies. All that is needed is that they allow one to safely assume invariants
in the pre-states of non-helper methods [42].

4.1.6 Semantic Implication for Objects of a Type
Predicates used in invariants, history constraints, and initially clauses written in the
specification of a type T are written to use the fields (including model fields) and in-
stance methods of that type. Because these are inherited by all subtypes of T , they make
sense for all subtypes of T . In the following we will say that a predicate P is for T to
describe this association between a predicate and this type context; technically P is for
T if P type checks in the context of T , assuming that this has static type T . Note that

24 G.T. Leavens

if P is for T and T is a supertype of T ′, then P is also for T ′. This notion is used in
comparing the relative strength of invariants and history constraints.

Definition 4 (Implies for objects of type T ′). Let P ′ and P be predicates that are for
a type T ′. Then P ′ implies P for objects of type T ′ if and only if whenever this has a
dynamic type that is a subtype of T ′ and P ′ holds, then P holds.

It is a corollary that P ′ implies P for objects of type T ′ if and only if:

Spec(T ′) � this instanceof T ′ =⇒ (P ′ =⇒ P). (6)

4.2 A Definition of Behavioral Subtyping for JML

The following definition of behavioral subtyping strays a bit beyond the technical re-
sults in Leavens and Naumann’s recent work [42] because the definition also treats
history constraints and initially clauses. They only prove define behavioral subtyping
for types with pre/post method specifications and invariants. However, in adapting their
definition to JML I have followed the ideas in their work, which should again be con-
sulted for details.

JML supports two notions of behavioral subtyping. There is an experimental notion
of “weak behavioral subtyping” [20, 22, 23]. However, that notion relies on an untested
programming methodology [21] which JML does not currently enforce. Thus the most
important notion of behavioral subtyping for JML, which corresponds to Liskov and
Wing’s constraint-based definition [55, p. 1823], is the following.

Definition 5 (strong behavioral subtype). Let T ′ be a type specification and let T be
a specification for a supertype of T ′. Then T ′ is a strong behavioral subtype of T if and
only if:

methods: for all instance methods m in T , the method specification for m in T ′ refines
that of m in T with respect to T ′,

invariant: the instance invariant of T ′ implies the instance invariant of T for objects
of type T ′,

history constraint: the instance history constraint of T ′ implies the instance history
constraint of T for objects of type T ′, and

initially predicate: the initially predicate of T ′ implies the initially predicate of T for
objects of type T ′.

Notice that the definition above says nothing directly about constructors and thus ap-
plies equally well to Java interfaces. However, as Liskov and Wing emphasized [55, 56],
constructors are constrained by the invariant of each type. Furthermore, the initially
predicate in a type specification also constrains constructors.

Normally the concept defined above will be referred to as “behavioral subtyping.”
However, it is useful to keep in mind that the above definition is designed for JML and
how one reasons about JML programs using supertype abstraction. As discussed in the
next subsection, when working with a specification language X , one needs a definition
of behavioral subtyping that validates X’s notion of supertype abstraction [2, 38]. Thus
there really is no single, normative definition of behavioral subtyping.

JML’s Rich, Inherited Specifications for Behavioral Subtypes 25

4.3 Connection to Supertype Abstraction

The fundamental property of a definition of behavioral subtyping is that it makes super-
type abstraction valid [38, 42, 43]. Ideally, a definition would also be no stronger than
needed to make supertype abstraction valid. For example, since calls to constructors
and static methods are not directly involved in reasoning using supertype abstraction,
there is no need for a syntactic (or type) relationship between the constructors and
static methods of a behavioral subtype and its supertypes. However, the definition must
indirectly limit constructors and static methods (e.g., by enforcing invariants) so that
supertype abstraction is valid.

Thus, ideally, behavioral subtyping would be both necessary and sufficient for super-
type abstraction to be valid. To prove a theorem about this requires a precise formulation
of supertype abstraction. Leavens and Naumann [42] have given such a precise formula-
tion for reasoning with pre/post specifications about dynamically dispatched calls (i.e.,
in the absence of invariants, history constraints, and initially predicates). Their formu-
lation uses two semantics for such calls, the normal (dynamic) one and a static one.
With this notion of supertype abstraction, they shown that it is both necessary and suf-
ficient that each (non-abstract) class be a behavioral subtype of all its supertypes [42,
Corollary 13]. Somewhat surprisingly, it turns out that it is not necessary to have an in-
terface (or an abstract class) be a behavioral subtype of its supertypes. They conjecture
that with a suitable definition of supertype abstraction (i.e., one that allows reasoning
about invariants based on static type information) there is again such an equivalence for
specifications with invariants. However, their formal treatment only gives soundness in
this case, using some invariant methodology that validates the assumption of invariants
in method pre-states (see Section 4.1.5 on page 21).

The notion of supertype abstraction for JML described in this paper involves reason-
ing using pre/post specifications, invariants, history constraints, and initially predicates.
The definition of behavioral subtyping is designed to make the following true.

Conjecture 1 (Supertype abstraction valid). Suppose JML enforces sensible method-
ological restrictions on invariants, history constraints, and initially predicates.

Then supertype abstraction for JML is valid if and only if each non-abstract class C
is a behavioral subtype of all of its supertypes.

Proving a technically precise version of this conjecture would be an important check
on the definitions of the programming methodology, supertype abstraction, and strong
behavioral subtyping.

Although it is not necessary for the soundness of supertype abstraction, most treat-
ments of behavioral subtyping make interfaces and abstract classes also be behavioral
subtypes of their supertypes. JML does this also, through specification inheritance.

4.4 Connection to Specification Inheritance

With specification inheritance each subtype is forced to be a behavioral subtype of each
of its supertypes [23, 42]. The following uses the notation from Section 2.5 on page 10.

Theorem 3 (Specification inheritance forces behavioral subtyping). Let T and V
be types where T is a subtype of V . Then the extended specification of T is a strong
behavioral subtype of the extended specification of V .

26 G.T. Leavens

Proof: Let T and V ∈ supers(T) be given. We must show that the extended specifica-
tions of T and V satisfy Definition 5 on page 24.

methods: Let m be an instance method in methods(V). We show that ext_specT
m re-

fines ext_specV
m with respect to T by the following calculation.

ext_specT
m

= 〈by Definition 2〉⊔T {added_specU
m | U ∈ supers(T)}

= 〈by set theory, to separate out V and its supertypes〉⊔T {added_specU
m | U ∈ ((supers(T) \ supers(V)) ∪ supers(V))}

= 〈by definition of join with respect to T 〉(⊔T {added_specU
m | U ∈ (supers(T) \ supers(V))}

)
�T
(⊔V {added_specW

m |W ∈ supers(V)}
)

�T 〈by Theorem 2 on page 21, since T is a subtype of V 〉⊔V {added_specW
m |W ∈ supers(V)}

= 〈by Definition 2〉
ext_specV

m

invariant: We calculate as follows.

ext_invT

= 〈by Definition 2〉∧
{added_invU | U ∈ supers(T)}

= 〈by set theory, to separate out V and its supertypes〉∧
{added_invU | U ∈ ((supers(T) \ supers(V)) ∪ supers(V))}

= 〈by definition of conjunction〉(∧
{added_invU | U ∈ (supers(T) \ supers(V))}

)
∧
(∧
{added_invW |W ∈ supers(V)}

)
⇒ 〈by A ∧B =⇒ B〉∧

{added_invW |W ∈ supers(V)}
= 〈by Definition 2〉

ext_invV

history constraint and initially predicate: these implications follow by the same rea-
soning as the implication for the invariant above.

4.5 Examples of Behavioral Subtyping

The above theorem shows that, with specification inheritance, subtypes may only refine
and strengthen specifications they inherit from their supertypes. However, specification
inheritance can easily cause subtypes to not be satisfiable. For example, the invariant of
class OldAnimal specified in Fig. 16 on the next page can be violated by the inherited
setAge method, which is unsatisfiable, since no implementation of setAge will be able
to both satisfy the inherited specification case and the added invariant.

However, it is possible to strengthen an invariant without making the specification
unsatisfiable, as shown in the type FemalePatient from Fig. 6 on page 12. Liskov

JML’s Rich, Inherited Specifications for Behavioral Subtypes 27

public class OldAnimal extends Animal {

//@ public invariant 65 < age;

//@ requires g.equals("female") || g.equals("male");
//@ assignable gender, age;

//@ ensures gender.equals(g) && age == 66;
public OldAnimal(String g) { super(g); age = 66; }

}

Fig. 16. A JML specification of the class OldAnimal

public abstract class Dog extends Animal {

public static final int D2PY = 7; // conversion factor
private /*@ spec_public @*/ int dogAge = 0; //@ in age;
//@ public invariant dogAge == D2PY*age;

//@ assignable \nothing;
//@ ensures \result == dogAge;
public int getDogAge() { return dogAge; }

public void setAge(final int a) { super.setAge(a); dogAge = D2PY*age; }
/* ... */

}

Fig. 17. A JML specification of the class Dog

and Wing would call this type a “constrained” behavioral subtype [55] of Patient (see
Fig. 5 on page 9). FemalePatient’s invariant limits the values of the model field gender
to be the string "female". Unlike the situation with the strengthened invariant in the
type OldAnimal, there are no inherited methods that can change the gender, and hence
this added invariant does not make the extended specification unsatisfiable.

In addition to constraining choices allowed by supertypes, a behavioral subtype may
also add information and methods. Such a type is an “extension subtype” in Liskov and
Wing’s terminology [55]. The class Dog, given in Fig. 17, extends the type Animal in
this sense. Dog’s added invariant allows the specification of the method setAge to be
inherited without change. This invariant implies that in its supertype, since by specifi-
cation inheritance it is the conjunction of the added invariant and Animal’s invariant,
which is just the default (true). This subtype also adds method getDogAge.

5 Related Work

The present paper is based on a recent semantical account that has a formal treatment
of supertype abstraction and proves results about its connection to behavioral subtyping
and specification inheritance [42]. The following draws on that paper’s more detailed
discussion of related work.

28 G.T. Leavens

Several program logics for sequential Java incorporate a notion of supertype abstrac-
tion [62, 69, 70, 72]. They mostly require each overriding method implementation in a
type to satisfy the corresponding specification in each of its supertypes, which is effec-
tively the same as specification inheritance.

Liskov and Wing’s paper [55] also discusses the idea of supertype abstraction to
some extent. Their “subtype requirement” [55, p. 1812], says that properties of a su-
pertype hold for all subtypes. However, the properties they consider are only those
obtainable by inductive reasoning with invariants and history constraints, because they
consider concurrent programs and do not require alias control. Due to concurrency their
subtype requirement does not encompass the use of supertype abstraction to do pre/post
reasoning about the correctness of method implementations, although their definition of
behavioral subtyping is adequate for such reasoning if one were to consider a sequential
language and impose a methodology to deal with the problems of invariants described
in Section 4.1.5 on page 21. Liskov and Wing’s formalization of behavioral subtyping
uses abstraction functions. Abstraction functions are not needed in the formalization
presented here, because all fields (including model fields) are inherited in JML, which
makes the predicates used to specify supertypes automatically meaningful in subtypes.
They give many interesting examples of their notion of behavioral subtyping.

Dhara and Leavens [23] explained specification inheritance for Larch/C++ and gave
the first proof that it forces behavioral subtyping.

Wills introduced the idea of specification inheritance for combining “capsules” in
his Fresco system [79]. In Fresco one can write several “capsules” for a method, which
must all be obeyed by a correct implementation. Specification cases in JML are based
on this idea. The idea of combining separate specification cases first appeared in Wing’s
dissertation [80]. That work introduced the Larch family of behavioral interface speci-
fication languages [30, 81], which were a precursor of JML.

Eiffel [59], another precursor of JML, also has behavioral subtyping and a form of
specification inheritance. Mitchell and McKim describe an idea similar to the join of
method specifications in their chapter on inheritance [60, Chapter 6].

Early work on behavioral subtyping is surveyed in a paper by Leavens and Dhara
[41], including the work of America [3, 4], which has the first proof of the soundness
of reasoning in the context of behavioral subtyping.

6 Conclusions

JML is a cooperative effort to enhance the utility of specification languages and as-
sociated tools. While the concepts presented in this paper seem well established, many
challenges remain [46]. The main future work related to the present paper is limiting the
notion of specification inheritance by warning where it appears that the specifier is try-
ing to strengthen the precondition of an overriding method’s specification [28]. Static
analysis tools for JML could also warn when a subtype’s specification was inconsis-
tent, due to conflicts between inherited and added specifications. More work on JML’s
semantics, including a proof of Conjecture 1 on page 25 would also be interesting.

Specification inheritance in JML forces all subtypes to be behavioral subtypes. This
ensures that one can use supertype abstraction to do modular reasoning using static type

JML’s Rich, Inherited Specifications for Behavioral Subtypes 29

information. The key feature of JML that supports specification inheritance is JML’s
also, which automatically produces a refinement of the specification cases that it joins.

These ideas can also be used informally [54]. For example, when writing informal
documentation for a method, one can mimic JML’s use of also by starting with a phrase
like “In addition to the inherited behavior, this method . . . ”

Similarly, when designing a type as a subtype of various classes and interfaces, one
can keep in mind the demands of behavioral subtyping [19, 37, 59]. For example one
has to be careful not to strengthen the invariant of a class in a way that would con-
tradict the specification of inherited methods. One should be especially careful not to
overspecify when specifying binary methods, such as the equals method, which would
make behavioral subtypes unable to consider additional attributes.

Finally, the notion of behavioral subtyping validates informal reasoning based on
static type information. When the specifications associated with static types are not
sufficient to draw a desired conclusion, one can use type tests and downcasts to record
the need for stronger assumptions about the types of objects. This blends special case
reasoning with the uniformity of supertype abstraction.

Acknowledgments

Special thanks to David Naumann, who co-developed the theory behind this paper with
me [42], and with whom I have had many interesting conversations about this paper’s
topics. Thanks also to my other collaborators on topics related to behavioral subtyp-
ing: William Weihl, Krishna Kishore Dhara, Cesare Tinelli, and Don Pigozzi. Thanks
to Barbara Liskov for starting me on the topic of object-oriented programming, and for
her inspirational examples of how to explain ideas for programmers. Thanks to Jean-
nette Wing for her work on Larch, and for suggesting the Larch/C++ project, which
eventually led to JML. Thanks to Yoonsik Cheon for joint work on Larch/C++ and
to Al Baker, Clyde Ruby, and Tim Wahls for their collaboration on the initial design
of JML, including the core features described in this paper. Thanks to Patrice Chalin,
Yoonsik Cheon, Curtis Clifton, David Cok, Joseph Kiniry, Rustan Leino, Peter Müller,
Arnd Poetzsch-Heffter, Erik Poll and the rest of the JML community (jmlspecs.org)
for many discussions about JML, its design, semantics, and tool support. Thanks to
Samik Basu, Kristina Boysen, David Cok, Faraz Hussain, David Naumann, Hridesh
Rajan, Clyde Ruby, and Tim Wahls for comments on earlier drafts of this paper.

Bibliography

[1] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel, W. Mostowski,
A. Roth, S. Schlager, and P. H. Schmitt. The KeY tool. Software and System Modeling, 4:
32–54, 2005.

[2] S. Alagic and S. Kouznetsova. Behavioral compatibility of self-typed theories. In B. Mag-
nusson, editor, ECOOP 2002 — Object-Oriented Programming, 16th European Conference,
Máalaga, Spain, Proceedings, volume 2374 of Lecture Notes in Computer Science, pages
585–608, Berlin, June 2002. Springer-Verlag.

30 G.T. Leavens

[3] P. America. Inheritance and subtyping in a parallel object-oriented language. In J. Bezivin
et al., editors, ECOOP ’87, European Conference on Object-Oriented Programming, Paris,
France, pages 234–242, New York, NY, June 1987. Springer-Verlag. Lecture Notes in
Computer Science, volume 276.

[4] P. America. Designing an object-oriented programming language with behavioural subtyp-
ing. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, Foundations of Object-
Oriented Languages, REX School/Workshop, Noordwijkerhout, The Netherlands, May/June
1990, volume 489 of Lecture Notes in Computer Science, pages 60–90. Springer-Verlag,
New York, NY, 1991.

[5] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verification of
object-oriented programs with invariants. Journal of Object Technology, 3(6):27–56, 2004.
URL http://tinyurl.com/m2a8j .

[6] A. Borgida, J. Mylopoulos, and R. Reiter. On the frame problem in procedure specifications.
IEEE Transactions on Software Engineering, 21(10):785–798, Oct. 1995.

[7] K. Bruce, L. Cardelli, G. Castagna, T. H. O. Group, G. T. Leavens, and B. Pierce. On binary
methods. Theory and Practice of Object Systems, 1(3):221–242, 1995.

[8] M. Büchi and W. Weck. The greybox approach: When blackbox specifications hide
too much. Technical Report 297, Turku Center for Computer Science, Aug. 1999.
http://www.abo.fi/~mbuechi/publications/TR297.html.

[9] L. Burdy, A. Requet, and J.-L. Lanet. Java applet correctness: a developer-oriented ap-
proach. In K. Araki, S. Gnesi, and D. Mandrioli, editors, FME 2003: Formal Methods,
International Symposium of Formal Methods Europe, volume 2805 of Lecture Notes in
Computer Science, pages 422–439. Springer, Sept. 2003.

[10] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M. Leino,
and E. Poll. An overview of JML tools and applications. International Journal on Software
Tools for Technology Transfer (STTT), 7(3):212–232, June 2005.

[11] N. Cataño and M. Huisman. Formal specification of Gemplus’s electronic purse case study.
In L. H. Eriksson and P. A. Lindsay, editors, FME 2002, volume LNCS 2391, pages 272–
289. Springer-Verlag, 2002.

[12] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll. Beyond assertions: Advanced specifi-
cation and verification with JML and ESC/Java2. In Formal Methods for Components and
Objects (FMCO) 2005, Revised Lectures, Lecture Notes in Computer Science. Springer-
Verlag, 2006. URL http://tinyurl.com/o4nxa .

[13] Y. Chen and B. H. C. Cheng. A semantic foundation for specification matching. In G. T.
Leavens and M. Sitaraman, editors, Foundations of Component-Based Systems, pages 91–
109. Cambridge University Press, New York, NY, 2000.

[14] Y. Cheon. A runtime assertion checker for the Java Modeling Language. Technical Re-
port 03-09, Department of Computer Science, Iowa State University, Ames, IA, Apr.
2003. URL ftp://ftp.cs.iastate.edu/pub/techreports/TR03-09/TR. pdf. The au-
thor’s Ph.D. dissertation.

[15] Y. Cheon and G. T. Leavens. A simple and practical approach to unit testing: The JML
and JUnit way. In B. Magnusson, editor, ECOOP 2002 — Object-Oriented Programming,
16th European Conference, Máalaga, Spain, Proceedings, volume 2374 of Lecture Notes
in Computer Science, pages 231–255, Berlin, June 2002. Springer-Verlag.

[16] Y. Cheon and G. T. Leavens. A runtime assertion checker for the Java Modeling Lan-
guage (JML). In H. R. Arabnia and Y. Mun, editors, Proceedings of the Interna-
tional Conference on Software Engineering Research and Practice (SERP ’02), Las Ve-
gas, Nevada, USA, June 24-27, 2002, pages 322–328. CSREA Press, June 2002. URL
ftp://ftp.cs.iastate.edu/pub/techreports/TR02-05/TR.pdf .

JML’s Rich, Inherited Specifications for Behavioral Subtypes 31

[17] Y. Cheon and G. T. Leavens. The Larch/Smalltalk interface specification language. ACM
Transactions on Software Engineering and Methodology, 3(3):221–253, July 1994.

[18] Y. Cheon, G. T. Leavens, M. Sitaraman, and S. Edwards. Model variables: Cleanly support-
ing abstraction in design by contract. Software—Practice and Experience, 35(6):583–599,
May 2005.

[19] W. R. Cook. Interfaces and specifications for the Smalltalk-80 collection classes. ACM
SIGPLAN Notices, 27(10):1–15, Oct. 1992. OOPSLA ’92 Proceedings, Andreas Paepcke
(editor).

[20] K. K. Dhara. Behavioral subtyping in object-oriented languages. Technical Report TR97-
09, Department of Computer Science, Iowa State University, 226 Atanasoff Hall, Ames IA
50011-1040, May 1997. The author’s Ph.D. dissertation.

[21] K. K. Dhara and G. T. Leavens. Preventing cross-type aliasing for more
practical reasoning. Technical Report 01-02a, Department of Computer
Science, Iowa State University, Ames, Iowa, 50011, Nov. 2001. URL
ftp://ftp.cs.iastate.edu/pub/techreports/TR01-02/TR.pdf . Available from
archives.cs.iastate.edu.

[22] K. K. Dhara and G. T. Leavens. Weak behavioral subtyping for types with muta-
ble objects. In S. Brookes, M. Main, A. Melton, and M. Mislove, editors, Mathe-
matical Foundations of Programming Semantics, Eleventh Annual Conference, volume 1
of Electronic Notes in Theoretical Computer Science. Elsevier, 1995. Available from
http://www.sciencedirect.com/science/journal/15710661 .

[23] K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping through specification in-
heritance. In Proceedings of the 18th International Conference on Software Engineering,
Berlin, Germany, pages 258–267. IEEE Computer Society Press, Mar. 1996. A corrected
version is ISU CS TR #95-20c, http://tinyurl.com/s2krg .

[24] W. Dietl and P. Müller. Universes: Lightweight ownership for JML.
Journal of Object Technology (JOT), 4(8):5–32, Oct. 2005. URL
http://www.jot.fm/issues/issue_2005_10/article1.pdf .

[25] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Inc., Englewood Cliffs, N.J.,
1976.

[26] S. H. Edwards, W. D. Heym, T. J. Long, M. Sitaraman, and B. W. Weide. Part II: Specifying
components in RESOLVE. ACM SIGSOFT Software Engineering Notes, 19(4):29–39, Oct
1994.

[27] M. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering likely pro-
gram invariants to support program evolution. IEEE Transactions on Software Engineering,
27(2):99–123, Feb. 2001.

[28] R. B. Findler and M. Felleisen. Contract soundness for object-oriented languages. In OOP-
SLA ’01 Conference Proceedings, Object-Oriented Programming, Systems, Languages, and
Applications, October 14-18, 2001, Tampa Bay, Florida, USA, pages 1–15, Oct. 2001.

[29] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Extended
static checking for Java. In Proceedings of the ACM SIGPLAN 2002 Conference on Program-
ming Language Design and Implementation (PLDI’02), volume 37, 5 of SIGPLAN, pages
234–245, New York, June 17–19 2002. ACM Press.

[30] J. V. Guttag, J. J. Horning, S. Garland, K. Jones, A. Modet, and J. Wing. Larch: Languages
and Tools for Formal Specification. Springer-Verlag, New York, NY, 1993.

[31] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):
576–583, Oct. 1969.

[32] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, 1(4):271–
281, 1972.

32 G.T. Leavens

[33] B. Jacobs and E. Poll. Java program verification at Nijmegen: Developments and perspec-
tive. Technical Report NIII-R0318, Computing Science Institute, University of Nijmegen,
2003. URL http://www.cs.kun.nl/research/reports/full/NIII-R0318.ps.gz .

[34] B. Jacobs, J. van den Berg, M. Huisman, M. van Berkum, U. Hensel, and H. Tews. Rea-
soning about Java classes (preliminary report). In OOPSLA ’98 Conference Proceedings,
volume 33(10) of ACM SIGPLAN Notices, pages 329–340. ACM, Oct. 1998.

[35] C. B. Jones. Systematic Software Development Using VDM. International Series in Com-
puter Science. Prentice Hall, Englewood Cliffs, N.J., second edition, 1990.

[36] J. R. Kiniry and D. R. Cok. ESC/Java2: Uniting ESC/Java and JML: Progress and issues in
building and using ESC/Java2, including a case study involving the use of the tool to verify
portions of an Internet voting tally system. In Construction and Analysis of Safe, Secure,
and Interoperable Smart devices (CASSIS), volume 3362 of Lecture Notes in Computer
Science, pages 108–128. Springer-Verlag, 2004.

[37] W. R. LaLonde, D. A. Thomas, and J. R. Pugh. An exemplar based Smalltalk. ACM
SIGPLAN Notices, 21(11):322–330, Nov. 1986. OOPSLA ’86 Conference Proceedings,
Norman Meyrowitz (editor), September 1986, Portland, Oregon.

[38] G. T. Leavens. Verifying object-oriented programs that use subtypes. Technical Report 439,
Massachusetts Institute of Technology, Laboratory for Computer Science, Feb. 1989. The
author’s Ph.D. thesis.

[39] G. T. Leavens. An overview of Larch/C++: Behavioral specifications for C++ modules. In
H. Kilov and W. Harvey, editors, Specification of Behavioral Semantics in Object-Oriented
Information Modeling, chapter 8, pages 121–142. Kluwer Academic Publishers, Boston,
1996. An extended version is TR #96-01d, Department of Computer Science, Iowa State
University, Ames, Iowa, 50011.

[40] G. T. Leavens and A. L. Baker. Enhancing the pre- and postcondition technique for
more expressive specifications. In J. M. Wing, J. Woodcock, and J. Davies, editors,
FM’99 — Formal Methods: World Congress on Formal Methods in the Development
of Computing Systems, Toulouse, France, September 1999, Proceedings, volume 1709
of Lecture Notes in Computer Science, pages 1087–1106. Springer-Verlag, 1999. URL
http://tinyurl.com/qv84o .

[41] G. T. Leavens and K. K. Dhara. Concepts of behavioral subtyping and
a sketch of their extension to component-based systems. In G. T. Leav-
ens and M. Sitaraman, editors, Foundations of Component-Based Sys-
tems, chapter 6, pages 113–135. Cambridge University Press, 2000. URL
http://www.cs.iastate.edu/~leavens/FoCBS-book/06-leavens-dhara.pdf .

[42] G. T. Leavens and D. A. Naumann. Behavioral subtyping, specification inher-
itance, and modular reasoning. Technical Report 06-20a, Department of Com-
puter Science, Iowa State University, Ames, Iowa, 50011, Aug. 2006. URL
ftp://ftp.cs.iastate.edu/pub/techreports/TR06-20/TR.pdf .

[43] G. T. Leavens and W. E. Weihl. Specification and verification of object-oriented programs
using supertype abstraction. Acta Informatica, 32(8):705–778, Nov. 1995.

[44] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok. How the de-
sign of JML accommodates both runtime assertion checking and formal verifica-
tion. Science of Computer Programming, 55(1-3):185–208, Mar. 2005. URL
http://dx.doi.org/10.1016/j.scico.2004.05.015 .

[45] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behavioral interface
specification language for Java. ACM SIGSOFT Software Engineering Notes, 31(3):1–38,
Mar. 2006. http://doi.acm.org/10.1145/1127878.1127884 .

JML’s Rich, Inherited Specifications for Behavioral Subtypes 33

[46] G. T. Leavens, K. R. M. Leino, and P. Müller. Specification and verification chal-
lenges for sequential object-oriented programs. Technical Report 06-14, Depart-
ment of Computer Science, Iowa State University, Ames, Iowa, May 2006. URL
ftp://ftp.cs.iastate.edu/pub/techreports/TR06-14/TR.pdf .

[47] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. R. Cok, P. Müller, J. Kiniry, and
P. Chalin. JML reference manual. Department of Computer Science, Iowa State University.
Available from http://www.jmlspecs.org , Jan. 2006.

[48] K. R. M. Leino. Toward Reliable Modular Programs. PhD thesis, California Institute of
Technology, 1995. Available as Technical Report Caltech-CS-TR-95-03.

[49] K. R. M. Leino. Data groups: Specifying the modification of extended state. In OOPSLA
’98 Conference Proceedings, volume 33(10) of ACM SIGPLAN Notices, pages 144–153.
ACM, Oct. 1998.

[50] K. R. M. Leino and R. Manohar. Joining specification statements. Theoretical Comput.
Sci., 216(1-2):375–394, Mar. 1999.

[51] K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In M. Odersky,
editor, European Conference on Object-Oriented Programming (ECOOP), volume 3086 of
Lecture Notes in Computer Science, pages 491–516. Springer-Verlag, 2004.

[52] K. R. M. Leino and P. Müller. A verification methodology for model fields. In P. Sestoft, edi-
tor, European Symposium on Programming (ESOP), volume 3924 of Lecture Notes in Com-
puter Science, pages 115–130. Springer-Verlag, 2006. URL http://tinyurl.com/pzll8 .

[53] B. Liskov. Data abstraction and hierarchy. ACM SIGPLAN Notices, 23(5):17–34, May
1988. Revised version of the keynote address given at OOPSLA ’87.

[54] B. Liskov and J. Guttag. Program Development in Java. The MIT Press, Cambridge, Mass.,
2001.

[55] B. Liskov and J. Wing. A behavioral notion of subtyping. ACM Trans. Prog. Lang. Syst.,
16(6):1811–1841, Nov. 1994.

[56] B. Liskov and J. M. Wing. Specifications and their use in defining subtypes. ACM SIGPLAN
Notices, 28(10):16–28, Oct. 1993. OOPSLA ’93 Proceedings, Andreas Paepcke (editor).

[57] C. Marché, C. Paulin-Mohring, and X. Urbain. The KRAKATOA tool for certification of
JAVA/JAVACARD programs annotated in JML. Journal of Logic and Algebraic Program-
ming, 58(1-2):89–106, Jan.–Mar. 2004.

[58] B. Meyer. Eiffel: The Language. Object-Oriented Series. Prentice Hall, New York, NY,
1992.

[59] B. Meyer. Object-oriented Software Construction. Prentice Hall, New York, NY, second
edition, 1997.

[60] R. Mitchell and J. McKim. Design by Contract by Example. Addison-Wesley, Indianapolis,
IN, 2002.

[61] C. Morgan. Programming from Specifications: Second Edition. Prentice Hall International,
Hempstead, UK, 1994.

[62] P. Müller. Modular Specification and Verification of Object-Oriented Programs, vol-
ume 2262 of Lecture Notes in Computer Science. Springer-Verlag, 2002. URL
http://tinyurl.com/jtwot .

[63] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants for lay-
ered object structures. Sci. Comput. Programming, 62(3):253–286, Oct. 2006. URL
http://dx.doi.org/10.1016/j.scico.2006.03.001 .

[64] D. A. Naumann. Calculating sharp adaptation rules. Inf. Process. Lett., 77:201–208, 2001.
[65] D. A. Naumann and M. Barnett. Towards imperative modules: Reasoning about invariants

and sharing of mutable state. Theoretical Comput. Sci., 2006. To appear.
[66] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In E. Jul, editor, ECOOP ’98

– Object-Oriented Programming, 12th European Conference, Brussels, Belgium, volume
1445 of Lecture Notes in Computer Science, pages 158–185. Springer-Verlag, July 1998.

34 G.T. Leavens

[67] W. F. Ogden, M. Sitaraman, B. W. Weide, and S. H. Zweben. Part I: The RESOLVE frame-
work and discipline — a research synopsis. ACM SIGSOFT Software Engineering Notes,
19(4):23–28, Oct. 1994.

[68] E. Olderog. On the notion of expressiveness and the rule of adaptation. Theoretical Comput.
Sci., 24:337–347, 1983.

[69] M. J. Parkinson. Local reasoning for Java. Technical Report 654, University
of Cambridge Computer Laboratory, Nov. 2005. URL http://www.cl.cam.ac.uk/

TechReports/UCAM-CL-TR-654.pdf . The author’s Ph.D. dissertation.
[70] C. Pierik. Validation Techniques for Object-Oriented Proof Outlines. PhD

thesis, Universiteit Utrecht, 2006. URL http://igitur-archive.library.uu.nl/

dissertations/2006-0502-200341/index.htm .
[71] A. Poetzsch-Heffter. Specification and verification of object-oriented pro-

grams. Habilitation thesis, Technical University of Munich, January 1997. URL
http://tinyurl.com/g7xgm .

[72] A. Poetzsch-Heffter and P. Müller. A programming logic for sequential Java. In
S. D. Swierstra, editor, European Symosium un Programming (ESOP ’99), volume 1576
of Lecture Notes in Computer Science, pages 162–176. Springer-Verlag, 1999. URL
http://tinyurl.com/krjle .

[73] A. Poetzsch-Heffter, P. Müller, and J. Schäfer. The Jive tool. http://softech.

informatik.uni-kl.de/twiki/bin/view/Homepage/Jive , Apr. 2006. Checked August
2, 2006.

[74] E. Poll. A coalgebraic semantics of subtyping. In H. Reichel, editor, Coalgebraic Methods
in Computer Science (CMCS), number 33 in Electronic Notes in Theoretical Computer
Science. Elsevier, Amsterdam, 2000.

[75] A. D. Raghavan and G. T. Leavens. Desugaring JML method specifications. Technical
Report 00-03e, Iowa State University, Department of Computer Science, May 2005. URL
ftp://ftp.cs.iastate.edu/pub/techreports/TR00-03/TR. pdf.

[76] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: An extensible and highly-modular model
checking framework. In Proceedings of the 9th European Software Engineering Confer-
ence held jointly with the 11th ACM SIGSOFT Symposium on the Foundations of Software
Engineering, volume 28 number 5 of SIGSOFT Softw. Eng. Notes, pages 267–276. ACM,
2003.

[77] Robby, E. Rodríguez, M. Dwyer, and J. Hatcliff. Checking strong specifications using an
extensible software model checking framework. In Proceedings of the 10th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, volume
2988 of Lecture Notes in Computer Science, pages 404–420. Springer-Verlag, 2004. ISBN
3-540-21299-X.

[78] S. Stepney, R. Barden, and D. Cooper, editors. Object Orientation in Z. Workshops in
Computing. Springer-Verlag, Cambridge CB2 1LQ, UK, 1992.

[79] Specification in Fresco. In Stepney et al. [78], chapter 11, pages 127–135.
[80] J. M. Wing. A two-tiered approach to specifying programs. Technical Report TR-299,

Massachusetts Institute of Technology, Laboratory for Computer Science, 1983.
[81] J. M. Wing. Writing Larch interface language specifications. ACM Trans. Prog. Lang. Syst.,

9(1):1–24, Jan. 1987.

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 35 – 54, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Three Perspectives in Formal Engineering

John McDermid and Andy Galloway

Department of Computer Science, University of York
Heslington, York. YO10 5DD, UK

{jam, andyg}@cs.york.ac.uk

Abstract. We present three perspectives of the use of formalism in the
construction of High-Integrity Embedded Real-time Systems. In the first, we
describe the long-term research aims. The scope is the entire system, the goal is
to demonstrate intentional correctness, and the emphasis is on scientific
certainty. In the second, we present medium-term research aims. The scope is
more on the software in the system, and the emphasis shifts to the notion of
engineering confidence. Following on from the medium-term view we propose
a set of challenges for formal engineering methods research, based on our
perception of the technical issues surrounding the provision of viable
engineering solutions. In the third perspective we discuss the short term. In
particular, we describe how our recent research is attempting to meet some of
the proposed challenges, as a first step towards our medium and long-term
aspirations.

1 Introduction

The primary motivation for this paper is the question “How do we construct a system
and know that the fruit of our efforts behaves as we intended?” Due emphasis is
placed on the word intended, as opposed to specified. We are interested in whether a
system “does what we want” not just whether it “does what we say.”

The focus on intent is vital. Traditional development is inductive; the requirements
specification is the “base-case”, and validation and verification are the means
(“inductive steps”) by which we demonstrate correctness. By thinking immediately in
terms of the V&V model, we run the risk of avoiding essential considerations such as
whether our choice of base-case was a wise one.

In what follows we present three perspectives, long-term, medium-term and short-
term, on the use of formalism in the construction of High Integrity Embedded Real-
time Systems (HIRTS). In doing so, we aim to amalgamate our recent efforts on three
fronts. The long-term view is based on on-going work supporting the Grand
Challenges initiative. In it we begin to set out a view based on the aspiration of
scientific certainty. The medium-term perspective represents our endeavours to
provide a coherent technical framework, and “bigger picture”, for the aims of our
current research. The aspiration here is engineering confidence, rather than certainty.
Following the medium-term view, we present a set of challenges for research in
Formal Engineering Methods. We view the challenges in two ways: firstly as a

36 J. McDermid and A. Galloway

positive agenda for future work, given in terms of what we perceive as the
outstanding problems; and secondly, considering the items on that agenda as a
synergistic whole, as a set of potential pitfalls for proposed solutions to avoid – i.e. it
is both a “wish” list and a “watch out for” list. Finally, the short-term perspective
briefly describes our own research in attempting to meet some of these challenges.
The paper builds on ideas originally presented at ICFEM 98 [1].

2 The Long-Term

The systems we build are complex. They can contain digital software and hardware,
analogue electronics, and pneumatic, hydraulic and mechanical sub-systems. They
affect the real-world (temperatures, pressures, motions) in ways we have to
understand in order to predict what the systems we fabricate will actually do. Systems
also contain human beings – we sometimes make assumptions about human
responses, such as their expected physiological, psychological, rational or procedural
behaviour in particular situations. We may need to take into account all of these
factors in order to assure ourselves that what we have produced is what we intended
to produce.

In providing the long-term view of Formal Engineering, our aim is to present a
vision of intentional correctness based on the notion of scientific certainty. This may
seem at odds with the title of the paper, which explicitly mentions “Engineering” – a
term which one might define as the process by which we creatively apply different
sciences in order to produce something of value. However, our assertion here is that
having something to aim at helps. By considering the long-term, we hope to be able to
set better intermediate objectives for our work.

There are many computational models in Formal Methods, one of the most general
is Parnas’ 4-variable model [2]. Our long-term view is presented in terms of a
modification of Parnas’ model, which, along with an appropriate interpretation, serves
as a mathematical metaphor for our aspirations. The Parnas model distinguishes
monitored, input, output and controlled variables. Systems and their software
components are characterised in terms of various relations NAT, REQ, INPUT,
OUTPUT, SOFTREQ, which collectively describe the real-world (nature, the
input/output devices) and our requirements over it (how we want the real-world to be,
what the software does to achieve it). See section 3 for more detail. Variables (e.g.
monitored) are modeled as trajectories – functions from a dense time domain to the
vector of their prospective values. Relationships between variables are captured as
relations between their trajectories, e.g. between the monitored and controlled
variables. The relationships described between variables form the basis of rigorous
engineering documentation.

Since our metaphor is not intended as a basis for engineering practices we can be
more general; we do not insist on the variable classification and prescribed set of
relations (further justification for this is provided below). A system is characterised as
a single set of trajectories – a function from a dense time domain to the significant
variables of the system (their valuation function). Variables might represent any
quantity of significance: a temperature, the position of a stepper motor in an actuator,
the pressure on a human-operated inceptor, a digital electronic signal, a variable in a

 Three Perspectives in Formal Engineering 37

program. Variable values are generally real, and may exhibit both continuous and
discontinuous mathematical properties. Note that selecting which variables are
significant is itself a problem and one which we will leave open.

Another interesting issue is what the domains of the trajectories represent. One
interpretation is that each trajectory represents one possible use of the software from
power-up to power-down. However, this interpretation is probably over-restrictive.
Hardware can be reset during a mission, and environmental faults will persist during
the power cycle – intentional correctness is an ideal which spans more than single
uses of the software. For this reason, and for the metaphor to apply to persistent
components as well as software, we assume the domains represent entire missions,
although we leave the specific definition of mission open.

Before completing the metaphor, it is interesting to note that many other
formalisms can be interpreted as abstractions of the trajectory model. A Machine in B
might be said to abstract away time to leave behavioural ordering, and then
characterise the ordering by focusing on specific variables and relationships of
interest. The main variables of interest represent software state, and the relationship is
that of a step in state, along with how the input and output variables are allowed to
vary with that step1. It might be viewed as a set of first-order difference equations.
Likewise, basic CSP might be said to abstract time, but now the variables of interest
represent the willingness or refusal of processes to engage in shared actions.

The final step in the construction of our metaphor is to augment the trajectory
model with the notion of probability. Probability is key to our ideal of intentional
correctness. We cannot model everything; we cannot have an infinite set of variables
representing the world at sub-atomic level. Even if we could, we know uncertainty
and probability pervade all our models of reality, whatever lens we view the universe
through. Probability is vital when abstracting reality to a manageable set of variables.
For example, a shaft breaking in the gas turbine engine powering an aircraft is far less
likely to happen in a given time frame – thankfully – than a small change in ambient
temperature. Accordingly, the sets of trajectories associated with each phenomenon
have very different probabilistic weightings. Moreover, considering our intentional
view of correctness, there is no absolute notion of a system being correct. For
example, flying is an inherently risky business. The requirements on the system
cannot be stated as simply as “we are not going to kill anyone”, because, at least for
the present, we ARE. It is merely a question of whether the likelihood of that
happening is “tolerable”. If everything went wrong on an aircraft that could do
(including the pilot!) no piece of software, or wider notion of computation, is going to
avert a disaster – we might consider this the alternative “law of the excluded miracle.”
Instead, the fundamental requirement of our fabricated computations (software or
otherwise) is to mitigate the risk of something bad happening rather than stopping it
completely.

In order to capture essential considerations about probability we associate a
probability distribution with the set of trajectories. Once again we leave open
questions. In particular, we avoid the question of how the distribution is produced,
and indeed, how to integrate over its intervals. The metaphor is illustrated in Figure 1.

1 Note that we are not suggesting this is a correct, or the only, interpretation, just that

interpretation is possible.

38 J. McDermid and A. Galloway

trj P

Prob (trj)

Fig. 1. The Metaphor

It is now possible to state our intent – the basis against which correctness needs to
be demonstrated. The intent of the system can be given as limits on the probabilities
associated with particular sets of trajectories. We require the probability of bad things
happening (i.e. those associated with loss of life) to be below some limit, and the
probability of (only) good things happening (i.e. a useful outcome) to be above some
limit. To use mathematical rhetoric, if we had a logic expressive enough to identify
the trajectories of interest, and a property P expressed in this logic, then a
requirement is that:

is in some stipulated bisect of 0..1.
Clearly, we are avoiding answering many important questions, such as: how the

trajectories and their associated probabilities are calculated, how important classes of
trajectory and their limits are identified for requirements purposes, and how systems
are composed and refined. These questions are difficult to answer – and avoiding
some of them allows the metaphor to be more abstract. For example, any practical
theory is likely to be underpinned by a causal model, which characterises the
dependencies between phenomena of interest (e.g. faults, failures, hazards). The
variable classification monitored, input, output, controlled, might be seen as a first
step towards such a model – viewed this way the decision abstract away from the
classification is a natural consequence of the issues left open. In addition, although the
emphasis has been on probability, the distribution might, for practical purposes,
represent alternative weightings. In particular, the notions of risk and value are central

v
1
v2

v3

v
1
v2

v3

Trajectories of Interest Probability Distribution

 Three Perspectives in Formal Engineering 39

in resolving conflicting interests. Trajectory probabilities may be modified according
to severity and benefit, and certain limits (requirements) may be better expressed in
these terms than by probability alone.

Note that we are not proposing the metaphor as a mathematical framework for
developing systems – that is one of the reasons it is presented as a metaphor.
However, if the goal is scientific certainty, and given the complexity of the systems
we build, we are arguing that something of at least the expressive power implied by
the metaphor is necessary. Accepting this, the first thing to acknowledge is that
intentional correctness is a muti-discipline affair. The information repesented by the
metaphor has to be instantiated, and this can include, for example, techniques in,
material science, mechanical engineering, aerodynamics, psychology, control theory,
electrical engineering, statistical modelling, Markov modelling, causal modelling and
risk analysis. We must remain humble regarding our role in the big picture and to the
contribution of skilled others – we software engineers cannot demonstrate intentional
correctness by ourselves.

To reach the aspiration of scientific certainty, each of the techniques used to insert
information into the model must do so with scientific certainty. Considering the
magnitude of the questions left open in the description of the metaphor, the multi-
discipline nature of the problem, and the ambition of the scientific agenda, we do not
believe that long-term vision is going be a working reality any time soon!

3 The Medium Term

For the medium term view our aspiration is engineering confidence rather than
scientific certainty, and we now consider the targeted use of formalism within a wider
engineering process. The wider process, for example, can be assumed to help manage
the probabilistic and risk/value-based aspects of the metaphor presented in the
previous section. This occurs through the application of engineering judgement, along
with analysis techniques for structuring, gaining great confidence in, and articulating
the decision making process based on appropriate models (e.g. design representations,
fault trees, HAZOP, goal structuring notation etc.). In particular, not only is risk/value
assessed, but design changes (derived requirements) emerge out of this process, which
minimise risk (and maximise value). Thus, engineering discipline provides the link
from specification to intent, rather than some formal model (as implied by the
metaphor).

Formal development is widely seen as a way to achieve the extremely low failure
rates (cf the risk/value model) demanded for safety-critical software. Indeed, this
principle is embodied by a number of standards [3, 4]. However, whilst there are
good examples of the application of static program analysis techniques to safety-
critical software, e.g. [5], there are very few examples of the use of “classical” formal
approaches such as those based on the notion of refinement ([6] is a rare example).
Indeed, there are many practical and theoretical difficulties in applying such models.

The ideas presented in this section were borne out of endeavours to provide a
sound technical basis for the use of formal development within the wider engineering
context. This led to the identification of a set of practical challenges associated with
the development of safety-critical systems, based on our experience with a range of

40 J. McDermid and A. Galloway

avionics applications. The results were originally published in [7]. This section
reprises the technical proposals from [7], and in the next section we present a revised
and extended version of the challenges.

3.1 Development Models

In a safety-critical engineering setting we need to model the environment (air,
passengers, roads, etc.), the top-level system, e.g. an aero-engine, which we term the
“platform”, the control, or embedding, system, e.g. a Full Authority Digital Engine
Controller (FADEC) and the embedded system (computing system and software).
Moreover, we need to distinguish the variables (real-world quantities, logical values)
on either side of each interface – the metaphor presented in the previous section was
not practical in this respect. The distinction supports other engineering activities such
as causal and risk-based analysis, and resolves how different values of interest are
treated in the development (e.g. refinement) process. Few software development
models relate the software to the embedding system/environment. We have already
seen from the previous section that the Parnas’ four variable model does make such
distinctions; another example is Jackson’s Problem Frames [8].

Recall that Parnas’ model distinguishes monitored, controlled, input and output
variables. The first two represent the environment and/or platform; the control system
senses the monitored variables and attempts to control the environment by influencing
the controlled variables (both the sensing and influencing processes may be indirect
i.e. via other real-world variables). For example a FADEC senses cockpit thrust
demands, various air temperatures and pressures along with engine shaft speeds (the
monitored variables), and modifies fuel flow (amongst other things) in order to
influence the level of thrust (the controlled variable) in the required way.

The input and output variables are the values seen or produced by the computer –
perhaps the output of an analogue to digital (A/D) converter at the input, and the
contents of a register which goes through digital to analogue (D/A) conversion to
produce a current to drive a motor or valve.

Abstractly, requirements for the control system are stated in terms of relationships
over the monitored and controlled variables, whilst specifications for the computer
system are stated in terms of input and output variables. To give a complete
specification also requires a definition of the relationship between the monitored
variables and the inputs, as well as between the output variables and controlled
variables.

Jackson’s approach is not constrained to embedded systems, and so does not
identify specific classes of variables. It does however introduce the notion of domain
models, which encapsulate properties of the wider system; these can be used to
represent the nature of the environment, platform and embedding system. Thus, for
example, a domain model could be used to explain the relationship between the
monitored and input variables in Parnas’ approach.

In Parnas’ approach the behaviour of the physical environment (Nature) is
described by a relation, NAT. The basic model is illustrated in Fig. 2, which shows
the system decomposition on the left and the relationship of elements of the
specification set on the right:

 Three Perspectives in Formal Engineering 41

IN

System

S1 S2 S3 A1

Control Interface

REQ = restriction on NAT

Control loops, high level modes,
end to end response times, etc.

Control Computer & Software

OUT

Platform

SOFTREQ

Physical decomposition of
system, to sensors and
actuators plus controller.

SOFTREQ specifies what
control software must do.

REQ IN −> SOFTREQ −> OUT

Fig. 2. Representation of Parnas’ Four Variable Model

The arrows from the platform are the monitored variables; the reverse arrow is the
controlled variable. The input and output variables relate to the control computer and
software. The sensors (e.g. S1) map the monitored variables to inputs, represented by
relation IN, and the actuators (e.g. A1) map the outputs to the controlled variables,
represented by relation OUT. (Here we have made the decision to align IN and OUT
with elements of the embedding system.) REQ gives the required behaviour in “real
world” terms (environment and platform); SOFTREQ is the analogous specification
at the level of computing system and software. A control interface is also shown; this
would be a cockpit interface if the platform were an engine. The interface can be
thought of as a further set of monitored, controlled, input and output variables, albeit
with a very different inter-relationships determined by the design of other systems on
the aircraft.

In problem frames, the domain models would encompass necessary properties of
the environment, platform, the embedding system, the sensors and actuators – NAT,
IN and OUT in Parnas’ terms.

Both Parnas’ and Jackson’s approaches are relevant to the development of
embedded systems; but experience with embedded systems such as FADECs suggests
the need for an elaboration of these models. As a technical basis for our medium-term
perspective, we propose two orthogonal, but complimentary, enhancements of Parnas’
four variable model. The first enhancement identifies additional structure outside the
control computer, whilst the second focuses on the structure inside the computer.

3.2 Adding External Structure

An important practical consideration regarding domain modelling and the elucidation
of NAT, REQ, IN and OUT is how to manage the considerable complexity that may
be inherent. From our experience with aerospace applications we are aware of many
subtleties to be addressed. A key concern is to reflect better the role of the embedding
system, and to distinguish it from the environment and platform. Our view is that such

42 J. McDermid and A. Galloway

distinctions provide a useful basis for abstraction, and that they need to be
acknowledged and clarified within the development model. By achieving a greater
separation of concerns, we believe it will be easier to develop and validate
specifications and to handle change.

A further problem that we need to contend with is the difficulty of sensing key
properties of the environment/platform. For example it is not practical to manage
engine thrust directly – although it is a key controlled variable – instead it is necessary
to use surrogates such as shaft speed or engine pressure ratio.

Our first proposal is, therefore, to enhance the environmental model by adding
additional variables. Thus, in addition to monitored/controlled variables and
inputs/outputs, we might further distinguish:

• sensed and actuated variables: those real-world variables which directly affect (and
are directly affected by) the system under development, and which are influenced
by (and influence) the monitored (and controlled) variables;

• embeddingInput and embeddingOutput variables: those variables which represent
the inputs and outputs of the embedding system.

Thus, for instance, whilst REQ might still define the high-level requirements
(thrust in terms of demand), we could also distinguish EFFECTREQ over sensed and
actuated variables and EMBEDDINGREQ over EmbeddingInput and
EmbeddingOutput variables. We would also need to provide the equivalent of the
IN/OUT relations to define how the new variables are related. For example, INEmb
could describe the relationship between the real-world “sensed” variables and the
inputs to the embedding system. See Fig. 3.

We can illustrate the above principle by revisiting the earlier engine example. The
monitored variables are demands, temperatures, pressures and shaft speeds; the
controlled variable is thrust. The sensed variables are the same as the monitored
variables, whereas the actuated variable is fuel flow. The inputs to the embedding
system might be analogue electronic signals from several sensing devices (with
multiplex redundancy for some of the sensed variables). The output might be control
signals to a stepper motor which changes the “throat” on a control valve. Finally, the
inputs to the computer are digital representations of the analogue sensor inputs, and
the output is a digital representation of the stepper motor signal. The relation INEmb in
this context would relate the sensed input signals to the real-world variables they are
sensing – this might reflect assumptions, for instance, about “noise”.

It is now possible to state the relationships between the various abstractions:

EMBEDDINGREQ IN → SOFTREQ → OUT
EFFECTREQ INEmb → EMBEDDINGREQ → OUTEmb

Where ���� the appropriate refinement relation, and → represents composition of
Parnas’ relations. The above is a generalisation of the usual relationship between REQ
and IN, SOFTREQ and OUT. However, once in the “real world” this generalisation,
whilst valid, may be impractical to define as the relationships between
sensed/actuated variables and monitored/controlled variables are likely to be too

 Three Perspectives in Formal Engineering 43

INEmb

Embedding
System

S1 S2 S3 A1

Control Interface

Control loops, high level modes,
end to end response times, etc.

Control Computer & Software

OUTEmb

Real World (Platform/Environment)

Sensors/Actuators represent
Interface to real world.
Processing interface (DAC etc)

SOFTREQ specifies what
control software must do. EMBEDDINGREQ IN −> SOFTREQ −> OUT

EMBEDDINGREQ

Real World Influence

Sensed

Effect

Sensed/Monitored Effect Actuated
Controlled

Processing Interface

V1 V2 V3 V4 IN OUT SOFTREQ

REQ = restriction on NAT

EFFECTREQ = restriction on REQ (over influence)

High-level (e.g. Performance) Requirements

represents interface to software

EMBEDDINGREQ specifies what
embedding system must do. EFFECTREQ INEmb EMBEDDINGREQ OUTEMB −> −>

Monitored

Fig. 3. Elaboration of Environmental Model

complex to represent as IN/OUT style relations between interface2 variables (c.f.
closed-loop control). Instead we would propose the following:

NAT is defined as a relation over all monitored/controlled and sensed/actuated
variables, representing a model of the real world.

REQ is defined as a relation over monitored, controlled, sensed and actuated
variables, with the condition that:

NAT REQ

i.e. that REQ is consistent with (i.e. a refinement of) NAT. EFFECTREQ is defined as
a relation over sensed and actuated variables, with the condition that:

2 i.e. between monitored and sensed, and between actuated and controlled.

44 J. McDermid and A. Galloway

REQ \ ((monitored ∪ controlled) \ (sensed ∪ actuated)) EFFECTREQ

i.e. that EFFECTREQ is consistent with REQ (where all monitored/controlled
variables that are not also sensed/actuated variables have been hidden).

Finally, although we have distinguished an embedding system, for certain
applications there may be a hierarchy of embedding systems. Thus, it may be
desirable to distinguish more than one set of embedding system variables and
requirements etc. We presented the “simple” case as an example of the general case.

3.3 Adding Internal Structure

SOFTREQ is expressed rather monolithically. In fact there will be computing
hardware, application software and also other software elements, e.g. an operating
system, functions for managing faults, etc. Our second proposal is to elaborate the
four variable model as shown in Fig 4.

D
 a t

 a
S
 e l e

 c t
 i o

 n
IN

System

S1 S2 S3 A1

Control Interface

REQ = restriction on NAT

 HAL

Control loops, high level modes,
end to end response times, etc.

I/P O/P SPEC

I/P

Application

Control Computer & Software

Output Fn
Including

loop
closing

OUT

Platform

Input Fn
Including

signal
validation

Redefinition of
SOFTREQ

allowing for
digitisation noise,

sensor
management,

actuator
dynamics

data selection

O/P

Embedding System
Structure

A

F
M

Physical decomposition
of embedding system.

Defines FMA
structure.

C
o

n
tr

ol

 I/

F

Fig. 4. Representation of Software Structure

This expanded model shows further decomposition of the software specification,
reflecting the hardware structure of the embedding system. The control system
software will include device drivers (represented as I/P and O/P) which will map the
output of the sensors to meaningful values in software, e.g. the output of a 6 bit A/D
converter to a temperature in degrees C, represented as an Ada variable; similarly O/P
represents drivers for actuators (note these may be complex and read back values

 Three Perspectives in Formal Engineering 45

from actuators, running them “closed loop”). A hardware abstraction layer (HAL), or
primitive operating system, provides basic services such as scheduling, timers, etc.

The controller computer hardware is usually multiplex redundant, and there are
often multiple sources of sensed data. Thus there is fault management and
accommodation (FMA), or data selection, logic deriving “healthy” values from the
various inputs to provide validated data to the application. A “disconnect” is shown
between IN and I/P, and O/P and OUT to reflect that input/output variables may
correspond to different embedding system inputs and outputs depending on which
input values are selected. In highly critical applications, e.g. aircraft flight control, the
validation and data selection logic (dealing with redundant processing hardware,
sensors and actuators) might account for 80% or more of the embedded code.

In problem frame terms, the controller structure is another (part of the) domain
model. There is another important factor in such a development, the introduction of a
software architecture to structure the code. Jackson has been developing problem
frames in this direction [9]; this is important, but for brevity we focus here on more
“black box” specifications. Finally the definition of HAL seems to be a “free choice”;
in practice the application-programming interface (API) is likely to be defined by a
standard, e.g. ARINC653 [10].

4 Medium-Term Challenges for Formal Engineering

Following the medium-term perspective, the principal aim of a Formal Engineering
process is to maximise engineering confidence by:

• acknowledging the structure of the environment shown in Fig 3. (cf.
sensed/actuated, embeddingInput/embeddingOutput variables);

• respecting and supporting the physical and logical decomposition of the design,
such as that outlined in Fig 43.

To achieve this aim we believe there are several challenges to address. These are
presented in the remainder of the section, roughly split into essential challenges (those
that apply especially to high-integrity embedded systems and others (those which are
also important, but more general in their nature). Note that we have omitted critical
sociological issues, such as those associated with changes in engineering culture and
human communication, but we acknowledge their importance in deploying such
solutions.

4.1 Essential Challenges for High-Integrity Embedded Systems

The key challenges are as follows:

• Computational Models: Most formal methods represent computations using the
idioms familiar to us as Computer Scientists. For example, in Z, VDM or B we
think of an operation as an input, a change of state and an output – a set of
constraints distinguishes valid instances of the variables during this step. A

3 Further elaboration of the structure may be required to allow for more complex designs e.g.

distributed solutions.

46 J. McDermid and A. Galloway

control engineer, on the other hand, thinks of a processing system as
implementing a transfer function, that is a function from a set of inputs and their
differentials to a set of outputs and their differentials. There may be more
appropriate computational models than those we are presently using, e.g. for
expressing properties of interest and managing the shift from engineering (i.e.
intent) to computing (i.e. software specification) viewpoints.

• Abstraction and Refinement: In classical “IT” we are familiar with the process of
studying the environment in which the software will be used (systems analysis
and requirements analysis), providing an abstract specification for the intended
behaviour of the software, and refining that specification into an implementation.
We would argue strongly that this kind of approach is inappropriate for the
development of safety-critical embedded systems. The reason for this is that, as
we have seen, intent is a system-wide notion – shoehorning intent into the
software variable space has serious ramifications for abstraction and the process
of refinement.

Abstraction is crucial to formal development. Without supreme confidence in
the initial specification the use of formal verification can become irrelevant – one
might as well use traditional verification techniques as the main source of defects
will continue to be the specification. Abstraction is hard to employ at the
software interface. The data being manipulated is a reflection of real-world
properties, e.g. temperatures and pressures, making classical data abstraction of
little value. Other approaches, e.g. loose or algebraic specifications, are also of
limited relevance – it is necessary to specify precisely what happens under all
physically permissible circumstances to ensure safety, and so on.

The usual rules of refinement, e.g. weakening pre-conditions and
strengthening post-conditions, are also difficult to apply. For example,
requirements will be met under normal conditions and under certain classes of
input failure, but will be violated when inadequate input data is available. The
important thing to note is that the pre-condition representing “adequate input
data” cannot usually be expressed over the program variables; it is a “real world”
property. Thus, without adequate treatment of the problem structure external to
the software, one might have no recourse but to weaken the post-condition in this
situation. From a development process perspective, one abstract data value
(monitored), e.g. air pressure, may have multiple representations at different
points in the environment and software – “real-world”, “raw” values from
sensors, value after fault accommodation for that sensor, value after voting
between alternative data sources or derivation from other sensors etc. It is
difficult to see how these “design steps” accord with the classical rules of
refinement, especially if we are restricted to discussing only the variables within
scope of the software.

• The Environment: Clearly, one solution to the problems with abstraction and
refinement is to model the environment. However, this is not necessarily
straightforward. As we have seen from the long and medium-term perspectives,
once we step outside the software the mathematical relationships are continuous
(e.g. differential equations of motion) and discrete events (such as component

 Three Perspectives in Formal Engineering 47

failures) are probabilistic in nature. The challenge is how to represent this
information in a way that supports verification, rather than rendering its analysis
techniques (model-checking etc.) intractable.

In many ways this is the single most important technical factor in the
applicability of formal techniques to this domain – and if not the applicability of
formal techniques per se, then certainly of the literature that champions them.

• Link to Continuous Mathematics: Many embedded control systems employ some

form of continuous (e.g. closed-loop) control. The intent here is to manage the
transition between “stable” states (e.g. a demand), compensate for variance in the
environment, and avoid engineering “limits” (such as undue stress on materials).
The software achieves this by implementing discrete approximations to transfer
functions. Once again, the issue is how to relate the specification (SOFTREQ) to
the intent (REQ) – especially when control engineers are interested in continuous
properties such as the stability of the control strategies they adopt, yet ultimately
these must be implemented in the discrete world of software.

There are several issues. Firstly, the mathematics of discretisation produces
both functional and non-functional requirements. Functional requirements
involve not just the control algorithm (e.g. in proportional/integral terms), but
also constraints on mathematical precision and saturation etc., which make the
discrete algorithm valid with respect to its continuous counterpart. This “ideal to
real” transformation does not sit easily with the usual notion of refinement. The
non-functional requirements include for instance end-to-end timing constraints
(possibly across a distributed architecture), which are also essential to the validity
of the control algorithm. Reconciling functional and non-functional properties
within formal development can be difficult. Secondly, continuous analyses may
be partial and usually assume ideal conditions. When requirements are added to
knit together partial models, validate inputs and manage failure conditions, it is
important that these additional requirements do not adversely affect the
continuous dynamics of the system (e.g. inadvertently introduce discontinuities.)
These additional requirements often have an intimate relationship with the timing
properties of the system – e.g. the difference between what is judged to be a good
signal and a noisy signal depends upon how often the signal is processed.

Finally, when devising methods to bridge the continuous/discrete divide it is
essential we avoid “reinventing the wheel”. Certain aspects of development have
established solutions that work. For example, control theory is a Formal method;
it has been subjected to the same sociological validation as our “reductionist”
mathematical systems of set theory and logic. It would be hopelessly inefficient,
if not impossible, to try to reduce control theory to set theory and logic. Instead,
we need to find a way to co-exist peacefully with other techniques but do so
within a robust framework. Real-time techniques such as scheduling theory, and
numerical analysis, are also very important bodies of work that we need to reuse
rather than reinvent.

• Safety as a goal: In order for our techniques to be applied in situations that could

lead to loss of life, we have to be able to argue that they are safe enough. Every
system needs to carry a safety case (e.g. see [3]), and if we use technology across

48 J. McDermid and A. Galloway

the development of systems, then their associated safety cases will need to be
constructed on top of a generic soundness argument for that technology. It is
important to avoid safety-related pitfalls. For instance, providing a complex
transformation between two mathematical systems, when there is no suitable way
to validate the transformation or its implementation, may severely limit how the
technology can be used on real projects.

4.2 Other Important Challenges

We briefly outline three further challenges. These are less specific to safety-critical
embedded systems, but just as important as the above:

• Partiality of (and consistency between) models: Systems are complex. The

models presented in the medium-term perspective involve time, continuous and
discrete relationships; they can represent various phenomena, such as the real
world, a sequential computation or the patterns of communication across a
distributed architecture. The long-term perspective also involves uncertainty and
probability. No one formal development technique incorporates all of these
facets, and if it did, arguably, it would not be practical to use. On the other hand,
using separate techniques is also troublesome. Consistency across notations is
crucial; one needs to be able to validate mathematically unrelated models and
ultimately one has to be able to reconcile different viewpoints via an
implementation. One solution might be to use multi-perspective mathematical
models as a rendez-vous for the different views, with generic transformations
defined in advance for use by the developer – rather than using the multi-
perspective model itself. This is a broad research area, which encompasses work
on Hybrid Systems, Integrated Formal Methods, Unifying Theories of
Programming, and probabilistic extensions to existing notations (e.g. wp, process
algebra.)

• Cost of reasoning: Even before economic arguments are considered, our analysis

techniques need to be tractable – and this is especially the case for complex
(hybrid, probabilistic, multi-faceted) models. Automated techniques need to
consume reasonable levels of resources (time and space); manual techniques need
to be “man-sized”. For example, we do not want to see developers sifting through
thousands of supplied and derived hypotheses trying to find the formula needed
to unlock a proof.

Economic considerations are key to the practical value of formal techniques,
and are more subtle than “time in front of screen” measurements. Techniques
need to be predictable and provide rapid feedback (in the same way that, say,
testing does). Even if formal verification is a one-off activity this is difficult
enough: How much effort is involved in discharging a verification condition
(VC)? But this is an over simplification. What happens when VCs cannot be
discharged? What is the impact in terms of rework of correcting a defect? What is
the risk associated with leaving a VC undischarged, both to the product and to the

 Three Perspectives in Formal Engineering 49

process? All these considerations, and more, make up the complex “cost/value”
function that determines the usefulness of the techniques.

The effectiveness of reasoning techniques is improving thanks to the sterling
efforts of the theoreticians on model-checking (e.g. SAT) and automated theorem
proving. Formal Methodists should hold firm to their tenets of compositionality
and monotonicity. Perhaps more research is needed from traditional software
engineering schools on the measurement, management and risk analysis of formal
approaches.

• Requirements changes: Removing defects is one source of rework; another is
changes in requirements. Requirements changes are not (just) a product of bad
requirements engineering, they are a fact of life – i.e one cannot avoid the
problem by inventing technical solutions to add rigour to the specification phase.
Embedded systems are developed in a concurrent engineering environment, and
the engineering processes (e.g. at airframe level, at engine level, and control
system level) are processes of discovery. Hardware changes, mathematical
models need to be honed, derived requirements are produced to mitigate the risks
associated with loss of life, and so on. As a consequence the software
requirements change. Change is a complication that adds to the importance of the
“cost of reasoning” challenge. However, its impact on the development process is
more widespread than that, say, of defect correction. Processes need to be
iterative, and respecification and revalidation become important factors in cost.
Formal techniques need to be adaptive to change, and the perception is certainly
that they are not. Research into the application of Patterns (to proof, to
specification) (e.g. see [11]), and into Agile Methods for HIRTS (e.g. see [12]),
have the potential to improve practice in this area.

5 The Short Term

This section briefly describes the direction of the work we are currently engaged in,
especially how it aims, in the short term, to address some of the challenges outlined in
the previous section. The discussion is based on ideas developed through the
“Practical Formal Specification” (PFS) project e.g. [13,14,15], which ran4 for
approximately 10 years from 1996. PFS was principally funded by the UK Ministry
of Defence, with contributions from Rolls-Royce plc and BAE SYSTEMS. Initially
conceived as an investigation into how developers of safety-critical embedded
software could meet the spirit of the UK Defence Standards e.g. [3], later phases of
the project concentrated on concurrency and then tool-support. Results from the early
parts of the project are now supported by the “Simulink/Stateflow Analyser” (SSA)
[14,15], which extends The Mathworks’ Matlab/Simulink/Stateflow environment
(MSS). MSS includes graphical interfaces for specifying and analysing “control law”
block diagrams and hierarchical state machines in the State Charts style. SSA adds
facilities for annotating diagrams with assumptions, expressed as formal statements,
and provides deeper discrete reasoning capabilities via the generation and discharge
of “healthiness” proof obligations on models.

4 Although, we are optimistic the work will continue.

50 J. McDermid and A. Galloway

The emphasis in PFS has been on validation, with the assumption that other
technologies, such as ClawZ [16], would provide “route to code”. We have, and
continue to be, especially interested in the link from specification (in this case control
laws, state machines etc.) to intent – the primary motivation for this paper.

In essence PFS consists of two strands: a set of techniques for developing
“sequential” control software (where concurrency exists only for the purposes of
redundancy), and some additional proposals for use on solutions involving distributed
architectures. The sequential strand concerns the addition of annotations to state
machines and block diagrams, in the latter case as contracts over sub-systems. The
annotations are used to express the intent of the specifier; proof obligations (in Z) are
generated to demonstrate consistency between intent and specification. The emphasis
is on managing the complexity of formal statements through the use of tables (as
inspired by Parnas, Leveson etc.). This is now implemented in SSA. The distributed
strand adds to the sequential techniques, by allowing the specifier to provide
“communication interfaces” between subsystems, which describe how they interact
with their environment (performing blocking/non-blocking reads and writes, invoking
computations etc.). Further proof obligations are generated to demonstrate that the
distortion introduced by asynchrony does not violate consistency between the
specification and the expressions of intent (assumptions guaranteed by context etc.).
The formal underpinning for the distributed strand was originally expressed in terms
of an integration of B and CCS, called CGSL [17]. The distributed techniques are not
yet supported by SSA.

In the remainder of the section we will contrast what has been achieved so far with
PFS and SSA against some of the challenges described in the previous section. In
doing so, we aim to give more details of our work, identify some of the remaining
weaknesses and describe our aspirations for the short-term.

5.1 Computational Models

The sequential strand of PFS, as implemented in SSA, uses a contract language based
on the notion of a discrete transfer function. Behaviour is specified in terms of
relations whose input/output alphabet includes an arbitrary number of prior instances
of the variable of interest. Thus, contracts are able to capture information about
variables’ differentials as well as their current value. Similarly, abstraction in state
machines is achieved by defining a first-order assumption on the input variables: by
knowing some property held on the values that took the machine into a particular
state, and by knowing how those values change over the course of time, it is possible
to scope the values relevant to the outgoing transitions. We believe this model is
allied closely to that of the control engineers, and provides a natural medium for
expressing intent.

Consistency reasoning is supported by an elaboration of wp, which takes into
account previous instances of variables. The theory extends that presented in [18,19];
we believe the technique provides a greater degree of automation than that of
alternative approaches, for example the use of history variables.

The main immediate weaknesses in this area are: i) the wp theory has not been
subjected to rigorous validation; and ii) the distributed strand of PFS was not designed

 Three Perspectives in Formal Engineering 51

with the prior instances model in mind. For i) further work is required to show the
validity of the symbolic treatment of prior instances, especially given the challenge
associated with arguing that the techniques are “safe”. This might be achieved, say,
with respect to some more fundamental expression of behaviour – for example regular
wp over sequences of values. Future work associated with ii) has an interesting
Integrated Formalism perspective. At present, assumptions in the underlying
formalism have to be 0th order. Relaxing this restriction raises several issues
concerning the interaction between asynchrony, time and differential (prior instance)
assumptions. These issues are complicated by the essential difference between sample
time (of a sensor) and time after propagation (through a distributed computation).

5.2 Abstraction and Refinement

Despite our earlier comments, abstraction in PFS is based on looseness in the classical
“weaken pre-condition, strengthen post-condition” sense. Refinement (of a contract
into a sub-system design, possibly containing further contracts) amounts to logical
implication. There are alternatives, such as the retrenchment model [20]. However,
we were concerned about the possible misuse of its concession constructs. Instead we
would hope that by properly respecting the structure of the environment (see 5.3), we
can avoid having to retrench to fall-back requirements. However, retrenchment of
arithmetic types (e.g. infinite to finite, real to approximate) is a vital issue for linking
to the continuous mathematics (see 5.4).

Abstraction features prominently in the distributed strand of PFS. The main reason
for this is to minimise the cost of reasoning (and make it a tractable problem in the
first place). The computational model for the distributed strand includes time,
communications and data manipulation. Various abstractions are advocated, including
the removal of time, and use of symbolic techniques, from e.g. [21], to leave
properties over the data in the system (e.g. to show assumptions hold). Alternatively,
data might be removed to leave a pure (conservative) timing model (e.g. for end-to-
end timing etc.).

There are two main weaknesses in this area. Firstly methodological guidance in
PFS needs to be more robust, especially in respect of the structures outlined in
sections 3.2 and 3.3. The danger here is that weakening sets of assumptions in the
environment might lead to prohibitively expensive restructuring of the design (c.f.
cost of reasoning, requirements changes). Secondly, the abstraction techniques in the
distributed work have not been validated, and there may be an issue here concerning
arguing their soundness (c.f. safety as a goal). As a step towards greater maturity, our
aim in the future is to continue this work using the ������ notation [22].

5.3 The Environment

The main way environmental properties have to date been represented in PFS is
through the use of assumptions. For example, if a control algorithm has been designed
specifically for use in a particular situation (say engine above idle), then the
assumptions on the algorithm express this domain of applicability. This is inadequate
in two important ways. Firstly, there is no formal link between such assumptions and
the environment to which they pertain. That is, assumptions are produced on an ad

52 J. McDermid and A. Galloway

hoc basis, rather than derived from somewhere. For example, the environmental
model used to produce the control algorithm might have been produced by simulation,
or other empirical means, using control points selected from a particular domain.
There ought to be a symbolic link, transporting the domain assumptions between this
model and that of the design. Secondly, even on an ad hoc basis, there is only a
tenuous link between the variables over which the assumptions are stated and the
variables in the environment to which they apply. The assumptions are stated over
variables that have undergone input conditioning in various ways (value checks,
clamping, noise reduction) and may have been modified further due to fault
accommodation logic (input source selection, model value derivation, default value
setting). The practice of providing assumptions on an ad hoc basis carries with it the
precept that the variables in the environment are equivalent – they might not be; the
environmental variables might be outside the applicable domain whilst the “validated/
fault-accommodated” variables are inside. The result is that we lose formal control
over the weakening of the precondition and the introduction of detail.

In the future we hope to model more of the environment in order to address some
of these issues. However, this is by no means easy. The difficulty is in finding the
relevant abstractions needed to prove something of value, whilst avoiding
“reinventing the wheel” (c.f. link to continuous mathematics). In essence, this means
capturing enough information to provide rigorous validation of the parts of the
specification we have the least confidence in. This is very much an open question. But
we believe a good start will be to begin explicitly representing the structure described
in section 3.2. In this way we would hope to provide, and subsequently weaken, more
realistic assumptions on the system (e.g. sensors equal real world values, sensors
approximate real-world values, sensors approximate real-world values subject to a
tolerable set of failure circumstances etc.).

5.4 Link to Continuous Mathematics

Hitherto, the link to the continuous mathematical world in PFS has been through
abstraction (looseness). The aim has been to characterise enough of the algorithms
which derive from continuous models, via contracts, to validate the important discrete
features of the specification. I.e. a contract envelope is specified over a subsystem
which is tight enough to discharge important healthiness conditions (such as
assumptions guaranteed by context) but weak enough to avoid complex reasoning.
The characterisation is, we believe, made easier by the computational model, that of a
discrete transfer function. A detailed design for the subsystem described by the
contract – such as one produced via the discretisation of a continuous model – can
subsequently be proven consistent with that contract.

The reasoning is currently based on natural numbers, leading to scaling and
dimensionality issues, and there is no formal link to the continuous model in terms of
precision and saturation of arithmetic. At present this is achieved by conventional
means, i.e. analysis of continuous model for precision and saturation tolerances,
numerical and static analysis of the final code (e.g. see [23]). The retrenchment issue
is effectively avoided by deferring the problem to later in the lifecycle. Another
important issue is how (discrete) input validation and fault accommodation affect the
stability of control laws. I.e. the emergent properties of attempting to mitigate for

 Three Perspectives in Formal Engineering 53

failure, e.g. on continuity etc. This is an open problem. For brevity we omit a
discussion on time, which is largely left to real-time scheduling techniques.

6 Conclusions

We have presented three perspectives of Formal Engineering: our view of the long,
medium and short terms. Each has its associated set of goals (c.f. scientific certainty,
engineering confidence, steps in the right direction). Our aim has been to provide a
coherent landscape for research into the formal engineering of high-integrity
embedded control systems, describe a little of our recent work, and indicate its current
direction. The problems are complex, and in our opinion there is much work to be
done and many open research issues. We are hopeful that reaching the goals implied
by the medium-term perspective, at least, is a realistic aspiration.

References

1. John McDermid, Andy Galloway et al. Towards Industrially Applicable Formal Methods:
Three Small Steps, and One Giant Leap. In Proceedings of International Conference on
Formal Engineering Methods (ICFEM) 1998. IEEE Press, 1998.

2. D Parnas, J Madey. Functional Documents for Computer Programs. Science of Computer
Programming, Vol. 25, No. 1, 1995.

3. UK Ministry of Defence, Defence Standard 00-56 Issue 2: Safety Management
Requirements for Defence Systems. 1996.

4. Australian Department of Defence, Australian Defence Standard Def(Aust) 5679:
Procurement of Computer-based Safety Critical Systems. 1998.

5. A German. Software Static Code Analysis, Lessons Learned, Crosstalk. November 2003.
6. S King, J Hammond, R Chapman, A Pryor. Is Proof more Cost-Effective than Tesing?

IEEE Transactions on Software Engineering. Vol. 26, No. 8, 2000.
7. Andy Galloway, Frantz Iwu, John McDermid and Ian Toyn. On the Formal Development

of Safety-Critical Software, In Proceedings of Verified Software: Theories, Tools,
Experiments. To appear in LNCS. Springer. 2006.

8. M A Jackson. Problem Frames, Addison Wesley, 2001.
9. L Rapanotti, J G Hall, M A Jackson, B Nuseibeh, Architecture-driven Problem

Decomposition. In Proceedings of RE04. IEEE Computer Society Press, 2004
10. Airline Electronic Engineering Committee, ARINC, Supplement 1 to ARINC

Specification 653: Avionics Application Software Standard Interface, Standard 03-
116/SWM-89, Annapolis Maryland, 2003.

11. S. Stepney, F. Polack and I. Toyn. Patterns to Guide Practical Refactoring: examples
targetting promotion in Z. In Proceedings of ZB2003: Formal Specification and
Development in Z and B. LNCS 2651, Springer, 2003.

12. R. F Paige, H Chivers, J. A. McDermid, Z. R. Stephenson. High Integrity Extreme
Programming. Symposium on Applied Computing. ACM. 2005.

13. A. J. Galloway, T. J. Cockram and J. A. McDermid. Experiences with the Application of
Discrete Formal Methods to the Development of Engine Control Software. In Proceedings
of Distributed Computer Control Systems (DCCS) 98. IFAC - International Federation of
Automatic Control, 1998.

54 J. McDermid and A. Galloway

14. F Iwu, A Galloway, I Toyn and J A McDermid. Practical Formal Specification For
Embedded Control Systems. In Proceedings of the 11th IFAC Symposium on Information
Control Problems in Manufacturing, INCOM 2004. Salvador, Brazil April 5-7, 2004.

15. I Toyn and A Galloway. Proving Properties of Stateflow Models using ISO Standard Z
and CADiZ. In Proceedings of ZB 2005. LNCS 3455, Springer, 2005.

16. R Arthan, P Caseley, C O’Halloran and A Smith. ClawZ: Control Laws in Z. In
Proceedings of ICFEM 2000. S Liu, J A McDermid, M G Hinchey (Eds). IEEE Computer
Society, 2000.

17. Andy Galloway and James Blow. Multilayered Domain Specific Formal Methods. In
Proceedings of The Joint Workshop on Formal Specification of Computer Based Systems.
Washington DC, April 2001. University of Stirling. 2001.

18. James Blow and Andy Galloway. Generalised Substitution Language and Differentials, In
Proceedings of ZB2002: Formal Specification and Development in Z and B. Grenoble,
France, January 2002. LNCS vol. 2272. Springer. 2002.

19. J. R. Blow. Use of Formal Methods in the Development of Safety-critical Control
Software. DPhil thesis, Department of Computer Science, University of York. YCST-
2003-08. 2003.

20. M Poppleton, R Banach. Retrenchment, Refinement and Simulation. In Proceedings of ZB
2000. J P Bowen, S Dunne, A Galloway, S King (Eds). LNCS 1878, Spinger, 2000.

21. M. Hennessy and H. Lin. Symbolic Bisimulations, Theoretical Computer Science, no 138,
1995.

22. J. C. P. Woodcock and A. L. C. Cavalcanti. The Semantics of ������, in Proceedings of
ZB2002: Formal Specification and Development in Z and B. LNCS 2272, pp 184-203,
2002.

23. D. M. Atiya. On extending the SPARK toolset for reasoning about floating point
arithmetic: II. Technical Report, UTC, Department of Computer Science, University of
York. YUTC/TR/2005/06. 2005. (See also YUTC/TR/2005/01)

A Method for
Formalizing, Analyzing, and Verifying

Secure User Interfaces�

Bernhard Beckert and Gerd Beuster

Institute for Computer Science, University of Koblenz-Landau
beckert@uni-koblenz.de, gb@uni-koblenz.de

Abstract. We present a methodology for the formalization of human-computer
interaction under security aspects. As part of the methodology, we give formal
semantics for the well-known GOMS methodology for user modeling, and we
provide a formal definition of an important aspect of human-computer interaction
security. We show how formal GOMS models can be augmented with formal
models of (1) the application and (2) the user’s assumptions about the application.
In combination, this allows the pervasive formal modeling of and reasoning about
secure human-computer interaction. The method is illustrated by a simple eVoting
example.

1 Introduction

1.1 Overview

We present a methodology for the pervasive formal specification and verification of
user interfaces under security aspects. We define formal semantics for GOMS [10], a
well-established user modeling methodology. We augment formal GOMS models with
formal models of (1) the application and (2) formal models of the user’s assumptions
about the application. We adapt the common definitions of computer security to the
field of human-computer interaction (HCI). For Integrity, an important aspect of HCI
security, we provide a formal definition. In combination with a formal definition of
human-computer interaction (HCI) security, this allows formal reasoning about the se-
curity of user interfaces. Our approach is illustrated by a simple eVoting example.

While formal methods are used extensively in many fields of computer security, they
are rarely used in HCI—even for security critical systems. The reason is that HCI does
not deal with the interaction of two machines but with the interaction of a machine
and a human. While the behavior of a machine can be described precisely with formal
methods, human behavior is more difficult to describe in a precise way and it can be
formalized to a limited extend only. This makes comprehensive modeling of all aspects

� This work was partially funded by the German Federal Ministry of Education, Sci-
ence, Research and Technology (BMBF) in the framework of the Verisoft project un-
der grant 01 IS C38. The responsibility for this article lies with the authors. See
http://www.verisoft.de for more information about Verisoft.

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 55–73, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

56 B. Beckert and G. Beuster

of user behavior an unreachable goal. However, we argue that, nevertheless it is possible
to formally describe human behavior under computer security aspects.

Our approach addresses real world security threats and shows how to counter them.
It is directly applicable for the security evaluation of existing systems, as well as to the
specification of new systems.

Theusermodelingmethodologypresentedin thispaperisbasedonthewell-established
GOMS methodology [10]. GOMS is extensively used for the modeling of user behavior.
For our purposes, however, it has two weaknesses: A strict formal semantics is missing,
and GOMS models the user behavior independently from thebehavior of the system. Both
of these short-comings are overcome in this paper.

The structure of this paper is as follows. In Section 2, we develop a formal seman-
tics for GOMS models and illustrate it with an example. In Section 3, that example is
completed by adding components representing the application and the user’s assump-
tions about the application. In Section 4, the common definition of computer security
is adapted for HCI-security, an a formal definition of Integrity, an important aspect of
HCI-security, is developed. In Section 5, our approach is extended to hierarchical mod-
els. This allows the pervasive description of HCI security and to prove security for all
aspects of a user interface—from the pixel level up to high-level functionality of the
user interface. Finally, in Section 6, we summarize our work.

1.2 User Modeling Formalisms

User models are routinely used in computer system usability studies. Such user models
usually draw on psychological models of the user. They model the user’s tasks, goals,
motivations, etc. While this is essential under a usability point of view, it makes a com-
prehensive formal modeling of the effects of user actions infeasible because complex
psychological activities can be modeled to a limited extend only. From a usability point
of view, this is not necessarily a severe drawback. To guarantee a certain level of us-
ability, it suffices to give plausible evidence that the application’s interface is usable,
assuming certain goals and behaviors of the user. Security, however, requires a stricter
notion of human-computer interaction. While a usability glitch in some dialog win-
dow may decrease the general usability of the application a bit, a security glitch can
have more severe consequences. Even worse, a security glitch will encourage attackers
to seek methods to actually exploit the glitch. The different view on the user and the
different goals of usability and security, make it possible and advisable to apply formal
methods to security aspects of user interfaces with user models adapted to the particular
needs of security.

The computer security problem of proper visual representation of system state is ad-
dressed by Duke, Harrison, and others in a number of papers[1,6,7,8]. Their focus is to
define the relationship between the functional component and the representational com-
ponent of applications. In [8], they present a theory of how to describe representations
of system state. Our approach is orthogonal to the approach of Duke et al. We present a
formal method to reason about correspondonce of the application’s state and the user’s
representation of the state under the assumption that the visualization is adequate.

Process oriented formalisms like the well known PIE model developed by Dix and
Runciman [5] and its more recent variations (e.g. [4]) allow to describe the interaction of

A Method for Formalizing, Analyzing, and Verifying Secure User Interfaces 57

the system and a user formally, but they focus on describing the computer system’s side
of the interaction. In PIE, the behavior of a user interface is described by a sequence of
commands (issued by the user) leading to a sequence of effects. While PIE and similar
formalisms put an emphasis on describing the I/O behavior of a computer system and
are suitable for automated reasoning (e.g., with model checkers), other approaches like
Task Knowledge Structures (TKS) [9], (Extended) Task Action Grammar ((E)TAG) [2],
and Goals Operators Methods Selection-rules (GOMS) [10] focus on providing cogni-
tive models of the user. TKS provides an explicit representation of the cognitive model
of the user. GOMS is more oriented towards psychological analysis of user behavior
and timed measurement of user activity. TAGs allow a precise formal description of the
user actions, the user’s knowledge and the user’s internal representation of the system
(what the user thinks about the system).

We base our formalization on GOMS, because GOMS is a well established formal-
ism, and—in the incarnation CMN-GOMS [10]—it allows to describe user models hi-
erarchically. This is an important property for modeling a user interface under security
aspects because of the large variety of errors in human-computer interaction. Some of
these errors are on a very low level (for example, the user may push the mouse but-
ton twice instead of once), while others are on a very high level of abstraction (e.g.,
the user may misinterpret the meaning of an error message). A hierarchical modeling
mechanism allows to model all kinds of errors within one formalism. GOMS models
are semi-formal. We provide formal semantics for GOMS models. The formal GOMS
model is augmented by formal models of the application and formal models of the user’s
assumptions about the application. With a formal definition of secure human-computer
interaction, this allows to determine the security of a user interface by automated rea-
soning.

2 Formal Semantics for GOMS User Models

In this section we define formal semantics of GOMS models. In Section 2.1 the formal
methods used throughout this paper are defined. Based on these formal methods, for-
mal semantics for GOMS are defined in Section 2.2, and the example used throughout
this paper is introduced. In Section 2.3, the formal semantics are extended by defining
semantics of selection criteria. In combination with the formal model of the application
(Section 3), and a formal definition of HCI security (Section 4), automated reasoning
about the security of a HCI interaction model becomes possible.

2.1 Components

Our methodology for the formal description of and reasoning about GOMS makes use
of Input Output Labeled Transition Systems (IOLTS) and Linear Temporal Logic (LTL).
Below, we define these concepts and some related notions used throughout this paper.

Definition 1. A Labeled Transition System (LTS) is a tuple L = (S , Σ, s0,→) where
S is a set of states, s0 ∈ S is an initial state, Σ is a set of labels, and→ ⊆ S ×Σ × S
is a transition relation. We use the notation p σ−→ q for (p, σ, q) ∈ →.

58 B. Beckert and G. Beuster

Definition 2. An Input Output Labeled Transition System (IOLTS) is an LTS
L = (S , Σ, s0,→) with Σ = Σ? ∪Σ! ∪ΣI . We call Σ? the input alphabet, Σ! the
output alphabet, and ΣI the internal alphabet.

We use state transition diagrams to visualize IOLTS. An example is shown in Figure 1.

Σ? Σ!
s0

s2 s3s1
σ?

σ!σ!

s5 s6s4

σ?
σ!σ!

Fig. 1. State Transition Diagram representation of an IOLTS

The combination of two IOLTSs La and Lb where the output alphabet of La is the
input alphabet of Lb is called a composition:

Definition 3. Let La = (Sa , Σa , s0a ,→a), Lb = (Sb , Σb , s0b ,→b) be two IOLTS with
Σ!a = Σ?b . The composition (La || Lb) = (S , Σ, s0,→) of La and Lb is defined by:

S = Sa × Sb

Σ? = Σ?a

Σ! = Σ!b
ΣI = ΣIa ∪ΣIb ∪Σ!a
s0 = (s0a , s0b)

→ = {((sa , sb), σ, (s ′a , sb)) | sa σ−→a s ′a with σ ∈ Σ?a ∪ΣIa} ∪
{((sa , sb), σ, (sa , s ′b)) | sb

σ−→b s ′b with σ ∈ Σ!b ∪ΣIb} ∪
{((sa , sb), σ, (s ′a , s ′b)) | sa

σ−→a s ′a and sb
σ−→b s ′b with σ ∈ Σ!a}

Often, components are combined by mutual composition. In mutual composition, the
output of La serves as input for Lb , and the output of Lb serves as input of La (this is
illustrated in Figure 2).

Definition 4. Let La = (Sa , Σa , s0a ,→a) and Lb = (Sb , Σb , s0b ,→b) be IOLTS.
We assume the input and output alphabets of La and Lb to consist of internal and ex-

ternal subsets, where the internal input is denoted with Σ?I , the external input with Σ?I ,
the internal output with Σ!I , and the external output with Σ!E. And we demand that
these subsets are chosen such that Σ!Ia = Σ?Ib and Σ!Ib = Σ?Ia .

Then, the mutual composition (La ||m Lb) = (S , Σ, s0,→) of La and Lb is defined
by:

A Method for Formalizing, Analyzing, and Verifying Secure User Interfaces 59

S = Sa × Sb

Σ? = Σ?Ea ∪Σ?Eb

Σ! = Σ!Ea ∪Σ!Eb

ΣI = ΣIa ∪ΣIb ∪Σ!Ia ∪Σ!Ib

s0 = (s0a , s0b)

→ = {(sa , sb), σ, (s ′a , sb)) | sa σ−→a s ′a with σ ∈ Σ?Ea ∪Σ!Ea ∪ΣIa} ∪
{(sa , sb), σ, (sa , s ′b)) | sb

σ−→b s ′b with σ ∈ Σ?Eb ∪Σ!Eb ∪ΣIb} ∪
{(sa , sb), σ, (s ′a , s ′b)) | sa

σ−→a s ′a and sb
σ−→b s ′b with

σ ∈ Σ!Ia ∪Σ!Ib}

Σ!Ia

B
Σ?Ea Σ?Eb

A
Σ!EbΣ!Ea

Σ!Ib

Fig. 2. Mutual composition of IOLTSs

The input/output behavior of a component is described by traces, which are (possibly
infinite) sequences of elements from the alphabet Σ, and paths, which are correspond-
ing sequences of states.

Definition 5. LetL = (S , Σ, s0,→)be an IOLTS. Then, a path is a sequence 〈s0, s1, . . . 〉
of states from S with si → si+1 for all i ≥ 0. A trace (of L) is a sequence 〈σ0, σ1, . . . 〉 of
elements of Σ such that there is a path 〈s0, s1, . . . 〉 with si

σi−→ si+1 (i ≥ 0).

We use Linear Temporal Logic (LTL) to describe properties of components. The syntax
of LTL is defined as usual, i.e., given a set P of atomic propositions, LTL formulae φ
are constructed inductively by:

φ ::= p | φ ∨ φ | φ ∧ φ | ¬φ | Xφ | φUφ | Gφ | Fφ (p ∈ P)

Now, we can use IOLTSs to interpret LTL formulas—in combination with valua-
tions λ that map atomic propositions to the states in which they are true. The satisfaction
relation is extended to more complex formulae as usual.

Definition 6. Given an IOLTS L = (S , Σ, s0,→) and a set P of atomic propositions,
a valuation λ is a mapping from P to S . An atom p ∈ P is said to be true in s ∈ S iff
s ∈ λ(p).

60 B. Beckert and G. Beuster

Given a path c = 〈s0, s1, . . .〉, by ci we denote the sub-path of c starting at si .
Whether an LTL formula φ is satisfied by a path c and a valuation λ, denoted by

L, λ, c |= φ, is inductively defined as follows:

– L, λ, c |= �
– L, λ, c |= φ if φ ∈ P and s0 ∈ λ(φ)
– L, λ, c |= ¬ φ if not L, λ, c |= φ
– L, λ, c |= φ ∧ ψ if L, λ, c |= φ and L, λ, c |= ψ
– L, λ, c |= φ ∨ ψ if L, λ, c |= φ or L, λ, c |= ψ
– L, λ, c |= Xφ if L, λ, c1 |= φ
– L, λ, c |= φUψ if (a) L, λ, c |= ψ or (b) there is some i ≥ 1 s.t. L, λ, ci |= ψ and

L, λ, ck |= φ for all 0 ≤ k < i
– L, λ, c |= Gφ if L, ci |= φ for all i ≥ 0
– L, λ, c |= Fφ if L, ci |= φ for some i ≥ 0

An LTL formula φ is said to be satisfied by a valuation λ, denoted by L, λ |= φ, iff
L, λ, c |= φ for all paths c of L. And φ is said to be satisfied by L, denoted by L |= φ iff
L, λ |= φ for all valuations λ.

2.2 Using IOLTS Traces to Define the Semantics of GOMS Models

We now provide a formal semantics for the GOMS user modeling methodology. GOMS
describes human behavior in categories of

Goals The user’s goals
Operators Atomic actions available to the user
Methods Sequences of operators and sub-goals
Selection Rules Rules to decide between alternative methods

We formalize the CMN-GOMS variant of GOMS [10]. In difference to other GOMS
variants, CMN-GOMS satisfies the two core requirements for the formal description of
human behavior under security aspects: It allows to model user behavior on different
levels of abstractions, and CMN-GOMS’s informal semantic is suitable for formaliza-
tion. In CMN-GOMS, methods for achieving a goal consist of sequences of sub-goals
and atomic operators (the only difference between sub-goals and atomic operators is
that operators cannot be further decomposed). If there is more than one way to reach a
goal, a selection rule is used to choose between alternatives.

Figure 3 gives an example. It models the user of an eVoting machine. In order to
achieve the goal “VOTE FOR CANDIDATE(‘Bob’)”, the user executes the method con-
sisting of the atomic operations “WAIT FOR UNLOCK OF VOTING MACHINE” and
“CHOOSE CANDIDATE(‘Bob’)”. Then he reviews his vote. The sub-goal “REVIEW
VOTE” can be achieved in two ways: (1) If the user has selected the right candidate, he
confirms. (2) If he has selected the wrong candidate, he pursues sub-goal “CHANGE
VOTE”. Changing the vote leads to the sub-goal “REVIEW VOTE(2)”. If the user has
selected the right candidate this time, he confirms; otherwise, voting fails.

We give a formal semantics for GOMS models using the notion of IOLTS traces.
That is, an IOLTS corresponds to a GOMS model if the traces of the IOLTS are iden-
tical to the possible sequences of user decisions (selections) and operations. In order to

A Method for Formalizing, Analyzing, and Verifying Secure User Interfaces 61

GOAL: VOTE FOR CANDIDATE(“Bob”)
OPERATOR: WAIT FOR UNLOCK OF VOTING MACHINE
OPERATOR: CHOOSE CANDIDATE(“Bob”)
GOAL: REVIEW VOTE
SELECT:

OPERATOR: CONFIRM VOTE. . . if candidate “Bob” selected
GOAL: CHANGE VOTE . . . otherwise

OPERATOR: CANCEL VOTE
OPERATOR: CHOOSE CANDIDATE(“Bob”)
GOAL: REVIEW VOTE(2)
SELECT:

OPERATOR: CONFIRM VOTE. . . if candidate “Bob” selected
OPERATOR: FAIL . . . otherwise

Fig. 3. GOMS model for eVoting

T = (G,O ,M ,R,C , g0) with

G = {VOTE FOR CANDIDATE(“Bob”), REVIEW VOTE,
CHANGE VOTE, REVIEW VOTE(2)}

O = {WAIT FOR UNLOCK, CHOOSE CANDIDATE,
CONFIRM VOTE, CANCEL VOTE, FAIL}

C = {Candidate “Bob” selected,¬(Candidate “Bob” selected)}

M (g) =

⎧⎪⎪⎨⎪⎪⎩
〈WAIT FOR UNLOCK,CHOOSE CANDIDATE,REVIEW VOTE〉

if g = VOTE FOR CANDIDATE
〈CANCEL UNLOCK,CHOOSE CANDIDATE,REVIEW VOTE(2)〉

if g = CHANGE VOTE

R(g , c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CONFIRM VOTE if g = REVIEW VOTE and
c = Candidate “Bob” selected

CHANGE VOTE if g = REVIEW VOTE and
c = ¬ (Candidate “Bob” selected)

CONFIRM VOTE if g = REVIEW VOTE(2) and
c = Candidate “Bob” selected

FAIL if g = REVIEW VOTE(2) and
c = ¬ (Candidate “Bob” selected)

Fig. 4. Formal GOMS model for the eVoting model from Figure 3

formally define, which IOLTS correspond to a given GOMS model, we use the follow-
ing formal syntax for GOMS models:

Definition 7. Given a GOMS model, the corresponding formal GOMS model is

T = (G,O ,M ,R,C , g0)

where

– G is the set of (sub-)goals;
– O is the set of operators;

62 B. Beckert and G. Beuster

Operator

Selection

[Operator]

[Operator]

Method

[Operator] [Operator]

[Operator]

User

[Operator]

[Selection]

[Selection]

Fig. 5. Translating GOMS categories to state transition diagrams

– C is the set of selection criteria;
– M is a function mapping goals to their sequences of sub-goals/operators.
– The function R :G×C −→ G is defined by: R(g, c) = g ′ iff the goal g is achieved

by sub-goal/operator g ′ in case criteria c holds;
– g0 is the top-level goal.

The formal GOMS model corresponding to the eVoting GOMS model from Figure 3 is
shown in Figure 4.

We define a formal semantics for GOMS models by translating the formal GOMS
model into an IOLTS. The idea is to represent operators as elements of the output al-
phabet, selections as elements from the input alphabet, and methods as (sub-)paths.
Selection rules are branching points in the IOLTS. Figure 5 illustrates this translation.

Definition 8. Let T = (G,O ,M ,R,C , g0) be a formal GOMS model. And let
(S , Σ,S0,→) be the (generalized) IOLTS constructed for T and S0 = {s0} by the al-
gorithm shown in Figure 6.

Then (S , Σ, s0,→) is the IOLTS corresponding to T .

Note that the algorithm in Figure 6 constructs an IOLTS that is generalized in the sense
that is may have more than one initial state. If the algorithm is started with a singleton
set S0 = {s0} of initial states, a standard IOLTS is constructed (the more general case
is only needed for the recursive calls within the algorithm). An implementation of the
algorithm in the Perl programming language has been used for constructing the example
IOLTSs presented in this paper.

Applying the algorithm to the eVoting example results in the following IOLTS that
corresponds to the GOMS model shown in Figure 3 resp. 4. The IOLTS is shown graph-
ically in Figure 7.

A Method for Formalizing, Analyzing, and Verifying Secure User Interfaces 63

Require: GOMS model T = (G,O ,M ,R, c, g0), and a set S0 of initial states
Ensure: (Generalized) IOLTS L = (S , Σ,S0,→) and set F of states,

s.t. Σ? = C , Σ! = O , and F contains the final states of L
if g0 ∈ O then
{initial goal is an atomic operator}
create new state s1
S := S0 ∪ {s1}
Σ? := ∅
Σ! := {g0}
→ := {(s0, g0, s1) | s0 ∈ S0}
F := {s1}

else if M (g0) = 〈m1, . . . ,mn 〉 then
{initial goal has sub-goals g1, . . . , gn}
S := ∅
Σ? := ∅
Σ! := ∅
→ := ∅
F := S0

for i = 1 . . .n do
create an IOLTS Li = (Si , Σi , S i

0,→i) with final states Fi

for Ti = (G,O ,M ,R, c, gi) and set S i
0 := F of initial states

by recursion
S := S ∪ Si

Σ? = Σ? ∪Σ?i

Σ! = Σ! ∪Σ!i
→ =→∪→i

F = Fi

end for
else
{initial goal is a selection point}
for all gi , ci such that R(g0, ci) = gi do

create a new state si
S := S ∪ {si}
→ =→∪ {(s0, ci , si) | s0 ∈ S0}
create an IOLTS Li = (Si , Σi , S i

0,→i) with final states Fi

for Ti = (G,O ,M ,R, c, gi) and set S i
0 := {si} of initial state

by recursion
S := S ∪ Si

Σ? = Σ? ∪Σ?i

Σ! = Σ! ∪Σ!i ∪ {ci}
→ =→∪→i

F = F ∪ Fi

end for
end if

Fig. 6. Algorithm for constructing an IOLTS corresponding to a given GOMS model

64 B. Beckert and G. Beuster

WAIT_FOR_UNLOCK
Σ? Σ!

s0

s1

CHOOSE CANDIDATE “Bob”

s2

s3 s5

CANCEL VOTE

s4 s6

CHOOSE CANDIDATE “Bob”

“Bob” selected ¬ “Bob” selected

CONFIRM VOTE

s7

s8

FAIL

s9

“Bob” selected ¬ “Bob” selected

CONFIRM VOTE

s10

s11

Fig. 7. IOLTS corresponding to the eVoting GOMS model
S = {s0, . . . , s11}
Σ = Σ? ∪Σ!

Σ? = {“Bob” selected,¬ (“Bob” selected}
Σ! = {WAIT FOR UNLOCK, CONFIRM VOTE, CANCEL VOTE, FAIL,

CHOOSE CANDIDATE}
→ = {(s0,WAIT FOR UNLOCK, s1),

(s1,CHOOSE CANDIDATE(“Bob”), s2),
(s2, “Bob” selected, s3),
(s3,CONFIRM VOTE, s4),
(s2,¬ (“Bob selected), s5),
(s5,CANCEL VOTE, s6),
(s6,CHOOSE CANDIDATE(“Bob”), s7),
(s7, “Bob” selected, s8),
(s8,CONFIRM VOTE, s9),
(s7,¬ (“Bob” selected), s10),
(s10, FAIL, s11)}

A Method for Formalizing, Analyzing, and Verifying Secure User Interfaces 65

2.3 Assumptions as Selection Rules

Selection rules in GOMS models require decision criteria. In GOMS, these criteria are
only specified in an informal way. Since our goal is to provide a formal semantics for
GOMS models suitable for automated reasoning, a methodology for the formal descrip-
tion of selection criteria is required.

If a user is in the situation to choose between multiple options, his decision will be
based on the current system configuration or, more precisely, on his perception of the
system configuration. In the eVoting example, the decision whether to confirm his vote
or to change it, depends on the candidate selection shown by the voting machine and
the user’s corresponding perception of the machine’s internal configuration.

Following our component-based approach, we define the user’s assumption about the
system configuration as a component. This component is combined with the (IOLTS
corresponding to the) formal GOMS model by mututal composition. The rational be-
hind mutual composition is that not only do the user’s presumptions about the applica-
ton state influence his behavior but his assumptions about the state of the application
are influenced by his actions as well. For example, when the user pushes the “confirm
vote” button, he will asume that the voting process is completed, even if it takes some
time before the next message appears on the screen. The other input for the assumption
component—besides the users actions, i.e., the operators in the GOMS model—comes
from the output of the application (application output is defined in Section 3). Figure 8
illustrates the composition of an interactive formal user model.

OperatorDevice Output

SelectionInterpretation

Operator

GOMS Model

Fig. 8. Combination of GOMS model and user’s interpretation of the application’s configuration

Definition 9. An IOLTS L = (S ,Σ, s0,→) is called a user assumption IOLTS, if

– Σ = Σ? ∪Σ!,
– Σ? = Σ?D ∪ Σ?A where Σ?D atomic application (device) output and Σ?A are

GOMS operators,
– Σ! consists of GOMS selection criteria.

An interactive formal user model L = (LA ||m LI) is the mutual composition of the
IOLTS LU corresponding to a formal GOMS model (user model) and a user assumption
IOLTS LI .

66 B. Beckert and G. Beuster

2.4 Formal HCI Model: Summary

We have defined formal semantics for GOMS models and for selection criteria. Se-
lection criteria are defined by a component modeling the user’s assumptions about the
application. The combination of a formal GOMS models of the user and a model of the
user’s assumptions allows the formal description of human behavior.

In order to reason about security of HCI, a formal application model and a formal
definition of HCI security is required in addition. In Section 3, we complete the eVoting
example. We provide an application model and two alternative user assumption compo-
nents. In Section 4, definitions of generic formal HCI security requirements are given
and applied to the eVoting example.

3 Completing the eVoting Model

In order to apply automated reasoning to human-computer interaction, we need three
components: (1) A formal GOMS model and its corresponding IOLTS; (2) a component
representing the assumptions of the user about the application; and (3) a component rep-
resenting the application itself. In this section, we provide the missing two components
for the eVoting example, starting with the application.

We assume that the eVoting machine is initially in a locked state. After some time,
the machine is unlocked and the user can cast his vote. After he has selected a candidate,
the machine shows the user’s choice and asks for confirmation. If he confirms, the vot-
ing process finishes. If he cancels, he can change the vote. Figure 9 sketches an IOLTS
modeling the voting machine. The input alphabet is identical to the output alphabet of
the user model IOLTS, i.e., the operators available to the user. The output alphabet is an
abstract representation of the application’s output (in Section 5 we introduce hierarchi-
cal models which allow to model application output down to the pixel level). In order
to make the example interesting, we have built a bug into the IOLTS: If a user votes for
“Bob”, the eVoting machine may mistakenly interpret this as a vote for “Fred”:

S = {s0, s1, s2} ∪
⋃

c∈Candidates{sc, s ′c , s ′′c , s ′′′c }
Σ = Σ? ∪Σ!

Σ? = {WAIT FOR UNLOCK, CONFIRM VOTE, CANCEL VOTE, FAIL,
CHOOSE CANDIDATE}

Σ! = {locked, unlocked} ∪
⋃

c∈Candidates{Vote cast(c),Vote confirmed(c)}
→ = {(s0,WAIT FOR UNLOCK, s1),

(s1, unlocked, s2)} ∪
{(s2,CHOOSE CANDIDATE[c], sc) | c ∈ Candidates} ∪
{(sc ,Vote cast(c), s ′c) | c ∈ Candidates} ∪
{(s ′c ,CHANGE VOTE, s2) | c ∈ Candidates} ∪
{(s ′c ,CONFIRM VOTE, s ′′c) | c ∈ Candidates} ∪
{(s ′′c ,Vote confirmed(c), s ′′′c) | c ∈ Candidates} ∪
{(s“Bob′′ ,Vote cast (“Fred”), s ′“Fred′′)

For the completion of the example, we still need a model of the user’s assumptions. As
defined in the last section, a user assumption component has an input alphabet consisting

A Method for Formalizing, Analyzing, and Verifying Secure User Interfaces 67

Operator

Device Output

High−Level App. Behavior

locked
Un−

Confirm
Vote

Choose
[Cand.] Vote Conf.

[Cand.]
Locked

WaitForUnlock

Cancel

Cast
Vote

[Cand.]

Fig. 9. Application Model for the eVoting example

of the application’s output and the user’s operators, and an output alphabet consisting
of the user’s selection criteria. In this example we use user assumption components that
only use the application’s output as input (in order to keep the example simple). Selec-
tion rules are used at two points in the GOMS model: When the user reviews his voting
decision for the first time, and when he reviews his voting decision for the second time.
The user’s assumption is that the eVoting application works correctly. Thus, the assump-
tion component will output “candidate ‘Bob’ selected” for the input “Vote cast(‘Bob’)”,
and “¬(Candidate ‘Bob’ selected)” for the input “Vote cast(c)” with c �= “Bob”. This
“error-free” model corresponds to the following user assumption IOLTS:

S = {s0, sbob, sother}
Σ = Σ? ∪Σ!

Σ? = {locked, unlocked} ∪
⋃

c∈Candidates{Vote cast(c),Vote confirmed(c)}
Σ! = {Candidate ‘Bob’ selected, ¬(Candidate ‘Bob’ selected)}
→ = {(s0, σ, s0) | σ �= Vote cast(c) for all candidates c} ∪

{(s0,Vote cast(‘Bob’), sbob)} ∪
{(s0,Vote cast(c), sother) | c �= “Bob”} ∪
{(sbob,Candidate ‘Bob’ selected, s0)} ∪
{(sother,¬ (Candidate ‘Bob’ selected), s0)

While standard GOMS does not allow to model user errors, our component-based
approach does. As an example, we model a user who may think the system is in a
state where he voted for “Bob” while in fact he voted for someone else. The changed
relation→ is shown below:

→ = {(s0, σ, s0) | σ �= Vote cast(c) for all candidates c} ∪
{(s0,Vote cast(c), sbob) | c ∈ Candidates} ∪
{(s0,Vote cast(c), sother) | c �= “Bob”} ∪
{(sbob,Candidate ‘Bob’ selected, s0)} ∪
{(sother,¬ (Candidate ‘Bob’ selected), s0)

68 B. Beckert and G. Beuster

Application

Operator

State

User BehaviorUser’s Interpretation of App.

OperatorDevice Output

Fig. 10. Basic system model

In this section, we showed how system models are created from formal GOMS mod-
els, user assumption components, and application models. The mutual compositions of
these three components—as shown in Figure 10—provide a complete model. With this,
complete formal modeling of human-computer interaction becomes possible. In differ-
ence to traditional methods, our method also allows to model erroneous user behavior.

In the next section, we define HCI security properties as LTL formulae. With the
formal definition of HCI security properties and the modeling methodology developed
in this section, formal methods can be used for reasoning about security of user inter-
action.

4 HCI Security Definitions

The aim of computer security is to guarantee access to services and resources to autho-
rized persons, while preventing access and manipulation by unauthorized parties. The
basic security threats are Data Leaking, Data Manipulation, and Program Manipula-
tion [3]. These are countered by the core security requirements, usually abbreviated as
CIA:

Confidentiality: Information is available to authorized parties only.
Integrity: Both the assumptions of the user about the application, and the assumptions

of the application about the user are correct.
Availability: Accessibility of services and data is guaranteed.

Adapting these concepts to user interface security is straightforward:

HCI Confidentiality: No secret information is leaked via the user interface.
HCI Integrity: There is a correspondence between the configuration of the application

(defined by its internal state and data), and the user’s assumption about the data and
the state.

HCI Availability: The user interface must guarantee reachability of desirable states,
and it must prevent user interactions that lead to transitions into undesirable states.

In the following, we concentrate on formalizing the integrity requirement. Informally,
we define HCI Integrity as follows:

Definition 10. HCI Integrity: Whenever the system is in a critical state, all critical
properties are the same in the application and in the user’s assumption about the
application.

A Method for Formalizing, Analyzing, and Verifying Secure User Interfaces 69

Let the set P of atomic propositions contains the following atoms:

– appCritical is true whenever the application is in a critial state.
– a0, . . . , an represent the critical properties of the application.
– u0, . . . , un represent the user’s assumption about critical properties.

Then, we can formalize HCI Integrity using the LTL formula

G(appCritical→ ((a0 ↔ u0) ∧ (a1 ↔ u1) ∧ . . . ∧ (an ↔ un)))

In the eVoting example, the critical property is the user’s vote, and the critical state
is reached once the user has finished voting. If in that state the user thinks he selected
the candidate of his choice, while in fact he voted for some other candidate, human-
computer interaction was erroneous. Thus, we choose u0 to represent “the user has
voted for ‘Bob”’ and a0 to represent “the user thinks he has voted for ‘Bob”’. Critical
states are those states of the application model where a vote has been confirmed.

We can now use automated reasoning techniques (e.g., model checking) to confirm
that, whenever the valuation λ reflect this interpretation of the atoms, the HCI Integrity
formula holds.

In the example, despite the bug in the application model (choosing “Bob” may be
credited to “Fred”), the Integrity requirement holds for the model where the user makes
correct assumptions about the system state, because the user will recognize the error
when he is asked to confirm the vote for “Fred”. In the variant of the eVoting model
with the erronous user assumptions model, Integrity does not hold, because the user
may mistakely confirm the vote for “Fred”.

5 Hierarchical Model

In the models introduced so far, the application, the user’s actions, and the user’s as-
sumptions are modeled as monolithic components. When we start to add more details
to our models—for example, when application output and user perception is modeled
in more detail—the components become unwieldy.

To counter this problem, we introduce hierarchical components. In a model of hier-
archical components, components of different levels of abstraction are layered above
each other. This allows to describe user interfaces and human-computer interaction at
all levels of detail with model still managable by humans and computers.

Both in the construction of graphical user interfaces and in the perception (and inter-
pretation) of graphical user interfaces, there are generic abstraction levels shared over
a large class of interfaces. By identifying these abstraction levels and modeling user
interfaces along these lines, it becomes possible to model complex user interfaces (and
potential error sources in complex user interfaces) while still preserving maintainability
of the models. The proposed model pattern is shown in Figure 11.

The sub-concepts of the user interface follow the well established hierarchical view
of interfaces. On the uppermost level, a user interface consists of distinct screens. Each
screen represents a specific view on the application. Screens themselves are built from
a number of windows, windows are built from widgets, and these are built from ele-
mentary symbols.

70 B. Beckert and G. Beuster

Assumptions Behavior

SymbolsOp

Symbols

WidgetOp

Widget

StateOp

State

Sem.WidgetOp

Sem.Widget

Widget Manipulation

Symbol ManipulationAssumptions about Symbols

User Behavior

Window Manipulation

Assumptions about Widgets

Symbol Op.

Pixels

Symbols

Widgets

Assumptions about App.

Assumptions about Windows

Windows

Widget Op.

Window Op.

Atomic Op.

Fig. 11. Generic Hierarchical User Model

Creating a hierarchical user interface where each component represents one level of
abstraction makes it possible to model typical errors on their respective levels. For ex-
ample, the typical error that a user misses a button and pushes a wrong one, is modeled
on a low level, while the error that a user misinterprets a screen is modeled on a high
level.

In our eVoting example, a user may accidently push the button for “Fred” if it is next
to the button for “Bob.” This error can be modeled on the symbol manipulation level
by the GOMS sub-model for the “CHOOSE CANDIDATE(‘Bob’)” operator shown in
Figure 12 and the following assumption component about widget manipulation:

S = {s0, s1, . . . , sn}
Σ = Σ? ∪Σ!

Σ? = {(“Bob’s Button” = 1),
(“Bob’s Button” = 2),
. . . ,
(“Bob’s Button” = n)}

Σ! = {(“Bob’s Button” = 1),
(“Bob’s Button” = 2),
. . . ,
(“Bob’s Button” = n)

→ = {(s0, (“Bob’s Button” = i), si) | 1 ≤ i ≤ n} ∪
{(s0, (“Bob’s Button” = i − 1), si)) | 1 < i ≤ n} ∪
{(s0, (“Bob’s Button” = i + 1), si) | 1 ≤ i < n}

Our approach to the construction of sub-models of GOMS models is depicted in
Figure 13. Each method for achieving a sub-goal becomes a GOMS model on its own.
The IOLTSs corresponding to these GOMS models can then be combined into one

A Method for Formalizing, Analyzing, and Verifying Secure User Interfaces 71

GOAL: CHOOSE CANDIDATE(“Bob”)
SELECT: OPERATOR: PUSH BUTTON(0) . . . if “Bob’s Button” = 0

OPERATOR: PUSH BUTTON(1) . . . if “Bob’s Button” = 1
OPERATOR: PUSH BUTTON(2) . . . if “Bob’s Button” = 2
...

Fig. 12. Sub-Model for CHOOSE CANDIDATE(“Bob”)

Sub−Task
Sub−Task

Operator

GOMS Sub−Models

Goal

Goal

[Sub−Goal] [Sub−Goal]

[Sub−Goal]
... ...

[Sub−Goal]

[Sub−Goal]
... ...

[Sub−Goal]

GOMS Model

Fig. 13. Hierarchical GOMS model

component such that the operators from the higher GOMS model become selection
criteria. Formally, this is defined as follows:

Definition 11. Let

– T = (G,O ,M ,R,C , g0) be a GOMS model with the corresponding IOLTS
L = (S ,Σ, s0,→), and let

– Ti = (Gi ,Oi ,Mi ,Ri ,Ci , g i
0) be GOMS models (1 ≤ i ≤ n) with the correspond-

ing IOLTSs Li = (Si ,Σ, s i
0,→i)

such that O={g1
0 , . . . , gn

0 }, i.e., the operators of T are the top-level goals of T1, . . . ,Tn .
Then, the IOLTS L′ = (S ′,Σ′, s ′0,→′) for the hierarchical model consisting of T

and T1, . . . ,Tn is defined by

72 B. Beckert and G. Beuster

S ′ = {s ′0} ∪
⋃

1≤i≤n Si

Σ′ = Σ!′ ∪Σ?′

Σ?′ =
⋃

1≤i≤n Σ?i

Σ!′ =
⋃

1≤i≤n Σ!i

→′ = {s ′0
gi
0−→ s i

0) | 1 ≤ i ≤ n} ∪
⋃

1≤i≤n→i

6 Summary

In this paper, we have introduced a methodolgy for formalizing, analyzing, and veri-
fying user interfaces and human-computer interaction under computer security aspects.
The main point of this work is to provide a formal semantics for an extended version of
GOMS that is suitable for automatic reasoning. In this paper:

– We have introduced a formal semantics for GOMS models describing user behav-
ior, which is based on input/output latbelled transition systems (IOLTS).

– We showed how the component-based formalization of GOMS can be augmented
with components modeling the user’s assumptions about the application. That al-
lows to model both successful HCI and erroneous HCI.

– The method used to formalize GOMS models and the user’s assumption can be
applied to model the application as well. Combining all three components leads to
a complete model of human-computer interaction suited for automated reasoning.

– We have introduced a methodology to formally describe hierarchical user inter-
faces. That allows to pervasively model all aspects of user interface security.

– We have formalized generic concepts of user interface security in linear temporal
logic. In combination with a formal model of HCI, that allows to use automated
reasoning to determine if a user interface is secure.

References

1. C. Bramwell. Formal development methods for interactive systems: Combining interactors
and design rationale, 1996.

2. Geert de Haan. ETAG: A Formal Model of Competence Knowledge for User-Interface De-
sign. PhD thesis, Vrije Universiteit, Amsterdam, 2000.

3. Rüdiger Dierstein. Sicherheit in der Informationstechnik: Der Begriff IT-Sicherheit. Infor-
matik Spektrum, 27(4), August 2004.

4. Alan Dix and Gregory Abowd. Modelling status and event behaviour of interactive systems.
Software Engineering Journal, 11(6):334–346, 1996.

5. Alan Dix and Colin Runciman. Abstract models of interactive systems. In P. Johnson and
S. Cook, editors, HCI’85: People and Computers I: Designing the Interface, pages 13–22.
Cambridge: Cambridge University Press, 1985.

6. Gavin Doherty and Michael D. Harrison. A Representational Approach to the Specifica-
tion of Presentations. Eurographics Workshop on Design Specification and Verification of
Interactive Systems, DSVIS 97, Granada, Spain, June 1997.

7. D. Duke, P. Barnard, D. Duce, and J. May. Systematic development of the human interface,
1995.

A Method for Formalizing, Analyzing, and Verifying Secure User Interfaces 73

8. D. J. Duke and M. D. Harrison. A Theory of Presentations. In M. Naftalin, T. Denvir, and
M. Bertran, editors, Proceedings of FME’94: Industrial Benefit of Formal Methods, pages
271–290. Srpinger-Verlag, 1994.

9. F. Hamilton. Predictive evaluation using task knowledge structures. In Companion Proceed-
ings of CHI’96, Vancouver, Canada, 1996.

10. B. E. John and D. E. Kieras. The GOMS family of user interface analysis techniques: Com-
parison and contrast. ACM Transactions on Computer-Human Interaction, 3(4):320–351,
1996.

Applying Timed Interval Calculus to Simulink Diagrams

Chunqing Chen and Jin Song Dong

School of Computing
National University of Singapore

{chenchun, dongjs}@comp.nus.edu.sg

Abstract. Simulink has been used widely as an industry tool to model and simu-
late embedded systems. With increasing usage of embedded systems in real-time
safety-critical situations, Simulink is deficient to cope with the requirements of
high-level assurance and timing analysis. In this paper, we present a systematic
approach to translate Simulink diagrams to Timed Interval Calculus (TIC), a no-
tation extending Z to support real-time system specification and verification. This
work is based on the same angle chosen by Simulink and TIC where they model
systems in terms of continuous time. Translated TIC specifications preserve the
functional and timing aspects of the diagrams, and cover a wide range of Simulink
blocks. After the translation, we can increase the design space by specifying im-
portant requirements, especially timing constraints exactly on the system or its
components. Moreover, we can take advantage of TIC reasoning rules to for-
mally verify systems with requirements, and hence elevate the design quality of
Simulink.

Keywords: Simulink, Real-Time Specification, Z, Verification.

1 Introduction

Simulink [18] is a graphical environment used widely for modelling and simulating
embedded systems. A Simulink diagram is formed by connecting blocks with wires
to represent a set of mathematical functions that model system behavior over time.
Simulink adopts continuous-time semantics [12] to support discrete (multi-rate), con-
tinuous and hybrid systems. Its simulation facility assists designers to analyze system
behavior visually under specific parameters, initial conditions and simulation period.

With increasing usage of embedded systems in real-time safety-critical situations,
high-level assurance is required and timing analysis becomes necessary [21]. Simulink
is deficient to cope with the complexity by two factors: one is that each simulation
in Simulink reflects system behavior under a particular circumstance, and hence it is
infeasible to examine the behavior of infinite values of parameters or an infinite simu-
lation period; the other is that Simulink is difficult in specifying and analyzing timing
constraints, since it adopts an idealized timing model for block execution and commu-
nication. Recently, formal methods receive more attention to complement Simulink by
their rigorous semantics and formal verification capability [25]. We propose to apply
a real-time formal notation, i.e. Timed Interval Calculus (TIC) [8] to model Simulink
diagrams, and thus to complement Simulink by TIC formal verification capability.

TIC [8] is set-theory based and extends the work of Mahony and Hayes [14]. It makes
use of the continuous functions of time to model system, and defines interval brackets to

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 74–93, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Applying Timed Interval Calculus to Simulink Diagrams 75

concisely express properties in terms of intervals. TIC reuses Z [26] mathematical and
schema notations. It has been applied to a number of real-time systems, including a mine-
shaft pump system [14, 24], a speedometer [8] and a controller for barometric altime-
ter [6]. Dawson and Goré [5] have formalized TIC reasoning rules using generic theorem
prover Isabelle [20] for machine-assisted proof. The similar formalism that can handle
real-time systems is Duration Calculus (DC) [27]. It uses the integration of Boolean-
valued states over closed and bounded intervals to specify critical duration constraints.
Its extensions, Mean Value Calculus [28] adopts the mean value of states to express prop-
erties in point intervals, and Extended Duration Calculus [29] defines two functions to
give the values of state at the endpoints of an interval. Because they describe system be-
havior without the explicit references to absolute time, they are limited to represent the
constraints which restrict the values of the interval endpoints for specific intervals.

The approach is based on the same angle adopted by Simulink and TIC when mod-
elling systems in terms of continuous time. It can cover a wide range of Simulink blocks
of different categories. The behavior of Simulink library blocks is described informally
in [17], so we focuses on capturing their denotational semantics, i.e. the mathematical
functions between their inputs and outputs over time. We thus define a set of TIC library
functions to model the library blocks. Based on the TIC library, we develop a strategy to
translate Simulink diagrams into TIC specifications by modelling the components and
connections of the diagrams. The strategy can derive and keep the sample time of el-
ementary blocks during the translation. Furthermore, Simulink conditionally executed
subsystems are taken into account as well. Hence, the generated TIC specifications pre-
serve the functional and timing aspects of the diagrams. A tool has been implemented
using JAVA to experiment our strategy. After the translation, we can precisely and easily
express important requirements such as timing related safety and liveness on a system
or one of its components. Verification is a deduction to show that the system satisfies re-
quirements with the use of TIC reasoning rules. Our approach even allows the analysis
of open systems which are not checkable by simulation in Simulink. Therefore, using
TIC can increase the design space and elevate the design quality of Simulink.

Recently, there are a number of work on translating Simulink into other formal no-
tations or programming languages. Arthan et al [2], Adams and Clayton [1] translate
Simulink diagrams into Z by capturing the functional behavior of one cycle. Cavalcanti
et al [4] extend the work by using Circus to capture the functionality and concurrency of
Simulink diagrams. Their approaches aim to verify that Simulink diagrams are correctly
implemented in programming language Ada, and that is different from ours. Our goal is
to validate that Simulink diagrams satisfy different requirements. Moreover, they con-
sider only single-rate discrete systems, and timing information is missing. Similarly,
Caspi et al [3] focus on only discrete Simulink blocks though it supports multi-rate
systems. Other approaches [22, 23, 9] take Simulink/ Stateflow 1 Models (SSMs) into
account. Sims et al [22] verify SSMs with an invariant checker, and the translation from
SSMs to the input language of the checker is performed by hand. Tiwari et al [23] reduce
certain accuracy grade by discretizing differential equations represented by Simulink
diagrams into difference equations denoting discrete transition systems. Gupta et al [9]

1 Stateflow [16] combines flow diagrams and statecharts for control logic and can be integrated
into Simulink.

76

develop a tool CheckMate that can automatically verify customized SSMs, but the type
of constraints supported is limited to the linear inequality that allows one variable only.
Jersak et al [13] report on translating Simulink diagrams to SPI models for timing anal-
ysis. However, the communication in SPI models is represented by FIFO queues, and
that is different from wires in Simulink. In short, our approach covers more types of
Simulink blocks and supports more complex requirements.

The rest of the paper is organized as follows. Section 2 introduces Simulink and TIC.
Section 3 defines the set of TIC library functions for Simulink library blocks. Section 4
presents the translation strategy. Section 5 shows that the TIC verification capability can
complement Simulink. Section 6 concludes the paper with possible future work.

2 Background

2.1 Simulink

A Simulink diagrams is formed by connecting blocks with wires to represent a set of
mathematical functions which specify system behavior over time. Elementary blocks
are units. Each denotes a primitive mathematical relationship over its inputs and out-
puts, for example, a summation of two inputs. An elementary block is an instance of
a Simulink library block using parameterization technique, i.e., generated by assigning
specific values to the parameters of the library block. Hence, given different values of
parameters, a library block can create the elementary blocks with different functional-
ities. To support hierarchical modelling, a Simulink block can be a Simulink diagram
as well to represent a subsystem. A wire is a directed edge to indicate dependency rela-
tionships between connected blocks. Namely, the source block (destination block) can
write (read) the value to (from) the wire according to its sample time.

Every Simulink elementary block is assigned a sample time as the rate at which the
block executes in simulation. A sample time of a block can be determined by parame-
ter SampleTime, by sample time propagation rules, or by block type (e.g. blocks from
continuous library always have a continuous sample time). Simulink supports various
systems such as continuous, discrete and hybrid systems. It adopts continuous-time se-
mantics as a unifying domain. Hence the discrete systems behave piecewise-constant
continuously. Simulink also supports conditionally executed subsystems whose execu-
tions depend on the value of an input, i.e. control signal. For instances, an enabled
subsystem is active when the control signal is positive, and a triggered subsystem is
active when a trigger event in the control signal occurs.

Example 1. We introduce a water tank system as a running example to explain and illus-
trate our main ideas and results. The system consists of a tank, a drainage outlet, a gate,
a detector sensing water volume every 1 second, and a controller for the gate based on
the value from the detector. Initially, the tank is full of water as represented by value
4 and the gate is closed. When the gate closes, the water flow rate (denoted by flow)
is −1 ≤ flow < 0 where the negative sign indicates that the water volume decreases.
When the gate opens, water flows into the tank with the range 0 ≤ flow ≤ 1. The objec-
tive is to prevent the tank from overflow or being empty. The Simulink diagram for the
system with constant water flow rates is shown in Figure 1. In the diagram, each box is

C. Chen and J.S. Dong

Applying Timed Interval Calculus to Simulink Diagrams 77

a Simulink block. Subsystems are used to provide a hierarchical structure of the system.
Each ellipse inside a subsystem block represents an interface. To be specific, subsystem
plant outputs different water flow rate (denoted by flow) according to the value from
the input (denoted by gate); subsystem detector continuously integrates the water flow
rate, as well as samples and holds the result every 1 second; subsystem controller im-
plements the logic to control the gate. Namely, it opens the gate by outputting value 1
when the water volume (denoted by water) is not greater than value 1, and closes the
gate by yielding value 0 when the water volume is not less than value 3.

Fig. 1. The water tank system with its subsystems in Simulink

A Simulink diagram is stored in a structured ASCII file which is called model file.
The file describes the Simulink diagram by keywords and parameter-value pairs. The
parameter-value pairs capture the contents of the Simulink diagram by assigning values
to relevant parameters. The use of keywords followed by a pair of brackets arranges
contents in the same hierarchical order of the Simulink diagram. For example, part of
the contents of the block integration in the subsystem detector is given below.

System { Name "detector"
Block { BlockType Integrator

Name "integration"
InitialCondition "4" } }

In the above example, the parameter-value pair “BlockType Integrator” indicates that
the block named integration executes an integration function. Note that the exact math-
ematical expression, i.e. the integration is not shown directly. As the contents of the
block is within the pair of brackets following the keyword System, it shows that the
block is a component of the system detector. Moreover, the model file contains more
information which is not expressed graphically, for example, the initial value 4 is not
shown in Figure 1. Thus, the model file is the input of our translation from Simulink to
Timed Interval Calculus.

78

2.2 Timed Interval Calculus

TIC is set-theory based and reuses the Z mathematical and schema notations. It adopts
total functions of time to model system behavior, and defines interval brackets to con-
cisely express properties in terms of intervals.

Time domain T is nonnegative real numbers, i.e., R+ ∪ {0}. An interval is a con-
tiguous range of time points. There are four types based on whether the endpoints are
included, namely, left-open (), left-closed (), right-open () and right-closed (). For
example, a left-closed, right-open interval is defined below.

Note that a point interval can be depicted by a left-closed, right-closed interval, and the
empty set is not an interval. Symbol I denotes the set of all nonempty intervals. Opera-
tors α, ω and δ return the infimum, supremum and length of an interval respectively.

TIC defines each system variable as a total function of time. For example, a water
height can be represented by the function height : T→ R.

A TIC expression denotes a set of intervals during which a predicate holds every-
where. A predicate is a function from time to Boolean (B ::= true | false). Since the
operators α, ω and δ which are the functions of intervals can be applied in a predicate,
the predicate is evaluated with respect to time points and intervals simultaneously by
applying the lifting function [15]. The lifting function (↑) can generalize operators of
simple type to complex type. For example, the predicate, height(α) ≤ height, would be
lifted to a lambda abstraction which assigns a time point and an interval to the appro-
priate place in the predicate at the same time.

(height(α) ≤ height) ↑I,T= λ∆ : I; t : T • height(α(∆)) ≤ height(t)

The following specification defines a set of left-closed, right-open intervals of the pred-
icate TP : T → B with the use of lifting function. Note that there are other three types
of sets of intervals and they can be defined in the similar way.

For example, applying the brackets to previous predicate, height(α) ≤ height , it re-
turns all the left-closed, right-open intervals during which the water height is not less
then the height at the beginning of the interval as expanded below.

In general, a set of intervals with unspecified endpoints is defined:

� � � �

C. Chen and J.S. Dong

Applying Timed Interval Calculus to Simulink Diagrams 79

Since TIC is based on the set theory, the set operators such as union (∪) and intersection
(∩) can be used to construct new sets of intervals. In addition, to capture the sequences
of behaviors, a concatenation operator (�) is defined to connect consecutive intervals
end-to-end.

A TIC predicate is formed from the TIC expressions with logical operators (¬ ,∨ and
so on). We transform system logical properties into real-time properties. Namely, they
can be represented by constraints on different sets of intervals. For example, the timing
constraint, “within any closed interval which starts from a multiple of 5 seconds and
lasts for 1 second, the critical property P must hold.”, can be specified by the TIC
predicate

To manage predicates in a structured way, we utilize the Z schema to group a list of
variables in the declaration part and constrain the relationships among the variables in
the predicate part. For example, a timing liveness property, that when the water height
exceeds the maximum for more than 10 time units an alarm should be on and last till
the end, can be modelled below.

TIC provides a rich set of reasoning rules [8, 6, 24]. They are derived from the set
theory to capture the properties of sets of intervals and the interval concatenations.
A typical verification is a deduction to show that system design implies requirements
where they are specified in TIC. Due to the page limit, we list below some rules used in
our later verification. Symbols P, Q and R denote predicates; S, T, S’ and T’ represent
sets of intervals .

2 denotes any nonempty interval in the form of � �

80

3 TIC Library Functions for Simulink Library Blocks

Simulink library blocks act as templates to produce elementary blocks by the param-
eterization technique. Simulink elementary blocks are the units to construct Simulink
diagrams. In this section, we firstly describe the general structure of TIC schema for
the elementary blocks, and then construct a set of TIC library functions for the library
blocks.

3.1 TIC Schemas for Simulink Elementary Blocks

An elementary block denotes a mathematical function between its inputs and outputs at
all points in time. In general, it can be characterized by a tuple {Ins,Out,Ps,F} where
Ins is a set of inputs, Out is an output, Ps is a set of parameters andF is the mathematical
function. The function computes output based on its inputs and parameters, i.e. F :
(Ins× Ps)→ Out.

We translate each elementary block to a TIC schema. The schema declares each in-
put and output as a total function from time to real numbers. The assumption of the
range type of the function is acceptable since different data types in Simulink only af-
fect simulation efficiency. Furthermore, in a Simulink diagram, each elementary block
is assigned a specific sample time value as the rate at which it is executed during simula-
tion. To capture this timing aspect, a schema variable st : T is declared in the translated
schema. The basic schema structure of an elementary block can be modelled as below.

Blocks having sample time value 0 are said to have continuous sample times. Such a
block executes its function at every time point. Its output depends on its inputs either at
current time point or through a period, for example, an integration requires calculation
over an interval. Hence the block behavior is modelled in terms of intervals instead of
time points by a TIC predicate . The schema structure for a
continuous block can be represented as below.

Blocks having positive sample time values are said to have discrete sample times. As
Simulink adopts the continuous-time semantics, a discrete system behaves piecewise
constantly continuously. Namely, blocks execute their functions only at sample time
points, and remain constant between the sample time points. To capture this timing

I = �F(Ins Ps) = Out�

C. Chen and J.S. Dong

Applying Timed Interval Calculus to Simulink Diagrams 81

behavior, we decompose the time domain into a sequence of left-closed, right-open
intervals, where the length is the sample time value. This feature is represented by the
expression where N includes the value 0.
Moreover, the update of the function is modelled by the expression F(Ins,Ps)(α) =
Out . The expression restricts that all values of the output over an interval relies on the
values of the inputs at the beginning of the interval. Hence, the schema structure for a
discrete block can be defined as below.

Every elementary block is either discrete or continuous and thus can be modelled by
the following schema: EleBlk =̂ EleBlk C ∨ EleBlk D.

3.2 Construction of TIC Library

Parameterization technique is the key for Simulink library blocks to create elementary
blocks. As we focus on the mathematical function, the parameters for block visual ap-
pearance or simulation efficiency are deliberately ignored. For example, the parameter
about a block font size is omitted. According to the effect to the mathematical function,
the remaining parameters are classified into three groups: operand parameters, sample
times and operator parameters.

A library block is represented by a TIC library function. The function accepts a set
of arguments which correspond to the operand parameters or sample time of the library
block, and returns the TIC schema which specifies the behavior of generated elementary
block. Based on the general structure of the TIC schemas of elementary blocks defined
in the previous section, we model the general structure of the TIC library functions as
follows.

– A continuous library block has the sample time value 0. The structure of its TIC
function can be depicted by the function function Lib C : P R → P EleBlk C that
considers only the values of relevant operand parameters.

– A discrete library block has positive sample time values. The structure of its TIC
library function can be depicted by the function Lib D : (T× P R)→ P EleBlk D
that takes into account both the sample time and the operand parameters of the
block.

– Other library blocks can produce either discrete or continuous elementary blocks.
Thus, their structure of the TIC library function can be depicted by the follow-
ing function which covers both kinds of behavior with corresponding sample time
constraint.

Lib I : (T× P R)→ P EleBlk

∀ t : T; ps : P R • (t = 0⇒ Lib I(t, ps) = Lib C(ps))
∧ (t > 0⇒ Lib I(t, ps) = Lib D(t, ps))

With the expressive power, TIC supports a wide range of library blocks. One ad-
vantage is that we can handle continuous library blocks. For example, the continuous

82

library block Integrator adds an initial value and the integral of its input from time 0
to current time point. In the TIC library function Integrator shown below, the variables
In1 and Out relate to the input and the output respectively, as well as the variable IniVal
for the initial value. The parameter of the function denote the initial value from the
Simulink when creating an elementary block. The product of the function is the TIC
schema that specifies the behavior of the elementary block in terms of a higher level,
i.e. intervals instead of time points. Note that the operator

∫
is defined in [7].

Another advantage is that the timing feature, i.e., the sample times of the elementary
blocks can be preserved in the generated TIC schemas. For example, the discrete library
block Zero Order Hold samples and holds its input for a specified sample time. As the
TIC library function ZOH shown below, the returned schema which stores the sample
time value by the variable st, and captures the discrete behavior by the TIC expression
Out = In1(α) .

We have demonstrated how TIC library functions deal with the operand parameters and
the sample times. Next we consider the analysis of the operator parameters. This kind of
parameters is special since it allows a library block to generate elementary blocks with
different functionalities. One example is the library block Sum which adds two inputs
by default. While it can produce elementary blocks that can either execute a subtraction
or an addition of three inputs according to the value of its parameter Inputs. To cope
with the complexity, we adopt the overloading technique. Namely, we define multiple
TIC library functions for a single type of library block, and each function models one
kind of functionality of the library block. Regarding the previous example, three TIC
library functions capture three different functions of the library block Sum respectively.

In this section, we showed the general structure of TIC schemas for Simulink ele-
mentary blocks and TIC library functions for Simulink library blocks. The arguments of
a library function correspond to the operand parameters or the sample time of a library
block. Overloading technique is applied to handle the operator parameters. The TIC
library serves as a foundation for automatic translation. Currently, we formally defined
50 TIC library functions 3 for 25 often used library blocks from 8 categories includ-
ing continuous, discrete and discontinuities libraries. We also identified that the library
blocks from the Ports and Subsystems category are not suitable to be specified in this
phase. They are usually used to construct subsystems. Hence, their functionalities are

3 They can be found at www.comp.nus.edu.sg/˜chenchun/TIC_Lib/ and Ap-
pendix A shows part of them used for the water tank system.

C. Chen and J.S. Dong

Applying Timed Interval Calculus to Simulink Diagrams 83

unpredictable until they are instantiated in specific Simulink diagrams. We will discuss
their solution in the next section.

4 Translating Simulink Diagrams to TIC Specifications

A Simulink diagram represents a set of mathematical functions over time. In this sec-
tion we will show how the translation from Simulink diagrams to TIC specifications can
preserve the functional and timing aspects. As Simulink models systems in a hierarchi-
cal way, we illustrate the translation in the bottom-up order, namely, from elementary
blocks, wires to diagrams. A discussion for handling conditionally executed subsystems
is provided in the end.

4.1 Translating Elementary Blocks

A Simulink elementary block denotes a primitive mathematical function in a diagram.
It is produced by a library block using the parameterization technique. Similarly, an
elementary block is translated into a TIC schema by applying an appropriate TIC library
function to relevant Simulink parameters. Two important factors are taken into account
in the translation.

One is the criteria to choose a suitable TIC library function that produces a TIC
schema to correctly model the functional behavior of the elementary block. The pri-
mary criterion is the parameter BlockType which indicates the mathematical function
implicitly. Recalling the integration example given in Section 2.1, the value Integrator
of the parameter BlockType denotes that the block performs an integration function. Fur-
thermore, some library blocks can generate different functionalities of their instances
by different values assigned of their operator parameters. Thus, these relevant operator
parameters are additional criteria as well. Taking the library block Sum example from
3.2, parameters BlockType and Inputs compose the criteria to select an appropriate TIC
library function.

The other is the sample time which represents the rate at which a block is executed.
A block sample time can be assigned explicitly by the parameter SampleTime with
positive value; or implied by the type of its library block, for example, a continuous
block always has sample time value 0; or derived from sample time propagation, which
is a process to calculate the sample time of a block from the sample times of the inputs
of the block. A method is developed below to derive the sample time of an elementary
block based on the instructions in [18]. We assume that the sample time values of the
block inputs (each is a function of time and denoted by Blk In == T→ R) are known
and represented by the function InST : Blk In→ T.

1. If all inputs have the same sample time values, then the value is assigned to the
sample time of the block. The following function returns the desired sample time
value if it exists, value 0 otherwise.

84

2. Otherwise, if a sample time value of an input is the common integer divisor of other
sample time values, then the value is the result. The following function specifies the
computation and returns value 0 if no such a sample time exists.

ExiFast : P Blk In→ T

∀ ins : P Blk In • ∃ res : T • ExiFast(ins) =
If ∃ in1 : ins • ∀ in2 : ins | in1 �= in2 •
∃ k : N | k > 1 • InST(in2) = InST(in1) ∗ k ∧ InST(in1) = res

Then res Else 0

3. Otherwise, if the Simulink variable-step solver 4 is used, then the block is assigned
the continuous sample time; if the Simulink fixed-step solver is used, and the great-
est common integer divisor (GCD) of the sample time values of all inputs can be
derived, then GCD is the result, otherwise, it is value 0. In the following function
STP, Solver == {Fixed Step,Variable Step}, and the function CalGCD returns
GCD if it exists, otherwise value 0. The function STP checks whether any of the
previous two conditions holds before it computes the sample time based on the
solver type. Note that the previous two conditions are mutually exclusive.

STP : P Blk In× Solver→ T

∀ ins : P Blk In; s : Solver • STP(ins, s) =
If AllEq(ins) �= 0 ∨ ExiFast(ins) �= 0 Then AllEq(ins) + ExiFast(ins)
Else (If s = Variable Step Then 0 Else CalGCD(ins))

Hence, after the translation, the functional aspect of an elementary block is captured by
a TIC schema, and the timing information, i.e. the sample time value, is calculated and
kept in the schema.

Taking the elementary block less in Figure 1 as an example, the selection criteria
consists of the parameters BlockType and Operator, so their respective values Relation-
alOperator and “<” determine that the proper library function is Relation l shown in
Appendix A. In addition, the sample time value is 0, which is derived by the sample
time propagation method as the block maximum has the continuous sample time. Thus,
the block is translated into the TIC schema: tank controller less =̂ Relation l(0). We
adopt a conventionalnaming manner to capture the hierarchical structure of the Simulink
diagram. To be specific, a TIC schema name of a block is formed by appending the
names of the block and systems along the structure path of the diagram using the sym-
bol “ ”. Hence, the schema name tank controller less indicates that the block less is
the component of the system controller which is the subsystem of the system tank.

4.2 Translating Wires

In Simulink, wires represent input and output relations between connected blocks. They
have values at all points in time. Source (Destination) block writes (reads) value to

4 Variable-step solvers vary the simulation step size in simulation, while fixed-step solvers keep
the simulation step size constant.

C. Chen and J.S. Dong

Applying Timed Interval Calculus to Simulink Diagrams 85

(from) a wire according to its sample time. Hence, it supports the communication be-
tween blocks which have different sample time values. We convert a wire into an equa-
tion which consists of two variables denoting the output of the source block and the
input of the destination block respectively. The equivalence remains the Simulink com-
munication feature, i.e. the destination block receiving the same value that is produced
by the source block at the same time. The general structure can thus be modelled in the
schema.
Line =̂ [src, dst : T→ R | src = dst]

4.3 Translating Diagrams

A Simulink diagram is formed by connecting Simulink blocks with wires. Hence the
formal specification of a diagram should capture the components and connection. Our
method is similar to the way presented in [2]. A diagram into a TIC schema after trans-
lating its components into corresponding TIC schemas. The schema declares each com-
ponent to be a schema variable which is an instance of the TIC schema of the compo-
nent. It hence depicts the connection by translating each wire into an equation using the
variables in the declaration part. The structure of the schema can be modelled by the
following mutually recursive free type definition [11].

Diagram ::= System〈〈[InS,OutS : P(T→ R); Blks : P1 Block; Ls : P1 Line]〉〉
&
Block ::= Subsystem〈〈[subsys : Diagram]〉〉 | LibBlk〈〈[blk : EleBlk]〉〉

The above definition indicates that a Simulink block can be either an elementary block
or a subsystem which is a diagram as well. Moreover, it restricts that a Simulink diagram
must have at least one wire to connect two components.

4.4 Additional Translation Issues

As mentioned at the end of Section 3, the library blocks from the Ports and Subsys-
tems category would be analyzed during the translation. As they are mainly used to
construct subsystems, we demonstrate the solution by considering the plain subsystems
and conditionally executed subsystems below.

A plain subsystem reduces virtually the number of blocks displayed in a Simulink
diagram without changing the system behavior. Hence, it is treated in the same way
translating diagrams. In particular, the instances generated by the library blocks Inport
and Outport are represented by functions from time to real numbers as they represent
the interface of the subsystems.

A conditionally executed subsystem restricts its execution within special periods.
Namely, the execution depends on the value of the control signal. In our approach, such
a subsystem is translated into a TIC schema in the similar way for a plain subsystem,
besides two additional TIC predicates constraining the relationship between the execu-
tion and the control signal in terms of intervals. To be specific, each predicate contains
two TIC expressions. One expression (TE1) specifies the intervals when the system is
(or is not) executable, the other expression (TE2) depicts the corresponding behavior.

86

Hence, the predicate is generally in the format TE1 ⊆ TE2. As the execution of subsys-
tems can be arbitrary, it is hard to predict the contents of the expression TE2, and we
thus focus on the way to construct the expression TE1 for two prominent conditionally
executed subsystems respectively.

We experiment our strategy by translating the water tank system displayed in Figure 1
into corresponding TIC schemas shown in Appendix B. For simplicity, we choose the
subsystem detector which is plain as the example.

The subsystem contains four elementary blocks. Two of them, integration and sam-
pling are translated to two TIC schemas below which capture the initial value and the
sample time of the blocks respectively.

tank detector integration =̂ Integrator(4)
tank detector sampling =̂ ZOH(1)

Other blocks, in and out denote the interface of the subsystem. They are declared as
functions over time in the following TIC schema tank detector. The schema models
the subsystem by declaring its components as instances of the translated TIC schemas,
and confining the connections by three equations.

tank detector
in : T→ R; sampling : tank detector sampling
integration : tank detector integration; out : T→ R

sampling.Out = out ∧ in = integration.In1
integration.Out = sampling.In1

We remark that in the subsystem controller, there is an algebraic loop made up by the
blocks switch and IC. In practical, solving an algebraic loop is difficult, and unnecessary
if it is not involved in analysis. Thus, in our approach, the structure of the loop, i.e. the
components and the connections, is preserved after the translation, so the loop can be
retrieved by relevant TIC schemas and equations when needed.

In this section, we presented a strategy to translate Simulink diagrams into TIC spec-
ifications in the bottom-up manner. The translation preserves the functional and timing
aspect. We also discussed the solution to handle conditionally executed subsystems.

C. Chen and J.S. Dong

Applying Timed Interval Calculus to Simulink Diagrams 87

Currently we have been implementing the strategy using JAVA so the translation can
be accomplished automatically, for example, the TIC specifications of the water tank
system are generated successfully by the translator.

5 Simulink Diagrams Verification in TIC

In TIC, verification is a deduction to show that a system implies requirements. This
section will firstly describe the way to specify requirements based on the translated TIC
specifications, and then show the benefits from utilizing the TIC verification capability
by analyzing the water tank system.

5.1 Specification of Requirements

TIC models system behavior in terms of intervals. It supports various requirements
specifications represented as TIC predicates. For example, a safety requirement that a
predicate P holds always can be expressed in the TIC predicate that restricts
the requirement in a higher level, i.e., in any non-empty level. With the TIC-defined
operators on interval endpoints and length, timing constraints that are difficult to be
supported in Simulink, can be represented precisely and concisely in TIC. For example,
a timing liveness requirement that for any interval lasting more than K time units and
during which a predicate P holds, then a predicate Q should hold within K time units
and last till the end of the interval, can be specified by the following TIC predicate

In our approach, requirements are formed based on the TIC schemas translated from
Simulink diagrams. We can specify them over the whole system or some of its compo-
nents. For example, in the water tank system, the requirement of the subsystem detector
is “for any period lasting more than 1 second and during which the water volume in a
tank is not greater than 1, then the gate must open within 1 second (including 1) till the
end.”. From the translated TIC specifications shown in Appendix B, the variable gate
of the schema tank controller denotes the gate status, and the output of the schema
tank detector integration represents the real-time water volume in the tank. Moreover,
the requirement is about timing-related liveness, so it can be specified easily in the
similar format of the previous TIC predicate. Namely, the requirement is modelled as
below:

We remark that Simulink Verification and Validation [19] provides a function to link
requirements documents (e.g. a Word or Excel file) with Simulink components. The
function aims to assists users to quickly look over requirements in the modelling phase,
and it is different from ours in that we can formally verify systems against requirements
directly.

88

5.2 Checking Beyond Simulink

As Simulink diagrams are constructed in a hierarchical manner, we adopt a common
approach [10] to analyze system behavior in a bottom-up order. We start with checking
requirements of subsystems, so the proved requirements act as lemmas for the anal-
ysis of higher-level system. During the verification, the translated TIC specifications
serve as assumptions to depict the blocks behavior and the connections in the diagram.
Each deductive step is reached by formally applying assumptions, reasoning rules, com-
mon mathematical theories, or lemmas. We take the verification of the requirement
mentioned above as an example and give manually developed deduction outlines by
necessity:

Besides the above proof, we have successfully shown that the water tank system
satisfied other important requirements 5 including the safety requirement that the tank
would be neither empty nor overflow always. In the verification, mathematical analysis,
e.g. integral calculus, is applied freely in the TIC logic, and hence it provides a flexible

5 Details of other requirements verification are available in the technical report at www.comp.
nus.edu.sg/∼chenchun/water tank/

C. Chen and J.S. Dong

Applying Timed Interval Calculus to Simulink Diagrams 89

interface to conventional control theory. Furthermore, one advantage is that open sys-
tems can be analyzed if certain constraints of their input functions are given. Simulink
can only simulate closed systems, and it is often impractical to know the exact input
functions. This limitation can be solved in our approach by specifying the constraints
in TIC and treating them as assumptions in the verification.

The proof so far is achieved by hand. The calculations however are simple and stereo-
typic, so there is a reasonable hope for machine-assisted proof. Currently we are explor-
ing the way to reuse the existent work [5] which formalized several reasoning rules in
the generic theorem prover Isabelle [20]. Based on the real numbers and set theories
available in Isabelle/HOL, intervals can be implemented as connected sets of real num-
bers, and TIC specifications can be encoded into Isabelle theorems to be checked by the
validated reasoning rules.

6 Conclusion

In this paper, we propose to apply Timed Interval Calculus (TIC), a set-theoretic nota-
tion, to formally model and verify Simulink diagrams. The work is based on the same
angle adopted by Simulink and TIC where they specify systems in terms of continu-
ous time. We defined a set of TIC library functions to model Simulink library blocks
and cover a wide range of categories such as continuous, discrete and discontinuous
libraries. Moreover, the TIC schemas produced by their library functions can capture
the functional behavior over time of the Simulink elementary blocks.

We presented a strategy to translate Simulink diagrams to TIC specifications in the
bottom-up order. The timing information can be derived and kept in the generated TIC
schemas. Hence, the translation preserves the functional and timing aspects of the dia-
grams. Moreover, we discussed the way to handle conditionally executed subsystems,
such as enabled and triggered subsystems. A translator has been implemented in JAVA
to experiment our strategy.

With the expressive power of TIC, we can precisely and concisely specify require-
ments, especially the timing constraints, over a system or its components after the
translation. This way yields a larger design space. Using TIC reasoning rules, we can
formally verify systems against requirements beyond Simulink, for example, a safety
requirement needs a possible infinite simulation period. During the verification, math-
ematical analysis, e.g., control theory, can be applied freely in TIC logic. Furthermore,
open systems which are not checkable by simulation in Simulink can be analyzed in
our approach. Thus, using TIC can elevate the design quality in Simulink.

We are enhancing the capability of the translator with more complex Simulink dia-
grams. In the future, we plan to extend the TIC library functions to support Stateflow.
Embedding TIC into Isabelle/HOL for machine-assisted proof is one of our goals as
well.

Acknowledgements

We thank Brendan Mahony for providing materials about TIC notation. We also thank
Anders P. Ravn and Zhou Chaochen and Mark Adams for their insightful discussion on

90

the related work. This work is supported by the A*Star research Grants “Formal Design
Techniques for Reactive Embedded Systems”.

References

1. M. M. Adams and Peter B. Clayton. Clawz: Cost-effective formal verification for control
systems. In ICFEM 2005, pages 465–479, 2005.

2. R. D. Arthan, P. Caseley, C. O’Halloran, and A. Smith. ClawZ: Control laws in Z. In ICFEM
2000, pages 169–176. IEEE Press, 2000.

3. P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis. Translating discrete-time
Simulink to Lustre. In EMSOFT 2003, Philadelphia, PA, USA, 2003.

4. A. Cavalcanti, P. Clayton, and C. O’Halloran. Control law diagrams in Circus. In FM 2005,
University of Newcastle upon Tyne, UK, July 2005.

5. J. E. Dawson and R. Goré. Machine-checking the timed interval calculus. In Australian Joint
Conference on Artificial Intelligence, pages 95–106, 2002.

6. C. J. Fidge. Modelling discrete behaviour in a continuous-time formalism. In IFM 1999,
pages 170–188. Springer-Verlag, June 1999.

7. C. J. Fidge, I. J. Hayes, and B. P. Mahony. Defining differentiation and integration in Z. In
ICFEM 1998. IEEE Computer Society, 1998.

8. C. J. Fidge, I. J. Hayes, A. P. Martin, and A. Wabenhorst. A set-theoretic model for real-time
specification and reasoning. In MPC 1998, pages 188–206, 1998.

9. S. Gupta, B. H. Krogh, and R. A. Rutenbar. Towards formal verification of analog designs.
In ICCAD 2004, pages 210 – 217, 2004.

10. J. Hooman. Specification and Compositional Verification of Real-Time Systems. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1991.

11. ISO/IEC. Information Technology — Z Formal Specification Notation — Syntax, Type System
and Semantics, 1st edition, July 2002. 13568.

12. A. Jantsch and I. Sander. Models of computation and languages for embedded system design.
IEE Pro. on Comp. and Dig. Tech., 152(2):114–129, March 2005.

13. M. Jersak, Y. Cai, D. Ziegenbein, and R. Ernst. A transformational approach to constraint
relaxation of a time-driven simulation model. In ISSS 2000, 2000.

14. B. P. Mahony and I. J. Hayes. A case-study in timed refinement: A mine pump. IEEE
Transactions on Software Engineering, 18(9):817–826, 1992.

15. A. Martin and C. J. Fidge. Lifting in Z. Electronic Notes in Theoretical Computer Science,
42, 2001.

16. The MathWorks. Stateflow and Stateflow coder - For Complex Logic and State Diagram
Modeling, 2003.

17. The MathWorks. Simulink - Simulation and Model-based Design - Simulink Reference Ver-
sion 6, 2004.

18. The MathWorks. Simulink - Simulation and Model-based Design - Using Simulink Version
6, 2004.

19. The MathWorks. Simulink Verification and Validation User’s Guide, March 2006.
20. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-

Order Logic. Springer, 2002.
21. A. Pnueli. Embedded systems: Challenges in specification and verification. In EMSOFT

2002, pages 1–14, London, UK, 2002. Springer-Verlag.
22. S. Sims, R. Cleaveland, K. Butts, and S. Ranville. Automated validation of software models.

In ASE 2001, pages 91–96. IEEE Computer Society, 2001.

C. Chen and J.S. Dong

Applying Timed Interval Calculus to Simulink Diagrams 91

23. A. Tiwari, N. Shankar, and J. Rushby. Invisible formal methods for embedded control sys-
tems. Proceedings of the IEEE, 91(1):29–39, January 2003.

24. A. Wabenhorst. Induction in the timed interval calculus. Theoretical Computer Science,
300(1-3):181–207, 2003.

25. F. Wang. Formal verification of timed systems: A survey and perspective. Proceedings of
the IEEE, 92(8):1283–1307, August 2004.

26. J. Woodcock and J. Davies. Using Z: Specification, Refinement and Proof. Prentice Hall
International, 1996.

27. C. C. Zhou and M. R. Hansen. Duration Calculus: A Formal Approach to Real-Time Systems.
Springer Verlag, 2004.

28. C. C. Zhou and X. S. Li. A mean value calculus of durations. In A classical mind: essays in
honour of C. A. R. Hoare. Prentice-Hall International, 1994.

29. C. C. Zhou, A. P. Ravn, and M. R. Hansen. An extended duration calculus for hybrid real-
time systems. In Hybrid Systems, pages 36–59. Springer-Verlag, 1993.

92

A TIC Library Functions of
the Water Tank System

C. Chen and J.S. Dong

Applying Timed Interval Calculus to Simulink Diagrams 93

B TIC Specifications of the
Water Tank Simulink
Diagram

Controller Subsystem

tank controller maximum =̂ Constant(3)

tank controller less =̂ Relation l(0)

tank controller minimum =̂ Constant(1)

tank controller greater =̂ Relation g(0)

tank controller inverse =̂ Sum PM(0)

tank controller switch =̂ Switch(0, 0)

tank controller IC =̂ InitCond(0, 0)

tank controller constant =̂ Constant(1)

tank controller

water : T → R

maximum : tank controller maximum

minimum : tank controller minimum

less : tank controller less

greater : tank controller greater

constant : tank controller constant

inverse : tank controller inverse

switch : tank controller switch

IC : tank controller IC

gate : T → R

water = less.In1 ∧ inverse.Out = switch.In3

constant.Out = inverse.In1 ∧ IC.Out = gate

less.Out = switch.In1 ∧ water = greater.In1

switch.Out = IC.In1 ∧ IC.Out = switch.In2

greater.Out = inverse.In2

maximum.Out = less.In2

minimum.Out = greater.In2

Detector Subsystem

tank detector integration =̂ Integrator(4)

tank detector sampling =̂ ZOH(1)

tank detector

in : T → R

integration : tank detector integration

sampling : tank detector sampling

out : T → R

sampling.Out = out ∧ in = integration.In1

integration.Out = sampling.In1

Plant Subsystem

tank plant switch =̂ Switch(0, 0)

tank plant Open =̂ Constant(1)

tank plant Close =̂ Constant(−1)

tank plant

gate : T → R

switch : tank plant switch

Open : tank plant Open

Close : tank plant Close

flow : T → R

Open.Out = switch.In1 ∧ gate = switch.In2

Close.Out = switch.In3 ∧ switch.Out = flow

Water Tank System

tank

plant : tank plant

detector : tank detector

controller : tank controller

plant.flow = detector.in

detector.out = controller.water

controller.gate = plant.gate

Reducing Model Checking of the Few to the One

E. Allen Emerson1,�, Richard J. Trefler2,��, and Thomas Wahl1,�

1 Department of Computer Sciences and Computer Engineering Research Center,
The University of Texas, Austin/TX 78712, USA
2 David R. Cheriton School of Computer Science,

University of Waterloo, Waterloo/Ontario N2L 3G1, Canada
{emerson, wahl}@cs.utexas.edu, trefler@uwaterloo.ca

Abstract. Verification of parameterized systems for an arbitrary num-
ber of instances is generally undecidable. Existing approaches resort to
non-trivial restrictions on the system or lack automation. In practice, ap-
plications can often provide a suitable bound on the parameter size. We
propose a new technique toward the bounded formulation of parameter-
ized reasoning: how to efficiently verify properties of a family of systems
over a large finite parameter range. We show how to accomplish this with
a single verification run on a model that aggregates the individual in-
stances. Such a run takes significantly less time than if the systems were
considered one by one. Our method is applicable to a completely inhomo-
geneous family of systems, where properties may not even be preserved
across instances. In this case the method exposes the parameter values
for which the verification fails. If symmetry is present in the systems,
it is inherited by the aggregate representation, allowing for verification
over a reduced model. Our technique is fully automatic and requires no
approximation.

1 Introduction

Model checking is an algorithmic technique for the verification of programs with
respect to temporal logic specifications [QS82, CE81]. It is suitable for systems
representable by a finite model, which includes many safety-critical applications
such as flight-controllers. The method is successfully applied in industry to tech-
nical protocols, to computer hardware, and also, more recently, to software.

In practice, many systems are composed of replicated components. Examples
include communication and cache coherence protocols, where the components are
concurrent processes, and hardware designs, where the components are black-
box pieces of logic, such as memory units. To allow for re-usability, descriptions
of such systems are usually parameterized by the number of components. The
parameterized verification problem is to decide whether a given property holds
for all (i.e. infinitely many) instances of the size parameter. Due to its broad
nature, this problem is generally undecidable [AK86].

� Authors supported in part by NSF grants CCR-009-8141 and CCR-020-5483.
�� Author supported in part by grants from NSERC of Canada and Nortel Networks.

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 94–113, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Reducing Model Checking of the Few to the One 95

There are two principle ways of approaching parameterized verification algo-
rithmically. One is to identify decidable subclasses of parameterized systems. To
this end, many authors quite heavily restrict both the systems and the properties
[CGB86, CG87, EK00, see also sections 8 and 9], and give more or less efficiently
verifiable conditions under which these properties hold for all instances. The
other way is to realize that it is often possible and sufficient to consider a bound
on the parameter size. Some applications suggest such a bound themselves, for
example the number of components that fit on a particular circuit board. In
other cases, verification engineers may find a correctness result that holds for a
large number of components acceptable if all-inclusive parameterized techniques
cannot handle their design.

In this paper, we propose a new approach to bounded parameterized ver-
ification. The goal is to verify—automatically and efficiently—temporal logic
properties of an arbitrary parameterized system for a large finite range of values
of the parameter. Of course, this can be accomplished (in an unsophisticated
way) by analyzing the individual systems one by one, ignoring their common
origin. This approach quickly becomes inefficient if the range for the parame-
ter is non-trivial: in each run, both the modeling step and the verification are
repeated, perhaps with only minor changes.

To address these shortcomings, we present a simple but effective technique
to merge all instances in the given finite range into a single aggregate structure
capable of simulating all systems from the range in one fell swoop. States of small
systems (with few components) can be embedded in states of larger systems. The
key in our approach is that we annotate each such embedding in a space-efficient
way with the number of components in the embedded state, thereby making the
merging lossless. Symbolic data structures such as BDDs (see section 2.2) can
then be used to explore the aggregate structure in only little more time than
(sometimes the same time as) it takes to traverse the largest of the original
structures. This compares well to the cumulative time to analyze all structures
one by one.

It is not obvious that the aggregate method outperforms the naive one. In
fact, our findings seem to contradict the principle of decomposing large systems
into small, verifiable units, and then re-composing the results into a final report.
The reason why in our case aggregation outperforms decomposition is that the
components—here: instances of a parameterized system—are of similar form,
suitable for a monolithic model. Moreover, we exert the power of symbolic data
structures to compactly represent a large number of similar structures, at a cost
much less than the sum of the costs to describe the individual entities.

The suggested method is applicable to an arbitrary, inhomogeneous, finite
system family, irrespective of any restrictions on the syntax of the system de-
scription or property. Given this much flexibility, it is well possible that the
property under investigation is true for some but not for all instances, i.e. for-
mulas may not be preserved across system sizes. In such cases, most traditional
parameterized techniques are unlikely to be useful (see comments in [CGB86];
an exception is [KM89]). In contrast, our technique is capable of reporting the

96 E.A. Emerson, R.J. Trefler, and T. Wahl

exact set of parameter values for which the property is incorrect, still with a
single verification run. This provides an invaluable hint for debugging.

In the second part of the paper, we consider the special case of symmetric,
i.e. more homogeneous, families. We show that the aggregate representation of
all instances Mn by a single one, M , preserves the symmetry. Permutations,
commonly used to formalize symmetry, are restricted to those that respect the
special format of the states in the aggregate structure. We then demonstrate
that with a careful encoding of M , this restriction can be ignored in an imple-
mentation: existing symmetry reduction algorithms can be applied without any
changes. We emphasize that even though for homogeneous systems full param-
eterized verification may apply, a front-end is still required that checks whether
the given system conforms to the imposed restrictions. Furthermore, this check
may very well turn out negative, since symmetry alone is not enough. None of
this is of any concern with our method.

In summary, we view our approach as a complement to parameterized verifi-
cation, which is generally intractable. The proposed method trades the benefit
of solving the verification problem for infinitely many instances of a system, in
exchange for greatly enhanced practicability. Indeed, the technique does not re-
quire any manual reasoning, imposes no restrictions on the input syntax, and is
easy to implement. We document its efficacy by experimental results in section 8.

2 Background

The following paragraphs contain some basic material about symbolic model
checking and temporal logics; the reader familiar with these topics is invited to
skip ahead to section 3.

2.1 Model Checking and Temporal Logic

Model checking requires that the system under investigation be expressed as a
finite-state model, and that the desired properties be written in a temporal logic
that is understood by the model checker at hand. Formally, a model M consists,
at a minimum, of a finite set of states, S, and a transition relation, R. The
set of states is usually obtained as the set of all possible valuations of system
variables. R is a relation in order to allow modeling non-determinism. Finally,
sometimes we also explicitly define a labeling function, L, which provides the
“glue” between the model and the properties to be verified: it assigns to each
state atomic properties that are true at that state, such as “error state” or
“initial state”. These atomic propositions, forming a set AP , are used as atoms
in temporal logic formulas. Summarizing, given a finite set S, we have R ⊂ S×S
and L: S → 2AP .

Popular temporal logics used for the specification of program properties are
(enhanced versions of) LTL [Pnu77] and CTL [EC82]. Both logics can be thought
of as propositional logic extended by operators related to the evolving nature of
programs through states. More precisely, LTL features temporal operators such
as X, F, and G, which express that their argument is true in the next state, in

Reducing Model Checking of the Few to the One 97

some future state, and in all future states, respectively. CTL, on the other hand,
has operators characterizing both temporal and branching behavior of programs,
such as AX, EF, AG, which express that their argument is true in all successors
of the current state, in some future state along some execution path, and in
all future states along all execution paths, respectively. For example, the LTL
formula GF executed states that with respect to the current state, the atomic
predicate executed is always (G)eventually (F) true, i.e. infinitely often. The
CTL formula EF sorted states that along some execution path of the program,
at some point the predicate sorted will be true (we say the predicate is reachable).
Neither of the two logics subsumes the other; the quite powerful logic CTL* is a
superset of LTL ∪ CTL. A formal treatment of these logics is beyond the scope
of this paper; plenty of literature is available on these topics [Eme90].

Both the system model and the temporal logic properties are presented to
a model checker. Given sufficient resources, the result is either a confirmation
of the satisfaction of the property with respect to the model, or a failure, in
which case often a counter example can be presented. Assuming the property is
a desirable one, the counter example is used in debugging the system.

2.2 Symbolic Model Checking

A phenomenon impacting the usability of model checking in practice is the state
explosion problem, referring to the fact that the state space of a system is often
exponentially larger than its description. One successful approach to combat
this problem is symbolic model checking [McM93]. The idea is that instead of
representing the system model M = (S,R) using sets that enumerate the states
and transitions, S and R can also be expressed as boolean formulas. For example,
the formula x = 4∧ y = 3 succinctly represents the set of states where x has the
value 4 and y the value 3 (with other variables’ values unspecified). A formula
over current-state and next-state variables can be used to express the effect of a
transition. For instance, next(x) = x + 1 represents the assignment x := x + 1.

Once states and transitions are modeled as boolean formulas, a data structure
is needed to encode these formulas. In its original form [McM93], symbolic model
checking was implemented using binary decision diagrams (BDDs) [Bry86]; to-
day alternative structures are used as well. BDDs can represent many practically
occurring systems succinctly, although for some they are provably unsuitable,
for instance those involving non-linear arithmetic. One disadvantage of BDDs
is that the degree of conciseness depends on quite a few parameters, many of
which can only be determined experimentally. An advantage that makes them
blend nicely with model checking is canonicity: for a fixed set of parameters,
every propositional formula has a unique BDD representation. This facilitates
termination detection in model checking routines.

3 Preliminaries

The parameterized systems we consider consist of replicated components, i.e.
collections of processes whose behavior is described by a single program. The

98 E.A. Emerson, R.J. Trefler, and T. Wahl

program can have shared variables; each process is characterized at any time by
its local state. We present such programs using the graph-like notation of syn-
chronization skeletons [CE81]. Local states are shown as nodes in the graph, tran-
sitions as edges. As an example, consider a token-ring solution to the n-process
Mutual Exclusion problem with a shared variable tok ∈ [1..n], and the skeleton
in figure 1.

CT
tok = self

tok := (tok (mod n)) + 1

N

Fig. 1. Synchronization skeleton for a token version of the Mutual Exclusion problem

A skeleton’s arcs can be labeled with guards (shown in the figure above
the arc) and actions (shown below the arc). Guards are boolean-valued expres-
sions on local states of processes and shared variables. Actions are assignments
to shared variables. The actions are executed after the local state change. The
skeleton in figure 1 allows a process to enter its critical section C if it currently
possesses the token (tok = self). Upon leaving C, it passes the token on to the
next process.

A synchronization skeleton gives rise to a system of n concurrent processes in
the obvious way. To keep the notation simple, we omit shared variables from our
state description for now. (Their presence is mostly immaterial to the techniques
developed in this paper, as we will discuss in section 9.) A global state s is thus
a tuple (s1, . . . , sn) of local states of processes; transitions do not have actions
associated with them. Given two states s and t, let the notation si g→ ti ∈ SKEL
express that there is an edge in the skeleton from a node labeled si to a node
labeled ti such that s satisfies guard g. The transition relation Rn of the n-process
concurrent system is defined as

Rn =
{
(s, t) : ∃i : i ≤ n :

(
si g→ ti ∈ SKEL ∧ ∀j : j �= i : sj = tj

)}
. (1)

In practice, the behavior of the processes will rarely be given as a synchroniza-
tion skeleton, but perhaps in a programming language. Deriving a skeleton from
a program is fairly straightforward: each valuation of all local process variables
defines a local state; local atomic computation of a process (such as assignments
to local variables) is abstracted into a single transition.

4 The Aggregate System

The goal of this paper is to develop an approach to parameterized verification
that works for any bounded family of systems derived from a synchronization

Reducing Model Checking of the Few to the One 99

skeleton parameterized by the number n of processes, and arbitrary CTL* prop-
erties. Let l be the number of local states occurring in the skeleton and AP be
a set of atomic propositions to be used in temporal logic formulas. The skeleton
gives rise to a family (Mn)n∈IN of Kripke structures with Mn = (Sn, Rn, Ln).
With Rn as in (1), we have

Sn = [0..(l− 1)]n, Rn ⊂ Sn × Sn, Ln: Sn → 2AP .

Let now N be an integer specifying the maximum number of processes we are
interested in, i.e. we consider n ≤ N . We will represent all systems M1..MN in a
single aggregate structure by forming their disjoint union, in the following sense.
A state of a particular instance Mn is given by the local states of n processes,
which can be embedded in a local state vector of length N . In order to be able
to recognize the state as a member of Mn, we fill the remaining N − n vector
positions with a fresh local state symbol, say $. Every state vector is thus a
sequence of non-$ symbols followed by a sequence of $ symbols. Intuitively, a
process resides in local state $ if its index is outside the range of the system to
which the global state belongs.

Formally, we define a new Kripke structure M = (S,R,L) over the state space
S = [0..l]N . Every state in S is a vector of length N over l + 1 local states. The
embedding of the systems Mn in M is achieved as follows.

Definition 1. For n ≤ N , the completion of a state sn = (s1, . . . , sn) ∈ Sn and
of an edge (sn, tn) ∈ Rn, respectively, are defined as

c(s1, . . . , sn) = (s1, . . . , sn, $, . . . , $︸ ︷︷ ︸
N−n

) ∈ S, c(sn, tn) = (c(sn), c(tn)) ∈ R. (2)

The completion of sets of states and sets of transitions is defined pointwise.

The completion upgrades states and transitions to members of the aggregate
structure. We call a state s ∈ S proper if there exists a number n such that
s is of the form (s1, . . . , sn, $, . . . , $), sj �= $ for all j ∈ [1..n]. If s is proper,
this number n is unique, called the width of proper state s. A state is proper of
width n exactly if it is the completion of some state in Sn.

We are now ready to define the transition relation of the aggregate system:

R =
⋃

n≤N

c(Rn). (3)

R can be viewed as the disjoint union of the Rn, the disjointness being guaranteed
by the fresh local state symbol $. This definition ensures that the aggregate
structure allows only proper paths, in the following sense.

Property 2. For (s, t) ∈ R, both s and t are proper and have the same width.

Corollary 3. All states along non-empty paths in the aggregate structure M are
proper and have the same width.

100 E.A. Emerson, R.J. Trefler, and T. Wahl

Finally, the labeling function L of M is defined as follows.

L(s1, . . . , sN) =
{
Ln(s1, . . . , sn) if (s1, . . . , sN) is proper of some width n

∅ otherwise. (4)

We remark that L is well-defined since the width of a proper state is unique.

5 Efficiently Constructing the Aggregate System

In this section we illustrate how to efficiently implement the system represen-
tation outlined before with symbolic data structures such as BDDs. The main
result will be that building a BDD for the aggregate R differs only slightly from
building a BDD for any Rn.

The first step is to make sure there is enough space to accommodate the
additional (l + 1)st local state, for each process. Representing state space S
requires �log(l + 1)� bits per process, which is equal to �log l� bits unless l
happens to be a power of 2. Hence, S can often be represented with no more
bits than the largest of the original state spaces, SN . When l is a power of 2,
the number of bits increases by 1 per process, compared with SN .

Second, how do we implement the transition relation R? Equation (3) is suit-
able for proving theorems about the aggregate system, but not for implement-
ing R, because it refers to the individual relations Rn, which we want to circum-
vent. Fortunately, there exists a different characterization of R, paving the way
for a better solution.

Theorem 4. Let the family of systems (Sn, Rn)n≤N be given as a synchroniza-
tion skeleton. Then⋃

n≤N

c(Rn) = {(s, t) : s is proper of some width n, and

∃i : i ≤ n :
(
si g→ ti ∈ SKEL ∧ ∀j : j �= i : sj = tj

)} (5)

(In the expression si g→ ti ∈ SKEL, guard g is evaluated over (s1, . . . , sn).)

Proof.
“⇒”: Let (s, t) ∈ c(Rn). Then by the definition of completion, s is proper of

width n, and ((s1, . . . , sn), (t1, . . . , tn)) ∈ Rn. By equation (1), there exists an
index i with the property required in (5).

“⇐”: Consider (s, t). From (1) and the second line in (5), we conclude
((s1, . . . , sn), (t1, . . . , tn)) ∈ Rn. From the properness of s, we conclude sk = $
and hence tk = $ for k > n. Thus, c(s1, . . . , sn) = s, similarly for t, and therefore
(s, t) ∈ c(Rn). �

Discussion. This theorem provides the ingredients for an efficient implementa-
tion of R. The left side of equation (5) is identical to the expression defining R
in (3). The right side of (5) is almost identical to the right side of (1), which
defines the transition relation Rn of a single system. The only difference is the

Reducing Model Checking of the Few to the One 101

requirement that s be proper. The reason for this requirement is that the width
of a proper source state tells us the number n of processes in the system instance
that contains the state. This number is needed when a guard or an action of a
skeleton edge refer to it. An example is a guard like ∀i : si = T , where n deter-
mines the range for i. Another example is the action tok := (tok (mod n)) + 1,
where n determines the value at which the token is reset to 1.

To implement R, we divide the skeleton edges in two classes: those that are
independent of the system size n, such as the edge N → T in figure 1, and
those that depend on n. For the former class, we simply translate every edge
as if it was an edge of the largest system, MN . For the latter class, we need an
additional loop that iterates through the possible system sizes; see figure 2. In
the figure, e(p) stands for the propositional formula representing the system size
independent skeleton edge e executed by process p. Similarly, e(p, n) stands for
the formula representing edge e executed by p in system Mn. The term proper (n)
in line 8 symbolizes the set of proper states of width n (expressed in current-state
variables). It ensures that transition e(p, n) can only be executed from a state
that belongs to Mn. (The computation of proper (n) can of course be pulled out
of the loop beginning in line 6.)

1. R := ∅;
2. for p := 1 to N do:
3. for every edge e independent of the system size:
4. R := R ∨ e(p)
5. for n := 1 to N do:
6. for p := 1 to n do:
7. for every edge e dependent on the system size:
8. R := R ∨ (proper (n) ∧ e(p, n))

Fig. 2. Implementation of the aggregate transition relation R

We can see that for the second class of edges, the number of systems N we
consider enters the complexity directly. We remark, however, that the majority
of the edges in a skeleton defining a parameterized system usually belong to the
first class, since dependence of transitions on the system size tends to destroy
the regular system structure. Moreover, quite frequently edges that seem to
depend on n can be rewritten such that the dependence goes away. Consider a
conjunctive guard of the general form ∀i : h(i). In the context of the aggregate
structure, we can think of this guard as expressing the condition that every
index i satisfy h(i) unless i is greater than the width of the current state (i.e.
i is “out-of-scope”). In this case the guard is to be ignored. Thus, the formula
can be rewritten as ∀i : (h(i) ∨ si = $) over the entire range [1..N], independent
of the actual system size. Similarly, disjunctive guards ∃i : h(i) can be rewritten
as ∃i : h(i) ∧ i �= $.

Finally, consider a system in which no edge depends on the system size. In this
case, equation (5) can essentially be replaced by (1). In particular, the properness

102 E.A. Emerson, R.J. Trefler, and T. Wahl

requirement need not be enforced in source or target states in R, since properness
is propagated from the initial states during model checking (see next paragraph
how proper initial states are constructed). In other words, it is then R = RN ,
making the solution space-optimal. Although this exact situation may be rare in
practice, it shows the asymptotic complexity of our technique as the number of
dependencies on the system size decreases. We emphasize that our method does
not require checking for these dependencies a priori—their existence is a matter
of efficiency, not effectiveness.

Implementing the labeling function L amounts to computing sets of states
labeled with a particular atomic proposition. As an example, suppose I is a
distinguished initial local state. For any n, this entails an initial global state
of Mn with components s1 = . . . = sn = I. According to (4), we can aggre-
gate the initial states of all systems Mn into the following set of initial states
of M :

1. (I, $, $, . . . , $)
2. (I, I, $, . . . , $)

...

N. (I, I, I, . . . , I)

A BDD for this set can efficiently be derived from the set P of proper states
using the formula P ∧ ∀i : i ≤ N : (si = I ∨ si = $). The BDD representing
the set of proper states of a certain width n has no more nodes than there are
bits used to represent a state. It is computed with a loop over all conceivable
indices 1, . . . , N . Indices greater than n are constrained to be equal to $, all
others are constrained to be different from $. The set of all proper states (of
any width) can be obtained as the union over sets of proper states of a spe-
cific width. These BDDs are all small in practice and have to be computed only
once.

6 Verifying the Aggregate System

We are now ready to realize the main goal of this paper: to reduce the verification
of all systems up to size N to the verification of the aggregate system M . We
accomplish this by establishing N bisimulations, one between each Mn and M ,
which contain pairs of a state and its completion:

Lemma 5. For any n ≤ N , the relation sn ∈ Sn ∼ c(sn) ∈ S is a bisimulation
relation between structures Mn and M .

Proof. Let sn = (s1, . . . , sn) ∈ Sn, hence c(sn) = (s1, . . . , sn, $, . . . , $) ∈ S.
(i) By the definition of the labeling function L, we have L(c(sn)) = Ln(sn),
since c(sn) is proper of width n. (ii) For tn such that (sn, tn) ∈ Rn, we have
tn ∼ c(tn). Since (sn, tn) ∈ Rn, we get (c(sn), c(tn)) = c(sn, tn) ∈ c(Rn) ⊂ R
by (3). (iii) Conversely, consider some t ∈ S such that (c(sn), t) ∈ R. By (3),
there exists m ≤ N such that (c(sn), t) ∈ c(Rm). From c(sn) ∈ c(Sm), we

Reducing Model Checking of the Few to the One 103

derive m = n, hence t ∈ c(Sn). This allows us to conclude the existence of tn
with c(tn) = t, thus (c(sn), c(tn)) ∈ c(Rn) and (sn, tn) ∈ Rn. �

We point out that structures Mn and M are not bisimilar, since there is in
general no way to define an initial state of M such that for every n, the initial
states of Mn and M are bisimilar (if there was, the Mn would all be bisimilar to
each other by transitivity). All we can say is that M simulates each of the Mn.
For our purposes, however, lemma 5 is strong enough (relation ∼ is rich enough)
to prove that a property true of all individual systems Mn is also true of the
aggregate system M , and vice versa. For n ≤ N , let sn ∈ Sn be the state of Mn

with respect to which the property is to hold, and define

Σ = {c(sn) ∈ S : n ≤ N}.

All states c(sn) are proper and thus suitable as a start state of a path in M . We
can now formulate the main result of this section:

Theorem 6. Let f be a CTL* formula, and sn, Σ as above. Then

∀n : n ≤ N : Mn, sn |= f iff ∀s : s ∈ Σ : M, s |= f. (6)

Proof. We exploit that structures with a bisimulation relation between them
satisfy the same CTL* formulas with respect to bisimilar states.
⇒: Given s ∈ Σ, let sn such that s = c(sn). Then sn ∼ s. Further Mn, sn |= f

as given, and hence M, s |= f follows with lemma 5.
⇐: Given n ≤ N , we have M, s |= f for s = c(sn) ∈ Σ. Since sn ∼ c(sn), the

claim Mn, sn |= f follows with lemma 5. �

Discussion. Theorem 6 can be viewed as identifying a claim of the form “for
all numbers n: . . . ” and a claim of the form “for all states s: . . . ”. The latter is
suitable to be approached with symbolic data structures that reason over sets
of states, such as BDDs. Indeed, if BDDf denotes the set of states of M that
satisfy formula f , then the condition on the right of equation (6) is equivalent
to Σ ⊂ BDDf .

We remark that the meaning of formula f implicitly depends on n, namely
through the labeling functions Ln. These may assign a given atomic proposition
to “different” (even after completion) states in different systems; thus EF q may
mean different things depending on the system.

How do negative verification results over M relate to the family of structures
(Mn)n≤N? Assume the proof of ∀s : s ∈ Σ : M, s |= f (right side of (6)) fails.
Then there exists a non-empty set F ⊂ Σ of states s such that M, s �|= f . By the
definition of Σ, all states in F are proper; the set width(F) = {width(s) : s ∈ F}
contains precisely the parameter values pointing to the delinquent systems. This
set can give valuable information for debugging; section 8 presents an example
of this phenomenon. Moreover, consider a particular n ∈ width(F). If the failed
verification of f over M admits a counterexample path, say p, then p can be
mapped to a path in Mn by projecting every state along p to the first n compo-
nents. The result is a valid counterexample path in Mn, due to the bisimulation
between the structures: the two paths correspond.

104 E.A. Emerson, R.J. Trefler, and T. Wahl

Another consequence of the path correspondence is that the diameter and
the girth of Kripke structure M , i.e. the distance between its most distant nodes
and the length of its longest simple path, respectively, are equal to the maximum
diameter, resp. girth, of any of the Mn. These numbers are important complexity
measures in symbolic model checking. For example, the diameter is an upper
bound on the number of image computations it takes for reachability analysis to
converge. As a result, the time complexity of model checking the CTL formula
EF bad over M , measured in number of image steps, is equal to the maximum
time complexity, over all structures Mn, of model checking this formula over Mn.

7 Families of Symmetric Systems

In this section we briefly review symmetry reduction in model checking and
then demonstrate that the aggregate system inherits contingent symmetry from
the individual systems. We conclude by showing how to efficiently exploit the
(slightly non-standard) symmetry in the aggregate with literally no change to
existing symmetry reduction algorithms.

7.1 Symmetries in Kripke Structures

A Kripke structure M = (S,R) modeling a system of n concurrently executing
processes is said to be (fully) symmetric if the transition relation R is immune
to permutations. More precisely, let Symn be the group of permutations on
[1..n] and let π ∈ Symn act on a state s ∈ S in the form π(s1, . . . , sn) =
(sπ(1), . . . , sπ(n)), i.e. by permuting the process indices. Then, M is symmetric
if for every π ∈ Symn the condition R = π(R) holds, i.e. [CEFJ96]

(s, t) ∈ R iff (π(s), π(t)) ∈ R. (7)

Intuitively, a system is symmetric if its set of transitions remains invariant
when the participating processes are renamed. A structure induced by a syn-
chronization skeleton is a promising candidate for symmetry, since all processes
execute the same parameterized program. This fact alone, however, is insuffi-
cient: guards and actions on local state transitions can depend on the identity
of the executing process in a way that limits or destroys the otherwise apparent
symmetry. For instance, the action tok := (tok (mod n)) + 1 of the skeleton in
figure 1 permits only the n rotation permutations and thus inhibits full symme-
try. Some conditions can be placed on the skeleton to guarantee that the derived
structure is indeed symmetric; see [EW03] for a possible strategy. In this section,
we assume such conditions are satisfied.

The orbit relation s ≡ t iff ∃π : π(s) = t is an equivalence relation on the
state space; based on it a quotient M̄ = (S̄, R̄) of M can be constructed in the
usual style of existential abstraction: S̄ is a set of unique representatives of the
equivalence classes (orbits), and

R̄ = {(s̄, t̄) : ∃s ≡ s̄, t ≡ t̄ : (s, t) ∈ R}. (8)

Reducing Model Checking of the Few to the One 105

Given an appropriate set of atomic propositions that respect the equivalence
classes, the quotient turns out to be bisimulation equivalent to the original M .
Any CTL* formula over such atomic propositions can thus be verified over the
smaller M̄ instead of over M . Technical details of symmetry reduction are avail-
able in the literature [ES96, CEFJ96].

7.2 Uniformly Symmetric Systems

Intuitively, due to the strong correspondence between the given system fam-
ily (Mn)n≤N and the aggregate M , one might expect that symmetry uniformly
present in all of the Mn carries over to M . In proving this conjecture, one encoun-
ters the difficulty that the Mn have different numbers of replicated components.
Thus permutations act on different sets of indices and cannot be compared across
the Mn or related to M . A unifying solution is to let permutations from SymN

act on all states, even with less than N components, after upgrading the states to
dimension N using the completion operator. This step introduces the $ symbol
into the state, which, due to its special meaning, requires special treatment: we
have to make sure permutations preserve the properness of a state. Otherwise,
a transition between proper states could be permuted into a pair of improper
states (by definition not a transition). We therefore first define a restricted per-
mutation action, as follows.

Definition 7. For any π ∈ SymN and s ∈ S, define

π[s] =

⎧⎨⎩π(s)
if s is proper of some width n
and ∀i : i > n : π(i) = i

s otherwise,
(9)

where as usual π(s) = π(s1, . . . , sN) = (sπ(1), . . . , sπ(N)). This definition extends
in the pointwise fashion to transitions and to sets of states and transitions. It
can be shown that the relation s ≡ t iff ∃π : π[s] = t is an equivalence. The
condition ∀i : i > n : π(i) = i guarantees that no value i is permuted across the
boundary between n and n+1. Since si = $ for all i > n in a proper state s, it is
irrelevant how permutations act on such i, as long as they respect this boundary.
The weaker condition ∀i : i > n : π(i) > n has the same effect. Regarding the
“otherwise” case of (9), note that it applies not only to improper states, but also
to proper states for which π violates the boundary.

Property 8. For any π ∈ SymN and s ∈ S, s is proper if and only if π[s] is
proper. If both proper, they have the same width.

Proof. If s is improper, then π[s] = s, so π[s] is also improper. If s is proper,
but π violates the properness boundary, then again π[s] = s, so π[s] is proper.
Otherwise, with n as in (9), π(i) = i > n for all i > n, hence sπ(i) = $. Due to
bijectivity of π, we have π(i) ≤ n for all i ≤ n, hence sπ(i) �= $, so π[s] is proper;
the claim of property 8 about the same width is immediate. �

106 E.A. Emerson, R.J. Trefler, and T. Wahl

We now define the notion of uniform symmetry for a parameterized system. In
order to overcome the technical barrier that permutations acting on different
systems have different domains, we use once again completions.

Definition 9. The family (Mn)n≤N of systems is called uniformly symmetric
if

∀n : n ≤ N : ∀π : π ∈ SymN : π[c(Rn)] = c(Rn). (10)

It is easy to see that (Mn)n≤N is uniformly symmetric exactly if each sys-
tem Mn satisfies π(Rn) = Rn for all permutations on [1..n]. Definition 9 pro-
vides a closed formulation of this fact and refers to only a single permutation
group, SymN . This makes reasoning about uniformly symmetric systems con-
venient. We point out that in equation (10), permutations π[·] act according to
equation (9), whereas in the expression π(Rn) = Rn, they act in the standard
fashion; there is no notion of proper states in individual systems.

The main result in this section relates symmetry in the Mn and in M :

Theorem 10. If (Mn)n≤N is uniformly symmetric, then M is fully symmetric.

Proof. Let an arbitrary π ∈ SymN be given; we show π[R] = R:

π[R]
(3)
= π

⎡⎣ ⋃
n≤N

c(Rn)

⎤⎦ (∗)
=
⋃

n≤N

π[c(Rn)]
(10)
=

⋃
n≤N

c(Rn)
(3)
= R,

where (∗) follows from function application distributing over finite set union. �

Using this result, it remains to show that the quotient of M with respect to the
orbit equivalence relation≡ and the special permutation action from equation (9)
is bisimulation equivalent to M , so that we can verify CTL* properties over the
quotient without losing information. This proof is similar to the argument used
in standard symmetry reduction, provides no new insights and is thus omitted
here.

7.3 Symmetry-Reducing the Aggregate System

Looking at the somewhat ungainly equation (9) defining permutation action,
one might suspect that exploiting the symmetry in the aggregate system is more
difficult or less efficient since only certain permutations can be effectively applied
to a state. In the rest of this section, we will show that such is not the case:
restricting permutations in this way preserves the quotient size.

Symmetry reduction algorithms proceed by mapping an encountered state s to
a unique representative of its equivalence class orbit(s) with respect to the orbit
relation [CEFJ96, ID99]. A common choice for the representative is the orbit’s
lexicographically least element, minlex(orbit(s)), given some total order ≤L on
the local states. For example, in a 3-process system with local states A and B,
the global states (A,A,B), (A,B,A) and (B,A,A) form an orbit, which can
be represented by the lexicographically least of the three states, (A,A,B). We

Reducing Model Checking of the Few to the One 107

demonstrate in the following that such representatives can be computed with-
out worrying about the special permutation action introduced in (9); instead
permutations can be applied in the traditional way, with the same result:

Theorem 11. Let s be a proper state. Then

minlex{π[s] : π ∈ SymN} = minlex{π(s) : π ∈ SymN}. (11)

Proof. Let n be the width of s, and let P[s] and P(s) be the two sets in the
scope of the minlex operator in (11). Then minlex P[s] ≥ minlex P(s) follows from
P[s] ⊂ P(s). To see the subset property, consider an element π[s]. If ∀i : i > n :
π(i) = i, then π[s] = π(s) ∈ P(s). If not, then π[s] = s = id(s) ∈ P(s), for the
identity permutation id ∈ SymN .

For the converse, let s = (s1, . . . , sn, $, . . . , $). Since, by the choice of the
numerical value of the special local state $, si ≤L $ for all i, the state minlex P(s)
has the form m = (m1, . . . ,mn, $, . . . , $). We have to show that m ∈ P[s], from
which then minlex P[s] ≤ m = minlex P(s) follows. To map the proper state s
to m, we can choose a permutation π that leaves all i with i > n invariant
(∀i : i > n : π(i) = i) and only permutes the first n components of s into their
lexicographically least arrangement. For this permutation, it is m = π(s) =
π[s] ∈ P[s]. �

Theorem 11 shows that in order to map a proper state s to its orbit repre-
sentative, there is no need to worry about the special permutation action. The
key is, of course, that the local state of out-of-bounds processes, represented
by $, was chosen greater, with respect to the local state order ≤L, than any
other local state. Thus, representative mappings never move this symbol to the
left in the local state vector and therefore preserve properness of states. As a
result, the quotient of M with respect to the restricted permutation action de-
fined in (9) is of the same size (in fact, is the same) as the standard symmetry
quotient.

8 Applications

In this section we compare our technique with two alternative methods for ver-
ifying parameterized systems: the naive method that simply considers all sys-
tems individually (“one-by-one”), and general parameterized model checking ap-
proaches. Experimental results are obtained using BDD-based symbolic model
checking. In tables, “N” refers to the parameter bound. “Peak Number of BDD
Nodes” is the maximum number of BDD nodes live at any point during execu-
tion and thus is a measure of the memory requirements of the method. Running
times are given in seconds (s), minutes (m), or hours (h), as appropriate. We
used the CUDD BDD package [Som], with a BDD variable order statically cho-
sen to best-fit each problem. All experiments were performed on a 1.6GHz PC
with 512MB of RAM running a variant of the Linux operating system.

108 E.A. Emerson, R.J. Trefler, and T. Wahl

8.1 Comparison to the One-by-One Method

The one-by-one method and our aggregate technique have the same theoretical
power: they can be used to verify arbitrary parameterized systems up to some
finite bound. We show experimental results demonstrating the superiority of our
method in terms of efficiency.

The first example, “McsLock”, is a model of a queuing lock algorithm [MS91].
It has a shared variable that counts processes in the queue (such counters are
disallowed by many fully parameterized techniques). It also has a transition that
causes several processes to change their local state simultaneously; this transition
depends on the number of components in the system. We show in table 1 how
our method scales for an increasing number of components. As can be seen, the
BDD size for the transition relation R is only slightly bigger than that for RN .
The benefit of our technique is to reduce the verification time, which it does
by more than an order of magnitude for the larger instances, and this factor
increases with N .

The second example is a parallel program. Written for a particular cluster
of machines, such programs have a natural upper bound on the parameter: the
physical number of CPUs in the cluster. Due to the possibility of failures and
down-times, such programs are parameterized by the number of available proces-
sors. These characteristics make them a suitable application domain for bounded
parameterized verification.

We present here a variant of parallel odd-even sort [KGGK94]. This algorithm
proceeds in rounds; during even rounds processors compare each even-indexed
element they own with its right neighbor (which may be owned by the next pro-
cessor), analogously for odd rounds. The odd-even split ensures mutual exclusion
when changing the position of elements. The initial state is unconstrained; the
number of elements to be sorted grows with N . The CTL property we verified
is of the form AF sorted .

The results in table 1 show again clearly the time savings obtained through
our method. In contrast to the McsLock example, the BDD for the aggregate
happens to be of a form that allows it to be traversed with fewer live BDD
nodes compared with the one-by-one technique. Note that the number of live
BDD nodes depends strongly on implementation details in the BDD package.
On the other hand, the number of nodes of a particular BDD does not, and indeed
the sizes of RN vs. R are as expected. The differences between RN and R are
bigger than with McsLock since the sorting problem is much less homogeneous—
individual transition relations depend a lot on the instance size.

8.2 Comparison to PMC Approaches

If applicable, successful approaches to parameterized model checking (PMC) (see
e.g. [Lub84, GS92, many others]) have the clear advantage that they show cor-
rectness for all sizes. Interestingly, the bounded and unbounded formulations of
PMC synergize when unbounded techniques reduce the correctness for infinitely
many instances to correctness up to some finite cutoff. This cutoff depends on

Reducing Model Checking of the Few to the One 109

Table 1. Comparison one-by-one and aggregate verification method

One-by-one method for n ∈ [1..N] Aggregation method for N
N BDD Size Peak Number BDD Size Peak Number

of RN of BDD Nodes
Time

of R of BDD Nodes
Time

McsLock (N = number of processes):

5 924 19,165 2.4s 958 19,176 0s
10 2,012 384,449 1:30m 2,057 384,796 53s
15 3,082 1,797,874 39:08m 3,147 1,797,711 15:17m
20 4,173 5,142,717 6:23h 4,346 5,142,890 1:50h

Parallel Sorting (N = number of parallel processors):

5 962 37,699 3s 2,021 26,106 3s
7 1,614 144,111 52s 3,643 90,249 30s

10 2,881 673,727 21m 6,911 371,529 7m
13 4,450 2,190,163 3:30h 11,129 1,099,196 54m

the communication complexity of the parameterized system and is not guaran-
teed to be small [EK00, BHV03, CMP04]. Our method can therefore be used
as a follow-up to cutoff-based approaches, picking up the task of verifying the
remaining finite-size family.

The disadvantage of unbounded methods is that, targeting a generally un-
decidable problem, a fully automated solution that works for any input system
does not exist. Many authors forfeit completeness by imposing restrictions on
the input syntax in order to allow an algorithmic solution. In an early work,
Clarke, Grumberg and Browne assume the absence of shared variables [CGB86],
which could be used to distinguish the number of components. The McsLock
example discussed above contains such a shared counter variable. Counters may
also occur in dynamic systems that monitor the number of active components,
for instance for performance reasons. Interestingly, if an “energy-saving” mode
of operation has a bug, the dynamic system may be correct for a large number
of processes, but not for a small one.

The logic used in [CGB86] also bans the next-time operator X and arbitrar-
ily nested ∃ and ∀ quantifiers over processes indices. This makes some natural
properties cumbersome to express, such as deadlock reachability [EK02] or even
mutual exclusion [CGB86]. In contrast, our method—being less ambitious—
requires no restrictions on the input syntax, and is valid for full CTL* (and even
the µ-calculus).

Other approaches sacrifice full automation. In [CG87], the notion of a closure
process is introduced, whose definition depends on the parameterized system at
hand to a degree that seems to undermine mechanization. In [KM89], the authors
present a fairly broad induction method to reduce a family of systems to a single
system, using an invariant process, which enforces a partial order among the
processes. Finding such an invariant requires help from the designer and can be
non-trivial. The Murϕ tool supports replicated components for fully symmetric

110 E.A. Emerson, R.J. Trefler, and T. Wahl

systems [ID99]. The tool automatically checks whether the given program allows
generalizing the verification result to larger systems. The designer, however, is
still left with checking the authenticity of returned error traces. Since our method
is exact, there is no need to solicit human interaction for path-lifting, or other
forms of manual assistance.

Looking back at the parallel sorting example, the Kripke structure derived
from this algorithm is asymmetric, since the processors have a translational (non-
cyclic) communication pattern. Because of this irregularity and the liveness-
type property, we believe that most existing parameterized techniques are not
immediately applicable to automatically verify this algorithm correct for all size
instances.

Finally, we present the response of our method to situations in which a prop-
erty is true for some but not all size instances. The sorting procedure requires
comparing each processor’s final element to the first of the next processor; the
last processor must be treated specially. The parity (even/odd) of the final ele-
ment owned by each processor alternates if the number of elements per processor
is odd. It is easy to get the communication of the boundary cases wrong. Below
is the output of our method for a version of the algorithm that fails to compare
the last two elements of the last processor if the number of processors is odd:

Initial states violating "AF sorted" for N=10:
- $ $ $ $ $ $ $ $
- - - $ $ $ $ $ $
- - - - - $ $ $ $
- - - - - - - $ $
- - - - - - - - -

Here, ’$’ represents as before the local state of out-of-bounds processors. The
values carried by active processors have been abstracted away and replaced by ’-’
to more conspicuously expose the delinquent systems: The number of ’-’ in a
global state (i.e. in one row) equals the state’s width and thus indicates the
parameter size of the system. In our case, these sizes are all odd (1, 3, 5, 7, 9),
giving a potentially substantial hint as to where the problem lies.

9 Conclusion

In this paper we have shown how to collapse a range of instances derived from an
arbitrary parameterized system into a single aggregate, which is detailed enough
to be able to simulate each instance. Further, initial states of the original systems
can be converted appropriately to states of the aggregate, enabling us to verify
arbitrary CTL* properties for all instances up to some finite size in one fell
swoop. The large time savings obtained in this manner come at little or no
additional space cost, the difference sometimes being masked by the fluctuating
performance of BDD-based symbolic model checking procedures. As a special
case, if the systems are individually symmetric, then so is the aggregate system,
which can thus be symmetry-reduced. Our method can be viewed as, instead of

Reducing Model Checking of the Few to the One 111

symmetry reducing and verifying all systems individually and then combining
the result (“does any of them have an error?”), combining the systems first and
then applying the reduction and verification once.

We have presented experimental results using a BDD-based implementation
of our technique. We believe the method can likewise be used with SAT-based
symbolic verification such as Bounded Model Checking (BMC) [BCCZ99]; crucial
is the capability to operate on sets of states in one step. We remark on the side
that despite the common “bounded”, the goals of BMC (investigating bounded
time lines over a fixed structure) and of our technique (investigating unbounded
time lines over a bounded family of structures) are quite different.

Treatment of shared variables. Shared variables are used for communication and
synchronization among processes, and they may appear in atomic propositions of
CTL* formulas. Their presence is mostly orthogonal to our techniques. To form
the aggregate system M , we distinguish two types of shared variables. Those
with range independent of the system size n (such as a boolean semaphore) are
introduced into M with the same range. Id-sensitive shared variables, i.e. those
ranging over process indices and thus with range [1..n] in Mn, are assigned a
range of [1..N] in the aggregate structure, equal to their range in structure MN .
An example is the variable tok in figure 1 earlier. Regarding the definition of
proper, a variable like tok must be restricted to [1..n] in a proper state of width n,
despite the variable’s range [1..N] in the aggregate. The completion operator
leaves the values of all shared variables unchanged.

Other related work. In addition to the results on parameterized verification men-
tioned in section 8, there are some that make use of the apparent symmetry in
systems defined using a single process template. Full symmetry of Kripke struc-
tures can be exploited using some form of counters [EN96, ID99], or by appealing
to state symmetry [ES96] of the property [EN96, EK00]. In contrast, we show
how to take advantage of internal symmetry of the property and the Kripke
structure through a quotient construction.

Future Work. A topic for further investigation is which reductions other than
symmetry are preserved during the aggregation. This seems promising since the
aggregate faithfully simulates the individuals. The success will depend on how
much existing reduction algorithms have to be adjusted to work on the aggregate,
and how much efficiency and compression is lost as a result of such adjustments.

References

[AK86] Krzysztof R. Apt and Dexter Kozen. Limits for automatic verification
of finite-state concurrent systems. Information Processing Letters (IPL),
1986.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic model checking without bdds. In Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 1999.

112 E.A. Emerson, R.J. Trefler, and T. Wahl

[BHV03] Ahmed Bouajjani, Peter Habermehl, and Tomás Vojnar. Verification of
parametric concurrent systems with prioritized fifo resource management.
In Concurrency Theory (CONCUR), 2003.

[Bry86] Randy E. Bryant. Graph-based algorithms for boolean function manipu-
lation. IEEE Transactions on Computers, 1986.

[CE81] Edmund M. Clarke and E. Allen Emerson. The design and synthesis
of synchronization skeletons using temporal logic. In Logic of Programs
(LOP), 1981.

[CEFJ96] Edmund M. Clarke, Reinhard Enders, Thomas Filkorn, and Somesh Jha.
Exploiting symmetry in temporal logic model checking. Formal Methods
in System Design (FMSD), 1996.

[CG87] Edmund M. Clarke and Orna Grumberg. Avoiding the state explosion
problem in temporal logic model checking. In Principles of Distributed
Computing (PODC), 1987.

[CGB86] Edmund M. Clarke, Orna Grumberg, and Michael C. Browne. Reasoning
about networks with many identical finite-state processes. In Principles
of Distributed Computing (PODC), 1986.

[CMP04] Ching-Tsun Chou, Phanindra K. Mannava, and Seungjoon Park. A simple
method for parameterized verification of cache coherence protocols. In
FMCAD, 2004.

[EC82] E. Allen Emerson and Edmund M. Clarke. Using branching time tem-
poral logic to synthesize synchronization skeletons. Science of Computer
Programming (SOCP), 1982.

[EK00] E. Allen Emerson and Vineet Kahlon. Reducing model checking of the
many to the few. In Computer-Aided Design (CAD), 2000.

[EK02] E. Allen Emerson and Vineet Kahlon. Model checking large-scale and
parameterized resource allocation systems. In TACAS, 2002.

[Eme90] Allen E. Emerson. Temporal and model logic. In Handbook of Theoretical
Computer Science. North-Holland Pub. Co./MIT Press, 1990.

[EN96] E. Allen Emerson and Kedar S. Namjoshi. Automatic verification of pa-
rameterized synchronous systems. In Computer-Aided Verification (CAV),
1996.

[ES96] E. Allen Emerson and A. Prasad Sistla. Symmetry and model checking.
Formal Methods in System Design (FMSD), 1996.

[EW03] E. Allen Emerson and Thomas Wahl. On combining symmetry reduction
and symbolic representation for efficient model checking. In Conference
on Correct Hardware Design and Verification Methods (CHARME), 2003.

[GS92] Steven M. German and A. Prasad Sistla. Reasoning about systems with
many processes. Journal of the ACM, 1992.

[ID99] C. Norris Ip and David L. Dill. Verifying systems with replicated compo-
nents in Murϕ. Formal Methods in System Design (FMSD), 1999.

[KGGK94] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Intro-
duction to Parallel Computing. Benjamin/Cummings Publishing, 1994.

[KM89] R. P. Kurshan and K. McMillan. A structural induction theorem for
processes. In Principles of distributed computing (PODC), 1989.

[Lub84] Boris D. Lubachevsky. An approach to automating the verification of
compact parallel coordination programs. Acta Informatica, 1984.

[McM93] Kenneth L. McMillan. Symbolic Model Checking: An Approach to the State
Explosion Problem. Kluwer Academic, 1993.

Reducing Model Checking of the Few to the One 113

[MS91] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scal-
able synchronization on shared-memory multiprocessors. Transactions on
Computer Systems (TOCS), 1991.

[Pnu77] Amir Pnueli. The temporal logic of programs. In FOCS, 1977.
[QS82] Jean-Pierre Quielle and Joseph Sifakis. Specification and verification of

concurrent systems in cesar. In 5th International Symposium on Program-
ming, 1982.

[Som] Fabio Somenzi. The CU Decision Diagram Package, release 2.3.1. Univer-
sity of Colorado at Boulder, http://vlsi.colorado.edu/~fabio/CUDD/.

Induction-Guided Falsification

Kazuhiro Ogata, Masahiro Nakano,
Weiqiang Kong, and Kokichi Futatsugi

School of Information Science
Japan Advanced Institute of Science and Technology (JAIST)

{ogata, m-nakano, weiqiang, kokichi}@jaist.ac.jp

Abstract. The induction-guided falsification searches a bounded reachable state
space of a transition system for a counterexample that the system satisfies an in-
variant property. If no counterexamples are found, it tries to verify that the system
satisfies the property by mathematical induction on the structure of the reach-
able state space of the system, from which some other invariant properties may
be obtained as lemmas. The verification and falsification process is repeated for
each of the properties until a counterexample is found or the verification is com-
pleted. The NSPK authentication protocol is used as an example to demonstrate
the induction-guided falsification.

Keywords: CafeOBJ, counterexample, induction, invariant, Maude, observa-
tional transition system (OTS).

1 Introduction

The OTS/CafeOBJ method [1] is a modeling, specification and verification method. In
the method, a system is modeled as an observational transition system, or an OTS, the
OTS is specified in CafeOBJ [2], an algebraic specification language, and it is verified
that the OTS satisfies a property using the CafeOBJ system as an interactive theorem
prover. OTSs are transition systems. Unlike the conventional definition of transition
systems, however, the structure of states are not specified explicitly. Instead of use of
variables, functions from states to data types are used to obtain the values that charac-
terize states. Such functions are called observers. We have conducted some case stud-
ies [3,4,5,6,7,8,9,10] so as to demonstrate the effectiveness of the method and refine the
method.

Although CafeOBJ does not have any model checking facilities, Maude [11], which
is a sibling language of CafeOBJ, is equipped with such facilities. Although the state
space of a system to be model checked by Maude does not have to be finite, its reachable
state space should be finite. The reachable state space of an OTS is generally infinite,
even if the number of some entities such as principals is made finite. Therefore, a way
to search a bounded reachable state space of an OTS for a counterexample that the OTS
satisfies an invariant property has been proposed [12], which is inspired by Bounded
Model Checking, or BMC [13].

What if no counterexamples that an OTS satisfies an invariant property are found in
the bounded reachable state space whose depth is n and the bounded reachable state

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 114–131, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Induction-Guided Falsification 115

space whose depth is n + 1 or more is too large to be exhaustively traversed within a
reasonable time? If that is the case, we start verifying that the OTS satisfies the invariant
property by mathematical induction on the structure of the reachable state space of the
OTS. Some other invariant properties may be obtained as lemmas from the induction.
If such invariant properties are obtained, we search the bounded reachable state space
whose depth is n for a counterexample that the OTS satisfies each of the invariant
properties. If at least one such counterexample is found, the OTS does not satisfy the
original invariant property. Otherwise, the verification and falsification process called
the induction-guided falsification is repeated for each of the invariant properties until a
counterexample is found or the verification is completed.

The rest of the paper is organized as follows. Section 2 describes OTSs. Section 3
mentions how to write OTSs in CafeOBJ and Maude. Section 4 outlines how to search
a bounded reachable state space of an OTS for a counterexample that the OTS satis-
fies an invariant property. Sections 5 and 6 describe the induction-guided falsification.
Section 7 reports on a case study. The NSPK authentication protocol [14] is used as an
example in Sections 3, 4 and 7. Section 8 mentions some related work. Section 9 con-
cludes the paper.

2 Observational Transition Systems (OTSs)

We suppose that there exists a universal state space denoted Υ and that each data type
used in OTSs is provided. The data types include Bool for truth values. A data type is
denoted D∗.

Definition 1 (OTSs). An OTS S [1] is 〈O, I, T 〉 such that

– O : A finite set of observers. Each observer ox1:Do1,...,xm:Dom : Υ → Do is an
indexed function that has m indexes x1, . . . , xm whose types are Do1, . . . , Dom.
The equivalence relation (υ1 =S υ2) between two states υ1, υ2 ∈ Υ is defined
as ∀ox1,...,xm : O. (ox1,...,xm(υ1) = ox1,...,xm(υ2)), where ∀ox1,...,xm : O is the
abbreviation of ∀ox1,...,xm : O.∀x1 : Do1 . . .∀xm : Dom.

– I : The set of initial states such that I ⊆ Υ .
– T : A finite set of transitions. Each transition ty1:Dt1,...,yn:Dtn : Υ → Υ is an

indexed function that has n indexes y1, . . . , yn whose types are Dt1, . . . , Dtn pro-
vided that ty1,...,yn(υ1) =S ty1,...,yn(υ2) for each [υ] ∈ Υ/=S , each υ1, υ2 ∈
[υ] and each yk : Dtk for k = 1, . . . , n. ty1,...,yn(υ) is called the successor
state of υ with respect to (wrt) S. Each transition ty1,...,yn has the condition
c-ty1:Dt1,...,yn:Dtn : Υ → Bool, which is called the effective condition of the tran-
sition. If c-ty1,...,yn(υ) does not hold, then ty1,...,yn(υ) =S υ. ��

Note that although the number of indexed functions is finite, the instances of the in-
dexed functions may be infinite. For example, the number of instances of transition
send1p:Prin,q:Prin : Υ → Υ is infinite if Prin is infinite, namely that the number of
principals is infinite.

Definition 2 (Reachable states). Given an OTS S, reachable states wrt S are induc-
tively defined:

116 K. Ogata et al.

– Each υinit ∈ I is reachable wrt S.
– For each ty1,...,yn ∈ T and each yk : Dtk for k = 1. . . . , n, tx1,...,xn(υ) is reach-

able wrt S if υ ∈ Υ is reachable wrt S.

Let RS be the set of all reachable states wrt S. RS may be called the reachable state
space wrt S. ��

Predicates whose types are Υ → Bool are called state predicates. We suppose
that each state predicate includes a finite number of logical connectives. We also
suppose that each state predicate p considered in this paper has the form ∀z1 :
Dp1 . . .∀zM : DpM . P (υ, z1, . . . , zM), where υ, z1, . . . , zM are all variables in p and
P (υ, z1, . . . , zM) does not contain any quantifiers.

Definition 3 (Invariants). Any state predicate p : Υ → Bool is called invariant wrt S
if p holds in all reachable states wrt S, i.e. ∀υ : RS . p(υ). ��

Definition 4 (Execution fragments). Given an OTS S, execution fragments wrt S are
inductively defined:

– Each υinit ∈ I is an execution fragment (to υinit) wrt S.
– For each ty1,...,yn ∈ T and each yk : Dtk for k = 1. . . . , n, υ0, . . . ,

υm, ty1,...,yn(υm) is also an execution fragment (to ty1,...,yn(υm)) wrt S if υ0, . . . ,
υm is an execution fragment wrt S.

Let EFS be the set of all execution fragments wrt S. ��

Proposition 1 (Reachable states and Execution fragments). (1) For each reachable
state υ ∈ RS , there exists an execution fragment to υ wrt S, and (2) for each execution
fragment υ0, . . . , υm ∈ EFS , each υk is reachable wrt S for k = 0, . . . ,m.

Proof. (1) By mathematical induction on υ. (2) By mathematical induction on m. ��

Given an execution fragment e ∈ EFS , let depth(e) denote the length of the ex-
ecution fragment, e.g. depth(υ0, . . . , υn) = n, and let ef2set(e) denote the set of
the states that appear in e, e.g. ef2set(υ0, . . . , υn) = {υ0, . . . , υn}. Let EFS,≤n be
{e ∈ EFS | depth(e) ≤ n}, the set of all execution fragments wrt S whose lengths are
less than or equal to n.

Definition 5 (Bounded reachable state space). (
⋃

e∈EFS,≤n
ef2set(e)) is called the

(n-)bounded reachable state space wrt S. LetRS,≤n denote the set of states.

From Prop. 1, it is clear that every υ ∈ RS,≤n is reachable wrt S. For a set A ⊆ Υ of
states to be (in)finite wrt S means that A/=S consists of (in)finite elements.

Theorem 1 (Sufficient condition that RS,≤n is finite). If I is finite wrt S and the
number of the instances of transitions whose effective conditions hold in each state of
RS,≤(n−1) is finite, thenRS,≤n is finite wrt S.

Proof. By mathematical induction on n. ��

Induction-Guided Falsification 117

If ∀υ : RS . p(υ) does not hold, then there must exist a reachable state υ ∈ RS such
that ¬p(υ), and there must exit an execution fragment to υ wrt S from Prop. 1.

Definition 6 (Counterexamples). Any execution fragment to υ ∈ RS such that ¬p(υ)
is called a counterexample for an invariant ∀υ : RS . p(υ). Let CXS,p be all counterex-
amples for ∀υ : RS . p(υ). ��

Any counterexample cx ∈ CXS,p such that ¬(∃ex ′ : CXS,p. (depth(cx ′) <
depth(cx))) is called a shortest counterexample for ∀υ : RS . p(υ). When CXS,p is
not empty, let cxmin

S,p ∈ CXS,p be a shortest counterexample for ∀υ : RS . p(υ).

3 Specifying OTSs

OTSs are defined so that they can be straightforwardly specified as behavioral specifi-
cations in CafeOBJ. But, OTSs can be specified in Maude as well [15,12]. In this paper,
the NSPK authentication protocol [14] is used as an example to describe how to specify
OTSs in Maude as well as CafeOBJ.

The protocol can be described as the three message exchanges:

Msg 1 p −→ q : Eq(np, p)
Msg 2 q −→ p : Ep(np, nq)
Msg 3 p −→ q : Eq(nq)

Each principal is given a pair of keys: public and private keys. Ep(m) is the message m
encrypted with the principal p’s public key. np is a nonce (a random number) generated
by principal p.

3.1 OTS SNSPK Modeling NSPK

One of the desired invariant properties that the protocol should have is (Nonce) Se-
crecy Property that any nonces cannot be leaked. The protocol is modeled as an OTS
SNSPK by taking into account the intruder so as to verify that the protocol has Secrecy
Property. The data types used in SNSPK are: (1) Bool for truth values, (2) Prin for
principals; intr denoting the intruder, (3) Rand for random numbers; seed denoting a
random number available initially; next(r) denoting a random number that has never
been generated so far, (4) Nonce for nonces; n(p, q, r) denoting the nonce (generated
by principal p for principal q) whose uniqueness is guaranteed by random number r,
(5) Cipher for ciphertexts; enc1(p, n, q) denoting Ep(n, q); enc2(p, n1, n2) denoting
Ep(n1, n2); enc3(p, n) denoting Ep(n), (6) SetNonce for sets of nonces; empty denot-
ing the empty set; n , s denoting {n}∪s; s1 , s2 denoting s1∪s2, and (7) Network for
multisets of ciphertexts; empty denoting the empty multiset; e , m denoting {| e |} �m;
m1 , m2 denoting m1 �m2.
SNSPK is 〈ONSPK, INSPK, TNSPK〉 such that

ONSLPK � {rand : Υ → Rand, nw : Υ → Network, nonces : Υ → SetNonce}
INSLPK � {υinit ∈ Υ | rand(υinit) = seed ∧ nw(υinit) = empty∧

nonces(υinit) = empty}

118 K. Ogata et al.

TNSLPK � {send1p:Prin,q:Prin : Υ → Υ,
send2p:Prin,q:Prin,n:Nonce,nw :Network : Υ → Υ,
send3p:Prin,q:Prin,n1,n2:Nonce,nw :Network : Υ → Υ,
fake1p:Prin,q:Prin,n:Nonce,ns:SetNonce : Υ → Υ,
fake2p:Prin,n1,n2:Nonce,ns:SetNonce : Υ → Υ,
fake3p:Prin,n:Nonce,ns:SetNonce : Υ → Υ}

Given a state υ ∈ Υ , rand returns a random number available in υ, nw returns a multiset
of ciphertexts (denoting the network) that have been sent up to υ, and nonces returns a
set of nonces that have been gleaned by the intruder up to υ. The first three transitions
model sending messages exactly following the protocol, while the last three transitions
model the intruder’s faking messages based on the gleaned nonces. The transitions are
defined as follows:

– send1p,q : send1p,q(υ) � υ′ such that

rand(υ′) � next(rand(υ)), nw(υ′) � enc1(q, n(p, q, rand(υ)), p) , nw(υ), and
nonces(υ′) � if q = intr then n(p, q, rand(υ)) , nonces(υ) else nonces(υ).

– send2p,q,n,nw : csend2p,q,n,nw (υ) � (nw(υ) = enc1(p, n, q) , nw).
If csend2p,q,n,nw (υ), then send2p,q,n,nw (υ) � υ′ such that

rand(υ′) � next(rand(υ)), nw(υ′) � enc2(q, n, n(p, q, rand(υ))) , nw(υ), and
nonces(υ′) � if q = intr thenn , n(p, q, rand(υ)) , nonces(υ)elsenonces(υ).

– send3p,q,n1,n2,nw :
csend2p,q,n1,n2,nw (υ) � (nw(υ) = enc2(p, n1, n2) , enc1(q, n1, p) , nw).
If csend3p,q,n1,n2,nw (υ), then send3p,q,n1,n2,nw (υ) � υ′ such that

rand(υ′) � rand(υ), nw(υ′) � enc3(q, n2) , nw(υ), and
nonces(υ′) � if q = intr then n2 , nonces(υ) else nonces(υ).

– fake1p,q,n,ns : cfake1p,q,n,ns (υ) � (nonces(υ) = n , ns).
If cfake1p,q,n,ns (υ), then fake1p,q,n,ns(υ) � υ′ such that

rand(υ′) � rand(υ), nw(υ′) � enc1(q, n, p) , nw(υ), and nonces(υ)′ � nonces(υ)

– fake2p,n1,n2,ns : cfake2p,n1,n2,ns (υ) � (nonces(υ) = n1 , n2 , ns).
If cfake2p,n1,n2,ns (υ), then fake2p,n1,n2,ns (υ) � υ′ such that

rand(υ′) � rand(υ), nw(υ′) � enc2(p, n1, n2) , nw(υ), and
nonces(υ)′ � nonces(υ).

– fake3p,n,ns : cfake3p,n,ns (υ) � (nonces(υ) = n , ns).
If cfake3p,n,ns (υ), then fake3p,n,ns(υ) � υ′ such that

rand(υ′) � rand(υ), nw(υ′) � enc3(p, n) , nw(υ), and nonces(υ)′ � nonces(υ).

Secrecy Property can be expressed as ∀υ : RSNSPK . SP(υ), where SP(υ) � ∀n :
Nonce (n ∈ nonces(υ) ⇒ (p1(n) = intr ∨ p2(n) = intr)), p1(n(p, q, r)) � p and
p2(n(p, q, r)) � q.

Induction-Guided Falsification 119

3.2 Specifying SNSPK in CafeOBJ

We suppose that there exist visible sorts Bool, Prin, Rand, Nonce, Cipher,
SetNonce and Network corresponding to the data types used in SNSPK. SNSPK
is specified as a module NSPK. The signature of the module is as follows:

op init : -> Sys
bop rand : Sys -> Rand
bop nw : Sys -> Network
bop nonces : Sys -> SetNonce
bop send1 : Sys Prin Prin -> Sys
bop send2 : Sys Prin Prin Nonce Network -> Sys
bop send3 : Sys Prin Prin Nonce Nonce Network -> Sys
bop fake1 : Sys Prin Prin Nonce SetNonce -> Sys
bop fake2 : Sys Prin Nonce Nonce SetNonce -> Sys
bop fake3 : Sys Prin Nonce SetNonce -> Sys

Sys is the hidden sort denoting the state space. bop is the keyword to declare obser-
vation and action operators, while op is the keyword to declare other operators. Con-
stant init denotes an arbitrary initial state of SNSPK. The three observation operators
correspond to the three observers, and the six action operators correspond to the six
transitions. In this paper, the definition of action operator send3 is shown, which is as
follows:

op c-send3 : Sys Prin Prin Nonce Nonce Network -> Bool
eq c-send3(S,P1,P2,N1,N2,NW)

= (nw(S) = enc2(P1,N1,N2), enc1(P2,N1,P1) , NW) .
eq rand(send3(S,P1,P2,N1,N2,NW)) = rand(S) .
ceq nw(send3(S,P1,P2,N1,N2,NW))

= (enc3(P2,N2) , nw(S)) if c-send3(S,P1,P2,N1,N2,NW) .
ceq nonces(send3(S,P1,P2,N1,N2,NW))

= (if P2 = intr then (N2 , nonces(S)) else nonces(S) fi)
if c-send3(S,P1,P2,N1,N2,NW) .

ceq send3(S,P1,P2,N1,N2,NW) = S if not c-send3(S,P1,P2,N1,N2,NW) .

eq is the keyword to declare equations, while ceq is the keyword to declare conditional
equations.

Constant init is defined as follows:

eq rand(init) = seed .
eq nw(init) = empty .
eq nonces(init) = empty .

3.3 Specifying SNSPK in Maude

We suppose that there exist sorts Bool, Prin, Rand, Nonce, Cipher, SetNonce
and Network corresponding to the data types used in SNSPK. SNSPK is specified as a
module NSPK. The signature of the module is as follows:

120 K. Ogata et al.

subsorts TRule OValue < Sys .
op none : -> Sys .
op __ : Sys Sys -> Sys [assoc comm id: none] .
op rand :_ : Rand -> OValue .
op nw :_ : Network -> OValue .
op nonces :_ : SetNonce -> OValue .
op send1 : Prin Prin -> TRule .
op send2 : -> TRule .
op send3 : -> TRule .
op fake1 : Prin Prin -> TRule .
op fake2 : Prin -> TRule .
op fake3 : Prin -> TRule .

Sys is the sort denoting the state space. A state is represented by a multiset of variables
(which correspond to observers) and transitions. OValue is the sort denoting variables
and TRule is the sort denoting transitions. TRule and OValue are declared as sub-
sorts of Sys. Constant none denotes the empty state, and the juxtaposition operator
__, which is given associativity, commutativity and none as its identity, is the data
constructor of non-empty states. The next three operators denote the three variables,
which correspond to the three observers, and the last six operators denote the six tran-
sitions. In this paper, the definition of operator send3 is shown, which is as follows:

rl [send3] : send3 (rand : R)
(nw : (enc2(P1,N1,N2), enc1(P2,N1,P1) , NW)) (nonces : Ns)
=> send3 (rand : R)

(nw : (enc3(P2,N2) , enc2(P1,N1,N2), enc1(P2,N1,P1) , NW))
(nonces : (if P2 == intr then N2 , Ns else Ns fi)) .

rl is the keyword to declare rewriting rules, while crl is the keyword to declare con-
ditional rewriting rules. send3 is the label given to this rewriting rule.

When three principals including the intruder participate in the protocol, the initial
state is represented as follows:

op init : -> Sys . eq init = send1(p1,p2) send1(p1,intr)
send1(p2,p1) send1(p2,intr) send1(intr,p1) send1(intr,p2) send2
send3 fake1(p1,p2) fake1(p1,intr) fake1(p2,p1) fake1(p2,intr)
fake1(intr,p1) fake1(intr,p2) fake2(p1) fake2(p2) fake2(intr)
fake3(p1) fake3(p2) fake3(intr) (rand : seed) (nw : empty)
(nonces: empty) .

4 Falsification of OTSs

Maude is used to falsify ∀υ : RS . p(υ), i.e. to find a counterexample for ∀υ : RS . p(υ).
The way [12] used in this paper is to search RS,≤n for a counterexample for ∀υ :
RS . p(υ). IfRS,≤n is finite wrt S, this search can be completed within a finite time. A
sufficient condition thatRS,≤n is finite wrt S is given in Theorem 1. Since Maude is not
equipped with any facilities that can be used to search onlyRS,≤n for a counterexample
for ∀υ : RS . p(υ), however, we need to make a little modification to S.

Induction-Guided Falsification 121

Definition 7 (Bounded OTSs). One observer steps : Υ → Nat is added to S, where
Nat is the type for natural numbers. The initial value returned by steps is 0, and the
inequality steps(υ) < n is added to the effective condition of each transition. The value
returned by steps is incremented whenever each transition is applied in a state where
the effective condition holds. The OTS obtained by modifying S in this way is called the
(n-)bounded OTS S and denoted S≤n. ��
We have the theorem that guarantees that the search of RS≤n for a counterexample
for ∀υ : RS≤n . p(υ) coincides with the search of RS,≤n for a counterexample for
∀υ : RS . p(υ) if the observer steps is not used in p.

Theorem 2 (Coincidence of counterexamples [12]). If the observer steps is not used
in a state predicate p : Υ → Bool, then (1) any counterexample for ∀υ : RS≤n . p(υ) is
also a counterexample for ∀υ : RS . p(υ), and (2) for any counterexample υ0, . . . , υm

for ∀υ : RS . p(υ) such that m ≤ n, there exists a counterexample υ′
0, . . . , υ

′
m for

∀υ : RS≤n . p(υ) such that υ′
k =S υk for k = 0, . . . ,m. ��

In the Maude specification of SNSPK, the following operator declaration is added:

op steps :_ : Nat -> OValue .

The term (steps : 0) is added to constant init in Subsect. 3.3. Then, the rewrit-
ing rules defining each transition is modified such that the value returned by steps is
incremented whenever each transition is applied and the inequality steps(υ) < n is
added to the condition of each of the rewriting rules. The rewriting rule labeled send3
is modified as follows:

crl [send3] : send3 (rand : R) (nw :
(enc2(P1,N1,N2),enc1(P2,N1,P1) , NW)) (nonces : Ns) (steps : X)

=> send3 (rand : R)
(nw : (enc3(P2,N2) , enc2(P1,N1,N2), enc1(P2,N1,P1) , NW))
(nonces : (if P2 == intr then N2 , Ns else Ns fi))
(steps : (X + 1)) if X < bound .

where constant bound corresponds to n.
The Maude model checker can be used to search R≤n

SNSPK
for a counterexample for

∀υ : RSNSPK . SP(υ), and so can command search. In this paper, we use command
search. One way to use command search is as follows:

search [1] start =>* pattern such that condition .

Command search performs a breadth-first search to find one state that matches
pattern and that can be reached from start by applying zero or more rewriting rules.

To search R≤n
SNSPK

for a counterexample for ∀υ : RSNSPK . SP(υ), all we have to do
is to feed the following line to the Maude system:

search [1] init =>* (nonces : (N , Ns)) S
such that not(p1(N) == intr or p2(N) == intr).

When bound is 4, command search finds a state υ in which SP(υ) does not hold.
Command show path can be used to show the path to the state, which is a shortest
counterexample for ∀υ : RSNSPK . SP(υ).

122 K. Ogata et al.

5 Interaction Between Verification and Falsification

When bound is less than 4, command search does not find any states υ in which
SP(υ) does not hold. What ifRSNSPK,≤4 is too large for the Maude system to search it
within a reasonable time? If so, we start verifying ∀υ : RSNSPK . SP(υ). One standard
way to prove ∀υ : RS . p(υ) is to use mathematical induction on υ. In the rest of the
paper, let p(υ) be ∀z1 : Dp1 . . .∀zM : DpM . P (υ, z1, . . . , zM).

Theorem 3 (Mathematical induction onRS). Let (I) be ∀υinit : I. p(υinit), (II) be
∀υ : RS . (p(υ)⇒ A. p(ty1,...,yn(υ))), let (III) be ∀υ : RS .B. (P (υ, zι1 , . . . , zM)⇒
A.P (ty1,...,yn(υ), z1, . . . , zM)), where A is ∀ty1,...,yn : T .∀y1 : Dt1 . . . ∀yn : Dtn and
B is ∀z1 : Dp1 . . .∀zM : DpM . Then, (1) ∀υ : RS . p(υ) ⇔ ((I) ∧ (II)) and (2)
((I) ∧ (II))⇔ ((I) ∧ (III)).

Proof. (1) From the mathematical induction principle. (2)⇐ : Straightforward.⇒ : It is
clear that ((I)∧ (II))⇒ (I). We assume (I)∧ (II). From (1), we have ∀υ : RS . p(υ),
which implies (III). ��

We use ∀υ : RS . p(υ)⇔ ((I)∧(III)) from Theorem 3 in order to prove (and disprove)
∀υ : RS . p(υ). We often need lemmas to prove ∀υ : RS . p(υ).

Definition 8 (Effective case splits and Necessary lemmas). Let us consider prov-
ing ∀υ : RS . p(υ) by mathematical induction on υ. In an induction case where
ty1,...,yn ∈ T is taken into account, all we have to do is to prove P (υc, zc

1, . . . , z
c
M)⇒

P (tyc
1,...,yc

n
(υc), zc

1, . . . , z
c
M), where υc is a constant denoting an arbitrary state and

each yc
k (zc

k) is a constant denoting an arbitrary value of Dtk (Dpk). We sup-
pose that a proposition q1 ∨ . . . ∨ qL is a tautology, where each ql is in the
form Ql(υc, yc

1, . . . , y
c
n, z

c
1, . . . , z

c
M). If the truth value of P (υc, zc

1, . . . , z
c
M) ⇒

P (tyc
1,...,yc

n
(υc), zc

1, . . . , z
c
M) can be determined assuming each ql, then q1 ∨ . . . ∨

qL is called an effective case split for this induction case. Moreover, if the truth
value is false, then ∀υ : RS .∀y1 : Dt1, . . . ,∀yn : Dtn, ∀z1 : Dp1, . . . ,∀zM :
DpM .¬Ql(υ, y1, . . . , yn, z1, . . . , zM) is called a necessary lemma of ∀υ : RS . p(υ).
Given an effective case split for each induction case, let NLS,p be the set of all neces-
sary lemmas of ∀υ : RS . p(υ) obtained by the effective case splits. Generally, there are
multiple such sets, which depend on effective case splits. ��

In the rest of this section, let q(υ) be ∀υ : RS .∀y1 : Dt1, . . . ,∀yn :
Dtn, ∀z1 : Dp1, . . . ,∀zM : DpM .¬Ql(υ, y1, . . . , yn, z1, . . . , zM), and let ql be
Ql(υc, yc

1, . . . , y
c
n, z

c
1, . . . , z

c
M).

Lemma 1 (Counterexamples induced by necessary lemmas). Let ∀υ : RS . q(υ) be a
necessary lemma of ∀υ : RS . p(υ). If there exists a counterexample ceq ∈ CXS,q such
that depth(ceq) = N , then ceq ∈ CXS,p or there exists a counterexample cep ∈ CXS,p

such that depth(cep) = N + 1.

Proof. We suppose that ∀υ : RS . q(υ) is found in an induction case where a tran-
sition ty1,...,yn ∈ T is taken into account. Let ceq be υ0, . . . , υN . From the as-
sumption, there exist yd

1 , . . . , y
d
n, z

d
1 , . . . , z

d
M such that Q(υN , yd

1 , . . . , y
d
n, z

d
1 , . . . , z

d
M)

Induction-Guided Falsification 123

holds. (1) ¬p(υN) : Clearly ceq ∈ CXS,p. (2) p(υN) : Since both p(υN) and
Q(υN , dj1 , . . . , djn , dι1 , . . . , dια) holds, P (tdj1 ,...,djn

(υN), dι1 , . . . , dια) must not
hold because ∀υ : RS . q(υ) is a necessary lemma of ∀υ : RS . p(υ) and is found in
the induction case concerned. Therefore, υ0, . . . , υN , tyd

1 ,...,yd
n
(υN) is a counterexam-

ple of ∀υ : RS . p(υ). ��

Lemma 2 (Existence of necessary lemmas that induce counterexamples). If CXS,p

is not empty and depth(cxmin
S,p) = N + 1, then there exists a necessary lemma ∀υ :

RS . q(υ) of ∀υ : RS . p(υ) such that CXS,q is not empty and depth(cxmin
S,q) = N , and

such a necessary lemma can be found in anyNLS,p.

Proof. Let cxmin
S,p be υ0, . . . , υN , υN+1. From the assumption, p(υN) holds and there

exist ty1,...,yn ∈ T and yd
1 , . . . , y

d
n, z

d
1 , . . . , z

d
M such that υN+1 =S tyd

1 ,...,yd
n
(υN) and

¬P (tyd
1 ,...,yd

n
(υN), zd

1 , . . . , z
d
M). Let q1 ∨ . . .∨ qL be an arbitrary effective case split for

the induction case where ty1,...,yn is taken into account. There must exist l ∈ {1, . . . , L}
such that the truth value of P (υc, zc

1, . . . , z
c
M) ⇒ P (tyc

1,...,yc
n
(υc), zc

1, . . . , z
c
M) is false

assuming ql because otherwise there does not exist the supposed counterexample.
Therefore, Ql(υc, yc

1, . . . , y
c
n, z

c
1, . . . , z

c
M) holds and then υ1, . . . , υN is a counterex-

ample for ∀υ : RS . q(υ). We suppose that depth(cxmin
S,q) < N . If so, depth(cxmin

S,p) <
N + 1 from Lemma 1, which contradicts the assumption. ��

We give a procedure with which we alternately falsify and verify ∀υ : RS . p(υ).

Definition 9 (Procedure IGF). Given an OTS S, a state predicate p and a natural
number n, the procedure is defined as follows:

1. P := {p} and Q := ∅.
2. Repeat the following until P = ∅.

(a) Choose a state predicate q from P and P := (P − {q}).
(b) SearchRS≤n for a counterexample for ∀υ : RS . q(υ).

If a counterexample is found, terminate and return Falsified.
(c) Try to prove ∀υ : RS . q(υ) by mathematical induction on υ and

computeNLS,q.
(d) Q :=Q∪ {q} and P := P ∪ (NLS,q −Q).

3. Terminate and return Verified. ��

We have the the soundness and completeness theorem on procedure IGF.

Theorem 4 (Soundness and Completeness of IGF wrt Falsification). Given an ar-
bitrary OTS S, an arbitrary state predicate p and an arbitrary natural number n, (1) if
IGF terminates and returns Falsified, then ¬(∀υ : RS . p(υ)), and (2) if CXS,p is not
empty, depth(cxmin

S,p) is finite,RS≤n is finite wrt S andNLS,q can be computed for an
arbitrary state predicate q, then IGF terminates and returns Falsified.

Proof. From Lemmas 1 and 2. ��

Note that when n is large, the search ofRS≤n may not be completed within a reasonable
time, which implies that IGF may not terminate within a reasonable time, and when
depth(cxmin

S,p) is large, IGF may not terminate within a reasonable time.

124 K. Ogata et al.

The following should be noted. The number of some entities such as principals may
have to be made finite so as to make the n-bounded reachable state space wrt an OTS
finite. Even when there exists a counterexample for an invariant in the n-bounded reach-
able state space wrt an OTS S in which there are an infinite number of some entities,
no such counterexamples may be found in the n-bounded reachable state space wrt S
in which there are a finite number of the entities, which depends on the number of the
entities. Let us consider SNSPK for example. When the number of principals is infinite,
RSNSPK,≤n is also infinite if n ≥ 2. The number of principals should be made finite to
makeRSNSPK,≤n finite. When there are three or more principals, one of which is the in-
truder, a counterexample that SNSPK satisfies Secrecy Property is found inRSNSPK,≤n

if n ≥ 4. Otherwise, however, no such counterexamples are found in RSNSPK,≤n for
any n.

6 A Way to Compute Necessary Lemmas

Since Theorem 4 relies on whetherNLS,p can be computed for an arbitrary state pred-
icate p, we need to argue the feasibility. Given an arbitrary OTS S and an arbitrary state
predicate p, we show a way to compute an effective case split for each induction case
when we prove ∀υ : RS . p(υ) by mathematical induction on υ and to obtain NLS,p

based on the effective case splits. The solution employs the CafeOBJ system that uses
the Hsiang TRS [16] as a decision procedure of propositional logic. The CafeOBJ sys-
tem reduces a proposition that is always true (false) to true (false). Generally, the
CafeOBJ system reduces a proposition to an exclusive-or normal form.

We suppose that S is written as a module MS in CafeOBJ. We also suppose that
when all equations available in MS are regarded as a set of left-to-right rewrite rules, the
set, i.e. the TRS, is confluent and terminating. The TRS will be referred as TRSS . In a
module INV, which imports MS , we declare the following operator and equation:

op invp : H Vp1 . . . VpM -> Bool
eq invp(S, Z1, . . . , ZM) = P(S, Z1, . . . , ZM) .

where H is a hidden sort denoting Υ , S is a CafeOBJ variable of sort H, each
Zk is a CafeOBJ variable of sort Vpk, and P(S, Z1, . . . , ZM) is a term denoting
P (υ, z1, . . . , zM). In INV, for each Vpk, we also declare a constant yc

k of the sort,
which denotes an arbitrary value of the sort. In a module ISTEP, which imports INV,
we declare the following operator and equation:

op istepp : Vp1 . . . VpM -> Bool
eq istepp(Z1, . . . , ZM) = invp(s, Z1, . . . , ZM) implies invp(s′, Z1, . . . , ZM) .

where s and s’ are constants of sort H declared in the module, and the operator
implies corresponds to the logical implication. Constant s denotes an arbitrary
state, and constant s’ denotes a successor state of the state.

Let us consider an induction case in which a transition ty1,...,yn ∈ T is taken into
account. We suppose that the transition and its effective condition are represented by
the action operator t and the operator c-t, respectively, declared in MS as follows:

Induction-Guided Falsification 125

bop t : H Vt1 . . . Vtn -> H
op c-t : H Vt1 . . . Vtn -> Bool

We also have the following equation:

eq s′ = t(s, yc
j1
, . . . , yc

jn
) .

where each yc
k is a constant of Vtk denoting an arbitrary value of Vtk.

We give a procedure that computes an effective case split for the induction case.

Definition 10 (Procedure CaseSplit). The procedure is defined as follows:

1. C := {c-t(s, yc
j1
, . . . , yc

jn
),¬c-t(s, yc

j1
, . . . , yc

jn
)} and C′ := ∅.

2. Repeat the following until C = ∅.
(a) Choose a proposition q from C and C := C − {q}.
(b) Reduce istepp(z

c
1, . . . , y

c
M) assuming q in module ISTEP.

Let r be the result.
– If r is true, do nothing.
– If r is false, C′ := C′ ∪ {q}.
– Otherwise, choose a primitive proposition ρ from r and
C := C ∪ {q ∧ ρ, q ∧ ¬ρ}.

3. Terminate and return C′. ��

When istepp(z
c
1, . . . , y

c
M) is reduced assuming q in module ISTEP, q should be writ-

ten as one or more equations. A way to write q in equations is described in [17]. Since
TRSS is terminating and p includes a finite number of logical connectives, procedure
CaseSplit terminates. CaseSplit clearly computes an effective case split for the induc-
tion case, and when CaseSplit terminates, C′ consists of all the propositions in the ef-
fective case split such that istepp(z

c
1, . . . , y

c
M) reduces to false assuming each of

the propositions. From C′, it is straightforward to construct all necessary lemmas (of
∀υ : RS . p(υ)) that are found in the induction case.

7 A Case Study

We try to prove ∀υ ∈ RSNSPK . SP(υ) by mathematical induction on υ based on the
CafeOBJ specification of SNSPK. We first declare a module INV, which imports module
NSPK. In module INV, the following operator and equation are declared:

op inv1 : Sys Nonce -> Bool
eq inv1(S,N)

= ((N \in nonces(S)) implies (p1(N) = intr or p2(N) = intr)) .

where the operator _or_ corresponds to the logical disjunction. We also declare a con-
stant n of sort Nonce in module INV. We next declare a moduleISTEP, which imports
module INV. In module ISTEP, the following operator and equation are declared:

op istep1 : Nonce -> Bool
eq istep1(N) = inv1(s,N) implies inv1(s’,N) .

where s and s’ are constants of sort Sys declared in module ISTEP.

126 K. Ogata et al.

We have the two cases in which istep1(n) reduces to false. The corresponding
proof passages (basic fragments of a proof, or a proof score) are as follows:

open ISTEP
-- arbitrary values

ops p1 p2 : -> Prin . op m : -> Nonce . op nw : -> Network .
-- assumptions

-- eq c-send2(s,p1,p2,m,nw) = true .
eq nw(s) = enc1(p1,m,p2) , nw .
--
eq p2 = intr . eq (p1(n) = intr) = false .
eq (p2(n) = intr)=false.eq m = n. eq n \in nonces(s)=false.

-- successor state
eq s’ = send2(s,p1,p2,m,nw) .

-- check
red istep1(n) .

close
open ISTEP
-- arbitrary values

ops p1 p2:-> Prin . ops m1 m2 : -> Nonce. op nw :->Network.
-- assumptions

-- eq c-send3(s,p1,p2,m1,m2,nw) = true .
eq nw(s) = enc2(p1,m1,m2), enc1(p2,m1,p1) , nw .
--
eq p2 = intr . eq m2 = n . eq (p1(n) = intr) = false .
eq (p2(n) = intr) = false . eq n \in nonces(s) = false .

-- successor state
eq s’ = send3(s,p1,p2,m1,m2,nw) .

-- check
red istep1(n) .

close

The CafeOBJ command open constructs a temporary module that imports a given
module and the CafeOBJ command close destroys such a temporary module. A com-
ment starts with -- and terminates at the end of the line.

From the two proof passages, we obtain the two necessary lemmas of ∀υ ∈
RSNSPK . SP(υ). The two necessary lemmas are ∀υ ∈ RSNSPK .NL1(υ) and ∀υ ∈
RSNSPK .NL2(υ), where NL1(υ) � ∀n : Nonce.∀q : Prin. (enc1(q, n, intr) ∈
nw(υ)⇒ (n ∈ nonces(υ) ∨ p1(n) = intr ∨ p2(n) = intr)) and NL2(υ) � ∀n1, n2 :
Nonce.∀q : Prin. ((enc2(q, n1, n2) ∈ nw(υ) ∧ enc1(intr, n1, q) ∈ nw(υ)) ⇒ (n2 ∈
nonces(υ) ∨ p1(n2) = intr ∨ p2(n2) = intr)).

To search RSNSPK,≤n for a counterexample for ∀υ : RSNSPK .NL1(υ), all we have
to do is to feed the following line to the Maude system:

search [1] init =>* (nw : (enc1(Q,N,intr) , Ms)) (nonces : Ns) S
such that not(N \in Ns or p1(N) == intr or p2(N) == intr).

Command search does not find any states υ such that NL1(υ) does not hold when
bound is up to 5. Actually, we have proved ∀υ ∈ RSNSPK .NL1(υ) by mathematical
induction onRSNSPK without any lemmas.

Induction-Guided Falsification 127

state 0, Sys: send2 send3 rand : seed nw : empty nonces : empty fake2(intr)
fake2(p1) fake2(p2) fake3(intr) fake3(p1) fake3(p2) steps : 0 send1(intr,
p1) send1(intr, p2) send1(p1, intr) send1(p1, p2) send1(p2, intr) send1(p2,
p1) fake1(intr, p1) fake1(intr, p2) fake1(p1, intr) fake1(p1, p2) fake1(p2,
intr) fake1(p2, p1)

===[... [label send1] ...]===>
state 3, Sys: send2 send3 rand : next(seed) nw : enc1(intr, n(p1, intr, seed),

p1) nonces : n(p1, intr, seed) fake2(intr) fake2(p1) fake2(p2) fake3(intr)
fake3(p1) fake3(p2) steps : 1 send1(intr, p1) send1(intr, p2) send1(p1,
intr) send1(p1, p2) send1(p2, intr) send1(p2, p1) fake1(intr, p1) fake1(
intr, p2) fake1(p1, intr) fake1(p1, p2) fake1(p2, intr) fake1(p2, p1)

===[... [label fake1] ...]===>
state 31, Sys: send2 send3 rand : next(seed) nw : (enc1(intr, n(p1, intr,

seed), p1),enc1(p2, n(p1, intr, seed), p1)) nonces : n(p1, intr, seed)
fake2(intr) fake2(p1) fake2(p2) fake3(intr) fake3(p1) fake3(p2) steps : 2
send1(intr, p1) send1(intr, p2) send1(p1, intr) send1(p1, p2) send1(p2,
intr) send1(p2, p1) fake1(intr, p1) fake1(intr, p2) fake1(p1, intr) fake1(
p1, p2) fake1(p2, intr) fake1(p2, p1)

===[... [label send2] ...]===>
state 436, Sys: send2 send3 rand : next(next(seed)) nw : (enc1(intr, n(p1,

intr, seed), p1),enc1(p2, n(p1, intr, seed), p1),enc2(p1, n(p1, intr,
seed), n(p2, p1, next(seed)))) nonces : n(p1, intr, seed) fake2(intr)
fake2(p1) fake2(p2) fake3(intr) fake3(p1) fake3(p2) steps : 3 send1(intr,
p1) send1(intr, p2) send1(p1, intr) send1(p1, p2) send1(p2, intr) send1(p2,
p1) fake1(intr, p1) fake1(intr, p2) fake1(p1, intr) fake1(p1, p2) fake1(p2,
intr) fake1(p2, p1)

Fig. 1. An excerpt from the counterexample for ∀υ : RSNSPK .NL2(υ).

state 0, Sys: send2 send3 rand : next(next(seed)) nw : (enc1(intr, n(p1, intr,
seed), p1),enc1(p2, n(p1, intr, seed), p1),enc2(p1, n(p1, intr, seed), n(
p2, p1, next(seed)))) nonces : n(p1, intr, seed) fake2(intr) fake2(p1)
fake2(p2) fake3(intr) fake3(p1) fake3(p2) steps : 3 send1(intr, p1) send1(
intr, p2) send1(p1, intr) send1(p1, p2) send1(p2, intr) send1(p2, p1)
fake1(intr, p1) fake1(intr, p2) fake1(p1, intr) fake1(p1, p2) fake1(p2,
intr) fake1(p2, p1)

===[... [label send3] ...]===>
state 9, Sys: send2 send3 rand : next(next(seed)) nw : (enc3(intr, n(p2, p1,

next(seed))),enc1(intr, n(p1, intr, seed), p1),enc1(p2, n(p1, intr, seed),
p1),enc2(p1, n(p1, intr, seed), n(p2, p1, next(seed)))) nonces : (n(p1,
intr, seed),n(p2, p1, next(seed))) fake2(intr) fake2(p1) fake2(p2) fake3(
intr) fake3(p1) fake3(p2) steps : 4 send1(intr, p1) send1(intr, p2) send1(
p1, intr) send1(p1, p2) send1(p2, intr) send1(p2, p1) fake1(intr, p1)
fake1(intr, p2) fake1(p1, intr) fake1(p1, p2) fake1(p2, intr) fake1(p2, p1)

Fig. 2. An excerpt from the path to a state υ such that ¬SP(υ) from s436

To search RSNSPK,≤n for a counterexample for ∀υ : RSNSPK .NL2(υ), all we have
to do is to feed the following line to the Maude system:

search [1] init =>*
(nw : (enc2(Q1,N1,N2) , enc1(intr,N1,Q1),Ms)) (nonces:Ns)S
such that not(N2 \in Ns or p1(N2)==intr or p2(N2)==intr).

When bound is 3, command search finds a state υ in which NL2(υ) does not hold.
Command show path can be used to show the path to the state, which is a short-
est counterexample for ∀υ : RSNSPK .NL2(υ). An excerpt from the counterexample
generated is shown in Fig. 1.

128 K. Ogata et al.

The counterexample and send3p,q,n1,n2,nw make a counterexample for ∀υ :
RSNSPK . SP(υ). Command search can also be used to make such a counterexam-
ple. Let a constant s436 equal the term of state 436 appearing in Fig. 1. Instead of
init, s436 is used to find a state such υ that SP(υ) does not hold by feeding the
following line into the Maude system:

search [1] s436 =>* (nonces : (N , Ns)) S
such that not(p1(N) == intr or p2(N) == intr) .

When bound is 1, such a state is found. An excerpt from the path to the state from
s436 is shown in Fig. 2. The two paths shown in Fig. 1 and Fig. 2 are combined to
make a counterexample for ∀υ : RSNSPK . SP(υ).

8 Related Work

There are two main methods of falsifying (software and/or hardware) systems: testing
and model checking [18]. Model checking is superior to testing in terms of coverage
provided that systems should be basically modeled as finite-state transition systems.
Even when a system can be modeled as a finite-state transition system, the system may
not be model checked because the state space is too large for a computer on which
model checking is performed. Bounded model checking, or BMC [13] can alleviate the
problem. BMC uses a propositional SAT solver to search RS,≤n for a counterexample
for a property written in propositional LTL for a fixed n, although a Kripke structure
is used instead of an OTS. If no counterexample is found, BMC repeatedly increments
n and performs the search until a counterexample is found, the search becomes in-
tractable, or some pre-computed completeness threshold is reached.

In addition to modeling systems as finite-state transition systems, abstract data types
such as lists and queues should be encoded in basic data types such as arrays and
bounded integers because most existing model checkers do not allow to use abstract
data types freely in a system to be model checked. The Maude model checker [19] al-
lows to use abstract data types including inductively defined data types in a system to be
model checked and does not require the state space of a system to be finite, although the
reachable state space of a system should be finite. That is why we have decided to use
Maude to falsify OTSs. Since Maude is not equipped with any BMC facilities, however,
a way to search RS≤n for a counterexample for ∀υ : RS . p(υ) has been devised [12].
Note that the search command can be used to search an infinite state space of an OTS
for a counterexample that the OTS satisfies an invariant property, but the termination is
not guaranteed, which is required by procedure IGF.

A way to implement a local (or bounded) µ-calculus model checker in Maude using
the Maude reflective facilities has been proposed [20]. The primary purpose of imple-
menting or specifying the model checker in Maude is toward verification of the model
checker. The bounded µ-calculus model checker could be used to search the bounded
reachable state spaceRS,≤n for a counterexample for ∀υ : RS . p(υ). In terms of speed,
however, the Maude search command and the Maude model checker are superior to
the bounded µ-calculus model checker.

Induction-Guided Falsification 129

The induction-guided falsification can be considered a possible solution to the state
explosion problem, which we often encounter when we try to model check if a system
satisfies a property. Several possible solutions to the problem have been proposed. Their
primary purpose is verification. One of the most popular methods is abstraction [21],
which requires an original transition system and property to be modified. Instead of
abstraction, our solution uses mathematical induction on the structure of the reachable
state space of a transition system, which does not require an original transition system
to be modified.

The induction-guided falsification can also be regarded as one possible combina-
tion of BMC and mathematical induction. There exists another possible combination
of them: k-induction [22]. k-induction has been implemented in SAL (Symbolic Anal-
ysis Laboratory) [23], which is a toolkit for analyzing transition systems. The primary
purpose of k-induction is verification.

9 Conclusion

The induction-guided falsification has been described. The NSPK authentication pro-
tocol has been used as an example to demonstrate the induction-guided falsification.
We have been developing a translator [24], which takes a CafeOBJ specification of an
OTS and generates a Maude specifications of the OTS, and an automatic invariant ver-
ifier [25,26] for OTSs, which uses an automatic case splitter that computes necessary
lemmas. One piece of our future work is to use the translator and the automatic case
splitter to automate the induction-guided falsification.

The basic idea in the proposed solution to find a counterexample that an OTS S sat-
isfies an invariant property is as follows. When no counterexamples are found in the
bounded reachable state space R≤n

S and it is impossible to search R≤(n+1)
S entirely,

first discover all necessary lemmas of the invariant property and then search R≤n
S for

each of the necessary lemmas. The proposed solution guarantees if there exists a coun-
terexample for the invariant property in R≤(n+1)

S , there exists a counterexample for at
least one of the necessary lemmas in R≤n

S , and vice versa. Some may wonder how ef-

ficient it is to search R≤n
S when compared to the search of R≤(n+1)

S . We suppose that
S has one initial state and there are x (≥ 2) (instances of) transitions whose effective
conditions hold in each state. Then, the number of states in R≤n

S is
∑n

i=0 x
i, which

equals (xn+1 − 1)/(x − 1). The difference between the number of states in R≤(n+1)
S

and that in R≤n
S is xn+1, which is greater than the number of states in R≤n

S because
xn+1−

∑n
i=0 x

i is (xn+1(x−2)+1)/(x−1). The greater x is, the greater the difference
is. There are more than two (instances of) transitions whose effective conditions hold in
each state in most applications. Therefore, the search ofR≤n

S is more efficient than that

of R≤(n+1)
S . When three principles including the intruder participate the NSPK proto-

col, the number of states in R≤3
SNSPK

is 807, while that in R≤4
SNSPK

is 11323 and that in

R≤5
SNSPK

is 180475.
Although procedure IGF can be used to verify that a state predicate p is invariant wrt

an OTS S, it is not efficient for the verification. This is because necessary lemmas are
useful for finding counterexamples, i.e. falsification but they may not for verification. It

130 K. Ogata et al.

is often the case that necessary lemmas should be strengthened to make the correspond-
ing proofs more tractable. It is another piece of our future work to make the procedure
useful for both verification and falsification.

As described at the end of Section 5, it depends on the number of some entities in an
OTS whether procedure IGF works effectively if the number of the entities should be
made finite. Therefore, we need to come up with something that can decide how many
entities in an OTS S are enough to make sure that there exists a counterexample for
an invariant in the n-bounded reachable state space wrt S in which there are a finite
number of the entities if there does so in the n-bounded reachable state space wrt S in
which there are an infinite number of the entities.

References

1. Ogata, K., Futatsugi, K.: Proof scores in the OTS/CafeOBJ method. In: FMOODS 2003.
LNCS 2884, Springer (2003) 170–184

2. Diaconescu, R., Futatsugi, K.: CafeOBJ Report. Volume 6 of AMAST Series in Computing.
World Scientific (1998)

3. Ogata, K., Futatsugi, K.: Formally modeling and verifying Ricart&Agrawala distributed
mutual exclusion algorithm. In: 2nd APAQS, IEEE CS Press (2001) 357–366

4. Ogata, K., Futatsugi, K.: Formal analysis of Suzuki&Kasami distributed mutual exclusion
algorithm. In: 5th FMOODS, Kluwer (2002) 181–195

5. Ogata, K., Futatsugi, K.: Rewriting-based verification of authentication protocols. In: 4th
WRLA 2002. ENTCS 71, Elsevier (2002)

6. Ogata, K., Futatsugi, K.: Formal analysis of the iKP electronic payment protocols. In: 1st
ISSS. LNCS 2609, Springer (2003) 441–460

7. Ogata, K., Futatsugi, K.: Formal verification of the Horn-Preneel micropayment protocol.
In: 4th VMCAI. LNCS 2575, Springer (2003) 238–252

8. Ogata, K., Futatsugi, K.: Equational approach to formal verification of SET. In: 4th QSIC,
IEEE CS Press (2004) 50–59

9. Ogata, K., Futatsugi, K.: Formal analysis of the NetBill electronic commerce protocol. In:
2nd ISSS. LNCS 3233, Springer (2004) 45–64

10. Ogata, K., Futatsugi, K.: Equational approach to formal analysis of TLS. In: 25th ICDCS,
IEEE CS Press (2005) 795–804

11. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Quesada, J.: Maude:
Spesification and programming language in rewriting logic. TCS 285 (2002) 187–243

12. Ogata, K., Kong, W., Futatsugi, K.: Falsification of OTSs by searches of bounded reachable
state spaces. In: 18th SEKE. (2006) 440–445

13. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. In:
Advances in Computers. 58. Academic Press (2003)

14. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large networks of
computers. CACM 21 (1978) 993–999

15. Kong, W., Ogata, K., Futatsugi, K.: Model-checking observational transition system with
Maude. In: 20th ITC-CSCC. (2005) 5–6

16. Hsiang, J., Dershowitz, N.: Rewrite methods for clausal and nonclausal theorem proving. In:
10th ICALP. LNCS 154, Springer (1983) 331–346

17. Ogata, K., Futatsugi, K.: Some tips on writing proof scores in the OTS/CafeOBJ method. In:
Algebra, Meaning, and Computation: A Festschrift Symposium in Honor of Joseph Goguen.
LNCS 4060, Springer (2006) 596–615

Induction-Guided Falsification 131

18. Edmund M. Clarke, J., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (2001)
19. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker. In: WRLA

2002. ENTCS 71, Elsevier (2002) 143–168
20. Wang, B.Y.: Specification of an infinite-state local model checker in rewriting logic. In: 17th

SEKE. (2005) 442–447
21. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM TOPLAS

16 (1994) 1512–1542
22. de Moura, L., Rueß, H., Sorea, M.: Bounded model checking and induction: From refutation

to verification. In: 15th CAV. LNCS 2392, Springer (2003) 14–26
23. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.: SAL 2. In:

16th CAV. LNCS 3114, Springer (2004) 496–500
24. Kong, W., Ogata, K., Seino, T., Futatsugi, K.: Lightweight integration of theorem proving

and model checking for system verification. In: 12th APSEC, IEEE CS Press (2005) 59–66
25. Nakano, M., Ogata, K., Nakamura, M., Futatsugi, K.: Automatic verification of the STS

authentication protocol with Crème. In: 20th ITC-CSCC. (2005) 15–16
26. Nakano, M., Ogata, K., Nakamura, M., Futatsugi, K.: Automating invariant verification of

behavioral specifications. In: 6th QSIC, IEEE CS Press (2006)

Verifying χ Models of Industrial Systems with SPIN

Nikola Trčka�

Department of Mathematics and Computer Science, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

Abstract. The language χ has been developed for modeling of industrial sys-
tems. Its simulator has been successfully used in many industrial areas for obtain-
ing performance measures. For functional analysis simulation is less applicable
and such analysis can be done in other environments. The purpose of this paper
is to describe an automatic translator from χ to PROMELA, the input language of
the well known model-checker SPIN. We highlight the differences between the
two languages and show, in a step by step manner, how some of them can be re-
solved. We conclude by giving a translation scheme and apply the translator in a
small industrial case study.

1 Introduction

The language χ [19] is a modeling language developed for detecting design flaws and
for optimizing performance of industrial systems (machines, manufacturing lines, ware-
houses, factories, etc.) It allows for the specifying of discrete-event, continuous and
probabilistic aspects of systems. Its simulator has been successfully applied to a large
number of industrial cases, such as a car assembly line (NedCar [10]), a multi-product,
multi-process wafer fab (Philips [6]), a brewery (Heineken), a fruit juice blending and
packaging plant (Riedel [8]) and process industry plants ([1]). Simulation is a powerful
technique for performance analysis, like calculating throughput and cycle time, but it is
less suitable for functional analysis (sometimes called verification). It can for instance
reveal that a system has a deadlock (it is unable to proceed) or that it sometimes has a
certain behavior, but it cannot show that the system is deadlock-free nor that it always
has a certain behavior.

A most widely used verification technique today is model checking. This technique
performs an exhaustive search of the state space checking if a certain property of the
system holds. The property is represented as a formula of some temporal logic, a logic
that allows us to say things like: if a machine is given input then it will eventually pro-
duce a correct output. There are many variants of these logics (consult e.g. [20]). They
can be linear (reasoning is about a single sequence of states) or branching (reason-
ing involves several different branches starting from a state), action based (reasoning
is about what action can be performed in a state) or state based (reasoning about the
value of variables in a state), etc. Once the property is stated, model checking becomes
a completely automated process.

� Research supported by the Netherlands Organization for Scientific Research (NWO) under
project number 612.064.205.

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 132–148, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Verifying χ Models of Industrial Systems with SPIN 133

To facilitate model checking, either verification tools have to be developed especially
for χ, or existing verification tools and techniques have to be made available for use
with χ. Currently, the latter approach is pursued [4,3,19]. The idea is to extend χ with
facilities for doing formal verification by establishing a connection with other state-of-
the-art verification tools and techniques on the level of the specification language. That
is, formal verification of a χ model is done by first translating it into the input language
of some model checker and then performing the actual verification there. Preferably,
the translation closely resembles the original, so that counterexamples produced by the
model checker can be related to the original specification. However, it should also look,
as much as possible, as it were written in the target language and not translated from
some other language. This is to ensure that the full power of the verification tool is used.

The aim of this paper is to present techniques that were used to build a translator
from χ specifications to PROMELA, the input language of a popular (state-based, linear-
temporal) model checker SPIN. Aspects in which χ and PROMELA differ from each
other are given in a step by step manner and treated in detail. For each aspect, difficulties
of translation are discussed, pitfalls and solutions presented and explained. We cover
many important features of χ such as time, nested parallelism, urgency etc. that are
usually present in models of industrial systems. We (syntactically) define a subset of χ
models that can be translated to PROMELA, present a translation scheme and explain
the translation process.

Note that here we take a wide but a less formal approach to the problem. In [17]
we support a part of our translation with a formal correctness proof. There we define
a notion of equivalence for (a slightly different version of) χ, prove that it is a con-
gruence and that it preserves validity of temporal logic formulas. Then, we identify a
subset of χ that resembles PROMELA’s syntax closely and thus can map to PROMELA

straightforwardly. We also show how a bigger subset of χ can be reduced, modulo the
equivalence, to that form.

Our work can be seen as an extension of that presented in [4] and [3]. In [4], the
authors present a translation of a χ model of a turntable machine to PROMELA and
verify properties, like the absence of deadlock and no product loss, with SPIN. The
focus is on the verification and not on the translation; general guidelines for translating
arbitrary χ models to PROMELA are not provided. In [3], a more detailed model of
the same machine is translated to PROMELA, µCRL [2] and UPPAAL timed automata
[16]. Even though this paper shows some techniques and difficulties of the translation to
PROMELA, its aim is to compare the different approaches for the functional analysis of
χ models, like comparing state based and action based model checking, and to a lesser
extent on the aspect of translation.

The structure of the paper is as follows. In Section 2 we give an introduction to χ;
its syntax and (informal) semantics. As an illustration we present (a part of) a χ model
of a small manufacturing line. In Section 3 we briefly introduce PROMELA, pointing
out features that we need. Section 4 is the main section of this paper. There we ex-
plain how we deal with the aspects of χ that are uncommon to PROMELA: parallelism,
scoping and complex data types, guarded processes, time etc. For each feature we show
what the problems of translating it to PROMELA are and how we can circumvent them.
Then, we present a translatable subset of χ and a translation scheme. We explain the

134 N. Trčka

translation process that serves as a base of the translator and apply the translator on the
manufacturing line χ model introduced in Section 2. In the last section we give some
conclusions. We also provide an appendix in which the complete χ specification of the
manufacturing line and its PROMELA translation are given.

2 The χ Language

For the translation to PROMELA we take the discrete-event subset of χ as our starting
point. We give a short and informal introduction to the language and refer to [19] for a
complete syntax definition and a formal semantics.

Data Types. The basic data types of χ are booleans, natural, integer, rational and real
numbers and typed channels. Most of the usual constants, operators and relations are
defined for every data type and can be used together with variables to build expressions.
Furthermore, χ provides a mechanism to build compound types such as, among others,
tuples (notation <type, type>) and lists (notation [type]) from the basic types (but not
channels).

Time domain. The time domain in χ is dense, i.e. timing is measured on a continu-
ous time scale. Delaying is enforced by the delay operator but some processes can also
implicitly delay (see the next paragraph). The weak time determinism principle, some-
times called the time factorization property (time does not make a choice), is implicitly
adopted. Maximal progress (a process can delay only if it cannot do anything else) is
sometimes implicit and for delayable processes can be enforced by an operator.

2.1 Syntax and Semantics

Atomic processes. The atomic processes of χ are process constructors and cannot be
split into smaller processes. We explain each one of them.

The skip process performs the internal action τ and cannot delay. The delay process
∆e delays any number of time units less or equal to the value of the expression e. The
(multi)assignment process x1, . . . , xn := e1, . . . , en assigns the value of the expression
ei to the variable xi, 1 ≤ i ≤ n. It does not have the possibility to delay. The send pro-
cess m!!e sends the value of the expression e along the channel m and cannot delay. The
delayable send m!e behaves as m!!e but it can delay arbitrarily long. The receive pro-
cess m??x inputs a value over the channel m and cannot delay. The delayable receive
m?x is the same as m??x but can delay.

Compound processes. Here we give an informal explanation for each of the eleven
operators in χ. The guarded process b→ p behaves as p when the value of the guard b
is true and blocks otherwise. The sequential composition p ; q behaves as p followed by
the process q. The alternative composition p � q stands for a non-deterministic choice
between p and q. It delays only if both p and q delay. The repetition operator ∗p behaves
as p infinitely many times. The guarded repetition process b

∗→p is interpreted as ’while
b do (skip ; p)’. The parallel composition operator ‖ executes p and q concurrently in
an interleaved fashion. In addition, if one of the processes can execute a send action

Verifying χ Models of Industrial Systems with SPIN 135

and the other one can execute a receive action on the same channel, then they can also
communicate, i.e. p ‖ q can also execute the communication action on this channel.
Parallel composition delays if both components delay. The scope operator is used for
declarations of local variables. The process |[s | p]| behaves as p in a local state s. The
encapsulation operator ∂A(p) disables all actions of p that occur in the parameter set A.
The abstraction operator τI(p) ’hides’ (renames to τ) all actions of p that occur in the
parameter set I . The urgent communication operator UH gives communication actions
via channels fromH a higher priority over the passage of time.

The language χ also allows for process definitions. They are given once but can be
instantiated many times (possibly with different parameters) by the process instantia-
tion operator.

2.2 A Manufacturing Line in χ

To give an impression of the language we give an example, a slight modification of
the one given in [19]. Consider a manufacturing line that consists of a generator, a
distributor, a rejector, two manufacturing cells, an assembly machine and exit. The sys-
tem is pictured in Fig. 1. The generator generates products every 7 time units and de-
livers them to the distributor. The distributor waits 6 time units for one of the cells to
be ready and then sends it a product. If in 5 time units none of the cells are ready the
distributor sends a product to the rejector. Each manufacturing cell consists of two ma-
chines and a 5-place buffer in between. Every product is processed by the cell twice.
After processing, products are sent to the assembly machine where they are processed

Gen.

Rejec.

Distr.

M

M

M

M

Assem. Exit

Buffer

Buffer

Fig. 1. Manufacturing Line

G D

M1

M1

B

B

M2

M2

EA

R

gd

dr

dm
1

dm2

mb1

mb2

bm1

bm2

mm1

mm2

ma1

ma
2

ae

Fig. 2. Manufacturing Line - Process Diagram

136 N. Trčka

further, combined and sent to the exit. All machines take 4 time units to perform their
operation.

We now give a complete χ specification of the manufacturing line. The process dia-
gram is depicted in Figure 2.

G(chan out : bool, disc d : int) = |[disc x : bool = false| ∗ (∆d ; out!x))]|
D(chan in, out1, out2 : bool, disc d : int) = |[disc x : bool|
∗(in?x ; (out1!x � out2!x � ∆d ; outr!x))]|

R(chan in : bool) = |[disc x : bool = false| ∗ (in?x)]|
M1(chan in1, in2, out : bool, disc d : int) = |[disc x : bool|
∗((in1?x � (in2?x ; x := true))∆d ; out!x)]|

B(chan in, out : bool, disc n : int) = |[disc x : bool, buf : [bool] = [] |
∗(len(buf) < n→ (in?x ; buf := buf ++[x])

� len(buf) > 0→ (out!hd(buf) ; buf := tl(buf)))]|
M2(chan in, outm, outa : bool, disc d : int) = |[disc x : bool|
∗(in?x ; ∆d ; (x→ outa!x� �= x→ outm!x))]|

A(chan in1, in2, out : bool, disc d : int) = |[disc x, y : bool |
∗((in1?x ‖ in2?y) ; ∆d ; out!(x ∧ y))]|

E(chan in : bool) = |[disc x : bool| ∗ (in?x)]|
sys() = UH∂A(|[chan gd, dm1, dm2, dr,mb1,mb2, bm1, bm2,

ma1,ma2,mm1,mm2, ae : bool |
G(gd, 7) ‖D(gd, dm1, dm2, dr, 6) ‖R(dr)‖
‖M1(dm1,mm1,mb1, 4) ‖M1(dm2,mm2,mb2, 4)‖
‖B(mb1, bm1, 5) ‖B(mb2, bm2, 5)‖
‖M2(bm1,mm1,ma1, 4) ‖M2(mm2,mm2,ma2, 4)‖
‖A(ma1,ma2,me, 4) ‖E(ae)]|)

Variable x models products. It is a boolean variable (the prefix disc stands for dis-
crete; in discrete-event models all variables are discrete) so that we can distinguish cases
when the product was not processed by the cells yet (x is false) from when it is already
processed once (x is true). Symbol [] denotes an empty list, and the operator ++ con-
catenates two lists. H contains all channel names; A contains all send/receive actions.
This is to ensure that sending and receiving cannot happen individually but only as an
instant communication.

3 PROMELA/SPIN

PROMELA’s syntax is derived from C [15], with communication primitives from CSP
[12] and control flow statements based on the guarded command language [7]. It has
many language constructs similar to χ constructs. The full presentation of the language,
is beyond the scope of this paper so we only give a brief overview mentioning only those
parts of the language that we are interested in. For more information, see [13,9,14] or
consult SPIN’s web page http://spinroot.com.

PROMELA has a rather limited set of data types, only bool, byte, short, int (all
with the unsigned possibility) and channels. It also provides a way to build records
and arrays and to define C-like macros. Message channels are declared, for instance,

Verifying χ Models of Industrial Systems with SPIN 137

as chan m = [2] of {int} meaning that the channel is buffered and that it can
store (at most) two values of (its field’s) type integer. Channels can be of length 0, i.e.
unbuffered, to model synchronous communication. They can also have more than one
field, not necessarily of the same type.

Any expression is also a statement, executable precisely if it evaluates to a non-
zero value. Assignments are also statements and have the usual semantics. The skip
statement executes the action (1) and has no effect on variables. The send statement
(m!e 1,...,e n) sends a tuple of values of the expressions e i to the channel m. The
receive statement (m?E 1,...,E n) retrieves a message from the non-empty channel
m, for every E i that is a variable assigns a value of e i to it and for every other E j
makes sure that its value matches the value of the e j. If the channel is buffered, a
send is enabled if the buffer is not full; a receive is enabled if the buffer is non-empty.
On an unbuffered channel, a send (receive) is enabled only if there is a corresponding
receive (send) that can be executed simultaneously. There are also many variants of
these statements.

There are several ways to combine statements. The alternative composition
if ::stmt 1 ... ::stmt n fi nondeterministically selects among its options
an executable statement and executes it. It blocks until there is at least one selectable op-
tion. The repetition do ::stmt 1 ... ::stmt n od is similar to the alternative
composition except that the choices are executed repeatedly, until control is explicitly
transferred to outside the statement by the break or goto statement. The break
statement terminates the innermost repetition statement in which it is executed and can-
not be used outside a repetition. The sequential composition is denoted p;q or b ->
p. The latter form is usually used to emphasize that p is guarded by the conditional
expression/statement b.

The original version of PROMELA/SPIN is untimed but there is a discrete time ex-
tension, called DTPROMELA/DTSPIN [5]. The idea is to divide time into slices and
then frame actions into these slices. The time between actions is measured in ticks of
a global digital clock. By having a variable t declared as timer, setting its value to
some expression that evaluates to a natural number (by doing set(t,e)) and wait-
ing for t to expire (by stating expire(t)) a process can be enforced to postpone
its execution for n time slices (where n is the value of e). When DTSPIN executes the
timeout action, all timers synchronize and time progresses to a next slice. This action
is executed only if no other actions can be executed, meaning that maximal progress is
implicit. Deadlock is recognized when timeout is enabled and all timers are off (not
set or already expired).

PROMELA provides two constructs, atomic{stmt 1;...;stmt n} and
d step{stmt 1;...;stmt n} that can be used to model indivisible events and to
reduce a state space. Their purpose is to forbid the statements from inside to interleave
with other statements in the specifications. The difference is that additionally d step
executes all statements as one (one state in the state space). These constructs are very
useful but have limitations: statements other than the first may not block.

A common specification consists of global channel declarations, variable declara-
tions and process declarations. Process declarations (proctype)contain local vari-
ables and channels declarations not visible to other processes. Once declared, every

138 N. Trčka

process can be started (with different parameters) by the process creation mechanism,
the run statement. With the prefix active, a process is considered initially active
and need not be started explicitly. Once started processes execute in parallel with the
interleaving semantics. This is the only way to achieve parallelism because there is no
explicit parallel operator. Processes communicate with each other through global vari-
ables and channels.

4 Translating χ to PROMELA

First we introduce some mild assumptions about the χ processes we consider for trans-
lation. SPIN is a state based model checker and hiding of actions does not play a role so
we assume that our models do not contain the τI operator. In addition, because the main
form of communication in χ is synchronous, we assume that the encapsulation operator
∂A, with A the set of all send and receive actions, is applied to our process. Since there
is no explicit encapsulation in PROMELA, we do not allow ∂A to occur anywhere else.
The last assumption concerns timing. Because time progresses in SPIN only if nothing
else is possible, our process is prefixed by the UH operator. This is the only place where
UH is allowed. To summarize, we consider only processes of the form UH∂A(p) where
p does not contain abstraction, encapsulation nor the urgent communication (experience
shows that most χ specifications of discrete-event systems are of this shape). From now
on when we refer to the process we translate, we mean p.

4.1 Translation Techniques

We now explain the translation of every feature in which χ and PROMELA differ from
each other. The PROMELA translation of some χ construct x is denoted x.

4.2 Translation of Data Types

From the set of basic data types a χ specification to be translated can contain chan-
nels, booleans, natural numbers and integers. Translation of bool, nat and int variable
declarations is straightforward. For the translation of channel declarations note that, in
PROMELA, forcing the communication on some channel to be handshake communica-
tion is automatically done if the channel is declared of zero length. So, the translation
of chan m : int is chan m = [0] of {int}.

Complex data types can be implemented using PROMELA’s support for records, ar-
rays and macro definitions. For example, a tuple of an integer and a boolean value is
represented as

typedef TUPLE_INT_BOOL {
int elem_1;
bool elem_2;

} .

To model bounded lists we can use buffered channels (a similar approach was taken
in [11]). A list of maximal length n is defined as a tuple of a channel l of capacity n (the
actual list) and a variable head that holds the first element of the list. Adding an item

Verifying χ Models of Industrial Systems with SPIN 139

to a list is represented as sending it to a channel that represents the list. Transformation
of a list into its tail is done by receiving an element from this channel. To keep the
head variable up-to-date, we use a predefined PROMELA function len, that returns
the length of a channel, and a variant of the send statement (m?<x>), that behaves as
m?x only that the message from the channel m is not erased upon executing. All lists
are required to be initially empty. A list of (max. n) integers is represented as:

typedef LIST_INT {
chan l = [n] of {int};
int head = 0;

} .

To make the usage of lists simpler and closer to χ syntax we define four macros. They
represent some usual functions on lists (note that χ has more): add(x,lst) adds x
to the list lst, hd(lst) returns a first element of lst, tail(lst) transforms the
list lst into its tail and length(lst) gives the length of lst.

#define add(x,lst) d_step{ lst.l!x;\
if\
:: len(lst.l) == 1 -> lst.head = x\
:: else\

fi;\
}

#define hd(lst) (lst.head)
#define tail(lst) d_step{ lst.l?_;\

if\
:: len(lst.l) > 0 -> lst.l?<lst.head>\
:: else\

fi;\
}

#define length(lst) (len(lst.l)) .

4.3 Translation of Processes Terms

Translation of the skip statement, sequential and alternative composition is straightfor-
ward since they have direct equivalents in PROMELA. The multi-assignment x1, . . . , xn

:= e1, . . . , en is also easily translated as

d_step {x_1 = e_1; ... x_n = e_n}.

Due to the nature of timing in PROMELA, every process is delayable. Therefore, the
delayable send m!e and the delayable receive m?x are translated to m!e and m?x. The
undelayable send m!!e (the undelayable receive is similar) is translated as

if
:: m!e
:: atomic { timeout; false }

fi .

This statement says that the send is available but the passage of time leads to an imme-
diate deadlock.

140 N. Trčka

Parallelism. As said before, process definitions in PROMELA are implicitly executed
in parallel and there is no (explicit) parallel operator. The run statement cannot be used
to translate nested parallelism. Suppose that (p ‖ q) � r is translated as:

if
:: atomic { run(p); run(q) }
:: r

fi ,

where p and q are separate process definitions in PROMELA. In this PROMELA speci-
fication the choice does not depend on the executability of p ‖ q; the run statement is
always executable. Similar problems arise with nested process instantiation.

Nested parallelism, therefore, must be eliminated. Note that not all parallelism
should be eliminated (e.g. by linearizing) because this would take time, it would dras-
tically move us away from the original specification, and we would not be able to use
SPIN’s powerful verification features.

We now discuss some cases in which there are techniques to deal with nested
parallelism.

Note that a sequential composition can be simulated by a parallel composition at the
expense of introducing an extra synchronization variable. Thus process (p ‖ q) ; r is
equal to

|[disc w : nat = 0 | p ; w := w + 1 ‖ q ; w := w + 1 ‖ w = 2→ r]|

and similarly p ; (q ‖ r) is equal to

|[disc w : bool = false | p ; w := true ‖ w→ q ‖ w→ r]| .

This technique can easily be extended from two to an arbitrary number of parallel
components.

If parts of a process that run in parallel do not communicate with each other, the
parallel operator is just an interleaving operator. In both χ and PROMELA interleaving
of atomic processes can sometimes be achieved with one loop and a few additional
guards (boolean variables). The idea is to associate one guard to each atomic process.
If there is a choice between two atomic processes then they share the same guard. Only
atomic processes available from the start have their guards initially set to true. When an
atomic process is executed, its guard is put to false and the guard of the atomic process
that comes next is assigned true. This is done in a loop that is exited when all the guards
are false. Note that this does not work when there is repetition operator involved.

We illustrate the technique with an example. Suppose a,b,c,d and e are atomic pro-
cesses. Then, process a ; b ‖ c ; (d � e) is transformed to:

|[disc b1 : bool = true, b2 : bool = false, b3 : bool = true, b4 : bool = false |
b1 ∨ b2 ∨ b3 ∨ b4 ∗→

(b1 → a ; b1 := false ; b2 := true
� b2 → b ; b2 := false
� b3 → c ; b3 := false ; b4 := true
� b4 → d ; b4 := false
� b4 → e ; b4 := false
)]|.

Verifying χ Models of Industrial Systems with SPIN 141

Note that this solution introduces many additional assignments and therefore enlarges
the state space of a process. When translating the example to PROMELA one can put a
guarded command and the assignments following in a d step statement.

Scoping. In PROMELA there are only two scope levels. Process local, in process dec-
larations, and global, outside of them. It is not possible to introduce blocks with block-
local variables inside the process declarations. This is not a serious limitation because
for almost every process we can always find an equivalent one of the form
|[s | |[s1 | p1]| ‖ . . . ‖ |[sn | pn]|]| where the pi’s do not contain the scope operator. First
note that |[− | p]| is equivalent to p and that |[s1 | |[s2 | p]|]| is equivalent to |[γ(s1, s2) | p]|
(where γ is a function that adds variables from s2 to s1, overwriting those already
present in s1). This allows us to eliminate scope when its declaration section is empty
or when it is immediately nested. Further, it is not hard to prove that, when q does not
contain free variables (a variable is free in q if it is not used within a scope that declares
it) that are declared in s, then |[s | p]| ◦q is equivalent to |[s | p ◦ q]| for all ◦ ∈ {;, �, ‖}.
Similarly, b→ |[s | p]| is the same as |[s | b→ p]| when b does not contain variables also
declared in s, and p ; |[s | q]| is the same as |[s | p ; q]| when the free variables of p are not
declared in s.

Elimination of a scope in the context of a repetition is more complicated. Note
that the process ∗ |[s | p]| has different behavior than |[s | ∗p]|. This is because p in
∗ |[s | p]|, when it has finished executing, starts again in the ‘fresh’ state s while p
in |[s | ∗p]| starts from a possibly modified state. A solution is to make p restore the
old state when it is done. In other words, if s is of the form disc x1 : type1 =
c1, . . . , xn : typen = cn, chan m1 : type1, . . . , chan mk : typek, we transform
∗ |[s | p]| to |[s | ∗(p ; x1 := c1 ; . . . ; xn := cn)]|. If some of the xi’s are not initialized
(i.e. the part = ci is missing) we simply omit xi := ci. The guarded repetition
b

∗→ |[s | p]| similarly translates to |[s | b ∗→ (p ; x1 := c1 ; . . . ; xn := cn)]|.
The summary of all the transformations that (after adequately renaming variables)

can be used for nested scopes elimination is given in Table 1.

Table 1. Elimination of nested scopes

|[− | p]| p

b→ |[s | p]| |[s | b→ p]|
|[s | p]| ;q |[s | p ; q]|
p ; |[s | q]| |[s | p ; q]|
[s	p]	�q	[s	p � q]			
[s	p]	‖q	[s	p ‖ q]			
[s1		[s2	p]]		[γ(s1, s2)	p]
∗ |[s | p]| |[s | ∗(p ; x1 := c1 ; . . . ; xn := cn)]|
b

∗→ |[s | p]| |[s | b ∗→ (p ; x1 := c1 ; . . . ; xn := cn)]|

Timing. DTPROMELA is a discrete time extension so we require delays to be natural
numbers. This is not a real limitation because for rational delays there is always a num-
ber we can multiply all of them by, and obtain natural delays of the same ratio. The ∆e

142 N. Trčka

statement is translated to the DTPROMELA statement expire(t), where t is of type
timer and is previously set to the value of e. For each ∆ statement a new timer should
be introduced. In cases where ∆e is not involved in a choice, set(t,e) can be present
immediately before the expire(t) (there is a PROMELA macro delay(t,e) de-
fined as set(t,e); expire(t) that can be used instead). However, when there is
a choice of ∆e and another process we have to be more careful. If, for example, we
translate ∆e � p as

if
:: set(t,e); expire(t)
:: p

fi ,

then because set(t,e) is always executable, SPIN can choose to execute it. This
means that, if p can do a send or receive action, then we lose an option to communicate
which contradicts the fact that send and receive processes are delayable and that alter-
natives delay together. Also, if p is an assignment, SPIN should not execute set(t,e)
because the assignment should have priority.

To prevent time from making a choice set(t,e) must be moved before the alter-
native composition. This is enough to assure the right behavior since expire(t) is a
boolean expression/statement that is blocked until n (the value of e) time slices later.
Therefore, the right translation of ∆e � p is:

set(t,e);
if
:: expire(t)
:: p

fi.

Guards. Statements of type b→ p, in general cannot be just translated as b -> p.
This is because in PROMELA operator -> is equivalent to the sequential operator and
the boolean expression b is also a statement. This means, if the value of b is true,
SPIN will execute the action (1) (e.g. it will pass the guard) even though process p
cannot execute anything. This is different from χ which looks for both b to be true and
for p to be executable before taking the step. For example, in χ, the process true→ p �
true→ skip will execute skip if p is not executable. In PROMELA however, process

if
:: true -> p
:: true -> skip

fi ,

since it does not look ‘behind’ guards, can pick the first true, execute it and deadlock
afterwards. Thus, the PROMELA statement b -> p actually corresponds to the process
(b→ skip) ; p in χ.

In the special case when p is an atomic process it is always possible to translate
process b→ p. A guarded skip is translated to a PROMELA expression/statement b.
Guarded delays b→∆e are simply translated as set(t,e); (b && expire(t)).

Verifying χ Models of Industrial Systems with SPIN 143

A guarded assignment b→ x := e we translate as d step{b; x = e}. With the
d step operator we force the statement to be executed as one action, like in χ. If the
value of b is false the statement is blocked, and if it is true, since an assignment is
always executable, both statements execute at once.

In order to translate guarded send/receive processes we must apply a different trick
because these processes can block. We change the channel declaration by adding an-
other field argument to it, one of type integer (for another possibility to translate guarded
send and receive statements on unbuffered channels, see [13, page 398]). We use this
extra argument to synchronize on guards and we translate b → m!e to m!e,b and
B→m?x to m?x,eval(2-B). We take 2-B instead of just B to avoid the commu-
nication between a guarded send and a guarded receive when both guards evaluate to
false (2-B = b is equivalent to B=1 and b=1). The eval function is used to force
the evaluation of the expression 2-B. SPIN does not do this automatically in receive
statements because the expression can be a variable in which case it should not serve
as a match but instead it would be assigned the incoming value. Correspondingly, the
guarded undelayable send b→m!!e is translated as

if
:: m!e,b
:: atomic {timeout; false}

fi.

Like in the case of the scope operator, the restriction that only atomic processes are
guarded is not so serious since most processes have equivalents in that form. Transfor-
mations that simplify guards in the context of other guards, alternative and sequential
composition, and repetition are shown in Table 2 (how guarded scopes are simplified
we have shown in the paragraph on scoping). Translation is simpler if all atomic pro-
cesses are guarded, so we also have a rule that transforms p to the obvious equivalent
true→ p.

Table 2. Simplification of guards

p true→ p

b1 → b2 → p b1 ∧ b2 → p

b→ (p � q) (b→ p) � (b→ q)
b→ (p; q) (b→ p) ; q
b→∗p (b→ p) ; ∗p
b1 → b2

∗→ p b1 ∧ b2 → skip ; b ∗→ p � b1 ∧ ¬b2 → skip

Note that, in general, b → (p ‖ q) is not equivalent to (b → p) ‖ (b→ q). This is
because when the value of b is true, after executing an action (for example from p)
process b→ (p ‖ q) proceeds as p′ ‖ q and process (b→ p) ‖ (b→ q) as p′ ‖ (b→ q)
and the action might have changed the value of b to false. Only when p and q do not
change the value of b, e.g. when they do not contain atomic processes that influence
variables present in b, we can distribute the guard over the parallel operator.

144 N. Trčka

Repetition. The guarded repetition b
∗→ p is translated to

do
:: b; p
:: !b

od.

Note that the repetition operator ∗p is not equivalent to true
∗→ p. The difference be-

tween the two becomes apparent in the context of alternative composition. The process
(true ∗→ p) � q chooses between the skip, which is always executable, and the process
q. The process (∗p) � q chooses between p and q. The correct translation of ∗p is, of
course,

do
:: p

od.

4.4 Translation Process

In accordance to the previous discussion, χ specifications that can be translated to
PROMELA belong to the set P generated by the following:

S ::= − | disc x : type = c, S′ | chan x : type, S′ | p :<type, type>,S′ | l : [type] = [], S′

A ::= skip | x := e | m!e | m?x | m!!e | m??x | ∆e

BP ::= A | b→BP | BP ;BP | BP � BP | ∗BP | b ∗→BP | |[S | BP]|

P ::= UH∂A(|[S |BP (. . .) ‖ . . . ‖BP (. . .)]|)

whereH contains all channel names, A contains all send/receive actions, the symbol e
represents any expression, the symbol b represents a boolean expression. The statement
BP (. . .) denotes a process instantiation of a process definition that belongs to BP . We
assume the restriction on allowed data types and the restriction for the allowed oper-
ators on lists. Note that we completely disallow nested parallelism and nested process
instantiations. Although in the previous section we explained how in some cases they
can be eliminated, it is hard to syntactically identify those cases. The translatable subset
is restrictive but usually corresponds to the current practice.

The first step of the translator is to check if the χ specification belongs to the required
subset, and if not, to issue an error message. Note that the grammar above allows nested
scopes and arbitrary guarded processes. These statements cannot be directly translated
to PROMELA, so the second step of the translator, called the preprocessing step, is to
perform the transformations from Tables 2 and 1. This step changes the definition of
BP into

BP ::= |[S |BP ′]|

BP ′ ::= b→A | BP ′ ; BP ′ | BP ′ �BP ′ | ∗BP ′ | b ∗→BP ′.

Verifying χ Models of Industrial Systems with SPIN 145

The third step is the application of the following scheme:

S �−→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

- S≡−
type x = c; S S≡discx : type = c, S

chan c[0] of {type,int}; S S≡chan c : type, S

TUPLE TYPE TYPE p; S S≡p :<type, type>,S

LIST TYPE l; S S≡ l : [type] = [], S

b→A �−→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d step{b; x := e} A≡x := e

b A≡skip
c!Expr, b A≡ c!e
c?x, eval(2− b) A≡ c?x
if
:: c!Expr,b
:: atomic {timeout; false}
fi

A≡ c!!e

if
:: c?x,eval(2 - b)
:: atomic {timeout; false}
fi

A≡ c??x

set(t,e); (b && expire(t)) A≡∆e

BP ′ ; BP ′ �−→ BP’; BP’ BP ′ |BP ′ �−→
if
:: BP’
:: BP’

fi

∗BP ′ �−→
do
:: BP’

od
b

∗→BP ′ �−→
do
:: b; BP’
:: !b

od

P �−→

S;
proctype BP(...) {

S
BP’

}
...

active proctype BP(...) {
S
BP’

}
Note that only the last process is given the prefix active.

To correctly translate delays, a postprocessing step that declares and renames timers
and that moves set functions to outside of if :: fi and do :: od statements, is
performed.

146 N. Trčka

The translator is developed by Ralph Meijer and can be obtained from [18]. It is still
a prototype, the preprocessing and postprocessing steps are not implemented but only a
warning is issued.

4.5 The Manufacturing Line in PROMELA

We now give the PROMELA translation of the χ model of the manufacturing line pre-
sented in Section 3. Note that, before applying the translator, we manually removed the
simple (interleaving) nested parallelism in the process A. We also, after applying the
translator, moved the set statement of the process D to the outside of the if :: fi
statement.

#include "dtime.h"
#include "list.h"

proctype G(chan out; int d) {
timer t;
bool x = 0;

do :: delay(t,d); out!x,1 od;
}

proctype D(chan in,out1,out2,outr; int d) {
timer t;
bool x;

do
:: in?x,eval(2-1); set(t,d);

if
:: out1!x,1
:: out2!x,1
:: expire(t); outr!x,1

fi
od

}

proctype R(chan in) {
bool x;

do :: in?x,eval(2-1) od
}

proctype M1(chan in1,in2, out; int d) {
bool x;
timer t;

do
:: if

:: in1?x,eval(2-1)
:: in2?x,eval(2-1); x = 1

fi;
delay(t,d);
out!x,1

od
}

proctype B(chan in,out; int n) {
bool x;
LISTBOOL buf;

do
:: in?x,eval(length(buf) < n);

add(x,buf)

:: out!hd(buf),(length(buf) > 0);
tail(buf)

od
}

proctype M2(chan in,outm,outa;int d){
bool x;
timer t;

do
:: in?x,eval(2-1);

delay(t,d);
if
:: outa!x,x
:: outm!x,(!x)

fi
od

}

proctype A(chan in1,in2,out; int d) {
bool x,y;
timer t;

do
:: if

::in1?x,eval(2-1);in2?y,eval(2-1)
::in2?y,eval(2-1);in1?x,eval(2-1)

fi;
delay(t,d);
out!(x && y),1

od
}

proctype E(chan in) {
bool x;

do :: in?x,eval(2-1) od
}

active proctype sys() {
chan gd = [0] of {bool,int};
chan dm1 = [0] of {bool,int};
chan dm2 = [0] of {bool,int};
chan dr = [0] of {bool,int};
chan mb1 = [0] of {bool,int};
chan mb2 = [0] of {bool,int};
chan bm1 = [0] of {bool,int};
chan bm2 = [0] of {bool,int};
chan ma1 = [0] of {bool,int};
chan ma2 = [0] of {bool,int};
chan mm1 = [0] of {bool,int};

Verifying χ Models of Industrial Systems with SPIN 147

chan mm2 = [0] of {bool,int};
chan ae = [0] of {bool,int};

atomic{
run G(gd,7);
run D(gd,dm1,dm2,dr,6);
run R(dr);
run M1(dm1,mm1,mb1,4);
run M1(dm2,mm2,mb2,4);

run B(mb1,bm1,5);
run B(mb2,bm2,5);
run M2(bm1,mm1,ma1,4);
run M2(bm2,mm2,ma2,4);
run A(ma1,ma2,ae,4);
run E(ae);

}
}

To illustrate the usefulness of our approach we verify the property that products that
are only assembled once do not leave the system. First note that this is equivalent to
saying that, in all states of the system, the variable x from the process E has the value
1 (if also it was initially 1). In the linear temporal logic built in SPIN this is expressed
as [] (x == 1). Since this logic allows reasoning only about global variables, we
have to move x to the global scope (and initialize it to 1). SPIN verified this property
almost instantly.

5 Conclusion

In this paper we discussed the automatic translator of χ models to PROMELA. Compar-
ing the two languages in detail, we showed that most χ specifications have equivalents
in PROMELA, but also that sometimes, what seems to be an obvious translation, can
have very different behavior.

We were able to syntactically define a translatable subset and we presented a trans-
lation scheme. We also defined the phases of the translation process on which the trans-
lator is based.

Most χ specifications encountered in practice either belong to the translatable subset
or can be easily modified to fit the form of the subset. For example, nested parallelism
almost never appears guarded or in an alternative composition. However, it still is a
problem that we cannot (yet) deal with in a satisfactory way. This is a subject for further
investigations.

Together, the simulator of χ and a tool that translates χ models into PROMELA con-
stitute an effective environment in which performance analysis and functional analysis
of industrial systems are combined.

At last, we think that our results can also be used in building a translator from χ to
some other process-like formalisms like e.g. µCRL, and in building a translator from
any process algebra like language to PROMELA.

Acknowledgements. I would like to thank Bas Luttik for commenting on a draft of this
paper, and to other members of the TIPSy project for discussions.

References

1. D. A. van Beek, A. van der Ham, and J.E. Rooda. Modelling and control of process industry
batch production systems. In 15th Triennial World Congress of the International Federation
of Automatic Control, Barcelona, Spain, 2002.

2. S. Blom, W. Fokkink, J.F. Groote, I. van Langevelde, B. Lisser, and J.C. van de Pol. µCRL:
A toolset for analysing algebraic specifications. In Proceedings of CAV2001, LNCS 2102,
pages 250–254, 2001.

148 N. Trčka

3. E. Bortnik, N. Trčka, A.J. Wijs, S.P. Luttik, J.M. van de Mortel-Fronczak, J.C.M. Baeten,
W.J. Fokkink, and J.E. Rooda. Analyzing a χ model of a turntable system using SPIN,
CADP and UPPAAL. Journal Of Logic and Algebraic Programming, 65:51–104, 2005.

4. V. Bos and J.J.T. Kleijn. Automatic verification of a manufacturing system. Robotics and
Computer Integrated Manufacturing, 17:185–198, 2001.

5. D. Bošnački. Enhancing State Space Reduction Techniques for Model Checking. PhD thesis,
Eindhoven University of Technology, 2001.

6. E. J. J. van Campen. Design of a Multi-Process Multi-Product Wafer Fab. PhD thesis,
Eindhoven University of Technology, 2000.

7. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
8. J.J.H. Fey. Design of a Fruit Juice Blending and Packaging Plant. PhD thesis, Eindhoven

University of Technology, 2000.
9. R. Gerth. Concise Promela reference. Obtainable from:

http://spinroot.com/spin/Man/Quick.html.
10. J. A. Govaarts. Efficiency in a lean assembly line: a case study at NedCar born. Master

Thesis, October, 1997.
11. Klaus Havelund, Mike Lowry, and John Penix. Formal analysis of a space-craft controller

using SPIN. IEEE Trans. on Software Engineering, 27(8):749–765, 2001.
12. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
13. G. J. Holzmann. The SPIN model checker. Addison-Wesley, 2003.
14. G.J. Holzmann. The model checker SPIN. IEEE Trans. on Software Engineering, 23(5):279–

295, May 1997. Special issue on Formal Methods in Software Practice.
15. B. W. Kernighan and D. M. Ritchie. The C Programming Language, Second Edition.

Prentice-Hall, 1988.
16. K.G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. Int. Journal on Software Tools

for Technology Transfer, 1(1-2):134–152, 1997.
17. B. Luttik and N. Trčka. Stuttering congruence for χ. In SPIN’05, San Francisco, California,

USA, 2005.
18. Ralph Meijer. χ to Promela translator. Obtainable from the TIPSy project web site:

http://www.cwi.nl/∼wijs/TIPSy/main.htm.
19. R.R.H. Schiffelers and K.L. Man. Formal Specification and Analysis of Hybrid Systems. PhD

thesis, Eindhoven University of Technology, 2006.
20. C. Stirling. Modal and Temporal Properties of Processes. Springer, 2001.

Stateful Dynamic Partial-Order Reduction�

Xiaodong Yi, Ji Wang, and Xuejun Yang

National Laboratory for Parallel and Distributed Processing,
Changsha, P.R. China

{xdyi, jiwang}@mail.edu.cn

Abstract. State space explosion is the main obstacle for model checking con-
current programs. Among the solutions, partial-order reduction (POR), especially
dynamic partial-order reduction (DPOR) [1], is one of the promising approaches.
However, DPOR only supports stateless explorations for acyclic state spaces. In
this paper, we present the stateful DPOR approach for may-cyclic state spaces,
which naturally combines DPOR with stateful model checking to achieve more
efficient reduction. Its basic idea is to summarize the interleaving information
for all transition sequences starting from each visited state, and infer the neces-
sary partial-order information based on the summarization when a visited state is
encountered again. Experiment results on two programs coming from [1] show
that both of the costs of space and time could be remarkably reduced by stateful
DPOR with rather reasonable extra memory overhead.

1 Introduction

Model checking has been acknowledged as not only an effective but also a practical
technology for the verification of concurrent programs. However, the state space explo-
sion problem is still the main obstacle preventing model checking from scaling to large
practical programs. Among the various state space reduction solutions, both the partial-
order reduction (POR) and the stateful exploration of the program/model are proven to
be simply but effective.

The research of POR mainly focuses on two main core partial-order reduction tech-
niques [1-4]: persistent/stubborn sets and sleep sets. This paper (as well as [1]) focuses
on the former one, and the sleep set techniques may be well complemented with ours
(see the experiments). The partial-order among transitions, which is used by existing
persistent/stubborn set techniques to perform reduction, is collected by static analysis
techniques (see [2-6]). It therefore may be very imprecise in practice and consequently
cause the efficiency loss of partial-order reduction (as indicated in [1]). To this problem,
Cormac and Godefroid present the dynamic partial-order reduction (DPOR) to perform
a precise state space reduction. Its basic idea is to dynamically collect the information
on how processes have communicated with each other on a specific execution trace,
such as which memory locations were read or written by which processes and in what
orders. The information is then analyzed to add backtracking points along the trace that

� Partially supported by the National NSF of China under grant No. 60233020, National Hi-Tech
Programme of China under the grant 2005AA113130 and Program for New Century Excellent
Talents in University under grant No. NCET-04-0996.

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 149–167, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

150 X. Yi, J. Wang, and X. Yang

identify the alternative transitions that need to be explored because they might lead to
other execution traces that are not equivalent to the current one (i.e., are not lineariza-
tions of the same partial-order execution) [1].

For temporal safety properties, stateful exploration of the program/model may dra-
matically reduce the generated state space by preventing each state from being explored
more than once. In comparison, stateless exploration usually needs to repeatedly ex-
plore a state for even exponential times because software programs always have many
fork-join structures caused by branches. The algorithm presented in [1] fits in with
stateless model checking, i.e., no states are stored during the state space exploration.
Therefore, it is suitable for stateless model checkers, such as Verisoft [7] and Java
PathExplorer [8, 9]. However, because stateless model checking is of low efficiency
for the verification of temporal safety properties, many projects acknowledge stateful
model checking techniques, such as SLAM [10, 11], MAGIC [12, 13], ComFoRT [14,
15], Zing [16, 17] for C programs and Java PathFinder [18, 19] for Java programs.

DPOR and stateful exploration are two well complementary state space reduction
techniques. The combination of them may achieve a considerable efficiency improve-
ment on state space reduction comparing with using each alone. However, at first glance,
it seems that there is no way to perform stateful exploration while still applying DPOR
[1]. As illustrated above, DPOR selects at each state only one arbitrary process to ex-
plore, and the other necessary ones that leads to different partial-order linearizations are
identified and backtracked to explore when traversing all necessary transition sequences
starting from that state. Therefore, if a future transition sequence reaches a visited state
s, it could not simply ignore s and backtrack because both the backtracking points and
the alternative processes of that sequence could not be identified until all necessary
transition sequences starting from s have been explored.

As the contribution of this paper, we extend the dynamic partial-order reduction to
support stateful model checking. The extended variant is called stateful DPOR (SD-
POR). Its basic idea is to summarize at each state s the interleaving information on how
processes have communicated with each other in all the transition sequences starting
from s, and then all necessary backtracking points and alternative processes of each fu-
ture transition sequence that reaches s may be identified by checking that summary. We
use the happens-before transition mapping to represent the summary of the interleaving
information for a transition sequence that leads from s, and consequently the summary
of state s is represented by a set of such mappings. Under the depth-first state space
exploration strategy, the summarization may be achieved by performing an extra action
at the backtracking step to relay the interleaving information of current state to its pre-
decessors. Therefore, although equipped with DPOR, the stateful model checking may
also perform as before.

It is nontrivial to implement the above idea since there exist many (even infinite)
transition sequences starting from each state s, and the interleaving information of all
transition sequences should be summarized at s to identify all necessary backtracking
points and processes for the future transition sequences that reach s. Also, it is criti-
cal to store and manipulate such summary with lower time and space cost. Moreover,
exploration of cyclic state spaces will reach a state that only part of its successive tran-
sition sequences have been explored, i.e., the summary of the interleaving information

Stateful Dynamic Partial-Order Reduction 151

at that state is incomplete. To deal with the problems, a variant of depth-first state space
exploration strategy is also presented.

We also give the experimentation based on the two concurrent programs coming
from [1]. The experiment results show that the state space reductions achieved by state-
ful exploration and by DPOR are well complementary, and a considerable reduction
may be achieved through the SDPOR method presented in the paper. For example, the
reduced state space by SDPOR may be up to 66 times smaller than that by the stateless
one. Along with the reduction of state spaces, the time for model checking the pro-
grams is also remarkable reduced. It is also illustrated that, the extra memory overhead
introduced by SDPOR is rather low comparing with the memory for state storage.

The rest of the paper is organized as follows. After some introductions of the prelim-
inaries in Section 2, we present in Section 3 the happen-before transition mapping,
the summarization of interleaving information and the stateful exploration strategy
with SDPOR. In Section 4, we present the implementations of the presented defini-
tion and algorithm. The experimentation is performed in Section 6, and we conclude in
Section 7.

Related work. The most related work is dynamic partial-order reduction presented in
[1]. The significant improvement of our method lies in the stateful exploration, which
surpasses the stateless one in usual model checking cases. The presented method com-
bines the two complementary state space reduction methods (i.e., stateful exploration
and DPOR) together with rather little time and space overhead. The idea of summa-
rization has been used in the interprocedural analysis such as [16, 20] to summarize
procedures. The procedure summaries are then reused at all call sites such as the verifi-
cation by Zing [16, 17]. Sharing a similar idea, our method summarizes the interleaving
information for the transition sequences starting from a state, and the summaries are
reused for dynamic partial-order reduction.

Traditional partial-order state space reduction methods are also relevant to ours.
There are two main core partial-order reduction techniques: persistent/stubborn sets
and sleep sets. Basically, persistent/stubborn set [2-4] (moreover, ample set [5, 6]) tech-
niques select out a subset of transitions enabled in each state such that the unselected
transitions are proven not to interfere with the execution of those selected. In contrast,
sleep set techniques (see [2]) compute the unnecessary enabled transitions in each state
by considering the information of past explorations. These two techniques are also
complementary with our method and may be used simultaneously. A latest research
on partial-order reduction is cluster-based partial-order reduction [21, 22], which intro-
duces the concept of cluster hierarchy to capture the system hierarchy and the induced
dependencies among the processes in the hierarchical structured programs.

2 Preliminaries

2.1 Concurrent Program Models

We consider a concurrent program composed of a finite set of processes, which may
have their private local variables and execute a sequence of statements in a deterministic
order. The processes communicate by performing atomic operations on communication

152 X. Yi, J. Wang, and X. Yang

objects, such as shared variables, semaphores, locks, and so on. In this paper, it is as-
sumed that the communications among processes are implemented as some operations
on several global variables with the aid of two synchronous primitives P and V defined
in C-like codes as follows:

P (x) :: block if x ≤ 0 | x– – otherwise

V (x) :: x++

where block means that the execution of P (x) cannot be completed currently. We as-
sume that all statements never block except P (x).

For simple representation as in [1], the paper only considers the reachability safety
properties, such as detecting deadlocks and assertion failures. Under this assumption,
the partial-order-equivalence of two transition sequences is of no relevance to the veri-
fying property.

The interleaving execution of a concurrent program can be treated as a LTS. Let a
concurrent program have m sequential processes (we use the integer p ∈ {1, . . . ,m} to
identify each process), and let CFGp = 〈Np, Ep〉 be the control flow graph (CFG) of
pth sequential process. Then the execution graph of the concurrent program is written
CP = 〈S, s0, T,∆〉 where S is the state space defined as follows:

S ⊆ N1 × . . .×Nm × LS1 × . . .× LSm × SS

where Np is the node set in CFG of the pth process, LSp is local state space of the pth

process and SS is the shared state space of all communication objects. Each state ls ∈
LSp and ss ∈ SS may be represented by an explicit evaluation or implicit symbolic
expression of the local and shared objects, respectively. One may infer that, if a state
s ∈ S is verified to be safe, i.e., all interleaving transition sequences starting from s do
not violate the reachability properties, then s need not to be re-explored when reached
again from other directions.

As for other elements of CP = 〈S, s0, T,∆〉, s0 ∈ S is the initial state, and T is the
set of all transitions of the concurrent program. We call an operation to be visible if it
operates at least one shared object, and invisible otherwise. Following [1], a transition
t ∈ T is defined to be a visible operation followed by a finite sequence of invisible
operations of the same process. And last, ∆ ⊆ S × T × S is the set of state transitions.

A transition sequence π of CP = 〈S, s0, T,∆〉 is a sequence of transitions t1t2 . . . tn
where t1, . . . , tn ∈ T and there exist states s1, . . . , sn+1 ∈ S such that s1 is the initial
state s0 and 〈si, ti, si+1〉 ∈ ∆ for each 1 ≤ i ≤ n. For the transition sequence π =
t1t2 . . . tn and a set of states s1, . . . , sn+1 ∈ S where each state si is the unique state
reached by the transition sequence t1t2 . . . ti−1, the following notations [1] are used:

– πi refers to the transition ti;
– proc(t) is the integer process identifier of transition t;
– π.t, t.π and π.π′ denote extending π with an additional transition t, inserting the

transition t before π and jointing two transition sequences π and π′ together, re-
spectively;

– pre(π, i) for i ∈ {1, . . . , n} refers to the state si; and
– last(π) refers to the state sn+1. And last(π) = s0 if π = ∅.

Stateful Dynamic Partial-Order Reduction 153

If several transition sequences are involved, we use πi (such as π1, π2, . . .) to denote
the ith one. We use Π to denote a set of transition sequences, and �Π� to denote the set
of all transition sequences.

Following [1], to simplify the presentation, three assumptions are preset:

– It is assumed that there exists only one transition for each process at any state.
For branch statements, we therefore assume that only one branch is feasible1. The
unique transition of process p at state s is denoted by next(s, p).

– Each transition t ∈ T of CP = 〈S, s0, T,∆〉 is assumed to operate on at most
one shared object. The shared object of a visible transition t is denoted by α(t) ∈
�Object� where �Object� denotes all shared objects.

– Two visible transitions t1 and t2 are assumed to be dependent iff they access the
same shared object, i.e., α(t1) = α(t2).

Let enabled(s) be the set of non-blocked processes at state s = 〈s1, . . . , sm〉. For
a process p, p ∈ enabled(s) (we call process p is enabled) iff there exists at least
one non-blocked transition 〈s, t, s′〉 ∈ ∆ such that proc(t) = p. If s is the last state
of the system, we have p /∈ enabled(s) as there is no outgoing transition leaving s.
Otherwise, as only the primitive P (x) may be blocked provided x ≤ 0, one may infer
that the process p may be possibly blocked only if a P primitive is encountered.

2.2 Dynamic Partial-Order Reduction (DPOR)

The “happens-before” ordering relation→π [1] for a transition sequence π = t1t2 . . . tn
is defined to be the smallest relation on {t1, . . . , tn} such that2:

– if i ≤ j and ti is dependent with tj then ti →π tj ; and
– →π is transitively closed.

By construction, the happens-before relation →π is a partial-order relation, and the
sequence of transitions in π is one of the linearizations of this partial order. As in [1], a
variant of the happens-before relation, πi →π p, is used to identify backtracking points.
The relation πi →π p holds for i ∈ {1, . . . , n} and process p if either proc(πi) = p
or there exists k ∈ {i + 1, . . . , n} such that πi →π πk and proc(πk) = p. Intuitively,
if πi →π p, then the next transition of process p from the state last(π) cannot be the
next transition of process p in the state right before transition πi in either this transition
sequence or in any equivalent sequence obtained by swapping adjacent independent
transitions3.

The DPOR algorithm in [1] is implemented by recursive calls of the function Ex-
plore. To be compatible with the presented SDPOR algorithm, we equivalently rewrite
the algorithm based on a stack. In Figure 1, Stack is a stack storing a list of transition
sequences as usual, and has three standard operations: push, pop and top. The global

1 The nondeterministic branch operations, i.e., the both branches could be feasible, may be easily
supported by extending the algorithm.

2 We define →π over {t1, . . . , tn}, instead of over {1, . . . , n} as in [1], to avoid the confusion
of indices among partial-order-equivalent transition sequences of π.

3 We call such transition sequences partial-order-equivalent.

154 X. Yi, J. Wang, and X. Yang

variables backtrack and done map a state to its backtracking and done processes, re-
spectively, and they are initially empty for all states. The algorithm of Figure 1 performs
a standard depth-first exploration for acyclic state spaces. Acyclic state space means that
the state space contains no circle or loop. The function RefineBackTrackDpor is called
to identify the backtracking points for the transition sequence π′, and the details of its
implementation are described in [1]. By implementation, we may use the clock vector to

Stack: A list of transition sequence π;
backtrack, done: S �→ 2N;
Explore()
{
1 for all s ∈ S let backtrack(s) = done(s) = ∅;
2 Stack.push(∅);
3 if (∃p ∈ enabled(s0)) backtrack(s0) := {p};
4 while (!Stack.empty()){
5 let π = Stack.top() and let s = last(π);
6 Stack.pop();
7 if (∃p ∈ backtrack(s) \ done(s)) {
8 done(s) := done(s) ∪ {p};
9 let π′ = π.next(s, p) and s′ = last(π′);
10 RefineBackTrackDpor(π′);
11 if (∃p ∈ enabled(s′)) backtrack(s′) := {p};
12 Stack.push(π′);
13 } else if(∃π′, t : π′.t = π) Stack.push(π′);
14 }
}

RefineBackTrackDpor(π)
{
1 let s = last(π);
2 for all processes p {
3 if ∃i = max({i ∈ dom(π) | πi

is dependent and may be co-
enabled with next(s, p) and
i �→π p})
{

4 let E = {q ∈ enabled(pre(π, i))
| q = p or ∃j ∈ dom(π) : j > i
and q = proc(πj) and j →π p};

5 if(E �= ∅) add any q ∈ E to
backtrack(pre(π, i));

6 else add all q ∈ enabled(pre(π,
i)) to backtrack(pre(π, i));

}
}
}

Fig. 1. Dynamic partial-order reduction algorithm for acyclic state spaces

represent the happens-before relation of each transition sequence. Thus both the back-
tracking points and the conditions of line 3 of the function RefineBackTrackDpor could
be determined directly. For simplicity, however, the paper does not involve any clock
vector, but clock vectors could be naturally integrated with the presented techniques. In
fact, it is implemented in the tool for us to carry out experiments.

3 Stateful Dynamic Partial-Order Reduction (SDPOR)

3.1 Summary of Interleaving Information (SII)

We first introduce the happens-before transition mapping to represent the summary of
the interleaving information for a transition sequence. To do so, we lift the function α
over transition sequences, i.e., α(π) = {α(πi)} is the set of shared objects involved in
π. For a transition sequence π, the function MinIndex(π, o) is defined to return the
minimum index of the transitions in π which operate the shared object o ∈ α(π), i.e.,

Stateful Dynamic Partial-Order Reduction 155

MinIndex(π, o) = min{i|α(πi) = o}. Another function MinObjTrans, which returns
the set of minimum-indexed transitions operating each object o ∈ α(π), is defined as:

MinObjT rans(π) � {πi | ∃o ∈ α(π) : i = MinIndex(π, o)}

The happens-before transition mapping of a transition sequence π, written Υπ, is
defined as:

Υπ : MinObjT rans(π) #→ 2T

We define the function dom(Υπ) to return the domain of the mapping Υπ, i.e.,
dom(Υπ) = MinObjT rans(π). Over the happens-before relation→π, for each tran-
sition t ∈ dom(Υπ), Υπ(t) is defined as:

Υπ(t) � {πi | πi →π t}

In other words, Υπ maps the first transition πi, which operates each o ∈ α(π), to the
set of transitions that must happen-before πi in either π or its partial-order-equivalent
sequences obtained by swapping adjacent independent transitions.

Example 1. In the following transition sequence:

π = p1 : x++; p2 : x++; p1 : y++; p2 : y++;

We have α(π) = {x, y}, MinIndex(π, x) = 1 and MinIndex(π, y) = 3, where π1
and π3 are p1 : x++ and p1 : y++, respectively. So dom(Υπ) = MinObjT rans(π) =
{p1 : x++, p1 : y++}, and Υπ(p1 : x++) = ∅, Υπ(p1 : y++) = {p1 : x++} because
p1 : x++→π p1 : y++.

The happens-before transition mapping Υt.π for the new transition sequence t.π (i.e.,
obtained by inserting the transition t at the head of π) may be derived from Υπ . First
of all, the domain of Υt.π changes to dom(Υt.π) = dom(Υπ) ∪ {t} \ {t∗}, where
t∗ ∈ dom(Υπ) such that α(t) = α(t∗). That is to say, we add t to and remove t∗ from
dom(Υπ), where t∗ is the transition that operates the same shared object as t. Then, we
define:

Υt.π(t′) �

⎧⎨⎩
∅ if t = t′

Υπ(t′) ∪ {t} \ {t∗} if t→t.π t′ ∨ ∃t′′ ∈ Υπ(t′) : t→t.π t′′

Υπ(t′) \ {t∗} otherwise

The summary of interleaving information for a state s is represented by a set of
happens-before transition mappings, and each mapping corresponds to one transition
sequence that starts form s.

Let Π = {π1, . . . , πn} be a set of transition sequences starting from the unique
state s. The summary of interleaving information (SII) of the state s with respect to Π ,
written SIIΠ(s), is defined as:

SIIΠ � {Υπ1, . . . , Υπn}

156 X. Yi, J. Wang, and X. Yang

We also use the symbol �SII� to denote the set of all kinds of summaries of inter-
leaving information.

If the state space is finite and acyclic, the number of the transition sequences that
start from any state is finite. For any state s, let Π be the finite set of all transition se-
quences starting form s, and let SIIΠ be the summary of interleaving information of s.
If the state s is reached again after executing the transition sequence π, the backtrack-
ing points of π may be refined based on SIIΠ by the procedure RefineBackTrackSII
shown in Figure 2. Intuitively in line 3, the first condition says that πi �→π.t t, and the
second one says that πi �→π.t′ t′ for all t′ such that t′ →πk t. One may therefore infer
that πi �→π.πk t. As t is the first transition of πk that operates the same shared object as
πi, we need to introduce a backtracking point in the state pre(π, i). The correctness is
promised by Theorem 1.

RefineBackTrackSII(π, SIIΠ)
{
1 for all Υπk ∈ SIIΠ do
2 for all t ∈ dom(Υπk) do
3 if the following two conditions hold:

- ∃i = max({i ∈ dom(π) | πi is dependent and may be co-enabled with t and
πi �→π.t t}); and

- ∀t′ ∈ Υπk(t) : πi �→π.t′ t′

{
4 let E = {q ∈ enabled(pre(π, i)) | q = proc(t) or ∃t′ ∈ Υπk(t) : q = proc(t′)

or ∃j ∈ dom(π) : j > i and q = proc(πj) and j →π proc(t)};
5 if (E �= ∅) then add any q ∈ E to backtrack(pre(π, i));
6 else add all q ∈ enabled(pre(π, i)) to backtrack(pre(π, i));

}
}

Fig. 2. Backtracking points Refinement based on SII for acyclic state spaces

Theorem 1. If the state space is finite and acyclic, then for all states pre(π, i) of a
transition sequence π, each backtracking point set backtrack(pre(π, i)) obtained by
the procedure RefineBackTrackSII of Figure 2 is equal to the one obtained by exploring
the set of transition sequences Π with standard DPOR algorithm shown in Figure 1.

Proof. See Appendix.

3.2 Stateful Exploration with SDPOR

The stateful exploration with SDPOR for may-cyclic state spaces is shown in Fig-
ure 3. Both explicit and implicit state representations are supported. The global vari-
ables backtracking, done and Stack are defined in Figure 1. The global mapping SII
records the SII for each state to avoid repeated explorations. If the state space contains
circles, the SII of a state may be incomplete in the case that its some necessary pro-
cesses have not been explored. Therefore, the depends-on relation between a transition

Stateful Dynamic Partial-Order Reduction 157

sequence and a state, denoted −→, is introduced. If a transition sequence π = t1 . . . tn
reaches a visited state sn+1, we set π −→ sn+1 and then backtrack. Thereafter, if the
SII of sn+1 is updated, the backtracking points for π need to be recomputed.

backtrack, done: S �→ 2N;
Stack: A list of transition sequece π;
SII : S �→ �SII�;
−→: −→⊆ �Π�× S;
Explore()
{
1 for all s ∈ S let backtrack(s) =

done(s) = SII(s) = ∅;
2 Stack.push(∅);
3 if(∃p ∈ enabled(s0))
4 backtrack(s0) := {p};
5 while(!Stack.empty()) {
6 let π = Stack.top();
7 Stack.pop();
8 let s = last(π);
9 if(∃p ∈ backtrack(s) \ done(s)){
10 done(s) := done(s) ∪ {p};
11 let π′ = π.next(s, p)
12 let s′ = last(π′);
13 if(s′ has not been visited){

14 RefineBackTrackDpor(π′);
15 if(∃p ∈ enabled(s′))
16 backtrack(s′) := {p};
17 }else RefineBackTrackSII(π′,SII(s′));

and set π′ −→ s′;
18 Stack.push(π′);
19 } else if (∃π′, t : π′.t = π) {
20 Stack.push(π′);
21 let s′ = last(π′);
22 let oldSII = SII(s′);
23 for all Υπi ∈ SII(s);

add Υt.πi to SII(s′);
24 if(oldSII �= SII(s′))
25 for all π′′ such that π′′ −→ s′ do {
26 RefineBackTrackSII(π′′,SII(s′));
27 Stack.push(π′′);
28 }
29 }
30 }
}

Fig. 3. Stateful exploration with SDPOR for may-cyclic state spaces

We will go to line 17 when a visited state s′ is reached again in line 13. The transi-
tion sequences starting from the visited state s′ do not need to be explored again, and
the backtracking points of π′ could be identified by the procedure RefineBackTrack-
SII based on the SII of s′. We also should set the depends-on relation π′ −→ s′ in
case of the later changes of SII(s′). When backtracking from s to s′ (lines 19-29),
each happens-before transition mapping Υπi ∈ SII(s) is updated to Υt.πi and added
to SII(s′) in line 23. If the merged SII(s′) is not equal to the one before merging in
line 24, the backtracking sets of any transition sequence π′′ which depends-on s′ should
be recomputed (line 26) and π′′ should be re-traversed (line 27) because there may be
extra backtracking points introduced. It is worth to notice that when exploring acyclic
state spaces, there is no transition sequence that depends-on any visited state (otherwise
a circle exists). That is to say, there exists no transition sequence π′′ such that π′′ −→ s′

in line 25 of Figure 3.

Theorem 2. When the procedure in Figure 3 terminates, the set of transitions that have
been explored from every state is a persistent set in that state.

In [1], it is shown that, for acyclic state spaces, the set of the transitions that have
been explored by stateless DPOR algorithm is a persistent set (see Theorem 1 of [1]).
Theorem 1 (in subsection 3.1) says that although the visited states are not explored

158 X. Yi, J. Wang, and X. Yang

again, the backtracking points identified are equal to those by stateless DPOR. That is
to say, for acyclic state spaces, the set of transitions that have been explored from every
state is equal to that of stateless DPOR.

For may-cyclic state spaces, if we can prove that the SII of each state is complete
when the procedure terminates, we may infer that the theorem also holds. In lines 24-
28 of Figure 3, if SII(s′) is updated, any transition sequence π′′ which depends-on s′

would be re-traversed until SII(s′) does not change anymore. So, no matter how many
times the circle path is unrolled, exploring the corresponding transition sequence will
never cause SII(s′) to change. That is to say, SII(s′) is the complete SII of s′ although
there may be infinite transition sequences starting from s′.

One may doubt whether the procedure of Figure 3 could terminate because the cir-
cled transition sequences would keep re-traversed until the SII does not change. How-
ever, when SII is implemented as in the following section, we can promise the termina-
tion of that procedure if the state space is finite.

4 Implementation

We discuss in this section how to implement SII and the general algorithm in Figure 3.
To discuss the complexity of the algorithm, we assume that there are m processes and
total n shared objects in the concurrent program.

4.1 Implementation of SII

The happens-before transition mapping Υπ only records the first transition t that op-
erates each shared object as well as the transitions happen-before t in the transition
sequence π. Also, we only consider proc(t) and α(t) for each transition t of Υπ . There-
fore, we may use the pair 〈proc(t), α(t)〉 to represent the transition t, and we therefore
also call such pair a transition. Based on this representation, a simplified variant of
happens-before transition mapping Υπ , written Υ̂π , is defined as:

Υ̂π : N× �Object� #→ 2N×�Object�

Based on Υπ, Υ̂π is constructed by translating each transition t to the pair 〈proc(t),
α(t)〉. If Υ̂π1 is exactly equal to Υ̂π2 for two transition sequences π1 and π2, we define
that π1 and π2 are Υ̂ − equivalent. There are total (m × n)! different transition se-
quences that are not Υ̂ − equivalent to each other. That is to say, there could exist at
most (m× n)! different happens-before transition mappings.

Let Π = {π1, . . . , πn} be a set of transition sequences starting from a unique state
s. The SII of the state s with respect to Π , i.e., SIIΠ(s), is alternatively defined as
SIIΠ(s) = {Υ̂π1, . . . , Υ̂πn} and implemented by two mappings:

OI : N× �Object� #→ 2N

DI : N× �Object� #→ 2N

where OI stands for the mapping for object indices and DI stands for the mapping
for depend indices. They are constructed as follows: for each Υ̂πi ∈ SIIΠ(s), each

Stateful Dynamic Partial-Order Reduction 159

transition 〈p, o〉 ∈ dom(Υ̂πi) is assigned an integer index k in OI . And k is inserted
into the set DI(〈p′, o′〉) for each transition 〈p′, o′〉 ∈ Υ̂πi(〈p, o〉). Intuitively, for each
transition sequence πi ∈ Π , OI maps the first transition t of each object to an integer
k. And for all transitions t′ such that t′ →πi t, DI(〈proc(t′), α(t′)〉) contains k. In
other words, if there exists some integer k such that k ∈ OI(〈proc(t), α(t)〉) and k ∈
DI(〈proc(t′), α(t′)〉), then there exists a transition sequence πi such that t′ →πi t.

Since the above indices k ∈ N can be arbitrarily selected, two summaries may have
the same meaning but with different forms. So we define that SIIΠ(s) = 〈OI,DI〉 is
equivalent to SIIΠ′(s) = 〈OI ′, DI ′〉, written SIIΠ(s) ≡ SIIΠ′(s), iff there exists a
one-one mapping KT : N #→ N such that:

– ∀〈p, o〉 ∈ dom(OI) and ∀k ∈ OI(〈p, o〉), ∃k′ ∈ OI ′(〈p, o〉) : k′ = KT (k);
– ∀〈p, o〉 ∈ dom(OI ′) and ∀k′ ∈ OI ′(〈p, o〉), ∃k ∈ OI(〈p, o〉) : k′ = KT (k);
– ∀〈p, o〉 ∈ dom(DI) and ∀k ∈ DI(〈p, o〉), ∃k′ ∈ DI ′(〈p, o〉) : k′ = KT (k); and
– ∀〈p, o〉 ∈ dom(DI ′) and ∀k′ ∈ DI ′(〈p, o〉), ∃k ∈ DI(〈p, o〉) : k′ = KT (k).

Example 2. Let us consider the following two transition sequences starting from a
unique state s:

π1 = 〈1, x〉〈2, x〉〈1, y〉〈2, y〉
π2 = 〈1, y〉〈2, y〉〈2, x〉〈1, x〉

We have dom(Υ̂π1) = {〈1, x〉, 〈1, y〉}, dom(Υ̂π2) = {〈1, y〉, 〈2, x〉}. And we also
have Υ̂π1(〈1, x〉) = ∅, Υ̂π1(〈1, y〉) = {〈1, x〉}, Υ̂π2(〈1, y〉) = ∅ and Υ̂π2(〈2, x〉) =
{〈1, y〉, 〈2, y〉}. We then construct the mapping OI as follows. For dom(Υ̂π1), we
use the integers 1 and 2 to denote the transitions 〈1, x〉 and 〈1, y〉, respectively. For
dom(Υ̂π2), we use 3 and 4 to denote 〈1, y〉 and 〈2, x〉, respectively. Therefore, we have
for example OI(〈1, y〉) = {2, 3} (see Table 1). The mapping DI is then constructed as
follows. As Υ̂π1(〈1, y〉) = {〈1, x〉}, the integer that denotes the transition 〈1, y〉 of π1
(i.e., the integer 2) should be added to DI(〈1, x〉). Note that we do not add the integer
3 to DI(〈1, x〉), because 3 denotes 〈1, y〉 of π2.

The two mappings OI and DI constructed above are shown in Table 1. Notice that
we may obtain another equivalent summary by assigning another integer (for example,
5) to denote each transition (for example, 〈1, x〉).

Table 1. Example mappings

Transition t OI(t) Transition t DI(t)
〈1, x〉 {1} 〈1, x〉 {2}
〈1, y〉 {2, 3} 〈1, y〉 {4}
〈2, x〉 {4} 〈2, y〉 {4}

Besides the assumption that the concurrent program has m processes and total n
shared objects, we assume that Π has at most l transition sequences that are not Υ̂ −
equivalent to each other (we have l ≤ (m×n)!). We may do a conservative estimation
for the time and space requirements. OI could have at most m×n transitions and each

160 X. Yi, J. Wang, and X. Yang

transition could have at most l indices. As a result, OI could have m × n × l indices
and occupy O(m× n× l) space at most. DI could have at most m× n transitions and
each transition could have at most m × n × l indices (all indices in OI). So DI may
require at most O(m2 × n2 × l) space, and so does DIΠ(s). In practice, however, the
space required is far less than that, because the amounts of indices of each transition in
OI and in DI are far less than l and m× n× l, respectively.

One may infer from above construction that, there exists no explicit transition se-
quence in both mappings, which remarkably reduces the time and space costs. Fur-
thermore, as there are total (m× n)! different happens-before transition mappings, the
total amount of different SIIΠ(s) � 〈OI,DI〉 is 2(m×n)! no matter how many (even
infinite) transition sequences in Π . Note that 2(m×n)! is only a very conservative esti-
mation, and the amount of different SIIΠ(s) used in practice is far less than that.

As no transition sequence is explicitly involved, the summary of interleaving infor-
mation is denoted by SII(s) instead of SIIΠ(s) in the following context. As the total
amount of different SIIs is finite, the algorithm of Figure 3 that explores finite and may-
cyclic state spaces should always terminate.

4.2 Implementation of the Exploration with SDPOR

To implement the exploration with SDPOR for may-cyclic state spaces shown in Figure
3, we need to replace the condition oldSII �= SII(s′) with oldSII �≡ SII(s′) in line
24 to decide whether two SIIs are equivalent. We also should implement the function
RefineBackTrackSII used in lines 17 and 26. Moreover, there are two extra functions
involved in line 23 of Figure 3 when computing Υt.πi from Υπi and adding it to SII(s′).
One function, UpdateSII, is to update SII(s) when inserting a transition t at the head
of the corresponding transition sequences. The other function, MergeSII, is to merge
the updated SII and the original SII into one. And the codes of line 23 should be imple-
mented by three statements: SII ′ = SII(s), UpdateSII(SII ′) and MergeSII(SII(s′),
SII ′).

The function RefineBackTrackSII for the transition sequence π based on the new rep-
resentation SII(s) = 〈OI,DI〉 is shown in Figure 4 where s = last(π) (i.e., π reaches
the visited state s). After executing the first for-loop of lines 1-2, a may-backtrack map
BT is constructed where each transition 〈p, o〉 ∈ dom(BT) may happen-before πi,
the last dependent and co-enabled transition of π. Thereafter in the following codes
of lines 3-5, we check whether there exists an integer k such that k ∈ BT (〈p, o〉) and
k ∈ DI(〈p′, o′〉) (see line 4). If it is the case, we know that there exists a happens-before
transition mapping Υ̂π′ for some transition sequence π′ such that 〈p′, o′〉 ∈ Υ̂π′(〈p, o〉).
If the condition πi →π 〈p′, o′〉 holds (see line 5), we know that πi →π.π′ 〈p, o〉 be-
cause 〈p′, o′〉 ∈ Υ̂π′(〈p, o〉). So k is removed out from BT (〈p, o〉) to indicate that the
transition 〈p, o〉 in π′ cannot happen-before πi. If BT (〈p, o〉) �= ∅ in line 7, then let
k ∈ BT (〈p, o〉), and we know that there exists some transition sequence such that the
transition 〈p, o〉 (denoted by k) may happen-before the transition πi. So the backtrack-
ing set refinement is performed in lines 9-10 as standard DPOR algorithm does [1].
Theoretically, the RefineBackTrack algorithm requires O(m2 × n2× l) time and space
in the worst case, but actually in practice, the cost is far less than that.

Stateful Dynamic Partial-Order Reduction 161

BT : N× �Obj� �→ 2N;
BL : N× �Obj� �→ N;
RefineBackTrackSII(π, 〈OI,DI〉)
{
1 for all 〈p, o〉 ∈ dom(OI) do
2 if ∃i = max({i ∈ dom(π) | πi is dependent and may be co-enabled with 〈p, o〉

and πi �→π 〈p, o〉}) then BT (〈p, o〉) := OI(〈p, o〉), BL(〈p, o〉) := i;
3 for all 〈p′, o′〉 ∈ dom(DI) do
4 for all k such that k ∈ BT (〈p, o〉) and k ∈ DI(〈p′, o′〉) do
5 if πi →π 〈p′, o′〉 where i = BL(〈p, o〉), then remove k from BT (〈p, o〉);
6 for all 〈p, o〉 ∈ dom(BT) do
7 if (BT (〈p, o〉) �= ∅) {
8 let i = BL(〈p, o〉);
9 if p ∈ enabled(pre(π, i)) then add p to backtrack(pre(π, i));
10 else add enabled(pre(π, i)) to backtrack(pre(π, i));
11 }
}

Fig. 4. Implementation of the function RefineBackTrackSII

Example 3. Let us refine the backtracking points of the transition sequence

π = 〈1, x〉〈2, y〉〈1, y〉〈2, x〉

based on the SII(s) shown in Table 1 of Example 2 in subsection 4.1. In Exam-
ple 2, we have dom(OI) = {〈1, x〉, 〈1, y〉, 〈2, x〉} (refer to the first column of Ta-
ble 1). For the transition 〈1, x〉, the last dependent and co-enabled transition of π is
π4 = 〈2, x〉. Because π4 →π 〈1, x〉, we should add 〈1, x〉 to dom(BT) and set
BT (〈1, x〉) = OI(〈1, x〉) = {1}. As the integer 1 does not appear in the DI map-
ping, we cannot remove 1 from BT (〈1, x〉). So 〈1, x〉 can happen-before π4 and the
corresponding backtracking points refinement should be performed.

Figure 5 presents the algorithms for updating and merging SIIs. We first consider the
procedure UpdateSII, which is used by the depth-first exploration to relay the SII of
a state to its predecessors. If o = o′ in line 3, then 〈p′, o′〉 should be removed from
dom(OI) in line 5, because 〈p′, o′〉 is no longer the first transition operating object
o after inserting 〈p, o〉 at the head of any transition sequence. Also, all indices in
OI(〈p′, o′〉) should be removed from DI(line 12). In line 6, p = p′ implies that 〈p, o〉
happens-before 〈p′, o′〉, which is set in line 7. Then, a new index is assigned for the
transition 〈p, o〉 in line 10. In lines 11-15, we remove the useless indices as well as con-
struct the depend-on relations. If the condition in line 13 holds, we know that 〈p′, o′〉
depends on 〈p, o〉 (i.e., 〈p, o〉 happens-before 〈p′, o′〉), thus all the transitions depend-
ing on 〈p′, o′〉 also depend on 〈p, o〉 (as what we do in line 14). Again, the algorithm
requires O(m2 × n2 × l) time and space in the worst case.

We then consider the procedure MergeSII of Figure 5, which is used by the depth-
first exploration to merge the SIIs at the states which have two or more successors. The
codes of lines 1-8 replace each index in OI ′ and DI ′ with a new index, and then put the
new index into OI and DI , respectively. The codes of lines 9-14 check whether there

162 X. Yi, J. Wang, and X. Yang

RS : RS ⊂ N;
UpdateSII(〈OI,DI〉, t)
{
1 let p = proc(t) and o = α(t);
2 for all 〈p′, o′〉 ∈ dom(OI) do {
3 if(o = o′) {
4 add OI(〈p′, o′〉) to RS;
5 remove 〈p′, o′〉 from dom(OI);
6 } else if(p = p′) {
7 add OI(〈p′, o′〉) to DI(〈p, o〉);
8 }
9 }
10 add a new index k ∈ N to OI(〈p, o〉);
11 For all 〈p′, o′〉 ∈ dom(DI) do {
12 DI(〈p′, o′〉) := DI(〈p′, o′〉) \ RS;
13 if(p = p′ or o = o′)
14 add DI(〈p′, o′〉) to DI(〈p, o〉);
15 }
}

CHG : N �→ N;
IT : N �→ 2N×�Obj�;
MergeSII(〈OI,DI〉, 〈OI ′,DI ′〉)
{
1 for all 〈p, o〉 ∈ dom(OI ′) do
2 for all k ∈ OI ′(〈p, o〉) do {
3 add a new index k′ ∈ N to OI(〈p, o〉);
4 set CHG(k) = k′;
5 }
6 for all 〈p, o〉 ∈ dom(DI ′) do
7 for all k ∈ DI ′(〈p, o〉) do
8 add index k′ = CHG(k) to DI(〈p, o〉);
9 for all 〈p, o〉 ∈ dom(DI) do
10 for all k ∈ DI(〈p, o〉) do
11 add 〈p, o〉 to IT (k);
12 for all 〈p, o〉 ∈ dom(OI) do
13 if there exist k, k′ ∈ OI(〈p, o〉) such

that IT (k) ⊆ IT (k′) then
14 remove k′ from OI and DI ;
}

Fig. 5. Implementation of UpdateSII (left) and MergeSII (right)

exist two indices k, k′ ∈ OI(〈p, o〉) such that the set of transitions depended by k (i.e.,
IT (k)) is a subset of the one depended by k′ (i.e., IT (k′)). If IT (k) ⊆ IT (k′), one
may infer that k′ is redundant and can be safely removed from both OI and DI .

Example 4. Let us refer to Table 1 of Example 2 in subsection 4.1. The transition 〈1, y〉
is mapped to two indices 2 and 3, and the transition sets depended by indices 2 and
3 are {〈1, x〉} and ∅, respectively. That is to say, if 〈1, y〉 may happen-before πi for
some transition sequence π, then 〈1, x〉 should be checked when considering index 2,
but nothing need to be checked for index 3. Therefore, the index 2 is redundant and can
be further removed from both mappings.

The algorithm requires also O(m2 × n2 × l) time and space at most, where IT (k) ⊆
IT (k′) is assumed to be able to judge during construction of IT . In practice, however,
all the three algorithms require only a little space and time, because many transition
sequences may be merged due to the redundant indices.

5 Experimentation

We use the same two benchmarks presented in [1], namely Indexer and File System,
to demonstrate the stateful dynamic partial-order reduction. The Indexer benchmark
consists of several processes/threads manipulating a shared hash table. Each process
receives a massage w and inserts it into the hash table with the index h = hash(w).
If a hash table collision occurs, the next free entry is used. An array mutex is used to
protect each table entry from being accessed by more than one process at the same time.

Stateful Dynamic Partial-Order Reduction 163

The File System Benchmark has two kernel data structures inode and busy, which are
protected by two arrays of locks locki and lockb, respectively. Each process picks an
inode i and searches a free block to allocate to it if i has no associated block.

We implement all algorithms presented in the paper and thus do not need an extra
model checker. The state is explicitly represented in the implementation, i.e., a state
is composed of the evaluations of all program variables. We compare four strategies:
Stateless DPOR, Stateless DPOR with sleep sets, Stateful DPOR and Stateful DPOR
with sleep sets. The sleep set reduction technique exploits information on dependencies
exclusively among the transitions enabled in the current state, as well as information
recorded about the past of the search. As shown in [1], there exists a nice complemen-
tarity between DPOR and sleep sets.

The experiment results are shown in Table 2 and Table 3. These data are generated
by a machine of 1.6 GHz Athlon CPU with 1 GB memory. “DPOR” denotes stateless
DPOR, and “SDPOR” denotes stateful DPOR. “Procs” is the number of concurrent
processes. “All Trans.” is the number of all transitions explored, including the invisi-
ble transitions followed by the visible ones. “Time” is the exploring time in seconds.
And “Mem” is the number of memory in kilo-bytes used to store the summary of in-
terleaving information of each state. Note that we only count the memory occupied by
SIIs. The memory which is used to store states and clock vectors are not counted in.

Table 2. Experiment results of Indexer

DPOR DPOR+sleep set SDPOR SDPOR + sleep set
Procs All Time All Time All Time Mem All Time Mem

Trans. (s) Trans. (s) Trans. (s) (KB) Trans. (s) (KB)
11 604 0.2 604 0.2 604 0.4 4.3 604 0.4 4.3
12 14479 4.6 4546 1.4 2399 1.9 511 2355 1.7 499
13 169661 59.3 23529 7.7 5196 5.3 1403 4124 3.7 1064
14 3837429 1814.4 182841 70.2 20901 30.7 5436 14406 16.1 3659
15 1508101 695.9 94506 248.0 25573 47623 77.7 12995
16 12507473 7072.8 450340 1718.4 143208 188452 594.6 48084

If the number of processes is less than or equal to 11 and 13 in Table 2 and Table 3,
respectively, there exists no conflict among visible objects, and the state space is re-
duced to contain only one transition sequence by all four strategies. When the number
of processes continues increasing, one may infer that stateful DPOR may achieve much
better state space reduction effect than stateless DPOR, and stateful DPOR with sleep
sets also performs better than stateless DPOR with sleep sets. For example in Table 2,
the state space reduced by stateful DPOR with sleep sets is 66 times smaller than that
by stateless DPOR with sleep sets, when the number of processes is 16. As the number
of transitions directly determines the exploring time, the DPOR strategy spends 1814.4
seconds to explore the Indexer example with 14 processes, but the SDPOR with sleep
sets strategy only spends 16.1 seconds for 14 processes and 594.6 seconds for 16 pro-
cesses. In Table 3, however, the time for SDPOR with sleep sets is more than that for
DPOR with sleep sets although both transitions are the same. The additional time is

164 X. Yi, J. Wang, and X. Yang

Table 3. Experiment results of File System

DPOR DPOR+sleep set SDPOR SDPOR + sleep set
Procs All Time All Time All Time Mem All Time Mem

Trans. (s) Trans. (s) Trans. (s) (KB) Trans. (s) (KB)
13 142 0.1 142 0.1 142 0.1 30 142 0.1 30
14 434 0.2 298 0.1 303 0.2 68 298 0.2 68
15 1102 0.4 505 0.2 691 0.4 162 505 0.3 120
16 3226 1.3 960 0.4 1776 1.2 432 960 0.6 228
17 9922 4.0 1943 0.8 4945 3.5 1276 1943 1.2 463
18 30946 13.2 4046 1.6 14173 10.6 3951 4046 2.5 981
19 96790 41.8 8517 3.5 40924 33.0 12407 8517 5.4 2134
20 302602 140.0 17980 7.7 118261 103.5 39014 17980 12.1 4701
21 944842 474.7 37939 16.7 341493 317.9 122682 37939 26.5 10403
22 79914 36.2 79914 59.0 23012
23 167969 79.4 167969 137.2 51086
24 352280 175.4 352280 321.4 113923
25 737295 394.8 737295 769.9 255187
26 1540102 895.3

used to manipulate states, such as storing and comparing, and we will discuss it later in
this subsection.

We may see in Table 2 that, stateful DPOR without sleep sets is even better than state-
less DPOR with sleep sets. This is because stateful DPOR may avoid the re-explorations
of a same state reached by different transition sequences that are not partial-order-
equivalent. In Table 3, however, stateless DPOR with sleep sets achieves better effect
than stateful DPOR without sleep sets. Table 3 also shows that, by applying sleep sets
technique, the state spaces after stateful DPOR and stateless DPOR are exactly the
same. It is because all the transition sequences reaching same states are partial-order-
equivalent and thus can be reduced by stateless DPOR in the File System program.
However, as acknowledged in practical programs that stateful model checking usually
achieves much better state space reduction performance than stateless one, the stateful
DPOR is therefore expected to have much better state space reduction performance than
stateless one.

The drawback of SDPOR is that extra memory is needed to store the summaries of
interleaving information. However, as shown in above two tables, the additional mem-
ory needed for SDPOR is relatively low comparing with the memory for states. In the
experiments, Indexer and File System have 256 and 116 visible objects, respectively,
and they also have tens of concurrent processes, but the average amount of memory
used for one SII is 200 to 300 bytes per state. For the File System example with 24 pro-
cesses, the memory needed by SIIs is 114MB. In comparison, about 800 MB memory is
needed to store states. Currently we directly store the visible object names in the SII of
each state, which could be optimized by assigning an index for each object and storing
the indices instead. Moreover, traditional methods such as compression may be used to
remarkably reduce the memory consumption.

Stateful Dynamic Partial-Order Reduction 165

Stateful model checking also needs additional time to search and compare to infer
whether current state has been visited before. For example in Table 3, two strategies
“DPOR + sleep set” and “SDPOR + sleep set” have same amount of transitions, but for
the File System example with 24 concurrent processes, the latter strategy costs 321.4
seconds and the former only costs 175.4 seconds. However, as there always exist large
number of execution paths leading to the same states in practical programs and espe-
cially in the abstracted models (such as those abstracted by slicing execution [23, 24]),
stateful DPOR usually achieves much better performance.

6 Conclusions

In the paper, we present a novel strategy, i.e., stateful DPOR, to combine stateful model
checking with dynamic partial-order reduction. The approach summarizes at each state
the information on how communication objects have been manipulated by the transition
sequences starting form that state. Therefore, all backtracking points may be identified
by checking the summary of a visited state, and each state does not need to be explored
more than once. The paper also presents a modified depth-first exploration strategy
for applying stateful DPOR in model checking of the programs with may-cyclic state
spaces. As a result, the presented method may perform a more effective state space
reduction with reasonable overhead.

As this paper only focuses on the reachability safety properties, part of our future
work is to extend the presented method to model check full temporal safety properties.
Another part of future work is to combine stateful DPOR with slicing execution [23,
24] to model check practical programs.

References

[1] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for model check-
ing software. In proceedings of POPL 2005. Long Beach, California, USA.

[2] P.Godefroid. Partial-Order Methods for the Verification of Concurrent Systems - An Ap-
proach to the State-Explosion Problem. 1996. Vol. 1032 of Lecture Notes in Computer
Science.

[3] A.Valmari. Stubborn sets for reduced state space generation. pp. 491-515. 1991. In Ad-
vances in Petri Nets 1990.

[4] Kimmo Varpaaniemi, Minimizing the Number of Successor States in the Stubborn Set
Method. Journal of Fundamental Informatics, 51(1-2), pp.215-234 (2001).

[5] D.Peled, Combining partial order reductions with on-the-fly model checking. Computer
Aided Verification, CAV ’94, LNCS 818, Springer (1994).

[6] G.J.Holzmann and D.Peled, An improvement in formal verification. In Formal Descriptions
Techniques VII, FORTE’94, Chapman & Hall (1995).

[7] Juergen Dingel, Computer-Assisted Assume/Guarantee Reasoning with VeriSoft. In pro-
ceedings of the 25th International Conference on Software Engineering (ICSE’03) pp. 138-
148 (2003).

[8] Klaus Havelund and Grigore Rosu. Java PathExplorer - A Runtime Verification Tool.
Proc.ISAIRAS ’01: 6th International symposium on AI, Robotics and Automation in
Space. 2001. Nordwijk, The Netherlands.

166 X. Yi, J. Wang, and X. Yang

[9] Klaus Havelund and Grigore Rosu. Monitoring Java Programs with Java PathExplorer. In
proceedings of RV ’01: 1st Workshop on Runtime Verification, Springer LNCS, vol.55,
issue 2. 2001. Paris, France.

[10] T.Ball, R.Majumdar, T.Millstein and S.K.Rajamani, Automatic predicate abstraction of C
programs. PLDI2001: Programming Language Design and Implementation (2001).

[11] T.Ball and S.K.Rajamani, Generating abstract explanations of spurious counterexamples in
C programs. Technical Report MSR-TR-2002-09, Microsoft Research, Microsoft Corpora-
tion (2002).

[12] Sagar Chaki, Edmund Clarke and Alex Groce, Modular Verification of Software Compo-
nents in C. ACM-SIGSOFT Distinguished Paper in the 25th International Conference on
Software Engineering (ICSE) 2003 385-395 (2003).

[13] Sagar Chaki, Joel Ouaknine, Karen Yorav and Edmund Clarke. Automated Compositional
Abstraction Refinement for Concurrent C Programs: A Two-Level Approach. 2nd Work-
shop on Software Model Checking (SoftMC) . 2003.

[14] Sagar Chaki, Edmund Clarke, Nishant Sinha and Prasanna Thati. Automated Assume-
Guarantee Reasoning for Simulation Conformance. LNCS 3576, pp. 534-547. 2005. Pro-
ceedings of Computer Aided Verification (CAV), 2005.

[15] Sagar Chaki, James Ivers, Natasha Sharygina and Kurt Wallnau. The ComFoRT Reasoning
Framework. pp. 164-169. 2005. Proceedings of Computer Aided Verification (CAV), 2005,
LNCS 3576.

[16] T.Andrews, S.Qadeer, S.K.Rajamani, J.Rehof and Y.Xie, Zing: Exploiting Program Struc-
ture for Model Checking Concurrent Software. In Proceedings of CONCUR 2004 (2004).

[17] T.Andrews, S.Qadeer, S.K.Rajamani, J.Rehof and Y.Xie, Zing: A Model Checker for Con-
current Software. MSR Technical Report: MSR-TR-2004-10 (2004).

[18] S.Khurshid, C.S.Pasareanu and W.Visser, Generalized symbolic execution for model
checking and testing. TACAS, 2003 (2003).

[19] Corina S.Pasareanu and Willem Visser, Verification of Java Programs using Symbolic Ex-
ecution and Invariant Generation. SPIN 2004 (2004).

[20] Shaz Qadeer, Sriram K.Rajarnani and Jakob Rehof, Summarizing Procedures in Concurrent
Programs. In proceedings of POPL ’04 (2004).

[21] Twan Basten, Dragan Bosnacki and Marc Geilen, Cluster-based Partial-Order Reduction.
Automatic Software Engineering 11(4) 365-402 (2004).

[22] T.Basten and D.Bosnacki, Enhancing Partial-Order Reduction via Process Clustering. In
proceedings of Automated Software Engineering, ASE ’01, IEEE Computer Society Press
(2001).

[23] Xiaodong Yi, Ji Wang and Xuejun Yang. Verification of C Programs using Slicing Exe-
cution. In proceeding of Fifth International Conference on Quality Software (QSIC’05),
Melbourne, Australia. 2005. IEEE Computer Society press.

[24] Xiaodong Yi, Ji Wang and Xuejun Yang, Slicing Execution for Model Checking C Pro-
grams. Special Issue on Quality Software of International Journal of Software Engineering
and Knowledge Engineering, Accepted (2006).

Appendix. Proof of Theorem 1

Lemma 1. Given two transition sequences π and π′, for any two transitions πi and
t ∈ dom(Υπ′), if πi �→π.t t and πi �→π.t′ t′ for all t′ ∈ Υπ′(t), then πi �→π.π′ t holds.

Proof. Let t = π′
k and we consider the transition π′

j such that j = max{j | j <
k ∧ π′

j �→π′ π′
k}, i.e., π′

j is the last transition before t which does not happen-before

Stateful Dynamic Partial-Order Reduction 167

t. One may infer that π′
j �→π′ π′

l for all l : j < l < k (otherwise, π′
j →π′ t should

hold), i.e., π′
j also does not happen-before any transition between π′

j and t. Hence, one
may get an equivalent transition sequence by moving down πj to the position just after
t. Repeatedly doing this will generate a partial-order-equivalent transition sequence π̄′

of π′ where all the transitions before t belong to Υπ′(t). Therefore, all the transitions
before t in π̄′ may happen-beforeπi in π.π̄′. Consequently, πi �→π.π̄′ t holds and hence
πi �→π.π′ t holds. �

Theorem 1. If the state space is finite and acyclic, then for all states pre(π, i) of a
transition sequence π, each backtracking point set backtrack(pre(π, i)) obtained by
the procedure RefineBackTrackSII of Figure 2 is equal to the one obtained by exploring
the set of transition sequences Π with standard DPOR algorithm shown in Figure 1.

Proof. We only need to prove that for each transition sequence π′ ∈ Π , each back-
tracking point set backtrack(pre(π, i)) identified by considering Υπ′ in procedure Re-
fineBackTrackSII is equal to the one by exploring the transition sequence π.π′ with
standard DPOR algorithm.

If the procedure RefineBackTrackSII identifies that the set backtrack(pre(π, i))
needs to be refined, one knows that there exists a transition t ∈ dom(Υπ′) such that
πi �→π.t t and πi �→π.t′ t′ for all t′ ∈ Υπ′(t). Following Lemma 1, one knows
πi �→π.π′ t. Let t = π′

l, then we know t = next(pre(π′, l), proc(t)). So we have
πi �→π.π′|l proc(t) at state pre(π′, l) where π.π′|l � π.(π′

1π
′
2 . . . π

′
l−1) is the first

part transition sequence of π.π′ just before π′
l. When the standard DPOR algorithm

reaches the state pre(π′, l) of π.π′, it will also identify backtrack(pre(π, i)) as the
backtracking point, because πi �→π.π′|l proc(t) and t is the first transition that oper-
ates the visible object α(πi) in π′. In what follows, we prove that the sets of processes
added to backtrack(pre(π, i)) by RefineBackTrackSII and standard DPOR algorithm
are the same. We only need to prove the set E of RefineBackTrackSII is equal to that
of standard DPOR algorithm. Actually, the condition ”∃t′ ∈ Υ (t) : q = proc(t′) or
∃j ∈ dom(π) : j > i and q = proc(πj) and j →π proc(t)” is equivalent to the
condition ”∃j ∈ dom(π.π′|l) : j > i and q = proc((π.π′|l)j) and j →π.π′|l proc(t)”.

On the other side, let the backtracking set backtrack(pre(π, i)) be identified by the
standard DPOR algorithm when reaching the state pre(π′, l) of π.π′, then πi �→π.π′ π′

l

holds. Also, we know that πi is the last transition that operates the same visible object
as π′

l in the transition sequence π.π′|l, so π′
l is the first transition of π′ that operates

α(π′
l) and thus π′

l ∈ dom(Υπ′). πi �→π.π′ π′
l implies πi �→π.π′

l
π′

l and πi �→π.t′ t′

for all t′ ∈ Υπ′(π′
l) (otherwise, πi →π.π′ π′

l holds since t′ →π′ π′
l). As the set E

of RefineBackTrackSII is the same as that of the standard DPOR algorithm, the same
backtracking set backtrack(pre(π, i)) will be identified. �

User-Defined Atomicity Constraint:
A More Flexible Transaction Model for Reliable Service

Composition

Xiaoning Ding1�2, Jun Wei1, and Tao Huang1

1 Institute of Software, Chinese Academy of Sciences, Beijing, China
2 Graduate School of Chinese Academy of Sciences, Beijing, China

����� ��� ����	��
�����
���
�
�

Abstract. Transaction is the key mechanism to make service composition reli-
able. To ensure the relaxed atomicity of transactional composite service (TCS),
existing research depends on the analysis to composition structure and exception
handling mechanism. However, this approach can not handle various application-
specific requirements, and causes lots of unnecessary failure recoveries or even
aborts. In this paper, we propose a relaxed transaction model, including sys-
tem mode, relaxed atomicity criterion, static checking algorithm and dynamic
enforcement algorithm. Users can define di�erent relaxed atomicity constraint
for di�erent TCS according to the specific application requirements, including
accepted configurations and the preference order. The checking algorithm deter-
mines whether the constraint can be satisfied. The enforcement algorithm moni-
tors the execution and performs transaction management works according to the
constraint. Compared to existing work, our approach is flexible enough to han-
dle complex application requirements and performs the transaction management
works automatically. We apply the approach into web service composition lan-
guage WS-BPEL and illustrate the above advantages through a concrete example.

1 Introduction

Internetware [1,2] is a new software form designed for the open and dynamic nature of
internet computing environment. An internetware application is built upon the compo-
sition of existing individual services, referred to as primitive services. Transaction is a
key mechanism to make the composition reliable. A service composed of transactional
primitive services is called a transactional composite service (TCS).

The transactional capability of primitive services is usually described by two proper-
ties: retriable and compensable [3]. A service is said to be retriable if it can ultimately
succeed after finite times of retrying. A service is said to be compensable if it pro-
vides an operation to semantically undo the execution e�ect. Due to the heterogeneous
nature of internetware, di�erent primitive services may have di�erent transactional ca-
pabilities, while the composition may also be long-running and complex in structure.
The traditional “all or nothing” atomic transaction semantics [4] is too strict and not
suitable.

Various relaxed transaction models [5] are employed to provide a relaxed atomicity:
either the TCS terminates normally or all completed services are compensated [6]. To

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 168–184, 2006.
c� Springer-Verlag Berlin Heidelberg 2006

User-Defined Atomicity Constraint 169

enforce relaxed atomicity, existing research analyzes the composition structure of TCS
and guarantee there exists at least one must-success path after the non-compensable
service [7]. During runtime stage, any possible failures are trapped by the exception
handling mechanism [8]. Then a backward recovery or a forward recovery is applied.
The entire TCS would not abort if all services inside dependency sphere are recovered.

However, above approach can not deal with some application-specific requirements
and cause some unnecessary failure recoveries. For example, since the service-oriented
environment has a native built-in capability of parallelism, it is common to invoke sev-
eral candidate services in parallel. Suppose two candidate services (Flight and Train)
are invoked in parallel and only one of them need to succeed. It is not necessary to do
any failure recoveries if only one of them fails. On the other hand, system should com-
pensate one service if both of them succeed. However, there is no exception occurring
in this situation and current mechanism can not handle the requirement.

Furthermore, users may have some preferences, such as preferring Flight to Train.
If both services succeed, the one should be compensated is service Train instead of
Flight. However, current exception handling mechanism can not handle it and users
have to process all these works manually.

In essence, the above shortcomings are brought by the fact that the existing approach
is not aware of application-specific semantics. In this paper, we propose a relaxed trans-
action model based on a user-defined relaxed atomicity constraint, which implicitly ex-
presses the application semantics. The checking and enforcement are unified and driven
by the constraint.

The rest of the paper is organized as follows. In the next section, we introduce a
motivating example. Section 3 presents our relaxed transaction model ASRTM (Ap-
plication Semantics-based Relaxed Transaction Model), including system model and
relaxed atomicity criterion. Section 4 gives the static checking algorithm ASRTM-RAC
(Relaxed Atomicity Checking). Section 5 gives the dynamic enforcement algorithm
ASRTM-EAE (Relaxed Atomicity Enforcement). We apply our approach into the mo-
tivating example in section 6 and demonstrate the advantages. Section 7 reviews the
related work. And we conclude the paper in the last section.

2 Motivation

A travel agency provides an online service to arrange a travel for its clients. It includes
reserving hotel, booking transportation tickets, payment, and etc. The service is named
TravelPlan, which is composed of eight existing primitive services. Figure 1 shows the
composition structure.

The primitive services are provided by the travel agency itself and its business part-
ners, such as airport, hotel and bank. Each primitive service performs a single business
logic unit: CheckUser checks whether the service requester is a registered client. Hotel
reserves a hotel room. Flight books a flight ticket to the destination, while Train books a
train ticket. Calfees calculates the total fees, and Payment performs the online payment
job. Finally, FedEx or EMS arranges a ticket delivery on line.

To complete TravelPlan as soon as possible, we invoke the ready services in par-
allel, including (Hotel, Flight, Train) and (FedEx, EMS). According to the application

170 X. Ding, J. Wei, and T. Huang

Fig. 1. A Transactional Composite Service

semantics, there are following requirements: (1) Service Hotel should succeed (2) One
and only one service between Flight and Train should succeed, and Flight is more pre-
ferred. (3) One and only one service between FedEx and EMS should succeed, without
any peference.

After we have designed the composite service TravelPlan, there are some issues we
want to ensure.

First, we want to ensure the composition is correct, i.e., it wouldn’t generate an un-
acceptable result during execution. For example, Suppose Calfees is non-compensable
and Payment is non-retriable. When Calfees executes successfully and Payment fails,
the TravelPlan can not be forward recovered (Payment is non-retriable). It also can not
be backward recovered (Calfees is non-compensable). Obviously we can not accept this
result.

Second, when there are multiple choices, we want a more favorite one. For exam-
ple, if both services Flight and Train succeed, we want to reserve Flight service and
compensate Train service.

Finally, all these works related to transaction management, such as retrying service
or compensating service, should be performed automatically by system instead of by
users manually.

In summary, system should provide following abilities:

– Users can define the relaxed atomicity constraint for a TCS according to the specific
application requirements.

– In design stage, it should be able to decide whether the specific constraint can be
satisfied.

– In runtime stage, system should perform transactional works according to the con-
straint automatically.

Our work in the rest of paper is divided into three parts according to the above require-
ments.

3 Transaction Model

3.1 System Model

We construct the system model from service types. Retriablity and compensability
are two independent properties, therefore there are four service types on di�erent
combinations.

User-Defined Atomicity Constraint 171

Definition 3.1 (Service Type). The type of a primitive service s is denoted as type(s),
type(s)� �trivial, retriable, compensable, pivot�.

A trivial service is both retriable and compensable, while a pivot service is neither
retriable nor compensable.

Definition 3.2 (Service State). According to the service type, a service may be in dif-
ferent states during its life cycle. Figure 2 shows the possible states and transitions:

Fig. 2. States and Transitions of Primitive Services

The initial state of a service is initial. A state is transited to another state through a
transition. When a service enters completed state, the desired e�ect has been made. If
the service is compensable, the e�ect can be undone through compensate() transition.
If the service enters failed state, the desired e�ect has not been made and compensation
is not needed.

In our model, we can determine whether need to activate a service in advance ac-
cording to the atomicity constraint, and do not need canceling a service when it is under
execution. Therefore there is no cancel() or abort() transitions in our model.

Among all these transitions, activate(), retry() and compensate() is called “external
transition”. External transitions are invoked by system on demand and we can predict
the resulting state. Succeed() and fail() is called “internal transition”. Internal transi-
tions occur automatically when the service is under active state and system can not
predict which transitions will occur.

The state of service s is denoted as state(s), and its all possible states are denoted
as set PS(s). When a specific type of service is at state p, we denote the states set that
one-step transition can reach is PostState(type, p), and the states set that multiple steps
can reach is AllPostState(type, p).

Only one time of retry() transition may not work and the service is still in the orig-
inal state. But it can ultimately enter state completed after finite times of retrying. To
simplify the system model, we simplify the possible multiple times of retry() to only
one time. The simplification does not a�ect any conclusion in our model.

Definition 3.3 (Control Dependency). Control dependency describes the di�erent con-
trol structures of primitive services. A service s can not be activate() until some other
services ends. The set of these services is denoted as Pre(s).

172 X. Ding, J. Wei, and T. Huang

Definition 3.4 (Transactional Composite Service). A service composed of primitive
services is called a Transactional Composite Service (TCS). TCS � (id, T, �T). Among
the definition:

– id is the identifier of TCS
– T is the set containing all primitive services
– �T is the set of control dependencies in T

Definition 3.5 (TCS Configuration). A TCS configuration describes the states of all
its primitive services at a given time. TCS configuration is defined as a n-slots tuple of
service states, with a state space of Cartesian set

�

s�TCS �T

PS (s)�

Since the initial state of each primitive service is initial, the initial configuration of TCS
is (initial, initial, . . . , initial).

Definition 3.6 (TCS Execution). An execution of TCS is a sequence of configurations:
P0, P1, P2, . . . , Pn. P0 is the initial configuration. There is one and only one service s
has di�erence states in Pi�1 and Pi. Suppose the di�erent states are ki�1 and ki, then ki �

PostState(type(s), ki�1).
The activation and termination of services would not occur at the exactly same time

in reality, and any transition changes the configuration immediately. Therefore there is
still only one service has di�erent states between Pi�1 and Pi even there is a parallel
structure in TCS.

3.2 Relaxed Atomicity Criterion

In our model, the relaxed atomicity criterion is defined by users according to the appli-
cation-specific semantic requirements.

Users express their specific requirements through the set and order of TCS configu-
rations. All accepted TCS configurations are organized into an ordered set �, with the
preference order. If an execution ends in a configuration in �, the execution is thought to
be acceptable. The bigger set � is, the more relax atomicity is. In the extreme situation,�
is an empty set and it is not satisfiable.

Definition 3.7 (Relaxed Atomicity Criterion). � is an ordered set of TCS configura-
tions. If an execution of TCS ends in configuration p and p � �, then the execution is
said to satisfy the relaxed atomicity �. Each configuration in � is called a legal configu-
ration. The order inside � represents user’s preference, and a legal configuration in front
is more favorite than the one in latter.

The traditional “all or nothing” atomicity semantics can also be described by this
criterion. Its � is � (completed, completed, . . . , completed), (failed, failed, . . . , failed) �.

We adopt a compact recording method to reduce the size of set �. In the method, a
slot of TCS configuration can also be an ordered set containing all possible state values.
For example, an � can be recorded as � �� (� K1� K2 �� � K3� K4 �) �, it means
� �� (K1� K3)� (K1� K4)� (K2� K3)� (K2� K4) �.

User-Defined Atomicity Constraint 173

4 Relaxed Atomicity Checking

A TCS may be a critical business process among organizations. It is important to find
out any possible errors during its design time. After a specific atomicity constraint is
assigned to a TCS, it should be guaranteed that the constraint can be satisfied. i.e., no
matter which service succeeds or fails, the execution can end in a legal configuration.

Our checking algorithm is based on the concept of Configuration Transition Diagram.

4.1 Configuration Transition Diagram

If a TCS configuration is denoted as a node and a transition is denoted as a directed
edge, we get a graph named Configuration Transition Diagram (CTD). Any possible
execution of a TCS is a path in CTD, with an initial node (initial, initial, . . . , initial).
Since there is no cycle in the state transition graph of primitive services, CTD is a
Directed Acyclic Graph (DAG).

Generating the full-size CTD in advance is una�ordable in time complexity and also
unnecessary. We adopt a dynamic method to generate CTD by steps on demand. In each
step, we only generate all child nodes of current node.

Table 1 shows the algorithm, which generates all child nodes for a specific node:
CurrentNode. In the algorithm, ES is a set including all ended services, while RS is a
set including all ready services.

Table 1. CTD Generating Algorithm

Initialize ES and RS to empty set;
for each service s in CurrentNode do

if state(s) is completed, failed or compensated then
add s to ES;

for each service s in CurrentNode do
if Pre(s) � ES then put s into RS;

for each service s in RS do
for each state k in PostState(type(s),state(s)) do
�

Create a new node named NewNode;
Copy CurrentNode to NewNode, and change state of s to k;
Insert NewNode to graph as a child node of CurrentNode;

�

Suppose the number of primitive services in TCS.T is n, then we need O(n) time to
construct set ES and RS. There are at most two possible transitions under any given
state for any service type, so there are at most 2*n child nodes need to be generated.
The overall time complexity of the algorithm is O(n).

Since the complete CTD of TravelPlan is too large, we only illustrate the CTD of
a composition fragment. We still choose the composition fragment (Calfees, Payment)
which we have discussed in section 2. Figure 3 shows the CTD generated by the above
algorithm.

174 X. Ding, J. Wei, and T. Huang

Fig. 3. Configuration Transition Diagram

4.2 Well-Behaved Criterion

To discuss the checking rules, we first define some special nodes in CTD.

Definition 4.1 (Reachability). Suppose p and p’ are two di�erent nodes in CTD. If
there is at least one path from p to p’ in CTD, then p’ is reachable from p, otherwise p’
is unreachable from p.

Definition 4.2 (Reachable Configuration & Unreachable Configuration). Suppose
p is a node in CTD, if it is reachable from the initial node, then it is a reachable config-
uration, otherwise it is an unreachable configuration.

We illustrate the above concepts still by the example of (Calfees, Payment). Suppose
� is specified as �(completed, completed), (compensated, completed)� , as is shown
in figure 4. We can see that configuration (completed, completed) is reachable, while
(compensated, completed) is unreachable.

Definition 4.3 (Dead Configuration & Live Configuration). Suppose p is a node in
CTD. If all nodes in � are unreachable from node p, then p is called a dead configuration,
otherwise it is called an live configuration.

As we can see from figure 4, (completed, failed), (failed, failed), (failed,compensated)
and (completed, compensated) are all dead configurations.

When the execution of TCS enters a dead configuration, it can not reach any legal
configurations. Obviously we should avoid dead configurations during execution. Some
dead configurations are avoidable, but some are not.

For example, the dead configuration (failed, compensated) is generated by an ex-
ternal transition: Payment.compensated(). The transition is fired by system, and system
can predict the result configuration. So we can avoid this dead configuration in its parent
node (failed, completed),.

On the other hand, dead configuration (completed, failed) is unavoidable. An exe-
cution may enter one of its parent node (completed, active), which is a live configura-
tion. The available transitions under this configuration are all internal configurations.

User-Defined Atomicity Constraint 175

Fig. 4. Unreachable configurations and dead configurations

However, we can not predict which transition will occur, succeed() or fail(). If the fail()
transition occurs, the execution will enter the dead configuration (completed, failed)
immediately.

As we can see, an unavoidable dead configuration is dangerous and deadly. We call
such configuration a trap configuration.

Definition4.4 (Trap Configuration). Suppose p is a node in CTD, p is a trap configu-
ration if and only if: (1) p is a dead configuration by itself (2) At least one parent node
p’ of p is a live configuration, and the transition from p’ to p is an internal transition.

Now we can give the relaxed atomicity checking rules:

Well-behaved Criterion: Given a TCS and a relaxed atomicity constraint �, the con-
straint is guaranteed to be satisfied if and only if: (1) The initial configuration is a live
configuration (2) There is no trap configuration.

Proof
(�) Any possible execution is a sequence of configurations P0, P1, P2, . . . , Pn. The
sequence can be represented as a path in CTD and each node is the child node of the
previous node.

From the assumption we know that P0 is a live configuration, which implies that at
least one of its child nodes is also a live configuration. Suppose all possible transitions
under node P0 is set M. M can be categorized into the following three classes:

– All transitions in M are external transitions: Since external transition is fired by
system and system can predict the result configuration. And, at least one child node
of P0 is a live configuration. So we can choose a live configuration as P1.

– All transitions in M are internal transitions: In this situation, all child nodes must
be live configurations, otherwise there is a trap configuration and the supposition is

176 X. Ding, J. Wei, and T. Huang

violated. (It is a dead configuration by itself. One of its parent nodes is live configu-
ration and the transition is an internal transition). Therefore, the next configuration
P1 must be a live configuration.

– M is mixed up by external transitions and internal transitions: In this situation,
system does not fire any external transitions, but just wait for an internal transition
to occur. As we can see from situation 2, the configuration P1 generated by the
internal transition must be a live configuration.

As a conclusion, we can ensure the next configuration P1 is a live configuration no
matter what configuration P0 is. And it is also true to P2, P3 until Pn. Furthermore,
CTD is a finite graph without cycles. Thus the execution is guaranteed to end in a legal
configuration.

(�) The execution can reach a legal configuration, so the initial configuration must
be a live configuration. Suppose there exist a trap configuration P1 with a live parent
node P0 and internal transition of service s. Under configuration P0, we can not predict
which internal transition will occur, succeed() or fail(). So we can not guarantee that
the execution would not enter a dead configuration. But this is in contradiction to the
assumption. So there is no trap configuration in CTD.

4.3 Checking Algorithm

In this section, we discuss the relaxed atomicity checking algorithm.
First, check whether the initial configuration is a live configuration. To preserve this

property, at least one legal configuration in � should be reachable from the initial con-
figuration.

Second, check whether there exists a trap configuration. A straightforward approach
is to travel the whole CTD and check each node. However, it is una�ordable on time
complexity.

We check any possible trap configurations according to its characteristics. A trap
configuration is generated by an internal transition from a live configuration. Suppose
the live configuration P0�(K1, K2,. . . , active, . . . , Kn), and the internal transition occurs
on service s. The internal transition can only produce two configurations: P1�(K1, K2,
. . . , completed, . . . , Kn) and P2�(K1, K2, . . . , failed, . . . , Kn). One of them could be trap
configuration.

P0 is a live configuration, suppose all legal configurations it can transit to form set
M, and all possible states of service s in M form set K. If P1 is a dead configuration, the
only possible state in set K must be failed. If P2 is a dead configuration, service s must
be non-retriable and the possible states in set K are completed and compensated.

We check the above two situations for each service s. Take the first situation as an
example. The constraint � is divided into two subsets. All configurations with state of
s is failed are put into M, and all the other configurations are put into set N. If there
exists a configuration p which can transit to set M but can not transit to set N, it is a
trap configuration when the state of s in p is replaced by completed. The checking to
the second situation is similar to the first one.

The algorithm is described in table 2.
We analyze the time complexity of ASRTM-RAC algorithm briefly. Suppose the

number of primitive services in TCS.T is n, the number of legal configurations is m.

User-Defined Atomicity Constraint 177

Table 2. Algorithm ASRTM RAC

Input: TCS, ε
Output: boolean
{
//Check whether the initial configuration is live
flag := false;
for each legal configuration p in ε do
{

p.reachability := true;
for each service s in TCS.T do

if (the required state of s in p) � PS(s) then
p.reachability := false;

if p.reachability == true then
flag := true;

}
if flag==false then return false;
//Check trap configurations: succeed()
for each service s in TCS.T do
{

Initialize M and N to empty set;
Put all legal configurations with state(s) is failed into M;
Put all the other configurations into N;
J := all possible configurations which can not
transit to any configurations in N;
for each configuration p in M do
{

Q := all possible configurations which can transit to p;
if the intersection between Q and J is not empty then

return false;
}
}
//Check trap configurations: succeed()
for each service s in TCS.T do
{

if type(s) is retriable or trivial then continue;
Initialize M and N to empty set;
Put all legal configurations with state(s)

is completed or compensated into M;
Put all the other configurations into N;
J := all possible configurations which can not
transit to any configurations in N;
for each configuration p in M do
{

Q := all possible configurations which can transit to p;
if the intersection between Q and J is not empty then

return false;
}
}
//All checking passed
return true;

178 X. Ding, J. Wei, and T. Huang

Checking initial configuration only needs to do a loop on TCS.T and �. The required
time complexity is O(m*n). Checking trap configurations needs to do a loop on TCS.T.
In the loop body, the most complex operation is determining the configuration set J and
Q. To reduce the time complexity, we represent the set as a Cartesian set of each service
states set, like � ��,��,. . . ,���. The searching and intersection works are performed on
this data structure. It requires a time complexity of O(n2). Therefore the whole loop
needs O(n3) and the overall time complexity of the algorithm is O(n3). Since the number
of primitive services and the legal configurations would not be a large number, O(n3)
complexity is acceptable.

5 Relaxed Atomicity Enforcement

5.1 Goal

The goal of relaxed atomicity enforcement is to monitor the execution of TCS and
ensure the execution ends in a legal configuration. When there are several available
choices, choose the most favorite one.

Since the static checking algorithm has guaranteed that the constraint is satisfiable
and there is no trap configuration. The enforcement algorithm only needs to monitor the
execution and adjust the state of services according to constraint. It changes the state
of services through invoking retry() and compensate() transition of services. While the
activate() transition is invoked by the service composition engine.

Relaxed atomicity enforcement is not just the failure recovery. Sometimes it also
needs to adjust the state of services even if there are no failures.

5.2 Enforcement Algorithm

Our relaxed atomicity enforcement algorithm is named ASRTM-RAE. It is invoked
after the end of each primitive service. The algorithm is described in table 3.

In the algorithm, ES is the set of all ended services. s is the ended primitive service
which fires the current execution of algorithm.

ASRTM-RAE first adds service s to the ended service set ES and constructs a con-
figuration prefix from the set. Then, scan and find out the first legal configuration p
which current prefix can transit to. There must exist a legal configuration which prefix
can transit to. It is guaranteed by the previous execution of the algorithm.

If the according part of p is same to the prefix, it means that current configuration
is already the most favorite one we can reach, so algorithm does nothing but exit. Oth-
erwise, adjust the state of each ended service to the required state in p. If the required
state is completed, we keep doing retry() until it succeed. If the required state is compen-
sated, we invoke the compensate() transition of the service. Since p is the configuration
that current configuration can transit to, above transitions are under the transactional
capability of the service.

When the state of a service is not initial or failed, no external transitions can change
it to initial or failed. But p is reachable from current configuration, which implies that
current state of service must already be initial or failed. So, if the required state is initial
or failed, the algorithm does nothing.

User-Defined Atomicity Constraint 179

Table 3. Algorithm ASRTM RAE

Input: TCS, �, s
Output: void
�

Add s to ES;
prefix :� sequence of states of all services in ES;
For each configuration p in do
�

for each service s in TCS.T do
�

k :� required state of s in p;
if k � (state(s) � AllPostState(type(s), state(s))) then

break; ��current configuration can not transit to p
�

��p is the configuration that current configuration can transit to
prefix’ � NULL;
for each service s in ES do

prefix’ :� prefix’ � required state of s in p;
if prefix’ �� prefix then

exit algorithm; ��Nothing need to do
else

exit loop; ��adjust service states according to p
�

for each service s in ES do
�

k :� required state of s in p;
if state(s) �� k then continue;
If k �� completed then

while state(s)� completed do
invoke s.retry()

else If k �� compensated then
invoke s.compensate();

��if k is failed or initial, do nothing
�

�

The above processing also avoids dead configurations. Since the adjusted configura-
tion at least can transit to the legal configuration p, it must be a live configuration.

We analyze the time complexity of the algorithm briefly. Suppose the number of
primitive services in TCS.T is n, the number of legal configurations is m. Constructing
configuration prefix needs O(n), finding out p needs O(m*n), comparing prefixes needs
O(n), and adjusting states according to configuration p needs O(n). Therefore the overall
time complexity of the algorithm is O(n2).

180 X. Ding, J. Wei, and T. Huang

6 Demonstration

In this section, we apply our approach into the motivating example TravelPlan
and show the advantages of our approach. Since web service is the most popular
implementation technology of internetware, we discuss TravelPlan in web service
environment.

6.1 Relaxed Atomicity in WS-BPEL

WS-BPEL [9] is the most promising web service composition language nowadays. To
integrate our approach into WS-BPEL, the first job is to express the relaxed atomicity
constraint � in the language.

Each composite service in WS-BPEL is called a process, and each process is asso-
ciated with a deployment descriptor. We extend the deployment descriptor and record �

in it as a XML-structure.
At the same time, a default � is generated for each WS-BPEL process. It includes

two legal configurations. The first one is (completed, completed, . . . , completed), which
expresses the atomicity constraint for the success of TCS. The second one is (�initial,
failed, compensated�, �initial, failed, compensated�, . . . , �initial, failed, compen-
sated�), which expresses the atomicity constraint for the failure of TCS. If the primitive
service is non-compensable, the according slot is only �initial, failed� and not includes
compensated.

6.2 Specification of TravelPlan

After process TravelPlan is deployed, system generates a default atomicity constraint
for it, as shown in table 4. Since system does not know the specific requirements of
TravelPlan, the default atomicity constraint is not very suitable.

Table 4. Default Relaxed Atomicity Constraint �

CheckUser Hotel Flight Train Calfees Payment FedEx EMS
completed completed completed completed completed completed completed completed
�initial, �initial, �initial, �initial, �initial, �initial, �initial, �initial,
failed, failed, failed, failed, failed, failed� failed� failed,

compensated� compensated� compensated� compensated� compensated� compensated�

User modifies the default constraint to the following one according to the specific
requirements, as shown in table 5. Note the order inside � also implies the application
requirements (such as preferring Flight to Train).

The type of each service is showed in table 6.
Through the relaxed atomicity checking algorithm, we can ensure that the initial

configuration is a live configuration and there is no trap configuration in the CTD of
TravelPlan.

User-Defined Atomicity Constraint 181

Table 5. User-defined Relaxed Atomicity Constraint �

CheckUser Hotel Flight Train Calfees Payment FedEx EMS
completed completed completed �failed, completed completed completed �initial,

compensated� failed,
compensated�

completed completed �failed, completed completed completed completed �initial,
compensated� failed,

compensated�
completed completed completed �failed, completed completed �initial, completed

compensated� failed�
completed completed �failed, completed completed completed �initial, completed

compensated� failed�
�initial, �initial, �initial, �initial, �initial, �initial, �initial, �initial,
failed, failed, failed, failed, failed, failed� failed� failed,

compensated� compensated� compensated� compensated� compensated� compensated�

Table 6. Service Type

CheckUser Hotel Flight Train Calfees Payment FedEx EMS
compensable compensable compensable trivial compensable pivot pivot trivial

6.3 Typical Scenarios

In this section, we show the processing of our approach on several typical scenarios
during the execution of TravelPlan.

■ All candidate services succeed
Suppose the first four services succeed and we get the configuration prefix �

(CheckUser.completed, Hotel.completed, Flight.completed, Train.completed).
Scan � according to the order, since failed � AllPostState(trivial, completed), we can

not change the state of Train from completed to failed. So any legal configurations with
prefix�(CheckUser.completed, Hotel.completed, Flight.completed, Train.failed) are un-
reachable from current configuration. The next legal configuration (CheckUser.
completed, Hotel.completed, Flight.completed, Train.compensated) is reachable, which
requires the state of Train to be compensated. So ASRTM-RAE invoke the compen-
sate() transition of service Train.

In this scenario, utilizing the implicit application semantics in �, ASRTM-RAE
chooses a more favorite configuration: Flight first.

■ Some candidate services fail
Now suppose service Flight failed, and we get the configuration prefix � (CheckUser.
completed, Hotel.completed, Flight.failed, Train.completed). Scan � according to the
order, since completed � AllPostState(compensable, failed), current configuration can
not transit to the legal configurations with prefix � (CheckUser.completed, Hotel.
completed, Flight.completed, Train.failed) or (CheckUser.completed, Hotel.completed,
Flight.completed, Train.compensated). While the next legal configuration has a same
prefix, so ASRTM-RAE does nothing.

This scenario shows that utilizing the implicit application semantics in �, we can
avoid unnecessary failure recoveries and decrease the transactional capability require-
ments to services.

182 X. Ding, J. Wei, and T. Huang

■ Service fails before the non-compensable service
Suppose service Payment failed, we get a configuration prefix � (CheckUser.
completed, Hotel.completed, Flight.completed, Train.compensated, Calfees.completed,
Payment.failed). The first four legal configurations require state of Payment to be com-
pleted, but type (Payment)�pivot and completed � AllPostState(pivot, failed). So these
configurations are unreachable from current configuration. The only legal configuration
we can transit to is the final one, which requires the state of services CheckUser, Hotel,
Flight, and Calfees to be compensated.

We can understand this scenario more clearly from the angle of failure recovery. A
non-retriable service failed, and the service is vital to the process. So we have to roll-
back the whole process. Fortunately the failed service is before any non-compensable
services, so we just need to compensate all completed services.

■ Service fails after the non-compensable service
Suppose both service FedEx and EMS failed, we get a configuration prefix �

(CheckUser.completed, Hotel.completed, Flight.completed, Train.compensated,
Calfees.completed, Payment.completed, fedEx.failed, EMS.failed). Scan � and we can
learn that since type(Payment)�pivot, we can not transit the prefix to any legal configu-
rations except (CheckUser.completed, Hotel.completed, Flight.completed, Train.
compensated, Calfees.completed, Payment.completed, Fedex.failed, EMS.completed).
The legal configuration requires the state of service EMS to be completed. The check-
ing algorithm ASRTM-RAC has ensured service EMS is retriable, so ASRTM-RAE
retries service EMS until it succeeds.

From the angle of failure recovery, there should exit a must-success executing path
after the non-compensable service. In the approaches based on syntax analysis, it re-
quires both FedEx and EMS to be retriable. But in our approach, we only require one of
them to be retriable utilizing the implicit application semantics of �. i.e., the unneces-
sary transactional capability requirements to services are avoided.

7 Related Work

The research on relaxed atomicity traditionally comes from database systems, and also
be studied in workflow and cooperative systems. While the more recent research is
usually performed in web service environment.

Current web service transaction specification usually defines its own relaxed trans-
action model, including Business Activity in WS-Transaction [10], Cohesion in BTP
[11], and TX-LRA, TX-BP in WS-TXM [12]. However, these relaxed transaction mod-
els only define the message exchange protocol among participants. They did not state
how to manage transactions in the service composition. Users have to do all the works
related to the transaction management by themselves, such as retrying service or com-
pensating service.

WebTransact [7] is a transactional composition model for web services. It guarantees
the relaxed atomicity through the analysis to the composition structure. For example,
there should exist a must-success path after the non-compensable service. Our approach
also needs to ensure this property. However, our judgment is based on the application

User-Defined Atomicity Constraint 183

semantics provided by instead of composition structure. It is more precise and can re-
duce the transactional capability requirements to services.

Accepted Termination States (ATS) [13] is a mechanism to express the relaxed atom-
icity which comes from transactional workflow systems. However, ATS does not pre-
serve the order of each item inside constraint, which is an important part of application
semantics. There are lots of work based on ATS [13,14,15]. But it is still thought dif-
ficult to ensure every execution preserve these properties [13]. Paper [16] applies ATS
to transactional service composition to ensure the required failure atomicity. The ap-
proach used is analyzing composition structures, based on a series of transactional rules
according to di�erent syntax structures. It did not discuss the enforcement issues such
as failure recoveries.

WSTx [17] is a framework for transactional web service composition, which also
supports user-defined relaxed atomicity constraint. The concept in WSTx expresses the
constraint is called outcome condition. An outcome condition is a plain text string,
which includes the names of all services. Each service can be success or failed, with a
value of true and false. WSTx parse the string as a boolean expression and calculate the
result during runtime. The transaction can only be committed when the result is true.
This approach is very flexible. However, the outcome condition is hard-coded in the
program as a string, it is diÆcult to analyze and check it.

8 Conclusion

Ensuring the relaxed atomicity of TCS is a key problem to support reliable service com-
position in internetware. Existing approaches are based on the analysis to composition
syntax and exception handling mechanism. Without knowledge of the specific applica-
tion semantics, it can not handle complex requirements and causes some unnecessary
failure recoveries.

In this paper, we propose a relaxed transaction model to handle above problems. In
the model, the relaxed atomicity criterion of a TCS is defined by users according to
specific application semantics. The static checking and dynamic enforcement works are
driven by the atomicity constraint. Compared to the existing work, our approach has
several advantages.

First, the relaxed atomicity constraint describes specific application semantics im-
plicitly. Utilizing the implicit application semantics, the checking and enforcement
works are performed more precisely. Unnecessary failure recoveries or transactional
capability requirements are avoided. And system can choose a more favorite result for
users.

Second, the transaction management is integrated into service composition. The rou-
tine transactional works, such as retrying service or compensating service, are per-
formed by system automatically instead of by users manually. Thus the non-functional
concern is separated from business logic.

Finally, our model is based on a simple and clear correctness criterion, which can be
applied into various service composition languages easily.

184 X. Ding, J. Wei, and T. Huang

Acknowledgments. This paper was supported by the Major State Basic Research De-
velopment Program of China (973 Program) under Grant No.2002CB312005, and the
National Science Foundation of China under Grant No.60573126.

References

1. Yang FQ. Thinking on the development of software engineering technology. Journal of Soft-
ware, 16(1): 1-7, 2005

2. Lu Jian, Tao Xianping, Ma Xiaoxing, et al., Research on Agent-Based Software Model for
Internetware. Science in China, Series F-Information Sciences, 35(12): 1233-1253, 2005 9.

3. A. Zhang, M. Nodine, and B. Bhargava, Global Scheduling for Flexible Transactions in Het-
erogeneous Distributed Database Systems, IEEE Transactions on Knowledge and Data En-
gineering, 13(3):pp.439-450, 2001

4. J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques, Morgan Kaufmann
Publishers, San Mateo, California, 1993

5. Mohan C. Tutorial: Advanced Transaction Models Survey and Critique. In ACM SIGMOD
International Conference on Management of Data, Minneapolis, 1994

6. P. Grefen, J. Vonk, E. Boertjes, and P. Apers, Semantics and Architecture of Global Trans-
action Support in Workflow Environments, In Proceedings of the Fourth IFCIS International
Conference on Cooperative Information Systems, pp.348-359, Edinburgh, Scotland, Septem-
ber 2-4, 1999

7. P. F. Pires. WebTransact: A Framework For Specifying And Coordinating Reliable Web
Services Compositions. Technical report ES-578�02, Coppe Federal University of Rio De
Janeiro, Brazil, April 2002

8. Yi Ren, Quanyuan Wu, Yan Jia, et al., Transactional Business Coordination and Failure Re-
covery for Web Services Composition. GCC 2004, pp.26-33, 2004

9. IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems. Business Process Execu-
tion Language for Web Services, version 1.1. http:��www-128.ibm.com�developerworks�
library�specification�ws-bpel�, 2005

10. Microsoft, BEA and IBM. Web Services Transaction (WS-Transaction), http:��www.ibm.
com�developerworks�library�ws-transpec�., 2002

11. Oasis Committee. Business Transaction Protocol (BTP), Version1.0. http:��www.oasis-
open.org�committees�business-transactions�., 2002

12. D. Bunting et al. Web Services Transaction Management (WS-TXM) Version 1.0. Arjuna,
Fujitsu, IONA, Oracle, and Sun, July 28, 2003

13. Marek Rusinkiewicz , Amit Sheth, Specification and execution of transactional work-
flows, Modern database systems: the object model, interoperability, and beyond, ACM
Press�Addison-Wesley Publishing Co., New York, NY, 1995

14. Mansoor Ansari , Linda Ness , Marek Rusinkiewicz , Amit P. Sheth, Using Flexible Trans-
actions to Support Multi-System Telecommunication Applications, Proceedings of the 18th
International Conference on Very Large Data Bases, pp.65-76, 1992

15. A. Elmagarmid , Y. Leu , W. Litwin , Marek Rusinkiewicz, A multidatabase transaction
model for InterBase, Proceedings of the sixteenth international conference on Very large
databases, pp.507-518, 1990

16. Sami Bhiri, Olivier Perrin, Claude Godart, Ensuring required failure atomicity of com-
posite Web services, In Proceedings of the 14th international conference on World Wide
Web(WWW ’05), pp. 138-147, 2005

17. Thomas Mikalsen, Stefan Tai, and Isabelle Rouvello. Transactional Attitudes: Reliable Com-
position of Autonomous Web Services. International Conference on Dependable Systems
and Networks (DSN 2002). 2002

Environment Ontology-Based Capability
Specification for Web Service Discovery

Puwei Wang1,3, Zhi Jin1,2, and Lin Liu4

1 Institute of Computing Technology, Chinese Academy of Sciences
2 Academy of Mathematics and System Sciences, Chinese Academy of Sciences

3 Graduate University of Chinese Academy of Sciences
4 School of Software, Tsinghua University

Beijing 100080, China
wangpw@ict.ac.cn

Abstract. During Web service discovery, capabilities of Web services are
of major concern. This paper proposes an environment ontology based
approach for specifying Web service capability semantically. First, a meta-
level environment ontology is adopted in the proposed approach to provide
formal and sharable specifications of environment resources in a particu-
lar domain. For each environment resource, we build a corresponding hier-
archical state machine specifying its dynamic characteristics. Second, we
propose to use the effect of a Web service on its environment resources for
specifying the Web service capability and to designate the effect as the
traces of the state transitions the Web service can impose on its environ-
ment resources. Finally, we give the mechanism to match service query
with service capability description.

Keywords: Environment Ontology, Capability Specification, Service Dis-
covery.

1 Introduction

Service discovery is one of the major challenges in the emerging area of Web
services. For discovering a Web service, what humans or other Web services care
about are the capabilities of Web services. Therefore, capability specification is
a fundamental for service discovery. Conventional approaches usually consider
Web service capability specification as a one-step process. In OWL-S [1] and
WSMO [2], the one-step process is modelled as inputs, outputs, preconditions
and results (i.e., IOPR schema). Then, a published service is matched with a
required service when the inputs and outputs of the required service match with
those of the published service, as well as the preconditions and results. Consider a
common scenario in our daily life. Assume that the subject is a regular traveller,
who wants to have a pleasurable budget trip, might request that “I need a travel
agency service who provides flight ticket selling and hotel room ordering service,
whose service fees are charged by credit card.”Obviously, the Web service, which
satisfies the user’s request, can be easily described by the following IOPR schema:

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 185–205, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

186 P. Wang, Z. Jin, and L. Liu

Capability
:cap-id BudgetTravelAgency
:input (?creditCardNo ?start ?destination ?time ?hotelLocation)
:output (!ticketReceipt !hotelReceipt)
:precondition (creditcard-isvalid ticket-available hotelroom-vacancy)
:result (creditcard-ischarged ticket-sold hotelroom-ordered)

However, more particular requests from users arise. For instance, the traveller
may want to put the flight seats and the hotel room on hold without charge.
Therefore, he may have a particular request that “I want the travel agency ser-
vice to provide flight ticket ordering, i.e., I can order flight ticket, and if there is
an emergency, I can cancel the ticket on hold.”Obviously, we cannot describe a
service that exactly matches the traveller’s request, because when the service is
considered as a one-step process, the internal state in which ticket is pending is
not expressible. Then, these queries cannot be done by current discovery mecha-
nisms. Therefore, more elaborate model than the conventional one-step process
based model is needed to achieve precise service discovery. A tempting idea is
to use behavior description to specify service capability for service discovery.

In [3][4], A.Wombacher presents an approach for more precise service matching
by using behavior description rather than the one-step process based descrip-
tion. In [5], behavior as operational level description using automata is used to
be as an advertisement for Web service discovery. Moreover, [6] also argues that
the Web service discovery process is based on the specification of behavior, that
is the process model. These efforts have a common ground that service’s be-
haviors are for advertising Web service capabilities. However, they also have
their limitations. For example, service’s behavior may be tied too closely with
implementation which reflects personal preferences of each developer.

Based on some earlier exploratory works [7] in our group, this paper pro-
poses an environment ontology-based capability specification for Web service
discovery. Different from above efforts, our behavior description isn’t about Web
services themselves. Its distinct feature is to introduce environment as the ob-
jective reference of Web service capability. Because that, in a particular domain,
there are some sharable environment resources focused by diversified services,
environment resources can gap the diversified services. In our approach, we view
environment of a Web service to be composed of those controllable resources
(or called ”environment resources”) that the Web service can impose effects on.
And then, capability of a Web service is specified as the effects that the Web ser-
vice imposes on its environment resources during execution, i.e., a Web service’s
behavior is observable to its environment.

For example, capability of a simple ticket-selling service can be specified as
its effect on the environment resource ticket that changes the state of ticket
from available to sold. Hence, our approach relates behavior descriptions of
environment resources to the capability specification of Web services. The envi-
ronment resources can constitute knowledge of sharable environment for different
Web services, i.e., environment ontology. This ontology enables the behavior de-
scriptions of environment resources, which form capability specification of Web
services, to be encoded in an unambiguous and machine-understandable form.

Environment Ontology-Based Capability Specification 187

The rest of this paper is structured as follows: Section 2 presents definition of
the environment ontology and a sample environment ontology is given. Section 3
describes the approach for specifying semantically the capabilities of Web service.
a mechanism to match service query with service capability specification is given.
Section 4 analyzes current related works. Finally, section 5 draws a conclusion
and discusses our future works.

2 Environment Ontology

Environment in dictionary is generally defined as, “the totality of circumstances
surrounding an organism or group of organisms”. By analogy with the organ-
ism, it is harmless to say that the circumstances of a Web service are those
resources that the Web service can impose effects on. In this sense, environ-
ment of a Web service is viewed as a finite set of various environment resources
(or called “controllable resources”) surrounding the Web service. An environ-
ment resource is a stateful entity, and its state transitions are triggered by input
messages. For example, ticket is an environment resource. It has two states:
available and sold. And we can change its state from available, i.e., ticket
is available, to sold, i.e., ticket is sold. Moreover, environment resources are
domain-relevant and independent to any Web services. Therefore, the concep-
tualization of environment resources, i.e., the environment ontology, constitutes
the sharable domain knowledge for different Web services.

Current general ontology structures, such as the one defined in [8], only con-
tain the declarations of the concepts and the relations between them. They don’t
characterize the states of the concepts and the relations between the states. We
extend the current general ontology representation in the following aspects.

First, we extend the general ontology structure with state machines for spec-
ifying the states and the state transitions. And a rich theory of state machine
had been developed regarding to their expressive power, their operations and the
analysis of their properties. On the basis of the state machine, dynamic char-
acteristics of an environment resource can be presented, and an effect that a
Web service imposes on these resources can be described with the triplet of the
initial state, the target state, and a set of middle states (these middle states are
included in the traces from the initial state to the target state).

Second, we propose to use the hierarchical state machine for supporting dif-
ferent granularity of the conceptualization. The states in a hierarchical state
machine may be ordinary states or super-states which can be further subdivided
(refined). Hierarchical skeleton assures that hierarchical state machine has dif-
ferent granularity. [9] has proposed hierarchical state machine to specify software
requirement and has shown its efficiency. For example, the environment resource
ticket may have a state sold, which means the ticket is sold. Moreover, sold
can be further subdivided into two states: non-delievered and delivered. They
mean that whether the ticket is delivered to purchaser or not. Moreover, hier-
archical state machine is implemented as a tree-like structure. That is to reduce
the computational complexity.

188 P. Wang, Z. Jin, and L. Liu

2.1 Definitions of the Environment Ontology

The definition of the environment ontology is presented as follows:

Definition 1. Environment Ontology is depicted as a 6-tuple,
EnvO def= {Rsc,X c,Hc,HSM, inter, res}, in which:

– Rsc is a finite set of environment resources,
– X c ⊆ Rsc×Rsc is a component relation between the environment resources,
∀cr1, cr2 ∈ Rsc, 〈cr1, cr2〉 ∈ X c means that cr1 is a component of cr2,

– Hc ⊆ Rsc×Rsc is a taxonomic relation between the environment resources.
∀cr1, cr2 ∈ Rsc, 〈cr1, cr2〉 ∈ Hc means that cr1 is a subconcept of cr2,

– HSM is a finite set of tree-like hierarchical state machines (called “THSM”),
– inter ⊆ HSM × HSM is a message exchange relation between THSMs.

hsm1, hsm2 ∈ HSM, 〈hsm1, hsm2〉 ∈ inter means that hsm1 and hsm2
interact with each other by message exchange,

– res : Rsc ↔ HSM is a bijective relation. ∀cr ∈ Rsc, there is one and only
one hsm ∈ HSM, hsm=res(cr). It says that hsm is the THSM of cr.

A THSM structure is proposed to model the possible state transitions of an
environment resource. A THSM of environment resource cr is described as
hsm(cr) = {S,Σ, T , f, λ0,�}, in which,

– S is a finite set of states of environment resource cr;
– Σ is a finite set that is composed of two subsets: Σin and Σout for inputs

and outputs respectively;
– δ : S × Σin → S is a deterministic transition function (〈s, α, s′〉 ∈ T is a

state transition, if ∃α ∈ Σin, such that s′ = δ(s, α));
– f is an output function f : S→ Σout;
– λ0 ∈S is the start state;
– � is a tree-like partial ordering with a topmost point. This relation defines

the hierarchy relation on the states in S (x � y meaning that x is a de-
scendant of y, or x is equal to y). Tree-like means that � has the property:
¬(a � b ∨ b � a)⇒ ¬∃x : (x � a ∧ x � b). If the state x is a descendant of
y (x ≺ y), and there is no z such that x ≺ z ≺ y, we say that the state x is
a child of y, i.e., x child y (or the state y is the parent of x, y = parent(x),
i.e., y parent x). we define γ(y) ∈ S as the set of all children of the state
y, that is γ(y) = {x|x child y}. There exists one and only one default child
xd ∈ γ(y). It denotes that there is only one destination state xd ∈ γ(y) of
the transition from parent-state y.

Given Tγ(y) ∈ T denotes state transitions between states in γ(y), Σγ(y) ∈ Σ
denotes inputs of Tγ(y) and outputs from γ(y) and fγ(y) is the output function
whose domain is γ(y), an ordinary finite state machine (FSM) then can be
obtained as Nγ(y) = {γ(y),Σγ(y), Tγ(y), fγ(y), xd ∈ γ(y)}. The relation between
y (called “super-state”) and Nγ(y) (called “sub-FSM”) is called subdivision (or
refining) relation. Therefore, the THSM of cr can be described in another form:
hsm(cr) = {{N1, ...,Nn},D}, in which Ni(i ∈ [1, n]) is an ordinary finite state

Environment Ontology-Based Capability Specification 189

machine, and D is the subdivision relation. For example, a THSM of environment
resource ticket is given as Fig.1.

Fig. 1. THSM of Environment Resource ticket

We then define the message exchange relation inter ∈ EnvO between THSMs.
Let hsm1 and hsm2 be two THSMs, S(hsmi) be the set of states in hsmi, and
T (hsmi) be the set of transitions in hsmi (1 � i � 2).

Definition 2. The message exchange relation on THSMs is defined as:

inter
def= {〈hsm1, hsm2〉|∃s ∈ S(hsmi), t ∈ T (hsmj), 1 � i �= j � 2, s ↑ t}

where s ↑ t means that output message of state s can trigger state transition t and
s ↑ t is called a message exchange. For example, in terms of Table.1, there exists
a message exchange relation between THSM hsm(creditcard) of environment
resource creditcard and THSM hsm(ticket) of environment resource ticket.

Table 1. Message Exchanges

State↑Transition
valid ↑ 〈ordered,accountInfo, sold〉
The output from creditcard’s state valid can trigger the state transition of ticket from
ordered to sold.
valid ↑ 〈available, accountInfo, sold〉
The output from creditcard’s state valid can trigger the state transition of ticket from
available to sold.
sold ↑ 〈non-charged, feeInfo, charged〉
The output from ticket’s state sold can trigger state transition of creditcard from
non-charged to charged.

190 P. Wang, Z. Jin, and L. Liu

2.2 A Sample Environment Ontology

The budget travelling environment ontology (called “BTO”) is given to illustrate
our ideas. It captures the domain knowledge about budget travelling environ-
ment. In BTO, five environment resources are focused. Table 2 summarizes these
environment resources and their THSMs.

Table 2. Environment Resources and their THSMs in BTO

Environment Resources THSMs
hotelroom hsm(hotelroom)
ticket hsm(ticket)
itinerary hsm(itinerary)
creditcard hsm(creditcard)
merchandise hsm(merchandise)

Environment resource ticket is for taking travellers to their destinations, en-
vironment resource hotelroom is for accommodating travellers, and environment
resource creditcard is a method of payment. Both ticket and hotelroom are sub-
concepts of environment resource merchandise. Moreover, environment resource
itinerary that describes a trip from start to destination is a component of ticket.
Table 3 summarizes the relations between them and their THSMs.

Table 3. Relations in BTO

Relations
Hc

ticket→ merchandise
hotelroom→ merchandise

Gc

itinerary → ticket

res
ticket↔ hsm(ticket)
hotelroom↔ hsm(hotelroom)
itinerary ↔ hsm(itinerary)
creditcard↔ hsm(creditcard)
merchandise↔ hsm(merchandise)

inter
hsm(ticket) ‖ hsm(creditcard)
hsm(hotelroom) ‖ hsm(creditcard)

The THSM hsm(ticket) is formalized in the XML representation as follows
(segments). Other THSMs can be formalized in the same way.

<?xml version="1.0" encoding="UTF-8"?>
<thsm Id="ticket">
...
<fsm Id="salecond">

Environment Ontology-Based Capability Specification 191

<state Id="available" output="availableInfo"/>
<state Id="ordered" output="orderedInfo"/>
<state Id="cancelled" output="cancelledInfo"/>
<state Id="sold" output="soldInfo"/>
<transition src="available" dest="ordered">

<input>orderInfo</input>
</transition>
<transition src="available" dest="sold">

<input>accountInfo</input>
</transition>
<transition src="ordered" dest="sold">

<input>accountInfo</input>
</transition>
<transition src="ordered" dest="cancelled">

<input>orderCancelInfo</input>
</transition>
<transition src="cancelled" dest="available">

<input></input>
</transition>
</fsm>

<fsm Id="deliverycond">
<state Id="non-delivered" output="non-deliveredInfo">
<state Id="delivered" output="deliveredInfo">
<transition src="non-delivered" dest="delivered">
<input>deliveryInfo</input>

</transition>
<transition src="delivered" dest="non-delivered">
<input>cancelInfo</input>

</transition>
</fsm>

<subdivision super-state="salecond.sold" sub-FSM="deliverycond">
...
</thsm>

A message exchange relation has been introduced between hsm(creditcard)
and hsm(ticket) (Table.1). In the same way, hsm(creditcard) also has a message
exchange relation with hsm(hotelroom), in terms of Table.4.

Table 4. Message Exchanges

State↑Transition
creditcard-valid ↑ 〈hotelroom-ordered, accountInfo, hotelroom-paid〉
creditcard-valid ↑ 〈hotelroom-vancay, accountInfo, hotelroom-paid〉
hotelroom-paid ↑ 〈creditcard-non-charged, feeInfo, creditcard-charged〉

The message exchanges in Table.4 are formalized in the XML representation
as follows.

192 P. Wang, Z. Jin, and L. Liu

<mesexchanges>
<mesexchange>

<state Id="creditcard-valid">
<transition src="hotelroom-ordered" dest="hotelroom-paid">
<input>accountInfo</input>

</transition>
</mesexchange>
<mesexchange>

<state Id="creditcard-valid">
<transition src="hotelroom-vancancy" dest="hotelroom-paid">
<input>accountInfo</input>

</transition>
</mesexchange>
<mesexchange>

<state Id="hotelroom-paid">
<transition src="creditcard-non-charged" dest="creditcard-charged">
<input>feeInfo</input>

</transition>
</mesexchange>
<mesexchanges>

The THSMs of environment resources ticket and creditcard are depicted in
Fig.2. They are obtained from their XML representations. The message exchange
relation is denoted by the thick light-gray line with double arrowheads.

Fig. 2. Screenshot of hsm(ticket) and hsm(creditcard)

Environment Ontology-Based Capability Specification 193

3 Capability Specification for Web Service Discovery

With the explicit representation of the environment ontology, we specify the ca-
pability of a Web service as the state transitions of the environment resources
which are the environment entities of this Web service. For example, the capa-
bility of a simple ticket-selling service that customers should order tickets before
they purchase them can be specified as the state change of resource ticket that is
from the initial state, i.e., available to the target state, i.e., sold via the middle
state, i.e., ordered as: ticket.available→ ticket.ordered→ ticket.sold

Actually, these state transitions can be acquired from the hierarchical state
machine of ticket in BTO (shown in Fig.2). Therefore, what providers of Web
services need to publish is the effects on environment resources, i.e., the initial
state, the target state and the middle states of the environment resources. And
then, we provide a novel way to discover published Web services. That makes the
Web service matchmaking more flexible. The following two subsections introduce
the rules for service capability specification and service discovery.

3.1 Capability Specification of Web Services

To introduce capability specification of a Web service, we first define effect that
the Web service imposes on its environment resources. The effect on an environ-
ment resource is described as a triplet which contains an initial state, a target
state and a set of middle states (these middle states are included in the traces
from the initial state to the target state) of this environment resource. Let cr be
an environment resource.

Definition 3. effect(cr)
def= 〈si,Sm, st〉, si, st ∈ cr.State,Sm ⊆ cr.State, in

which si is an initial state, st is a target state and Sm is a set of middle states.

The traces from si to st via Sm consist of: (1) state transition in a basic state
machine, or (2) transition from a state to its default child, or (3) transition from a
state to its parent-state. For example, an effect that a simple ticket-selling service
imposes on environment resource ticket can be described as 〈available, φ, sold〉.

The environment ontology is a knowledge base for both the registry and the
providers of Web services. The capability profile to advertise capability of the
Web service can be described based on the effects that the Web service imposes
on its environment resources. The capability profile of Web service is defined as
follows:

Definition 4. CapProfile
def= {Rscsub,Ms, effs}, in which,

– Rscsub = {cr1, ..., crn} is a set of environment resources that Web service
can impose effects on,

– Ms = {M(cr1), ...,M(crn)}. M(cri) is composed of two subsets: Min(cri)
and Mout(cri) for denoting inputs and outputs that Web service needs and
produces about the environment resource cri(i ∈ [1, n]),

– effs = {effect(cr1), ..., effect(crn)} is a set of effects (called ”effect set”)
that Web service imposes on cr1, .., crn.

194 P. Wang, Z. Jin, and L. Liu

The environment ontology is a sharable knowledge base for Web services. The
THSM of an environment resource in the ontology (called “domain THSM”)
describes all possible state transitions of the environment resource as sharable
knowledge. By traversing the domain THSM of an environment resource, traces
from initial state to target state via a set of middle states (i.e., going through an
effect 〈si,Sm, st〉 on the environment resource) triggered by a series of inputs can
be generated. These traces constitute a THSM (called “specific THSM”). Hence,
each specific THSM is corresponding to an effect on an environment resource.

And then, a model I = {K, interk} is described, in which,

– K = {kcr1, ..., kcrn} is a set of specific THSMs corresponding to a set of
effects effs = {effect(cr1), ..., effec(crn)},

– interk is a message relation on K.

The model I is called the semantic schema of the effect set effs. It can be
viewed to a capability specification of Web service. Let cr be an environment
resource, and hsm(cr) be the domain THSM of cr in an environment ontology.
The algorithm for generating model I is given as Algorithm.1.

Algorithm 1. Model Generation
Require: Environment Ontology EnvO, Capability Profile {Rscsub,Ms, effs}
Ensure: Semantic Schema of effs: I = {K, interk}
Rscsub = {cr1, ..., crn},
Ms = {M(cr1), ...,M(crn)},
effs = {effect(cr1), ..., effect(crn)},
Instantiating I: K = φ, interk = φ.
for all cr ∈ Rscsub do

/* kcr is the specific THSM reduced from the domain THSM hsm(cr) in EnvO
corresponding to effect(cr) */
if (kcr isn’t instantiated)

then Instantiating kcr = {φ, φ}.
effect(cr) = 〈si(cr),Sm(cr), st(cr)〉,
/* Invoking a procedure for constructing kcr */
GeneratingTHSM(si(cr), Sm(cr), st(cr), M(cr), kcr).

end for

The recursive procedure GeneratingTHSM is designed for constructing the
specific THSMs. Let cr be an environment resource, effect(cr) = 〈si,Sm, st〉 be
an effect on cr, M(cr) = {Min,Mout} be inputs and outputs of Web service
about cr, and k be the specific THSM reduced from domain THSM hsm(cr) as
a result. Then, the procedure is described summarily as follows.

GeneratingTHSM(InitialState si, MiddleSet Sm, TargetState st, InputsOut-
puts M, SpecificHSM k)
Ensure: specific THSM k which is reduced from hsm(cr)

/*Ni(i ∈ [1, n]) is a FSM, and Dk is the subdivision relation. */
k = {{N1, ...,Nn},Dk},

Environment Ontology-Based Capability Specification 195

Creating Nx, 1 � x � n, S(N x) = S(N x) ∪ {si},
/* Target state st is reached, the specific THSM k is generated */
if (si == st) then
K = K ∪ {k}, exit.

end if
for all subdivision ud(si) from state si to its sub-HSM subhsm(si) in hsm(cr),
where target state st or middle states sm ∈ Sm are in subhsm(si) do

isV isited(ud(si)) = true,
/* λ0 is default start state in subhsm(si)*/
if (λ0 ∈ Sm) then Sm = Sm − {λ0},
Creating Ny, 1 � y � n, y �= x,
S(N y) = S(N y) ∪ {λ0}, Dk = Dk ∪ {〈si,Ny〉},
GeneratingTHSM(λ0, Sm, st, M, k).

end for
for all transition t in hsm(cr) where source state is si do

isV isited(t) = true,
/* Let in(t) be the input of state transition t,

The transition t can’t be triggered by Web service.*/
if (in(t) /∈Min) then

/* Acquiring state siner(c′r) of another environment resource c′r through the
message exchange siner(c′r) ↑ t. Output of this state can trigger state transition
t*/
siner(c′r) = MessgeExchange(t),
if (siner(c′r)==null) then exit.
Acquiring scur(c′r) that is current state of c′r.
if (kcr′ isn’t instantiated)

then Instantiating kcr′ = {φ, φ},
GeneratingTHSM(scur(c′r),φ,sinter(c′r),M(c′r),kcr′),
/* Creating a message exchange relation between k and kcr′ */
interk = interk ∪ {〈k, kcr′〉}.

end if
/* dest(t) is the destination state of transition t */
S(N x) = S(N x) ∪ {dest(t)},
T (N x) = T (N x) ∪ {〈si, in(t), dest(t)〉},
if (dest(t) ∈ Sm) then Sm = Sm − {dest(t)},
GeneratingTHSM(dest(t), Sm, st, M, k).

end for

For example, there is a Web service Budget Travelling Agency (called “BTA”).
It provides the travelling arrangement service for travellers. BTA is supposed
to have the basic capabilities: flight ticket selling and hotel room ordering. The
environment which BTA is situated in has been depicted as BTO (shown in
Table.3). There are three environment resources in BTO which BTA can impose
effects on. They are ticket, hotelroom and creditcard respectively, and their
THSMs have been depicted in Fig.2. The XML-style capability profile of BTA
is presented as follows.

196 P. Wang, Z. Jin, and L. Liu

<capability Id="BudgetTravellingAgency">
xmlns:resource="http://www.ecf4ws.org/EnvO"
<resources>BTO:ticket,BTO:hotelroom,BTO:creditcard</resources>
<inputs>

<input res="ticket">orderInfo,orderCancelInfo,deliveryInfo</input>
<input res="hotelroom">orderInfo,orderCancelInfo</input>

</inputs>
<outputs>

<output res="ticket">deliveredInfo</output>
<output res="hotelroom">orderedInfo</output>
<output res="creditcard">chargedInfo</output>

</outputs>
<effects>

<effect res="ticket">
<initialState>available</initialState>
<middleSet>ordered,cancelled<middleSet>
<targetState>delivered</targetState>

</effect>
<effect res="hotelroom">
<initialState>vacancy</initialState>
<middleSet>cancelled<middleSet>
<targetState>ordered</targetState>

</effect>
<effect res="creditcard">
<initialState>valid</initialState>
<targetState>charged</targetState>

</effect>
</effects>

</capability>

This capability profile can be translated to a statement in natural language:
BTA provides a ticket-selling service and tickets can be delivered to customers.
Before purchasing tickets, ordering service is provided. If ordered tickets aren’t
satisfying, customers have opportunities to cancel the orders. Moreover, BTA
provides a hotel room ordering service. And if ordered rooms aren’t satisfying,
customers also have opportunities to cancel the orders. These service fees are
charged by credit card.

Fig.3 is the screenshot showing the model Ibta, which is the capability speci-
fication of BTA. The ws ticket depicts a specific THSM (denoted by k(ticket)),
which is generated corresponding to the effect that BTA imposes on ticket. In
the same way, k(hotelroom) and k(creditcard) are generated (i.e., ws hotelroom,
ws creditcard in Fig.3). Moreover, there is a message exchange relation between
k(ticket) and k(creditcard). Therefore, Ibta is formalized as follows: {{k(ticket),
k(creditcard), k(hotelroom)}, {〈k(ticket), k(creditcard)〉}}.

Asterisk (∗) in Fig.3 denotes a special input provided by other THSMs through
message exchange. They are neither provided by customers nor described in the
capability profile. For example, the input *creditcard-validInfo in k(ticket)
is provided by k(creditcard), instead of the inputs described in the capability
profile of BTA.

Environment Ontology-Based Capability Specification 197

Fig. 3. Screenshot of the model Ibta generated from the capability profile of BTA

3.2 Flexible Web Service Discovery

Now, we already have declared the environment ontology BTO which has been
described in section 2.2, and a Web service BTA in section 3.1. On the basis of
BTO, capability profile of BTA is also presented. Here, we present an approach
for flexible Web service discovery.

For example, a scenario that a user wants to have a pleasant budget travelling
can be focused. Now, we have a well-defined environment ontology BTO and the
capability profile of BTA. Then the request, which has been described in our
introduction section, is that “I find the service that provides flight ticket-selling
and hotel room ordering, and I can order ticket and hotel room, and if there is an
emergency, I have opportunities to cancel the ticket or hotel room on hold.”And
then, It can be formalized as an effect-based capability profile as a query profile
in XML respresentation:

<query Id="RequestBudgetTravelling">
xmlns:resource="http://www.cof4ws.org/EnvO"
<resources>BTO:ticket,BTO:hotelroom</resources>
<inputs>

<input res="ticket">orderInfo,orderCancelInfo,accountInfo</input>
<input res="hotelroom">orderInfo,orderCancelInfo</input>

198 P. Wang, Z. Jin, and L. Liu

</inputs>
<outputs>

<output res="ticket">soldInfo</output>
<output res="hotelroom">orderedInfo</output>

</outputs>
<effects>

<effect res="ticket">
<initialState>available</initialState>
<middleSet>ordered,cancelled<middleSet>
<targetState>sold</targetState>

</effect>
<effect res="hotelroom">
<initialState>vacancy</initialState>
<middleSet>cancelled<middleSet>
<targetState>ordered</targetState>

</effect>
</effects>

</query>

To identify existing services that can be used to implement a required ser-
vice, we need a way to match the requirements and capabilities of services
i.e, identify semantic distance between services. A matchmaking between the
capability profile of BTA BudgetTravellingAgency and the query profile Re-

questBudgetTravelling (called “Ava”and “Req”for short) can be performed
with help of the environment ontology. Let Capava = {Rscava

sub ,Msava, effsava}
and Capreq = {Rscreq

sub,Msreq, effsreq} be capability profile of a Web service
and a query profile respectively. The main matchmaking process is described as
following:
Step 1. For environment resources, two different types of relationships,
namely, subConceptOf(a, b), ComponentOf(a, b) are modelled where a, b ∈ Rsc are
two given environment resources. We first introduce the matching degree be-
tween Req:Rscsub and Ava:Rscsub, which describe which environment resources
will be imposed effects on. Then, we call them effect spaces.

– If Rscreq
sub ∩Rscava

sub == φ,
• �a ∈ Rscreq

sub, b ∈ Rscava
sub , suchthat subConceptOf(a, b)or ComponentOf(a, b),

we say Irrelevant

It means that requested effect space is completely irrelevant with provided
effect space. In the condition, the matchmaking process terminates.
• ∃a ∈ Rscreq

sub, b ∈ Rscava
sub , suchthat subConceptOf(a, b)or ComponentOf(a, b),

we say weak-Intersection

Itmeans that requested effect spacehas aweak relationwithprovided effect
space.

– If Rscreq
sub == Rscava

sub , we say Exact Match.
It means that they have identical effect space.

– If Rscreq
sub ⊂ Rscava

sub , we say Plug-In Match.
It means that requested effect space is covered by provided effect space. In the

Environment Ontology-Based Capability Specification 199

condition, the requestor has opportunities to achieve its requirements com-
pletely.

– If Rscreq
sub ⊃ Rscava

sub , we say Subsume Match.
It means that requested effect space covers provided effect space. In the
condition, the provider might satisfy requestor’s requirements partly.

– If Rscreq
sub ∩ Rscava

sub �= φ and �Rscreq
sub ⊇ Rscava

sub ∨ Rscreq
sub ⊂ Rscava

sub , we say
strong-Intersection.
It means that requested effect space intersects with provided effect space.

For above instance, because that Req:{BTO:ticket,BTO:hotelroom} ⊆ Ava:
{BTO:ticket,BTO:hotelroom,BTO:creditcard}, there is a Plug-In Match be-
tween their effect spaces. And then, on the basis of the environment ontology
BTO, a matchmaking between Req:effs and Ava:effs can be performed in the
next step.

Step 2. If there is Relevancy (no Irrelevant) between Rscreq
sub and Rscava

sub ,
the requestor and the provider have common or related effect space. The step
is to perform a flexible matchmaking between their effects on the common or
related effect space with the aid of environment ontology. We generate a model I
according to effects on environment resources grounded on the environment on-
tology. Then, matchmaking between two effects is regarded as the matchmaking
between the two models generated from the two effects respectively. For exam-
ple, Fig.3 depicts the model Ibta which is generated according to Ava grounded
on BTO. Similarly, the model Ireq according to Req can be generated as Fig.4.

Fig. 4. Screenshot of a model Ireq generated from Req

Now, the problem we encounter is how to match THSM models. [3] proposes
an approach for automata matchmaking when they have a non-empty intersec-
tion. Here, we define the intersection of two given THSMs.

Definition 5. Intersection of two THSMs
hsm1 = {S1,Σ1, T1, f1, λ01,�1} and hsm2 = {S2, Σ2, T2, f2, λ02, �2} be two
THSMs. Their intersection is hsm = {S, Σ, T , f , λ0, �} = hsm1 � hsm2, in
which

200 P. Wang, Z. Jin, and L. Liu

there is an injective function g : S → S1, ∀min ∈ Σin and s ∈ S, t ∈ T , t1 ∈ T1,
satisfying:
g(t(s,min)) = t1(g(s),min), g(parent(s)) = parent1(s), f(s) = f1(g(s)) and
there is an injective function l : S → S2 , ∀min ∈ Σin and s ∈ S, t ∈ T , t2 ∈ T2,
satisfying:
g(t(s,min)) = t2(l(s),min), g(parent(s)) = parent2(s), f = f2(l(s)).

For example, the intersection of ws ticket in Fig.3 and req ticket in Fig.4 is
depicted in Fig.5. As shown in this figure, the intersection is req ticket.

Fig. 5. Intersection of ws ticket and req ticket

And then, we can define the matching degree between THSMs. Let hsmreq

and hsmava be two THSMs, which are generated from capability profile and
query description respectively, and their intersection is hsm.

– Exact Match, if |S(hsmreq)|==|S(hsm)|==|S(hsmava)|. In other words,
hsmreq, hsmava and hsm are identical.

– Plug-In Match, if |S(hsmreq)|==|S(hsm)| < |S(hsmava)|. In other words,
hsmreq is a THSM included in hsmava,

– Subsume Match if |S(hsmava)|==|S(hsm)| < |S(hsmreq)|. In other words,
hsmava is a THSM included in hsmreq,

– Intersection, if S(hsm) �= φ and there aren’t above three matches.
– Not Relevant, if S(hsm)==φ, i.e., the intersection is null.

Because that model I is composed of THSMs, we can get the matching degree
between the models grounded on matching degree between THSMs. We gener-
ate two models Ireq = {Kreq, interkreq} and Iava = {Kava, interkava} based on
Req:effs and Ava:effs, in which Kreq = {kr(ticket), kr(hotelroom), kr(credit−
card)} and Kava = {ka(ticket), ka(hotelroom)}. Then, the matching degree be-
tween Ireq and Iava can be obtained by integrating the matching degrees of
Degree : 〈kr(ticket), ka(ticket)〉 and Degree : 〈kr(hotelroom), ka(hotelroom)〉.
Table.5 depicts how to integrate matching degree between THSMs/Is.

For example, there is a Plug-In Match between kr(ticket) and ka(ticket). And
there is Exact Match between kr(hotelroom) and ka(hotelroom). Therefore, the
integration matching degree between Req:effs and Ava:effs is Plug-In Match

according to Table.5.
Finally, on the basis of the degrees of match between environment resources

and effects on these environment resources. The degree of match between capa-
bility profile and query description can be presented in Table.6.

Environment Ontology-Based Capability Specification 201

Table 5. Integrated Degree of Match between two Is

Degree between two
THSMs/Is

Degree between two
THSMs/Is

Degree between two
Is

Irrelevant Irrelevant Irrelevant
Relevancy Irrelevant Intersection
Exact Match Exact Match Exact Match

Plug-In Match Plug-In Match
Subsume Match Subsume Match
Intersection Intersection

Plug-In Match Plug-In Match Plug-In Match
Plug-In Match Subsume Match Intersection

Intersection Intersection
Subsume Match Subsume Match Subsume Match

Intersection Intersection

Table 6. Matching Degree between Capability Profile and Query Profile

Degree:EffectSpaces Degree:Is Final Degree
All Irrelevant Irrelevant
Irrelevant All Irrelevant
Weak-intersection Relevant Weak-intersection
Strong-Intersection Relevant Strong-Intersection
Relevancy Intersection Intersection
Exact Match Exact Match Exact Match

Plug-In Match Plug-In Match
Subsume Match Subsume Match

Plug-In Match Subsume Match Intersection
Exact Match Plug-In Match
Plug-In Match Plug-In Match

Subsume Match Plug-In Match Intersection
Subsume Match Subsume Match
Exact Match Subsume Match

For the matchmaking between req and ava, there is Plug-In Match between
req:Rscsub and ava:Rscsub. And there is Plug-In Match between their effects.
Therefore, we say that there is Plug-In Match between req and ava.

4 Related Work

Web service discovery is a fast growing research area. Capability specification
constitutes a necessary step for service publication and service request. In this
field, earlier efforts include the XML-based standards, such as Web Service De-
scription Language (WSDL)[10]. It’s designed to provide descriptions of mes-
sage exchange mechanisms, and for describing the service interface. However,
keyword-based approach taken by WSDL is for the automatic service discov-
ery. Universal Description Discovery Integration (UDDI)[11] provides a registry

202 P. Wang, Z. Jin, and L. Liu

of Web services. It describes Web services by their physical attributes such as
name, address and the services that they provide. As UDDI dose not touch
service capabilities.

OWL-S [4] takes up the challenge of representing the functionalities of Web
services. It attempts to bridge the gap between the semantic Web and Web
services. The main contribution of the OWL-S approach is its service ontology,
which builds on the series of semantic Web standards. OWL-S capability model
is based on functional procedure which includes the information transformation
performed by service and the state transition as consequence of the execution
of the service, i.e., IOPR schema. WSMO [2] and METEOR-S [12] are two
other efforts to bridge the semantic Web and Web services. Their capability
models still assume a Web service a one step process. [13][14] argues that a
limitation of OWL-S is the lack of logical relationships underlying the inputs
and outputs of its capability model. They propose the OWL-S Process model,
which is primarily designed for specifying how a Web service works, to be the
capability specification of Web services.

By describing the constraints between inputs and outputs and allowing cre-
ating gradually concepts directly with the advertisements and requests, LARKS
[15] makes improvement to OWL-S. LARKS is a matching engine that allows
matching of advertisements and requests on the basis of the capabilities that
they describe to some extent.

Currently, the behavior description for service discovery is also hotspot. Wom-
bacher proposes an extended finite state automata as description of Web services
[3][4]. However, it requires that the process description should be globally pre-
defined to ensure consistency during service matchmaking. The loosely coupled
Web services are often developed by different teams, and are described in dif-
ferent conceptual framework without agreement. Hence, key problem of such
setting is that process description of a Web service should be understood by
other Web services without prior knowledge. Recently, [5] proposes a behavior
model for Web services using automata and logic formalisms. It adopts the IOPR
schema in OWL-S to describe activities of Web services. [6] proposes a solution
for service retrieval based on behavioral description using a graph representation
formalism for services. It assumes that the semantic information including name
of operation, inputs and outputs of activities has been attached to each service.
Moreover, [16] argues that essential facets of Web services can be described us-
ing process algebraic notations, i.e., capability description and message exchange
could be specified by process algebra.

In fact, context was a key concern in the requirements modelling and is get-
ting more and more attentions [17]. It has been recognized as the semantic basis
of the meaning of the requirements [18]. Currently, [19] proposes an OWL en-
coded context ontology (CONON) for modeling context in pervasive computing
environments, and for supporting logic-based context reasoning. [20] proposes
an agent-based and context-oriented approach that supports the composition of
Web services. In these efforts, the context is perceived as the static relevant infor-
mation that characterizes a situation, such as identifier, location and preferences

Environment Ontology-Based Capability Specification 203

etc [21]. Different from these efforts, we view environment (a kind of context) of
a Web service to be composed of those controllable resources (i.e., environment
resources) that this Web service can impose effects on. Our approach pays a
special attention to the effects that Web services impose on their environment
resources for specifying capability of Web service semantically. For each envi-
ronment resource, there is a corresponding hierarchical state machine specifying
its dynamic characteristics. The environment resources are domain-relevant and
independent to any Web services.

5 Conclusion and Future Work

This paper proposes a solution for specifying Web Service capabilities based on
the environment ontology. Behavior description could be automatically derived
from the effects that Web service imposes on its environment resources. The
hierarchical state machines representing behavior of environment resource are
designed to reflect Web service capabilities. Consequently, the model, which is
semantic schema of effect set, can be semantics of the capability specification of
Web Services. Then, we propose a flexible matchmaking method for Web service
discovery. The approach has the following characteristics:

– The state transitions of the environment resources are formalized as sharable
knowledge in environment ontology.

– Designing a lightweight and explicit effects-based capability profile of Web
services. Lightweight means that capability specification can be generated by
adding rich semantics (i.e., state transitions) automatically to the capability
profile from environment ontology.

– Researches on model checking of general HSM have made many successful
steps, such as intersection, inclusion and equivalence problems, etc. Hence,
our capability specification has better expressive power than conventional
one-step process based specification.

– This capability specification supports more intelligent Web Service discovery
because of its good expressive power.

– Finally, for derived from sharable environment ontology, the capability spec-
ification wouldn’t be tied too closely with implementation.

In our future work, a logic formalism will be given to express the constraints
on Web services. Furthermore, the algorithm for intelligent service discovery and
matchmaking based on our capability specification also will be specified.

Acknowledgment

Partly supported by the National Natural Science Key Foundation of China un-
der Grant No.60233010 and Grant No.60496324, the National Key Research and
Development Program of China under Grant No.2002CB312004, the Knowledge
Innovation Program of the Chinese Academy of Sciences, and MADIS of the
Chinese Academy of Sciences

204 P. Wang, Z. Jin, and L. Liu

References

1. The OWL Services Coalition, OWL-S: Semantic Markup for Web Services, 2004
http://www.daml.org/services/owl-s/1.1/overview/

2. WSMO project site (Web Service Modeling Ontology), http://www.wsmo.org
3. Andreas Wombacher, Peter Fankhuaser, Bendick Mahleko et al, ”Matchmakeing

for Business Processes based on Choreographies,” Proceedings of the 2004 IEEE
Conference on and Enterprise Computing, E-Commerce and E-Services

4. B. Mahleko, and A.Wombacher, ”A grammar-based index for matching business
processes,” Proceedings of the 2005 IEEE International Conference on Web Ser-
vices

5. Zhongnan Shen, Jianwen Su, ”Web Service Discovery Based on Behavior Signa-
tures,” Proceedings of the 2005 IEEE International Conference on Services Com-
puting

6. Daniela Grigori, Mokrane Bouzeghoub, ”Service retrieval based on behavioral spec-
ification,” Proceedings of the 2005 IEEE International Conference on Services Com-
puting

7. Puwei Wang, Zhi Jin and Lin Liu, ”On Constructing Environment Ontology for Se-
mantic Web Services”, Proceedings of the First International Conference on Knowl-
edge Science, Engineering and Management, 2006 (to appear)

8. Alexander Maedche and Steffen Staab, ”Ontology Learning for the Semantic Web,”
IEEE intelligent systems, Mar./Apr. 2001, pp.72-79

9. Mats P.E. Heimdahl and Nancy G. Leveson, Completeness and Consistency in
Hierarchical State-Based Requirments, IEEE Transaction on software engineering,
VOL.22, No.6, June 1996

10. E.Christensen, F.Curbera, GMeredith et al, ”Web Services De-
scription Language (WSDL) 1.1 Technical Report”, W3C, 2001,
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

11. L.Clement, A.Hately, C.von Riegen et al, ”UDDI version 3.0”,
http://uddi.org/pubs/uddi v3.htm, 2004

12. METOR-S project site (METEOR for Semantic Web Service),
http://lsdis.cs.uga.edu/projects/meteor-s/

13. Sharad Bansal and Jose M.Vidal. ”Matchmaking of Web Services Based on the
DAML-S Service Model,” AAMAS 2003, July 14-18, 2003, ACM.

14. Antonio Brogi et al. ”Flexible Matchmaking of Web Services Using DAML-S On-
tologies,” ICSOC 2004 November 15-18.

15. K.Sycara, S.Widoff, M.Klusch et al, ”LARKS: Dynamic Matchmaking Among Het-
erogeneous Software Agents in Cyberspace,” Autonomous Agents and Multi-Agent
Systems, volume 5, pages 173-203, Kluwer Academic Publishers, 2002

16. Gwen Salaun, Lucas Bordeaux, Marco Schaerf, ”Describing and Reasoning on Web
Services using Process Algebra,” Proceeding of the 2004 IEEE international Con-
ference on Web Service

17. P.Zave and M.Jackson, ”Four dark corners of requirements engineering,” ACM
Transactions on Software Engineering and Methodolgy, 6(1):1-30, January 1997

18. C.A.Gunter, E.L.Gunter,M.Jackson et al, ”A reference model for requirements and
specification” IEEE Software, 17(3):37-43, May/June 2000

19. Xiao Hang Wang, Da Qing Zhang and Tao Gu, ”Ontology Based Context Modeling
and Reasoning using OWL”, Proceedings of the Second IEEE Annual Conference
on Pervasive Computing and Communications Workshops

Environment Ontology-Based Capability Specification 205

20. Zakaria Maamar, Soraya Kouadri Mostefaoui, and Hamdi Yahyaoui, ”Toward an
Agent-Based and Context-Oriented Approach for Web Services Composition”,
IEEE transaction on knowledge and data engineering, vol.17, no.5, May 2005

21. A.K. Dey, G.D. Abowd, and D. Salber, A Conceptual Framework and a Toolkit
for Supporting the Rapid Prototyping of Context-Aware Applications, Human-
Computer Interaction J., special issue on context-aware computing, vol.16, no.1,
2001.

Scenario-Based Component Behavior
Derivation�

Yan Zhang, Jun Hu, Xiaofeng Yu, Tian Zhang,
Xuandong Li, and Guoliang Zheng

State Key Laboratory of Novel Software Technology
Department of Computer Science and Technology
Nanjing University, Nanjing, P.R. China 210093
zhangyan@seg.nju.edu.cn, lxd@nju.edu.cn

Abstract. The reusability of components affects how much benefit we
can get from the component based software development (CBSD). For
enhancing the reuse of components, we propose an approach to derive
the desired behavior from a component in terms of the user’s requirement
given by a scenario specification. In our proposal, a special environment,
i.e., sup-inclusive environment (SIE), is automatically constructed to ad-
just the component’s behavior based on the scenario specification. All
behavior of a component that is specified by the scenario specification
can be preserved in the composition of the component and its SIE, and
other behavior of the component is discarded to the most extent. We
use interface automata to model the behavior of components and a set
of action sequences to abstract the scenario specification in Message Se-
quence Charts (MSCs). The composition of components is modelled by
the product of interface automata. We give the algorithm for construct-
ing SIE and illustrate our approach by an example.

1 Introduction

Component based software development (CBSD) provides a pragmatic approach
for efficiently building complex systems by the reuse of existing software com-
ponents and the plug-and-play mechanisms. In CBSD, users find desired com-
ponents in repositories and compose them to creat a new system. However, the
reusability of components affects how much benefit we can get from CBSD. Fre-
quently, existing components could not exactly meet the requirement of users.
Users have to face with the trouble that resists the reuse of components. This
problem generally takes on two types: one is that the functionalities of com-
ponents are less than users’ needs; the other is that there are some redundant
functionalities in components besides users’ needs. The former can be solved by
the composition of components. In academia, many researches had been under-
taken on this aspect [1,2]. For the latter, we can release it by extracting the
� This paper is supported by the National Grand Fundamental Research 973 Pro-

gram of China (No. 2002CB312001), the National Natural Science Foundation of
China (No. 60425204, No. 60233020), and by Jiangsu Province Research Foundation
(No. BK2004080).

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 206–225, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Scenario-Based Component Behavior Derivation 207

desired functionality (behavior) or removing the undesired functionality from
the components based on the user’s requirements.

Usually, users give their requirements by the descriptions of scenarios, which
is called the scenario specifications. A scenario specification can describe the
user’s desired behavior of a component (i.e., good scenario) or the user’s unde-
sired behavior (i.e., bad scenario). The scenario-based behavior derivation of a
component requires to preserve all behavior specified by the good scenario in the
component and discard other behavior as much as possible. The scenario-based
behavior filtration of a component requires to discard all behavior specified by
the bad scenario in the component and preserve other behavior as much as pos-
sible. The scenario-based behavior derivation and filtration are complementary,
and theoretically either can be used for a given user’s requirement. However,
since the way to adjust the behavior of a component is limited, that is, only
by means of the inputs provided for the component (see Sect. 5.2), these two
approaches will result in the different outputs. Thus, it is necessary to study
the scenario-based behavior derivation and filtration respectively. In [3], we had
studied the scenario-based behavior filtration for a component.

In this paper, we focus on the scenario-based behavior derivation and pro-
pose an solution for it. Based on the scenario, an environment (an environment
can be seen as a component too) for a component is automatically constructed
to make only the desired behavior of the component to be extracted when the
component works in the environment. In other words, only the behavior of the
component that is specified by the scenario can be preserved in the composition
of the component and the environment. Interface automata [4] are used to model
the behavior of components. Scenarios are specified by Message Sequence Charts
(MSCs) [5] and the MSC is abstracted as a set of action sequences further. The
composition of components is modelled by the product of interface automata.
We extend the concept of environment in the interface automata theory and in-
troduce sup-inclusive environment (SIE). By constructing the SIE EL for a given
interface automaton R under a known set L of action sequences, the behavior of
R that contains any element of L is preserved in the composition R ⊗ EL , and
other behavior of R is not preserved to the most extent.

A primary reason for selecting interface automata as the modelling language
is that interface automata are appropriate to specify the components in an open
system. The environment assumptions [4] and the behavior of components are
integrated into the same model, i.e., interface automata.

The remainder of this paper is organized as follows. Section 2 considers related
research work. Section 3 introduces interface automata and Message Sequence
Charts briefly. Section 4 gives some relevant concepts about our proposal. Sec-
tion 5 discusses the approach to scenario-based behavior derivation of compo-
nents in detail and shows the constructive algorithm of SIE. Finally, in Section 6
we conclude this paper and discuss the future work. Additionally, we use an
example to illustrate our approach throughout the paper.

208 Y. Zhang et al.

2 Related Works

There are many researches related to our work. The most pertinent research, pre-
sented by Inverardi and her colleagues [6,7] , is the software architecture based
approach to components coordination for desired behavior of the system. Their
approach is based on a specific architecture style — Connector Based Architec-
ture (CBA). With the system specification in bMSCs (basic Message Sequence
Charts) and HMSC (High level MSC) and the coordination properties (i.e., the
desired behavior) in Linear-time Temporal Logic (LTL), they can automatically
synthesize a connector (both model and code) for composed components. The
connector synthesized by their algorithm can restrict the behavior of the compo-
nents composition to the desired behavior. However, there are many differences
between our approach and theirs. Firstly, the connector in [6] restricts the be-
havior of components composition by not accepting the outputs of composed
components. On the contrary, the environment in our approach must accept all
outputs of components. An environment can affect components behavior only
by the inputs provided for the components. It is reasonable to assume that the
environment must accept all outputs of components. Secondly, our approach is
not based on CBA. The connector in [6] is like a “delegator” and intervenes
the communication between components. The environment in our approach is
like a “wrapper” that is not able to influence the messages interchange among
the composed components. The environment can change the components (or
compositions) behavior only by their inputs. This characteristic of environment
is useful, particularly, in the component-based self-organizing systems. Thirdly,
our modelling language, i.e., interface automata, integrates the behavior model
of components and the environment assumption (i.e., components’ requirements
on environment) into one model, but in [6] the behavior model of environment
(AS-Graph) need to derive from the behavior model of components (AC-Graph).
Finally, the complexity of synthesis algorithm in [7] is exponential in time, but
our algorithm is polynomial. Nevertheless, only the model of SIE can be con-
structed by our approach. By comparison, not only the model but also the code
of a connector can be derived by the approach of Inverardi et al.

Other pertinent researches can be found in the area of discrete event sys-
tems (DES) [8]. In the control of DES, the synthesis problem is to construct
a supervisor (also called controller) that can restrict the behavior of the con-
trolled object (called plant) to the desired behavior. A generalization of the
synthesis problem and its solution are studied by Bochmann in the context of
relational databases [9]. Unlike the synthesis problem, in which at every state of
the plant must be receptive towards every possible input from the controller, in
the component-based system, the environment must provide for the component
the input that can be accepted at the current state of the component. There-
fore, in the control of DES, the plant and the synthesized controller are usually
modelled by automata [10] that are input-enabled [4], but the component and
the constructed environment in our research are modelled by interface automata
that are environment-constraining [4].

Scenario-Based Component Behavior Derivation 209

Our research is also related to works in adapter synthesis [1,2]. These works
mainly solve the behavioral compatibility of components composition. Similarly,
in [11], we compose two behaviorally incompatible components by constructing
an environment for them. These works do not concern whether the behavior of
the composition is the needs of users. By using environment, our approach in
this paper can extract desired behavior from components or their compositions
in terms of requirements given by scenario specification. Our approach overcomes
the limitation in those works mentioned above.

In our previous work [12], we only present the algorithm to check whether
there exists desired behavior in a software component. In this paper, we further
give the approach to derive the desired behavior from software components by
constructing environments.

3 Background

In the section, we briefly introduce some basic concepts about interface automata
and MSCs, most of which refer to [4] and [5] respectively.

3.1 Interface Automata

Definition 1 (interface automaton, IA). An interface automaton P =
〈VP , V init

P ,AI
P ,AO

P ,AH
P , TP 〉 consists of the following elements:

– VP is a finite set of states.
– V init

P ⊆ VP is a set of initial states. If V init
P = ∅ then P is called empty .

– AI
P , AO

P and AH
P are mutually disjoint sets of input, output and internal

actions. AP = AI
P ∪ AO

P ∪ AH
P denotes the set of all actions.

– TP ⊆ VP × AP × VP is a set of steps. If τ = (v, a, u) ∈ TP , then we say
that action a is enabled at state v , and write label(τ) = a , head(τ) = v ,
tail(τ) = u .

If a ∈ AI
P (resp. a ∈ AO

P , a ∈ AH
P), then (v, a, v′) is called an input (resp. output,

internal) step. Let T I
P = {(v, a, v′) | v, v′ ∈ VP ∧ a ∈ AI

P ∧ (v, a, v′) ∈ TP }, T O
P =

{(v, a, v′) | v, v′ ∈ VP ∧ a ∈ AO
P ∧ (v, a, v′) ∈ TP } and T H

P = {(v, a, v′) | v, v′ ∈
VP ∧ a ∈ AH

P ∧ (v, a, v′) ∈ TP } be respectively the set of input, output and
internal steps. For v ∈ VP , let AI

P (v) = {a ∈ AI
P | ∃ v′ ∈ VP . (v, a, v′) ∈ TP },

AO
P (v) = {a ∈ AO

P | ∃ v′ ∈ VP . (v, a, v′) ∈ TP } and AH
P (v) = {a ∈ AH

P | ∃ v′ ∈
VP . (v, a, v′) ∈ TP } be respectively the subset of input, output and internal
actions that are enabled at the state v . Let AP (v) = AI

P (v) ∪ AO
P (v) ∪ AH

P (v) .
For simplicity, we require that all interface automata referred in this paper are

deterministic, i.e., for any IA P , it satisfies
∣∣V init

P

∣∣ = 1 and ∀ (v, a, u), (v, a, u′) ∈
TP . u = u′. An example of IA is shown in Fig. 1.

Example 1. The IA Seller (see Fig. 1) specifies the behavior of a component,
the seller in a business to business system, when it interacts with other. The

210 Y. Zhang et al.

� � � �

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

� � �

�
�

�
�

���

�
�

���

�
�

���
�

�
���

�

�

	 �

�

�

�

�

�

�
�

�
�

�

�
�

�
�

��

�

	

�

�
�

�
�

�

�

���

	�
0 1 2

4

3

5

6

7

9

8

10

11

12

13

14

16

15

17

18

ord rec? data hdl; inv chk! cred ok?
inv

ok?

inv fail?

cred chk!

cre
d fail

?

ship ok? billing!

bill ok? shipping!

err hdl;

bill ok?

sh
ip

ok
?

ca
nc

el
?

cancel?

archiving;

exit;

fail!

success!

rejection!

data err!

sh
ip

pi
ng

!
bi

lli
ng

!

ship
fail?

bil
l f
ail

?

bil
l f
ail

?

ship
fail?

�

�

�

�

� � � � � � � � � �� � � � � � � � � �

� � � � � � � �
� � � � � � � �

or
d

re
c

ca
nc

el

in
v

ok

in
v

fa
il

cr
ed

ok

cr
ed

fa
il

sh
ip

ok

sh
ip

fa
il

bi
ll

ok

bi
ll

fa
il

da
ta

er
r

in
v

ch
k

cr
ed

ch
k

sh
ip

pi
ng

bi
lli

ng

re
je
ct

io
n

su
cc

es
s

fa
il

Fig. 1. Interface automaton Seller . The action whose name is followed by the symbol
“ ? ” (resp. “ ! ”, “ ; ”) is an input (resp. output, internal) action. An arrow without
source denotes the initial state of the interface automaton.

seller receives an order (ord rec) from a customer and handles data in the order
(data hdl), e.g., transform of data format. If some error is found in the order, the
seller will report it (data err) to the customer, otherwise the seller will check
the inventory (inv chk) from the supplier and the customer credit (cred chk)
from the bank. Contingent on availability of inventory (inv ok) and valid credit
(cred ok), the seller will inform the shipper to ship product (shipping) and the
bank to bill the customer for the order (billing). Either unavailability of inventory
(inv fail) or invalid credit (cred fail) will lead to reject the order (rejection).
The seller can receive some information (cancel) from the customer to terminate
(exit) the order. If shipping and billing finish successfully (ship ok and bill ok),
the seller will make archive (archiving) and give the notification (success) to the
customer. Otherwise, the negative notification (fail) will be given after processing
the exception (err hdl).

In IA P , an execution fragment v0a0v1a1 · · · an−1vn is a sequence consisted of
states and actions alternately, where (vi, ai, vi+1) ∈ TP , for all 0 ≤ i < n. For any
two states v, u ∈ VP , we say that u is reachable from v if there is an execution
fragment with v as the first state and u as the last state. The state u is reachable
in P if u is reachable from an initial state v ∈ V init

P .

Definition 2 (interface automata product). Two IAs P and Q are com-
posable if AH

P ∩ AQ = ∅ , AH
Q ∩ AP = ∅ , AI

P ∩ AI
Q = ∅ and AO

P ∩ AO
Q = ∅ . Let

shared(P,Q) = AP ∩AQ = (AI
P ∩AO

Q)∪ (AO
P ∩AI

Q) be the set of shared actions
of P and Q . The product of composable IAs P and Q , denoted by P ⊗ Q , is
the IA defined by

Scenario-Based Component Behavior Derivation 211

VP⊗Q = VP × VQ

V init
P⊗Q = V init

P × V init
Q

AI
P⊗Q = (AI

P ∪ AI
Q) \ shared(P,Q)

AO
P⊗Q = (AO

P ∪ AO
Q) \ shared(P,Q)

AH
P⊗Q = AH

P ∪ AH
Q ∪ shared(P,Q)

TP⊗Q = {((v, u), a, (v′, u)) | (v, a, v′) ∈ TP ∧ a /∈ shared(P,Q) ∧ u ∈ VQ}
∪ {((v, u), a, (v, u′)) | (u, a, u′) ∈ TQ ∧ a /∈ shared(P,Q) ∧ v ∈ VP }
∪ {((v, u), a, (v′, u′)) | (v, a, v′)∈TP ∧ (u, a, u′)∈TQ ∧ a∈shared(P,Q)} .

At some state of P ⊗Q , one IA, say P , may produces an output action that is
an input action of Q , but is not enabled at the current state in Q . Such state is
an illegal states of P ⊗Q . For two composable IAs P and Q , the set of illegal
states of P ⊗Q is denoted by Illegal(P,Q) ⊆ VP × VQ ,

Illegal(P,Q)=

⎧⎨⎩(v, u)∈VP×VQ

∣∣∣∃ a∈shared(P,Q) .

⎛⎝a∈AO
P (v) ∧ a /∈AI

Q(u)
∨

a∈AO
Q(u) ∧ a /∈AI

P (v)

⎞⎠⎫⎬⎭ .

Definition 3 (environment). An IA E is an environment for an IA R if :
(1) E and R are composable, (2) E is not empty, (3) AI

E = AO
R , and (4) if

Illegal(R,E) �= ∅ , then no state in Illegal (R,E) is reachable in R⊗ E .

The third condition ensures that the environment must accept all output of R .
In other words, the environment does not constrain R by not accepting some of
its outputs. The fourth condition ensures that IA R can work in its environment
without running into any illegal state.

3.2 Message Sequence Charts

MSC [5] is a trace description language for visualization of selected system runs.
It concentrates on message interchange by communicating entities and their
environment. Every MSC specification has an equivalent graphical and textual
representation. Especially the graphical representation of MSCs gives an intuitive
understanding of the described system behavior. Therefore, MSC is a widely used
scenario specification language.

The fundamental language constructs of MSCs are component and message
flow. Vertical time lines with a heading represent components. The heading con-
tains the component name. Along these time lines, MSC events are arranged
that gives an order to the events connected to this component. Such events can
be message send and receive events, timer and local events. A message is de-
picted by an arrow, horizontal or downward slope, from the send to the receive
event. The fact that a message must be sent before it can be received imposes
a total order on the send and receive event of a message and, furthermore, a
partial order on all events in a MSC.

212 Y. Zhang et al.

Definition 4 (message sequence chart, MSC). A message sequence chart
Ch = 〈C, E ,M,F ,O〉 is a 5-tuple, where

– C is a finite set of components.
– E is a finite set of events corresponding to sending or receiving a message.
– M is a finite set of messages. For any m ∈ M, let s(m) and r(m) to denote

the events that correspond to sending and receiving message m respectively.
– F : E → C is a labelling function which maps each event e ∈ E to a compo-

nent F(e) ∈ C .
– O ⊆ E×E is a partial order relation over the set of events. For every (e, e′) ∈
O , it is the case that e �= e′ . (e, e′) represents a visual order displayed in
Ch .

Figure 2 shows an example of MSC. Each MSC describes a set of message se-
quences.

Definition 5 (message sequence of MSC). Let Ch = 〈C, E ,M,F ,O〉 is a
MSC. A sequence m0m1 · · ·mn is a message sequence of Ch if and only if it
satisfies the following conditions:

– {m0,m1, . . .mn} =M ;
– mi �= mj (0 ≤ i ≤ n, 0 ≤ j ≤ n, i �= j) ; and
– for any mi,mj (0 ≤ i < j ≤ n) , it is the case that (s(mj), s(mi)) /∈ O and

(r(mj), r(mi)) /∈ O .

A message sequence of one MSC must be composed of all messages of the MSC
and any message occurs only once in the sequence. For any two messages in the
sequence, if one precedes the other then their send events and receive events
should not violate the partial order relation over the set of events.

Observe that messages in MSCs correspond to actions in IA. Hence, we call
a message sequence of MSC as an action sequence derived from the MSC and
write it as � = �(0)�(1) · · ·�(n) , where �(i) is a message in the message sequence
for all 0 ≤ i ≤ n .

�

�

�

 �

seller supplier bank shipper

inv ok

cred ok

shipping

billing

e0e1

e2e3

e4, e5 e6

e7

msc SELLER

Fig. 2. MSC ‘SELLER’ specifying a scenario of the interaction between the seller
component and other components

Scenario-Based Component Behavior Derivation 213

Example 2. The MSC ‘SELLER’ (see Fig. 2) shows a specification of the seller
component (in Example 1) interacting with other components , which contains
all desired behavior of a user about the seller component. It describes a scenario:
if the seller receives inv ok and cred ok , it should produce shipping to the ship-
per and billing to the bank simultaneously. We can derive a set of action se-
quences LS = {inv ok ĉred ok ŝhipping b̂illing , cred ok înv ok ŝhipping b̂illing ,
inv ok ĉred ok b̂illing ŝhipping , cred ok înv ok b̂illing ŝhipping} from the MSC
‘SELLER’. For legibility, we use the symbol “ˆ” to separate two adjacent ac-
tions in an action sequence.

4 Sup-inclusive Environment

For any execution fragment η = viaivi+1ai+1 · · · aj−1vj (i < j) of IA P , where
vi ∈ V init

P , if vi = vj or AP (vj) = ∅ then η is a run in P . Informally, a run
is a special execution fragment which begins with an initial state and end with
the same initial state (i.e., non-blocking case), or end with a state without any
enabled action at it (i.e., blocking case). Let ΓP and ΣP denote the set of all
execution fragments and the set of all runs of IA P respectively . Obviously,
there is ΣP ⊆ ΓP . For any execution fragment η = viaivi+1ai+1 · · · aj−1vj ∈ ΓP

(i < j) , we say that execution fragment η′ = vsasvs+1as+1 · · · at−1vt (i ≤ s <
t ≤ j) is on η, denoted by η′ (η . Specifically, if η′ = vsasvs+1 (i ≤ s < j) ,
then we say that the step τ = (vs, as, vs+1) ∈ TP is on the execution fragment
η, denoted by τ (η . For every η ∈ ΓP , write the first state of η as first(η) , the
last state of η as last(η) and the set of all states in η as V (η) .

The trace of an execution fragment η = v0a0v1a1 · · ·an−1vn is a subsequence
of η , which consists of all actions in η . We write trace(η) = a0a1 · · · an−1 . Given
an execution fragment η ∈ ΓP⊗Q and trace(η) = a0a1 · · · an−1 , the projection of
the trace of η on IA P , denoted by πP (trace(η)), is a subsequence of trace(η) ,
which is obtained by deleting all actions ai ∈ AQ \ shared(P,Q) , 0 ≤ i ≤ n− 1
from trace(η) . Informally, πP (trace(η)) only contains those elements in trace(η))
that are actions of IA P .

Definition 6 (cover, corresponding step and state). For two composable
IAs P and Q , let η = v0a0v1a1 · · ·an−1vn ∈ ΓP and α ∈ ΣP⊗Q . If there exists
an execution fragment ζ (α satisfying πP (trace(ζ)) = trace(η) and for any
viaivi+1 (η it is the case that (vi, ui)ai(vi+1, ui+1) (ζ , where ui, ui+1 ∈ VQ and
0 ≤ i < n , then we say that η is covered by α . At the same time, (ui, ai, ui+1) is
called the corresponding step of (vi, ai, vi+1) if ai ∈ shared(P,Q) , and ui, ui+1
is called the corresponding state of vi, vi+1 respectively.

If an execution fragment of IA P can be covered by a run of IA P ⊗ Q , then
it means that the behavior represented by the execution fragment of P can be
preserved in P ⊗ Q . Note that for any (v, a, v′) ∈ TP and a /∈ shared(P,Q) ,
there are only corresponding states of v and v′ in Q if vav′ can be covered by
runs of P ⊗Q .

214 Y. Zhang et al.

Definition 7 (occurrence). Given a run α of IA P and an action sequence �,
if � is a subsequence of trace(α) , then we say action sequence � occurs on run
α , denoted by � ∝ α .

We can consider an action sequence and the trace of a run as behavior. The
occurrence of an action sequence on a run of one IA means that in the IA there
is a behavior containing the behavior represented by the action sequence.

Suppose that action sequence � = �(0)�(1) · · · �(m) occurs on run α ∈ ΣR .
If there exists an execution fragment η (α satisfying that � is a subsequence
of trace(η) = a0a1 · · · an (n ≥ m) and �(0) = a0 , �(m) = an , then η is a
proper occurrence of � on α . Suppose that η0, η1, . . . , ηn (α are the proper
occurrences of action sequences �0, �1, . . . , �n on α respectively. For any η (α ,
if (V (η) \ {first(η), last(η)}) ∩ V (ηi) = ∅ , i = 0, 1, . . . , n , then η is a proper
inoccurrence of �0, �1, . . . , �n on α . Intuitively, the proper occurrence of � on
α is an execution fragment on α , whose trace “contains” � properly. Other
execution fragments on α without any overlap with the proper occurrence are
the proper inoccurrences of � on α.

Given an IA P and a set L of action sequences, the function φL : 2ΣP → 2ΣP

partitions any set Σ ⊆ ΣP as two sets: φL(Σ) = {α ∈ Σ | ∃ � ∈ L . � ∝ α} and
φL(Σ) = Σ \φL(Σ) . Thus, ΣP is partitioned as φL(ΣP) and φL(ΣP) . For every
run in set φL(ΣP) , there exists at least one action sequence in L that occurs on
it. For any run in set φL(ΣP) , no action sequence in L occurs on it.

Example 3. IAs P and Q (see Fig. 3(a) and 3(b)) are composable and their
product is shown in Fig. 3(c) . The run α = 0a1b2c3d0 of P is covered by run
γ = (0, v)a(1, u)b(2, u)c(3, u)d(0, v) of P ⊗ Q since πP (trace(γ)) = trace(α) =
abcd . (v, a, u) and (u, d, v) are the corresponding steps in Q of (0, a, 1) and
(3, d, 0) in P respectively. Suppose action sequence � = â c . � occurs on α . The
proper occurrence of � on α is 0a1b2c3 and the proper inoccurrence of � on α is
3d0 . We can find the behavior represented by � is preserved in P ⊗Q , since the
run of P with occurrence of � can be covered by a run of P ⊗Q .

� � �

�

� �

� �

	 	

	 	

� �� 	
�

�

�

�

	0 1 2

3

a c

b d

a? b!
c?d!

(a) IA P

� �

�

�

	

	

�	�

�

�

�

	v u

a

d

a!
d?

(b) IA Q

� � �

�

�

�

	

	

� �� 	
�

�

�

�

	(0, v) (1, u) (2, u)

(3, u)

b

c

a; b!

d;
c?

(c) IA P ⊗Q

Fig. 3. Explanation for cover, corresponding step and occurrence

Definition 8 (sup-inclusive environment, SIE). Let R be an IA and L a
set of action sequences satisfying ∃ � ∈ L . ∃α ∈ ΣR . � ∝ α . The inclusive
environment of R under L is an environment E of R such that for any � ∈ L,

Scenario-Based Component Behavior Derivation 215

if � occurs on a run α of R , then α must be covered by a run of R ⊗ E . An
inclusive environment E of R under L is the sup-inclusive environment if and
only if for any inclusive environment E′ of R under L, any execution fragment
of R that can be covered by some run of R⊗ E must be covered by some run of
R⊗ E′.

Given an IA R and a set L of action sequences, if we consider L as the repre-
sentation of a set of behavior, then two types of behavior in R are preserved in
R⊗E, where E is an inclusive environment of R under L : (I) all behavior con-
taining the behavior in L , and (II) some behavior not containing the behavior
in L . However, the least of (II) is preserved in R ⊗ EL, besides all of (I), than
in the products of R and its any other inclusive environments, where EL is the
SIE of R under L .

Theorem 1 (existence of SIE). For any IA R and set L of action sequences,
there exists a SIE EL of R under L if and only if there exist an inclusive envi-
ronment of R under L .

Theorem 2 (properties of SIE). An environment E of IA R is the SIE of
R under the set L of action sequences if and only if E holds all of the following
properties at the same time:

1. for any step τ (α ∈ φL(ΣR) , there exists the corresponding step of τ in E
if label(τ) ∈ shared(R,E) and there exist the corresponding states of head(τ)
and tail (τ) in E if label(τ) /∈ shared(R,E) ;

2. for any step τ (η ∈ ΓR , η (α ∈ φL(ΣR) , where η satisfies that first(η) ∈
V init

R and for any τ ′ (η , if τ ′ ∈ T I
R then there is β ∈ φL(ΣR) such

that τ ′ (β , there exists the corresponding step of τ in E if label(τ) ∈
shared(R,E) and there exist the corresponding states of head (τ) and tail(τ)
in E if label(τ) /∈ shared(R,E) ;

3. for any other step τ ∈ TR except in 1 and 2 , there does not exist the corre-
sponding step of τ in E if label(τ) ∈ shared(R,E) and there do not exist the
corresponding states of head(τ) and tail(τ) in E if label(τ) /∈ shared(R,E) .

Theorem 2 describes properties of the SIE of arbitrary IA under a known set
of action sequence. On the other hand, Theorem 2 indicates what runs and
execution fragments in R are covered by the runs of R⊗EL and what runs and
execution fragments in R are not covered by the runs of R⊗ EL .

5 Construction of Sup-inclusive Environment

The behavior of a component, say COMP , can be specified by an IA R . A
scenario specification describes the user’s desired behavior of COMP in MSC.
Deriving behavior from COMP based on the scenario specification amounts to
constructing the SIE EL of R under L , where L is the set of action sequences

216 Y. Zhang et al.

derived from the MSC. When EL has been constructed, all of desired behavior
in R , which is specified by the MSC, is extracted to the composition R⊗EL . At
the same time, other behavior in R that is out of L is not preserved in R ⊗ EL
as much as possible.

In this section, we will discuss the basic idea for constructing SIE, how to
decide the inclusive environment of R under L existing and how to construct EL
for R in detail and give the algorithm of constructing SIE.

5.1 Basic Approach to Constructing SIE

An environment of one IA, say R, can affect the runs of R only by the input
actions of R . For arbitrary input step τ on arbitrary run of R , when the label
of τ is a shared action of R and its environment, if the environment does not
provide the input action for R when R needs it, then R cannot go on along the
run. For example, if the environment does not provide input action cancel for
IA Seller (see Fig. 1) when Seller stays at state 3 , then Seller cannot run along
execution fragment 3 cancel 4 exit 0 back to initial state. That the environment
does not provide input action label (τ) for R , when R needs it, amounts to no
corresponding step of τ in the environment.

Based on the above analysis, we can obtain the SIE EL of IA R by the
following procedure. Firstly, for every run α ∈ φL(ΣR) , traverse steps on α
from the state first(α) . On run α find the first input step τ that is not on any
run in φL(ΣR) , delete τ from IA R and all unreachable states produced by
this deletion. Secondly, construct corresponding steps in an empty IA E for all
residual steps in R . When the second step finishes, E is the SIE EL of R .

Note that if there exists η ∈ ΓR , first(η) = last(η) and first(η), last(η) /∈
V init

R , called η as a loop, then ΣR is an infinite set and the lengths of some runs
in ΣR , i.e., the number of steps on a run, may be also infinite. Accordingly,
φL(ΣR) , φL(ΣR) and the lengths of some runs in them may be infinite. Thus,
it is unfeasible to traverse all runs in φL(ΣR) directly. For getting a feasible
approach, we introduce the concepts of the simple run and simple loop.

Given an IA R and a set L of action sequences, a run α=v0a0v1a1 · · · an−1vn∈
ΣR is a simple run when it satisfies the following conditions:

1. if α ∈ φL(ΣR) , then there is vi �= vj (0 < i < n, 0 < j < n, i �= j) ;
2. if α ∈ φL(ΣR) , then

(a) for any proper inoccurrence η = viaivi+1ai+1 · · · aj−1vj (0 ≤ i < j ≤ n)
on α , there is vs �= vt (i ≤ s ≤ j , i ≤ t ≤ j , s �= t) ; and

(b) for any proper occurrence ζ of � = �(0)�(1) · · ·�(m) ∈ L on α , if there is
ζ′ = viaivi+1ai+1 · · · aj−1vj (ζ (0 ≤ i < j ≤ n) , and ai = �(k) , aj−1 =
�(k+1) , 0 ≤ k < m , then there is vs �= vt (i < s < j , i < t < j , s �= t) .

We put some constrains for loops on runs and get the simple runs. The mean-
ing of condition 1 is that there is not any loop on a simple run without occurrence
of action sequences in L . The meaning of condition 2a is that there is not any
loop on a proper inoccurrence of action sequences on a simple run. The meaning
of condition 2b is that on a proper occurrence of an action sequence on a simple

Scenario-Based Component Behavior Derivation 217

run, there is not any loop between the occurrence of two neighbor actions in the
action sequence.

The set of all simple runs of IA R under L is denoted by ΩL
R . Similarly, ΩL

R

can be partitioned as φL(ΩL
R) and φL(ΩL

R) . Obviously, there are ΩL
R ⊆ ΣR ,

φL(ΩL
R) ⊆ φL(ΣR) and φL(ΩL

R) ⊆ φL(ΣR) .
Given an IA R and a set L of action sequences, an execution fragment η =

viaivi+1ai+1 · · ·aj−1vj ∈ ΓR (i < j) is a simple loop if : (1) vi = vj , vi, vj /∈
V init

R , (2) vs �= vt (i ≤ s < j , i ≤ t < j , s �= t) and (3) ∀α ∈ φL(ΩL
R) . η �(α .

The first and second conditions ensure that except the first and the last
states, there are not duplicate states in a simple loop. The third condition
ensures that a simple loop is not the loop on a proper occurrence of some
action sequence in L . For given IA R and set L of action sequences, ΛL

R de-
notes the set of all simple loops of R . We say that simple loop η ∈ ΛL

R as-
sociates with simple run α ∈ ΩL

R if V (η) ∩ V (α) �= ∅ or V (η) ∩ V (η′) �= ∅ ,
where η′ ∈ ΛL

R associates with α . Informally, if a simple loop has a common
state with a simple run, then the simple loop associates with the simple run.
Additionally, if a simple loop has a common state with a simple loop that
associates with a simple run, then the simple loop also associates with the
simple run. Let ψL(ΛL

R) =
{
η ∈ ΛL

R | ∃α ∈ φL(ΩL
R) . η associates with α

}
and

ψL(ΛL
R) =

{
η ∈ ΛL

R | ∃α ∈ φL(ΩL
R) . η associates with α

}
.

Example 4. In Fig. 4 , we give a succinct representation of one IA for explaining
the concept of simple run and simple loop. It is reasonable not to distinguish
the input, output and internal action for this purpose. Suppose action sequence
� = a d̂ d̂ and �′ = g . The runs with occurrence of � are 0a(1b(2c)∗2d)∗1e3f0 ,
where (·)∗ represents that the content in parentheses can repeat arbitrary times.
The number of these runs is infinite, but the simple run with occurrence of �
is only one, i.e., α = 0a1b2d1b2d1e3f0. The simple loop associated with α is
2c2 . There is not any simple run with occurrence of �′ . The simple run without
occurrence of �′ is α′ = 0a1e3f0 and the simple loops associated with α′ are
1b2d1 and 2c2 . The numbers of simple runs and simple loops are finite.

a
b

cd
ef

0 1 2

3

Fig. 4. Explanation for simple run and simple loop

Notice that every step on any run in ΣR corresponds to a step on some simple
run in ΩL

R or on some simple loop in ΛL
R . However, ΩL

R and ΛL
R are finite sets

and the lengths of all simple runs and simple loops are finite. Thus, we can apply
the approach for getting SIE of R mentioned previously to ΩL

R and ΛL
R . Since

these sets are finite, the approach becomes feasible.

218 Y. Zhang et al.

5.2 Decision of Existence of Inclusive Environment

According to Definition 8, if all action sequences in L do not occur on any
runs of R , then there does not exist any inclusive environment of R under L .
Furthermore, we had proven that there maybe exist some kind of execution
fragments in one IA, say P , for any environment E of P , which cannot be
covered by any run of P ⊗ E [11]. Suppose that some action sequences in L
occur on runs with such kind of execution fragments on it. Because these runs
cannot be covered by any run in the product of R and R’s any environment, there
does not exist any inclusive environment of R under L according to Definition 8 .

We give the decision of the existence of inclusive environment in the following
theorem.

Theorem 3. For any IA R and set L of action sequences, there does not exist
an inclusive environment E of R under L if any one of the followings holds:

1. φL(ΩL
R) = ∅ .

2. For some α ∈ φL(ΩL
R) , there are η1, η2 ∈ ΓR , η2 (α and η1, η2 satisfy any

of the following conditions:
(a) η1 = viavj and η2 = vjbvk , where i �= j �= k , a /∈ shared(R,E) ,

b ∈ AI
R ∩ shared(R,E) and b /∈ AR(vi) .

(b) η1 = viavj and η2 = vibvk , where i �= j �= k , a /∈ shared(R,E) , b ∈
AI

R ∩ shared(R,E) and b /∈ AR(vj) .
(c) η1 = viaivi+1ai+1 · · ·aj−1vj and η2 = vibv

′
i , where i < j , v′i /∈ V (η1) ,

ak /∈ shared(R,E) , k = i, i + 1, . . . , j − 1 , b ∈ AI
R ∩ shared(R,E) and

∃ v ∈ V (η1) . b /∈ AR(v) .

According to Theorem 1 , if the inclusive environment of R under L does not
exist, the SIE of R under L does not exist either.

5.3 Algorithm of Constructing SIE

The skeleton of the constructive algorithm for SIE is described as follows. Firstly,
decide whether inclusive environments of R under L exist by Theorem 3 . If no
inclusive environment exists then there is no SIE of R . Secondly, if inclusive
environments of R exist, then we can obtain the SIE of R by three steps. Step
one, for every simple run without occurrence of action sequences in L and every
simple loop associated with it, traverse it from the first state and find the first
input steps on it, which is not on any simple run with occurrence of action
sequences in L or any simple loop associated with it. Step two, remove the input
steps from R and all unreachable states after the removal. Step three, construct
corresponding steps in one IA for all residual steps in R .

Algorithm. Make the convention of AH
EL = ∅ and AO

EL = AI
R [11] . Let R �

T denote the IA obtained by removing all steps in T ⊂ TR from R and all
unreachable states in R after the removal. The algorithm of constructing SIE
EL of R is shown in Algorithm 1 .

Scenario-Based Component Behavior Derivation 219

Algorithm 1. Constructing SIE EL of IA R

Input: Interface automaton R and set L of action sequences.
Output: The SIE EL of R under L .
Variables: T ⊂ TR , step τ , IA R′ and boolean found
1: Traverse R to get φL(ΩL

R) , φL(ΩL
R) , ψL(ΛL

R) and ψL(ΛL
R) .

2: if no inclusive environment exists then // by Theorem 3
3: return EL does not exist
4: else
5: T ←− ∅
6: for all η ∈ φL(ΩL

R) ∪ ψL(ΛL
R) do

7: found←− true
8: τ ←− the first step on η // head(τ) = first(η) ∧ τ � η
9: while (τ /∈T I

R ∨ ∃ ζ∈(φL(ΩL
R) ∪ ψL(ΛL

R)).τ�ζ) ∧ found do
10: if τ is not the last step on η then // tail(τ) �= last(η) ∧ τ � η
11: τ ←− the next step on η
12: else found←− false
13: end if
14: end while
15: if found then T ←− T ∪ {τ}
16: end if
17: end for
18: R′ ←− R � T
19: Initialize EL : VEL ←− {u0} , V init

EL ←− {u0}
20: for all τ ∈ TR′ do
21: Construct the corresponding step of τ in EL
22: end for
23: return EL
24: end if

Analysis. We can prove that the return (i.e., line 23) of Algorithm 1 is an
inclusive environment of R under L and holds all properties in Theorem 2 . It
means that the IA constructed by Algorithm 1 is the SIE of R under L . Thus,
Algorithm 1 is correct.

About line 1 in Algorithm 1, we had given an algorithm to find which simple
run of an IA has the occurrence of a given action sequence [12] . About line 21 in
Algorithm 1, we had given a method of constructing corresponding steps [11] .

Suppose that n = max
{
length(η) | η ∈ ΩL

R ∪ ΛL
R

}
is the maximal length of all

simple runs and simple loops of R , where length(η) is the number of steps on η .
Suppose that m1 =

∣∣φL(ΩL
R)
∣∣ , m2 =

∣∣∣φL(ΩL
R)
∣∣∣ are the number of simple runs

in φL(ΩL
R) , φL(ΩL

R) respectively, and k1 =
∣∣ψL(ΛL

R)
∣∣ , k2 =

∣∣ψL(ΛL
R)
∣∣ are the

number of simple loops in ψL(ΛL
R) , ψL(ΛL

R) respectively. In the worst case, line 6
to 15 in Algorithm 1 can be done in O

(
(m1 + k1)(m2 + k2)n2

)
time. According

to [12] and [11] , line 1 and line 21 in Algorithm 1 need O((m1 + m2)n) and
O (|VR′ |) time respectively, where |VR′ | is the number of states of IA R′ . In
general, there are length(η) * length(α) for η ∈ ΛL

R and α ∈ ΩL
R and |VR′ | *

(m1 + m2)n . Hence, the complexity of Algorithm 1 is O(m1m2n
2) .

220 Y. Zhang et al.

� � � �

�

� �

�

�

�

�

�

�

�

�

�

�

� � � �
�

��� �
�

��� �

�

	 �

�

�

�

�
�

�
�

�
��

�

	

�

�
�

�
�

�

�

��
�
0 1 2 3

5

7

9

8

10

11

12

13

14

16

15

17

18

ord rec? data hdl; inv chk! cred ok?
inv

ok?
cred chk!

ship ok? billing!

bill ok? shipping!

err hdl;

bill ok?

sh
ip

ok
?

archiving;

fail!

success!

data err!

sh
ip

pi
ng

!
bi

lli
ng

!

bil
l f
ail

?

ship
fail?

�

�

�

�

� � � � � � � � � �� � � � � � � � � �

� � � � � � � �
� � � � � � � �

or
d

re
c

ca
nc

el

in
v

ok

in
v

fa
il

cr
ed

ok

cr
ed

fa
il

sh
ip

ok

sh
ip

fa
il

bi
ll

ok

bi
ll

fa
il

da
ta

er
r

in
v

ch
k

cr
ed

ch
k

sh
ip

pi
ng

bi
lli

ng

re
je
ct

io
n

su
cc

es
s

fa
il

Fig. 5. IA R′ . The intermediate result of Algorithm 1 with inputs of Seller and LS

� � �

�

� �

�

�

�

�

�

�

�

�� � �
�

��� �
�

��� �

�

	 �

�

�

�
�

�
�

�
��

�

	

�

�
�

�
�

���
�
0 1 2

3

4

6

5

7

8

9

10

11

12

13
ord rec! inv chk? cred ok!

inv
ok!

cred chk?

ship ok! billing?

bill ok! shipping?

bill ok!

sh
ip

ok
!

fail?

success?

data err?

sh
ip

pi
ng

?
bi

lli
ng

?

bil
l f
ail

!

ship
fail!

�

�

�

�

� � � � � � � �� � � � � � � �

� � � � � � � � � �
� � � � � � � � � �

da
ta

er
r

in
v

ch
k

cr
ed

ch
k

sh
ip

pi
ng

bi
lli

ng

re
je
ct

io
n

su
cc

es
s

fa
il

or
d

re
c

ca
nc

el

in
v

ok

in
v

fa
il

cr
ed

ok

cr
ed

fa
il

sh
ip

ok

sh
ip

fa
il

bi
ll

ok

bi
ll

fa
il

Fig. 6. The SIE ELs of Seller under LS

� � � �

�

� �

�

�

�

�

�

�

�

�

�

�

� � � �
�

��� �
�

��� �

�

	 �

�

�

�

�
�

�
�

�
��

�

	

�

�
�

�
�

�

�

��
�

(0,0) (1,1) (2,1) (3,2)

(5,3)

(7,4)

(9,6)

(8,5)

(10,7)

(11,8)

(12,9)

(13,10)

(14,11)

(16,9)

(15,12)

(17,13)

(18,13)

ord rec; data hdl; inv chk; cred ok;
inv

ok;
cred chk;

ship ok; billing;

bill ok; shipping;

err hdl;

bill ok;

sh
ip

ok
;

archiving;

fail;

success;

data err;

sh
ip

pi
ng

;
bi

lli
ng

;

bil
l f
ail

;

ship
fail;

�

�

�

�
Fig. 7. Seller ⊗ ELs . The composition of Seller and ELS .

Scenario-Based Component Behavior Derivation 221

Example 5. By Algorithm 1 , we can obtain the SIE ELS (see Fig. 6) of the
IA Seller (see Fig. 1) under LS derived from the MSC ‘SELLER’ (see Fig. 2).
For instance, since α = 0ord rec1data hdl2inv chk3cancel4exist0 of Seller is
a simple run without occurrence of any action sequence in LS , there is α ∈
φLS

(
ΩLS

Seller

)
. According to line 8 to 14 in Algorithm 1 , we traverse α from

state 0 and find the first input step (3, cancel , 4) that is not on any simple
run with occurrence of any action sequence in LS . Note that we find the input
step (0, ord hdl , 1) before (3, cancel , 4) , but (0, ord hdl , 1) is on a simple run
with occurrence of an action sequence in LS . Similarly, we can get all input
steps like (3, cancel , 4) , that is, (3, inv fail , 6) , (7, cancel , 4) , (7, cred fail , 6) ,

(9, ship fail , 12) and (10, bill fail , 12) , on other simple runs in φLS

(
ΩLS

Seller

)
.

After delete these steps from Seller and unreachable states 4 and 6 produced
by the deletion, we get the intermediate result R′ (see line 18 in Algorithm 1)
shown in Fig. 5 . Constructing the corresponding step for every step in R′ by the
method given in [11] , we obtain the SIE ELS finally. For instance, we construct
the corresponding step (1, inv chk , 2) in ELS for output step (2, inv chk , 3) in R′ .

It can be found that the user’s desired behavior specified by MSC ‘SELLER’ is
extracted from Seller to the composition of Seller and ELS , i.e., Seller⊗ELS (see
Fig. 7). Except the user’s desired behavior, other behavior of Seller is discarded
as much as possible in Seller ⊗ ELS .

6 Conclusion

We study the behavior derivation of components based on scenarios. By con-
structing a special environment, i.e., SIE, for a component, the user’s desired
behavior specified by a scenario specification can be derived from the compo-
nent to the composition of the component and its SIE, and other behavior of
the component is discarded to the most extent. We use interface automata to
model the behavior of components and a set of action sequences to abstract the
scenario specified by MSC. The composition of components is modelled by the
product of interface automata. We give the algorithm of constructing SIE for a
given interface automaton under a known set of action sequences, and illustrate
our approach by an example.

In service-based systems, e.g., web services, services are the basic building
blocks and interact each other to perform some tasks. Services have some com-
mon characteristics with components, such as modularity, composablity and
reusability. Because services can be implemented by components, our proposal
is also appropriate to services. We are trying to apply our approach given in
this paper to web services. Additionally, we have designed a prototype of the
tool supporting our approach for scenario-based behavior derivation. For the
space limitations, we will discuss the prototype in other paper. The tool is being
implemented until this paper has been published.

There are some limitations about our approach given in this paper. Firstly, in
comparison with [6], only the model of SIE can be constructed by our approach.

222 Y. Zhang et al.

Secondly, our approach assume that SIE and component share all inputs of the
component (i.e., AO

EL = AI
R). In some circumstances, the assumption can be

relaxed. We will study how to release these limitations in the future.

References

1. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation.
Journal of Systems and Software 74 (2004) 45–54

2. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM
Transactions on Programming Languages and Systems 19 (1997) 292–333

3. Zhang, Y., Yu, X., Zhang, T., Li, X., Zheng, G.: Scenario-based component behav-
ior filtration. In: Proceedings of IFIP Working Conference on Software Engineer-
ing Techniques (SET 2006). Lecture Notes in Computer Science, Springer-Verlag
(2006) (Accepted).

4. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of the 9th
Annual ACM Symposium on Foundations of Software Engineering (FSE 2001),
New York, ACM Press (2001) 109–120

5. ITU-TS: ITU-TS recommendation Z.120: Message Sequence Chart (MSC). ITU-
TS, Geneva (1999)

6. Inverardi, P., Tivoli, M.: Software architecture for correct components assembly.
In Bernardo, M., Inverardi, P., eds.: Formal Methods for Software Architectures,
Third International School on Formal Methods for the Design of Computer, Com-
munication and Software Systems: Software Architectures (SFM 2003). Volume
2804 of Lecture Notes in Computer Science. Springer-Verlag (2003) 92–121

7. Tivoli, M., Autili, M.: SYNTHESIS: a tool for synthesizing “correct” and protocol-
enhanced adaptors. L’Object Journal 12 (2005)

8. Ramadge, P.J., Wonham, W.M.: The control of discrete event systems. Proceedings
of the IEEE 77 (1989) 81–98

9. v. Bochmann, G.: Submodule construction for specifications with input assump-
tions and output guarantees. In: Proceedings of the 22nd IFIP WG 6.1 Interna-
tional Conference on Formal Techniques for Networked and Distributed Systems
(FORTE 2002). Volume 2804 of Lecture Notes in Computer Science., Berlin Hei-
delberg New York, Springer-Verlag (2002) 17–33

10. Phoha, V.V., Nadgar, A.U., Ray, A., Phoha, S.: Supervisory control of software
systems. IEEE Transactions on Computers 53 (2004) 1187–1199

11. Zhang, Y., Hu, J., Yu, X., Zhang, T., Li, X., Zheng, G.: Available behavior all out
from incompatible component compositions. In: Proceedings of the 2nd Interna-
tional Workshop on Formal Aspects of Component Software (FACS’05). Electronic
Notes in Theoretical Computer Science, Elsevier (2006) (To appear).

12. Hu, J., Yu, X., Zhang, Y., Zhang, T., Wang, L., Li, X., Zheng, G.: Scenario-based
verification for component-based embedded software designs. In: Proceedings of
the 34th International Conference on Parallel Processing Workshops (ICPP 2005
Workshop), Los Alamitos, California, IEEE Computer Society (2005) 240–247

Appendix. Proof of Theorems and the Correctness of
Algorithm

For concision, we introduce some notation. If an execution fragment η ∈ ΓP can
be covered by a run α ∈ ΣP⊗Q then we denote it by αCη . For any two execution

Scenario-Based Component Behavior Derivation 223

fragments η1, η2 (ζ , ζ ∈ ΓP , if last(η1) = first(η2) or ∃ η′ (ζ . last(η1) =
first(η′) ∧ last(η′) = first(η2) , then we say that η1 precedes η2 on ζ , denoted
by η1 ≺ζ η2 . Specifically, if η1 = vav′ and η2 = ubu′ we can say that step
τ1 = (v, a, v′) precedes τ2 = (u, b, u′) on ζ , denoted by τ1 ≺ζ τ2 . For given
IA R and set L of action sequences, let IEL(R) denote the set of all inclusive
environments of R under L .

Proof of Theorem 1 . Sufficiency is obvious according to Definition 8 . It is
enough to prove necessity.

Suppose that E ∈ IEL(R) satisfies that for any E′ ∈ IEL(R), any execution
fragment of R that can be covered by some run of R ⊗ E′ must be covered by
some run of R ⊗ E 1. For any run α ∈ φL(ΣR) , find the non-laps of α with
all runs in φL(ΣR) , denoted the set of all these non-laps by NLR(α) . A so-
called non-lap η of run α with run β is an execution fragment η (α satisfying
∀ η′ (η . η′ �(β . For any step τR on any execution fragment in NLR(α) , after
deleting its corresponding step τE from E , E is still an inclusive environment of
R under L . In other words, after deleting τE from E , all of runs in φL(ΣR) can
still be covered by runs of R⊗E . ζ ∈ NLR(α) is called a relative maximal non-
lap in NLR(α) if and only if ∀ ζ′ ∈ NLR(α) . ζ (ζ′ −→ ζ = ζ′ . Denote the set of
all relative maximal non-laps in NLR(α) as LMNLR(α) . Observe that there are
AI

E = AO
R and Definition 2 , so only for steps in T I

R their corresponding steps
can be not constructed in E . For any τR (η, τR ∈ T I

R , η ∈ ΓR , if there does not
exist τR’s corresponding step in E , then for any τ ′R (η, τR ≺η τ ′R there does not
exist τ ′R’s corresponding step in E . Thus, for any η ∈ LMNLR(α), α ∈ φL(ΣR) ,
make back traversal of η from last(η) to first(η) . For every traversed τR , if there
is some τ ′R ∈ T I

R , τ ′R (η and τ ′R ≺η τR , then delete the corresponding step of τR

from E . Repeat this operation until the traversal of η finishes. For every run α
in φL(ΣR) , repeat above process, i.e., compute LMNLR(α) , for every execution
fragment in LMNLR(α) traverse it backward and delete the corresponding steps
from E for traversed steps that satisfy the mentioned conditions above. Finally,
residual steps in E form an IA that is the SIE EL of R under L . Since runs of
R⊗ E cover all runs of R , for any other E′ ∈ IEL(R) , runs of R⊗ E′ cover no
more execution fragments of R than runs of R⊗E do. Thus, the above process
is appropriate to E′ too. So the necessity holds. ��

Proof of Theorem 2 . (Sufficiency) By property 1 in the theorem, it is possible
to conclude that for any run of R with occurrence of action sequences in L , it
can be covered by a run of R ⊗ E . Thus E is an inclusive environment of R
under L , i.e., E ∈ IEL(R) .

As follows, we prove that E is the SIE of R under L by contradiction.
Assume that there is E′ ∈ IEL(R) , shared(R,E′) = shared(R,E) and E′ �= E

such that an execution fragment η ∈ ΓR satisfies ∃ γ ∈ ΣR⊗E . γCη and ∀ γ ∈
ΣR⊗E′ .¬(γCη) . Without loss of generality, it is possible to suppose η = vav′ .

1 In fact, E amounts to the comprehensive legal environment (CLE) of R when V = ∅ ,
where V is the set of desired unreachable states. The definition of CLE refers to [11] .

224 Y. Zhang et al.

According to the theorem, step (v, a, v′) must satisfy the precondition of prop-
erty 2 . If a ∈ shared(R,E) , then there are two cases. Case 1, if (v, a, v′) ∈ T I

R

then there is ∃α ∈ φL(ΣR) . vav′ (α . Since ∀ γ ∈ ΣR⊗E′ .¬(γCη) , E′ is not
an inclusive environment of R under L . This contradicts the assumption. Case 2,
if (v, a, v′) ∈ T O

R then there must exist the corresponding step of (v, a, v′) in any
environment of R by Definition 3 . Similarly, if a /∈ shared(R,E) , then there must
exist the corresponding states of v and v′ in any environment ofR . Thus, vav′ must
be covered by runs of R⊗E′ . This also contradicts the assumption. In a word, the
assumption is wrong. Hence, E is a SIE of R under L by Definition 8 .

(Necessity) By Definition 8, there is ∀α ∈ φL(R) . ∃ γ ∈ ΣR⊗E . γCα . Thus,
property 1 in the theorem holds obviously by Definition 6 .

Suppose that η=v0a0v1a1 · · · aivi+1 · · · an−1vn ∈ ΓR , 0 ≤ i < n satisfies that
v0 ∈ V init

R , ∃α ∈ φL(R) . η (α and ∀ τ (η .∃β ∈ φL(R) . τ ∈ T I
R −→ τ (β .

If a0 ∈ shared(R,E) , then there are two cases. Case 1, if (v0, a0, v1) ∈ T I
R then

there must exist the corresponding step of (v0, a0, v1) in E by property 1 in
the theorem. Case 2, if (v0, a0, v1) ∈ T O

R there must exist the corresponding
step of (v0, a0, v1) in E by Definition 3 and 6 . If a0 /∈ shared(R,E) then there
must exist the corresponding state of v0 and v1 in E by Definition 6 . Assume
that in E there exists the corresponding step of (vk, ak, vk+1) , 0 < k < i − 1
if ak ∈ shared(R,E) and there exist the corresponding states of vk and vk+1 if
ak /∈ shared(R,E) . Observe the situation when k = i . If ai ∈ shared(R,E) then
there are two cases. Case 1, if ai ∈ AI

R then there must be (vi, ai, vi+1) ∈ T I
R .

Since ∃β ∈ φL(R) . viaivi+1 (β , there must exist the corresponding step of
(vi, ai, vi+1) in E by property 1 in the theorem. Case 2, if ai ∈ AO

R then there
must exist the corresponding step of (vi, ai, vi+1) in E because of AO

R = AI
E

by Definition 3 . If ai /∈ shared(R,E) then there must exist the corresponding
state of vi+1 that is the corresponding state of vi in E by Definition of 6 . Thus,
property 2 holds by induction.

As follows, we prove that property 3 holds by contradiction.
Assume that there are the corresponding step of τ ∈ TR when label (τ) ∈

shared(R,E) or the corresponding states of head(τ) and tail (τ) when label (τ) /∈
shared(R,E) , where step τ does not satisfy the preconditions of property 1
and 2 . Without loss of generality, suppose that τ = (v, a, v′) and there is
∀α ∈ Σ . ∀β ∈ φL(ΣR)\Σ . τ (α∧τ �(β , where Σ ⊆ φL(ΣR) . This meaning is
that τ is only on runs in Σ ⊆ φL(ΣR) . If τ ∈ T I

R∧label (τ) ∈ shared(R,E) then a
new IA E′ can be obtained by deleting the corresponding step of τ from E . It is
possible to conclude that E′ ∈ IEL(R) and vav′ is not covered by runs of R⊗E′ .
Thus, E is not the SIE of R under L . This contradicts the known condition. If
τ /∈ T I

R ∨ label (τ) /∈ shared(R,E) then there must be ∀α ∈ Σ . ∃ τ ′ ≺α τ . ∀β ∈
φL(ΣR) . τ ′ ∈ T I

R ∧ τ ′ �(β . Otherwise, τ must satisfy the precondition of prop-
erty 2 . Let T (τ) =

{
τ ′ ∈ T I

R | ∀α ∈ Σ . ∃ τ ′ ≺α τ . ∀β ∈ φL(ΣR) . τ ′ �(β
}

. A new
IA E′ can be obtained by deleting the corresponding steps of all step in T (τ)
from E . Note that the corresponding state of v is unreachable in E after the
deletion. It is possible to conclude that E′ ∈ IEL(R) and vav′ is not covered

Scenario-Based Component Behavior Derivation 225

by runs of R ⊗ E′ . Thus, E is not the SEI of R under L . This contradicts the
known condition. To sum up, the assumption is wrong. Hence, property 3 holds.

In conclusion, if E is the SIE of R under L then it holds property 1, 2 and 3 .
Therefore, necessity holds. ��

Proof of Theorem 3

1. According to Definition 8, the conclusion holds obviously.
2. According to Theorem 3.10 in [11] , it is possible to conclude that for any

environment E of R , η2 cannot be covered by any runs of R⊗E if any one
of (a) to (c) holds. Since η2 (α , α cannot be covered by any runs of R⊗E
either. Also, since ∃ � ∈ L . � ∝ α , inclusive environment of R under L does
not exist according to Definition 8 .

By 1 and 2, the theorem holds. ��

Proof of the Correctness of Algorithm 1 . According to the algorithm,
there is φL(ΣR) = φL(ΣR′) . Thus, the return of Algorithm 1 holds property 1
in Theorem 2 . By line 5 to 18 in Algorithm 1 , it is possible to conclude that all
steps of R that satisfy the precondition of property 2 in Theorem 2 are steps of
R′ . Thus, the return of Algorithm 1 holds property 2 in Theorem 2 . By line 5
to 18 , it is possible to conclude that any step of R , say τ , which satisfies the
property 3 in Theorem 2 is not the step of R′ , because there is τ ∈ T or head(τ)
is unreachable in R after deleting all steps in T from R . Thus, the return of
Algorithm 1 holds property 3 in Theorem 2 .

Accordingly, the return of Algorithm 1 is the SIE of R under L by Theorem 2 .
In conclusion, the correctness of Algorithm 1 holds. ��

Verification of Computation Orchestration Via Timed
Automata

Jin Song Dong, Yang Liu�, Jun Sun, and Xian Zhang

School of Computing,
National University of Singapore

Tel.: +65 68742834; Fax: +65 6779 4580
{dongjs, liuyang, sunj, zhangxi5}@comp.nus.edu.sg

Abstract. Recently, a promising programming model called Orc has been pro-
posed to support a structured way of orchestrating distributed web services. Orc
is intuitive because it offers concise constructors to manage concurrent commu-
nication, time-outs, priorities, failure of sites or communication and so forth. The
semantics of Orc is also precisely defined. However, there is no verification tool
available to verify critical properties against Orc models. Instead of building one
from scratch, we believe the existing mature model-checkers can be reused. In
this work, we first define a Timed Automata semantics for the Orc language,
which we prove is semantically equivalent to the original operational semantics of
Orc. Consequently, Timed Automata models are systematically constructed from
Orc models. The practical implication of the construction is that tool supports
for Timed Automata, e.g., UPPAAL, can be used to model check Orc models. An
experimental tool is implemented to automate our approach.

1 Introduction

The prevalence of the Internet and web services raises the request of service-oriented
computing [22], which can invoke remote services, process the results and communi-
cate results with other terminals. However, it is very difficult and complex to design an
orchestrating system with concurrency and synchronization using practical program-
ming languages because these traditional languages use threads for concurrency and
semaphores for synchronization. Even the higher-level libraries, like channel and work-
ing pool, have to be built up based on these primary elements.

Recently, a promising programming language Orc [17, 6] has been proposed for or-
chestrating distributed services in a structured manner. It abstracts all computations,
web services and time control mechanisms as site calls, which are implemented by
primitive remote procedures. With this abstraction, it provides a concise syntax for con-
current site call executions, threads synchronization and message passing. In addition,
slow response and service failure can be easily handled using timing site calls. Us-
ing Orc, complicated orchestrating problems can be easily understood and constructed
without worrying about the programming details.

Orc is as well precise and elegant. Both operational semantics [17] and denotational
semantics (a tree semantics [18]) are defined. However, as a new emerging language,

� Corresponding author.

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 226–245, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Verification of Computation Orchestration Via Timed Automata 227

there are no formal verification mechanisms to systematically verify critical properties
over systems modelled in Orc. In this work1, we address the verification problem of
the Orc language. Our aim is to detect possible violations of critical properties, espe-
cially timing properties, of Orc programs using an existing mature model checker. Our
approach starts with defining an executable model in Timed Automata [1] for Orc ex-
pressions, which conforms with the semantics of the Orc language as defined in [6]. As
a natural consequence, existing tool support for Timed Automata, e.g., UPPAAL [4], can
be used for verification of Orc models. We use two examples, namely Auction Site and
Purchase Order Handling System, to demonstrate our approach. Moreover, we imple-
ment a tool to construct UPPAAL models automatically from Orc models. Constrained
by the Timed Automata theories, our approach focuses a subset of Orc language that is
regular, type-safe and with a finite number of threads.

Orc has a strong theoretical foundation in process algebras, particularly CCS [15],
CSP [12] and π-calculus [16]. These process algebras provide fundamental models of
concurrency in which processes communicate over channels. However, Orc is differ-
ent from the above process algebras as Orc permits integration of arbitrary components
(sites) in a computation. More importantly, Orc has timing control to handle the site
failures. Traditional process algebras have well established model checking theories
and tool supports, e.g., FDR2 [20] for CSP, and FOλ

� �
[24] for π-calculus. Because

of the absence of quantitative timing support, none of these tools can model and verify
timing aspects of complex systems. There are some process algebras with time exten-
sions, e.g., Timed CSP [21]. Unfortunately, there is no good model checker available2.
Timed Automaton [1] is a notation developed for modelling and verification of real-time
systems. It is a specialized finite state machine with clocks. Well developed automatic
verification tools are available for Timed Automata [4, 7, 23]. This gives the inspiration
of this work. Our Timed Automata semantics for Orc would allow Timed Automata
verification techniques, theories and tools, to be applied to Orc.

Our work is related to works on BPEL4WS verification [10, 19] as BPEL4WS shares
many common elements with Orc. BPEL4WS [13] (Business process orchestration lan-
guages for web services) is an XML based business process orchestration language.
Both BPEL4WS and Orc orchestrate the web services by using process composition
(sequential and parallel) and communication (synchronous and asynchronous). How-
ever they are different in several ways. BPEL4WS has a rich set of the language struc-
tures to ease the process design. Orc’s concise syntax allows the reuse of the process
definitions. BPEL4WS has variables to store the state of the communications and is
able to receive calls from client web services. Orc is more abstract and as it focuses
on process and communication. Orc has a well-defined semantics. Our work therefore
focuses on defining an equivalent semantics for Orc in Timed Automata so as to use
existing tools.

The rest of the paper is organized as follows: Section 2 briefly introduces the Orc lan-
guage and the notation of Timed Automata. Section 3 presents an executable modelling

1 Besides this work, our research team recently starts to work on a reasoning tool for Timed
CSP.

2 To our knowledge, the only tool support for TCSP is the preliminary PVS encoding of TCSP
in Brooke’s PhD thesis [5].

228 J.S. Dong et al.

in Timed Automata for each and every constructor in Orc. Section 4 demonstrates how
UPPAAL is used to verify the Orc language using two case studies. Section 5 concludes
the paper with possible future works.

2 Background

This section is devoted to a brief introduction to the relevant languages and notations,
namely the Orc computation model and Timed Automata.

2.1 Orchestration Language Orc

The syntax and informal semantics of Orc are described in this section. Formal defini-
tion of Orc semantics can be found elsewhere at [6].

In the following syntax, E is an expression name, M a site name, x a variable, c a
constant, P a list of actual parameters and Q a list of formal parameters.

D ∈ Decl ::= E(Q) =̂ f
f , g ∈ Expression ::= 0 ‖M(P) ‖ E(P) ‖ f >x> g ‖ f | g ‖ f where x :∈ g
p ∈ Actual ::= x ‖ c ‖M
q ∈ Formal ::= x ‖M

Declaration E(Q) =̂ f defines expression E whose formal parameter list is Q and body is
expression f . An expression is either elementary or a composition of two expressions.
An elementary expression is either: (1) 0, a site which never responds, (2) a site call
M(P), or (3) an expression call E(P). Orc has three composition operators: (1) >x>
for sequential composition, (2) | for symmetric parallel composition, and (3) where for
asymmetric parallel composition.

Site. The basic element of Orc expression is a site call. A site is a separately defined
procedure, e.g., a web service implemented on a remote machine. A site call can give
at most one response; it is possible that a site never responds to a call, which is treated
as non-terminating computation. A site call has the same form as a function call: the
name of a site followed by an optional list of parameters. For example, calling site
Google(w) where Google is an internet search engine and w is a keyword, may return
the web sites links related to the keyword. Calling Email(a,m) sends message m to
address a, causing a permanent change in the recipient’s mailbox, and returns a signal
to denote completion of the operation. Site calls are strict, i.e., a site is called only if all
its parameters have values. Table 1 lists the fundamental sites used in Orc for effective
programming.

Sequential Composition Operator. Sequential operator >x> allows strict sequencing
of site calls. For example, Google(w) >m > Email(a,m) will first call site Google,
and name the returned value as m. After that Email(a,m) is called. If either site fails
to respond, then the evaluation returns no value. The simpler notation M + N is used
when the value returned by site M is of no significance. To send two emails in sequence
and then call Notify, we write

Email(addr1,m)+ Email(addr2,m)+ Notify

Verification of Computation Orchestration Via Timed Automata 229

Table 1. Fundamental Sites

0 never responds. It can be used to terminate a computation.
let(x, y, ...) returns a tuple consisting of the values of its arguments.

Clock returns the current time at the server of this site as an integer.
Atimer(t) where t is integer and t ≥ Clock, returns a signal at time t.
Rtimer(t) where t is integer and t ≥ 0, returns a signal after exactly t time units.

if (b) where b is boolean, returns a signal if b is true, and remains silent
(no response) if false.

Signal returns a signal immediately. It is the same as Rtimer(0).

Symmetric Parallel Operator. Symmetric parallel operator | gives the power of multi-
threaded computation. Evaluation of f | g, creates two threads to compute f and g
respectively. The result from f | g is the interleaving of these two streams in time order.
If both threads produce values simultaneously, they are merged arbitrarily. Operator | is
commutative and associative. An interesting expression is (Google(w) | Yahoo(w)) >
m> Email(a,m). Here, the first part (Google(w) | Yahoo(w)) may publish multiple
values, and for each value v, we call Email(a,m) where m is set to v. Therefore, the
evaluation can cause up to two emails to be sent, one with the value from Google and
the other from Yahoo.

Asymmetric Parallel Operator. The asymmetric parallel operator where is used to
prune portions of a computation selectively: Email(a,m) where m :∈ (Google(w) |
Yahoo(w)) sends at most one email, with the first value received from either Google
or Yahoo. In this expression, Email(a,m) and (Google(w) | Yahoo(w)) are evaluated
simultaneously. Email(a,m) is blocked because m does not have a value. Evaluation of
(Google(w) | Yahoo(w)) may return up to two values; the first value is assigned to m
and further evaluation of this expression is then terminated. After that, Email(a,m) is
unblocked and executed.

Expression Definition. An expression is defined like a procedure, with a name and
possible parameters, though it may return a stream of values. As an example, consider
the following restaurant reservation process, where R1 and R2 are two restaurants, and
t is the meal time. The user is notified for the first acknowledgement received from the
two restaurants, if any.

Reservation(t) =̂ Notify(x) where x :∈ R1(t) | R2(t)

Recursive definition is also supported in Orc. The following expression defines a Clock
using Rtimer(t), which emits a signal every time unit, starting immediately.

Clock =̂ Signal | Rtimer(1)+ Clock

Dining Philosophers. An example of using Orc is the classical dining philosophers
problem, originally presented in [17]. There are N Philosophers, sitting around a table.
Every pair of neighbors shares a fork. The fork to the left of Philosopher i is Forki and

230 J.S. Dong et al.

to his right is Forki′(i′ = (i + 1) mod N). Philosopher i can eat only if it holds both left
and right forks. A philosopher’s life cycle consists of the following activities: acquire
the two adjacent forks, eat, and release the forks. Because of the seating arrangement,
neighboring philosophers can not eat simultaneously.

Each Forki is modelled as a FIFO buffered channel which is either empty (if some
philosopher holds the corresponding fork) or has one signal (if no philosopher holds the
fork). We write Forki.put to send a signal along the channel and Forki.get to get a signal
from the channel. Initially, each channel holds a signal. In this example, Pi (0 ≤ i < N)
depicts philosopher i, where the right neighbor of Pi is Pi′ (i′ = (i +1) mod N), and Eat
returns a signal on completion of eating.

Pi =̂ (let(x, y)+ Eat+ Forki.put+ Forki′ .put
where x :∈ Forki.get, y :∈ Forki′ .get)+ Pi

The dining philosophers problem can be represented as:

DP =̂ P0 | P1 | · · · | PN−1

This definition of dining philosophers can lead to deadlock. To avoid deadlock, philoso-
phers should pick up their forks in a specific order. For instance, all except P0 pick up
their left and then their right forks, and P0 picks up its right and then its left fork.

P′
0 =̂ Fork1.get+ Fork0.get+ Eat+ Fork1.put+ Fork0.put+ P′

0
P′

i(1 ≤ i < N) =̂ Forki.get+ Forki′ .get + Eat+ Forki.put+ Forki′ .put+ P′
i

DP′ =̂ P′
0 | P′

1 | · · · | P′
N−1

2.2 Timed Automata and UPPAAL

Timed Automata are finite state machines equipped with clocks. It is a formal notation
to model behaviors of real-time systems. Its definition provides a general way to anno-
tate state transition graphs with timing constraints using finitely many real-valued clock
variables. Given a set of clock C, the set of clock constraints Φ(C) is defined as:

φ := x ≤ c | c ≤ x | x < c | c < x | φ1 ∧ φ2

where x is a clock variable and c is a real number.

Definition 1 (Timed Automata). A timed automatonA is a 6-tuple 〈S, s0, Σ,C, I, T〉,
where S is a finite set of states, s0 is the initial state, Σ is the alphabet, C is a finite
set of clocks, I : S → Φ(C) is a mapping from a state to a state invariant, and T ⊆
S×Σ × 2C × Φ(C)× S is the transition relation. �

In Timed Automata, a state is associated with an invariant, while a transition is labelled
with a synchronization action, a guard (a constraint on clocks) and a clock reset (a set
of clocks to be reset). Intuitively, a timed automaton starts execution with all clocks
initialized to zero. The automaton can stay at a node, as long as the invariant of the
node is satisfied, with all clocks increasing at the same rate. A transition can be taken
if the values of the clocks fulfill the guard. By taking the transition, all clocks in the

Verification of Computation Orchestration Via Timed Automata 231

clock reset are set to zero, while the clocks not in the clock reset keep their values. For
example, Figure 1 illustrates some simple timed automata. Graphically, a double-lined
circle indicates an initial state. Typically, a Timed Automata modelling of complex
systems would consist of a network of timed automata3.

Definition 2 (Timed Automata Network). A network of timed automata is the parallel
composition of a collection of A1, . . . ,An, denoted as A1 ‖ · · · ‖ An. A transition of
the network of timed automata is either a local step of one of the automata where
(s1, e, c, i, s2) ∈ Ai ∧ e �∈ (

⋃
k:1..n∧k 	=i Σk) or a pairwise synchronization between two

automata where (s1, e!, c, i, s2) ∈ Ai and (s′1, e?, c′, i′, s′2) ∈ Aj. �

UPPAAL [4] is our choice of model-checker for verifying a network of timed automata
because of its efficiency (both for model-checking and simulation) as well as its wide
recognition. UPPAAL is a tool for modelling, simulation and verification of real-time
systems modelled as timed automata. It consists of three main parts, a system editor
which provides a graphical interface to design timed automata, a simulator and a model
checker. The simulator is a validation tool which enables examination of possible dy-
namic executions of a system and thus provides an inexpensive mean of fault detection
prior to verification by the model checker which covers the exhaustive dynamic behav-
ior of the system. The model checker checks invariant and bounded liveness properties
by exploring the symbolic state space of a system. The properties are expressed as a rich
subset of TCTL [11]. In a nutshell, UPPAAL is a model checker for systems that can be
modelled as a collection of non-deterministic processes with finite control structure and
real valued clocks, communicating through channels or shared variables. Typical ap-
plications include real-time controllers and communication protocols, e.g., those where
timing aspects are critical. In this work, we extend its application to orchestration of
web services.

3 Timed Automata Semantics for Orc

This section is devoted to a definition of Timed Automata semantics for Orc models,
which allows us to systematically construct the Timed Automata model from an Orc
model. The practical implication is that we may then reuse existing tools and theo-
ries for Timed Automata to achieve various purposes, for instance, synthesis of imple-
mentation [3], simulation [2], theorem proving [14] or more importantly formal ver-
ification [4]. In the following, the Timed Automata semantics for Orc expressions is
formally defined. The dining philosophers example is used as a running example.

Definition 3 (Zero Site). A zero site 0 is modelled as an automaton A0 where S =
{si, s1} and Σ = {call0} and C = ∅ and I = ∅ and T = {si, call0,∅, true, s1}. �

A zero site is a site that never responds. Thus there is no publish event, as illustrated in
Figure 1(a). The formal definition of the automaton for the fundamental site Rtimer(t)
is presented below, which plays the central role in the timing aspect of the orchestration.

3 We may treat an automata network as one automata by constructing the product. However,
leaving it as a network saves us from the state space explosion problem as well as allowing us
to benefit from optimization built in the timed automata tools.

232 J.S. Dong et al.

Si S1

call_0

(a): Zero Site

Si S1

x<=t

call_Rtimer(t)

x:=0

x==t

get_Rtimer(t)

(b): Rtimer(t)

Si S1

call_if

[b]

get_if

(c): if

Si S1

x=0

call_signal

x:=0

get_signal

(d): Signal

Fig. 1. Fundamental Sites

Definition 4 (Rtimer(t)). A Rtimer(t) site is modelled as an automatonARtimer(t) where
S = {si, s1} and Σ = {callRtimer(t), getRtimer(t)} and C = {x} and I = ∅ and T =
{(si, callRtimer(t), {x}, true, s1), (s1, getRtimer(t),∅, x = t, si)}. �

The Timed Automaton for Rtimer(t) is illustrated in Figure 1(b). Once the site is called
via the synchronization on the callRtimer(t) event, the local clock x is reset to 0. After
exactly t time units, the calling site is notified via the getRtimer(t) event. Notice that we
adopt the synchronous semantics of Orc in this definition. In the asynchronous seman-
tics, arbitrary delays in processing events are allowed, including the callRtimer(t) event.
Consequently, all we can assert about the call to Rtimer(t) is that client will receive the
signal sometime after t unit delay, which is too weak for program time-outs or timed-
interrupts. We believe that the synchronous semantics is intuitive and powerful. How-
ever, the asynchronous semantics can be easily captured by changing the Φ(C) on the
transition from s1 to si as x ≥ t and removing the state invariant on state s1.

Similarly, fundamental sites callif and callSignal are defined as timed automata as
well, which are illustrated in Figure 1 (c) and (d) respectively. callAtimer(t) is ignored
since Atimer(t) can represented as Rtimer(t − c), where c is the current clock value.
calllet is a simple Timed Automaton similar to callif , but the second transition is the
publish event without condition b.

The fundamental sites presented so far are defined as the complete expression calls
(see definition 9). If we only consider timed automata for the Orc contracts of the fun-
damental sites, then the call events should be removed, e.g., the zero site 0 contains just
a single state without any transitions.

Definition 5 (Site Call). A site call M(P) is modelled as an automaton AM(P) where
S = {si, s1, s2, s3}, Σ = {callM(P), getM(P), publishM(P)}, C = ∅, I = ∅, and T =
{(si, callM(P),∅, true, s1), (s1, getM(P),∅, true, s2), (s2, publishM(P),∅, true, s3)}. �

Verification of Computation Orchestration Via Timed Automata 233

Si S1 S2 S3

call_M(P) get_M(P) publish_M(P)

Fig. 2. TA for Site Call

Si S2S1

call_Rtimer(t) get_Rtimer(t)

Fig. 3. TA for Rtimer(t) Call

Free Occupied

fork_i_get

fork_i_put

Fig. 4. TA for Forki

A site call is modelled as a timed automaton allowing a call event which invokes
the service and a get event which gets the response from the called site and a publish
event which publishes the response, illustrated in Figure 2. This conforms the opera-
tional semantics of site call, i.e., the three steps of invocation, response, publication as
in [6].

A special kind of site calls is the calls to Rtimer(t) and Signal because of the tim-
ing constraints. The invocation of Rtimer(t) site is shown in Figure 3 (Signal calls are
ignored for the similarity). The initial state is set as committed state4, which will fire
the outgoing event callRtimer(t) immediately with the top priority among all transitions.
The finishing state is set as an urgent state5, which stops the timer in the finishing state.
By using the committed and urgent states, we can get exactly t time units between the
initial state and finishing state.

The behavior of the external called site must be specified as a separate timed au-
tomaton for the sake of verification. For example, the behaviors of the forks in the
dining philosophers example are modelled as in Figure 4, where the user may repeat-
edly get the fork and then put it back. Consequently, a site call Forki.put is interpreted
as a synchronization on the callForki.out (simplified as Forki.put in this example). For an
abstract site call like Eat, instead of building a trivial automaton which synchronizes
on the call event and then returns a signal, it is treated as an abstract local event for the
sake of efficient verification6.

Definition 6 (Sequential Composition). Let the automata network of g beAg =̂ A1 ‖
. . . ‖ An. A sequential composition f >x> g is modelled as a timed automata network
Af>x>g =̂ Af ‖ A′

g where, A′
g =̂ (A′

1 ‖ . . . ‖ A′
n)k and for all i : 1 . . n, A′

i =̂
〈S, si,Σ,C, I, T〉 where S = Ai.S ∪ {si} and Σ = Ai.Σ ∪ {publishx} and C = Ai.C
and I = Ai.I and T = Ai.T ∪ {(si, publishx,∅, true,Ai.si)}. �

Notice that a channel7 named publishx is defined to synchronize the publishing of a
value of x and the receiving of the value.

A sequential composition is modelled as, in general, a network of timed automata.
The network of f is untouched, whereas the automata in the network of g have to syn-
chronize on the event publishx before making a step. If there is no value passing between

4 In UPPAAL, committed states freeze time. If any process is in a committed location, the next
transition must involve an edge from one of the committed locations.

5 In UPPAAL, urgent states are semantically equivalent to adding an extra clock x, that is reset on
all incoming edges, and having an invariant x ≤ 0 on the location. Hence, time is not allowed
to pass when the system is in an urgent location.

6 In UPPAAL, it corresponds to a transition labelled with no channel event.
7 In UPPAAL, a broadcast channel is used here in order to do the synchronization for all paral-

leled automata in the g.

234 J.S. Dong et al.

publish_fork_i’_put fork_i_get publish_fork_i_get

(a) TA for Forki.get

publish_fork_i’_get fork_i_put publish_fork_i_put

(c) TA for Forki.put

publish_fork_i_get fork_i’_get publish_fork_i’_get

(b) TA for Forki′ .get

publish_fork_i_put fork_i’_put publish_fork_i’_put

(d) TA for Forki′ .put

Fig. 5. Network of Automata for P′
i(1 ≤ i ≤ N)

the Orc expressions, the first publishing signal, i.e., event publishx, is used to precede
the automata for expression g.

To abuse the notations, we use Ak to denote a network containing k copies of the
same automatonA. The network of f is parallel-composed with multiple copies of net-
work of g. Every time a new value of x is published, a new instance of the g component
is created and starts execution. In general, there would be infinite number of overlapping
activations of the g component. However, if we assume the g part executes reasonably
fast (and terminating), we need only a finite number of copies of g to fork and reuse
them once they are terminated. For the sake of verification of real world applications,
we always assume that there is an upper bound on the number of overlapping activa-
tion of the g part. For example, Figure 5 presents the automata interpretation of the
P′

i(1 ≤ i ≤ N) in the dining philosophers example, where each site call is model as a
TA and local event eat has been removed for simplicity. In general, multiple copies of
each of the automata is required. However, only one copy for each automaton is shown
as that is all that is needed in this case.

Definition 7 (Symmetric Parallel Composition). A symmetric parallel composition
f | g is modelled as a network of two timed automata (networks)Af ‖ Ag. �

A symmetric parallel composition is modelled as two automata (networks) running in
parallel. There is no communication between the f and g. f and g are probably remote
site call to services which run independently on remote machines. Thus, two automata
(networks) sharing no common event are used to capture the interleaving behaviors.
For example, the automata network for DP′ in the dining philosophers example is the
network containing the networks in Figure 5 (one for each i).

The last compositional constructor of Orc is the asymmetric parallel composition,
denoted f where x :∈ g. According to the semantics in [6], the g expression terminates
as soon as one value of x is published. This kind of dynamic termination of timed
automata is achieved through the use of a shared global flag.

Definition 8 (Asymmetric Parallel Composition). Let flag be a global boolean vari-
able. It is initially true. Let the network of the expression g be Ag =̂ A1 ‖ · · · ‖ An.
An asymmetric parallel composition f where x :∈ g is modelled as a network of timed
automata Af where x:∈g =̂ Af ‖ A′

g where, A′
g = A′

1 ‖ · · · ‖ A′
n and for all i : 1 . . n,

A′
i =̂ 〈Ai.S,Ai.si,Ai.Σ,Ai.C,Ai.I, T〉 where

Verification of Computation Orchestration Via Timed Automata 235

T = {(s1, publishx, cl′, gc, s2) | (s1, publishx, cl, gc, s2) ∈ Ai.T}
∪{(s1, e, cl, gc ∧ flag, s2) | e �= publishx ∧ (s1, e, cl, gc, s2) ∈ Ai.T}

wherecl’setsflagtofalseandresetstheclocksinclusingassignmentinUPPAAL. �

As soon as a publishing of x is achieved, the global flag is set to be false (this is atomic
since they are on the same transition). Consequently all transitions in the network of the
expression g are blocked. Therefore, the network of g terminates. Notice that the flag
is carefully implemented so that it is local to the automata in A′

g (by defining a unique
global variable for each activation of the network). The execution of Af is not blocked
until a synchronization on event publishx is required. Therefore, it may make steps in
parallel or even before g does. We remark that while our definitions of timed automata
interpretation for Orc expression are generic, there are plenty of simplifications and
optimizations to be performed on the constructed timed automata. For example, the Pi

expression is modelled (and simplified) as the automaton in Figure 6.

fork_i_get fork_i’_get

fork_i’_get fork_i_get

eat_i fork_i_put fork_i’_put

Fig. 6. Timed Automata for Pi

Definition 9 (Expression Call). An expression call is E(P) with E(P) =̂ f is modelled
as the network of timed automata for f prefixed by the callE(P) event, i.e., AE(P) =̂
〈S, si,Σ,C, I, T〉, where S = {si ∪ Af .S} and Σ = {callE(P) ∪ Af .Σ} and C = Af .C
and I = Af .I and T = {(si, callE(P),∅, true,Af .si) ∪ Af .T}. . �

For each parameter x of the expression call, a channel publishx is defined to synchronize
with the publishing of a value of the parameter x. In case there are multiple parameters,
the expression call is executed only after all the parameters get their values (via syn-
chronization on the corresponding channels). Publishing of the parameters may occur
in any order.

For simple recursion where there is only one automaton instead of an automata net-
work when the recursion call is reached (with our simplification and optimization done),
we connect the last state to the initial state to make a loop, e.g., the automaton in Figure 6.
In general, recursion is resolved by replacing it with the least fixed point. However, Orc
does allow expressions like N = f | N where there could be infinite number of copies
of f . These kinds of expressions are disallowed for the sake of model checking.

The soundness of the Timed Automata modelling is proved by showing that there is a
weak bi-simulation relation between the timed automata and the operational semantics
of Orc. The following theorem is proved by a structural induction over our definitions
and the operational semantics of Orc defined in [17] (see Appendix for the proof details).

Theorem 1. For any Orc expression8 f , Af ≈ Of , where Of is the state transition
system constructed from the operational semantics of Orc in [17]. �

8 We focus on a subset of Orc langauge that is regular, type-safe and with a finite number of
threads (see Section 4 for details).

236 J.S. Dong et al.

Si S1 S2 S3

call_M(P)

q1:=p1;
q2:=p2;
...
qn:=pn

get_M(P) publish_M(P)

Fig. 7. TA for Site Call with Value Passing

Si S1 S2

call_M(P) publish_M(P)

M_Return:=v

Fig. 8. TA for Site with Value Passing

Value Passing Handling
Timed Automata do not have notions for variables and assignments. Fortunately UP-
PAAL as an extension of Timed Automata introduces variables (both local and global)
and variable assignments (in events). Hence parameter passing can be realized through
some globally shared variables since no data can be attached along a channel commu-
nication. It is obvious that these shared variables must have unique names. Because the
names of site calls are unique, we prefix all the formal parameters’ names with their site
call names. The return values of each site call are named as site call name + “Return”.

To invoke a site call, the formal parameters are assigned to the value of actual pa-
rameters in the call event in the Site Call model. The complete model of callM(P) is
shown in Figure 7. The return value of a site is assigned in the publish event in the Site
model (Figure 8). The sequential composition f >x> g has an additional assignment
x := fReturn for variable x in the publish event of f . Similarly for asymmetric parallel
composition f where x :∈ g , we add the assignment x := gReturn in the publish event
of g. The expression call E(P) =̂ f has also an assignment in the publish event for its
return value.

4 Verification Using UPPAAL

This section is devoted to a discuss on how to use tool support for Timed Automata, in
particular UPPAAL, to formally analyze the constructed Timed Automata. In general,
our modelling of Orc may end up with a network containing an infinite number of
automata (see Definitions 6 and 9). One piece of evidence of an possibly infinite number
of automata is that Orc in general allows an irregular language (as in automata theory).
Our target is therefore a subset of Orc langauge that is regular, type-safe and only allows
a finite number of threads. Some Orc examples that we regard as problematic are as the
following:

P =̂ b | a+ P+ c, where a, b, c are sites or even expressions
M =̂ f (x) where let(0) | Signal
N =̂ x where x :∈ N

P in general allows the language of the form anbcn which is a typical example of an
irregular language. It is a known fact that such languages can not be expressed using
finite automata. Therefore, they are beyond automata-based model checking. M is not
type safe because the type of x can be either integer 0 or a signal. In general, x could be
any type. This as well presents a problem to current model-checking techniques. Lastly,

Verification of Computation Orchestration Via Timed Automata 237

N allows an infinitely number of threads of f running independently, which would result
in an infinite internal loop without returning a value, i.e., a divergence in CSP’s terms.

4.1 Automated Construction

We developed an experimental tool to automatically construct UPPAAL models from
Orc models using XML and Java technology. We start with parsing the Orc program and
building an Abstract Syntax Tree. Afterwards, each Orc language construct is converted
to a timed automaton or a network of time automata according to our definitions in
Section 3. The output of the program is an XML representation of the UPPAAL model,
which is ready to be employed and verified. The experimental tool and Orc examples
appeared in this paper can be found on the web [9].

We briefly mention some of the implementation issues here. Because UPPAAL does
not allow data to pass through channels, global variables are carefully defined to pass
along the values, i.e., a publish event is always attached with an assignment to the
respective global variable. An aggressive simplification procedure is applied whenever
possible to simplify and optimize the constructed Timed Automata. For instance, when
we apply Definition 6, if we are certain there is only one copy of g required, we may
do the product of the two automata and remove the publish event given that it does not
affect the rest of the model. We also try to minimize the number of clock variables by
reusing the same ones as so to speed up the verification. However, the simplification
and optimization remains as a challenging task and we may improve it by considering
Orc laws.

Once the UPPAAL model is built, we may import it using UPPAAL and do veri-
fication. For example, it can be easily verified that the first Orc model of the dining
philosophers can lead to deadlock. In our experiment, we created 5 philosophers and 5
fork instances. Afterwards we checked if the model is deadlock free using the follow-
ing property: A[] not deadlock. UPPAAL reports that the property does not hold for the
system. A counterexample where all philosophers pick up their left fork can be found
via random simulation. In the case that the first philosopher always picks up the right
fork, we verify that the Orc model is deadlock-free and it satisfies properties like that
no more than half of the philosophers can be eating at the same time etc.

4.2 Case Study: Orchestrating an Auction

In this subsection, we demonstrate the construction of the UPPAAL model from Orc
as well as property checking through a typical web-based application, i.e., running an
auction for an item. This example was originally presented in [17].

First, the item is advertised by calling site Adv(v0), which posts its description and
a minimum bid price at a web site. Bidders put their bids on specific channels. In UP-
PAAL, a template called Bidder is built, which outputs a bid on channel bid. In general,
there are multiple Bidders. A Multiplexor is used to merge all the bids into a single
channel, i.e., bid. The Timed Automata for the sites (like, Adv(v0), PostNext(m) and
PostFinal(n)) used in this example are not shown, because they have the same structure
as the TA in Figure 8.

238 J.S. Dong et al.

call_bid_i_get!
x>u

x<=u

call_next_bid?

publish_next_bid!

next_bid_return:=x

call_next_bid? x:=bid_i_get_return

bid_i_get_publish?

(a): Timed Automata for nextBid(u)

call_bids? call_next_bid!

u:=v

publish_next_bid?

y:=next_bid_ret

call_bids?
publish_y!

(b):Timed Automata for Bids(v) part 1

publish_y?

publish_bids!

bid_ret:=y

(c):Timed Automata for Bids(v) part 2

publish_y?

call_bids!

v:=y

(d):Timed Automata for Bids(v) part 3

Fig. 9. Basic Sites in Auction Example

Multiplexori =̂ bidi.get >y> bid.put(y)+ Multiplexori

Multiplexor =̂ Multiplexor1 | Multiplexor2 | . . . | Multiplexori

Three variations on the auction strategy, Auctioni(v) (1 ≤ i ≤ 3) are considered. We
start the auction by executing z :∈ Auctioni(V) where V is the minimum acceptable bid.

Non-terminating Auction . The first solution continually takes the next bid from chan-
nel bid which exceeds the current (highest) bid and posts it at a web site by calling
PostNext.

nextBid(u) =̂ bid.get >x> {(if (x > u)+ let(x)) | (if (x ≤ u)+ nextBid(u))}
Bids(v) =̂ nextBid(v) >y> (let(y) | Bids(y))

Orc expression nextBid(v) returns the next bid from c exceeding v. The site call if (x >
v) returns a signal if x > v and remains silent otherwise. Bids(v) returns a stream of
bids from bid where the first bid exceeds v and successive bids are strictly increasing.
The following strategy starts the auction by advertising the item, and posts successively
higher bids at a web site. But the expression evaluation never terminates. The Timed
Automata of nextBid(u) and Bids(v) are shown in Figure 9. The Timed Automata of
nextBid(u) is simplified by combining the two if-condition automata with the main
nextBid(u) TA, because the two conditions (x > u) and (x ≤ u) are exclusive.

Auction1(p) =̂ Adv(p)+ Bids(p) >z> PostNext(z)+ 0

Following the Timed Automata semantics defined in Section 3, Auction1(v) is inter-
preted as the automata in Figures 10 and 11.

By checking with UPPAAL, we can see that this version of the auction system is
deadlock free, which means it never terminates. In this example, we assume that ex-
pression let(y) in Bids(v) is carried out fast enough so that there will not be an infinite
number of threads of let(y). In addition to deadlock-freeness, we may verify properties
like a bid is never lower than the minimum (see examples in Table 2).

Verification of Computation Orchestration Via Timed Automata 239

call_adv!

v0:=p

publish_adv? call_bid!

v:=p

publish_bids?

z:=bids_return

Fig. 10. TA for Auction1 part 1

publish_bids? call_post!

m:=z

publish_post? call_0!

Fig. 11. TA for Auction1 part 2

Table 2. Experiment Results

Orc Property Result Time(s) Remark
Auction1 A[] not deadlock true 20 Non-terminating.
Auction1 A[] not (PostNext.posted<250) true 3 No bid price lower 250.
Auction1 A[] not(old==0) imply new>old true 90 Price posted on the PostNext

site keeps increasing.
Auction1 E<> PostNext.posted == 500 true 1 Possible to post 500.
Auction2 A[] not deadlock false 1 Terminating.
Auction2 A[] PostFinal.postFinal imply true 150 Auction terminates after h

Auc.c>=h time units.
Auction2 A[] PostFinal.final == 1000 imply true 10 The final bid comes from

Bidder10.bid == true the respective bidder.
Auction3 A[] not deadlock false 1 Terminating.
Auction3 E[] not(PostNext.p1<h and true 60 It is not possible to post a

PostNext.p1>0) highest bid before h time units.

In order to save space, the automata in the next two examples have been simplified
whenever possible. Committed states are used to prevent undesired interleaving behav-
iors. For example, it is used to publish multiple signals at once for expressions like
let(x, y, z).

Terminating Auction. The previous program is modified so that the auction terminates
if no higher bid arrives for h time units (say, h is an hour). The winning bid is then posted
by calling PostFinal, and the goal variable is assigned the value of the winning bid. The
expression Tbids(v), where v is a bid, returns a stream of pairs (x, flag), where x is a bid
value, x ≥ v, and flag is boolean. If flag is true, then x exceeds its previous bid, and if
false then x equals its previous bid, i.e., no higher bid has been received in an hour.

Tbids(v) =̂ let(x, flag) | if (flag)+ Tbids(x)
where (x, flag) :∈ nextBid(v) >y> let(y, true) | Rtimer(h)+ let(v, false)

Auction2(v) =̂ Adv(v)+ Tbids(v) >(x, flag)>
{if (flag)+ PostNext(x)+ 0 | if (flag)+ PostFinal(x)+ let(x)}

In this auction, a new site call named PostFinal is added which is quite similar to
PostNext. The difference between a non-terminating auction and a terminating auc-
tion is that a time-out (h time unit) process is added. As time-out (or timed-interrupt)
is a typical timing behavior, we do define some templates to treat them specially and
effectively. A list of typical composable timing patterns formally defined in terms of
Timed Automata is available elsewhere in [8]. For example in Figure 12, we can use the

240 J.S. Dong et al.

Bid get

let

bid_put? x<=y

x>y
y:=x,c:=0,new:=x

y:=v,c:=0

call_adv!

call_postnext!

publish_adv?

c>=h

c>=h

c>=h

call_postfinal!

Fig. 12. Auction2: Terminating Auction

Bid get

let

Less

bid_put?
x<=y

x>y
y:=x

y:=i,c:=0, v:=i
call_adv!

publish_adv?

c>=h

c>=h

c>=h

not(v==y)
call_postnext!

v==y

call_postfinal!

c:=0

Fig. 13. Auction3: Batch Processing

typical way of dealing with time-out in Timed Automata by adding a clock to record the
time, as well as some clock constraints to guard the transitions. The constructed Timed
Automata for Auction2 is shown in Figure 12, in which c denotes the clock and h is a
constant.

Batch Processing. The previous solution posts every higher bid as it appears in channel
bid. It is reasonable to post higher bids only once each hour. Thus, the last solution
collects the best bid over an hour and posts it. If this bid does not exceed the previous
posting, i.e., no better bid has arrived in an hour, the auction is closed, the winning bid
is posted and its value is returned as the result. In the interest of space, we skip the Orc
model and the construction. The detail of the auction is available elsewhere in [17]. The
constructed Timed Automaton is presented in Figure 13.

In the verification experiment of auction example using UPPAAL, we created 10 Bid-
ders whose bid prices are from 200 to 1100, while the minimum bid price is 250. UP-
PAAL version 3.4 is installed on a machine running Windows XP with 3GHz Pentium 4
processor and 512MB memory. Some properties concerning all three auction strategies
together the verification time are illustrated in Table 2.

4.3 Case Study: Purchase Order Handling

In this subsection, we present an example for handling purchase order, which was orig-
inally presented by Mistra and Cook [13].

GetInv(custInfo,PO) =̂ ProduceInv(price, prodSchd) > inv > let(inv)
where (price, prodSchd) :∈

(let(x, y)
where x :∈ InitPriceCal(PO)+ GetPrice(shpInfo) > x > let(x)

y :∈ (InitProdSchd(PO)+ GetProdSchd(shpSchd) > y > let(y)
where shpSchd :∈ GetShpSchd(shpInfo)))

where shpInfo :∈ GetShpInfo(custInfo))
POHandling(custInfo,PO) =̂ MailInv(inv, custInfo)

where inv :∈ GetInv(custInfo,PO) | Rtimer(t)+ let(error)

On receiving the purchase order from a customer, the process initiates three tasks
concurrently: calculating the final price for the order, selecting a shipper, and schedul-
ing the production and shipment for the order. While some of the processing can pro-
ceed concurrently, there are control and data dependencies between the three tasks. In

Verification of Computation Orchestration Via Timed Automata 241

particular, the shipping price is required to finalize the price calculation, and the ship-
ping date is required for the complete fulfillment schedule. When the three tasks are
completed, invoice processing can proceed and the invoice is mailed to the customer.
If the invoice can not be generated within t time units, an error message is sent to the
customer.

The purpose of this example is to show that the complex Orc expression can be
represented by a clear UPPAAL model and the verification of time and data dependency.
The UPPAAL model and property checking of this example are skipped (refer to [9]).

5 Conclusion and Future Works

The contribution of our work is threefold. Firstly, we defined an automata-based seman-
tics for the Orc language, which allows a systematic construction of Timed Automata
models from Orc models. Secondly, we explored ways of use UPPAAL to verify critical
properties over Orc models. Lastly, we developed a tool to automate our approach.

There are some possible future works. One is better tool support of our approach,
e.g., a graphical user interface for editing Orc models, hiding UPPAAL programs and
visualizing counter examples if there are any, a better simplification and optimization
strategy, etc. Another possible future work concerns the inadequate data passing capa-
bility of Orc, i.e., no complex data structure is supported. Therefore, we might provide
a mechanism for introducing and manipulating data structures like arrays and tuples in
our tool. The long term objective of this work is to investigate the relationship between
process algebras and automata theories, e.g., provide theories and tools for applying
automata-based model-checking to languages and notations based on process algebra.

Acknowledgements

The authors would like to thank Prof. Jayadev Misra for insightful discussion on the
Orc language and pointing out relevant papers.

References

1. R. Alur and D. L. Dill. A Theory of Timed Automata. Theor. Comput. Sci., 126(2):183–235,
1994.

2. T. Amnell, A. David, and Y. Wang. A Real-Time Animator for Hybrid Systems. In J. W.
Davidson and S. L. Min, editors, LCTES, volume 1985 of Lecture Notes in Computer Science,
pages 134–145. Springer, 2000.

3. T. Amnell, E. Fersman, P. Pettersson, H. Sun, and Y. Wang. Code Synthesis for Timed
Automata. Nord. J. Comput., 9(4):269–300, 2002.

4. J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and Y. Wang. UPPAAL - a Tool
Suite for Automatic Verification of Real-Time Systems. In R. Alur, T. A. Henzinger, and
E. D. Sontag, editors, Hybrid Systems, volume 1066 of Lecture Notes in Computer Science.
Springer, 1995.

5. P. Brooke. A Timed Semantics for a Hierarchical Desgn Notation. PhD thesis, University of
York, 1999.

242 J.S. Dong et al.

6. W. R. Cook and J. Misra. A Structured Orchestration Language. 2005. Available for down-
load at http://www.cs.utexas.edu/users/wcook/projects/orc.

7. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Hybrid System III:
Verification and Control, pages 208–219, 1996.

8. J. S. Dong, P. Hao, S. Qin, J. Sun, and Y. Wang. Timed Patterns: TCOZ to Timed Automata.
In J. Davies, W. Schulte, and M. Barnett, editors, ICFEM’04, volume 3308 of Lecture Notes
in Computer Science, pages 483–498. Springer, 2004.

9. J. S. Dong, Y. Liu, J. Sun, and X. Zhang. http://nt-appn.comp.nus.edu.sg/fm/orc, 2006.
10. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based Verification of Web Service

Compositions. In Automated Software Engineering 2003, 2003.
11. T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Model Checking for Real-

Time Systems. In 7th. Symposium of Logics in Computer Science, pages 394–406, 1992.
12. C. A. R. Hoare. Communicating Sequential Processes. International Series in Computer

Science. Prentice-Hall, 1985.
13. IBM, BEA Systems, Microsoft, SAP AG, and Siebel Systems. BPEL4WS, Business Process

Execution Language for Web Service version 1.1, 2003. http://www.siebel.com/bpel.
14. H. M. Lin and Y. Wang. A Proof System for Timed Automata. In J. Tiuryn, editor, FoSSaCS,

volume 1784 of Lecture Notes in Computer Science, pages 208–222, 2000.
15. R. Milner. Communication and Concurrency. Prentice-Hall International, 1989.
16. R. Milner. Communicating and Mobile Systems: the π Calculus. Cambridge University

Press, 1999.
17. J. Misra and W. Cook. Computation Orchestration: A Basis for Wide-Area Computing. To

appear in the Journal of Software & Systems Modeling, 2006.
18. J. Misra, T. Hoare, and G. Menzel. A Tree Semantics of an Orchestration Language. In M.

Broy (ed.) Proc. of the NATO Advanced Study Institute, Engineering Theories of Software
Intensive Systems, NATO ASI Series, Marktoberdorf, Germany, August 2004.

19. G. G. Pu, X. P. Zhao, S. L. Wang, and Z. Y. Qiu. Towards the semantics and verification of
BPEL4WS. In International Workshop on Web Languages and Formal Methods, UK, 2005.

20. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.
21. S. Schneider and J. Davies. A Brief History of Timed CSP. Theoretical Computer Science,

138, 1995.
22. M. P. Singh and M. N. Huhns. Service-Oriented Computing. John Wiley & Sons, Ltd, 2005.
23. M. Sorea. TEMPO: A Model-checker for Event-recording Automata. In Proceedings of

Workshop on Real-time Tools, August 2001.
24. A. Tiu. Model Checking for Pi-calculus Using Proof Search. In CONCUR’05, San Francisco,

August 2005.

Appendix. Correctness Proof

This section presents the proof of the weak bi-simulation relation between the timed
automata and the operational semantics of Orc. In this proof, the Orc expressions refer
to a subset of Orc langauge that is regular, type-safe and with a finite number of threads
(see Section 4 for details).

Definition 10. Given an Orc expression, the transition system associated with the ex-
pression is (O, o0,Σ,−→1) where O is the set of possible Orc configurations, o0 is
the initial given Orc expression, Σ is the alphabet which includes all events in the Orc
semantics [17], and −→2 is the transition relation by the transition rules [17].

Verification of Computation Orchestration Via Timed Automata 243

Definition 11. Given a Timed Automaton, the transition system associated with the au-
tomaton is (S, s0,Σ ∪ T,−→2) where S =̂ S × V is the set of all possible states.
Each state is composed of a control state and a valuation of the clocks. The initial state
s0 = 〈i, v0〉 comprises the initial state i and a zero valuation v0.−→2⊆ S×(Στ∪T)×S
comprises all possible transitions of the following two kinds:

– a time passing move 〈s, v〉 δ−→2 〈s, v + δ〉.
– an action execution 〈s, v〉 a−→2 〈s′, v′〉 iff s

a; X; ϕ−→ s′. That is, the clock interpretation
meets the guard (v |= ϕ), and the new clock valuation satisfies: v′(x) = 0 for all
x ∈ X and v′(x) = v(x), for all x �∈ X.

Definition 12. For any o ∈ O and s ∈ S, c ≈ s if and only if,

– ∀α ∈ Σ, o
α−→1 o′ implies there exists s′ such that s

α−→2 s′, and o′ ≈ s′.
– ∀α ∈ Σ, s

α−→2 s′ implies there exists o′ such that o
α−→1 o′, and o′ ≈ s′.

Theorem 2. Given an Orc expression Orc, let LTSOrc =̂ (O, o0,Σ,−→2) be the tran-
sition system associated with the expression. Let AOrc be the corresponding Timed Au-
tomaton defined using definition 3 to 9 in the paper. Let LTSAOrc =̂ (S, s0,Σ∪T,−→1)
be the transition system associated with the Timed Automaton. o0 ≈ s0.

Proof: The theorem can be proved by a structural induction on the Orc expressions. To
abuse notations, we write Orc ≈ AOrc to mean LTSOrc.o0 ≈ LTSAOrc .s0.

– 0: In Orc semantics, there is no transition rule for 0, so LTS0 is a single state transi-
tion system without any transitions. The same is LTSA0 . Thus, 0 ≈ A0.

– let(z): In Orc semantics, the only transition for LTSlet(z) is let(z)
publishz−→1 0. It is also

the only transition in the responding Timed Automaton. Thus, let(z) ≈ Alet(z).
– Rtimer(t): In Orc semantics [17], there is no transition rules for this basic site. How-

ever, it plays an important role in our work. After being called, the only transition
allowed is time passing,

Rtimer(t)
δt1−→1 Rtimer(t − t1); Rtimer(t) δt−→1 0

The calling site is blocked until the t time units has elapsed. By definition 4 and 11,
the Timed Automaton bi-simulates the site Rtimer(t).

– The proof for fundamental sites if and Signal are skipped. There are no formal
semantics defined for them. We can treat them as the normal site calls.

– Site call M(P): According to Orc’s operational semantics [17], the transitions in

LTSM(P) are M(P)
callM(P)−→1 ?k and ?k

getM(P)−→1 let(v). According to our definition 5,
the two transitions have one-to-one correspondence to the transitions in the Timed
Automaton shown in figure 2. In particular, s2 ≈ let(v) and, therefore, s1 ≈?k and,
lastly, si ≈ M(P). Thus, M(P) ≈ AM(P).

– Sequential composition f >x> g: According to the operational semantics of Orc,
the two transitions available for the sequential composition are:

244 J.S. Dong et al.

f >x> g
a−→1 f ′ >x> g if f

a−→1 f ′

f >x> g
publishv−→1 (f ′ >x> g) | [v/x].g if f

publishv−→1 f ′

Assume f ≈ Af and g ≈ Ag. For every a such that if f
a−→1 f ′, there is a transition

in LTSf>x>g. Because Af>x>g is Af ‖ A′
g (by definition 6), there is a corresponding

transition inAf>x>g because a is local to automatonAf and by definition 2 the local

actions are free to occur. Moreover, f ′ ≈ Af ′ by assumption. If f
publishv−→1 f ′, then

f >x> g
publishv−→1 (f ′ >x> g) | [v/x].g. By definition 6, there is a corresponding

transition in A′
g. As long as the number of publish events are finite, there is always

a corresponding transition in one of the A′
g.

In the other direction, for every transition a from the initial state ofAf>x>g, if a is
a publish event, it must be a synchronization betweenAf and one of theA′

g. By as-

sumption, there must be a transition f
a−→1 f ′. Therefore, there is a corresponding

transition in f >x> g
publishv−→1 (f ′ >x> g) | [v/x].g. If a is a local event, then it must

belong to Af because the only transition in A′
g at its initial state is a synchronized

publish event. There must be a corresponding transition in LTSf and LTSf>x>g. By
induction, we conclude f > x> g ≈ Af>x>g.

– Symmetric composition f | g: According to the operational semantics of Orc, the
two transitions available for the sequential composition are:

f | g
a−→1 f ′ | g if f

a−→1 f ′

f | g
a−→1 f | g′ iff g

a−→1 g′

Therefore, f and g are interleaving. By definition 7, the corresponding Timed Au-
tomaton is defined as Af |g =̂ Af ‖ Ag. The events in both f and g are renamed so
that there is no synchronization between f and g. Assume f ≈ Af and g ≈ Ag. By
definition 2 and the above, transitions rules, we conclude f | g ≈ Af |g.

– Asymmetric composition f where x :∈ g: According to the operational semantics
of Orc, the two transitions available for the sequential composition are:

f where x :∈ g
a−→1 f ′ where x :∈ g if f

a−→1 f ′

f where x :∈ g
a−→1 [v/x].f if g

a−→1 g′

f where x :∈ g
a−→1 f where x :∈ g′ if g

a−→1 g′ and a �=!v

Form the transaction rules we can conclude the following three properties: 1) f
and g run in parallel; 2) the first returned value of g is passed to f and g stops; 3)
f is blocked if x is not available. From the three properties, the transition system
LTSf where x:∈g is the production of LTSf and LTSg, where they synchronized on
the transition publishx and g is stopped after the synchronization. LTSAf where x:∈g is
exactly the same transition according to the definition 7, which uses the shared flag
to stop the execution of g.

– Expression call E(P) =̂ f : According to the operational semantics of Orc, the tran-
sition available for expression call composition is: E(P) τ−→1 [P/x].f iff �E(x) =̂
f � ∈ D. The internal event τ acts as the initial event of the expression. It passes the
input value to formal parameters. The equivalent event in the TA model is callE(P)

Verification of Computation Orchestration Via Timed Automata 245

event in the definition 9. The one-to-one mapping is shown in the following two
transition systems.

LTSE(P) �= ({LTSf .S ∪ o0}, {LTSf .Σ ∪ τ}, o0,

{LTSf . −→1 ∪(o0, τ, LTSf .o0)})
LTSAE(P) �= ({LTSAf .S ∪ (i, v0)}, {LTSAf .Σ ∪ τ}, (i, v0),

{LTSf . −→1 ∪((i, v0), τ, (LTSf .s0.i, v0)))})

Therefore, we conclude that our Timed Automata semantics is sound.

Towards the Semantics for Web Service
Choreography Description Language�

Jing Li, Jifeng He, Geguang Pu, and Huibiao Zhu

Software Engineering Institute, East China Normal University
Shanghai, China, 200062

{jli, jifeng, ggpu, hbzhu}@sei.ecnu.edu.cn

Abstract. A choreography is a multi-part contract which describes peer
to peer collaboration of services regardless of any specific programming
language or supporting platform. WS-CDL, issued from W3C, is the first
language for describing choreography. In this paper, we propose a lan-
guage CDL0 to capture the important features of WS-CDL, including
choreography composition, compensation and exception handling. An
adjunctive concept role reference is introduced with the aim of distin-
guishing multiple participants which provide the same kind of service
within a choreography model. The semantics is given by an operational
approach to provide a formal base for the choreography language. We
believe this formalism work helps to clear ambiguous points in the WS-
CDL specification and promote the usage of choreography languages.

Keywords: WS-CDL, choreography, operational semantics, compensa-
tion, exception handling.

1 Introduction

The goal of Web Services is to collaborate within or across the trusted domains
of an organization resulting in accomplishing a common business goal. Interoper-
ability between services is achieved by standard protocols that provide uniform
ways to define the interface a web service exhibits (namely WSDL), to exchange
messages (i.e., SOAP), and to look for particular services (i.e., UDDI). However,
there still remain open challenges when it comes to the management of com-
plex systems composed by a large number of services, where interactions go far
beyond simple sequences of requests and responses. For this purpose, two dif-
ferent although overlapping viewpoints are currently investigated. The first one,
referred to as web services orchestration, deals with the description of the inter-
actions in which a given service engages with other services, as well as its internal
actions. The second one, referred to as web services choreography, describes the
external observable behavior across multiple web services from a global perspec-
tive, in which each participant is responsible for adhering to a specific protocol.
R.Dijkman and M.Dumas [2] introduces a foundational model, in terms of Petri
nets, for describing the viewpoints and their interrelationships.
� Supported by National Basic Research Program of China (No. 2002CB312001).

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 246–263, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Towards the Semantics for Web Service Choreography Description Language 247

A number of standardization proposals that describe web services orchestra-
tion have been put forward over the past years (e.g. BPML, XLANG, WSFL),
and BPEL4WS [11] is the more recent proposal for this viewpoint. On the other
hand, the Web Services Choreography Description Language (WS-CDL) [12]
is the first proposal for describing web services choreography which is recom-
mended by W3C in November 2005. WS-CDL is an XML-based language which
is aimed at being able to precisely describe collaborations between any type of
service regardless of the supporting platform or programming model used by
the implementation of the hosting environment. One feature of WS-CDL is that
it supports choreography composition which allows scalable modeling. That is,
smaller choreographies are built first and then combined together to form a
larger choreography. Another important feature is the ability to deal with long-
running transactions. When a failure occurs during the execution, mechanisms
are provided to capture such an exception and fire the corresponding compensa-
tion activity to recover from errors. The mechanisms are referred to as exception
handling and compensation.

At present, WS-CDL is not fully developed and a number of issues remain
open [1]. One problem is that this language cannot differentiate multiple par-
ticipants providing the same kind of service in a collaboration so as not able to
identify which interaction is related to each participant. In this paper, we pro-
pose a language called CDL0, the “untagged” version of WS-CDL, the syntax
of which is written in the BNF format instead of XML. CDL0 captures many
features of WS-CDL, including choreography composition, compensation and
exception handling. Moreover, CDL0 introduces a new concept role reference
to distinguish different participants providing the same kind of service within
a choreography model. The operational semantics of CDL0 is carefully stud-
ied, through which we clearly illustrate how to deal with scalable modeling and
long-running transactions.

This paper is organized as follows. Section 2 provides an introduction of the
CDL0 language. Section 3 presents the operational semantics especially for com-
position, compensation and exception handling. Some related work is discussed
in Sect.4. The last section gives the conclusion and future work.

2 The Language CDL0

This section presents an overview of CDL0. Firstly, the syntax of choreography
and activity is presented accompanying with the formal definition of choreogra-
phy. Secondly, we give a description for the kinds of activities: basic activities,
ordering structured activities and workunits. Finally, we talk about choreogra-
phy life-line which is a key character of choreography.

2.1 The Syntax of CDL0

Formally, a system is described by a set of choreographies. A choreography de-
fines re-usable common rules that govern the ordering of exchanged messages,
and the provisioning patterns of collaborative behavior, as agreed upon between

248 J. Li et al.

two or more interacting participants. It is composed of five parts: name, role ref-
erence declarations, body activity, exception handlers and finalizer blocks. The
syntax is described below:

choreography ::= c(A,RDec,EHandler, FBlock)
RDec ::= {ρ : r}+
EHandler ::= {et : A}∗
FBlock ::= {f : A}∗

In the syntax above, c denotes a choreography name; et stands for any exception
type; f represents the name of a finalizer block; A represents an activity which
may be defined within a choreography body, an exception handler or a finalizer
Block. The activity defined within a choreography body is called body activity.
Exception handlers are used to deal with exceptions, whereas finalizer blocks are
used to define the compensations for the body activity. It is not necessary for a
choreography to include exception handlers or finalizer blocks.

Currently, the interaction described in WS-CDL specification only specifies
the requesting and the accepting role types. There is no corresponding concept to
denote a specific role instance or a concrete web service. Therefore, if two or more
service providers of the same role type participate in one collaboration, there is
no way to tell which one is involved in a specific interaction. In order to solve
this problem, we introduce the concept role reference to denote a distinct service.
Consequently, all the role references declared in the same choreography represent
different web services. Two role references defined in different choreographies
may bind together to refer to the same service participating in the activities of
both choreographies. Every role reference has a role type enumerating potential
observable behaviors. A role type is described by a name, a set of variables and
the set of operations it exhibits. Let RTName be the set of role type names
ranged over by ρ, V ar be the set of variables ranged over by x, y, u, v, and Oper
be the set of operations ranged over by op. The set RType containing all the
possible role types is defined as follows (P(S) denotes the powerset of S):

RType = {(ρ, �, o)|ρ ∈ RTName, � ∈ P(V ar), o ∈ P(Oper)}
There exists a root choreography which is enabled by the system by default.

We use a distinct name root to mark this choreography, which has no finalizer
blocks. The root choreography declares all participating services denoted by role
references. For example, if the whole collaboration includes one customer and two
sellers, then there are two role types needed and three role references declared to
denote such three participants. The non-root choreography only needs to declare
these role references which just participate in this sub-collaboration. We regard
the role references defined in the root choreography as the global participants.
Any role reference of a non-root choreography is bound directly or indirectly
to the global participant defined in the root choreography. Thus we can deduce
which action is performed by each participant, meanwhile, we can also trace how
the state changes for each participant.

Let e range over XPath expressions; r, s range over the set of role references
denoted by RRef ; b, g range over XPath boolean expressions; and x stands for a

Towards the Semantics for Web Service Choreography Description Language 249

sequence 〈x1, x2, ..., xn〉 (similarly for e, r, etc). The syntax of activity is defined
below:

A,B ::= skip (skip)
| silent(r.x) (silent)
| r.x := e (assignment)
| OW (r1.x→ r2.y, op) (one− way)
| RR(r1.x→ r2.y, r1.u← r2.v, op) (request− response)
| perform(c, id, r1 ⇔ r2) (perform)
| finalize(c, f, id) (finalize)
| A;B (sequence)
| A ‖ B (parallel)
| A �B (choice)
| �i∈I.(gi → Ai) (guard)
| A ∗ b (repetition)
| throw(et) (throw)

Now we define the choreography in a formal way. The set chor contains all
the choreographies, which is defined as follows:

chor = {(c, R,A,E, F)| c ∈ CName,R ∈ P(RDec), A ∈ Activity,
E ∈ P(EHandler), F ∈ P(FBlock)}

RDec = {(ρ, r)|ρ ∈ RTName, r ∈ RRef}
EHandler = {(et, A)|et ∈ EType ∪ {all}, A ∈ Activity}
FBlock = {(f,A)|f ∈ FName,A ∈ Activity}

where CName is the set of choreography names, EType is the set of exception
types, and FName is the set of finalizer block names.

2.2 CDL0 Activities

According to WS-CDL specification, the activities are classified into three types:
basic activities, ordering structures, and workunits. Basic activities describe the
lowest level actions performed within a choreography, such as skip, assignment,
interaction, etc. Ordering structures express the ordering rules of actions, in-
cluding sequence, choice, and parallel. Workunits provide a way of adding con-
ditionality and provide repetition based on some predicate. The introduction of
all these activities is given below.

Skip and Silent: The activity skip denotes that no action is specified to be
performed. From a deep semantic view, it means an activity terminates success-
fully.

silent is an explicit designator used for marking the point where unobservable
operations within a specific role must be performed. This activity just announces
some variables residing in a specific role may change during the non-observable
operations without showing how the change occurs. Such kind of activity will
influence the following collaborations. Consider the example that a customer asks

250 J. Li et al.

for quotes from two sellers. After obtaining the quotes, the customer compares
the two quotes in a way that the sellers cannot observe and then decides from
which seller he should order goods based on this comparison.

Assignment: This activity is used to create or change the value of one or
more variables using the value of another variable or expression. All the vari-
ables belong to a specific role reference, that is, this action is performed by one
participant.

Interaction: Interaction results in information exchange between two collab-
orating participants. According to the specification [12], interaction is classified
into three types: request, respond, and request-respond. Here, we treat request
and respond in the same way in which the information is transferred through one
way. Therefore, we call this kind of interaction as one-way interaction. When the
information is received, the operation op performed by recipient specifies what
to do with the exchanged information.

Perform: The perform activity realizes the composition of choreographies by
combining existing choreographies to create new ones. In terms of composition,
this activity is similar to procedure call in other languages. When choreography
c1 performs another choreography c2 through perform activity, c1 is called the
immediately enclosing choreography of c2, and c2 is called the immediately en-
closed choreography of c1. If there exists a sequence c1, c2, ..., cn, in which ci is
the immediately enclosing choreography of ci+1 (where 1 ≤ i < n), then cj is
called an enclosed choreography of ci and ci is called an enclosing choreography
of cj for each i, j satisfying j > i.

The root choreography is performed once by system, so it has only one chore-
ography instance. However, a non-root choreography may be performed more
than once. This kind of choreography may have more than one choreography in-
stances, thus unique identifiers for choreography instances are required. In most
cases, the identifier is determined statically and the guarantee of uniqueness is
provided by designers. However, if the perform activity appears within a repeti-
tion, then each performing must be dynamically assigned a different identifier.
In this case, the designer consigns this assignment to the system, leaving the
identifier assigned during runtime.

In perform activity perform(c, id, r1 ⇔ r2), c is the name of the enclosed
choreography, id is an unique identifier for this new choreography instance, and
r1 are these role references defined in the enclosing choreography which should be
bound to the role references r2 defined in the enclosed choreography thus leading
to refer to the same participants respectively. According to the specification, this
activity has two kinds of working modes: blocking mode and non-blocking mode.
The former one means the enclosing choreography must wait for the enclosed
choreography to complete, whereas the latter one allows the enclosing choreog-
raphy to be active concurrently with the enclosed choreography. However, the
semantics is quite bewildering when the working mode is combined with the se-
quential or parallel operators. Consider the following simple sequential activity:

perform(c, id, r1 ⇔ r2);B

Towards the Semantics for Web Service Choreography Description Language 251

If the perform activity is in non-blocking mode, it means the body activity
of c is executed concurrently with B. This semantics conflicts with the origi-
nal meaning of sequential operators. The case is similar to a parallel activity
perform(c, id, r1 ⇔ r2) ‖ B in which the perform activity is executed in block-
ing mode. To clear up the ambiguity, we choose to abandon the working mode
in our CDL0 language, just using the suitable operators to describe the desired
working patterns between different choreographies.

Finalize: After a choreography instance has successfully completed, it needs
to provide compensating activities, from a semantic point of view, which undo
the actions performed by its completed body activity in case the correspond-
ing transaction fails in later stage. CDL0 suggests a way to provide several
alternative compensations, and each of them is defined in a finalizer block. A
compensation becomes valid only after the body activity of its choreography has
completed successfully, and becomes active only when it is invoked by a finalize
activity specifying its finalizer block name. Thus, a set of finalizer blocks can be
selected as desired, invoked in any order. This compensation mechanism is quite
similar to the concept multiple compensation introduced in [18], an extension to
StAC [17].

In a finalize activity finalize(c, f, id), the identifier id is bound to an existing
choreography instance with name c to explicitly specify which instance is to be
finalized. If the desired identifier is assigned at runtime, we can resort to a name
directory for the sake of dynamic binding. f is a finalizer block name, used to
denote which compensation is expected to undo the completed activities.

Sequential and Parallel: The sequential construct A;B indicates that A is
executed first, and only when A terminates successfully can B be executed.

In parallel activity A ‖ B, the execution of A and B is interleaved, but must
support synchronization on terminal events. The whole parallel activity fails
when either A or B throws an exception.

Guard and Choice: The guard activity �i∈I.(gi → Ai) includes one or more
activities, each of which is guarded by a boolean function gi. This boolean func-
tion may just evaluate data, may only wait for some event to happen or mix the
two together. The guard activity is put into two categories, guarded choice and
conditional activity.

When the set I has more than one member, the guard activity can be ex-
panded to such a form: g1 → A1 � g2 → A2 � ... � gn → An (n ≥ 2), which shows
itself as a guarded choice. The guarded choice selects one activity to be per-
formed, depending on whose guard is matched. If none of the guards is matched,
this activity will block, waiting for the guards to be triggered.

When the set I has only one member, g → A (the index is omitted) denotes a
conditional activity which behaves as A whenever g evaluates to true. Conversely,
if g is false, the conditional activity will block. The conditional activity is also
called blocking condition. Workunits also supports non-blocking condition: if
the guard evaluates to false, then A is not considered to be executed. The non-
blocking condition is a special form of guarded choice: (g → A) � (¬g → skip).

252 J. Li et al.

The choice A �B, different from guarded choice, nondeterministically selects
one activity A or B to be performed.

Repetition: In the repetition activity A ∗ b, activity A is performed first and b
is evaluated after A terminates successfully. If b is true, this repetition activity
is performed again, otherwise, this activity is skipped.

Throw: There is no such corresponding activity in the specification of WS-
CDL, but such an activity is necessary to explicitly notice an application ex-
ception. Exceptions related to communication or security issues are thrown by
the underlying protocols. Concerning application failures (e.g., the credit check
fails while processing the order fulfillment), a mechanism is needed to throw
such exceptions explicitly. On the other hand, the exception handler needs to
propagate exceptions to its enclosing choreography explicitly in the case that
it cannot solve the exceptions completely, which requires further compensations
for its previous sibling choreographies.

2.3 Choreography Life-Line

A choreography life-line expresses the progression of a collaboration. It has four
distinct states: enabled, successful, failed, and closed.

enabled. When a choreography is performed by the system or another choreog-
raphy, it enters the enabled state. The exception handlers are enabled when
the choreography they belong to is enabled. All these exception handlers
behave as monitors, trying to catch the exceptions occurring in this and its
enclosed choreographies. The life cycle of any role reference starts at this
time when its choreography is enabled.

successful. A choreography in the enabled state enters the successful state
when there are no more activities within its body. In other words, the body
activity of this choreography has completed successfully. The finalizer blocks
are installed at this time, and one of them may be activated by a finalize
activity whenever an exception takes place afterwards during its immediately
enclosing choreography.

failed. Any occurrence or propagation of an exception causes a choreography
to enter the failed state. The exception handlers may capture the occurred
exception or not, if not, the exception is propagated. In this case, the com-
pensating activities defined in finalizer blocks does not work.

closed. When the choreography enters the closed state, the life cycle of any role
reference defined in this choreography expired. There are six cases in which
a choreography enters the closed state.
1. When a choreography is in the successful state and there are no finalizer

blocks specified in this choreography, it implicitly enters the closed state.
2. A choreography in the successful state with finalizer blocks specified

enters the closed state when one of its finalizer blocks is enabled by a
finalize activity and completes successfully.

3. A choreography in the successful state with finalizer blocks implicitly
enters the closed state when its immediate enclosing choreography enters
the closed state without enabling any of its finalizer blocks.

Towards the Semantics for Web Service Choreography Description Language 253

4. A choreography in the failed state enters the closed state when an excep-
tion is captured in its exception handlers and the corresponding handler
is performed successfully.

5. A choreography in the failed state without any exception handlers im-
plicitly enters the closed state. The exception occurred is recursively
propagated to the immediately enclosing choreography until the excep-
tion is handled.

6. A choreography in the failed state with exception handlers specified im-
plicitly enters the closed state when the exception occurred is not cap-
tured by its own handlers. In this case, the exception occurred is also
recursively propagated to the immediately enclosing choreography.

The choreography life-line decides whether a compensation can be activated
or not, e.g., finalizing a choreography in the closed state has no effect. It also
works on the mechanism of exception handling, shown in Sect.3.2. As we will
see, all transitions among the four states are clearly reflected in the following
operational semantics.

3 Operational Semantics for CDL0

This section presents the operational semantics for CDL0. The operational se-
mantics [9] is a way of defining the behavior of activities in terms of transition
rules between configurations. For the semantics of CDL0, a configuration is de-
fined as a tuple:

〈A,C, id, σ〉 ∈ Activity × Context× CIns× State

where
Context = CIns � CName× CIns× CState× (RRef � RRef)
State = RRef × V ar � V al
CState = {enabled, successful, failed, closed}

In the above tuple, A is not just a CDL0 activity. For the semantics necessity,
we introduce another five activities: Ω,Ξ, [A]id, failet, earlyet, which will be ex-
plained in the later sections. CIns represents the set of all possible choreography
instances. We introduce an important element choreography context C, a func-
tion which provides the context for each choreography instance, including its
choreography name, its state, its immediately enclosing choreography instance,
and the global participants bound by role references declared in this choreog-
raphy. For simplicity, we use C(id).name, C(id).state, C(id).parent to denote
the choreography name, choreography state and immediately enclosing chore-
ography instance respectively, and C(id.r) to represent the global participant
defined in the root choreography, bound by id.r (id is the legal scope of r, an
instance of the choreography in which r is declared). We do not need to offer
the scope of C(id.r) explicitly, since it has a default scope root. If the choreog-
raphy instance is related to root choreography, then its enclosing choreography
instance denoted by ε, and C(id.r) is r itself for every role reference r defined

254 J. Li et al.

in the root choreography. id represents the performing choreography instance in
which an activity A (the first element of a configuration) is executed. We call
id the scope identifier of A. σ represents data state which is a partial function
from the variables of participants to values. It records the global state of all
participants defined within the root choreography. V al is the set of all possible
values, ranged over by ν. We use σ[s.x #→ ν] to denote variable x of participant
s is set to the value ν, and there is an implicit scope root for this participant s.

The set Λ of all possible transition labels is defined as:

Λ = EType ∪ {α, τ,�}

where an exception type denotes that an exception occurs. α is a visible event
representing a communication between two services. It has two specific forms,
one represents one-way interaction, while the other represents request-response
interaction. τ and � are two special labels, the former one represents an event
invisible to the external environment and the latter one represents successful
termination. In the transition rules, we consider a ∈ {α, τ}.
Skip: The skip activity leads to termination activity Ω through one step, and
the semantics of Ω is shown later:

〈skip, C, id, σ〉 �−→ 〈Ω,C, id, σ〉

Silent : This activity changes the data state in an unobservable way. The values
of variable x within r may change and such change is reflected in σ′:

〈silent(r.x), C, id, σ〉 τ−→ 〈skip, C, id, σ′〉

Assignment: r.x := e causes the associated participant bound by r to change its
data state:

s = C(id.r) ∧ ν = e(σ)

〈r.x := e, C, id, σ〉 τ−→ 〈skip, C, id, σ[s.x #→ ν]〉

Interaction: Two services interact with each other to exchange information, thus
the corresponding state change is recorded:

s1 = C(id.r1) ∧ s2 = C(id.r2)

〈OW (r1.x→ r2.y, op), C, id, σ〉 r1?r2.op↑−→ 〈skip, C, id, σ[s2.y #→ σ(s1.x)]〉

s1 = C(id.r1) ∧ s2 = C(id.r2)

〈RR(r1.x→ r2.y, r1.u← r2.v, op), C, id, σ〉 r1?r2.op�−→
〈skip, C, id, σ[s2.y #→ σ(s1.x), s1.u #→ σ(s2.v)]〉

Repetition: This repetition activity is a kind of composition of sequence, guarded
choice and repetition itself:

〈A ∗ b, C, id, σ〉 τ−→ 〈A; (b→ A ∗ b � ¬b→ skip), C, id, σ〉

Towards the Semantics for Web Service Choreography Description Language 255

Choice: This activity decides nondeterministically which activity A or B will
take place:

〈A �B,C, id, σ〉 τ−→ 〈A,C, id, σ〉 〈A �B,C, id, σ〉 τ−→ 〈B,C, id, σ〉

Guard: The rule states that if more than one guards are matched, then the first
matched one is selected.∧

j<k. gj(σ) = false ∧ gk(σ) = true

〈�i∈I.(gi → Ai), C, id, σ〉 τ−→ 〈Ak, C, id, σ〉

Sequence: In the sequential activity A;B, A performs first while B is preserved:

〈A,C, id, σ〉 a−→ 〈A′, C′, id′, σ′〉
〈A;B,C, id, σ〉 a−→ 〈A′;B,C′, id′, σ′〉

If the first activity A terminates successfully, then B starts and the �action is
hidden from outside:

〈A,C, id, σ〉 �−→ 〈Ω,C′, id′, σ′〉
〈A;B,C, id, σ〉 τ−→ 〈B,C′, id′, σ′〉

Parallel: In parallel activity, either activity may progress independently by per-
forming a non-terminal event:

〈A,C, id, σ〉 a−→ 〈A′, C′, id′, σ′〉
〈A ‖ B,C, id, σ〉 a−→ 〈A′ ‖ B,C′, id′, σ′〉

〈B,C, id, σ〉 a−→ 〈B′, C′, id′, σ′〉
〈A ‖ B,C, id, σ〉 a−→ 〈A ‖ B′, C′, id′, σ′〉

The rule below states that the parallel activity A ‖ B terminates successfully
when both A and B terminate successfully:

〈A,C, id, σ〉 �−→ 〈Ω,C′, id′, σ′〉 ∧ 〈B,C, id, σ〉 �−→ 〈Ω,C′, id′, σ′〉
〈A ‖ B,C, id, σ〉 �−→ 〈Ω,C′, id′, σ′〉

3.1 Operational Semantics for Composition and Compensation

There are two special activities: perform and finalize, the former one deals
with choreography composition while the latter one is related to compensation.
Two other activities are introduced for the sake of semantics: termination activ-
ity Ω and scope activity [A]id. The meaning of the two activities is explained
later in this section.

Perform: When a choreography is performed, its body activity is enabled in a
new scope. An unique identifier is allocated to denote this new produced chore-
ography instance, the state of which becomes enabled:

〈perform(c, id′, r1 ⇔ r2), C, id, σ〉 τ−→
〈[c.body]id′ , C[id′ #→ (c, id, enabled, binding(C, id, r1, r2))], id, σ〉

256 J. Li et al.

If the assignment for id′ is a dynamic requirement, thus the system is responsible
for allocating a fresh instance identifier at runtime. c.body represents the body
activity of choreography c, which satisfies:

(c, R, c.body, E, F) ∈ chor

C[id′ #→ (c, id, enabled, binding(C, id, r1, r2))] records the context for this en-
closed choreography instance. The immediately enclosing choreography instance
of the newly produced instance id′ is the current performing instance id.

binding(C, id, r1, r2) is such a function which makes the role references id′.r2
point to the same participants as those to which id.r1 refer. As mentioned ear-
lier, r1 = 〈r11, r12, ..., r1n〉, r2 = 〈r21, r22, ..., r2n〉, so its definition is as follows:

binding(C, id, r1, r2) = {(r2i, C(id.r1i))|1 ≤ i ≤ n}

Finalize: Every finalizer block is defined as a compensation activity which is
specified by its name. The finalize activity is used to enable a specific finalizer
block in a successfully completed choreography instance to recover from a failure.
A finalizer block can only be enabled by its immediately enclosing choreography
instance. When a finalizer block is enabled, the compensating activity begins to
execute in a new scope:

C(id′) = (c, id, successful, ?)

〈finalize(c, f, id′), C, id, σ〉 τ−→ 〈[compensation(c, f)]id′ , C, id, σ〉
If id′ is a dynamic binding, a name directory is provided, allowing for the re-
trieval of a specific choreography instance based on the choreography name and
the involved participants. The choreography context C contains all the needed
information for dynamic binding, which can also act as a name directory.

C(id′) = (c, id, successful, ?) means the performed choreography instance must
be situated in the successful state and its immediately enclosing choreography
instance is the current performing instance. The symbol ? represents the value
we do not care. In the above rule, we do not care about which participants are
involved in this collaboration.

compensation(c, f) represents the compensating activity in the finalizer block
named f within the choreography c, which satisfies:

(c, R,A,E, F) ∈ chor ∧ (f, compensation(c, f)) ∈ F

The following rule states that the finalize activity does nothing if the context
does not satisfy C(id′) = (c, id, successful, ?):

C(id′) �= (c, id, successful, ?)

〈finalize(c, f, id′), C, id, σ〉 τ−→ 〈skip, C, id, σ〉
Termination: When the body activity, a finalizer block or an exception handler
completes successfully, the states of the choreography instances must be updated.
The final derived activity is defined as Ξ which has no further transition rules:

〈Ω,C, id, σ〉 τ−→ 〈Ξ,C′, id, σ〉

Towards the Semantics for Web Service Choreography Description Language 257

where:

C′ = SetClosed(UpdCState(C, id))

Here, we introduce two functions: UpdCState and SetClosed. The UpdCState
function updates the state of the choreography instance specified by id according
to the state transition rules in Sect.2.3. It is defined as follows:
UpdCState(C, id) =⎧⎨⎩

C[id #→ (!, !, successful, !)] if C(id).state = enabled ∧
(C(id).name,R,A,E, F) ∈ chor ∧ F �= ∅

C[id #→ (!, !, closed, !)] otherwise

The symbol ! represents no change, so C[id #→ (!, !, successful, !)] denotes that
only the state of id is changed to the successful state, while other properties
remain the same as before.

When a choreography instance enters the closed state, all its enclosed chore-
ographies are closed implicitly. Thus we must set all the enclosed choreography
instances to the closed state. The SetClosed function is recursively defined as
follows (⊕ represents the ‘relation coverage’ operator):
SetClosed(C) ={

C if ∀id · C(id).state �= closed⇒ C(C(id).parent).state �= closed
SetClosed(C ⊕ {(id, (!, !, closed, !))|C(C(id).parent).state = closed}) otherwise

Moreover, all closed choreography instances become useless which should be
deleted:

C′ = {id|C(id).state = closed}� C′

Where � represents the ‘domain elimination’ operator.

Scope: We have introduced a new activity [A]id named scope during the seman-
tics for perform and finalize activities. This new activity confines an activity
A to a scope in which A is executed. The scope identifier id is derived from
a choreography instance identifier. Scope activities can be nested, consider the
following activity:

[[A1]b ‖ ([A2]c;A3)]a

A1, A2 and A3 lie in different scopes.
The scope activity follows the inner activity to execute step by step:

〈A,C, id, σ〉 a−→ 〈A′, C′, id′′, σ′〉
〈[A]id, C, id′, σ〉 a−→ 〈[A′]id, C′, id′, σ′〉

Recall that, in a configuration 〈A,C, id, σ〉, id is the scope identifier of A. In the
above rule, the scope identifier of the inner activity A is id rather than id′ and
the scope for the scope activity [A]id itself stays stable during the transition.

258 J. Li et al.

The following rule states that the scope activity hides the terminal event to
the environment. If we do not do so, the choreography instance denoted by the
scope identifier id has no chance to update its choreography state:

〈A,C, id, σ〉 �−→ 〈A′, C′, id′′, σ′〉
〈[A]id, C, id′, σ〉 τ−→ 〈[A′]id, C′, id′, σ′〉

The Ξ activity means that the normal flow or the compensating flow of an chore-
ography instance has completed successfully and the corresponding choreography
state is updated. Thus, the scope activity [Ξ]id leads to skip:

〈[Ξ]id, C, id′, σ〉 τ−→ 〈skip, C, id′, σ〉

To behave consistently, the body activity of the root choreography must be
transformed into scope activity at the beginning.

3.2 Operational Semantics for Exception Handling

A choreography may sometimes fail as a result of an exceptional circumstance
or an “error” that occurs during its performance. There are different types of
exceptions, including interaction failures, security failures, timeout errors, appli-
cation failures and so on. A choreography may define several exception handlers
to capture these exceptions. An exception handler is such a tuple:

(et, A) ∈ EType ∪ {all} × Activity

If et = all, this exception handler is called the default exception handler which
captures any exception.

In order to deal with exceptions, we introduce two kinds of activities: earlyet,
failet. earlyet denotes that an exception of the exception type et takes place,
which may be caught by exception handlers depending upon its type. failet

represents that a choreography cannot resolve the exception of type et. In this
case, it is suggested that the unresolved exception should be propagated to the
immediately enclosing choreography.

Exception handlers for a choreography are meant to handle exceptions dur-
ing the body activity within that choreography. In other words, the exception
handlers are uninstalled once their associated choreography enters the success-
ful state. Therefore, the disposal of exceptions occurring within the exception
handlers or finalizer blocks is the responsibility of the enclosing choreography.

When an exception occurs, its type is matched first with the type specified
by non-default exception handlers. If such a match fails, the default exception
handler deals with this exception:

C(id).state = enabled ∧ (C(id).name,R,A,E, F) ∈ chor ∧ (et,A′) ∈ E
〈earlyet, C, id, σ〉 τ−→ 〈A′, C[id �→ (!, !, failed, !)], id, σ〉

C(id).state = enabled ∧ (C(id).name,R,A,E, F) ∈ chor ∧ et /∈ dom(E) ∧ (all, A′) ∈ E
〈earlyet, C, id, σ〉 τ−→ 〈A′, C[id �→ (!, !, failed, !)], id, σ〉

Towards the Semantics for Web Service Choreography Description Language 259

When a choreography has no exception handlers or all its handlers cannot
capture the occurred exception, it leads to failet:

C(id).state = enabled ∧ (C(id).name,R,A, ∅, F) ∈ chor
〈earlyet, C, id, σ〉 τ−→ 〈failet, C′, id, σ〉

C(id).state = enabled ∧ (C(id).name,R,A,E, F) ∈ chor ∧ {et, all} ∩ dom(E) = ∅
〈earlyet, C, id, σ〉 τ−→ 〈failet, C′, id, σ〉

When the choreography instance is not in the enabled state, we propagate the
exception instead of dealing with it:

C(id).state �= enabled

〈earlyet, C, id, σ〉 τ−→ 〈failet, C′, id, σ〉

In the above three rules which lead to the activity failet, the current choreogra-
phy instance and all its enclosed choreography instances must enter the closed
state. The computation for C′ is as follows:

C′ = {id|C(id).state = closed}� SetClosed(C[id #→ (!, !, closed, !)])

The function SetClosed is defined in the part of termination activity Ω.
Then we should add some rules to deal with the occurrence of exception in

kinds of basic activities, and the composition of exception with other structural
activities.

The exceptions which take place during such activities as silent, assignment
and interaction are thrown from the low level implementations or protocols.

Silent

〈silent(r.x), C, id, σ〉 et−→ 〈earlyet, C, id, σ〉

Assignment

〈r.x := e, C, id, σ〉 et−→ 〈earlyet, C, id, σ〉

Interaction

〈OW (r1.x→ r2.y, op), C, id, σ〉 et−→ 〈earlyet, C, id, σ〉

〈RR(r1.x→ r2.y, r1.u← r2.v, op), C, id, σ〉 et−→ 〈earlyet, C, id, σ〉
Throw : This activity throws an exception of a specific type explicitly.

〈throw(et), C, id, σ〉 et−→ 〈earlyet, C, id, σ〉

Scope: failet makes the scope activity abandon the scope symbol ‘[]’ and prop-
agate the non-handled exception to the immediately enclosing choreography:

〈[failet]id, C, id′, σ〉 et−→ 〈earlyet, C, id′, σ〉

260 J. Li et al.

Scope activity hides the exceptions occurred within the scope:

〈A,C, id, σ〉 et−→ 〈A′, C′, id′′, σ′〉
〈[A]id, C, id′, σ〉 τ−→ 〈[A′]id, C′, id′, σ′〉

Sequence: When an exception occurs during the first activity A, the whole se-
quential composition is abnormally terminated:

〈A,C, id, σ〉 et−→ 〈earlyet, C
′, id′, σ′〉

〈A;B,C, id, σ〉 et−→ 〈earlyet, C′, id′, σ′〉

Considering the activity [A]id;B, it means A and B are situated in different
choreographies. Thus if an exception occurring within A is captured by the cor-
responding exception handler, we cannot terminate the whole sequential activity
immediately. Only if the exception is not captured within A’s scope, then the
sequential activity terminates abnormally. Profitted by the scope activity, the
captured exception within A’s scope is hidden from environment, so the above
rule also applies to [A]id;B.

Parallel : The whole parallel composition terminates abnormally when at least
one branch has terminated prematurely with an exception occurred. The
occurred exception within one branch can not prevent another branch from con-
tinuing until another branch terminates successfully or also terminates prema-
turely:

〈A,C, id, σ〉 et−→ 〈earlyet, C
′, id′, σ′〉 ∧ 〈B,C, id, σ〉 �−→ 〈Ω,C′, id′, σ′〉

〈A ‖ B,C, id, σ〉 et−→ 〈earlyet, C′, id′, σ′〉

〈A,C, id, σ〉 �−→ 〈Ω,C′, id′, σ′〉 ∧ 〈B,C, id, σ〉 et−→ 〈earlyet, C
′, id′, σ′〉

〈A ‖ B,C, id, σ〉 et−→ 〈earlyet, C′, id′, σ′〉

〈A,C, id, σ〉 et1−→ 〈earlyet1 , C
′, id′, σ′〉 ∧ 〈B,C, id, σ〉 et2−→ 〈earlyet2 , C

′, id′, σ′〉
〈A ‖ B,C, id, σ〉 et−→ 〈earlyet, C′, id′, σ′〉

The last rule states that when both branches terminate prematurely, the type
of the exception derived from the whole parallel activity is a new type which
represents the combination of the two original types.

4 Related Work

Up to now, there are only a few works focusing on formalizing choreography
languages compared with orchestration languages. Busi et al [4] designs a sim-
ple choreography language CL whose main concepts are based on WS-CDL. A
choreography in CL is defined by two parts. A declarative part describes the
involved entities and a conversational part models the ordering of interactions
among services. Paralleled with our language, CL just covers a few concepts

Towards the Semantics for Web Service Choreography Description Language 261

without mentioning workunits, guarded choice and even the important features
with regard to reusability and long running transactions. Brogi et al [6] formal-
izes web service choreography interface (WSCI) using a process algebra approach
CCS [13]. Based on such formalization, compatibility, replaceability and the au-
tomatic generation of adaptors are discussed. WSCI [19] permits to specify a
global model of service composition from a different point of view with respect
to WS-CDL. More precisely, WSCI just provides a set of connections between
pairs of individual operations in each service on the basis of respective behaviors
of each participant. Instead, WS-CDL directly describes the interdependencies
among different interactions between services.

One of the important features in CDL0 is to deal with compensation to re-
verse the effects of a partial work. The concept compensation has its root to
the seminal work of Sagas [5]. In the recent years, some works have been done
towards the formal definition of this concept. StAC [7] proposes a formal frame-
work for automatic invocation of compensations in the reverse order with respect
to the order of their installation. The semantics of StAC was defined on its se-
mantic language StACi which has a operational semantics based on the indexed
compensation tasks. Butler and Ripon [3] develops an operational semantics for
the compensating CSP (cCSP) language in the framework of CSP [8] process
algebra. The invocation of compensations is automatic depending on the success
or failure of transactions, whereas a compensation in CDL0 is explicitly acti-
vated by the finalize activity lying on the choreography life-line. Bocchi et al [15]
designs a language πt-calculus, an extension of the asynchronous π-calculus with
long running transactions. A transaction defined in this language contains a body
activity, a compensation handler and a failure manager, similar to the structure
of a choreography in CDL0. However, none of them gives the choice for enabled
compensation to be selected as desired, invoked in any order as CDL0 does.

We have done the research on BPEL which is a de facto standard of execu-
tion workflow specification for web service orchestration. In [10], the operational
semantics for a simplified version µ-BPEL is presented and time-related prop-
erties can be verified in model checker UPPAAL based on a formal mapping
form µ-BPEL to timed automata. [14,16] studies the semantics of the fault and
compensation handling in the BPEL vein. The concepts compensation closure
and compensation context are proposed in the semantic to capture the execution
structure and the process of programmable compensation.

5 Conclusion

Choreography is concerned with peer to peer observable collaborations of multi-
ple services that need to interact in order to achieve some business goal. WS-CDL
is a language in which a choreography model is specified, and behavior is de-
scribed from a global or neutral perspective rather than from the perspective of
any single service. A choreography is such a scope that provides exception han-
dling and compensation. This language also provides choreography composition
to enable scalable modeling and reusability.

262 J. Li et al.

This paper has proposed a language CDL0 enlightened by WS-CDL, where
the complicated XML syntactical style is abandoned, but almost all the impor-
tant features are included. A new concept called role reference is introduced into
this language in order to distinguish different participants providing the same
kind of service. We place a constraint that every role reference in a non-root
choreography must be bound directly or indirectly to the participant defined in
the root choreography. This constraint enables us to clarify the exact actions
performed by a specific service, which facilitates the generation of code skeleton
for every participating service. Moreover, CDL0 adds a throw activity to explic-
itly throw exceptions in the case of application failures or incomplete solutions
to exceptions within exception handlers. The operational semantics for CDL0 is
carefully studied. In the semantics, we propose the concept choreography context,
which captures choreography relations and choreography life-line to enable the
process of choreography composition, compensation and exception handling.

Currently, we are also working on the verification of business behavior within a
choreography model using process algebra approach. Furthermore, based on the
work of the semantics of BPEL [10,14,16], we plan to investigate the relationship
between WS-CDL and BPEL. This work can be done from two aspects: how
to derive web service skeletons written in BPEL from a given choreography
model; check whether a specific BPEL model is consistent against the global
choreography model.

References

1. A. Barros, M. Dumas and P. Oaks. A critical overview of web service choreography
description language(WS-CDL). BPTrends, March 2005.

2. R. Dijkman and M. Dumas. Service-oriented design: a multi-viewpoint approach.
International Journal of Cooperative Information Systems, vol.13(4), pp. 337-368,
2004.

3. M. Butler and S. Ripon. Executable semantics for compensating CSP. In Proceed-
ings of 2nd International Workshop on Web Services and Formal Methods, LNCS
3670, pp. 243-256, 2005.

4. N. Busi, R. Gorrieri, C. Guidi, R. Lucchi and G. Zavattaro. Towards a formal
framework for choreography. In Proceedings of the 14th IEEE International Work-
shops on Enabling Technologies: Infrastructure for Collaborative Enterprise, pp.
107-112, 2005.

5. H. Garcia-Molina and K. Salem. Sagas. In Proc. of ACM SIGMOD’87, pp. 249-259.
ACM Press, 1987.

6. A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo. Formalizing web services chore-
ographies. In Proc. of WS-FM’04, ENTCS 105, 2004.

7. M. Butler and C. Ferreira. An operational semantics for StAC, a language for
modelling long-running business transactions. In Proc. of Coordination’04, LNCS
2949, pp.87-104. Springer, 2004.

8. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, pearson
edition, 1998.

9. G. D. Plotkin. A structural approach to operational semantics. Technical report,
Aarhus University, 1981.

Towards the Semantics for Web Service Choreography Description Language 263

10. Pu Geguang, Zhao Xiangpeng, Wang Shuling, and Qiu Zongyan. Towards the
semantics and verification of BPEL4WS. In International Workshop on Web Lan-
guages and Formal Methods,WLFM2005, to appear in Electronic Notes in Theo-
retical Computer Science, Elsevier 2006.

11. F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weer-
awarana. Business Process Execution Language for Web Services (BPEL4WS 1.1).
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/, 2003.

12. World Wide Web Consortium. Web Services Choreography Description
Language Version 1.0. Candidate Recommendation 9 November 2005.
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109.

13. Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.
14. Pu Geguang, Zhu Huibiao, Qiu Zongyan, Wang Shuling, Zhang Xiangpeng, and

He Jifeng. Theoretical foundations of scope-based compensable flow languange for
Web Service. In IFTP FMOODS’06, LNCS 4307, pp. 251-266. Springer, 2006.

15. L. Bocchi, C. Laneve, and G. Zavattaro. A calculus for long-running transactions.
In FMOODS, LNCS 2884, pp. 124-138. Springer-Verlag, 2003.

16. Qiu Zongyan, Wang Shuling, Pu Geguang, and Zhao Xiangpeng. Semantics of
BPEL4WS-like fault and compensation handling. In FM2005, LNCS 3582, pp.
350-365. Springer, 2005.

17. M. Butler and C. Ferreira. A process compensation language. In Integrated Formal
Methods(IFM2000), LNCS 1945, pp. 61-76. Springer-Verlag, 2000.

18. M. Chessell, D. Vines, C. Griffin, M. Butler, C. Ferreira, and P. Henderson. Ex-
tending the concept of transaction compensation. IBM Systems Journal, vol.41(4),
pp. 743-758, 2002.

19. World Wide Web Consortium. Web Service Choreography Interface (WSCI) 1.0.
http://www.w3.org/TR/wsci, 2002.

Type Checking Choreography Description Language�

Hongli Yang1, Xiangpeng Zhao1, Zongyan Qiu1, Chao Cai1, and Geguang Pu2

1 LMAM and Department of Informatics, School of Math.,
Peking University, Beijing 100871, China

{yhl, zxp, qzy, toppi}@math.pku.edu.cn
2 Software Engineering Institute

East China Normal University, Shanghai, 200062, China
ggpu@sei.ecnu.edu.cn

Abstract. The Web Services Choreography Description Language (WS-CDL) is
a W3C specification developed for the description of peer-to-peer collaborations
of participants from a global viewpoint. Currently WS-CDL has no rigorous static
type checking. We believe that introducing a type system will exclude many de-
sign and description errors, and ensure desirable properties of the choreography
specifications. In this paper, we took a core language CDL, which covers most
of the important features of the WS-CDL, and is more convenient for the study.
We developed the abstract syntax and operational semantics of CDL, and defined
a collection of rules which can be used to check if choreography is well-typed.
Moreover, we also proved some type safety theorems for CDL in the sense that
well-typed choreography cannot get stuck. We show how the use of type infor-
mation can allow us to gain confidence in the correctness of choreography.

Keywords: Choreography, WS-CDL, Formal model, Type checking.

1 Introduction

Web services have been becoming more and more important in recent years, and
promising the interoperability of various applications running on heterogeneous plat-
forms over Internet. Web service composition refers to the process of combining vari-
ous web services to provide a value-added service, which has received much interest in
supporting enterprise application integration. The recently released web service chore-
ography description language (WS-CDL)[10] is a W3C candidate recommendation for
web service composition. WS-CDL is an XML-based language designed for describ-
ing the common and collaborative observable behavior of multiple services that interact
with each other to achieve a goal. WS-CDL focuses on specifying the business protocol
among participant roles. All the behaviors are performed by the participants, and the
WS-CDL specification gives a global observation.

One of requirements for WS-CDL success factors is to provide static type checking
for ensuring desirable properties of choreography [2]. There are various types that need
to be defined before describing a choreography. For instance, the information types that
describe variables and general messages in interaction; the tokens that are aliases to in-
formation types; the role types that define a set of behaviors; the relationship types that

� Supported by National Natural Science Foundation of China (No. 60573081).

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 264–283, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Type Checking Choreography Description Language 265

describe how role types are connected; and the channel types that describe communi-
cation links between role types [12]. Mistaken references among number of types can
easily cause inconsistency. Although the detection of such inconsistency is essential to a
choreography, this detection is beyond the scope of the XML Schema based validation.

We have previously provided a small language CDL with its operational semantics
[8], which is a formal model of the simplified WS-CDL. Based on the formal model, we
can project a given choreography to orchestration views, which provide a basis for the
implementation of the choreography by a number of web services. Moreover, we have
translated WS-CDL to the input language of the model-checker SPIN [7], thus allowing
us to automatically verify the properties of a given choreography [13]. Since type sys-
tems are widely used in programming languages to detect program inconsistency, we
moved our attention here toward type system. Our aim is to detect type errors statically.
In this paper, we extend CDL language of [8], and define a collection of typing rules to
determine if a choreography is well-typed. Moreover, we proved that the type safety for
choreography in the sense that well-typed choreography cannot get stuck. "Stuckness"
gives us a simple notion of run-time error situations where the operational semantics
does not know what to do because the program has reached a "meaningless state"[11].
Finally, we showed how the use of type information allows us to gain confidence in the
correctness of a choreography, with an example.

The rest of the paper is organized as follows. We first briefly introduce the syntax of
CDL in Section 2. Then we introduce a type system for it (Section 3). Section 4 presents
an operational semantics of CDL and the proof the theorems about the type safety.
Section 5 gives an example choreography and its type checking process, to illustrate
the type system and operational semantics defined. Some related work is discussed in
Section 6. Finally, in Section 7, we conclude the paper and discuss some future research
directions.

2 CDL Language Definition

The language used in this paper, CDL, can be seen as a core language of WS-CDL of
W3C. It includes a large part of the important features related to web service choreog-
raphy. We present the syntax of CDL in this section, and its type system in Section 3.
For the study to be more practical, we include in this language a lot of details from
WS-CDL, rather than take the approach towards a minimal core.

In the definitions below, the meta-variable p ranges over package names; I ranges
over information type names; k ranges over token names; R, R1 and R2 range over role
type names; b, b1 and b2 range over role behavior names; S ranges over relationship
type names; CH ranges over channel type names; C ranges over choreography names;
A, B and BA range over activities; e ranges over expressions; x, y, m and n range over
variable names; g, g1, g2 and q range over XPath boolean expressions; op ranges over
the operations offered by the roles; ch ranges over channel variable names. We will use
Idecl to express a sequence of zero or more Idecl (s) (Similarly, for Kdecl ,Rdecl ,Sdecl ,
etc.). The notation b expresses one or more b (Similarly, for b1, b2, S, etc.). We use R.x
to refer to the variable x located in role type R.

266 H. Yang et al.

At the top level of CDL, there is a package declaration Pdecl with name p and a set of
type declarations: Idecl for an information type declaration, Kdecl for token, Rdecl for
role type, Sdecl for relationship type, Hdecl for channel type, Cdecl for choreography
declaration. An information type has a name I and an external type XT which is defined
within an XML Schema document or a WSDL document; A token has a name k and
an information type I; A role type has a name R and one or more behaviors b ; A
relationship type has a name S and two referenced role types: R1 with behaviors b1
and R2 with behaviors b2; A channel type has a name CH , a receipt role type R with
a behavior b, and a token k referencing receipt physical address; A choreography has
a name C, one or more relationship types S, zero or more variable declarations Vdecl
and an activity A. Finally, a variable is either a message variable x with type I in role
types R, or a channel variable x with type CH in role types R.

Pdecl ::= pkg {p Idecl Kdecl Rdecl Sdecl Hdecl Cdecl} (package)
Idecl ::= info I {XT} (infoType)
Kdecl ::= token {k I} (token)
Rdecl ::= role R {b} (roleType)
Sdecl ::= rela S {R1(b1) R2(b2)} (relationType)
Hdecl ::= chan CH {R(b) k} (channelType)
Cdecl ::= chor C {S Vdecl A} (choreography)
Vdecl ::= var {x I R} | var {x CH R} (var definition)

A ::= BA (basic)
| q?A (condition)
| q ∗A (repeat)
| g :A :q (workunit)
| A;B (sequence)
| A �B (non-determ.)
| g1 ⇒ A [] g2 ⇒ B (general-choice)
| A ‖ B (parallel)

BA ::= skip (skip)
|R.x := e (assign)
|comm (S,R1.x→ R2.y, rec, ch, op) (request)
|comm (S,R1.x← R2.y, rec, ch, op) (response)
|comm (S,R1.x→ R2.y, R1.m← R2.n, rec, ch, op) (req-resp)

e ::= R.x | xp (expression)

An activity A is either a basic activity BA or a control-flow activity. Basic activities
include skip, assignment and interaction. The assignment activity R.x := e assigns,
within the role type R, the value of expression e to the variable x. Here the expression
e is either an XPath expression xp or a variable R.x, which represents a variable x
belonging to role type R.

The most complex forms of basic activities are the interaction, which is represented
here by three different comm (. . .). In an interaction, S denotes a relationship type; R1
and R2 are two participant role types; ch is a channel variable; and rec is the shorthand
for the assignments R1.x1 := e1, R2.y2 := e2, where x1 and y2 are two lists of state

Type Checking Choreography Description Language 267

variables on the role types R1 and R2, respectively. Note that here we use overline
rather than underline.

The Well-formedness of Pdecl . A package declaration

Pdecl ::= pkg { p Idecl Kdecl Rdecl Sdecl Hdecl Cdecl}

is well-formed, if all the following conditions hold:

– All type names, i.e. I1, . . . , Ii, R1, . . . , Rj , S1, . . . , Sm,CH 1, . . . ,CH n, C, are
distinct from each other.

– The token names k1, . . . , kk in the package are different from each other.
– The variable names x1, . . . , xk in the package are different from each other.

In the following, we only consider well-formed package declaration.
In the definition of this language, we omitted some features of WS-CDL for the

simplicity. The important features omitted here include some details of the channels,
exceptions, and finalize blocks. We will consider them in our future work.

3 Type System of CDL

Now we define a type system for CDL.

3.1 Typing Context

A type T in the type system is either an imported external type XT , an information
type info(XT), a token token(I), a role type role(b), a relationship type rela(R1(b1)
R2(b2)), an information variable type var(I R), a channel variable type var(CH R),
or a channel type chan(R). Here we omit other information from the channel type, only
care about the receiving role type R for the information exchange.

Following is the formal definition of the forms of type T :

T ::= XT (imported types)
| info(XT) (infoType)
| token(I) (token)
| role(b) (roleType)
| rela(R1(b1) R2(b2)) (relationshipType)
|chan(R) (channelType)
|var(I R) (infoVariable)
|var(CH R) (channelVariable)

The typing context Γ is a sequence of the pair n : T , where n is a name and T is a
type defined above. It is constructed and used during the static analysis of CDL specifi-
cations. We define a function build to extract type information from CDL descriptions.
The results of the extractions will be used in the construction of typing context Γ . Here
is the definition of the function build:

268 H. Yang et al.

build (info I {XT }) = I : info(XT)

build (token{k I}) = k : token(I)

build (role R {b}) = R : role(b)

build (rela S {R1(b1) R2(b2)}) = S : rela(R1(b1) R2(b2))

build (chan CH {R(b) k}) = CH : chan(R)

build (var{v I R}) = x : var(I R)

build (var{v CH R}) = x : var(CH R)

Now we are ready to present the typing rules for CDL. Firstly, we have a basic rule
as follows: if the pair x : T exists in Γ , then we have the result that under the context
Γ , we know that the type of x is T .

x : T ∈ Γ

Γ � x : T

Type checking a choreography is, in some sense, quite different from type check-
ing a program. A choreography is not an independent entity. Its features and behaviors
depend closely on its environment, in fact, the boundless Internet. Thus, for the suc-
cessfully type checking the choreography described in CDL, we are going to isolate
(introduce in) a set of basic functions which dependent on the information outside the
choreography under checking, and indispensable in the checking process. We can rea-
sonably assume that the implementation of the checking system offers these functions.

3.2 Typed Rules for Expressions

We present initially rules for the expressions. Our language have two kinds of expres-
sions corresponding to the variables and XPath expressions in WS-CDL. Because each
variable is located in some role types, we define here only the type rule for the variable
form R.x. We omit the type rule for general variable form x.

The type of a variable R.x comes from the type context Γ directly.

Γ � I : info(XT), Γ � x : var(I, R), R ∈ R

Γ � R.x : info(XT)
(VarType1)

Γ � CH : chan(R), Γ � x : var(CH , R), R ∈ R

Γ � R.x : chan(R)
(VarType2)

We suppose, in the first, that there is a function xptype which returns the type of
an XPath expression xp, and infers the type of xp in Γ as following rule. Here XT
expresses an external data type.

xptype(xp) = info(XT)
Γ � xp : info(XT)

(XpathType1)

xptype(xp) = chan(R)
Γ � xp : chan(R)

(XpathType2)

Type Checking Choreography Description Language 269

3.3 Well-Typed Type Declarations

We will use “Γ � . . . ok” to express that a type declaration “. . .” is well-typed in
context Γ . For simplicity and cleanness, in the presentation of the rules below, we may
omit some internal construct of some type descriptions, and just write down the type
label in the case that the detailed construct is not used in the rule. For instance, in some
cases, we will use the shorten form I : info instead the full form I : info(XT), to
express that I is an information type when we don’t care about its full type details.

If XT refers to the data type defined within an XML Schema document or a WSDL
document, then the information type info I {XT} is well-typed. Here we assume a
function check which checks if XT is a valid external data type.

check(XT) ok
info I {XT} ok

(Info)

If type definition I : info(XT) exists in Γ , then token {k I} is well-typed. Here k
is the token name.

Γ � I : info
Γ � token {k I} ok

(Token)

Role type role R {b} is always ok.

� role R {b} ok (Role)

If role types R1 with behaviors a1 and R2 with behaviors a2 have been defined
in Γ , the behaviors b1 are a subset of a1, and the behaviors b2 are a subset of a2,
then relationship type rela S {R1(b1) R2(b2)} is well-typed. A behavior specifies the
observable operations which participant exhibits.

Γ � R1 : role(a1), Γ � R2 : role(a2), b1 ⊆ a1, b2 ⊆ a2

Γ � rela S {R1(b1) R2(b2)} ok
(Rela)

If role type R with behaviors a and token k are defined in Γ , and behavior b belongs
to the set of behaviors a, then channel type chan CH {R(b) k} is well-typed.

Γ � R : role(a), Γ � k : token, b ∈ a

Γ � chan CH {R(b) k} ok
(Chan)

3.4 Well-Typed Activities and Choreography

Variable Declarations. An information variable var {x I R} is ok if information
type I is defined in Γ , and role types R are defined in Γ too.

Γ � I : info, Γ � R : role
Γ � var {x I R} ok

(Var1)

The rule for a well-typed channel variable is similar:

Γ � CH : chan, Γ � R : role
Γ � var {x CH R} ok

(Var2)

270 H. Yang et al.

In order to make sure that the assignment activity is well-typed, we assume a relation
compatible(T1 ,T2) which can determine if the value of type T2 can be assigned to the
variable of type T1. This function should be reflective and transitive, that is:

compatible(T ,T) (Reflexivity)

compatible(T1 ,T2), compatible(T2 ,T3)
compatible(T1 ,T3)

(transitivity)

Basic Activities. A skip activity is always ok.

Γ � skip ok (Skip)

An information variable assignment R.x := e is ok, if R.x has type info(XT1),
expression e has type info(XT2), and types info(XT1) and info(XT2) are assignment
compatible.

Γ � R.x : info(XT1), Γ � e : info(XT2)
compatible(info(XT1), info(XT2))

Γ � R.x := e ok
(Assign1)

Similarly we have rule for well-typed channel variable assignment.

Γ � R.x : chan(R1), Γ � e : chan(R2), R1 = R2

Γ � R.x := e ok
(Assign2)

Before defining the well-typedness of an interaction activity, we need to define the
condition that a message exchange R1.x→ R2.y is ok.

Γ � R1.x : T1, Γ � R2.y : T2, T1 = T2

Γ � R1.x→ R2.y ok

A request interaction comm (S,R1.x→ R2.y, rec, ch, op) is well-typed, if relation-
ship type S is defined in Γ , message exchange and the state variables records are all ok
in Γ , both channel type CH and channel variable ch exist in Γ . In the rule below, condi-
tion R1 ∈ R means that the role type R1 must own the channel variable ch for its com-
munication; condition op ∈ b2 means that operation op is one of the behaviors of role
type R2. Please note rec is the shorthand for the assignmentsR1.x1 := e1, R2.y2 := e2.

Γ � S : rela
(
R1(b1) R2(b2)

)
Γ � R1.x→ R2.y ok

Γ � R1.x1 := e1 ok, Γ � R2.y2 := e2 ok
Γ � CH : chan(R2), Γ � ch : var(CH R)

R1 ∈ R, op ∈ b2

Γ � comm (S,R1.x→ R2.y, rec, ch, op) ok
(Request)

Similarly we have rule to check whether a response interaction is well-typed. Here
R2 ∈ R means that role type R2 must own channel variable ch through which it can

Type Checking Choreography Description Language 271

communicate with role type R1. It is necessary that operation op is one of the behaviors
of role type R1.

Γ � S : rela
(
R1(b1) R2(b2)

)
Γ � R1.x← R2.y ok

Γ � R1.x1 := e1 ok, Γ � R2.y2 := e2 ok
Γ � CH : chan(R1), Γ � ch : var(CH R)

R2 ∈ R, op ∈ b1

Γ � comm (S,R1.x← R2.y, rec, ch, op) ok
(Response)

For a request-response interaction, we need both request message exchange and re-
sponse message exchange are ok in Γ . Here we also assume that operation op is one of
the behaviors of role type R2.

Γ � S : rela
(
R1(b1) R2(b2)

)
Γ � R1.x→ R2.y ok, Γ � R1.m← R2.n ok
Γ � R1.x1 := e1 ok, Γ � R2.y2 := e2 ok
Γ � CH : chan(R2), Γ � ch : var(CH R)

R1 ∈ R, op ∈ b2

Γ � comm (S,R1.x→ R2.y, R1.m← R2.n, rec, ch, op) ok
(RR)

Control Flow Activities. Following are the rules of well-typed control flow activities.
As an example, a condition activity q?A is well-typed, if both activity A is ok and XPath
expression q has type Bool in Γ . The type Bool is an XML schema data type. Here we
use Bool as a shorthand for info(Bool).

Γ � A ok, Γ � q : Bool
Γ � q?A ok

(Condition)

Other rules are listed here. The meaning of these rules are quite regular. We omit the
explanations about them.

Γ � A ok, Γ � q : Bool
Γ � q ∗A ok

(Repeat)

Γ � A ok, Γ � g : Bool , Γ � q : Bool
Γ � g :A :q ok

(WorkUnit)

Γ � A ok, Γ � B ok
Γ � A;B ok

(Sequence)

Γ � A ok, Γ � B ok
Γ � A �B ok

(Non-Det)

Γ � A ok, Γ � B ok, Γ � g1 : Bool , Γ � g2 : Bool
Γ � g1 ⇒ A [] g2 ⇒ B ok

(Gen-Choice)

Γ � A ok, Γ � B ok
Γ � A ‖ B ok

(Parallel)

272 H. Yang et al.

Choreography. A choreography is well-typed if relationship types S are defined in
Γ , variable declarations Vdecl are ok in Γ , and activity A is ok in type environment
Γ ; build(Vdecl). Please note that we use ; to express the order of type context which is
constructed step by step during static analysis.

Γ � S : rela, Γ � Vdecl ok, Γ ; build(Vdecl) � A ok

Γ � chor C {S Vdecl A} ok

Here a set of variable declarations Vdecl are ok if each variable declaration Vdecli
(i ∈ 1 . . . n) is ok. We extend build to variable declarations Vdecl which build a se-
quence of type pairs for variables. In the following, we adopt the similar extension for
other declaration sequences, such as build(Idecl).

3.5 Well-Typed Package

Here is the rule for the well-typed package:

Idecl ok, build(Idecl) � Kdecl ok
Rdecl ok, build(Rdecl) � Sdecl ok

build(Kdecl); build(Rdecl) � Hdecl ok
build(Idecl); build(Hdecl); build(Rdecl) � Vdecl ok

build(Idecl); . . . ; build(Vdecl) � Cdecl ok

� pkg { p Idecl Kdecl Rdecl Sdecl Hdecl Cdecl} ok

4 Operational Semantics and Type Safety

In this section, we will always assume that a choreography declaration Cdecl under
consideration is well-typed, unless explicitly specified. The type context Γ constructed
has forms I1 : info1, . . . , Ih : infoh, k1 : token1, . . . , ki : tokeni, R1 : role1, . . . , Rj :
rolej , S1 : rela1, . . . , Sm : relam, CH1 : chan1, . . . , CHn : chann, x1 : var1, . . . , xp :
varp. Please note that here we use the shortening forms of types.

4.1 Auxiliary Definition

For convenience to discuss types of variables, we define ΣΓ as a mapping from vari-
ables of the roles to their types. Note that here the role types R and R′ may be identical.

ΣΓ (R.x) def=
{

info(XT) if Γ � R.x : info(XT)
chan(R′(b) k) if Γ � R.x : chan(R′(b) k)

4.2 State and Configuration

A state ∆ of a choreography is a composition of each participant role’s state.

∆
def= 〈∆R1 , ∆R2 , · · · , ∆Rn〉

where R1, R2, . . . , Rn are the all roles in the choreography.

Type Checking Choreography Description Language 273

A role state ∆Ri (i = 1, · · · , n) is a function from the variable names of the role
Ri to their values, with the form Ri.x1 : v1, Ri.x2 : v2, · · · , Ri.xk : vk (k ≥ 0). We
will always suppose that each variable name is decorated with a role name on which it
resides. For convenience, we use the form ∆[v/R.x] to denote a global state obtained
from global state ∆ with some variable assignments R.x := v on the given role R.

A value here is a value vinf of any information type, or a channel instance vch of any
channel type.

v ::= vinf (information value)
|vch (channel value)

A configuration is of the form 〈s,∆〉, where s is a piece of CDL specification, and ∆
is a state. We use 〈ε,∆〉 to denote a terminated configuration with empty specification.

4.3 Evaluation of Expression

We use ∆ |= e → v to express that expression e is evaluated to a value v under state
∆. When dealing with XPath expressions, we will not care about the inner structure of
them and simply assume that these expressions can be evaluated. We assume a function
xpeval such that xpeval(xp, ∆) returns the value of XPath expression xp under state ∆.

The evaluations of expressions are formally defined by the following rules.

∆(R.x) = v

∆ |= R.x→ v
(VAR)

xpeval (xp, ∆) = vinf

∆ |= xp → vinf
(XPATH1)

xpeval (xp, ∆) = vch
∆ |= xp → vch

(XPATH2)

We say that the state ∆ is consistent with the type context Γ if:

– dom(∆) = dom(ΣΓ);
– For any R.x ∈ dom(∆), compatible(ΣΓ (R.x), valType(∆(R.x))).

Here the function valType returns the type of a value, valType(∆(R.x)) returns the
type of the value of variable R.x in state ∆. In the following, we always use notation
valType(v) to denote the type of the value v, and valType(v) to denote a sequence of
the types of the values v.

Theorem 1 (Type safety of expression). For any type context Γ , an expression e, if
there exists a type T such that Γ � e : T , then for any state ∆ that is consistent with Γ ,
there exists a value v such that ∆ |= e→ v and compatible(T, valType(v)).

Proof. By the induction on the structure of e.

274 H. Yang et al.

– Case R.x. We discuss each possible type of R.x:
• Case info(XT)

Since Γ � R.x : info(XT) can only be resulted from rule (VarType1), we
have T = info(XT) and ΣΓ (R.x) = T , i.e., R.x ∈ dom(ΣΓ). Since ∆ is
consistent with type context Γ , we have immediately R.x ∈ dom(∆) and
compatible(ΣΓ (R.x), valType(∆(R.x))), i.e., there is a value v such that
(R.x : v) ∈ ∆ and compatible(T, valType(v)). From rule (VAR), we have
that ∆ |= R.x→ v.
• Case chan(R)

The proof is same as above.
– Case xp. We discuss each possible type of xp:
• Case info(XT)

Since Γ � xp : info(XT) can only be resulted from rule (XpathType1), we
have T = info(XT). From rule (XPATH1), we know that ∆ |= xp → vinf .
This implies that compatible(info(XT), valType(vinf)).
• Case chan(R)

The proof is same as above. ��

4.4 Execution of Activity

In this subsection, we define an operational semantics for our language. We use the
big-step style to define the semantics in order to prove features of our type system. We
write (A,∆) → (ε,∆′) to denote that the execution of activity A under state ∆ will
terminate and reach a new state ∆′.

Basic Activities. The semantics of the basic activities are defined as follows:
The execution of skip activity always terminates successfully, and leaves everything

unchanged.
〈skip, ∆〉 −→ 〈ε,∆〉 (SKIP)

The assignment activity updates variable R.x with the value v of expression e.

R.x ∈ dom(∆), ∆ |= e→ v

〈R.x := e, ∆〉 −→ 〈ε,∆[v/R.x]〉 (ASS)

In the execution of an interaction activity, some information may exchange between
two participant roles. After the interaction, there may be some variable updates on both
roles. Here we suppose that rec is a shorthand for the assignments R1.x1 := e1 and
R2.y2 := e2.

∆ |= R1.x→ v, R2.y ∈ dom(∆),
R1.x1 ∈ dom(∆), R2.y2 ∈ dom(∆), ∆ |= e1 → v1, ∆ |= e2 → v2,

〈comm (S,R1.x→ R2.y, rec, ch, op), ∆〉 −→
〈ε,∆[v/(R2.y)][v1/(R1.x1), v2/(R2.y2)]〉

(REQ)

∆ |= R2.y → v, R1.x ∈ dom(∆),
R1.x1 ∈ dom(∆), R2.y2 ∈ dom(∆), ∆ |= e1 → v1, ∆ |= e2 → v2,

〈comm (S,R1.x← R2.y, rec, ch, op), ∆〉 −→
〈ε,∆[v/(R1.x)][v1/(R1.x1), v2/(R2.y2)]〉

(RESP)

Type Checking Choreography Description Language 275

∆ |= R1.x→ v, R2.y ∈ dom(∆), ∆ |= R2.n→ v′, R1.m ∈ dom(∆),
R1.x1 ∈ dom(∆), R2.y2 ∈ dom(∆), ∆ |= e1 → v1, ∆ |= e2 → v2,

〈comm (S,R1.x→ R2.y, R1.m← R2.n, rec, ch, op), ∆〉 −→
〈ε,∆[v/(R2.y)][v′/(R1.m)][v1/(R1.x1), v2/(R2.y2)]〉

(REQ-RESP)
In the WS-CDL specification, there are more detailed control mechanisms for the

execution time of assignments on the state variables. We omit them for the focus of this
paper on type-related issues.

Control Flow Activities. The semantics of many control flow activities are rather stan-
dard. We need not to explain them in details.

In the first place, the conditionals and the iterations:

∆ |= q → false
〈q?A,∆〉 −→ 〈ε,∆〉 (IF-FALSE)

∆ |= q → true, 〈A,∆〉 −→ 〈ε,∆′〉
〈q?A,∆〉 −→ 〈ε,∆′〉 (IF-TRUE)

∆(q) = false
〈q ∗A,∆〉 −→ 〈ε,∆〉 (REP-FALSE)

∆(q) = true, 〈A,∆〉 −→ 〈ε,∆′′〉, 〈q ∗A,∆′′〉 −→ 〈ε,∆′〉
〈q ∗A,∆〉 −→ 〈ε,∆′〉 (REP-TRUE)

The workunit (g : A : q) will blocked until the guard g evaluates to true. When the
guard is trigged, the activity A is executed. If A terminates successfully, and if the rep-
etition condition q evaluates to true, the workunit will be considered again; otherwise,
it finishes. The formal rules are defined as follows.

∆(g) = true, 〈A,∆〉 −→ 〈ε,∆′〉, ∆′(q) = false
〈g :A :q,∆〉 −→ 〈ε,∆′〉 (BLOCK1)

∆(g) = true, 〈A,∆〉 −→ 〈ε,∆′〉, ∆′(q) = true, 〈g :A :q,∆′〉 −→ 〈ε,∆′′〉
〈g :A :q,∆〉 −→ 〈ε,∆′′〉

(BLOCK2)
The sequential compositions and non-deterministic structures are regular:

〈A,∆〉 −→ 〈ε,∆′′〉, 〈B,∆′′〉 −→ 〈ε,∆′〉
〈A;B,∆〉 −→ 〈ε,∆′〉 (SEQ)

〈A,∆〉 −→ 〈ε,∆′〉
〈A �B,∆〉 −→ 〈ε,∆′〉 (NON-DET1)

〈B,∆〉 −→ 〈ε,∆′〉
〈A �B,∆〉 −→ 〈ε,∆′〉 (NON-DET2)

In the definition of WS-CDL, branches in a choice activity is not symmetric, but or-
dered. The branch comes first has a higher priority. That is, if the guards of two branches

276 H. Yang et al.

evaluate to true simultaneously, the first branch will take the control. Following this
spirit, the rules for the choice activities in CDL are as follows.

∆(g1) = true, 〈A,∆〉 −→ 〈ε,∆′〉
〈g1 ⇒ A [] g2 ⇒ B,∆〉 −→ 〈ε,∆′〉 (CHOICE1)

∆(g1) = false, ∆(g2) = true, 〈B,∆〉 −→ 〈ε,∆′〉
〈g1 ⇒ A [] g2 ⇒ B,∆〉 −→ 〈ε,∆′〉 (CHOICE2)

Now comes the parallel structures. In the development of this operational semantics,
our intention is to make it a medium for the proof of the properties of our type system,
especially, the Type Safety Theorem in Section 4.5. We all know that the parallel activ-
ities will introduce many subtle problems into the execution. However, these subtleties
are dynamic problems, and can not be detected and prevented, in general, by the type
checking. In defining type systems, we can ignore these dynamic problems. Following
this recognition, in the semantical rule of parallel structures, we will not care about
the interactions between the parallel execution of activities, and only consider whether
they terminate. We simply define that if both the execution of A and B terminate, then
A ‖ B will terminate. Thus, the rule for the parallel composition is rather simple:

〈A,∆〉 −→ 〈ε,∆′〉, 〈B,∆〉 −→ 〈ε,∆′′〉
〈A ‖ B,∆〉 −→ 〈ε,∆′ ⊕∆′′〉 (PARA)

Operator⊕ denotes a state combination. If ∆′ and ∆′′ update one variable to two same
values, then ∆′ ⊕ ∆′′ update this variable to any one of the values. Here we don’t care
which value will be taken by one variable in ∆′ ⊕ ∆′′ when ∆′ and ∆′′ update this
variable to two different values.

Please note that the execution of activity q ∗ A and g : A : q might not come to a
terminated configuration due to infinite loops. The general choice activity will blocked
if the guards of two branches evaluate to false simultaneously.

Lemma 1. If 〈A,∆〉 −→ 〈ε,∆′〉, then dom(∆) = dom(∆′).

Proof. By induction on the structure of the derivative rules. Note that none of these
rules changes dom(∆). Therefore, the correctness of the lemma is obvious. ��

4.5 Type Safety of Activity

We list in the first some abnormal cases which cannot be statically checked.

Abnormal Case 1: The execution of an activity may not terminate due to an infinite
loop.

Abnormal Case 2: The execution of a workunit activity g : A : q will block when g
evaluates to false for ever.

Abnormal Case 3: The execution of a general choice activity g1 ⇒ A [] g2 ⇒ B will
block when the guards g1 and g2 evaluate to false for ever.

Type Checking Choreography Description Language 277

Theorem 2 (Type safety of activity). For any type context Γ and activity A, if Γ �
A ok, then for any state ∆ which is consistent with Γ , there exists a state ∆′ such that
〈A,∆〉 −→ 〈ε,∆′〉 and ∆′ is consistent with Γ , unless the abnormal cases listed above
happen in the execution.

Proof. By the induction on the structure of A.

– Case skip
>From rule (SKIP), we know that 〈skip, ∆〉 −→ 〈ε,∆〉. Obviously, ∆ is consistent
with Γ .

– Case R.x := e
We discuss each possible type of R.x:
• Case info(XT)

Since Γ � R.x := e ok can only be resulted from rule (Assign1), we have
ΣΓ (R.x) = info(XT), Γ � e : T , and compatible(info(XT), T). From Theo-
rem 1, there is a value v such that ∆ |= e→ v and compatible(T, valType(v)).
Noticing that R.x ∈ dom(ΣΓ), since Γ is consistent with ∆, we have R.x ∈
dom(∆). Thus, from rule (ASS), we know that 〈R.x := e, ∆〉 −→ 〈ε,∆′〉,
where ∆′ = ∆[v/R.x]. Noticing that valType(∆′(R.x)) = valType(v), from
rule (Transmission), we have compatible(info(XT), valType(v)). From these
facts and Lemma 1, we have dom(∆′) = dom(∆) = dom(ΣΓ). Therefore,
∆′ is consistent with Γ .
• Case chan(R)

The proof is same as above.
– Case comm (S,R1.x→ R2.y, rec, ch, op)

Since Γ � comm (S,R1.x → R2.y, rec, ch, op) ok can only be resulted from
rule (Request), we have Γ � R1.x → R2.y ok, Γ � R1.x1 := e1 ok, and Γ �
R2.y2 := e2 ok, i.e. ΣΓ (R1.x) = ΣΓ (R2.y) = T , ΣΓ (R1.x1) = Tx1 , Γ � e1 :
Te1 , compatible(Tx1 , Te1), ΣΓ (R2.y2)=Ty2 , Γ � e2 : Te2 , compatible(Ty2 , Te2).
Since ∆ is consistent with Γ , we have R2.y ∈ dom(∆), R1.x1 ⊂ dom(∆),
and R2.y2 ⊂ dom(∆). From Theorem 1, there exists value v such that ∆ |=
R1.x → v and compatible(T, valType(v)); there exists values v1 such that ∆ |=
e1 → v1 and compatible(Te1 , valType(v1)); there exists values v2 such that ∆ |=
e2 → v2 and compatible(Te2 , valType(v2)). Thus, from rule (REQ), we know that
〈comm (S,R1.x→ R2.y, rec, ch, op), ∆〉 −→ 〈ε,∆′〉, where ∆′ = ∆[v/(R2.y)]
[v1/(R1.x1), v2/(R2.y2)]. Besides, noticing that valType(∆′(R2.y))=valType(v),
valType(∆′(R1.x1)) = valType(v1), and valType(∆′(R2.y2)) = valType(v2),
from rule (Transmission), we will have compatible(ΣΓ (R2.y), valType(v)),
compatible(ΣΓ (R1.x1), valType(v1)), and compatible(ΣΓ (R2.y2), valType(v2)).
>From these facts and Lemma 1, we have dom(∆′) = dom(∆) = dom(ΣΓ).
Therefore, ∆′ is consistent with Γ .

Similarly, we can prove other two cases: comm (S,R1.x ← R2.y, rec, ch, op)
and comm (S,R1.x→ R2.y, R1.m← R2.n, rec, ch, op).

– Case q?A
Since Γ � q?A ok can only be resulted from rule (Condition), we have Γ �
A ok and Γ � q : Bool . If ∆ |= q → false, from rule (IF-FALSE), we have
〈q?A,∆〉 −→ 〈ε,∆〉. Obviously, ∆ is consistent with Γ . If ∆ |= q → true, from

278 H. Yang et al.

the deduction hypothesis, there exists state ∆′ such that 〈A,∆〉 −→ 〈ε,∆′〉 and ∆′

is consistent with Γ . From rule (IF-TRUE), we have 〈q?A,∆〉 −→ 〈ε,∆′〉.
– Case q ∗A

Since Γ � q ∗ A ok can only be resulted from rule (Repeat), we have Γ � A ok,
and Γ � q : Bool . If ∆ |= q → false, then from rule (REP-FALSE) we have
〈q ∗ A,∆〉 −→ 〈ε,∆〉. If ∆ |= q → true, then from the deduction hypoth-
esis, there exists state ∆′′ such that 〈A,∆〉 −→ 〈ε,∆′′〉 and ∆′′ is consistent
with Γ . Since abnormal case 1 will not happen, there exists state ∆′ such that
〈q ∗ A,∆′′〉 −→ 〈ε,∆′〉 and ∆′ is consistent with Γ . From rule (REP-TRUE), we
have 〈q ∗A,∆〉 −→ 〈ε,∆′〉.

– Case g : A : q
Since Γ � g : A : q ok can only be resulted from rule (WorkUnit), we have
Γ � A ok, Γ � g : Bool and Γ � q : Bool . Since abnormal case 2 will not
happen, we have ∆ |= g → true, from the deduction hypothesis, there exists state
∆′ such that 〈A,∆〉 −→ 〈ε,∆′〉 and ∆′ is consistent with Γ . If ∆′ |= q → false,
then from rule (BLOCK1) we have 〈g :A : q,∆〉 −→ 〈ε,∆′〉. If ∆′ |= q → true,
Since abnormal case 1 will not happen, from the deduction hypothesis, there exists
state ∆′′ such that 〈g : A : q,∆′〉 −→ 〈ε,∆′′〉 and ∆′′ is consistent with Γ . From
rule (BLOCK2), we have 〈g :A :q,∆〉 −→ 〈ε,∆′′〉.

– Case A;B
Since Γ � A;B ok can only be resulted from rule (Sequence), we have Γ � A ok
and Γ � B ok. From the deduction hypothesis, there exists state ∆′′ such that
〈A,∆〉 −→ 〈ε,∆′′〉 and ∆′′ is consistent with Γ . From the deduction hypothesis,
there exists state ∆′ such that 〈B,∆′′〉 −→ 〈ε,∆′〉 and ∆′ is consistent with Γ .
From rule (SEQ) we have 〈A;B,∆〉 −→ 〈ε,∆′〉.

– Case A �B
Since Γ � A�B ok can only be resulted from rule (Non-Det), we have Γ � A ok
and Γ � B ok. From the deduction hypothesis, there exists state ∆′ such that
〈A,∆〉 −→ 〈ε,∆′〉 and ∆′ is consistent with Γ . From rule (NON-DET1) we have
〈A �B,∆〉 −→ 〈ε,∆′〉.

– Case g1 ⇒ A [] g2 ⇒ B
Since Γ � g1 ⇒ A [] g2 ⇒ B ok can only be resulted from rule (Gen-Choice),
we have Γ � A ok and Γ � B ok. Since abnormal case 3 will not happen, we
only consider following two subcases: If ∆ |= g1 → true,from the deduction
hypothesis, there exists state ∆′ such that 〈A,∆〉 −→ 〈ε,∆′〉 and ∆′ is consistent
with Γ . From rule (CHOICE1) we have 〈g1 ⇒ A [] g2 ⇒ B,∆〉 −→ 〈ε,∆′〉. If
∆ |= g1 → false,∆ |= g2 → true, from the deduction hypothesis, there exists
state ∆′ such that 〈B,∆〉 −→ 〈ε,∆′〉 and ∆′ is consistent with Γ . From rule
(CHOICE2) we have 〈g1 ⇒ A [] g2 ⇒ B,∆〉 −→ 〈ε,∆′〉.

– Case A ‖ B
Since Γ � A ‖ B ok can only be resulted from rule (Parallel), we have Γ � A ok
and Γ � B ok. From the deduction hypothesis, there exists state ∆′ such that
〈A,∆〉 −→ 〈ε,∆′〉 and ∆′ is consistent with Γ , there exists state ∆′′ such that
〈B,∆〉 −→ 〈ε,∆′′〉 and ∆′′ is consistent with Γ . From rule (PARA) we have
〈A ‖ B,∆〉 −→ 〈ε,∆′ ⊕∆′′〉, where ∆′ ⊕∆′′ is consistent with Γ . ��

Type Checking Choreography Description Language 279

Theorem 3 (Type safety of choreography). If a choreography chor C {S V decl A}
is well-typed in Γ , then there exists a state ∆′ such that 〈A, {R.x : vini}〉 −→ 〈ε,∆′〉,
unless the abnormal cases above happen.

Proof. Since choreography chor C {S V decl A} is well-typed in Γ , we have Γ �
A ok. Besides, Γ is consistent with initial state {R.x : vini}. According to Theorem 2,
we know that there exists a state ∆′ such that 〈A, {R.x : vini}〉 −→ 〈ε,∆′〉. ��

From this theorem, we know that if no the abnormal case happens in the execution, then
a well-typed choreography must terminate as expected.

5 An Example

In this section we give a simple example choreography to illustrate how our type system
and operational semantics work together.

5.1 Package

A ConsRetPkg package is defined as follows:

pkg { ConsRetPkg
info poType {poMsg},
info poAckType {poAckMsg},
info uriType {string},
token {retRef uriType},
token {consRef uriType},
role Cons {consForRet , consForWare},
role Ret {retForCons},
rela consRetRela {Cons(consForRet) Ret(retForCons)},
chan consChan {Cons(consForRet) consRef },
chan retChan {Ret(retForCons) retRef },
chor ConsRetChor { consRetRela

var {po poType {Cons ,Ret}},
var {poAck poAckType {Cons ,Ret}},
var {consC consChan {Cons ,Ret}},
var {retC retChan {Cons ,Ret}},
comm (consRetRela,Cons .po → Ret .po,
Cons .poAck ← Ret .poAck , , retC , poHandle)}

}

This choreography involves a consumer role type Cons sending a request for a
purchase order to a retailer role types Ret to which the Ret role type responds with a
purchase order acknowledgement.The execution of the choreographyinvolves one inter-
action performed from Cons to Ret on the retailer-channel retC as a request/response
exchange. The purchase order message po is sent from the Cons to the Ret as a request
message; and the purchase Order acknowledge message poAck is sent from the Ret to
the Cons as a response message.

280 H. Yang et al.

5.2 Type Checking

We perform type checking to the package. Initially, the type context Γ is empty. We
suppose the external data types poMsg , poAckMsg and string are predefined.The type
contexts used in the type checking process are abbreviations with their complete forms
as follows:

Γ1 = {poType : info(poMsg), poAckType : info(poAckMsg), uriType : info(string)
Γ2 = Γ1 ∪ {Cons : role(consForRet , consForWare),Ret : role(retForCons)}
Γ3 = Γ2 ∪ {consRef : token(uriType), retRef : token(uriType)}
Γ4 = Γ3 ∪ {consRetRela : rela(Cons(consForRet) Ret(retForCons)), consChan :

chan(Cons(consForRet) consRef), retChan:chan(Ret(retForCons) retRef)}
Γ5 = Γ4 ∪ {po : var(poType {Cons ,Ret}), poAck : var(poAckType {Cons ,Ret}),

consC : var(consChan {Cons ,Ret}), retC : var(retChan {Cons ,Ret})}

The list below show the process of the type checking:

1) check(poMsg) ok
2) check(poAckMsg) ok
3) check(string) ok
4) info poType {poMsg} ok (Info),1
5) info poAckType {poAckMsg} ok (Info),2
6) info uriType {string} ok (Info),3
7) Γ1 � token {consRef uriType} ok (Token),6
8) Γ1 � token {retRef uriType} ok (Token),6
9) role Cons {consForRet , consForWare} ok (Role)
10) role Ret {retForCons} ok (Role)
11) Γ2 � rela consRetRela {Cons(consForRet)

Ret(retForCons)} ok (Rela),9,10
12) Γ3 � chan consChan {Cons(consForRet) consRef } ok (Chan), 7,9
13) Γ3 � chan retChan {Ret(retForCons) retRef } ok (Chan),8,10
14) Γ4 � var {po poType {Cons ,Ret}} ok (Var1),4,9,10
15) Γ4 � var {poAck poAckType {Cons ,Ret}} ok (Var1),5,9,10
16) Γ4 � var {consC consChan {Cons ,Ret}} ok (Var2),9,10,12
17) Γ4 � var {retC retChan {Cons ,Ret}} ok (Var2),9,10,13
18) Γ5 � comm (consRetRela,Cons .po → Ret .po,

Cons .poAck ← Ret .poAck , , retC , poHandle) ok (RR),11,14,15,17
19) Γ5 � chor ConsRetChor {· · · } ok def

Since ConsRetChor is ok, we have proved that ConsRetChor is a well-typed chore-
ography.

If any step of typing checking fails, ConsRetChor will not be a well-typed chore-
ography, and will get stuck during execution because there is no applicable rule. For
example, suppose that type checking check(poMsg) fails in step 1, in this case, step 4,
14, 18, and 19 will fail too. Thus ConsRetChor is not a well-typed choreography, and
will get stuck when executing the communication activity.

Type Checking Choreography Description Language 281

5.3 Performing Choreography

We perform choreography ConsRetChor according to our operational semantics.
The state ∆ is a composition of local states of role types Cons and Ret , both of

which have four variables: ∆={Cons .po : vpo , Cons .poAck : 0 , Cons .consC : vch ,
Cons .retC :vch ′ , Ret .po:0 , Ret .poAck : vack , Ret .consC : vch , Ret .retC : vch′}.
Here we use 0 to express the empty value.

Based on the rule (REQ-RESP), after execution of the interaction activity, the chore-
ography terminates properly, and finally enters a state ∆′, where ∆′=∆[vpo/(Ret .po)]
[vack/(Cons .poAck)].

6 Related Work

It is widely recognized that the most popular and best established lightweight formal
methods are type systems. Type systems and type checking techniques are widely used
and have been proved to be very useful in detecting subtle inconsistency, or uncon-
scious and accidental errors, and checking various properties of programs. Recently,
people pay much attention to define type systems for various new languages and fea-
tures, for example, to establish type system for the Object-Oriented languages. A good
example here is the work of Igarashi et al. [1], in which a small OO language called
Featherweight Java (FJ) is studied, which covers some fundamental features of Java.
The authors created a typing environment for FJ, studied the cast problems, and proved
the type soundness theorem.

There is also existing work on type systems in the field of XML. Hosoya and
Pierse [9] describe a statically typed XML processing language called XDuce, which
provides a simple, clean, and powerful type system for XML processing. Draper et
al. [6] describe the XPath/XQuery type system based on XML Schema. The type sys-
tem can check various properties, such as whether a data instance matches a type and
whether a type is a subtype of another.

In a recent paper [5], N.Busi et al. proposed a simple choreography language, equipped
with a formal semantics, which was intended as the starting point for the development
of a framework for the design and analysis of choreographies in Service Oriented Com-
puting. Different from our language, the author want to minimize the language features,
there were no state record variables. Particularly, it didn’t consider the type system of
web service choreography language. Moreover, Barros et al. discussed some important
issues of WS-CDL in [3]. Brogi et al. presented the formalization of Web Service Chore-
ography Interface (WSCI) using a process algebra approach, and discussed the benefits
of such formalization [4]. The developing team of WS-CDL in W3C suggested that type
checking WS-CDL will be very useful. From our knowledge, there is no real work on
definition of the type system for WS-CDL style languages.

7 Conclusion and Future Work

In this paper, we describe a choreography description language CDL as a formal model
of the simplified WS-CDL, then develop a type system for CDL, and prove some type
safety theorems.

282 H. Yang et al.

Type safety is the most important property of type systems [11]. It is commonly
proved as the progress and preservation theorems. Progress means either a well-typed
item is a value or it can take a step according to the evaluation rules. Preservation means
if a well-typed item can take a step in the evaluation, then the resulting item is also well-
typed. The preservation theorem shows the evaluation of an expression preserves well-
typedness. It particularly adapts to functional languages that focus on the concepts such
as functions, values and types. But our language CDL is not a functional language. In
type checking CDL, we focus on checking for context consistencies. That is the reason
why we don’t mention the preservation theorem in our type system, and just present the
progress theorem, which is actually composed of our type safety theorems 1, 2 and 3.

Our type system has two contributions:(1) preventing mistaken references among
various entities in the choreography. For example, let us consider a relationship type S
which refers to role types R1 and R2. It is inconsistent if either R1 or R2 is not defined,
or the behaviors of R1 or R2 required by S are not the subset of the pre-defined behav-
iors of R1 or R2. (2) making sure a well-typed choreography can terminate as expected.
Additionally, in this work, we also determined a clear set of primitive functions which
are required for any type checking systems of CDL (and also WS-CDL). They are:

– xptype(xp): It returns the type of XPath expression xp.
– check(XT): It checks if XT is a valid external data type.
– compatible(T1, T2): It determines if the value of type T2 can be assigned to the

variable of type T1.

We regard CDL as a core calculus for modeling WS-CDL’s type system. The goal
in the design of CDL is to make the proof of type safety as concise as possible. CDL
includes most of the important features of WS-CDL. The features of WS-CDL that CDL
does model include kinds of types, variables, activities (control-flow, workunit, skip,
assignment, interaction) and choreography. CDL also omits some advanced features
such as some details of the channel, exception and finalize blocks. Extending CDL to
include more features of WS-CDL will be one direction of our further work. As another
future work, we are working on the development of a type checker for WS-CDL based
on our model. Currently, XML Schema based validation cannot detect inconsistency of
type references.

Acknowledgements. We would like to thank Liang Zhao, Shengchao Qin and Xiwu
Dai for many helpful comments.

References

1. A. Igarashi and B. Pierce and P. Wadler. Featherweight Java: A minimal core calculus for
Java and GJ. In ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages and Applications, 1999.

2. Daniel Austin, Abbie Barbir, Ed Peters, and Steve Ross-Talbot. Web Services Choreography
Requirements. W3C Working Draft, March 2004. http://www.w3.org/TR/2004/WD-ws-
chor-reqs-20040311/.

Type Checking Choreography Description Language 283

3. Alistair Barros, Marion Dumas, and Phillipa Oaks. A Critical Overview of the Web Services
Choreography Description Language. 2005. http://www.bptrends.com.

4. A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo. Formalizing web service choreography.
In WS-FM 2004. Electronic Notes in Theoretical Computer Science, 2004.

5. N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Towards a formal framework
for Choreography. In Proceedings of the 14th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprise. IEEE Computer Society, 2005.

6. D. Draper et al. XQuery 1.0 and XPath 2.0 Formal Semantics. W3C Working Draft, Septem-
ber 2005. http://www.w3.org/TR/2005/WD-xquery-semantics-20050915/.

7. Gerard J. Holzmann. The SPIN Model Checker:Primer and Reference Manual. Addison-
Wesley, 2003.

8. Hongli Yang and Xiangpeng Zhao and Zongyan Qiu and Geguang Pu and Shuling Wang. A
Formal Model for Web Service Choreography Description Language (WS-CDL). to appear
in the proceedings of International Conference on Web Services(ICWS)2006.

9. H. Hosoya and B. C. Pierce. XDuce: A Statically Typed XML Processing Language. May
2003. http://wam.inrialpes.fr/people/roisin/mw2004/Hosoya2003.pdf.

10. N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, and C. Barreto.
Web Services Choreography Description Language Version 1.0. November 2005.
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/.

11. Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
12. Steve Ross-Talbot and Tony Fletcher. Web Services Choreography Description Lan-

guage: Primer Version 1.0. May 2006. http://www.w3.org/TR/Year/WD-ws-cdl-10-primer-
YearMMDD/.

13. Xiangpeng Zhao, Hongli Yang, and Zongyan Qiu. Towards the Formal Model and Verifica-
tion of Web Service Choreography Description Language. to appear in the proceedings of
3rd International Workshop on Web Services and Formal Methods(WS-FM)2006.

Formalising Progress Properties of
Non-blocking Programs

Brijesh Dongol

ARC Centre for Complex Systems,
School of Information Technology and Electrical Engineering,

University of Queensland

Abstract. A non-blocking program is one that uses non-blocking prim-
itives, such as load-linked/store-conditional and compare-and-swap, for
synchronisation instead of locks so that no process is ever blocked.
According to their progress properties, non-blocking programs may be
classified as wait-free, lock-free or obstruction-free. However, a precise de-
scription of these properties does not exist and it is not unusual to find a
definition that is ambiguous or even incorrect. We present a formal def-
inition of the progress properties so that any confusion is removed. The
formalisation also allows one to prove the widely believed presumption
that wait-freedom is a special case of lock-freedom, which in turn is a
special case of obstruction-freedom.

1 Introduction

It has become clear that non-blocking programs provide a practical alternative to
synchronisation via lock-based techniques [GC96]. By removing locks, programs
are able to scale more easily, tend to be more efficient, and problems such as
deadlock are averted by the nature of the program. However, as a result of their
inherent complexity, non-blocking implementations are hard to trust without
formal justification. In fact, there is more than one example of errors being
discovered in published programs through formal verification [CG05, Doh03].

Much work has been devoted to verifying safety properties [Doh03, HLM03]
[DGLM04, CG05], but formal proofs of progress properties have largely been ig-
nored. Yet, progress properties are important enough to warrant classification of
non-blocking programs as wait-free, lock-free, and obstruction-free. Existing def-
initions of these properties are given in natural language making them imprecise
and subject to interpretation. In fact, side-by-side examination of the definitions
provided in the literature reveals that interpretations vary among different au-
thors. Informality of the definitions also makes it difficult to decide exactly when
a non-blocking program satisfies a given property. Formalisation allows one to
prove that a property holds, thus removing any ambiguity. Furthermore, a failed
proof might reveal errors, and point to the changes necessary to correct them.

Our definitions are based on the notion of leads-to (denoted �) which allows
proofs of temporal ‘eventuality’ properties. The logic we use, [DG06], combines

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 284–303, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Formalising Progress Properties of Non-blocking Programs 285

the safety logic of Owicki and Gries [OG76], and the progress logic of Chandy
and Misra [CM88].

The formalisation of progress has allowed us to prove the postulation that
wait-free programs are lock-free and that lock-free programs are obstruction-
free. The relationship between progress properties of non-blocking programs and
properties such as starvation and deadlock freedom has also been established.

This paper is organised as follows. Section 2 presents the programming model,
while Section 3 describes the safety and progress logic. The informal and formal
definitions of the different progress properties are presented in Section 4. Then,
in Section 5, a description of the hierarchy of known progress properties is given.
The proofs of the counter-examples in this section provide examples of applica-
tions of our definitions to real programs. Some other benefits of formalisation is
given in Section 6.

2 Programming Model

The sequential part of the programming language we use is based on Dijkstra’s
language of guarded commands [Dij76]. However, to accommodate representa-
tion of a program’s control state and thus allow reasoning about progress, our
statements are labelled [DG06]. Each label in the program is distinct from the
other labels. Below, when we write “i:S j:”, the label i corresponds to S and
j corresponds to the statement that follows S sequentially. Immediately after
execution of S, we expect control to be updated to j. The existence of a special
label τ is assumed, which is used to denote termination. Statements in our model
take the following form.

S =̂ i: skip j: | i: exit τ : | i:x := E j: | i: 〈S〉 j: | i:S1; j:S2 k: |
i: if B1 → j1:S1 [] B2 → j2:S2 fi k: | i:do B → j:S od k:

Statements skip, exit, x := E and 〈S〉 are atomic. We use the term control point
to refer to the point between two atomic statements.

The intended operational meaning of statements is as follows. A skip does
nothing, x := E is the multiple assignment statement, and 〈S〉 executes S atom-
ically. We describe the operational behaviour of exit later. Guard evaluation of
an if, written as (B1 → j1: [] B2 → j2:), atomically evaluates B1 and B2 then
updates control to j1 if B1 holds and j2 if B2 holds. When B1 ∨ B2 ≡ false,
the guard evaluation statement blocks (unlike Dijkstra [Dij76]), and when mul-
tiple guards hold, one of them is chosen non-deterministically and control up-
dated correspondingly. We may also have guard evaluations of the form (〈B1 →
S1〉 j1: [] 〈B2 → S2〉 j2:), in which case evaluation of B1 and B2, execution of
S1 or S2 (depending on which guard holds), and update of control takes place
atomically.

Non-atomic statements may be decomposed as follows. Statement i: if B1 →
j1:S1 [] B2 → j2:S2 fi k: consists of:

286 B. Dongol

1. an atomic guard evaluation statement (B1 → j1: [] B2 → j2:), and
2. statements j1:S1 k: and j2:S2 k:.

Statement i:do B → j:S od k: consists of:

1. an atomic guard evaluation statement (B → j: [] ¬B → k:) and
2. statement j:S i:.

Finally, the sequential composition i:S1; j:S2 k: consists of statements i:S1 j:
and j:S2 k:.

As the programs we consider are non-blocking, we do not expect blocking if
statements to occur in the final program. Furthermore, as we frequently perform
a skip when all guards are false, a non-blocking conditional ife is defined as:

i: ife B1 → j1:S1

[] B2 → j2:S2

efi
k:

=̂

i: if B1 → j1:S1

[] B2 → j2:S2

[] 〈¬(B1 ∨ B2) → skip〉
fi

k:

Loops with a guard of true are also a common feature. Here, we follow [FvG99]
and define:

∗[S] =̂ do true → S od

A program1 is a 3-tuple (OP , PROC , Init) where OP is a finite set of oper-
ations, PROC is a finite set of process ids, and Init is a predicate describing
the initial state of the program. An operation is a sequential statement param-
eterised by the calling process and is non-blocking if for each guard evaluation
statement (B1 → j1: [] B2 → j2:) in the operation, B1 ∨ B2 ≡ true. A pro-
gram is non-blocking if each operation in OP is non-blocking. A process is the
active entity of the program and sequentially executes the atomic statements
of operations it invokes. So, we may consider each process p ∈ PROC as the
statement:

∗[if ([]O∈OP true → Op) fi].

Hence, a process repeatedly chooses an operation in OP non-deterministically
and invokes it by executing its statements. Invocation of an operation may be
followed by a response (which means the operation terminates) [HW90], but we
do not force this as a requirement, so non-terminating operations are allowed.

A program’s execution consists of an interleaving of the atomic statements
of the operations each process has invoked. As demanded by our progress logic
(Section 3), we assume weak fairness so that each process is eventually able to
execute if it is continuously enabled.

Program variables are either shared (may be accessed and modified by any
process) or local (may only be accessed by the process it belongs to). It is also

1 In the literature, programs are also referred to as algorithms, data structures, or
objects.

Formalising Progress Properties of Non-blocking Programs 287

possible to introduce auxiliary variables [OG76] in order to aid proofs. For each
process p, we assume the existence of a local auxiliary variable pcp, which mod-
els the program counter of p. Following [DG06], pcp is updated implicitly after
execution of each atomic statement and hence, must not explicitly appear in any
statement. We expect pcp = i to be an implicit precondition to each statement
i:S executed by process p to reflect the fact that control of p must be at i before
execution of S. Statement exit terminates the current operation by setting the
pc value of the executing process to τ . To rule out the case of an atomic state-
ment terminating partway through its execution, we require that exit may not
appear within 〈 〉.

We use PC X to represent the set of labels of operation X , and PC to represent
the set of all labels of the program. Hence, PC =

⋃
X∈OP PC X . Label τ is

the only label shared among all operations, i.e.,
⋂

X∈OP PC X = {τ}. For this
reason, we may refer to a statement in an operation by its corresponding label.
Also, note that process p is only able to invoke a new operation when pcp = τ .
Finally, we use PC start to be the set containing the label at the start of each
operation.

We also require that snapshots of the current state of the program counters
be taken. Thus, we define the type SS as follows.

SS =̂ PROC → PC

The type SS can be thought of as the set of all functions that return a label for
a given process. Notice that pc has type SS .

A common proviso to many of the informal definitions is that progress be made
in the face of delay or failure of other processes. Given that our programs are
non-blocking and that we are assuming weak fairness, one might conclude that
each process always executes a statement. However, this is not necessarily true.
Underlying mechanisms such as scheduler implementations or process failure
can prevent processes from doing so. In fact, some definitions of progress are
dependant on these underlying mechanisms, for instance from [HLM03], “. . . we
need to provide some mechanism to reduce the contention so that progress is
achieved.”

We introduce a condition ξp for process p, whose value is changed externally
such that p is able to execute iff ξp holds. No statement in the program is allowed
to modify ξp. We will say that p is enabled when ξp holds, and disabled when
¬ξp holds. Now, we may think of each skip, assignment, or a coarse-grained
atomic statement i:S j: as the statement i: 〈if ξp → S fi〉 j: and each guard
evaluation statement i: (B1 → j1: [] B2 → j2:) k: as the statement i: (B1 ∧
ξp → j1: [] B2 ∧ ξp → j2:) k:. Although this means process executions can be
blocked, the crucial difference is that the blocking takes place via underlying
mechanisms not controlled by the program. As an example, in a system that
uses round-robin scheduling where PROC =̂ 0..n− 1, one might implement the
scheduler as in Fig. 1.

The exact details of specifying when processes are enabled and disabled lies
outside the scope of this paper, as they reflect factors external to the program.
However, failure can be modelled with little added cost, therefore, we assume

288 B. Dongol

Init =̂ (∀p∈PROC ¬ξp) ∧ e = 0

ξe = true ;
∗[
ξe := false ;
e := (e+ 1) mod n ;
ξe := true

]

Fig. 1. Round-robin scheduling

that processes only become disabled due to failure, i.e., once a process is disabled,
it is never re-enabled.2 As the condition ξp for process p is modified externally,
we will assume that it appears in our programs implicitly, i.e., our programs will
not mention ξp.

3 A Logic of Safety and Progress

We now present a logic for our programming model. Here, notation [F] is
used to denote “in all states F holds”, and (x := E).F to denote the textual
replacement of all free occurrences of the variable x in F by expression E.

3.1 Safety

Formal semantics for the programming language is provided using the weakest
liberal precondition (wlp) predicate transformer [Dij76]. We define the wlp for la-
belled atomic statements, and assume knowledge of wlp for unlabelled statements
(see [FvG99]). Due to the importance of the calling process, we parameterise the
wlp by process p.

Definition 1 (Weakest Liberal Precondition). Assuming the statements
are executed by process p, the wlp of a labelled atomic statement i:S j: with
respect to a postcondition P computes the weakest condition required for a ter-
minating execution of i:S j: to establish P . It is defined as follows.

1 . [wlpp.(i: skip j:).P ≡ ξp ⇒ (pcp := j).P]
2 . [wlpp.(i:x := E j:).P ≡ ξp ⇒ (x, pcp := E, j).P)]
3 . [wlpp.(i: exit τ :).P ≡ ξp ⇒ (pcp := τ).P]
4 . [wlpp.(i: 〈S〉 j:).P ≡ ξp ⇒ wlpp.S.((pcp := j).P)]
5 . [wlpp.(B1 → j1: [] B2 → j2:).P ≡

(B1 ∧ ξp ⇒ (pcp := j1).P) ∧ (B2 ∧ ξp ⇒ (pcp := j2).P)]

We now define the criteria necessary to judge correctness of assertions in a
concurrent environment. Assertions must accommodate for interference from
2 This assumption does not prevent one from implementing other scheduling algo-

rithms, but the algorithm should make sure that a disabled process is not re-enabled
until at least some some process has made progress.

Formalising Progress Properties of Non-blocking Programs 289

other processes. Our presentation follows the (calculational) reformulation of
[OG76] as presented in [FvG99]. We note that as guard evaluation can have the
side-effect that the program counter is updated, we have an extra clause in the
definition of local correctness wrt [FvG99].

Definition 2 (Correctness). An assertion P occuring in operation X executed
by process p is correct if it is both locally and globally correct where:

1. P is locally correct whenever
(a) if P occurs at the start of the operation, then [Init ⇒ P].
(b) if P is textually preceded by {Q} Xi, where Q is correct, then

[Q ⇒ wlpp.Xi.P].
(c) if P is textually preceded by {Q} B → j: where Q is correct, then

[Q ∧ B ⇒ (pcp := j).P)].
2. P is globally correct if for each atomic {Q} Yj executed by a process q where

q �= p and Q is correct, [P ∧ Q ⇒ wlpq.Yj .P].

So, an assertion in an operation executed by a process is correct if it is established
by execution of the operation (locally correct), and maintained by execution of
operations performed by other processes (globally correct). The safety logic also
allows one to use invariants.

Definition 3 (Invariant). Assertion P is invariant if [Init ⇒ P] and for
all atomic Xi with correct pre-assertion U , executed by any process p, [P ∧
U ⇒ wlpp.Xi.P].

Hence, an invariant is a predicate that holds initially, and is preserved by exe-
cution of any atomic statement by any process, i.e., it is a property that holds
in every state of the program.

3.2 Progress

The progress logic [DG06] is a reformulation of Chandy and Misra’s UNITY
formalism [CM88], which allows axiomatic proofs of temporal [MP92] eventuality
properties. Here, we will assume knowledge of weakest preconditions (wp) for
unlabelled statements (see [Dij76]). Our presentation follows [DM06]. The basis
for the logic is the unless (un) relation.

Definition 4 (Unless). For any predicates P and Q, P un Q holds if for all
atomic Xi with correct pre-assertion U , executed by any process p, [P ∧ ¬Q ∧
U ⇒ wlpp.Xi.(P ∨ Q)].

If P un Q holds, then P continues to hold until Q holds. Hence, execution of
each statement either preserves P or establishes Q. Note that even when P un Q
holds, there is no guarantee that Q will ever become true, for example, if P is
invariant, then P un false holds. Thus, to make sure that Q is established by
execution of the program from a state that satisfies P , we must prove that P � Q
(which is equivalent to proving the temporal formula �(P ⇒ ♦Q) [MP92]). We
first define the weakest precondition for labelled atomic statements. The wp of
an unlabelled statement is interpretated according to [Dij76].

290 B. Dongol

Definition 5 (Weakest precondition). Assuming the statements are exe-
cuted by process p, the wp of a labelled atomic statement i:S j: with respect
to a postcondition P computes the weakest condition required to guarantee ter-
mination of i:S j:, such that P is established upon termination of i:S j:.

1 . If S is one of skip, x := E, or exit, or a guard evaluation statement then,
[wpp.(i:S j:).P ≡ wlpp.(i:S j:).P]

2a. If S is of the form if B1 → T1[] B2 → T2 fi
[wpp.(i: 〈S〉 j:).P ≡ (ξp ∧ B1 ⇒ wpp.T1.((pcp := j).P))

∧ (ξp ∧ B2 ⇒ wpp.T2.((pcp := j).P))]
2b. If S is not of the form if B1 → T1[] B2 → T2 fi

[wpp.(i: 〈S〉 j:).P ≡ ξp ⇒ wpp.S.((pcp := j).P)]

Definition 6 (Leads-to). Under weak fairness, for any predicates P and Q,
P � Q if it can be proved via a finite number of applications of the following
rules.

1. (Immediate progress) P � Q holds by immediate progress if P un Q holds,
and there is an atomic statement Xi, executed by any process p such that
[P ∧ ¬Q ⇒ pcp = i ∧ wp.Xi.Q ∧ ¬wp.Xi.false] holds.

2. (Transitivity) P � Q if there is a predicate R such that P � R and R � Q.
3. (Disjunction) If P =̂ (∃i:WPi) for some set W , then P � Q if (∀i:WPi � Q).

By the immediate progress rule, some process p is guaranteed to execute a state-
ment from a state that satisfies P so that the next state satisfies Q. Notice that
as P un Q holds, every other process either preserves P or establishes Q. The
transitivity rule allows intermediate states in the proof of P � Q. Finally, dis-
junction allows us to establish, for example, that if P ≡ P1 ∨ P2, to show that
P � Q, we may prove P1 � Q and P2 � Q individually.

The operator � binds weaker than any logical operator, i.e., ¬P � Q ≡
(¬P) � Q and P ⊕ Q � R ≡ (P ⊕Q) � R where ⊕ ∈ {∨,∧,⇒,⇔}. In
addition, we find the following lemmata for � to be of use.

Lemma 1. For any predicates P , Q and R:

1. � is monotonic (or isotonic) in its second argument [DM06], i.e.,
(P � Q) ∧ [Q⇒ R] ⇒ (P � R)

2. � is anti-monotonic (or antitonic) in its first argument [DM06], i.e.,
[P ⇒ Q] ∧ (Q � R) ⇒ (P � R)

3. Implication [CM88]:
[P ⇒ Q] ⇒ (P � Q)

4. Induction [CM88]:
For any well-founded order (W,≺) and M which is an expression on program
variables evaluating to an element of W ,

(∀m:W P ∧M = m � (P ∧M ≺ m) ∨ Q) ⇒ (P � Q).

Formalising Progress Properties of Non-blocking Programs 291

4 Progress Properties of Non-blocking Programs

We now present a sample of the definitions of wait, lock and obstruction-free
provided by various authors, which allows us to highlight the differences and
ambiguities introduced through the use of natural language. These are formalised
in the subsequent sections.

Wait-free
[Her88] “A wait-free implementation of a concurrent object is one that guar-

antees that any process can complete any operation in a finite num-
ber of steps”

[HLM03] “An algorithm is wait-free if it ensures that all processes make
progress even when faced with arbitrary delay or failure of other
processes.”

[Mic04] “A lock-free shared object is also wait-free if progress is guaranteed
per operation.”

[Sun04] “Wait-free algorithms guarantee progress of all operations, indepen-
dent of the actions performed by the concurrent operations.”

Lock-free
[MP91] “An object is lock-free if it guarantees that some operation will com-

plete in a finite number of steps.”
[HLM03] “An algorithm is lock-free if it guarantees that some thread always

makes progress.”
[Mic04] “A shared object is lock-free if whenever a thread executes some finite

number of steps towards an operation on the object, some thread
must have completed an operation on the object during execution
of these steps.”

[Sun04] “Lock-free algorithms guarantee progress of always at least one op-
eration, independent of the actions performed by the concurrent op-
erations.”

Obstruction-free
[HLM03] “A non-blocking algorithm is obstruction-free if it guarantees progress

for any thread that eventually executes in isolation. Even though
other threads may be in the midst of executing operations, a thread
is considered to execute in isolation as long as the other threads do
not take any steps.”

[SS05] “The core of an obstruction free algorithm only needs to guarantee
progress when one single thread is running (although other threads
may be in arbitrary states)”

[Sun04] “Recently, some researchers also proposed obstruction-free algorithms
to be non-blocking, although this kind of algorithms do not give any
progress guarantees.”

We do not follow any one of these definitions in particular, and to avoid
further confusion, we do not present our interpretation using natural language.

292 B. Dongol

Instead, we jump straight into formalisation, then relate the definitions presented
above to our formal definitions. However, at this stage we point out that [Mic04]
presumes that a wait-free program is lock-free.

4.1 Formalising Progress Properties

To describe the desired progress properties of a program, we define a progress
function

Π :PC → P(PC)

which for any control point returns the set of control points such that a control
point in the set must be reached to make progress. Hence, for any label i and
for any j ∈ Π.i, if pcp = j ever holds, then process p has made progress from i.
Notice that in defining Π , we formalise the progress requirement of the program.

The progress function Π of a program specifies the progress requirements of
each operation in the program. Hence, any progress property must be defined
with respect to a particular definition of Π . It is possible for different definitions
of Π to allow the same program to be classified differently.

Assuming that Π is given allows us to express progress properties in a very
general manner. By relating the definitions of the progress properties to a progress
function, we are able to provide definitions that do not refer to any particular
program. However, to rule out trivial cases, we place a few restrictions on the
definition of Π . Clearly, progress cannot occur if a process does not take a step.
We also do not allow Π to be defined from a control point of one operation to the
control point of another. Furthermore, a process that invokes a new operation
is considered to have made progress. Thus, the following healthiness conditions
on Π are imposed:

(∀i:PC i /∈ Π.i) (1)
(∀X:OP (∀i:PCXΠ.i ⊂ PCX)) (2)
Π.τ = PC start (3)

As P � Q is a two state predicate, one or more statements may need to
be executed3 to reach a state that satisfies Q from one that satisfies P . Hence,
values of variables in states that satisfy P may be different to their values in
states that satisfy Q. This is definitely the case with our proofs which are usually
of the form pcp = i � pcp ∈ Π.i. By (1), this means that pcp �= i on the right
side of the �, i.e., the value of pcp has changed. Thus, to show that a state that
satisfies pcp = i reaches a state that satisfies pcp ∈ Π.i, we need to record the
value of pcp at the start. As properties such as lock-freedom require the system
as a whole to make progress, we must record the value of the program counters
of all processes. To do this we use a snapshot ss of type SS with which we are
able to record the state of all the program counters. By considering all ss in SS ,
3 Execution of statements is not always necessary. For instance when [P ⇒ Q], by

Lemma 1 (implication), P � Q.

Formalising Progress Properties of Non-blocking Programs 293

every possible configuration of the program counters can be considered. We note
that in real life, some of these ss might not be reachable, but for the purposes
of this paper, we will assume that they are.

From the informal definitions, we can see that it is common for Π to be defined
so that progress for each operation occurs when the operation terminates. For
this reason, we define the constraint:

(∀i:PC−{τ} Π.i = {τ}) (4)

If the progress function Π satisfies (4), progress occurs whenever a currently
executing operation terminates.

4.2 Wait-Freedom

A program exhibits the wait-free property if each process makes progress inde-
pendently of the other processes.

Definition 7 (Wait-free). A non-blocking program is wait-free with respect to
a progress function Π iff it satisfies WFΠ , where

WFΠ =̂ (∀i:PC (∀p:PROC pcp = i � pcp ∈ Π.i ∨ ¬ξp)).

If a program satisfies WFΠ , then for every value, i, of the program counter, and
for every process p in the program, given that the recorded value of pcp is i,
either we eventually reach a state for which the value of pcp is in Π.i, i.e., p has
made progress, or p is disabled (possibly forever).

Let us now compare WFΠ to the informal definitions compiled in Section
4.1. WFΠ implies the definitions in [HLM03, Mic04, Sun04] as when WFΠ

holds, each process that is not disabled (eg., through failure) makes progress.
For [Her88], we constrain Π so that it satisfies (4). Now, if the program is wait-
free, then pcp = i � pcp = τ holds for each p ∈ PROC . By the definition of
�, any proof of the form pcp = i � pcp = τ is proved using a finite number of
applications of immediate progress. As each application of immediate progress
corresponds to a step in the operation, it follows that each operation terminates
after a finite number of steps.

4.3 Lock-Freedom

Lock-freedom is a weaker property than wait-freedom that only requires the
system as a whole to make progress. Being a system-wide property, we need to
take a snapshot the program counters of all processes, then show that one of
these processes has made progress.

Definition 8 (Lock-free). A non-blocking program is lock-free with respect to
a progress function Π iff it satisfies LFΠ , where

LFΠ =̂ (∀ss:SS pc = ss � (∃p:PROC pcp ∈ Π.ssp) ∨ (∀p:PROC ¬ξp)).

294 B. Dongol

If a program satisfies LFΠ , given that we record the value of the program coun-
ters of all processes in ss, eventually either some process makes progress or all
processes are disabled. As we check all ss , we consider every configuration of the
program counters.

Let us compare LFΠ with the informal definitions of lock-freedom. The defi-
nition in [HLM03] states that some process always makes progress which implies
LFΠ . We can relate [Mic04] to LFΠ by constraining Π so that it satisfies (4).
The fact that each � proof consists of a finite number of applications of imme-
diate progress means that some operation has taken a finite number of steps,
and furthermore, some operation has completed. However, notice that the def-
initions in [Mic04] can be misinterpreted. The phrase “...some finite number of
steps...” could mean that there is a finite number n, and “...some thread must
have completed an operation during execution of these steps...” could mean that
if any process takes n steps, then some operation must have completed. Against
[MP91], we may once again constrain Π to satisfy (4). As the proof involves a
finite number of applications of immediate progress, some operation completes
in a finite number of steps. The definition in [Sun04] is a rewording of [MP91]
where progress can occur without a process terminating, and the requirement
that a finite number of steps be taken is removed.

Examining these definitions also provides us with an opportunity to show how
natural language definitions can be ambiguous. Consider the following definition.

LFAΠ =̂ (∃p:PROC (∀ss:SS pc = ss � pcp ∈ Π.ssp ∨ (∀q:PROC ¬ξq)))

Assuming that processes are not disabled, if a program satisifies LFAΠ , then we
are required to show that there is a distinguished process that always makes
progress. Notice that LFAΠ is a possible interpretation of the definition in
[HLM03] as there exists a process that always makes progress. We can prove
that LFAΠ ⇒ LFΠ , however, a lock-free program does not need to guarantee
that a particular process that always makes progress exists.

To see this for a two process case, consider a program for which PROC =
{q, r}. Against any progress function Π , if the program satisfies LFAΠ then the
following holds.

(∀ss:SS pc = ss � pcq ∈ Π.ssq ∨ (∀p:PROC ¬ξp)))
∨ (∀ss:SS pc = ss � pcr ∈ Π.ssr ∨ (∀p:PROC ¬ξp)))

(5)

However, if the program satisfies LFΠ it satisfies:

(∀ss:SS pc = ss � pcq ∈ Π.ssq ∨ pcr ∈ Π.ssr ∨ (∀p:PROC ¬ξp))) (6)

which is equivalent to

(∀ss :SS (pc = ss � pcq ∈ Π.ssq) ∨ (pc = ss � pcr ∈ Π.ssr)
∨ (pc = ss � (∀p:PROC ¬ξp))))

and now it is clear that (6) is a weaker property than (5). Thus LFΠ does not
imply LFAΠ .

Formalising Progress Properties of Non-blocking Programs 295

4.4 Obstruction-Freedom

Our definition of obstruction-freedom follows from the original source [HLM03].
The first part of their definition seems to require that there are no other contend-
ing (concurrently executing) processes. However, by the second part of [HLM03]
and by the definition in [SS05], we realise that contending processes are allowed
as long as they do not take any steps.

A process p executes in isolation, i.e., without any contending processes, if all
other processes are disabled. That is, for every process q other than p, condition
¬ξq holds. Recall that we assume a process is that is disabled is never re-enabled.

Definition 9 (Obstruction-free). A non-blocking program is obstruction-free
with respect to a progress function Π iff it satisfies OFΠ , where

OFΠ =̂ (∀i:PC (∀p:PROC pcp = i ∧ (∀q:PROC p = q ∨ ¬ξq) �
pcp ∈ Π.i ∨ ¬ξp)).

If a program satisfies OFΠ , then for all processes p, given that we record the
value of pcp in i, if p is ever executing in isolation, the program eventually reaches
a state where p has made progress from i, or p is itself disabled.

Notice that obstruction-freedom allows processes to prevent each other from
making progress, and as long as a process is not executing in isolation, no progress
guarantees are provided. An objective of Herlihy et al [HLM03] is the separation
of safety and progress concerns during program development. In their words,
“We believe a clean separation between the two [safety and progress] concerns
promises simpler, more efficient, and more effective algorithms.” The definition
we have provided allows one to observe this intended separation more easily as it
is now clear that the other half of ensuring progress is concerned with developing
an effective underlying mechanism that ensures each process eventually executes
in isolation. We leave exploration of the sorts of mechanisms necessary as a topic
for further work as it lies outside the scope of this paper.

Comparing our definition to those in natural language, we have developed
our definition of OFΠ using [HLM03, SS05]. We believe the definition given in
[Sun04] is incorrect, as OFΠ does provide progress guarantees, although they
are quite weak.

5 Progress Hierarchy

In this section we prove the widely believed presumption that wait-free programs
are a special case of lock-free programs and lock-free programs a special case of
obstruction-free programs. We will use notation x = y = z as shorthand for
x = z ∧ y = z. For our proof, we will be using a well-founded lexicographical
(or dictionary) ordering which we define below.

Definition 10 (Lexicographical ordering). Given a collection of sets A1,
A2, . . . , An and respective total-orderings ≺1,≺2, . . . ,≺n, the lexicographical or-
dering ≺≺ of A1 ×A2 × . . .×An is defined as

296 B. Dongol

[a1, a2, . . . , an] ≺≺ [a′1, a
′
2, . . . , a

′
n] ≡ (∃t:1..n(∀u:1..t−1 au = a′u ∧ at ≺t a

′
t)).

Definition 11 (Well-founded). An ordering is well-founded if it does not
contain any infinite descending chains, and a lexicographical ordering is well-
founded if each (Ai,≺i) is well-founded.

Hence, for example, for W =̂ (N× N× N,≺≺) where ≺ is just < on the natural
numbers, the relation [33, 1, 100] ≺≺ [33, 100, 1] holds.

Theorem 1. Any wait-free program is also lock-free, but a lock-free program is
not necessarily wait-free.

Proof (⇒). For some arbitrary progress function, Π , we prove that WFΠ ⇒
LFΠ as follows:

(∀i:PC (∀p:PROC pcp = i � pcp ∈ Π.i ∨ ¬ξp))
≡ {as SS:PROC → PC }

(∀ss:SS (∀p:PROC pcp = ssp � pcp ∈ Π.ssp ∨ ¬ξp))
⇒ {LHS of � is anti-monotonic}

{RHS of � is monotonic}
(∀ss:SS (∀p:PROC pc = ss � (∃q:PROC pcq ∈ Π.ssq) ∨ ¬ξp))

⇒ {as processes do not become re-enabled}
(∀ss:SS pc = ss � (∃q:PROC pcq ∈ Π.ssq) ∨ (∀p:PROC ¬ξp))

��

Proof (⇐).

PROC =̂ {q, r}
Init =̂ pcq = pcr = τ

X(k:PROC)
∗[

X2: tk := T ;
X1: ife 〈T = tk → T := tk + 1〉
X0: exit

efi
]

τ :

Fig. 2. A lock-free program

To prove that lock-freedom does not imply wait-freedom, we consider the pro-
gram in Fig. 2. To simplify our reasoning, we will assume that ξp for each process
p is never set to false which means no process is ever disabled. We define the
progress function for the program in Fig. 2 as:

(λc:PC if c = τ then {X2} else {τ})

Formalising Progress Properties of Non-blocking Programs 297

Hence, progress occurs either if a process invokes a new X operation, or if a
currently executing operation terminates. Due to weak fairness, we can guarantee
that the following holds:

(∀p:PROC pcp = X0 � pcp = τ)

and hence, the progress function becomes:

Π1 =̂ (λc:PC if c = τ then {X2} else {X0}).

The program in Fig. 2 is lock-free wrt Π1. We let τ ≺ X0 ≺ X1 ≺ X2 be the
ordering on PC and prove LFΠ1 using lexicographical orderings and induction.

(∀ss:SS pc = ss � (∃p:PROC pcp ∈ Π1.ssp))
⇐ {anti-monotonicity of � }

(∀ss:SS true � (∃p:PROC pcp ∈ Π1.ssp))
⇐ {Lemma 1 (induction)}

{(P := true), (Q := pcp ∈ Π1.ssp), (M := pc), (m := ss), (W := SS)}
(∀ss:SS pc = ss � pc ≺≺ ss ∨ (∃p:PROC pcp ∈ Π1.ssp))

Hence, LFΠ1 is satisfied if the value of one of the program counters is de-
creased, or one of the processes makes progress. For the rest of the proof, we
will consider process q in detail realising that a symmetric argument can be
applied to r. Due to weak fairness, all but two actions of q trivially satisfies
pc = ss � pc ≺≺ ss. The steps that q may perform which increase the value of
pcq are:

(a) When a (currently idle) q invokes a new operation, where the value of pcq

changes from τ to X2.
(b) When the test at X1 fails, i.e., pcq = X1 ∧ tq �= T holds and q is executed.

Here, the value of pcq changes from X1 to X2.

Of these, (a) may be disregarded by (3), as Π1 is satisfied if pcq changes from
τ to X2. Hence, our proof obligation becomes:

(∀z:PC pc = [X1, z] ∧ tq �= T � pc ≺≺ [X1, z] ∨ pcq ∈ {τ} ∨ pcr ∈ Π1.z).

To prove this, we perform case analysis on the value of pcr, and show that the left
side of � does indeed reach the right side. To save space we introduce notation
[[i, j]] to mean pc = [i, j]. Notice that most of our steps below are of the form
[[i, j]] � [[i′, j]] ∨ [[i, j′]]. This is because the immediate progress rule forces us
to consider both a step taken by q and a step taken by r. From a state that
satisfies [[i, j]], if q takes a step, then we reach [[i′, j]] and if r takes a step, then
we reach [[i, j′]]. Our program is non-blocking and hence no deadlock exists. This
means one of the two things is guaranteed to happen. Thus, we are guaranteed
to reach a state that satisfies [[i′, j]] ∨ [[i, j′]].

For our proof we use the property: K =̂ pcp = pcr = X1 ∧ tq �= T ⇒ tr = T .
K is a safety property; its proof is omitted.

298 B. Dongol

case pcr = X2:

[[X1,X2]] ∧ tq �= T
� {imm. progress on X1 (or X2)}

[[X2,X2]] ∨ [[X1, X1]]
� {imm. progress on X2}

([[X1,X2]] ∧ tq = T)
∨ ([[X2, X1]] ∧ tr = T) ∨ [[X1,X1]]

� {imm. progress on X1 (or X2)}
[[X0,X2]] ∨ [[X2, X0]] ∨ [[X1,X1]]

case pcr = X1:

[[X1,X1]] ∧ tq �= T
� {by K}{Lemma 1 (implication)}

[[X1,X1]] ∧ tq �= T ∧ tr = T
� {imm. progress on X1}

([[X2,X1]] ∧ tr = T) ∨ [[X1,X0]]
� {imm. progress on X2}

([[X1,X1]] ∧ tq = tr = T)
∨ [[X2,X0]] ∨ [[X1,X0]]

case pcr = X0:

[[X1,X0]] ∧ tq �= T
� {imm. progress on X1}

[[X2,X0]] ∨ [[X1, τ]]
� {imm. progress on X2}

([[X1,X0]] ∧ tq = T) ∨ [[X2, τ]]
∨ [[X1, τ]]

case pcr = τ :

[[X1, τ]] ∧ tq �= T
� {imm. progress on X1 (or τ)}

[[X2, τ]] ∨ [[X1,X2]]
� {imm. progress on X2 (or τ)}

([[X1, τ]] ∧ tq = T) ∨ [[X2,X2]]
∨ [[X1,X2]]

� {imm. progress on X1 (or τ)}
[[X0, τ]] ∨ [[X2,X2]] ∨ [[X1,X2]]

Thus, with all four cases, either the value of [pcq, pcr] is reduced with respect
to ≺≺, or progress is made with respect to Π1. This completes the proof that X
satisfies LFΠ1 .

The program in Fig. 2 is not wait-free wrt Π1. To show that the program satisfies
WFΠ1 , we must prove (∀ss :SS (∀p:PROC pcp = ssp � pcp ∈ Π1.ssp)). We
choose to prove this for process q realising that a symmetric argument applies
to r. Below, we present the attempted proof of progress for q from a state that
satisfies pcq = X2.

pcq = X2 � pcq ∈ Π1.X2

≡ {transitivity, as pcq is local to q}{definition of Π1}
(pcq = X2 � pcq = X1) ∧ (pcq = X1 � pcq = X0) ∧ (pcp = X0 � pcp = τ)

≡ {immediate progress on X2 and X0}
pcq = X1 � pcq = X0

However,

pcq = X1

� {Lemma 1 (implication), case analysis on guard of X1}
(pcq = X1 ∧ tq = T) ∨ (pcq = X1 ∧ tq �= T)

� {by immediate progress}
pcq = X0 ∨ (pcq = X1 ∧ tq �= T) ∨ pcq = X2

� {by immediate progress}
pcq ∈ {X0,X2}

Thus, when pcq = X1, either pcq is set to X0 as we hoped, or it fails and pcq

is set to X2. That is, the trace [X1, pcr], [X2, pcr] may be infinitely repeated,

Formalising Progress Properties of Non-blocking Programs 299

whereby q never makes progress. This shows that the program in Fig. 2 is
not wait-free and concludes the proof that a lock-freedom does not imply wait-
freedom. ��

Theorem 2. Any lock-free program is also obstruction-free, but an obstruction
free program is not necessarily lock-free.

Proof (⇒). For any progress function Π , we prove that LFΠ ⇒ OFΠ as follows:

(∀ss:SS pc = ss � (∃p:PROC pcp ∈ Π.ssp) ∨ (∀p:PROC ¬ξp))
≡ {logic, q is free}

(∀ss:SS (∀q:PROC pc = ss � (∃p:PROC pcp ∈ Π.ssp) ∨ (∀p:PROC ¬ξp)))
⇒ {LHS of � is anti-monotonic}

(∀ss:SS (∀q:PROC pc = ss ∧ (∀p:PROC p = q ∨ ¬ξp) �
(∃p:PROC pcp ∈ Π.ssp) ∨ (∀p:PROC ¬ξp)))

⇒ {RHS of � is monotonic}
(∀ss:SS (∀q:PROC pc = ss ∧ (∀p:PROC p = q ∨ ¬ξp) �

(∃p:PROC pcp ∈ Π.ssp) ∨ ¬ξq))
⇒ {all p for which p �= q are disabled}

(∀ss:SS (∀q:PROC pcq = ssq ∧ (∀p:PROC p = q ∨ ¬ξp) � pcq ∈ Π.ssq ∨ ¬ξq))
≡ {as SS:PROC → PC }

(∀i:PC (∀q:PROC pcq = i ∧ (∀p:PROC p = q ∨ ¬ξp) � pcq ∈ Π.i ∨ ¬ξq))
��

Proof (⇐).

PROC =̂ {q, r}
Init =̂ pcq = pcr = τ

X(k: PROC) Y (k:PROC)
∗[

X2: B := true ;
X1: ife B →
X0: exit

efi
]

τ :

∗[
Y2: B := false ;
Y1: ife ¬B →
Y0: exit

efi
]

τ :

Fig. 3. An obstruction-free program

To see that the implication does not hold in the other direction, we consider
the program in Fig. 3. The progress requirement, as before will be that each
operation terminates. However, due to the fact that (∀p∈PROC pcp ∈ {X0, Y0}�
pcp = τ ∨ ¬ξp) holds, we may define our progress function to be

Π2 =̂ (λc:PC if c = τ then {X2, Y2} else {X0, Y0})

The program in Fig. 3 is obstruction-free wrt Π2. We assume that r is disabled,
i.e., ¬ξr holds which means q is executing in isolation. If q has invoked X ,
then pcq = X2. Recalling that we assume r does not get re-enabled, it is not

300 B. Dongol

hard to see that by repeated applications of immediate progress, pcq = X2 �
pcq = X0 ∨ ¬ξq holds. Similarly, if q has invoked Y , we can easily prove that
pcq = Y2 � pcq = Y0 ∨ ¬ξq. Which shows that our program is obstruction-free.

The program in Fig. 3 is not lock-free wrt Π2. Suppose processes q and r have
invoked X and Y respectively, so pcq = X2 ∧ pcr = Y2. We get:

[[X2, Y2]]
� {immediate progress on X2 (or Y2)}

([[X1, Y2]] ∧ B) ∨ ([[X2, Y1]] ∧ ¬B) ∨ ξq ∨ ξr

� {immediate progress on X1 (or Y2)}
[[X0, Y2]] ∨ ([[X1, Y1]] ∧ ¬B) ∨ ([[X2, Y1]] ∧ ¬B) ∨ ξq ∨ ξr

Considering just the second disjunct we have:

[[X1, Y1]] ∧ ¬B
� {immediate progress on X1 (or Y1)}

([[X2, Y1]] ∧ ¬B) ∨ [[X1, Y0]] ∨ ¬ξq ∨ ¬ξr

� {immediate progress on X2 (or Y1)}
([[X1, Y1]] ∧ B) ∨ [[X2, Y0]] ∨ [[X1, Y0]] ∨ ¬ξq ∨ ¬ξr

Again, considering the first disjunct separately gives us:

[[X1, Y1]] ∧ B
� {immediate progress on X1 (or Y1)}

[[X0, Y1]] ∨ ([[X1, Y2]] ∧ B) ∨ ¬ξq ∨ ¬ξr

Thus, our program may infinitely repeat the trace [X1, Y2], [X1, Y1], [X2, Y1],
[X2, Y1], [X1, Y1] during which no process makes progress wrt Π2, showing that
the program is not lock-free. Thus, we are able to conclude that obstruction-
freedom does not imply lock-freedom. ��

6 Benefits of Formalisation

In this section we present some other theoretical results obtained through for-
malisation of the progress properties. The relationship between progress proper-
ties of blocking and non-blocking algorithms is presented in Section 6.1 and in
Section 6.2 we briefly describe how other progress properties may be formalised.

6.1 Progress Properties of Blocking Programs

As we have a formal description of progress, we are able to investigate whether
other progress properties can be discovered. By placing restrictions on the defini-
tion of Π , we can define starvation and deadlock freedom in terms of WFΠ , LFΠ

and OFΠ . These definitions apply to any concurrent program, not necessarily
those that are non-blocking.

Definition 12 (Starvation-free, deadlock-free). For a program, suppose we
define Π so that the following holds:

Formalising Progress Properties of Non-blocking Programs 301

(∀X:OP (∀i:PCX Π.i = PCX − {i}))

i.e., progress occurs from any label i whenever any process takes a step. Then,

1. a concurrent program is starvation-free iff it satisfies WFΠ .
2. a concurrent program is deadlock-free iff it satisfies LFΠ or it satisfies OFΠ .

6.2 Other Progress Properties

Another benefit of having a formal description of progress is that we are able to
define progress properties other than wait, lock, and obstruction freedom. We
have already seen an example of this in LFAΠ (see Section 4.3) which defines a
property stronger than LFΠ . For some progress function Π , we may also define
a property such as

AFΠ =̂ (∃is⊆PC ,i:PC (∀p:PROC pcp = i ∧ i ∈ is � pcp ∈ Π.i ∨ ¬ξp))

that is, there is a set of control points (in the program) from which all processes
that do not get disabled make progress. For a program that satisfies AFΠ , to
show that a process makes progress, we only need to prove that the process
reaches a control point from which progress is guaranteed.

By placing different restrictions on Π , it might be possible to discover other
relationships among progress properties. Also, by careful manipulation of the
formulae, we might be able to discover some other progress properties and build
a more complete hierarchy. We leave exploration of both these ideas as a subject
for further work.

7 Conclusion

Formally describing progress properties of concurrent programs is not an easy
task, and subtle variations in assumptions on the programming model can re-
sult in widely varying proof obligations. We have presented definitions for the
three well known progress properties of non-blocking programs using the logic
of [DG06]. The relationship between wait-free, lock-free, and obstruction-free
programs have also firmly been established and we have been able to express
properties of blocking programs such as starvation and deadlock-freedom using
our definitions.

By defining the progress properties of a program in a precise and provable
manner, confusion on what is required for a program to have a given progress
property is avoided. A program has a given property precisely when it satisfies
the definition. The proofs of the programs in Fig. 2 and 3 provide examples of
applications of our definitions to real programs, although a large case study has
not been presented. We leave this as further work. As we have already seen,
the formalisation allows one to describe new progress properties, and in the
future, we hope that a more complete hierarchy of progress properties can be
constructed.

302 B. Dongol

In a blocking program, proving progress usually amounts to proving progress
past the blocking statements, which provide useful reference points in stating the
required progress property. The fact that no blocking occurs in a non-blocking
program makes stating and proving their progress property much more difficult.
Furthermore, proofs of properties such as lock-freedom are complicated by the
fact that they are system-wide properties, as opposed to one that is per-process.
The complicated nature of the relatively simple programs Fig. 2 and 3 are in-
dicative of the possible underlying complexity. Future work should thus address
this and aim to make proofs of progress of non-blocking programs easier.

We note that our model is complicated by the fact that we take underlying
mechanisms into consideration. However, one of the aims of this paper has been
that the definitions of wait, lock and obstruction freedom be kept similar, a deci-
sion that has paid off as can be seen by the relative ease with which one has been
able to prove Theorems 1 and 2. It might certainly be possible to simplify the
definitions and abstract away from mention of underlying mechanisms, however,
we leave exploration of this idea as another avenue of further research.

While this paper has concentrated on verifying programs, the definitions given
in this paper assist formal derivations [FvG99] of non-blocking programs. Deriva-
tions of non-blocking programs are presented in [Moo02], but like Feijen and van
Gasteren [FvG99], the logic of Owicki and Gries [OG76] is used, thus only safety
properties are formally considered. Derivations that consider both safety and
progress using the logic in [DG06] is described in [DG06, GD05, DM06], how-
ever, as they consider lock-based synchronisation, the lessons learnt may not be
directly applicable to a non-blocking context.

Acknowlegements. The author wishes to thank Ian Hayes, Robert Colvin, and
anonymous referees for their valuable comments on earlier drafts. Many thanks
also goes out to Arjan Mooij for pointing out the necessity of modelling failure,
and to Lindsay Groves and Ray Nickson for pointing out possible relationships
between progress properties of non-blocking and blocking programs.

References

[CG05] R. Colvin and L. Groves. Formal verification of an array-based nonblock-
ing queue. In 10th IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS), pages 507–516. IEEE Computer
Society, 2005.

[CM88] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation.
Addison-Wesley Longman Publishing Co., Inc., 1988.

[DG06] B. Dongol and D. Goldson. Extending the theory of Owicki and Gries
with a logic of progress. Logical Methods in Computer Science, 2(6):1–25,
March 2006.

[DGLM04] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Formal verification of
a practical lock-free queue algorithm. In FORTE, volume 3235 of Lecture
Notes in Computer Science, pages 97–114. Springer, 2004.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

Formalising Progress Properties of Non-blocking Programs 303

[DM06] B. Dongol and A. J. Mooij. Progress in deriving concurrent programs:
Emphasizing the role of stable guards. In Tarmo Uustalu, editor, Pro-
ceedings of the 8th International Conference on Mathematics of Program
Construction, volume 4014, pages 140–161. Lecture Notes in Computer
Science, Jun 2006.

[Doh03] S. Doherty. Modelling and verifying non-blocking algorithms that use
dynamically allocated memory. Master’s thesis, Victoria University of
Wellington, 2003.

[FvG99] W. H. J. Feijen and A. J. M. van Gasteren. On a Method of Multipro-
gramming. Springer Verlag, 1999.

[GC96] Michael Greenwald and David R. Cheriton. The synergy between non-
blocking synchronization and operating system structure. In Operating
Systems Design and Implementation, pages 123–136. ACM Press, 1996.

[GD05] D. Goldson and B. Dongol. Concurrent program design in the extended
theory of Owicki and Gries. In M. Atkinson and F. Dehne, editors, CATS,
volume 41, pages 41–50, Newcastle, Australia, 2005. Conferences in Re-
search and Practice in Information Technology.

[Her88] M. Herlihy. Impossibility and universality results for wait-free synchro-
nization. In PODC ’88: Proceedings of the 7th annual ACM Symposium
on Principles of Distributed Computing, pages 276–290, New York, NY,
USA, 1988. ACM Press.

[HLM03] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchroniza-
tion: Double-ended queues as an example. In 23rd IEEE International
Conference on Distributed Computing Systems, page 522, 2003.

[HW90] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492,
1990.

[Mic04] M. M. Michael. Practical lock-free and wait-free LL/SC/VL implementa-
tions using 64-bit CAS. In Rachid Guerraoui, editor, DISC, volume 3274
of Lecture Notes in Computer Science, pages 144–158, Amsterdam, The
Netherlands, October 2004. Springer.

[Moo02] A. J. Mooij. Formal derivations of non-blocking multiprograms. Master’s
thesis, Technische Universiteit Eindhoven, 2002.

[MP91] H. Massalin and C. Pu. A lock-free multiprocessor OS kernel. Technical
Report CUCS-005-91, Columbia University, New York, 1991.

[MP92] Z. Manna and P. Pnueli. Temporal Verification of Reactive and Concurrent
Systems: Specification. Springer-Verlag New York, Inc., 1992.

[OG76] S. Owicki and D. Gries. Verifying properties of parallel programs: An
axiomatic approach. Commun. ACM, 19(5):279–285, 1976.

[SS05] W. N. Scherer and M. L. Scott. Advanced contention management for
dynamic software transactional memory. In PODC, pages 240–248. ACM
Press, 2005.

[Sun04] H. Sundell. Efficient and practical non-blocking data structures. PhD the-
sis, Department of Computer Science, Chalmers University of Technology
and Göteborg University, 2004.

Towards a Fully Generic Theory of Data

Douglas A. Creager and Andrew C. Simpson

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD

United Kingdom

Abstract. Modern software systems place a large emphasis on hetero-
geneous communication. For disparate applications to communicate ef-
fectively, a generic theory of data is required that works at the inter-
application level. The key feature of such a theory is full generality,
where the data model of an application is not restricted to any partic-
ular modeling formalism. Existing solutions do not have this property:
while any data can be encoded in terms of XML or using the Semantic
Web, such representations provide only basic generality, whereby to rea-
son about an arbitrary application’s data model it must be re-expressed
using the formalism in question. In this paper we present a theory of
data which is fully generic and utilizes an extensible design to allow the
underlying formalisms to be incorporated into a specification only when
necessary. We then show how this theory can be used to investigate two
common data equivalence problems — canonicalization and transforma-
tion — independently of the datatypes involved.

1 Introduction

Modern software systems must contend with many issues of communication and
data exchange that did not exist previously. This raises an interesting class of
new problems involving data equivalence — the question of whether two data
somehow “mean” the same thing, taking into account the data’s format, struc-
ture, semantics, and application. Two examples are canonicalization and trans-
formation.

Canonicalization involves two equivalences that disagree. For example, in the
world of XML [6], digital signatures are problematic, as cryptographic signature
algorithms are defined in terms of byte streams. Since a single XML document
has many possible binary encodings, a mismatched signature does not necessarily
mean that an XML document was modified in transit — it may be a different
sequence of bytes that represents the same document.

Transformation, on the other hand, involves maintaining an equivalence be-
tween two datatypes. This problem occurs frequently when two applications are
linked with a communications channel: the data models of the two applications
will likely not be the same, even though they refer to semantically equivalent
concepts. Assuming that one cannot easily rewrite the applications, some form
of transformation is needed to bridge the mismatch between the two datatypes.

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 304–323, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Towards a Fully Generic Theory of Data 305

The transformation, however, must ensure that it maintains the semantic equiv-
alence between the two datatypes.

These problems are particularly troublesome, especially when applied to real-
world applications, since they must take into account the low-level encoding
details of the datatypes. This constrasts with most existing approaches to data
modeling and data typing, which abstract away encoding details to simplify the
formalism. This abstraction is beneficial to the application designer, since one
can exploit data independence to separate the high-level application logic from
the low-level data storage issues. However, when integrating multiple applica-
tions, these low-level issues must be considered.

Further complicating matters, these problems must handle multiple under-
lying data formalisms. Many data formalisms are complete, meaning that any
feasible application data model can be represented in the formalism. Complete
formalisms, at varying levels of abstraction, include XML, the relational model
of data [8], algebraic and co-algebraic datatypes [10], and Shannon’s information
theory [16]. One can investigate canonicalization and transformation within one
of these formalisms. The W3C, for instance, has developed solutions to both
within the context of XML [9,7]. However, these data equivalence issues are
problems with data in general, and cross formalism boundaries. No XML trans-
formation method can solve the transformation problem in general.

Fundamentally, existing solutions are not general because multiple data for-
malisms exist not just in theory, but in practice. There are applications that
do not use XML, or do not use the relational model, for perfectly valid reasons.
Though these formalisms are complete, they only maintain basic generality — to
reason about an arbitrary application’s data model, it must first be re-expressed
in terms of the formalism in question. Instead, we strive for a theory of data with
full generality, which would allow us to reason formally about an application’s
data model as it exists in the application. Requiring the application to present
a separate, theory-compatible, view of its data is not a desirable solution.

This paper presents a fully generic theory of data. It has two key features. The
first is that, in addition to the data itself, datatypes and data equivalences are
both treated as first-class objects. This lets us reason about generic problems like
canonicalization and transformation independently of the particular datatypes
and underlying data formalisms used. The second is that the theory is designed
in an extensible way; for instance, one can represent an XML datatype in this
theory without requiring a complete description of the XML formalism. Of
course, including an XML formalism increases the number of properties one can
deduce about an XML datatype; however, as we will show, many interesting
problems do not require this level of detail.

The remainder of this paper is organized as follows. Section 2 provides a basic
description of datatypes and data equivalence. Section 3 provides a formal de-
scription of the data theory. We will present this formalism using the Z notation,
introductions to which can be found in [19,20,21]. We will digress slightly from
the standard notation, however, by allowing certain operators to be overloaded
— to be defined, for instance, for both datatypes and sequences of datatypes.

306 D.A. Creager and A.C. Simpson

Section 4 shows how we can use this formalism to investigate canonicalization
and transformation. Finally, Section 5 presents our conclusions and suggests an
area for future work.

2 Overview

In this section we provide an overview of our data theory. First, we highlight
some of the complications that arise when considering the supposedly simple
notion of “equivalence”. Next, we mention an existing classification that can
help illuminate some of the issues involved. Finally, we use this classification to
present informal descriptions of several datatypes that we want our theory to
support.

2.1 Data Equivalences

A key feature to take into account when designing a data theory is data equiva-
lence. What do we mean when we say that two data are “equivalent”? A näıve
answer would be to define this based on binary equality — two program variables
that both contain the 32-bit integer “73” are obviously equivalent. However, this
does not capture the entire picture. We present a few obvious counterexamples.

First, we can consider low-level encoding details that can affect data equiva-
lence. For instance, computer processors have a property called endianness that
affects how multi-byte numbers are stored in memory. “Big-endian” processors
store these numbers with their most-significant byte first, whereas “little-endian”
processors store the number’s least-significant byte first. As an example, consider
the number 1,000, which can be encoded in hexadecimal as the 16-bit quantity
03E8. As shown in Figure 1, when encoded on a big-endian machine, the number
is represented by the byte string 〈〈03 E8〉〉. When encoded on a little-endian ma-
chine, however, the byte string becomes 〈〈E8 03〉〉. In one sense, that of binary
equality, the data are not equivalent; in another, equally valid sense, that of
integer equality, they are. This inconsistency holds in reverse, as well. Consider
the byte string 〈〈03 E8〉〉. As before, on a big-endian machine, this evaluates to
the integer 1,000. On the little-endian machine, however, this is interpreted as
the hexadecimal number E803, or 59,395. In this case, the data are equivalent
according to binary equality, but not according to integer equality.

To further complicate matters, both of the previous examples assumed that
the integers were unsigned. Modern computers encode signed integers using
two’s complement notation, which has the beneficial property that the same bi-
nary addition operator can be used for signed and unsigned numbers. This is

〈〈03 E8〉〉
Signed Unsigned
1,000 1,000
-6,141 59,395

Big-endian
Little-endian

〈〈E8 03〉〉
Signed Unsigned
-6,141 59,395
1,000 1,000

Fig. 1. Differing semantic interpretations of binary integers

Towards a Fully Generic Theory of Data 307

a further inconsistency in how a particular byte string can be interpreted as an
integer. For example, on a big-endian machine, the byte string 〈〈E8 03〉〉 is in-
terpreted differently as an signed integer (-6,141) and unsigned integer (59,395).
This is another case of the data being equivalent according to binary equality,
but not according to integer equality.

Similar inconsistencies can appear at higher abstraction levels. For instance,
in the HTML markup language [15], it is possible to specify the background
color of a Web page with the bgcolor attribute of the opening body tag. To
give a Web page a white background, for instance, one could use the following:

<body bgcolor="white">

This example represents the color using one of the values in the list of named
color strings specified by the HTML standards. It is also possible to specify the
color by giving an explicit color value in the RGB color space, such as:

<body bgcolor="#ffffff">

This example specifies a background color that has the maximum value of
255 (“ff” in hexadecimal) for its red, green, and blue components; this color
happens to be the color white. These two examples are not equivalent according
to binary equality, or even according to character string equality. However,
the semantics of the bgcolor attribute, as defined by the HTML standard, are
such that the character strings “white” and “#ffffff” represent equivalent
colors.

Thus, it is easy to see that a true notion of data equivalence is very application-
dependent. It is also a notion that is very dependent on the level of abstraction
being used — two data that have different binary encodings might be semanti-
cally equivalent, and vice versa. Sometimes semantic equivalence will be more
important; sometimes syntactic equivalence will.

2.2 S Classification

As seen in the previous section, many different kinds of data equivalence ex-
ist, depending on the application and the desired level of abstraction. It will be
useful to classify these different equivalences. Ouksel and Sheth identify one pos-
sible classification in their study of heterogeneity in information systems [14,17]:
system, syntax, structure, and semantics. System heterogeneity refers to the par-
ticular combination of hardware and software used to implement an application
or datastore. Syntactic heterogeneity refers to the low-level representation of the
data — usually in terms of a specific binary encoding. Structural heterogeneity
refers to the underlying data primitives used to model an application domain.
Semantic heterogeneity refers to the inherent meaning and interpretation of data
— the terms information and knowledge are often used instead of data to refer
to semantic content.

Ouksel and Sheth introduce this classification, which we will refer to as the S
classification, to study heterogeneity of information systems — the applications

308 D.A. Creager and A.C. Simpson

that process data. It is equally effective at describing the data itself. Data equiv-
alence is ambiguous because of its dependence on the desired level of abstraction.
The S classification allows us to describe which level of abstraction we are us-
ing when analyzing a particular data equivalence, and to highlight differences
between data equivalences.

2.3 Datatypes

Any study of data needs to think about datatypes. Broadly speaking, we define
a datatype to be some set of data. Notionally, a datatype is different than
an arbitrary set of data, because the data that constitute a type are supposed
to be “similar” in some way. Exactly what form this similarity takes will be
application-dependent, just like our notion of data equivalence. To illustrate
this, we present several example datatypes, and show how the S classification
helps classify them.

Integers. As our first example we can consider the integer types. This is a
very low-level set of types; its syntax is a binary string, or sequence of bytes. As
we have seen in previous sections, our interpretation of these bytes depends on
several factors. At the system level, we must know the integer’s endianness, as
this affects the order of the bytes in the sequence. At the structural level, we
must know the length (and therefore range) of the integer; this is necessary, for
instance, to know how much space to reserve in memory for the integer value.
At the semantic level, we must know whether the application intends to use this
integer as a signed or unsigned value.

Each of these levels can be seen as imposing constraints on which particular
data can appear in the datatype’s set: an integer datatype contains all of the
data that are encoded as a byte string of a particular length, and are interpreted
as integers with a particular endianness and signedness. Taken together, this
constraint-based definition of the datatype’s set brings our original vague notion
of “similarity” into focus — but only for this particular datatype.

Postal address (XML). Next we look at a higher-level type — a postal address
encoded in XML. This data type might, for example, be used to send “electronic
business cards” between address book applications. An instance of this datatype
is shown in Figure 2.

At the semantic level, this datatype represents a postal address. As people
who have grown up with a postal system, we are able to encapsulate quite a bit
of semantic meaning into this concept. This datatype does not provide us with a
means of directly encoding this semantic meaning in the data, but it will inform
how we write applications that use this data.

At the syntax level, we are using the Extensible Markup Language (XML).
Therefore, by extension, our datatype implicitly includes all of the syntactic

Towards a Fully Generic Theory of Data 309

<address>
<name>Douglas Creager</name>
<company>Oxford University Computing Lab</company>
<line1>Wolfson Building</line1>
<line2>Parks Road</line2>
<city>Oxford</city>
<postcode>OX1 3QD</postcode>
<country>UK</country>

</address>

Fig. 2. Example instance of the postal address XML type

assumptions and requirements of the XML standard [6]: for instance, a binary
string that is not well-formed XML cannot be a valid instance of our datatype.

At the structural level, we have an XML schema (not shown) that specifies
which XML tags must be used, the content of those tags, and the order in which
the tags must appear. Like at the syntax level, this implicitly includes into the
datatype definition all of the structural assumptions and requirements of our
XML schema: a well-formed XML document that does not match our schema is
not a valid instance of our datatype.

At the system level, things are more vague, and will depend in part on the de-
tails of the application that is accessing the data. Further, the different aspects
of the system interpretation of the datatype are interrelated with the interpre-
tations of the other three levels. Our application will need to have some sort of
XML parser, which will handle the syntax level. It will also need application-
level logic for parsing the abstract document tree, taking care of the structural
level. The application itself will be written with some intuitive notion of what an
address actually is, taking care of the semantic level. In addition, there will be
the low-level details of the application itself, such as the hardware and operating
system that it is running on, and any shared libraries that it uses.

Again, we can look at these levels as imposing constraints on the members of
the datatype’s set: the set contains all of those data that are encoded in XML,
using this particular address schema, and that are used as “postal addresses”
within the context of some application.

Postal address (database). As another example, we might decide to store
these postal addresses in a relational database. This could correspond to an ad-
dress book application’s internal state of the various business cards that someone
has collected. An instance of this datatype is shown in Figure 3.

Semantically, this datatype represents a postal address, just as in the previous
example. Specifically, this means that the semantic-level constraints imposed on
the corresponding sets are the same for both of these datatypes.

Structurally, however, they are obviously quite different. The tables used
in this example are based on the relational model, which is quite different than
the hierarchical model of XML. Instead of using an XML schema to define which

310 D.A. Creager and A.C. Simpson

ADDRESSES table
ADDRESS ID 13
NAME "Douglas Creager"
COMPANY "Oxford University Computing Lab"
LINE 1 "Wolfson Building"
LINE 2 "Parks Road"
CITY "Oxford"
POST CODE "OX1 3QD"
COUNTRY ID 30

COUNTRIES table
COUNTRY ID 30
NAME "United Kingdom"
ABBREV "UK"

Fig. 3. Example instance of the postal address database type

tags must appear in the tree of XML data, we have a database schema that de-
fines which relational tables we use, and how the tables relate to each
other.

The system and syntax levels of this example are rather blurred. Relational
databases do provide an application-visible syntax in the SQL query language,
but this is not the syntactic representation of the data itself. In fact, we have
several similar datatypes that are equivalent semantically and structurally, but
different syntactically. We could be referring to the internal representation used
by a particular database server, such as PostgreSQL or Oracle. We could be
referring to the wire format used by the database server to send the results of
a query back to the application. We could be referring to the equivalent SQL
INSERT statement that could be used to reconstruct the data. We could be
referring to the abstract notion of a relational tuple, in which case there is no
actual low-level syntax that can be represented in a computer. Often, these
syntactic differences will not matter, and we can exploit data independence by
ignoring them. Other times, they will be important, and must be included in
the datatype definition.

Postal address (Semantic Web). As one final example, we can describe
a third postal address datatype, which uses the formalisms and notations of
the Semantic Web [3]. The Semantic Web provides a data representation that
is better able to express the semantics of the data involved. It does this by
representing data using subject-predicate-object triples as defined by the Resource
Description Framework (RDF) [11,1]. One can envision these triples as edges in
a graph, with the subject being a source node, the object being a destination
node, and the predicate being a labeled edge connecting the two. This graph
notation is used in Figure 4 to show how a postal address could be expressed in
the Semantic Web. (Technically, we should give full URIs [2] for the labels of
the edges and the address1 and uk nodes; we provide shorter labels for brevity.)

Towards a Fully Generic Theory of Data 311

address1

Oxford Univ. Com. Lab

Douglas Creager

Parks Road

Oxford

OX1 3QD

name

company

line2

city

postcode

Wolfson Building
line1

uk

country

United Kingdom

UK

name

abbrev

Fig. 4. Example instance of the postal address Semantic Web type

Semantically, this datatype once again represents a postal address; however,
by using subject-predicate-object triples, we have encoded a version of these
semantics into the data more directly.

Syntactically, the Semantic Web uses XML to encode these graphs of RDF
triples, so in one very specific, low-level sense, this datatype is similar to the
XML postal datatype described previously. Structurally, however, not just any
XML data is allowed — Semantic Web data must exist in a well-formed RDF
graph, encoded in XML in a specific way. So while the XML syntax is used for
both datatypes, they differ greatly in structure. As with the previous examples,
the Semantic Web provides a schema language, the Web Ontology Language
(OWL) [13,18], for stating which particular semantic structures are used. Our
datatype would include an OWL ontology describing the overall structure of the
graph in Figure 4. RDF graphs that do not match this ontology would not be
instances of this datatype.

3 Formalization

The example datatypes described in the previous section were not particularly
complex. Even so, they were able to incorporate several formalisms that repre-
sent data in completely different ways. A fully generic theory of data must be
able to incorporate all of this data, regardless of the differences in the underlying
formalisms. In this section we describe such a theory, using a simple running
example to provide clarity.

In order to talk about data, we must first define it. Since we are aiming for
full generality in this type theory, we cannot assume any kind of structure when
referring to data — it must be considered completely opaque. We also define

312 D.A. Creager and A.C. Simpson

equivalences, which are relations between data that are reflexive, symmetric, and
transitive:

[Datum]

Equivalence : P(Datum ↔ Datum)

∀
 : Datum ↔ Datum •

 ∈ Equivalence ⇔
∀ d : dom
 • d
 d ∧
∀ d1, d2 : Datum • (d1
 d2)⇒ (d2
 d1) ∧
∀ d1, d2, d3 : Datum • (d1
 d2 ∧ d2
 d3)⇒ (d1
 d3)

As mentioned above, datatypes are represented as sets of data. We can define
a simple is-a relation between data and datatypes. Note that this definition says
nothing about polymorphism; it is neither mandated nor prohibited.

Datatype == PDatum

is-a : Datum ↔ Datatype

∀ d : Datum; t : Datatype • d is-a t ⇔ d ∈ t

However, we have also said that a datatype is not just any set of data; the
data in question must be similar in some way. We will express this similarity by
defining interpretations and constraints for each datatype. The interpretations
and constraints can both be classified using the S classification.

We can apply this to one of the integer types mentioned in Section 2.3. There
are multiple integer datatypes, since bit length, endianness, and signedness all
affect the integer interpretation. For simplicity, we will look at one integer
datatype in particular: 16-bit, little-endian, and unsigned.

Integer16,L,U : Datatype

Our first task is to specify the datatype’s interpretations. In the case of the
integer datatypes, there are two interpretations: its binary encoding, and its
integer value. We use the Syn subscript to denote that the binary interpretation
is syntactic, and the Sem subscript to denote that the integer interpretation is
semantic. Both interpretations are defined as partial functions:

binarySyn : Datum #→ ByteString
integerSem : Datum #→ Z

In the first case, we define the binary interpretation using the byte string type
specified in Appendix A. Similarly, we define an integer interpretation in terms
of Z’s integer type (Z). It is important to point out that this integer interpreta-
tion is not the same as any concrete representation of an integer — rather, it is an
abstract mathematical concept that fully captures the semantics of an “integer”.

Towards a Fully Generic Theory of Data 313

With these interpretations in place, we can formalize our notion of binary equiv-
alence and integer equivalence. Two data are binary-equivalent if their binary
interpretations are equal; a similar definition applies to integer equivalence.

bin : Equivalence

int : Equivalence

∀ d1, d2 : Datum •
(d1
bin d2)⇔ (binarySyn d1 = binarySyn d2) ∧
(d1
int d2)⇔ (integerSem d1 = integerSem d2)

In both cases, we have defined the interpretation as a generic property that
can be applied to any Datum, since there are many other datatypes that might be
encoded in binary or interpreted as an integer. They are both partial functions,
though, because not every Datum has a binary or integer interpretation. We
must then apply these generic properties to our specific datatype:

Integer16,L,U ⊆ dombinarySyn
Integer16,L,U ⊆ dom integerSem

After defining the interpretations, we must also specify the datatype’s con-
straints. Each of these constraints will depend in some way on at least one of
the interpretations. First we have the structural constraint that our integer type
is 16 bits long. This is defined in terms of the datatype’s binary interpretation.
Note that this is a two-way constraint; we must not only say that each of our in-
tegers is 16 bits long, but also that every 16-bit binary string can be interpreted
as an integer of this type.

∀ i : Integer16,L,U • binarySyn i ∈ Bytes 2

∀ b : Bytes 2 • ∃1 i : Integer16,L,U • binarySyn i = b

Our other constraint states how the binary and integer interpretations relate
to each other, which we can calculate using the functions in Appendix A. This
constraint is informed by both the system-level endianness property and the
semantic-level signedness property. As before, the constraint is two-way: we
must explicitly state that every integer interpretation in the correct numeric
range has a corresponding Integer16,L,U.

∀ i : Integer16,L,U • integerSem i = unsignedInt binarySyn i

∀ z : 0..(216 − 1) • ∃1 i : Integer16,L,U • integerSem i = z

This completes a formal specification of this particular integer type. The other
integer types can be defined analagously.

The amount of detail that went into the description of this integer datatype
highlights an important distinction in our formalism. The Integer16,L,U datatype
had a full specification — we provided a complete, formal description of both
of the datatype’s interpretations, and of the constraints that relate them. In

314 D.A. Creager and A.C. Simpson

this particular case, this full specification was not overly verbose. We were able
to use Z’s existing mathematical integer type (Z) to model the semantics of an
integer, and it was relatively straightforward to provide a formal definition of
binary data (ByteString) in Appendix A.

Often a complete formal description is not readily available, and the effort
involved in developing a precise definition might not be worth the benefit gained
from doing so. In these cases, it is possible to provide a datatype with a partial
specification, where we define some of the interpretations and constraints as
abstract entities. This becomes especially useful when considering how multiple
partially-specified datatypes relate to each other.

For instance, we can revisit the postal address types, which have new inter-
pretations that were not used by the integer datatype. However, whereas we
provided (or were given) full definitions of the Z and ByteString types, we will
leave these new interpretations abstract:

[XMLDocument ,XMLSchema]
[RelationalTuple,RelationalSchema]
[PostalAddress]

XMLDocument represents the logical document tree of an XML document, while
RelationalTuple represents a row from some relational table. In both cases, we
have also mentioned a type that represents the schema that describes the data’s
structure. PostalAddress represents the semantic meaning of a postal address.
We can now define interpretations and equivalences for these three Z types,
similarly to the integer example:

xmlStruct : Datum #→ XMLDocument
relationalStruct : Datum #→ RelationalTuple
addressSem : Datum #→ PostalAddress

xml : Equivalence

rel : Equivalence

addr : Equivalence

∀ d1, d2 : Datum •
(d1
xml d2)⇔ (xmlStruct d1 = xmlStruct d2) ∧
(d1
rel d2)⇔ (relationalStruct d1 = relationalStruct d2) ∧
(d1
addr d2)⇔ (addressSem d1 = addressSem d2)

With these interpretations defined, we can define the types themselves. The
XML address datatype will have binary, XML, and address interpretations; the
relational address datatype will have relational and address interpretations. (We
ignore the syntax of the relational datatype to maintain data independence.)

AddressXML : Datatype

AddressXML ⊆ dom binarySyn
AddressXML ⊆ dom xmlStruct

AddressXML ⊆ dom addressSem

Towards a Fully Generic Theory of Data 315

AddressRel : Datatype

AddressRel ⊆ domrelationalStruct

AddressRel ⊆ domaddressSem

Next we specify the constraints, for which we will need several helper functions
and relations, which, again, we do not provide full definitions for:

encodes: ByteString #→ XMLDocument

instanceof: XMLDocument ↔ XMLSchema
instanceof: RelationalTuple ↔ RelationalSchema
AddressSchemaXML : XMLSchema
AddressSchemaRel : RelationalSchema

interpret: XMLDocument #→ PostalAddress
interpret: RelationalTuple #→ PostalAddress

The encodes function maps a byte string to the XML document that it repre-
sents. (The function is partial since not all byte strings represent valid XML
documents.) The two flavors of the instanceof relation allow us to verify that
an XML document or relational tuple matches its corresponding schema. We
also mention the particular schemas used by our XML and relational datatypes.
The two flavors of interpret allow us to determine the semantic meaning of an
XML document or relational tuple. These are then applied to the datatypes as
constraints:

∀ d : AddressXML •
(binarySyn d) encodes (xmlStruct d) ∧
(xmlStruct d) instanceof AddressSchemaXML ∧
(xmlStruct d) interpret (addressSem d)

∀ d : AddressRel •
(relationalStruct d) instanceof AddressSchemaRel ∧
(relationalStruct d) interpret (addressSem d)

This provides a formal rendering of the datatype definitions in Section 2.3. For an
XML postal address, its binary encoding must match its logical XML document;
this XML document must match the postal address schema; and the document
must have some valid real-world interpretation as a postal address. Similar
constraints apply to relational postal addresses.

4 Canonicalization and Transformation

The formalism presented in the previous section allowed us to give formal defi-
nitions for the datatypes from Section 2.3. However, we only provided a partial
specification for the postal address types. If we were so inclined, it would cer-
tainly have been possible to give them full specifications. This would have re-
quired a formal specification of each of the datatypes’ interpretations. For XML,

316 D.A. Creager and A.C. Simpson

it would be relatively straightforward to define in terms of trees of data nodes;
for relational data, we have the underlying relational model to work with. The
real-world semantics could have been modeled using a knowledge-representation
framework such as the Semantic Web. All of these specifications are possible;
however, they would also be much more verbose than what we have presented,
and time-consuming to produce and verify. As will be shown in this section,
we can still describe and reason about useful properties of these datatypes with
partial specifications, rendering this cost unnecessary much of the time. We look
specifically at canonicalization and transformation.

4.1 Canonicalization

One example that highlights the importance of differing notions of equivalence is
data canonicalization. A well-known current example of canonicalization involves
XML documents and digital signatures [9,4,5].

The problem stems from the fact that every XML document has many differ-
ent encodings as a concrete sequence of bytes. Three aspects of the XML syntax,
in particular, affect the encoding of a document: attributes, namespaces, and
whitespace. In most XML applications, these differences are not a problem, since
the application works with a high-level view of the XML content, often in the
form of the Document Object Model API [12], which represents an XML docu-
ment by its abstract tree structure. However, one application area where these
differences are important is digital signatures. Briefly, digital signatures are a
more cryptographically-secure version of checksums and error-correcting codes.
They provide a means of attesting that the content of a document has not been
modified in transit between two parties. This is an important security feature in
modern applications that helps prevent, among other things, man-in-the-middle
attacks.

The algorithms used to implement digital signatures are not constrained to
XML documents; they work on any binary payload. Alice can send an XML
document to Bob, signing it before sending it along the communications chan-
nel. However, there might be communications gateways in between Alice and
Bob that modify the binary representation of an XML document without mod-
ifying the document structure. When Bob receives the document, its binary
representation will have changed, and Alice’s signature will no longer match the
document.

Looking at this in terms of our datatype formalism, we can define a function
that can sign a byte string:

[Signature]

sign : ByteString → Signature

∀ b1, b2 : ByteString • (sign b1 = sign b2)⇔ (b1 = b2)

This captures the essence of a digital signature: if the signatures match, the byte
strings most likely match as well; conversely, if the signatures do not match, the

Towards a Fully Generic Theory of Data 317

byte strings are different. (It should be noted that is not technically a true equiv-
alence. The number of signatures is much smaller than the number of binary
strings, so some overlap is inevitable. Rather than a full guarantee, matching
signatures strongly imply that the binary strings are the same. However, for the
purposes of this example, this distinction is not important, and we will treat it
as an equivalence.)

We can define a similar function for signing data that simply signs a datum’s
binary interpretation; signatures then work for arbitrary data, too, but only
under binary equivalence:

sign : Datum #→ Signature

∀ d : Datum • sign d = signbinarySyn d
∀ d1, d2 : Datum • (sign d1 = sign d2)⇔ (d1
bin d2)

We run into a problem in the case of XML. Alice’s and Bob’s applications
do not care about binary equivalence; they care about XML equivalence. The
hope, then, is that the signature predicate holds for XML equivalence, too:

∀ d1, d2 : Datum • (sign d1 = sign d2)
?⇔ (d1
xml d2)

For this to be the case, we would need the following implication to hold:

∀ d1, d2 : Datum • (d1 �
bin d2)
?⇒ (d1 �
xml d2)

However, we know this is not true; two different byte strings can represent the
same XML document.

What is needed is a canonicalization function. In the case of XML documents,
we need to choose one particular binary encoding for each logical XML docu-
ment. We would then define a function canonxml that maps an XML datum to
its canonical binary encoding. The required property would then hold:

∀ d1, d2 : Datum • (canonxml d1
bin canonxml d2)⇔ (d1
xml d2)

Two XML documents that have the same logical structure, when canonicalized,
would also have the same binary encoding. Expressed another way, two data
that are XML-equivalent, when canonicalized, would also be binary-equivalent.
In fact, we can define canonicalization as a generic property that a function
might provide between any two equivalences:

DataFunction == Datum #→ Datum

canonicalizes
[/]

:
DataFunction ↔ (Equivalence × Equivalence)

∀ f : DataFunction;
1,
2 : Equivalence •
f canonicalizes

[

1

/

2

]
⇔

∀ d1, d2 : Datum • (d1
1 d2)⇔ (f d1
2 f d2)

318 D.A. Creager and A.C. Simpson

With this generic property defined, we can easily state that the canonxml function
canonicalizes XML equivalence in terms of binary equivalence:

canonxml : DataFunction

canonxml canonicalizes
[

xml

/

bin

]
It should be noted that this formalism does not help us find a detailed defi-

nition of the canonxml function. In general, the definition of a canonicalization
function will be highly dependent on the details of the underlying data formalism
and how this relates to its binary encodings.

4.2 Transformations

The canonicalizations described in the previous section provide one category of
special data function. Transformations provide another. They differ in how
they relate to the data equivalences that hold on particular types. In the case of
canonicalization, the function is used to ensure that two equivalences agree with
each other. A transformation, on other hand, only deals with a single equiva-
lence; the function provides a bridge between two datatypes that maintains this
equivalence.

One situation where transformations are useful arises often in application inte-
gration: linking two heterogeneous applications with a communications channel.
These applications will often have completely different datatypes for their inputs
and outputs; however, as implied by the fact that we want them to communi-
cate, there is at least some semantic equivalence between the datatypes. (If there
were not, what communication would be possible?) We can return once again
to the postal address example, and consider two address book applications: one
which uses the relational datatype, and one which uses the XML datatype. Since
the datatypes both refer to postal addresses, they are semantically equivalent;
therefore, in theory, the two applications can communicate. However, before we
can even begin to consider the details of the communications channel itself, we
must reconcile the difference in datatypes. Assuming that rewriting the applica-
tions is impossible or too expensive, some transformation is needed to link the
applications. This transformation would translate data from one datatype to
another, while maintaining the semantic equivalence.

We can model this situation similarly to the canonicalization example and
reuse the DataFunction type from that section. We need to introduce the notion
of typing the data functions, however:

source : Datatype ↔ DataFunction
dest : Datatype ↔ DataFunction

∀ t : Datatype; f : DataFunction •
t source f ⇔ dom f ⊆ t ∧
t dest f ⇔ ran f ⊆ t

We can define the source and destination datatypes for a data function; this
simply states that all of the function’s input or output values come from the

Towards a Fully Generic Theory of Data 319

respective datatype. Since we have not prohibited polymorphism, we must define
this as a relation — i.e., there might be many datatypes that encompass the
input values for a particular function; all of them can be said to be sources of
the function. A data function links each of its sources to each of its destinations:

links
[

⇀
]

:
DataFunction ↔ (Datatype × Datatype)

∀ f : DataFunction; tS , tD : Datatype •
f links

[
tS ⇀ tD

]
⇔ (tS source f) ∧ (tD dest f)

Lastly, a data function maintains an equivalence if that equivalence holds be-
tween each of the function’s inputs and the corresponding output:

maintains : DataFunction ↔ Equivalence

∀ f : DataFunction;
 : Equivalence •
f maintains
⇔
∀ d : dom f • d
 (f d)

With these definitions in place, we can state the existence of the required
transformation: it links the XML and relational postal address datatypes, and
maintains the postal address semantic equivalence.

xformAddress : DataFunction

xformAddress links
[
AddressXML ⇀ AddressRel

]
xformAddress maintains
addr

The xformAddress function is a transformation since it links the AddressXML and
AddressRel datatypes while maintaining the
addr equivalence. Note that once
again, we have abstracted away a lot of unnecessary detail — we have said
nothing about how xformAddress performs this transformation.

Since transformations are modeled as functions between data, they are also
composable. This allows us to consider sequences of datatypes, and sequences
of data functions:

TypeSequence == seq1 Datatype
FunctionSequence == seq1 DataFunction

types : TypeSequence ↔ FunctionSequence
source : Datatype ↔ FunctionSequence
dest : Datatype ↔ FunctionSequence

∀ ts : TypeSequence; fs : FunctionSequence •
ts types fs ⇔

#ts = #fs + 1 ∧
∀ i : 1 . . #fs • ts(i) source fs(i) ∧ ts(i + 1) dest fs(i) ∧
(head ts) source fs ∧
(last ts) dest fs

320 D.A. Creager and A.C. Simpson

A sequence of functions is well-typed if the destination type of each data function
matches the source type of its successor. We can then define the source and dest
operators for sequences, much as they are defined for individual functions: the
source (destination) of a function sequence is the source (destination) of the first
(last) function in the sequence.

With these definitions, we can define a compose operator on function se-
quences:

compose : FunctionSequence → DataFunction

∀ f : DataFunction • compose 〈f 〉 = f
∀ fs1, fs2 : FunctionSequence •

compose fs1 � fs2 = (compose fs2) ◦ (compose fs1)
∀ t : Datatype; fs : FunctionSequence •

t source fs ⇔ t source (compose fs) ∧
t dest fs ⇔ t dest (compose fs)

The operator is defined in the obvious way using structural induction, exploiting
the fact that functional composition is associative. Note the order reversal; for
the ◦ operator, the function to apply first is on the right, whereas in a function
sequence, it is on the left.

5 Discussion

In this paper we have provided a formalism for an inter-application theory of
data. This formalism features full generality, in that any application data model
can be represented as is, without requiring conversion to another data formalism.
This theory represents data as abstract entities with several interpretations and
constraints, with the constraints defining how the interpretations of a datatype
relate to each other. Underlying formalisms such as the XML or relational
models can be incorporated into a specification to give a precise meaning to an
interpretation; however, this is optional. It is also valid for an interpretation to
remain abstract.

Our formalism is able to represent the low-level encoding details of a datatype
in addition to the usual high-level semantic descriptions. At first glance, this
seems to violate the data independence principle. However, this is not the case.
Data independence can be maintained, when necessary, simply by leaving the
datatype’s low-level syntactic and structural interpretations abstract, as in the
case of the AddressRel datatype.

However, data independence is not useful when studying problems like canon-
icalization and transformation in a fully generic way. First, we must be able to
handle different data formalisms, and cannot rely on a single abstraction to pro-
vide data independence. Second, we must be able to handle the data’s binary
encoding, which are exactly the details that are hidden by data independence.
By allowing (but not requiring) our formalism to include descriptions of these
low-level details, we are able to reason about this class of problems.

Towards a Fully Generic Theory of Data 321

The similar notion of data refinement [21, Chapter 16] tackles many of these
issues from a slightly different viewpoint. Looking at the example of integer
endianness, one would consider the mathematical set of integers (Z) to be a
datatype that happens to be defined at a high, abstract level. One could then
define a lower-level type, such as Integer16,L,U, that represents a binary string
interpreted in a particular way. One would then prove that Integer16,L,U refines
Z — that a specification written in terms of Z could use Integer16,L,U as a drop-in
replacement without affecting the specification.

Data refinement is also possible with our framework. Instead of writing an
application specification in terms of the Z “datatype”, it is written in terms of
any Datum that has an integerSem interpretation. The refinement proof then
consists of showing how a datatype’s integerSem interpretation correctly relates
to one of its other interpretations. Our approach is different in two ways. First, Z
is defined as an interpretation rather than as a first-class datatype, which allows
multiple datatypes to have an integer interpretation. This difference does not
mean much in terms of expressiveness; with data refinement, it is just as easy to
define multiple types that all refine Z. It does, however, make possible the second
difference: that data equivalences are first class objects that might be defined
abstractly. This allows problems like canonicalization and transformation to be
investigated generically in terms of abstract equivalences, without having to rely
on the details of the datatypes involved.

It is important to note that this data theory is not meant to be a replacement
for any of the other data formalisms that have been mentioned. For instance,
our description of canonicalization is not meant to replace the work of the XML
Digital Signature initiative [9]; rather, it is meant to provide a higher-level frame-
work in which to ground the XML-specific canonicalization. We envision this
framework serving two purposes: as a bridge between data formalisms, and an
abstraction away from them. Again, this allows us to reason about generic data
without being forced to consider the particular formalism that it is defined in.

Further work in this area will focus on the transformation formalism men-
tioned in Section 4.2. The current type theory allows one to state the existence
of transformations, and to provide specifications of these transformations at
whatever detail is necessary. However, the theory provides no mechanism for
discovering transformations. We hope to exploit the composability of transfor-
mation to develop a transformation framework that supports efficient discovery,
while retaining the full generality of the type theory.

Acknowledgments

Doug Creager’s work is funded by the Software Engineering Programme of the
Oxford University Computing Laboratory. The authors would like to thank
David Faitelson for providing valuable feedback on the manuscript of this paper.
The comments of the anonymous reviewers were also very helpful in improving
the readability and content of the paper.

322 D.A. Creager and A.C. Simpson

References

1. D. Beckett, editor. RDF/XML Syntax Specification. W3C, February 2004.
http://www.w3.org/TR/rdf-syntax-grammar/.

2. T. Berners-Lee, R. T. Fielding, and L. Masinter. Uniform Resource Identi-
fier (URI): Generic syntax. IETF Requests for Comments, 3986, January 2005.
http://www.ietf.org/rfc/rfc3986.txt .

3. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, pages 29–37, May 2001.

4. J. Boyer. Canonical XML. W3C, March 2001. http://www.w3.org/TR/xml-c14n/.
5. J. Boyer, D. E. Eastlake, and J. Reagle. Exclusive XML Canonicalization. W3C,

July 2002. http://www.w3.org/TR/xml-exc-c14n/.
6. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau,

editors. Extensible Markup Language. W3C, February 2004.
http://www.w3.org/TR/REC-xml/.

7. J. Clark, editor. XSL Transformations (XSLT). W3C, November 1999.
http://www.w3.org/TR/xslt/.

8. E. F. Codd. A relational model of data for large shared data bases. Communications
of the ACM, 13(6):377–387, 1970.

9. D. Eastlake, J. Reagle, and D. Solo, editors. XML-Signature Syntax and Processing.
W3C, February 2002. http://www.w3.org/TR/xml-dsigcore/.

10. B. Jacobs and J. Rutten. A tutorial on (co) algebras and (co) induction. EATCS
Bulletin, 62(222):222–259, 1997.

11. G. Klyne and J. J. Carroll, editors. Resource Description Frame-
work (RDF): Concepts and Abstract Syntax. W3C, February 2004.
http://www.w3.org/TR/rdf-concepts/.

12. A. Le Hors, P. Le Hégaret, L. Wood, G. Nicol, J. Robie, M. Champion, and
S. Byrne. Document Object Model (DOM) Level 3 Core Specification. W3C, April
2004. http://www.w3.org/TR/DOM-Level-3-Core/.

13. D. L. McGuinness and F. van Harmelen, editors. OWL Web Ontology Language
Overview. W3C, February 2004. http://www.w3.org/TR/owl-features/ .

14. A. M. Ouksel and A. Sheth. Semantic interoperability in global information sys-
tems. SIGMOD Record, 28(1):5–12, 1999.

15. D. Raggett, A. Le Hors, and I. Jacobs. HTML 4.01 Specification. W3C, December
1999. http://www.w3.org/TR/html.

16. C. Shannon and W. Weaver. The Mathematical Theory of Communication. Uni-
versity of Illinois, 1963.

17. A. Sheth. Changing focus on interoperability in information systems: From system,
syntax, structure to semantics. In M. F. Goodchild, M. J. Egenhofer, R. Fegeas, and
C. A. Kottman, editors, Interoperating Geographic Information Systems. Kluwer
Publishers, 1998.

18. M. K. Smith, C. Welty, and D. L. McGuinness, editors. OWL Web Ontology
Language Guide. W3C, February 2004. http://www.w3.org/TR/owl-guide/.

19. J. M. Spivey. An introduction to Z and formal specification. Software Engineering
Journal, 4(1):40–50, January 1989.

20. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International,
1989.

21. J. C. P. Woodcock and J. W. M. Davies. Using Z: Specification, refinement, and
proof. Prentice Hall, 1996.

Towards a Fully Generic Theory of Data 323

A Z Specification for Binary Integers

Any description of binary data must first define bits. Bits are simple — there
are exactly two of them: 0 and 1. We can also define a bit string, which is an
ordered sequence of bits.

Bit ::= 0 | 1
BitString == seqBit

We will often need to translate a binary string into its integer equivalent.
(This is not to be confused with interpreting integer datatypes; this is a low-
level helper function to get the decimal interpretation of a base-2 integer.)

intBit : Bit � N
intBits : BitString → N

intBit 0 = 0
intBit 1 = 1

intBits 〈〉 = 0
∀ b : Bit ; bin : BitString • intBits 〈b〉� bin = (intBits bin) ∗ 2 + (intBit b)

This allows us to define a byte, which is an 8-bit value, and a byte string,
which is an ordered sequence of bytes. We also define a Bytes function which
returns the set of all byte strings of a given length.

Byte == { b : BitString • #b = 8 }

ByteString == seqByte

Bytes : N � P ByteString

∀n : N • Bytes n = { b : ByteString • #b = n }

When referring to literal byte strings, we will denote the bytes by their numeric
(specifically hexadecimal) values, as in 〈〈48 6F〉〉.

The integer representation of a byte string is more complicated, because we
must contend with signedness and endianness issues. In this paper we are only
considering unsigned, little-endian numbers; this is the simplest case, since we
can use distributed concatenation to turn the little-endian byte string into an
equivalent little-endian bit string. This bit string can be evaluated using the
intBits function.

unsignedInt : ByteString → N

∀ b : ByteString • unsignedInt b = intBits (�/ b)

Verifying Statemate Statecharts Using
CSP and FDR

A.W. Roscoe and Z. Wu�

Oxford University Computing Laboratory
{bill.roscoe, zhenzhong.wu}@comlab.ox.ac.uk

Abstract. We propose a framework for the verification of statecharts.
We use the CSP/FDR framework to model complex systems designed in
statecharts, and check for system consistency or verify special properties
within the specification. We have developed an automated translation
from statecharts into CSP and exploited it in both theoretical and prac-
tical senses.

1 Introduction

Statecharts are a popular means for designing the hierarchical state machines
which are used in embedded systems, telecommunications etc. Clarke and his
colleagues have developed the SMV tool for checking finite state systems against
specifications in the temporal logic CTL [4,5,6]. Work by Bienmuller, Damm
and their colleagues has built up the STVE to model and verify some industrial
applications [2,3,7,11].

The CSP/FDR framework is well established as a methodology for analyz-
ing interacting systems and state machines [25]. A number of people have done
prototyping work in the translation of statechart problems in a form the FDR
can analyze. Work by Fuhrmann and his colleagues [14] shows how a subset of
the statechart is expressed and verified by CSP/FDR. In this paper we report
on our development of an automated translation from Harel’s Statemate State-
charts into CSP, and exploit it in both theoretical and practical senses, mainly
in defining language semantics and in system verification.

The statecharts formalism derives from conventional finite state machines. It
is a structured analysis approach for modelling reactive systems. The Statemate
semantics of statecharts was introduced by David Harel [18], and has been proved
to be very useful for specifying concurrent systems. It supports both models of
timing: synchronous and asynchronous. Verification techniques for statecharts
have often been based on extensive checking or simulation. However, the in-
formality of such approaches can easily lead to important requirements being
overlooked and, since testing is rarely exhaustive, failures can be missed.

Our approach to Statemate Statecharts uses the CSP process algebra to
specify concurrent systems. A statechart can be represented as a CSP process;

� Supported by QinetiQ.

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 324–341, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Verifying Statemate Statecharts Using CSP and FDR 325

statechart constructs such as hierarchy, AND and OR states, and communi-
cations all having CSP analogues. CSP-based tools such as FDR can then be
used to verify properties of statecharts by performing refinement checks on the
translation.

We initially adopted our approach as a way of understanding the semantics of
statecharts, but it proved unexpectedly successful at verifying practical systems.
We have therefore sought to include as wide a range of statechart constructs
as possible in our compiler. In this paper we document which constructs are
covered, but only give technical details of the more important ones. The paper
is concluded by a case study.

2 Modelling Statecharts in CSP

Before we can describe the simulation we need to understand the basic concept
of Statemate Statecharts.

2.1 Statemate Semantics

The statechart concept is based fundamentally on three ideas:

– Hierarchy: a statechart can exist within a single state of a higher level state
machine.

– State machines: the basic component of a statechart is a sequential state
machine, with guarded actions between states that have the potential to set
signals and assign to shared variables.

– Parallelism (AND states): having several sequential machines running side
by side.

There are many semantics of statecharts. One of the most important is the
Statemate Statecharts of Harel [18], as refined by various developers. The various
semantics of statecharts take different views on, for example:

– Concurrency. Statemate has an eager and concurrent model of AND states
— if several states can proceed on one step then they all do.

– Timing model. Statemate has a two-level timing model and expects a system
to settle through a number of “small” time steps before allowing further
external signals to be processed.

– Nondeterminism. Statemate expects (under priority) at most one action of
each OR-state to be available at one time, and forbids race conditions on
variables.

– Priority. Statemate gives the highest priority to actions that are enabled
further up the hierarchy, together with various other rules.

The statechart diagram in Fig. 1 illustrates the uses of these features in State-
mate semantics. This statechart module has two input events: event1 and event2.
There are two variables: v1 and v2. There is one constant Limit. Suppose, for

326 A.W. Roscoe and Z. Wu

event2/v1:=2

B1

C1

C2

C3

[v1=1]/v2:=1

event2/v2:=v1+1

B2

D1

D2

D3

[v2=1]

B3

E1

E2

E3

[v2>10]

[v2=2]
[v2<Limit]/v2+=1

A

B
P

[v2>10]

event1/v1:=1

Fig. 1. Example Statemate Statechart

example, that state A is active, Limit is set to 11, and two variables are set to
0. If event1 occurs under these conditions, the transition from state A to state
B is enabled, and variable v1 is set to 1.

State B is an AND-state: states B1, B2 and B3 are its sub-states. Once an
AND-state is entered, all its components become active in parallel. In Fig. 1,
states B1, B2, B3 are entered simultaneously when entering B so that all three
sub-states become active. Once they are entered transitions emerge from Default
Connectors automatically. States C1, D1 and E1 are activated.

Under the asynchronous time model, time is not advanced at every single step
but at super-steps. Each super-step consists of a collection of steps. Execution
of a series of steps within one super-step does not advance the timer, these steps
take place at the same point of time without introducing any external changes
from the environment. Once the system is in a stable state, i.e., when no enabled
transitions exist in the system, a super-step is completed. The environment can
generate signals to enable new transitions and subsequently execute another
super-step. In Fig. 1, the transition from C1 to C2 is taken, setting v2 to 1.
The transition from D1 to D2 is enabled and taken afterwards. There are no
more enabled transitions at this point and the system becomes stable. So this
super-step is completed, then the environment generates event2 to trigger new
transitions.

When multiple actions make changes on one element in the same step, we
cannot predict the outcome and this is considered an error. There is a potential
danger from reading and writing the same element in different parallel threads;
however Statemate semantics are that an assignment to an element does not
take effect till next step. In Fig. 1, occurrence of event2 enables both transitions
from C2 to C3 and from D2 to D3. There are two actions available at the same
time: v1 will attain the value of 2 and v2 will be assigned to “v1+1”. Without
the delay described above this would lead to ambiguity. The signals generated
and data-items changed cannot take effect until the completion of the step. This

Verifying Statemate Statecharts Using CSP and FDR 327

suggests that v1 still and always holds the value 1 in this step so that v2 will
become 2 but not 3 after the assignment “v2: =v1+1”.

There is a conflict if multiple transitions are enabled from one common state.
Those transitions cannot be performed in the same step. Nondeterminism occurs
when there are some conflicts and those transitions within each conflict have the
same priority. The choice of transitions results in different statuses. Even if two
enabled transitions lead to the same state, non-determinism still occurs due to
the changes of some other items during the transition, for instance, different
signals being generated. In this case the overall result states will be different.
In Fig. 1, transition from state E1 to state E2 is enabled since the condition is
fulfilled, leading to the activation of state E2. The self-loop transition is enabled
until v2 reaches 11. There is a potential conflict at this point, three transitions
enabled at the same time: the transition pointed to E2 itself, the transition from
state E2 to state E3, and the transition from state B to state A.

A transition from a lower level state to a higher-level state takes priority over
other types of transitions from the same state. This phenomenon, also called
“Preemptive Interrupt” [18], happens when a high level transition prevents tran-
sitions on lower levels. Transition priority provides a way to pre-determine one
transition among a group of enabled transitions and also to avoid the potential
nondeterminism. In Fig. 1, the transition from state B to state A has the highest
priority among all three, and so is preferred. There will be no non-determinism in
this case. If none of conflicting multiple transitions has higher priority than the
others, different semantics treat it in different ways. Some semantics introduce
a specific priority of execution. For example, in Matlab Stateflow, transitions are
taken according to their relative locations in the statechart diagram in clockwise
order starting at the “twelve o’clock” position.1 Our compiler treats nondeter-
minism as an error which would be returned by the system. This could be altered
straightforwardly, but in some cases it would lead to our tool being less efficient
as it presently exploits the determinism of statecharts.2

2.2 Compiler

The compiler is written as a program in CSPM [25] making heavy use of func-
tional programming. It consists of three main parts, plus some other functions:

– The mechanism to construct a single sequential chart: each individual chart
is described as a transition system and a set of state labels indicate its sub-
states.

– The mechanism to construct a hierarchy of individual sequential statecharts
with capability of promotion: the overall hierarchical structure of the system
is expressed as a special tree data type; all charts are built based on the root.
Charts with no subcharts are expressed as single-leaf trees.

1 See [Mathworks97] for a precise description of the evaluation order [22].
2 The full description of the syntax of Statemate Statecharts is beyond the scope of

this paper. I refer the interested readers to a full description in Harel and Naamad
[18].

328 A.W. Roscoe and Z. Wu

– Constructing variables and timers as processes running in parallel with the
main system.

2.3 Timing Model and Step Semantics

Two levels of timing model are supported in the compiler. A small step is indi-
cated by event step, and event tock represents a super-step. The entire system
created has a synchronous timing model represented by tock and step, which all
processes synchronise on. When the possible actions are complete, processes will
agree to “step”. Once there is no progress that can be made within the system,
a “tock” is produced to introduce possible external changes. Another global syn-
chronous event calculate is introduced after each tock and step. It occurs after
all external inputs or effects of the previous step have propagated themselves.
The sequence of these three actions is shown in Fig. 2.

tock stepcalculate

variables change in orderno enabled transitions

external changes internal changes

Fig. 2. Sequence of tock, step and calculate

After a super-step, changes can be made to the inputs, and timers are ad-
vanced by one time unit. Inputs and changes to timers only happen on super-
steps. After this we get as many small steps as are required until no further
progress is possible, i.e., there are no possible transitions without external
changes made by the environment. Inputs and timers do not change during
the execution of a small step. Within a small step, internal changes can be made
to variables, which is done by communicating with the variable processes.

2.4 Hierarchical Structuring

Statecharts are structured, and one chart can sit inside a single state of another.
The inner one is active only when the enclosing state is, and is turned off if the
enclosing one is left.

At the highest level the model of a chart combines three synchronous pro-
cesses: Sys represents the hierarchy of charts, VARSandTIMERS holds the values
of variables and timers, and the combination of NOACT and TOX to enforce the
timing model and outputs. At the highest level a chart is defined as following:

System(Hierarchy) =
(VARSandTIMERS [|{|tock,calculate,step,ich,xch,iwrite,

read,readch,timer_read,timer_on,timer_cancel|}|]
Sys(Hierarchy,true,false))\{|ich,iwrite,read,readch,

Verifying Statemate Statecharts Using CSP and FDR 329

timer_read,timer_on,timer_cancel|})
[|{|action,tock,step,turn_me_on,outp,xch|}|]

(NOACT[|{|tock,step|}|]TOX)

The parameter Hierarchy must be defined in the user script or as output
from a higher-level tool. The second parameter of Sys is set to “true” meaning
that the highest level machine in the hierarchy is initially on.

NOACT = action?_ -> ACTS
[] turn_me_on -> ACTS
[] STEPTOCK

STEPTOCK = tock -> NOACT

The step semantics is achieved through synchronization with the NOACT pro-
cess which obliges a step to happen as opposed to a tock just when there has
been an action since the last step or tock. The highest level chart has no enclosing
state which can turn it on and off, so we forbid the actions “turn me on” and
“turn me off”.

ncSYSTEM(Hierarchy)= System(Hierarchy)
[|{|turn_me_on,turn_me_off|}|] STOP

Hierarchy. The definition of the main type of chart structures is:

datatype Statechart =
SCTree.SGlabel.Set(ActLabel).Set((Statelabel,Statechart))

This recursive definition means that a chart is root behaviour identified by
one of these labels, a set of actions labels that are not to be promoted beyond
this point, and a set of pairs, each a state label of the present chart with a chart
which sits within it. We defined a function Sys()3 recursively that produces the
CSP representation of statechart. A chart with no lower level charts is compiled
using the function Machine()3, which creates a process from the description of
a sequential chart. Each sequential machine has an event proceed which is used
to enable subcharts to do things (implementing the priority rule). For the case
with no sub-machines this action is not required, and therefore we prevent it
by synchronisation with STOP. The actions are renamed to progress to discard
information unnecessary outside this level and to square the outer alphabet of
the process with what will be required outside.

Sys() is applied to all subcharts, which are then appropriately synchronised
with each other and also with the top level machine which has itself been created
with Machine(). We use many renamings and synchronisations to coordinate the
behaviour of these parts.

3 See full definitions of these functions in
http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/115.pdf.

330 A.W. Roscoe and Z. Wu

Sys(SCTree.label.acts.STs,initon,par_prom) =
let TopMach = Machine(sm(label),initstate(label),initon,par_prom,sc0)

...
within
(TopMach[[...]]
([|...|]v:{v’ | (v’,_) <- STs} @
(let ...
par_of_subs_of_V =
([|...|]sc:SCsInV @

((Sys(sc,v==startstate(label) and initon,par_prom’)
[[action.progress <- proceed.v]][[...]])))

within
(if par_prom’ then (par_of_subs_of_V
else par_of_subs_of_V)[[dummy <- peer_turn_off]]))) [[...]]

par of subs of V represents the construction for particular node’s subcharts.
Processes representing subcharts in different substates are synchronised, together
with the TopMach()3. Actions progress by inner machines are controlled by
events proceed, and all actions within this chart and not controlled outside is
renamed to progress.

Implementing Priority and Promotion. Standard CSP, as implemented in
FDR has no priority. Any one of a set of the currently available actions can occur
next, and this is never made impossible by another action being enabled. This is
not the case in statecharts at several levels. It impacts upon the two-level model,
and on the relative priorities of transitions at low-level, high-level and inter-level
(promoted actions). Actions have names, but there is no synchronisation on
them between charts. Our model handles this by giving sequential components an
additional action progress which it perform precisely when there is nothing else
it can do on a given step. It is then possible to synchronise high-level progress
actions with low-level actions so that the latter only happen when no higher-
priority action is possible [26].

Consider a high-level sequential machine whose states contain sub-statecharts
that run while the given state is enabled. Our model treats these subcharts
as separate parallel processes and so we need to link the behaviour of the
high-level state machine with the processes representing the subcharts. The
model we adopt is to give each chart (other than, perhaps, the highest-level
one) events “turn me on” and “turn me off” with the obvious effects. They are
then (after suitable renaming) synchronised with the transitions of the high-level
machine.

An inner chart may perform an action which is promoted to be an action
of an outer one. Such an action must be named (not “progress”) and any
higher level chart that promotes it must use the same name. The actions of any
state are divided into primary ones that the state instigates itself and secondary
ones which are promoted by or through this state. To ensure charts running in
parallel to one with an action that is promoted higher get turned off, the process
Prom Mon is introduced:

Verifying Statemate Statecharts Using CSP and FDR 331

Prom_Mon = tock -> calculate -> Prom_Mon’
Prom_Mon’ = let

P = one_prom -> Prom_Mon’’
[] step -> calculate -> Prom_Mon’
[] tock -> calculate -> Prom_Mon’

within
P [] local_over -> P

Prom_Mon’’ = one_prom -> action.error -> STOP
[] two_prom -> action.error -> STOP
[] peer_turn_off -> step -> calculate -> Prom_Mon’

2.5 Variables and Timers

Variables are defined as processes running parallel with the system. The variable
process implements many features of the semantics including the variable update
model. The CSP process shown below codes a variable:

VAR(id,range,v,ch)=
let

VARXI(v,v0) = member(id,InputIds)&xch?(_,v’):wrange(id)->VARXI(v’,v0)
[] calculate -> VARNC(v,member(id,changes) and (v!=v0))
[] member(id,Outputs) & outp.(id,v) -> VARXI(v,v0)

VARIW(v) = iwrite.(id,v) -> VARII(v)

VARNC(v,ch) = step -> VARII(v)
[] tock -> VARXI(v,if member(id,changes) then v else 0)
[] ich?(_,v’):wrange(id) -> VARIC(v’,ch)
[] member(id,changes) & readch.(id,ch) -> VARNC(v,ch)

VARII(v) = calculate -> VARNC(v,false)

VARIC(v,ch) = step -> VARIW(v)
[] ich?(_,_):wrange(id) -> varerror -> STOP
[] member(id,changes) & readch.(id,ch) -> VARIC(v,ch)

RdVAR(v) = read.(id,v) -> RdVAR(v)
[] xch?(_,v’):irange(id) -> RdVAR(v’)
[] iwrite?(_,v’):wrange(id) -> RdVAR(v’)

within (tock -> VARXI(v,if member(id,changes) then v else 0))
[|union({|iwrite.p | p <- wrange(id)|},
{|xch.p | p <- irange(id)|})|] RdVAR(v)

Comments:

– Channels:

332 A.W. Roscoe and Z. Wu

xch: the channel for external changes, changes the value of variable
immediately, only possible on tock

ich: the channel for internal changes, informs processes of real internal
changes of values after the calculation action

iwrite: the channel for internal writes, writes value variables, two of
which on the same variable in one step are an error

outp: the channel for outputs, helps analyzing
read: reads values from variables
readch: checks for changes

– The purpose of the parallel composition with process RdVAR(v) is to allow
a process to read the value of this variable from the previous step even after
it has been changed via ich on this one. The new value is assigned to take
effect after the variable has been changed via iwrite.

Note that our definition also has the properties that external inputs and out-
puts only occur immediately after tock and two internal changes on one step
are an error. All variables are running in parallel, which produce a process for
the entire set of variables:

VARS = [|{step,calculate,tock}|] (id,v,r):union(Inputs,Variables)
@ VAR(id,r,v,false)

Timers are also defined as processes running parallel with the system. There
are three kinds of timers: one is set up on the entry to a state; one is addressed
by its own identifier name; another one is set up as a condition for transitions.
A timer is initialized to zero and incremented by one each tock until the corre-
sponding limit is reached. The CSP process shown below codes a straightforward
timer:

Timer(l) = timer_on.l -> Timer_Running(l,0)
[] timer_read.l.0 -> Timer(l)
[] timer_cancel.l -> Timer(l)
[] tock -> Timer(l)
[] step -> Timer(l)

Timer_Running(l,n) = tock -> (if n==tlimit(l) then Timer_Running(l,n)
else Timer_Running(l,n+1))

[] step -> Timer_Running(l,n)
[] timer_read.l.n -> Timer_Running(l,n)
[] timer_cancel.l -> Timer(l)
[] timer_on.l -> Timer_Running(l,0)

Comments on channels:

timer on: turns the timer on, followed by initializing the timer to 0
timer cancel: cancels the timer, remove the timer from the list of active

timers
timer read: reads the current value of the timer

Verifying Statemate Statecharts Using CSP and FDR 333

2.6 Translating Statecharts into CSP

We analyse statecharts automatically by simulating them in CSP. In other words
we have a CSP process which accepts the description of a statechart S as a
parameter and then behaves like S. We can prove things about S by analyzing
this simulation on FDR.

The way the simulation is written is therefore as a CSP program which closely
resembles a translation from statechart syntax to behaviourally equivalent CSP.
The combination of the simulation operation and FDR’s own CSP compiler
produces a compiler from statecharts to FDR internal state machine code. For
simplicity we therefore refer to the code that creates the simulation as a compiler.
The current definitions of the CSP language mean that it does not have good
string processing. For that reason we supply the input statechart to it as a
member of a specially designed CSP type plus various ancillary definitions of
sets. In other words, by the time CSP sees the statechart, it has been parsed
and symbolized, see Section 4 for more details of this CSP syntax.

3 Specification Checking

Many checks can be implemented after the entire system is built. Typically
there are three types of checking: checks for general errors in the system, tests
for reachability of states, and checks for consistency with application–specific
requirements.

3.1 Checks for Errors

The simulation is written so that finitely detectable run-time errors are all flagged
by an error event:

error_events = {|action.error, varerror, outofrange, timer_overflow,
type_error|}

Event action.error indicates nondeterminism caused by ambiguous branch-
ing; event varerror indicates multiple writes on a small step; event outofrange
occurs when assigning a value which is out of range; event timer overflow in-
dicates the attempt to read a timer that has reached the bound limit; event
type error occurs when a boolean expression produces result not 0,1.

The following standard check should be used for all charts:

delayable = {|xch,turn_me_on,turn_me_off,isat,outp|}
Time_Error_Spec = tock -> Time_Error_Spec

[](STOP |~| ([] x:delayable @ x -> Time_Error_Spec))

Time_Error_Imp(Hierarchy) = SYSTEM(Hierarchy)\
diff(Events,Union({{tock},delayable,error_events}))

Time_Error_Spec [FD= Time_Error_Imp(Hierarchy)

334 A.W. Roscoe and Z. Wu

This refinement tests for all types of run-time errors, plus race conditions.4 It
also ensures that there can never be an infinity of step events without an infinity
of tocks. It is this timing aspect of the check that explains the name. This check
uses the full power of failures/divergences refinement. However once it is satisfied
all subsequent checks will normally be done. A large proportion of the errors we
have discovered in industrial case studies have been via this check.

Race Condition. Multiple writes to a variable on one small step lead to race
condition and are considered as an error. As showed in the definition of variables
in Section 2.5, an error message “varerror” would be returned by checking
through FDR.

Nondeterminism. Ambiguous enabled actions by any single process cause non-
determinism. Each sequential machine should have at most one action available
at a time. Nondeterminism are considered as an error. If Nondeterminism exists
in the system, an event “action.error” will be returned by checking it through
FDR.

3.2 Reachability

To test whether a certain state in any chart can be reached at some point, the
following refinement is used:

indstates = {(chartlabel,statelabel)}
assert STOP [T= SYSTEM(Hierarchy)\diff(Events,{|isat|})

The set indstates 5 is used to indicate the state we want to test for reachabil-
ity. The refinement fails if and when the intended state is reached and a trace to
describe how that state is reached can be provided by FDR. Note that this check
does not behave ideally with attempts to prove things about a chart under non-
deterministic parameters, since it will simply demonstrate that it is sometimes
possible to reach the state, not that it is for all values of the parameter.

3.3 Analysis of Properties

Special requirements can be tested to ensure that they are satisfied by the sys-
tem. Mostly one wants to check safety or security properties, which hold for
the whole lifetime of the system. As already mentioned, we model the formal
semantics of statecharts and requirements in the input script. Assume the chart
representing the requirement is labeled by spec label, the check can be made
as follows:
4 The check would fail if the simulation deadlocked. However deadlock is impossible

because of the way the simulation is constructed. This feature was useful in designing
the compiler.

5 See full definitions of isat and indstates in
http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications
/115statechartcompiler.csp.

Verifying Statemate Statecharts Using CSP and FDR 335

SysAndSpec_sc = SCTree.Box.{}.{(0,Hierarchy),(0,lift(Spec_label))}
assert STOP [T= SYSTEM(SysAndSpec_sc)\diff(Events,{action.spec_error})

The event action.spec error indicates that the requirement is not satisfied.

4 Case Study: Burglar Alarm System

A practical case study is the burglar alarm control system. The system provides a
very typical example with the features like multiple parallel subcharts, inter-level
transitions etc. (see Fig. 3)

The alarm is constructed of two nearly independent parallel processes: one is
the number pad that determines (subject to things like timeout and too many
attempts as limitations) when the last D digits input are the code number for
arming and disarming the alarm.

The Main Controller chart moves the alarm between its principal states: cor-
rectly typing in the code number (generating the go signal) will move it from
disarmed to leaving (which times out to armed) and back to disarmed. If the
alarm goes off we can type in the number once to turn off the siren and once
to get rid of the signal light that tells us where the alarm came from. The state
Returning gives some time to disarm the alarm if someone returns and is de-
tected in the area of the controller box (Alarm zone 1). The state Leaving gives
the user time to leave after arming the alarm.

The Key Pad chart indicates that the pad becomes active when a key is
pressed. It goes back to inactive if either the code is correctly entered or if too

Pad_Active

Key_Count

Key Pad

Key

Pad_inactive

Error_Wait

Manager

timer(Error_Wait, EW_Time)

ch(press) & press & kc < key_limit
kc := kc + 1

ch(press) &
press
en[0] := true

en[4]
go := true
en[4]:=false

not press &
timer(Key_Count,Idle_Time)

kc := 0
true

kc=key_limit
press &
ch(press) &

Digit (0) Digit (1)

Digit (3)Digit (2)

Digit(i) Key_Manager

ch(press) & press
press := false

en[i+1] = (i=0)&(key=d[i])
true

en[i+1] :=(key=d[i]) & en[i]
ch(press) & press

Dig (i) Key_Man

press := false
true

go,siren, lighton := false, false, 0

Burglar Alarm

Main Controller

Disarmed

Report

Alarmed

true

go
go := false

timer(Leaving,Leave_Time)

not go &

lighton :=alarm
siren := true
alarm != 0
not go &

go := false
go

lighton := 0

siren := false
go := false
go

Armed

Leaving

not go &
timer(Returning,Return_Time)

go := false
go

go
go := false

lighton := 0
go := false
go

lighton :=alarm
alarm = 1
not go &

Returning

Fig. 3. Burglar Alarm System

336 A.W. Roscoe and Z. Wu

long has passed since the previous press. If more than kc digits are used in an
attempt to key the code, a wait is imposed. The five constituents of Pad Active
all run in parallel while that state is running, and similarly the main graph and
Key Manager. The chart Digit indicates that if the digit just pressed is d[i] and
the most recent digits pressed are d[0]..d[i − 1] then enable the next process in
the chain. The Key Manager chart shows that press will become true each time
the user enters a digit, and key takes the value pressed. The function of this
process is to ensure that press is only true immediately after the users input so
a user-change is always from false to true.

4.1 Describing the System

The following is part of a CSP file describing the statechart in Fig. 3. In practice
the creation of these files is automated by a GUI that inputs details of the
statechart from the user.

Pad_Digits = 4
digits = {0..Pad_Digits-1}
digit_range = {0..1}
datatype Identifiers = en.{0..Pad_Digits} | d.digit_range | key |

press | alarm | lighton | siren | go | kc |
key_limit | EW_Time | Idle_Time | Leave_Time |
Return_Time | lastdigs

datatype ActLabel = error | progress | spec_error | kc_ew | kc_pa
datatype SGlabel = Digit.digits | Mainpad | Key_Man | KC |

Controller | Whole_Alarm | Box | Spec_label
alarm_zones = {0..3}
Inputs = union({(key,0,digit_range),(press,0,nbool)},

{(alarm,0,alarm_zones)})
Variables = {(lighton,0,alarm_zones),(en.j,0,nbool),(go,0,nbool),

(kc,0,{0..CV(key_limit)+1}),(siren,0,nbool),
(lastdigs,<>,prefixes) | j <- {0..Pad_Digits}}

prefixes = {<CV(d.i) | i <- <0..j-1>> | j <- {0..Pad_Digits}}
Outputs = {siren,lighton}
Constants = union({(d.i,i%2)| i <- {0..Pad_Digits-1}},{(EW_Time,1),

(Idle_Time,1),(Leave_Time,1),(key_limit,12),
(Return_Time,Pad_Digits+1)})

We formulate the corresponding process for chart Main Controller:

Controller_sg =
let
State_0 = (0,<(TRUE,progress,<(go,FALSE),(siren,FALSE),

(lighton,ZERO)>,1)>,<>)
Disarmed_1 = (1,<(Ival(go),progress,<(go,FALSE)>,2)>,<>)
Leaving_2 = (2,<(Ival(go),progress,<(go,FALSE)>,1),

(andf(notf(Ival(go)),timer(En.(Controller,2),
Ival(Leave_Time))),progress, <>,3)>,<>)

Armed_3 = (3,<(Ival(go),progress,<(go,FALSE)>,1),

Verifying Statemate Statecharts Using CSP and FDR 337

(andf(notf(Ival(go)),notf(gt(Ival(alarm),ONE))),
progress,<(siren,TRUE),(lighton,Ival(alarm))>,4),
(andf(notf(Ival(go)),notf(eqf(Ival(alarm),ONE))),
progress,<(lighton,Ival(alarm))>,6)>,<>)

Alarmed_4 = (4,<(Ival(go),progress,<(go,FALSE),(siren,FALSE)>,5)>,<>)
Report_5 = (5,<(Ival(go),progress,<(go,FALSE),(lighton,ZERO)>,1)>,<>)
Returning_6 = (6,<(Ival(go),progress,<(go,FALSE)>,1),

(andf(notf(Ival(go)),timer(En.(Controller,6),
Ival(Return_Time))),progress,
<(siren,TRUE)>,4)>,<>)

within {State_0,Disarmed_1,Leaving_2,Armed_3,Alarmed_4,Report_5,
Returning_6}

Controller_g = (Controller_sg,Controller,0,{go})

The processes for charts Key Pad, Digit, and Key Manager are defined simi-
larly to this. We collect information together for whole system:

Timed_Nodes_Lim = {((Controller,2),CV(Leave_Time)),
((Controller,6),CV(Return_Time)),
((KC,1),CV(Idle_Time)), ((Mainpad,2),CV(EW_Time))}

AllCharts = {Spec_g,Box_g(Box),kc_g,KeyMan,Digit_g(i),Mainpad_g,
Controller_g | i <- digits}

Burglar_Alarm_sc = SCTree.Box.{}.{(0,Pad_sc),(0,lift(Controller))}

4.2 Property Checking

A property can be verified against the system by trace refinement of the corre-
sponding CSP processes. There are two possible ways of verification depending
on the representation of properties: representation as statecharts or implemen-
tation as CSP directly.

lastdigs = code

State 1

State 0

State 2
ch(press) & press

lastdigs := snocf(key,lastdigs)

alarm != 0

siren
spec_error

spec_errorsiren

Fig. 4. A Watchdog Statechart

338 A.W. Roscoe and Z. Wu

Statechart specification. The first case means trivially using the existing
translation. For showing an example of an analysis driven by the presented ap-
proach we use the statechart specification of a watch dog (Fig. 4). The require-
ment is: the siren never goes off until firstly the code number has been typed
in and secondly an alarm signal has appeared. Now we translate this statechart
into the input script for our compiler:

Spec_sg =
let

State0 = (0,<(Ival(siren),spec_error,<>,2),
(andf(ch(press),Ival(press)),progress,

<(lastdigs,snocf(Ival(key),Ival(lastdigs)))>,0),
(eqf(Ival(lastdigs),K(<CV(d.i) | i <- <0..3>>)),

progress,<>, 1)>,<>)
State1 = (1,<(Ival(siren),error,<>,2),

(notf(eqf(Ival(alarm),K(0))),progress,<>,2)>,<>)
State2 = (2,<>,<>)

within {State0,State1,State2}
Spec_g = (Spec_sg,Spec_label,0,{})

The specification shows that it moves from State0 to State1 when the digits
have been correctly entered, and prior to that does the calculations to know when
this has been done. It moves from State1 to State2 when alarm is not 0, and only
then does it not raise an alarm when the siren does off. This is a statechart which
is run in parallel with an implementation and can read its variables. It may not,
however, write to any variable used by the implementation. Its function is to keep
track (as it wishes) of what goes on and to raise a flag (spec error) which can
be caught by the Time and Error check if the implementation does something
wrong. These conditions mean that it never interferes with the implementation.

SysAndSpec_sc =
SCTree.Box.{}.{(0,Burglar_Alarm_sc),(0,lift(Spec_label))}

Now the task is to check the trace refinement relation between the property
Spec label and the system Burglar Alarm. For that reason it is necessary to hide
all the communication of SysAndSpec which is not spec error.

assert STOP [T= SYSTEM(SysAndSpec_sc)\diff(Events,{action.spec_error})

The used model checker FDR executes the refinement check and returns the
CSP model Burglar Alarm meets the Property Spec label:

Refine checked 199,245 states.
With 1025751 transitions.
True

CSP-style specification. We can specify our burglar alarm directly in terms
of the events communicated by the CSP implementation. This particular model
is not that good for this type of specification since the event of typing in a code

Verifying Statemate Statecharts Using CSP and FDR 339

number is rather diffuse (and almost certainly better handled using the watchdog
style above). The following specification asserts that the siren cannot sound for
at least k time units from the start:

SirenWait(0) = outp.(siren,1) -> SirenWait(0)
[] tock -> SirenWait(0)

SirenWait(k) = tock -> SirenWait(k-1)

We can check this for various values via the trace check and the following are
the (parameterised) limit.

assert SirenWait(CV(Leave_Time)+Pad_Digits+1) [T=
SYSTEM(Burglar_Alarm_sc)\diff(Events,{tock,outp.(siren,1)})

assert SirenWait(CV(Leave_Time)+Pad_Digits+2) [T=
SYSTEM(Burglar_Alarm_sc)\diff(Events,{tock,outp.(siren,1)})

This is done by the used model checker FDR.

Refine checked 185,362 states.
With 955557 transitions.
True.

Refine checked 13,028 states.
With 67109 transitions.
Found 1 example.

5 Conclusion

We have used the process algebra CSP and its model checker FDR to model
and analyse Statemate Statecharts. Following this approach, the scope of some
existing modeling techniques has been widened to address the problems that
have arisen in various case studies. We have discovered many errors in practical
industrial systems by this approach. For example, our compiler has been success-
fully used on an automotive system design project, the single lane architecture
(QinetiQ), etc. Our compiler provides an efficient way to translate Statemate
Statecharts to CSP and has proven to be sufficiently malleable to allow us to
capture various properties of the semantics.

As a result of extensive research and studies in Statemate modelling, it is
concluded that the idea of modelling statecharts in CSP has opened up, and will
continue opening up, many opportunities for researches to model various graphic
specifications which are widely used for complex systems. There is enormous
scope for future development. The next target is MATLAB Stateflow (which is
similar to statecharts). It is hoped that the demonstration of how to apply CSP
theory to statecharts will inspire new approaches to standard graphic notations.

340 A.W. Roscoe and Z. Wu

References

1. R. Anderson, P. Beame, S. Burns, W. Chan, F. Modugno, D. Notkin, and J. Reese,
Model checking large software specifications, IEEE Transactions on Software Engi-
neering, Vol. 24, No. 7, pp. 498-520, 1998.

2. T. Bienmuller, J. Bohn, H. Brinkmann, U. Brockmeyer, W. Damm, H. Hungar,
and P. Jansen, Verification of automotive control units, in E.-R. Olderog and B.
Steffen (Eds.), Correct System Design, Springer Verlag, Berlin, 1999,number 1710
in LNCS, pp. 319-341.

3. T. Bienmuller, U. Brockmeyer, W. Damm, G. Dohmen, H.-J. Holberg, H. Hungar,
B. Josko, R. Schlor, G. Wittich, H. Wittke, G. Clements, J. Rowlands, and E.
Sefton, Formal verification of an avionics application using abstraction and sym-
bolic model checking, in F. Redmill and T. Anderson (Eds.), Towards System Safety
- Proceedings of the Seventh Safety-critical Systems Symposium, Huntingdon, UK,
Safety-critical Systems Club, Springer Verlag, Berlin, 1999, pp. 150-173.

4. J.R. Burch, E.M. Clarke, and D.E. Long, Symbolic model checking with partitioned
transition relations, In VLSI 91, Edinburgn, Scotland, 1990.

5. J.R. Burch, E.M. Clarke, K.L.McMillan, and D.L.Dill, Sequential circuit verifi-
cation using symbolic model checking, In 27th ACM/IEEE Design Automation
Conference, 1990.

6. J.R. Burch, E.M. Clarke, K.L.McMillan, D.L.Dill, and J. Hwang, Symbolic model
checking: 10E20 states and beyond, In LICS, 1990.

7. T. Bienmuller, W. Damm and H. Wittke, The Statemeat Verification Environment
– Making it real, In: Proc. CAV, LNCS 1855, pp. 561-561, Springer, 2000.

8. E.M. Clarke, O. Grumberg and D.E. Long, Model Checking and Abstraction, In
proceedings of the Nineteenth Annual ACM Symposium on Principles of Program-
ming Languages,1992.

9. W. Damm and D. Harel, LSCs: breathing life into message sequence charts, in
FMOODS’99 IFIP TC6/WG6.1 Third International Conference on Formal Meth-
ods for Open Object-Based Distributed Systems, Kluwer Academic Publishers,
NY, 1999.

10. W. Damm, B. Josko, H. Hungar, and A. Pnueli, A compositiona real-time semantics
of STATEMATE designs, in W.-P. de Roever (Ed.), Proceedings, International
Symposium on Compositionality-The Significant Diference, Springer-Verlag, 1998,
Lecture Notes in Computer Science.

11. W. Damm and J. Klose, Verification of a radio-based signalling system using the
Statemate verification environment, Formal Methods in System Design 19:121-141,
2001.

12. H. Eshuis and R. Wieringa, A Formal Semantics for UML Activity Diagrams C
Formalising Workflow Models, Technical Report, 2001.

13. Formal Systems (Europe) Ltd., Failures-Divergence Refinement, User Manual, ob-
tainable from http://www.fsel.com/fdr2 manual.html

14. K. Fuhrmann and J. Hiemer, Formal Verification of STATEMATE-Statecharts,
Citeseer.nj.nec.com/255163.html, 2001.

15. W.J. Fokkink and P. Hollingshead, Verification of interlockings: from control tables
to ladder logic diagrams, in Proceedings of the 3rd Workshop on Formal Methods
for Industrial Critical Systems-FMICS’98, Amsterdam. Stichting Mathematisch
Centrum, 1998.

Verifying Statemate Statecharts Using CSP and FDR 341

16. K. Feyerabend and B. Josko, VIS: A visual formalism for real time requirement
specifications, in Proceedings of the 4th International AMAST Workshop on Real-
Time Systems and Concurrent and Distributed Software, ARTS’97, Lecture Notes
in Computer Science 1231, 1997, pp. 156-168.

17. T.V. Group, VIS: A system for verification and synthesis, in 8th international
Conference on Computer Aided Verification, number 1102 in LNCS, 1996.

18. D. Harel and A. Naamad, The Statemate Semantics of Statecharts, Technical Re-
port, i-Logix, 1995.

19. D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, and A.S.
Trauring, Statemate: A Working Environment for the Development of Complex
Reactive Systems, IEEE Transactions on Software Engineering, 16, 4, 1990.

20. J. Hudak, S.C. Dorda, D.P. Gluch, G. Lewis and C. Weinstock, Model-Based Ver-
ification: Abstraction Guidelines, Technical Note CMU/SEI-2002-TN-001, 2002.

21. D. Harel and M. Politi, Modeling Reactive Systems with Statecharts: The STATEM-
ATE Approach, Part No.D-1100-43, i-Logix Inc., Three Riverside Drive, Andover,
MA 01810, June 1996.

22. The MathWorks, Stateflow, User Manual, obtainable from
http://www.mathworks.com/access/helpdesk/help/toolbox/stateflow/ug/

23. E. Mikk, Y. Lakhnech, C. Petersohn and M. Siegel, On Formal Semantics of Stat-
echarts as Supported by STATEMATE, Technical Report, BCS-FACS Northern
Formal Methods Workshop, 2, Ilkley, 1997.

24. L.E. Moser, Y. Ramakrishna, G. Kutty, P. Melliar-Smith, and L. Dillon, A graphi-
cal environment for design of concurrent real-time systems, ACM Transactions on
Software Engineering and Methodology, Vol.6, No. 1, pp.31-79, 1997.

25. A.W. Roscoe The theory and practice of concurrency, Prentice-Hall International,
1998.

26. A.W. Roscoe, Compiling Statemate Statecharts into CSP and verifying them using
FDR – abstract, Technical Report, 2003.

A Reasoning Method for Timed CSP Based on
Constraint Solving

Jin Song Dong, Ping Hao, Jun Sun, and Xian Zhang

School of Computing,
National University of Singapore

{dongjs, haoping, sunj, zhangxi5}@comp.nus.edu.sg

Abstract. Timed CSP extends CSP by introducing a capability to
quantify temporal aspects of sequencing and synchronization. It is a
powerful language to model real time reactive systems. However, there
is no verification tool support for proving critical properties over sys-
tems modelled using Timed CSP. In this work, we construct a reasoning
method using Constraint Logic Programming (CLP) as an underlying
reasoning mechanism for Timed CSP. We start with encoding the se-
mantics of Timed CSP in CLP, which allows a systematic translation
of Timed CSP to CLP. Powerful constraint solver like CLP(R) is then
used to prove traditional safety properties and beyond, e.g., reachabil-
ity, deadlock-freeness, timewise refinement relationship, lower or upper
bound of a time interval, etc. Counter-examples are generated when
properties are not satisfied. Moreover, our method also handles useful
extensions to Timed CSP. Finally, we demonstrate the effectiveness of
our approach through case study of standard real time systems.

1 Introduction

Event-based specification languages like the classic Communicating Sequential
Process (CSP) of Hoare’s [7] and its timed extension Timed CSP [14], have been
proposed for decades. Such specification languages are elegant and intuitive as
well as precise. They have been widely accepted and applied to a wide range of
systems, including communication protocols, embedded systems, etc [15]. It is
important that system specified using CSP or Timed CSP can be proved for-
mally and even better if the proving is fully automated. For CSP, the de facto
mechanized verification support is its model checker FDR (Failure Divergence
Refinement [5, 15]), which verifies various properties by showing that there is a
refinement relation from the constructed CSP model to the CSP process cap-
turing the properties. However, there is not yet a mechanized proving method
for Timed CSP due to the complexity of time, e.g., the timed trace and fail-
ure semantics of Timed CSP is far more complex than the failure semantics of
CSP. As far as the authors know, the only attempt is Brooke’s work on partial
encoding Timed CSP in PVS [2], which relies on heavy user interaction.

Constraint Logic Programming (CLP [9]) is designed for mechanized prov-
ing based on constraint solving. CLP has been successfully applied to model

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 342–359, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Reasoning Method for Timed CSP Based on Constraint Solving 343

programs and transition systems for the purpose of verification [6, 11], show-
ing that their approach outperforms the well-know state-of-art systems with
higher efficiency. [1] employs a logic program transformation based approach for
inductive verification of real-life parameterized protocols. In this work, we pro-
pose a constraint-based approach for solving the verification problem of Timed
CSP, which readily implies we handle untimed CSP as well. It is the first rea-
soning mechanism for Timed CSP. The challenge is to cope with the great
expressiveness of Timed CSP and allow efficient automatic proving of various
assertions.

Our approach starts with a systematic translation of the semantics of Timed
CSP into CLP. Both operational and denotational semantics are encoded, which
are used for verifying different kinds of properties. We then go beyond by allow-
ing useful extensions to Timed CSP, for example, the concept of signal as in [4]
for specifying broadcast communication and some liveness conditions, and inte-
gration of Timed CSP and state-based specification languages, so that we may
specify and verify systems with non-trivial data structures. The practical impli-
cation of our translation of Timed CSP to CLP is that powerful constraint solvers
like CLP(R) [10] can be used to prove properties over systems modelled using
Timed CSP. We investigate ways of proving traditional safety properties and be-
yond, for example reachability, deadlock-freeness, refinement relationship,lower
or upper bound of a time interval and etc. Moreover, we are also able to generate
counter examples if the properties are not satisfied. We implemented a prototype
as a CLP(R) program and experimented our encoding with standard real-time
systems.

The remainder of the paper is organized as follows. Section 2 briefly introduces
Timed CSP and the Constraint Logic Programming. Section 3 illustrates the
encoding of both operational and denotational semantics of Timed CSP in CLP.
A number of useful extensions to Timed CSP are also considered. Section 4
presents various proving we may perform over systems modelled using Timed
CSP and translated to CLP. Section 5 illustrates the effectiveness of our approach
with case studies. Section 6 concludes the paper.

2 Background

2.1 Timed CSP

Hoare’s CSP [7] is an event based notation primarily aimed at describing the
sequencing of behavior within a process and the synchronization of behavior
(or communication) between processes. Timed CSP extends CSP by introducing
a capability to quantify temporal aspects of sequencing and synchronization.
Inherited from CSP, Timed CSP adopts a symmetric view of process and envi-
ronment. Events represent a cooperative synchronization between process and
environment. Both process and environment may control the behavior of the
other by enabling or refusing certain events and sequences of events.

The syntactic class of Timed CSP expressions is defined as the following:

344 J.S. Dong et al.

P ::= Stop | Skip | Run | e t→ P | e : E → P(e) | e • t → P(t)
| P1 � P2 | P1 � P2 | P1 X ||Y P2 | P1 |[X]|P2 | P1 ||| P2
| P1; P2 | P1 P2 | P1 #{d} P2 |Wait[d] | P1 {d} P2 | µX • P(X)

RunΣ is a process always willing to engage any event in Σ. Stop denotes a
process that deadlocks and does nothing. A process that terminates is writ-
ten as Skip. A process which may participate in event e then act according to
process description P is written as e • t → P(t). The (optional) timing pa-
rameter t records the time, relative to the start of the process, at which the
event e occurs and allows the subsequent behavior P to depend on its value.
The process e t→ P delays process P by t time units after engaging event e. The
external choice operator (�) allows a process of choice of behavior according to
what events are requested by its environment. Internal choice represents vari-
ation in behavior determined by the internal state of the process. The parallel
composition of processes P1 and P2, synchronized on common events of their
alphabets X , Y (or a common set of events A) is written as P1 X ||Y P2 (or
P1 |[A]|P2). The sequential composition of P1 and P2, written as P1; P2, acts
as P1 until P1 terminates by communicating a distinguished event � and then
proceeds to act as P2. The interrupt process P1 P2 behaves as P1 until the first
occurrence of event in P2, then the control passes to P2. The timed interrupt
process P1 {d} P2 behaves similarly except P1 is interrupted as soon as d time
units have elapsed. A process which allows no communications for period d time
units then terminates is written as Wait[d]. The timeout construct written as
P1 #{d} P2 passes control to an exception handler P2 if no event has occurred
in the primary process P1 by some deadline d . Recursion is used to give finite
representation of non-terminating processes. The process expression µX • P(X)
describes processes which repeatedly act as P(X).

Example 1 (Timed vending machine). A user may insert some coins and then
make a choice between coffee or tea. Once the choice is made, the vending ma-
chine dispatches the corresponding drink. Or the user may ask the machine to
release the coins and walk away. If the user idles more than 10 seconds after the
coin is inserted, the machine will release the coins.

TVM =̂ µX • coin → ((reqrelease → release 2→ X)
� (coffee 3→ dispatchcoffee → X) � (tea 2→ dispatchtea → X))
#{10} (release → X)

2.2 CLP Preliminaries

Constraint Logic Programming (CLP) began as a natural merger of two declar-
ative paradigms: constraint solving and logic programming. This combination
helps make CLP programs both expressive and flexible, and in some cases, more
efficient than other kinds of programs. The CLP scheme defines a class of lan-
guages based upon the paradigm of rule-based constraint programming, where
CLP(R) is an instance of this class. We present some preliminary definitions
about CLP [9].

A Reasoning Method for Timed CSP Based on Constraint Solving 345

Example 2 (Factorial). The following is typical CLP program:

fac(0, 1).
fac(N ,X1 ∗N) : −N > 0, fac(N − 1,X1).

A relation fac(N, X) is defined, where X is the factorial of N , denoted as X = N !.
There are two atoms for the relation fac(N, X), where the first atom is a fact
and the second one is a rule.

The universe of discourse D of our CLP program is a set of terms, integers,
and lists of integers. A Constraint is written using a language of functions and
relations. They are used in two ways, in the basic programming language to
describe expressions and conditions, and in user assertions, defined below. In this
paper, we will not define the constraint language explicitly, but invent them on
demand in accordance with our examples. Thus the terms of our CLP programs
include the function symbols of the constraint language.

An atom, is as usual, of the form p(t̃), where p is a user defined predicate
symbol and t̃ is a sequence of terms. A rule is of the form A : −B̃ , Ψ where the
atom A is the head of the rule, and the sequence of atoms B̃ and the constraint
Ψ constitute the body of the rule. A goal has exactly the same format as the body
of the rule of the form ? − B̃ , Ψ . If B̃ is an empty sequence of atoms, we call
this a (constrained) fact . All goals, rules and facts are terms. A ground instance
of a constraint, atom and rule is defined in obvious way. A ground instance of
a constraint is obtained by instantiating variables therein from D. The ground
instances of a goal G, written [[G]] is the set of ground atoms obtained by taking
all the true ground instances of G and then assembling the ground atoms therein
into a set. We write G1 |= G2 to mean that for all groundings θ of G1 and G2,
each ground atom in G1θ appears in G2θ.

Let G = (B1, ...,Bn , Ψ) and P denote a goal and program respectively. Let
R = A : −C1, ...,Cm , Ψ1 denote a rule in P , written so as none of its variables
appear in G. Let A = B , where A and B are atoms, be shorthand for equa-
tions between their corresponding arguments. A reduct of G using R is of the
form

(B1, ...,Bi−1,C1, ...,Cm ,Bi+1, ...,Bn ,Bi = A ∧ Ψ ∧ Ψ1)

provided Bi = A ∧ Ψ ∧ Ψ1 is satisfiable. A derivation sequence is a possibly
infinite sequence of goals G0,G1, ... where Gi , i > 0 is a reduct of Gi−1. If there
is a last goal Gn with no atoms, notationally (�, Ψ) and called a terminal goal,
we say that the derivation is a successful and that the answer constraint is Ψ .
A derivation is ground if every reduction therein is ground.

Example 3 (Derivation). We calculate the 3! through the goal ? − fac(3, X).
The following demonstrates a derivation sequence of the goal with three steps.
The constraints in the last step which are the termination goal answer X = 6.

346 J.S. Dong et al.

N = 3, fac(N , X).
⇓

N = 3,N > 0,N − 1 = N1,X = N ∗X1, fac(N1,X1).
⇓

N = 3,N > 0,N − 1 = N1,X = N ∗X1,
N1 > 0,N1 − 1 = N2,X 1 = N1 ∗X2, fac(N2,X2).

⇓
N = 3,N > 0,N − 1 = N1,X = N ∗X1,N1 > 0,N1 − 1 = N2,
X 1 = N1 ∗X2,N2 > 0,N2 − 1 = 0,X2 = 1.

3 Timed CSP Semantics in CLP

This section is devoted to an encoding of the semantics of Timed CSP in CLP.
The practical implication is that we may then use powerful constraint solver
like CLP(R) [10] to do various proving over systems modelled using Timed CSP.
Both the operational semantics and denotational semantics are encoded. The
encoding of operational semantics serves most of our purposes. Nevertheless
the encoding of the denotational semantics offers an alternative way of proving
systems modelled in Timed CSP as well as the correctness of the encoding itself.

The very initial step of our work is the syntax encoding of Timed CSP process
in CLP syntax, which can be automated easily by syntax rewriting. A relation of
the form proc(N ,P) is used to present a process P with name N . For instance,
Figure 1 is the syntax encoding of process TVM in CLP, which is a recursive
process with name tvm.

proc(c1, delay(coffee, eventprefix(dispatchcoffee, tvm), 3)).
proc(c2, delay(tea, eventprefix(dispatchtea, tvm), 2)).
proc(c3, eventprefixc(reqrelease, delay(release, tvm, 2))).
proc(choices, extchoice(extchoice(C ,T),R))

: −proc(c1,C), proc(c2,T), proc(c3,R).
proc(to, timeout(C , eventprefix(release, tvm), 10))

: −proc(choices,C).
proc(tvm, recursion([tvm, eventprefix(coin, P)], eventprefix(coin, P)))

: −proc(to,P).

Fig. 1. Timed Vending Machine in CLP

3.1 Operational Semantics

The operational semantics of Timed CSP is precisely defined by Schneider [17]
using two relations: an evolution relation and a timed event transition relation. It
is straightforward to verify that our encoding conforms the two relations in [17].

A Reasoning Method for Timed CSP Based on Constraint Solving 347

A relation of the form tos(P1,T1,E,P2,T2) is used to denote the t imed
operational semantics, by capturing both evolution relations and timed event
transition relations. Informally speaking, tos(P1,T1,E,P2,T2) is true if the pro-
cess P1 may evolve to P2 through either a timed transition, i.e., let T2-T1 time
units pass, or an event transition by engaging an abstract event instantly1. The
relation tos defines a transition system interpretation of a Timed CSP process,
where the state is identified by the combination of the process expression and the
time variable. Using tabling mechanism offered in some of the constraint solvers
like CLP(R) [10] or XSB [19], the termination of the derivation sequence based
on relation tos depends on the finiteness of the reachable process expressions
from the initial one. Therefore, if a process is irregular (i.e. its trace is irregular
as in automata theory), proving of goals which need to explore all reachable pro-
cess expressions is not feasible. However, even for irregular processes, interesting
proving like existence of a trace is still possible.

We define the tos relation in terms of each and every operator of Timed
CSP. For the moment, we assume the process is not parameterized and we
shall handle parameterized processes uniformly in Section 3.3. For instance, the
primitive process expressions in Timed CSP are defined through the following
clauses:

tos(stop,T1, [], stop,T2) : −D >= 0,T2 = T1 + D .
tos(skip,T , [termination], stop,T).
tos(skip,T1, [], skip,T2) : −D >= 0,T2 = T1 + D .
tos(run,T , [], run,T).
tos(run,T1, [], run,T2) : −D >= 0,T2 = T1 + D .

The only transition for process Stop is time elapsing. Process Skip may
choose to wait some time before engaging event termination which is our choice
of representation for event � in CLP. Process Run may either let time pass
or engage any event. In the following, we show how hierarchical operators are
encoded in CLP using the alphabetized parallel composition operator as an
example.

In the operational semantics, the event transition and evolution transition
associated with the alphabetized parallel composition operator the alphabetized
parallel composition operator P1 X ||Y P2 are illustrated as the following [17]:

P1
e→ P ′

1 [e ∈ X ∪ {τ} \Y]
P1 X ||Y P2

e→ P ′
1 X ||Y P2

P2
e→ P ′

2 [e ∈ Y ∪ {τ} \X]
P1 X ||Y P2

e→ P1 X ||Y P ′
2

1 Or both at the same time by engaging an nontrivial action which takes time (neces-
sary for only extensions to Timed CSP like TCOZ [12] where E could be a compli-
cated computation).

348 J.S. Dong et al.

tos(eventprefix(E , P),T1, [], eventprefix(E , P),T1 + D) : −D > 0.
tos(eventprefix(E , P),T , [E],P ,T).
tos(prefixchoice(X , P),T , [Y],P ,T) : −member(Y ,X).
tos(prefixchoice(,P),T1, [],P ,T1 + D) : −D > 0.
tos(timeout(Q1, ,),T , [E],P ,T) : −tos(Q1,T , [E],P ,T).
tos(timeout(,Q2,D),T , [tau],Q2,T) : −D = 0.
tos(timeout(Q1,Q2,D),T , [tau], timeout(P ,Q2,D),T)

: −tos(Q1,T , [tau],P ,T).
tos(timeout(Q1,Q2,D),T1, [], timeout(P ,Q2,D − T),T1 + T)

: −T > 0,T <= D , tos(Q1,T1, [],P ,T1 + T).
tos(wait(D),T1,E ,P ,T2) : −tos(timeout(stop, skip,D),T1,E ,P ,T2).
tos(extchoice(P1,) ,T , [E],P3,T) : −tos(P1,T , [E],P3,T).
tos(extchoice(,P2),T , [E],P4,T) : −tos(P2,T , [E],P4,T).
tos(extchoice(P1, P2),T , [tau], extchoice(P3,P2),T) : −tos(P1,T , [tau],P3,T).
tos(extchoice(P1, P2),T , [tau], extchoice(P1,P4),T) : −tos(P2,T , [tau],P4,T).
tos(extchoice(P1, P2),T1, [], extchoice(P3,P4),T2)

: −T2 > T1, tos(P1,T1, [],P3,T2), tos(P2,T1, [],P4,T2).
tos(interleave(P1,P2),T ,E , interleave(P3,P2),T)

: −tos(P1,T ,E ,P3,T), (E == []; E == [tau]).
tos(interleave(P1,P2),T ,E , interleave(P1,P4),T)

: −tos(P2,T ,E ,P4,T), (E == []; E == [tau]).
tos(interleave(P1,P2),T , [E], interleave(P3,P2),T) : −tos(P1,T , [E],P3,T).
tos(interleave(P1,P2),T , [E], interleave(P1,P3),T) : −tos(P2,T , [E],P3,T).
tos(interleave(P1,P2),T1, [], interleave(P3,P4),T1 + D)

: −D > 0, tos(P1,T1, [],P3,T1 + D), tos(P2,T1, [],P4,T1 + D).
tos(interleave(P1,P2),T , [termination], interleave(P3,P4),T)

: −tos(P1,T , [termination],P3,T), tos(P2,T , [termination],P4,T).
tos(hiding(P1,X),T , [tau], hiding(P2,X),T)

: −tos(P1,T , [E],T ,P2),member(E ,X).
tos(hiding(P1,X),T , [E], hiding(P2,X),T)

: −tos(P1,T , [E],P2,T),not(member(E ,X)).
tos(hiding(P1,X),T1, [], hiding(P2,X),T1 + D)

: −D > 0, tos(P1,T1, [],P2,T1 + D),
not(member(A,X), tos(P1, , [A], ,)).

tos(sequential(P1,P2),T , [E], sequential(P3,P2),T)
: −tos(P1,T , [E],P3,T),not(E = termination).

tos(sequential(P1,P2),T , [termination],P2,T) : −tos(P1,T , [termination],, T).
tos(sequential(P1,P2),T1, [], sequential(P3,P2),T1 + D)

: −D > 0, tos(P1,T1, [],P3,T1 + D),not(tos(P1, , [termination], ,)).
tos(interrupt(P1, P2),T , [E], interrupt(P3,P2),T) : −tos(P1,T , [E],P3,T).
tos(interrupt(,P2),T , [E],P3,T) : −tos(P2,T , [E],P3,T).
tos(interrupt(P1, P2),T1, [], interrupt(P3,P4),T1 + D)

: −D > 0, tos(P1,T1, [],P3,T1 + D), tos(P2,T1, [],P4,T1 + D).

Fig. 2. Operational Semantics of Timed CSP in CLP

A Reasoning Method for Timed CSP Based on Constraint Solving 349

P1
e→ P ′

1,P2
e→ P ′

2 [e ∈ X ∩ Y]
P1 X ||Y P2

e→ P ′
1 X ||Y P ′

2

P1
d� P ′

1,P2
d� P ′

2

P1 X ||Y P2
d� P ′

1 X ||Y P ′
2

The→ represents an event transition, whereas � represents an evolution tran-
sition. The rules associated with the alphabetized parallel composition operator
are as the following:

tos(para(P1,P2,X ,Y),T , [E], para(P3,P2,X ,Y),T)
: −tos(P1,T , [E],P3,T),member(E ,X),not(member(E ,Y)).

tos(para(P1,P2,X ,Y),T , [E], para(P1,P4,X ,Y),T)
: −os(P2,T , [E],P4,T),member(E ,Y),not(member(E ,X)).

tos(para(P1,P2,X ,Y),T , [E], para(P3,P4,X ,Y),T)
: −tos(P1,T ,E ,P3,T), tos(P2,T ,E ,P4,T),

member(E ,X),member(E ,Y).
tos(para(P1,P2,X ,Y),T1, [], para(P3,P4,X ,Y),T1 + D)

: −tos(P1,T1, [],P3,T1 + D), tos(P2,T1, [],P4,T1 + D).

The first two rules state that either of the components may engage an event as
long as the event is not shared. The third rule states that a shared event can
only be engaged simultaneously by both components. The last expresses that the
composition may allow time elapsing as long as both the components do. Other
parallel composition operation, like |[X]| and |||, can be defined as special cases
of the alphabetized parallel composition operator straightforwardly. There is a
clear one-to-one correspondence between our rules and the operators which are
partly illustrated in Figure 2 and fully at our website2. Therefore, the soundness
of the encoding can be proved by showing there is a bi-simulation relationship
[13] between the transition system interpretation defined in [17] and ours, and
the bi-simulation relationship can be proved easily via a structural induction.

For simplicity, we do restrict the form of recursion to µX • P(X), which
means mutual recursion through process referencing has to be transformed before
hand. The following clauses illustrate how recursion is handled, where N is the
recursion point, i.e., X in µX • P(X)) and P is the process expression, i.e.,
P(X).

tos(recursion([N ,P],P1),T , [E], recursion([N ,P],P2),T)
: −not(P1 == N), tos(P1,T , [E],P2,T).

tos(recursion([N ,P],P1),T1, [], recursion([N ,P],P2),T1 + D)
: −D > 0, tos(P1,T1, [],P2,T1 + D).

tos(recursion([N ,P],N),T , [], recursion([N ,P],P),T).

2 http://nt-appn.comp.nus.edu.sg/fm/clp

350 J.S. Dong et al.

3.2 Denotational Semantics

We also encode both the timed traces and the timed failures model of Timed
CSP, where the semantics of a Timed CSP process is represented by a set of
timed traces or a set of timed failures [16]. A timed failure is a record of an
execution, consisting of a timed trace which contains information about event
performed, and a timed refusal which contains information about when events
could be refused. In contrast to the operational semantics, which focuses on a
single step at once, the denotational semantics captures all possible observations
of systems modelled using Timed CSP. Therefore, it is easier to prove over all
possible behaviors in the denotational semantics model.

In the following, we illustrate our encoding using only a few fundamental
constructors for the sake of space saving. A relation timedfailure(P, f(Tr, R)) is
defined to capture the timed failure semantics, where P is a process expression
and Tr is a sequence of timed events and R is a set of timed refusals. For instance,

timedfailure(stop, failure([],)).
timedfailure(skip, failure([],R))

: −sigma(R,S),not(member(termination,S)).
timedfailure(skip, failure([tevent(T , termination)],R))

: −T >= 0, before(R,T ,Z), sigma(Z ,N),not member(termination,N).

The relation sigma(P, S) is used to retrieve all events S in a process expression
P, i.e., S = σ(P). Similarly, the relation before(R, T, Z) is defined accordingly
as Z = R � T , i.e., the refusals before time T. Basically, the first rule states
that the failures of process Stop are an empty trace with all possible refusals.
Process Skip refuses everything until the occurrence of event termination, and
all events are refused afterwards. As for compositional operators, we take the
interface parallel composition operator as an example.

timedfailure(parallel(Q1,Q2,A), failure(S ,N))
: −timedfailure(Q1, failure(S1,N 1)),

timedfailure(Q2, failure(S2,N 2)), union(N 1,N 2,N),
union(A, [termination],AT), remove(N 1,AT ,N 11),
remove(N 2,AT ,N 22), setequal(N 11,N 22), tsynch(S1,S2,A,S).

The relation union(X, Y, Z) is the set union, i.e., Z = X ∪ Y . The relation
remove(X, Y, Z) is the set subtraction, i.e., Z = X \ Y . The relation tsynch
defines the ways in which a trace tr1 from component Q1 and a trace tr2 from
component Q2 can be combined to form a trace of the parallel (formal definition
in [16]). The interface parallel operator requires synchronization on events from
the interface event set A, and interleaving on events not in A.

Notice that the denotational semantics focuses on observations of the system,
which allows us to query the system behaviors as a whole. For instance, it is more
straightforward to check timewise refinement using the denotational semantics,
and irregular processes can be handled if we replace the recursion using its fixed
point. However, because there is no guarantee that the derivation sequence is
terminating, we have to limit the height of the proving tree.

A Reasoning Method for Timed CSP Based on Constraint Solving 351

3.3 Handling Extensions to Timed CSP

Timed CSP is introduced in [14]. Since then, various extensions of Timed CSP
have been proposed. In this work, we identify some of the effective extensions
and show that they can be encoded in the CLP framework. For instance, the
idea of signal by Davies [4] is a simple yet useful extension to capture liveness
as well as model broadcasting effectively. The motivation of the concept sig-
nal is that when describing the behavior of a real-time process, we may wish
to include instantaneous observable events that are not synchronization. For
example, an audible bell might form part of the user interface to a telephone
network, even though the bell may ring (a signal) without the cooperation of the
user. Informally, signal events are distinguished events that will occur as soon
as they become available, and will propagate through parallel composition. A
process may ignore any signal performed by another process, unless it is wait-
ing to perform the corresponding synchronization. For any observation that can
be extended into the future, the only events that must be observed are signals.
Therefore, signals are useful both for modelling broadcast communication and
specifying liveness conditions, i.e., some events must be engaged.

sigTF (eventprefix (E , ,), sigfailure([],X ,T))
: −not(E == sig()), sigma(X ,Z),

not(member(E ,Z)), end(X ,T1),T >= T1.
sigTF (eventprefix (E ,P ,D), sigfailure([tevent(T ,E) | XS],Y ,T1 + D + T))

: −T >= 0,not(E == sig()), sigTF (P , sigfailure(S ,Y 1),T1),
backthrough(Y ,T + D ,Y 1), begin(S ,T2),T2 >= T + D ,
end(S ,Y ,T3),max (T ,T3,T4),T1 + D + T >= T4,
before(Y ,T ,Z), sigma(Z ,N),
not(member(E ,N)), delay(S ,T + D ,XS).

sigTF (eventprefix (sig(E),P ,D), sigfailure([], [], 0)).
sigTF (eventprefix (sig(E),P ,D), sigfailure([tevent(0,E) | XS],Y ,T))

: −sigTF (P , failure(S ,Y 1),T1), backthrough(Y ,T + D ,Y 1),
T = T1 + D , before(Y ,T ,Z), sigma(Z ,N),
not(member(E ,N)), delay(S ,T + D ,XS).

The relation sigTF (P , sigfailure(Tt ,Tr ,T)) is used to capture this time failure
semantics for signals, where P denotes the process, Tt is the timed trace, Tr
denotes the timed refusal set and T denotes a time value. The CLP clauses
illustrate the possible evolution of signal event prefixing. The first two clauses
denote the semantics for event prefix process a → P where a is not a signal,
while the last two denote the one with signal event â, presented as sig(a). In
the above rules, end(X,T) computes the least upper bound of the time refusal
X . backthrough(Y,T,Y1) represents the relation: Y - T = Y1, i.e., timed refusal
Y 1 is generated from Y by translating it backwards through time T . begin(S,
T) retrieves the time of occurrence of the first event in timed trace S .

Another extension of special interest is Timed CSP integrated with state-
based languages like Z [20] to model systems with not only complicated con-
trol flow but also complex data structures [12, 18]. Instead of adopting a heavy

352 J.S. Dong et al.

language like TCOZ (Timed Communicating Object-Z [12]), we allow a finite
number of variables to be associated with a process3, called state variables. In
addition, we allow a state update transition, i.e., instead of engaging an abstract
event, the system may perform a state update which changes the valuation of
the state variables. A state update is specified as a predicate involving state
variables before and after the update, as in Z style where the after-variables are
primed [20].

For instance, there is a fragment of the specification of this vending machine,
in which we allow different coins to be inserted via a channel communication
coin?x where x is 10, 20 or 50, a data variable Quota is requested to accumulate
the amount of all coins inserted by the user.

Insert(Quota) =̂ coin?x → AddQuota

where AddQuota is an operation defined in Z , which is:

AddQuota =̂ [x?, quota, quota′ : N | quota′ = quota + x?]

This Timed CSP specification corresponds to the following CLP clauses where
both the pre and post values of the process parameter are presented as the pa-
rameters, namely Quota1 and Quota2, of the relation proc. The user is respon-
sible to specify exactly how an action updates the data variables, e.g., adding
the amount of the coin to Quota.

proc(coin, eventpreifx (coin(X 1), addquota),Quota1,Quota2)
: −action(addquota,X 1,Quota1,Quota2).

action(addquota,X 1,Quota1,Quota2) : −Quota2 = Quota1 + X 1.

4 Proving Properties of Timed CSP

This section is devoted to various proving we may perform over systems modelled
using Timed CSP and then encoded in CLP. We implemented a prototype in one
of the CLP solver, namely CLP(R). Any CLP assertion can be proved against
a given real-time system. We also developed a number of shortcuts for easy
querying and proving.

4.1 Safety and Liveness

Using CLP, we may make explicit assertion which is neither just a safety asser-
tion, nor just a liveness assertion. Yet it can be used for both purposes using
a unique interpretation. In the following, we show how safety properties and
liveness properties, like reachability, can be queried. We employ the concept of
coinductive tabling with the purpose of obtain termination when dealing with
recursions, which facilitates verifying safety and liveness properties based on
traces. The detailed introduction of coinductive tabling can be found in [8].

3 Which are of types supported by current tools for CLP.

A Reasoning Method for Timed CSP Based on Constraint Solving 353

Because Timed CSP is an event-based specification language, it is clearly
useful to prove safety and liveness properties in terms of predicate concerning
not only state variables but also events. A discussion on how to allow such
temporal properties is presented in [3]. In order to explore the full state space,
we define the following4:

treachable(P ,P , [],T1,T1).
treachable(P ,Q , [E | N],T1,T2)

: −tos(P ,T1,E ,P1,T3), treachable(P1,Q ,N ,T3,T2).

The relation treachable(P, Q, N, T1, T2) states that it is possible to reach the
process expression Q at time T2 from P at time T1, with trace N. By using the
tabling method, we dynamically record the process expressions that have been
explored so as to avoid re-exploring them. In this regard, one kind of liveness
property namely reachability is easily asserted using treachable.

An invariant property (a predicate over time variable and state variables and
possible local clocks) is in general expressed as the assertion:

inv(P ,T ,Property) : −not(treachable(P ,Q , ,T ,T1),not sat(Property)).

where not sat(Property) is a constraint indicating that the output from the
previous atom not satisfying the user defined Property.

One safety property of special interest is deadlock-freeness. The following
clauses are used to prove it.

tdeadlock(P ,T1) : −treachable(P ,P1,N ,T1,T2),
(not(tos(P1,T2, [],Q ,T), tos(Q ,T , [], ,)); (tos(P1,T2, [],Q ,);
not(tos ,P1,T2, [], ,))), printf (”deadlock at : %”, [N]).

Basically, it states that a process P at time T1 may result in deadlock if it can
reach the process expression Q at time T2 where no event transition is available
neither at T2 nor at any later moment. The last line outputs the deadlocked
trace as a counterexample. Alternatively, we may present it as a result of the
deadlock proving.

We allow trace-based properties (safety or liveness) that can be checked by
exploring trace set partially. The retrieve of a trace is done by the predicate
superstep(P ,N ,Q), which finds a sequence of events through which process ex-
pression P evolves to Q :

superstep(P , [],) : −not(tos(P , , ,Q ,),not table(Q)).
superstep(P , [A | N],Q) : −tos(P , ,M ,P1,),not(M == []; M == [tau]),

M = [A],not table(P1), assert(table(P1)), superstep(P1,N ,Q).
superstep(P ,N ,Q) : −tos(P , ,M ,P1,), (M == []; M == [tau]),

not table(P1), assert(table(P1)), superstep(P1,N ,Q).

We may prove that some event will always eventually be ready to be en-
gaged using the following rule: where rule member(N ,E) returns true if event
E appears at least once in the event sequence N .
4 The possible state variables and local clocks are skipped for simplicity.

354 J.S. Dong et al.

finally(P ,E) : −not(superstep(P ,N ,)),not member(N ,E).

Predicate finally(P ,E) captures the idea that there is no such trace without
event E in this process P . In other words, this process will eventually go to
event E . Another property based on traces would be identifying the relationship
among events, e.g., event A can never happen before (after) event B in a trace
or trace fragment. Take the timed vending for example, we would like to ensure
that in a round of using the machine, the event tea will never be followed by an
event dispatchcoffee.

Example 4 (Verification). For the timed vending machine, we would like to check
that it is deadlock-free by running the following goal and expecting failure:

?− proc(vending,P), tdeadlock(P , 0)

Moreover, we would expect that whenever we choose tea, it would never dispatch
coffee instead of tea, which can be checked by the following goal:

?− proc(vending,P), super(P ,N), (not in(tea,N);
after(N , dispatchcoffee, tea)).

4.2 Timewise Refinement Checking

The notion of refinement is a particularly useful concept in many forms of engi-
neering activity. If we can establish a relation between components of a system
which captures the fact that one satisfies at least the same conditions as another,
then we may replace a worse component by a better one without degrading the
properties of the system.

Compared to untimed CSP refinements which can be checked by FDR [15],
timedwise refinements for Timed CSP contain more information about timing
behavior. With the denotational model - timed failure model build in CLP,
the refinement relations can be defined for systems described in Timed CSP in
several ways, depending on the semantic model of the language which is used. In
the timed versions of CSP, we mainly concentrate on two forms of refinement,
corresponding to the semantic models which are trace timewise refinement and
failure timewise refinement.

Trace timewise refinement. A process Q is a trace timewise refinement of P
if all of its timed traces are allowed by P . The trace timewise relation is written
P T(TF Q where P is an untimed CSP process, and Q is a timed CSP process.
It is defined as:

P T(TF Q = ∀(s ,ℵ) ∈ T F [[Q]] • #s<∞⇒ strip(s) ∈ traces(P)

Detailed explanation can be found in [16]. In our timed failure model in CLP, we
are able to find any finite timed trace of a process. Instead of testing every timed
trace of a process Q by proving that this timed trace s with times removed is also
a legal trace for the untimed process P , we test the negation of this predicate.

A Reasoning Method for Timed CSP Based on Constraint Solving 355

We introduce the predicate traceTR to find a violative timed trace of Q that
is not a legal trace of P with its time information removed. The definition of
timedTR is given by the following CLP clause: where Q is the timed process, P
is the untimed process, S is a timed trace of Q and TimeRmTr represents the
times removed version of S .

traceTR(P ,Q ,S) : −timedfailure(Q , failure(S ,Refusal)),
strip(S ,TimeRmTr),not(trace(P ,TimeRmTr)).

Failures timewise refinement. The timed process Q is a failure timewise
refinement of the untimed process P if all of its timed traces are allowed by
P , as well as all its timed failures are allowed by the stable failures of P . It is
formally defined as in [16]:

P SF(TF Q = ∀(s ,ℵ) ∈ T F [[Q]] • #s<∞⇒ strip(s) ∈ trace(P) ∧
(∃ t : R+; X ⊆ Σ • ([t ,∞)×X) ⊆ ℵ ⇒ (strip(s),X) ∈ SF [[P]])

We take the similar approach as the trace timewise refinement which tests the
negation of the universal predicate. The predicate failureTR is introduced to
capture this idea, which can be represented by the following CLP clauses:

failureTR(P ,Q ,S ,Refusal) : −timedfailure(Q , failure(S ,Refusal)),
((strip(S ,TimeRmTr),not(trace(P ,TimeRmTr)));
not(inStableFailure(Q ,S ,Refusal ,P))).

inStableFailure(Q ,S ,Refusal ,P) : −T > 0, sigma(Q ,Sigma),
subset(Sigma,X), (not(subset(prod(int(T , inf),X),Refusal));
(strip(S ,TimeRmTr), stablefailure(P , failure(TimeRmTr ,X)))).

4.3 Additional Checking

In reality, most processes are non-terminating, so it would not be possible to
retrieve all possible traces of a process. However, by given a specific trace of a
trace fragment, we are able to identify whether it is an event sequencing of a
given process. For instance, the following clause is used to query if a sequence
of event is a trace of the system, where P is a process expression and X is a
sequence of events.

trace(P ,X) : −superstep(P ,X ,) .

In addition to proving pre-specified assertions, one distinguished feature of our
approach is that implicit assertions may be proved. For example, we may identify
the lower or upper bound of a (time or data) variable, which is very useful for
applications like worst or best case analysis of execution time.

dur(P ,Q ,T1,T2) : −tos(P ,T1, ,Q ,T2).
dur(P ,Q ,T1,T2) : −tos(P ,T1, ,P1,T3), dur(P1,Q ,T3,T2).

We are able to compute the duration of the execution of one process P to its
subsequent process Q by the above two rules, where T1 is the starting time and

356 J.S. Dong et al.

T2 is the ending time. By using the predicate dur , we are able to get identify the
lower bound of some processes involving time. The process Wait(2); a 3→ Skip
should terminate in more than 5 time units, which can be identified by the
following goal and expecting T≥5.

?− dur(sequ(wait(2), delay(a, skip, 3)), stop, 0,T).

5 Experiments and Results

In this section, we compare our method to the mature model checker for CSP,
namely FDR (version 2.78), in terms of flexibility as well as efficiency. We im-
plement a prototype as a normal CLP(R) program. In the following, we demon-
strate our experiments with three examples on a Unix system located at a
Sunfire sever with IGB user memory. Because FDR is designed for CSP, the
quantitative timing aspects of the examples have been abstracted before FDR
verification.

Timed Vending Machine. The specification of the timed vending machine
is presented in Example 1. Figure 1 shows the timed vending machine model
in CLP. This example is customized into a FDR program (say P), in which
the time-out operator is replaced with an external choice. The following are the
properties verified:

– tvm-1 Deadlock-freeness
– tvm-2 Trace timewise refinement:
• in CLP, whether the process TVM is a trace timewise refinement of P .
• in FDR, whether the process P is a trace refinement of TVM .

– tvm-3 Whether there is such a case that coffee is selected while tea is dis-
patched.

Dining Philosopher. The classic dining philosopher example is also experi-
mented. The specification is available in [7]. We implemented this example with
N philosophers and N forks. The following properties are experimented:

– philosopherN-1 It is not deadlock-free
– philosopherN-2 No more than N+1/2 philosophers can eat at the same time.
– philosopherN-3 It is possible that one philosopher eat all the time with the

others starving. This property is checked with trace refinement.

The Railway Crossing. The railway crossing system is modelled and checked,
which is complex enough to demonstrate a number of aspects of the modelling
and verification of timed systems. The system consists of three components: a
train, a gate and a controller. The gate should be up to allow traffic to pass
when no train approaching and lowered to obstruct traffic when a train is com-
ing. The controller monitors the approach of a train, and instructs the gate to

A Reasoning Method for Timed CSP Based on Constraint Solving 357

Table 1. Properties Verification

Property Goal in CLP
deadlock-freeness proc(system, P), tdeadlock(P, 0) |= false

if train enters crossing, proc(system, P), supersetp(P, X),
the gate must be down last(X, entercrossing),filter(X, [up,down], X2),

last(X2, up) |= false
lower bound for a train proc(system, P), dur(delay(nearind, ,),

passes the crossing is 320s eventprefix(outind,), T1, T2),T2-T1<320 |= false
if the gate is up, the train proc(system,P), superstep(P, X),
must have left the crossing not(not in([up, entercrossing, leavecrossing], X);

after(X, leavecrossing, entercrossing))) |= false
legal trace checking proc(system, P),superstep(P, [trainnear, nearind,

downcomm,down, confirm, entercrossing,
leavecrossing, outind])|=true

be lowered within the appropriate time. The train is modelled abstractly with
behaviors: nearing, entering and leaving the crossing. The Timed CSP modelling
is as follows (originally presented in [16]):

TRAIN =̂ µT • trainnear → nearind 300→ entercrossing
20→ leavecrossing → outind → T

GATE =̂ µG • downcom 100→ down → confirm → G
� upcom 100→ up → confirm → G

CONTROLLER =̂ µC • outind 1→ upcom → confirm → C
� nearind 1→ downcom → confirm → C

CROSSING =̂ CONTROLLER C ||G GATE
SYSTEM =̂ TRAIN T ||C∪G CROSSING

The time information of the system is that: the train takes at least 5 minutes
from triggering the near.ind sensor to reach the crossing; and at least 20 seconds
to get across the crossing. The controller takes a negligible amount of time, say
1 second, from receiving a signal from a sensor to relaying the corresponding
instruction to the gate. The gate process takes 100 seconds to get itself into
position following an instruction. A number of interesting properties can be
formulated, evidenced in Table 1. The three properties selected for comparing
our approach with FDR verification are:

– railway-1 Deadlock-freeness
– railway-2 Whether trace 〈trainnear ,nearind , downcomm, down, confirm,

entercrossing, leavecrossing, outind〉 is a legal trace or not.
– railway-3 Whether the lower bound for a train passes the crossing is 320s .

We summarize our results in Table 2. We ran the examples in both CLP(R)
and FDR systems and we calculated the execution time of each property if the
property is able to be checked in that system. From the table, we can see that

358 J.S. Dong et al.

Table 2. Experiment Results

Assertion CLP(R) (sec) FDR (sec)
tvm-1 0.00 0.23
tvm-2 0.03 0.27
tvm-3 0.01 −

railway-1 0.25 0.25
railway-2 0.02 0.26
railway-3 0.32 −

Assertion CLP(R) (sec) FDR (sec)
phi3-1 0.12 0.25
phi3-2 0.22 −
phi3-3 0.04 0.17
phi4-1 0.84 0.28
phi4-2 2.5 −
phi4-3 0.1 0.3

most of our timing analysis performance are competitive with the well-known
system, while in some cases, we are not so competitive. The important metric of
our experiments is the flexibility. The results show that our reasoning method
based on constraint solver can handle a wider range of properties, including the
timed-related properties, bounds of variables, event specified properties, and etc.

6 Conclusions

In this paper, we proposed a reasoning method for Timed CSP based on con-
straint logic, which to our knowledge, is the first mechanized reasoning support
for Timed CSP. The contribution of this work is fourfold. Firstly we showed
that event-based process algebra Timed CSP can be encoded in CLP by en-
coding both the operational and denotational semantics. Our work therefore
broadened real-time systems which can be specified and verified by CLP. Sec-
ondly, we handled some useful extensions to Timed CSP, most significant one
is the concept of singal for specifying broadcast communication. Thirdly, we in-
vestigated a wide range of properties that may be proved based on constraint
solving, for instance we showed that using a unique interpretation, traditional
safety and liveness can be proved effectively as well as properties such as lower or
upper bound of a variable and refinement. Lastly, we implemented a prototype
program and applied our approach to various systems. In our future work, we
plan to build a graphical user interface for automatically translating Timed CSP
models, inserting properties, visualizing counterexamples if any and etc, which
has been partially done recently. Besides, we would also extend our method to
verify other integrated formalisms which are based on CSP/Timed CSP.

Acknowledgement

The authors thank Andrew Santosa for insightful discussion on CLP and pointing
out relevant documentations.

References

1. R. Abhik and I.V. Ramakrishnan. Automated Inductive Verification of Parame-
terized Protocols. In International Conf. on Computer Aided Verification (CAV).
Springer, 2001.

A Reasoning Method for Timed CSP Based on Constraint Solving 359

2. P. J. Brooke. A Timed Semantics for a Hierarchical Design Notation. PhD thesis,
University of York, April 1999.

3. S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. State/Event-
based Software Model Checking. In Proceeding of Integrate Formal Methods 2004,
pages 128–147, 2004.

4. J. Davies. Specification and Proof in Real-Time CSP. Cambridge University Press,
1993.

5. Formal Systems (Europe) Ltd. Failure Divergence Refinement: FDR2 User Manual.
1997.

6. G.l Gupta and E. Pontelli. A Constraint-based Approach for Specification and
Verification of Real-time Systems. In IEEE Real-Time Systems Symposium, pages
230–239, 1997.

7. C. A. R. Hoare. Communicating Sequential Processes. International Series in
Computer Science. Prentice-Hall, 1985.

8. A. Santosa J. Jaffar and R. Voicu. Modeling Systems in CLP with Coinductive
Tabling. In International Conference on Logic Programming, 2005.

9. J. Jaffar and M. J. Maher. Constraint Logic Programming: A Survey. Journal of
Logic Programming, 19/20:503–581, 1994.

10. J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The CLP(R) Language
and System. ACM Trans. Program. Lang. Syst., 14(3):339–395, 1992.

11. J. Jaffar, A. E. Santosa, and R. Voicu. A CLP Proof Method for Timed Automata.
In Real-Time Systems Symposium, pages 175–186, 2004.

12. B. P. Mahony and J. S. Dong. Timed Communicating Object Z. IEEE Trans.
Software Eng., 26(2):150–177, 2000.

13. R. Milner. A Calculus of Communicating Systems, volume 92. Springer-Verlag,
1980.

14. G. M. Reed and A. W. Roscoe. A Timed Model for Communicating Sequential
Processes. In L. Kott, editor, ICALP, volume 226 of Lecture Notes in Computer
Science, pages 314–323. Springer, 1986.

15. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.
16. S. Schneider. Concurrent and Real-time System: The CSP Approach. JOHN WI-

LEY & SONS, LTD, 2000.
17. S. A. Schneider. An Operational Semantics for Timed CSP. In Proceedings

Chalmers Workshop on Concurrency, 1991, pages 428–456. Report PMG-R63,
Chalmers University of Technology and University of Göteborg, 1992.

18. G. Smith and J. Derrick. Specification, Refinement and Verification of Concurrent
Systems-An Integration of Object-Z and CSP. Formal Methods in System Design,
18(3):249–284, 2001.

19. D. S. Warren. Programming with Tabling in XSB. In PROCOMET ’98: Pro-
ceedings of the IFIP TC2/WG2.2,2.3 International Conference on Programming
Concepts and Methods, pages 5–6, London, UK, 1998.

20. J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof.
Prentice-Hall International, 1996.

Mapping RT-LOTOS Specifications into Time
Petri Nets

Tarek Sadani1,2, Marc Boyer3, Pierre de Saqui-Sannes1,2,
and Jean-Pierre Courtiat1

1 LAAS-CNRS, 7 av. du colonel Roche, 31077 Toulouse Cedex 04, France
2 ENSICA, 1 place Emile Blouin, 31056 Toulouse Cedex 05, France
3 IRIT-CNRS/ENSEEIHT, 2 rue Camichel, 31000 Toulouse, France
tsadani@ensica.fr, mboyer@enseeiht.fr, desaqui@ensica.fr,

courtiat@laas.fr

Abstract. RT-LOTOS is a timed process algebra which enables com-
pact and abstract specification of real-time systems. This paper proposes
and illustrates a structural translation of RT-LOTOS terms into behav-
iorally equivalent (timed bisimilar) finite Time Petri nets. It is therefore
possible to apply Time Petri nets verification techniques to the profit
of RT-LOTOS. Our approach has been implemented in RTL2TPN, a
prototype tool which takes as input an RT-LOTOS specification and
outputs a TPN. The latter is verified using TINA, a TPN analyzer de-
veloped by LAAS-CNRS. The toolkit made of RTL2TPN and TINA has
been positively benchmarked against previously developed RT-LOTOS
verification tool.

1 Introduction

The acknowledged benefits of using Formal Description Techniques (FDTs) in-
clude the possibility to verify a model of the system under design against user
requirements. These benefits are even higher for systems which are both concur-
rent and submitted to stringent temporal constraints.

In this paper, formal verification is addressed in the context of RT-LOTOS,
a timed extension of the ISO-based LOTOS [1] FDT. RT-LOTOS [2] shares
with LOTOS and other process algebras its capability to specify systems as a
collection of communicating processes. The paper proposes a transformational
approach from RT-LOTOS to Time Petri Nets (TPNs) which, by contrast, are
typical example of non compositional FDT. Therefore, it is proposed to embed
TPNs into so-called components that can be composed relying on different pat-
terns. The latters are carefully defined so as they ensure a very tight relation be-
tween the obtained composite TPN and its corresponding RT-LOTOS behavior.
This work can be seen as giving a TPN semantics to RT-LOTOS denotationally.
A prototype tool implements the translation patterns. It has been interfaced
with TINA [3], the Time Petri Net Analyzer developed by LAAS-CNRS. We
show that an automatically generated reachability graph of a TPN can be used
to reason about and check the correctness of RT-LOTOS specifications.

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 360–379, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Mapping RT-LOTOS Specifications into Time Petri Nets 361

The paper is organized as follows. Section 2 introduces the RT-LOTOS lan-
guage. Section 3 introduces the Time Petri net (TPN) model. Section 4 discusses
the theoretical foundations of RT-LOTOS to TPNs mapping. Section 5 addresses
practical issues, including tool development and verification results obtained for
well-established benchmarks. Section 6 surveys related work. Section 7 concludes
the paper.

2 RT-LOTOS

The Language of Temporal Ordering Specifications (LOTOS, [1]), is a formal
description technique, based on CCS [4] and extended by a multi-way synchro-
nization mechanism inherited from CSP [5]. In LOTOS, process definitions are
expressed by the specification of behavior expressions which are constructed by
means of a restricted set of powerful operators making it possible to express be-
haviors as complex as desired. Among these operators, action prefixing, choice,
parallel composition and hiding play a fundamental role.

RT-LOTOS [2] extends LOTOS with three temporal operators: a determinis-
tic delay (2t), a latency(Ωt) which enables description of temporal indetermin-
ism and a time limited offer g{t}. The main difference between RT-LOTOS and
other timed extensions of LOTOS lies in the way a non-deterministic delay may
be expressed. The solution developed for RT-LOTOS is the latency operator. Its
usefulness and efficiency have been proved in control command applications and
hypermedia authoring [6].

RT-LOTOS formal syntax: Let PV be the set of process variables and X
range over PV. Let GV be the set of the user-definable gates. Let g,g′1 . . . g′n ∈
GV, let also L be any (possibly empty) subset of GV noted L = g′1 . . . g′n and i
the internal action.

The formal syntax of RT-LOTOS is recursively given by:
P ::= stop | exit | X[L] | g;P | g{t};P | i{t};P | 2tP | ΩtP | P [] P | P|[L]|P |

hide L in P | P+ P | P[>P
The syntax of a process definition being ”process X[g′1 . . . g′n]:=PX endproc”.

Two alternative syntaxes have been defined for expressing time delays: delay(t)
which is identical to 2t, and latencies, namely latency(t) meaning Ωt.

RT-LOTOS operational semantics in the classical Plotkin’s SOS style can be
found in [7].

3 Time Petri Nets

Petri nets were, to our knowledge, the first theoretical model augmented with
time constraints [8,9], and the support of the first reachability algorithm for
timed system [10,11].

The basic idea of time Petri nets (TPN [8,9]) is to associate an interval Is(t) =
[a, b] (static interval) with each transition t. The transition can be fired if it

362 T. Sadani et al.

[1,2][3,4] [5,5]

t0 t1 t2

Fig. 1. Priority from ur-
gency

[0,2] [0,2][1,1]

t0 t1
t2

Fig. 2. Synchronization

[1,1] [2,2]

t0 t1

Fig. 3. Continuous
enabling

has continuously been enabled during at least a time units, and it must fire if
continuous enabling time reaches b time units1.

Figure 1 is a first example: in the initial marking, only t0 and t1 are enabled.
After one time unit delay, t1 is firable. Because t1 reaches its upper interval
always before t0 becomes enable (3 > 2), then t0 can never be fired. t2 is fired
five time units after the firing of t1. Figure 2 illustrates the synchronization
rule: t0 (resp. t1) is fired at an absolute date θ0 ≤ 2 (resp. θ1 ≤ 2), and t2 is
fired at max(θ0, θ1)+1. Figure 3 illustrates another important point: continuous
enabling. In that TPN, transition t1 will never be fired, because, at each time
unit, t0 is fired, removing the token and putting it back immediately. Then, t1
is at most 1 time unit continuously enabled, never 2 time units.

4 Translation Definition

This section gives the translation from RT-LOTOS terms into TPNs. This map-
ping can also be understood as the definition of an alternative TPNs semantics
of RT-LOTOS. It is well known that process algebras (e.g. RT-LOTOS) heavily
rely on the concept of compositionality, whereas Petri nets (and their timed ver-
sions) lack of compositionality at all. To make the translation possible, a core
idea behind our approach is to view a TPN as a composition of number of TPN
components. The following section introduces the concept of TPN Component
as basic building block.

4.1 Time Petri Net Component

A Component encapsulates a labeled TPN which describes its behavior. It is
handled through its interfaces and interactions points. A component performs an
action by firing the corresponding transition. A component has two sets of labels:
Act which is the alphabet of the component and T ime = {tv, delay, latency}.
These three labels are introduced to represent the intended temporal behavior of
a component. The tv (for “temporal violation”) label represents the expiration
of time limited-offering. A delay or latency label represents the expiration of a
deterministic delay or a non deterministic delay, respectively.

A component is graphically represented by a box containing a TPN. The
black-filled boxes at the component boundary represent interaction points. For
instance, the component CP in the Figure 4 is built from a RT-LOTOS term

1 This urgency when the deadline is reached is called “strong semantics”.

Mapping RT-LOTOS Specifications into Time Petri Nets 363

Fig. 4. Component example Fig. 5. The exit pattern

P. During its execution, it may perform the observable action a. The ini (ini-
tially marked places) represent the component input interface, and the out place
denotes its output interface. A token in the out place of a component means
that the component has successfully completed its execution. A component is
activated by filling its input places. A component is active if at least one of its
transitions is enabled. Otherwise, the component is inactive.

Definition 1 (Component)
Let Act = Ao ∪ Ah ∪ {exit} be an alphabet of actions, where Ao is a set of
observable actions (with i �∈ Ao, exit �∈ Ao), Ah = {i} × Ao is the set of hidden
actions (If a is an observable action, ia denotes a hidden action).

Formally a component is a tuple C = 〈Σ, Lab, I, O〉 where

– Σ = 〈P, T, Pre, Post,M0, IS〉 is a TPN.
– Lab : T → (Act ∪ T ime) is a labeling function which labels each tran-

sition in Σ with either an action name (Act) or a time-event (T ime =
{tv, delay, latency}). Let TAct (resp. T Time) be the set of transitions with
labels in Act (resp. T ime).

– I ⊂ P is a non empty set of places defining the input interface.
– O ⊂ P is the output interface of the component. A component has an output

interface if it has at least one transition labeled by exit. If so, O is the
outgoing place of those transitions. Otherwise, O = ∅.

The following invariants apply to all components:

H1 There is no source transition in a component.
H2 The encapsulated TPN is 1-bounded (cf. safe nets in [12]). H2 is called the

”safe marking” property. It is essential for the decidability of reachability
analysis procedure applied to TPNs.

H3 If all the input places are marked, all other places are empty (I ⊂ M ⇒
M = I).

H4 If the out place is marked, all other places are empty (O �= ∅ ∧ O ⊂ M ⇒
M = O).

H5 For each transition t such that Lab(t) ∈ Act, if the label is an observable
action (Lab(t) ∈ A0), its time interval is [0,∞), otherwise2, it is [0, 0].

2 Lab(t) ∈ Ah ∪ {exit}.

364 T. Sadani et al.

4.2 Translation Patterns

RT-LOTOS behaviour expressions are inductively defined by means of algebraic
operators acting on behaviour expressions. Since the translation is meant to be
syntax driven we need to endow TPNs with operators corresponding to RT-
LOTOS ones, so as to allow one to construct a composite TPN. In the following,
we first define components corresponding to nullary algebraic operators (stop
and exit) and, given each RT-LOTOS operator and its operands (i.e. behaviour
expressions), we inductively describe how to obtain a new component starting
from the one corresponding to the given RT-LOTOS behaviour expressions. The
resulting component corresponds to the RT-LOTOS behaviour expression com-
puted by applying the operator to the given operands.

Due to lack of space, the formalization of some patterns is skipped. A complete
formal definition can be found in the extended version of this paper [13].

Notation and definition. f ′ = f ∪ (a, b) defines the function f ′ : A ∪ {a} #→
B ∪ {b} such that f ′(x) = f(x) if x ∈ A and f ′(a) = b otherwise.

Definition 2 (First actions set). Let C be a component. The set of first
actions FA (CP) can be recursively built using the following rules3:

FA
(
Cstop

)
= ∅ FA (Cexit) = {texit}

FA (Ca;P) = {ta} FA (CµX.(P;X)) = FA (CP)

FA
(
Ca{d}P

)
= {ta} FA

(
Cdelay(d)P

)
= FA (CP)

FA
(
Clatency(d)P

)
= FA (CP) FA (CP;Q) = FA (CP)

FA (CP|[A]|Q) = FA (CP) ∪ FA (CQ) FA (CP>>Q) = FA (CP)
FA (CP[]Q) = FA (CP) ∪ FA (CQ) FA (CP[>Q)=FA (CP) ∪ FA (CQ)

FA (Chide a in P) = ha (FA (CP))

Low level Petri net operations. The formal definition of the translation patterns
uses the following low level Petri nets operators: ∪, \,�.

Let N = 〈P, T, Pre, Post,M0, IS〉 be a TPN.

Adding a place: Let p be a new place (p �∈ P), Prep and Postp two sets of
transitions of T . Then N ′ = N ∪ 〈Prep, p, Postp〉 is the TPN augmented with
place p such that •p = Prep and p• = Postp.

Adding a transition: Let t be a new transition (t �∈ T), I its time interval,
Pret and Postt two sets of places of P . Then N ′ = N ∪ 〈Pret, (t, I), Postt〉 is
the TPN augmented with transitions t such that •t = Pret and t• = Postt.

Similarly, \ is used to remove places or transitions from a net (and all related
arcs), and � denotes the free merging of two nets.

3 where ta is transition labelled by a. ha(α) = α if α �= a and ha(a) = ia.

Mapping RT-LOTOS Specifications into Time Petri Nets 365

Basic components. The Cstop component is simply the empty net (no place,
no transition). Cexit is a component which performs a successful termination. It
has one input place, one output place, and a single transition labeled with exit
and a static interval [0, 0] (Fig.5).

Patterns applying to one component. Let us consider the component CP

of Fig. 4. Fig. 6 depicts different patterns applied to CP.

(a) a;P (b) a{d}P (c) delay(d)P (d) latency(d)P

Fig. 6. Patterns applying to one component

– Ca;P (Fig. 6(a)) is the component resulting from prefixing CP with action a.
Ca;P executes a then activates CP.
Ca;P = 〈Σa;P, Laba;P, {in}, OP〉 where the TPN Σa;P is obtained by adding a
place in and a transition t0 to ΣP, Laba;P associates a to transition t0.

Σa;P = (ΣP ∪ 〈∅, (t0, [0,∞)), IP〉) ∪ 〈∅, in, t0〉
Laba;P = LabP ∪ (t0, a)

– Ca{d};P (Fig. 6(b)) is the component resulting from prefixing CP with a lim-
ited offer of d units of time on action a. If for any reason, a cannot occur
during this time interval, the tv transition will be fired (temporal violation
situation) and Ca{d};P will transform into an inactive component.

Ca{d};P = 〈Σa{d};P, Laba;P ∪ {(t1, tv)} , {in} , OP〉
Σa{d};P = Σa;P ∪ 〈{in} , (t1, [d, d]), ∅〉

– Cdelay(d)P (Fig 6(c)) is the component resulting from delaying the first action
of P with a deterministic delay of d units of time. This is exactly the same
pattern as Ca;P except that the added transition has a delay label and a
static interval equal to [d, d].

Cdelay(d)P = 〈Σdelay(d)P, LabP ∪ {(t0, delay)} , {in} , OP〉
Σdelay(d)P = (ΣP ∪ 〈∅, (t0, [d, d])), IP〉) ∪ 〈∅, in, t0〉

366 T. Sadani et al.

– Clatency(d)P (Fig 6(d)) is the component resulting from delaying the first
actions of CP with a non deterministic delay of d units of time.

Like the delay operator, latency is defined by connecting a new transition
to the input interface of CP. But this time, we add a static interval equal
to [0, d]. The definition of the latency translation pattern must handle the
“subtle” case where one (or several) action(s) among CP’s first actions is
(are) constrained with a limited offer (this set is denoted by FAlo). For
instance, in Fig 6(d), action a is offered to the environment during dx units
of time. The RT-LOTOS semantics states that the latency and the offering of
a start simultaneously, which means that if the latency duration goes beyond
dx units of time, the offer on a will expire. To obtain the same behavior, we
add the input place in0 of a to the input interface of the resulting component
Clatency(d)P. In the definition of the pattern, we denote Ilo the set of these
input places (Ilo ⊂ IP). Thus t1 and t are enabled as soon as the component
is activated (all its input places being marked). Clatency(d)P is able to execute
a (fire t0) if t0 is enabled (i.e if in0 and p are marked) before t1 is fired (at
dx). Therefore, action a is possibly offered to the environment for no more
than dx units of time, hence conforming to the RT-LOTOS semantics.
Let FA (CP) be the set of transitions associated to the first actions of P4,
and FAlo (CP) be the set of first actions constrained by a time limited offer:

FAlo (CP) =
{
ta ∈ FA (CP) tv ∈ (•ta)•

}
Ilo = •FAlo (CP)

Clatency(d)P = 〈Σlatency(d)P, LabP ∪ {(t, latency)} , Ilo ∪ {in} , OP〉

Σlatency(d)P = ΣP ∪
⋃

ta∈FAlo(CP)

〈t, pta , ta〉 ∪ 〈∅, in, ∅〉

∪
〈
{in} , (t, [0, d]), (IP\Ilo) ∪

⋃
ta∈FAlo(CP)

{pta}
〉

– CµX.(P;X) The recursion operator translation is mainly an untimed problem
(relying on fixpoint theory). It is not presented in this paper, focused on
timed aspects.

– Chide a in P is the component resulting from hiding action a in CP. Hiding
allows one to transform observable (external) actions into unobservable (in-
ternal) actions, then making the latter unavailable for synchronization with
other components. In RT-LOTOS, hiding one or several actions induces a
notion of urgency on action occurrence. Consequently, a TPN transition cor-
responding to a hidden action will be constrained by a time interval equal
to [0, 0]. This implies that as soon as a transition is enabled, it is candidate
for being fired.

Patterns applying to a set of components. Each of the following patterns
transforms a set of components into one component.
4 Its formal definition can be found in Def. 2, Sect. 4.2.

Mapping RT-LOTOS Specifications into Time Petri Nets 367

CP CQ

 CP|[a]|Q

Fig. 7. Parallel synchronization pattern

CP

CQ

CP>>Q

Fig. 8. Sequential composition pattern

– CP|[a]|Q (Fig.7)
In Petri nets, a multi-way synchronization is represented by a transition with
n input places. This transition can fire only if all its input places contain a
token (cf. Fig. 2). At the PN level, the synchronization operation is achieved
through transition merging. While in untimed Petri nets, the operation of
transitions merging is straightforward, it turns to be a rather tricky issue in
Time Petri nets. Indeed, it requires explicit handling of the time intervals
assigned to the transitions to be merged. Possible incompatibility of these
time intervals leads to express global timing constraints as a conjunction of
intervals whose consistency is not guaranteed. This problem is not solved in
[14] where each transition is assigned a time interval.

To solve this problem and make transitions merging operation always
possible, we avoid assigning time intervals to actions transitions. Instead,
the timing constraints are assigned to conflicting transitions (cf. time lim-
ited offer pattern). The advantage of this solution is twofold:

1) To allow an incremental combination of timing constraints. Fig-
ure 7 depicts synchronization between two components CP and CQ on action
a. Our goal is to define a compositional framework, where each component
involved in this synchronization may add timing constraints with respect to
the occurrence of action a, such that the global timing constraint on a in
CP|[a]|Q will be the conjunction of several simpler constraints. This implies
that when component CP is ready to execute a, it is forced in the absence of
alternative actions, to wait for CQ to offer a. This may lead for example to
the expiration of a limited temporal offer on a in CP. This goal is achieved
without explicitly handling time intervals, and the synchronization is mod-
eled as a straightforward transition merging as in untimed Petri nets.
2) Relaxing the TPN’s strong semantics. In TPNs the firing of tran-
sitions is driven by necessity. Thus an action has to be fired as soon as its

368 T. Sadani et al.

upper bound is reached (except for a transition in conflict with another one).
Like process algebras in general, RT-LOTOS favors an interaction point of
view, where the actual behavior of a system is influenced by its environ-
ment. Thus, an enabled transition may fire within its enabling time window
but it cannot be forced to fire. A wide range of real-time systems work on
that principle. In particular, soft real-time systems are typical examples of
systems that cannot be forced to synchronize with their environment. This
behavior would not be possible if the actions transitions were assigned time
intervals, because their firing would be driven by necessity. To model ne-
cessity in RT-LOTOS we use the hide operator. Its combination with the
’temporal limited offering’ and the ’latency’ operators gives an interesting
flexibility in terms of expressiveness.

The synchronization on a of CP and CQ is achieved by merging each a
transition in CP with each a transition in CQ, thus creating n∗m a transitions
in CP|[a]|Q (n and m being respectively the number of a transitions in CP

and CQ).

Let T a
X be the set of transitions labelled with a in CX.

T a
X = {t ∈ TX LabX(t) = a} T A

X =
⋃
a∈A

T a
X

The net ΣP|[A]|Q is obtained by replacing each transition tp in CP with label
a ∈ A by a set of transitions (tp, tq) such that tq is also labelled by a, with
•(tp, tq) = •tp ∪ •tq and (tp, tq)

• = tp
• ∪ tq

•.
A [0,∞) temporal interval is associated with the newly created transition
(cf. H5).

Note that the two components have to synchronize on exit transition to
conform to RT-LOTOS semantics. The two output interfaces are merged:
Out = {out} if OP �= ∅ ∧OQ �= ∅, Out = ∅ otherwise.
Let us denote merge(tp, tq) = 〈•tp ∪ •tq, ((tp, tq), IS(tp)), tp• ∪ tq

•〉; A′ =
A ∪ {exit}; PreOut = T exit

P × T exit
Q if OP �= ∅ ∧ OQ �= ∅, PreOut = ∅

otherwise.

CP|[A]|Q = 〈ΣP|[A]|Q, LabP|[A]|Q, IP ∪ IQ, Out〉
ΣP|[A]|Q =

(
ΣP\T A’

P \OP

)
�
(
ΣQ\T A’

Q \OQ

)
∪⋃

tp∈T A’
P ,tq∈T A’

Q

merge(tp, tq) ∪ 〈PreOut,Out, ∅〉

LabP|[A]|Q(t) =

{
LabX(t) if t ∈ TX, X ∈ {P, Q}
a if t = (tp, tq) ∧ tp ∈ T a

P

– CP>>Q (Fig. 8) depicts a sequential composition of CP and CQ which means
that if CP successfully completes its execution then it activates CQ. This kind
of composition is possible only if CP has an output interface. The resulting

Mapping RT-LOTOS Specifications into Time Petri Nets 369

component CP>>Q is obtained by merging the output interface of CP and the
input interface of CQ, and by hiding the exit interaction point of CP.

CP>>Q = 〈ΣP>>Q, Labhide exit in P ∪ LabQ, IP, 0Q〉
ΣP>>Q = 〈PP\OP ∪ PQ, Thide exit in P ∪ TQ, P reP ∪ PreQ, PostP>>Q, ISP ∪ ISQ〉
PostP>>Q = (PostP\ {(t, OP) t ∈ •OP}) ∪ {(t, inQ) inQ∈IQ ∧ t∈•OP} ∪PostQ

– CP[]Q (Fig. 9) is the component which behaves either as CP or CQ.
We do not specify whether the choice between the alternatives is made by
the component CP[]Q itself, or by the environment. Anyway, it should be
made at the level of the first actions in the component. In other words, the
occurrence of one of the first actions in either component determines which
component will continue its execution and which one must be deactivated.
The problem can be viewed as a competition between CP and CQ. These
two components compete to execute their first action. As long as the that
action has not yet occurred, CP and CQ age similarly, which means that T ime
transitions (labeled by tv, delay or latency) may occur in both components
without any consequence on the choice of the wining component. Once one
first action has occurred, the control is irreversibly transferred to the winning
component, the other one being deactivated, in the sense that it no longer
contains enabled transitions. The choice operator is known to cause trouble
in presence of initial parallelism. [15] defines a choice operator where each
alternative has just one initial place. Therefore, none of the alternative allows
any initial parallelism. We think that it is a strong restriction. We do not
impose any constraint on the choice alternatives.

The solution we propose to define a choice between two components is
as follows: to obtain the intended behavior, we introduce a set of special
places, called lock places. Those places belong to the input interface of com-
ponent CP[]Q. Their function is to undertake control transfer between the
two components. For each first action of CP we introduce one lock place per
concurrent first action in CQ (for instance a has one concurrent action in
CQ: c, while c has two concurrent actions in CP: a and b) and vice versa. A
lock place interacts only with those transitions representing the set of initial
actions and the time labeled transitions they are related with (delay for a
and tv for b). T ime transitions restore the token in the lock place, since
they do not represent an action occurrence, but a time progression which
has not to interfere with the execution of the other component (as long as
the first action has not occurred, the two components age similarly). The
occurrence of an initial action of CP (respectively CQ) locks the execution of
CQ (respectively CP) by stealing the token from the lock places related to all
CQ’s (respectively CP’s) first actions.

A unique out place is created by merging the out places of CP and CQ.
– CP[>Q (Fig. 10) is the component representing the behavior where component

CP can be interrupted by CQ at any time during its execution. It means that
at any point during the execution of CP, there is a choice between executing
one of the next actions from CP or one of the first actions from CQ. For

370 T. Sadani et al.

Fig. 9. Choice between CP and CQ

CP [>Q

CP CQ

Fig. 10. The disrupt pattern

this purpose, CQ steals the token from the shared place named disrupt
(which belongs to the input interface of CP[>Q), thus the control is irreversibly
transferred from CP to CQ (disrupt is an input place for CQ first action
and exit transition of CP, it is also an input/output place for all the others
transitions of CP). Once an action from CQ is chosen, CQ continues executing,
and transitions of CP are no longer enabled.

4.3 Formal Proof of the Translation Consistency

We prove that the translation preserves the RT-LOTOS semantics and that
the defined compositional framework preserves the good properties (H1–H5) of
the components. This is done by induction: assuming that some components
C1, ..., Cn are respectively equivalent to some RT-LOTOS terms T1, ..., Tn, and
given a RT-LOTOS operator Op, we prove that the pattern applied to C1, ..., Cn

gives a component which is equivalent to the term Op(T1, ..., Tn) (the behavior
over time must be accounted for).

The proof is carried out in two steps:

– we first define a more informative RT-LOTOS semantics, which does not
introduce any new operation, but explicitly acquaints the occurrence of time-
events. A time-event represents the expiration of an RT-LOTOS temporal
operator. As an illustration, let us consider the rule of the limited offering
as it appears in the original semantics of RT-LOTOS. In the following rule,
any delay d′ > d will silently transform a process a{d};P into stop.

a{d};P d′
−→ stop (1)

In the augmented RT-LOTOS semantics, a ”tv” transition is introduced to
denote the limited offer expiration (cf 2).

Mapping RT-LOTOS Specifications into Time Petri Nets 371

a{d};P d−→ a{0};P tv−→ stop
d′−d−−−→ stop (2)

A delay d′ > d is of course still allowed from a{d};P, but it is splited into
three steps: a delay d, a “temporal violation” (tv), and a delay d′ − d.

It is easy to define a branching bisimulation5 which abstracts from the
occurence of the newly added time-event transitions and show that the new
semantics of RT-LOTOS is branching bisimilar to the original semantics of
RT-LOTOS.

– We then prove that the semantic model of the components is strongly timed
bisimilar to this more informative RT-LOTOS semantics. Intuitively an RT-
LOTOS term and a component are timed bisimilar [16] iff they perform the
same action at the same time and reach bisimilar states. For each opera-
tor, we prove that, from each reachable state, if the occurrence of a time
progression (respectively an action) is possible in an RT-LOTOS term, it
is also possible in its associated component, and conversely. Therefore, we
ensure that the translation preserves the sequences of possible actions but
also the occurrence dates of these actions. It is worth to mention that dur-
ing the execution of a component the structure of the encapsulated TPN
remains the same; only the markings are different, while the structure of an
RT-LOTOS term may change through its execution. As a result, the TPN
encapsulated in a component may not directly correspond to an RT-LOTOS
behavior translation but is strongly bisimilar with a TPN which does corre-
spond to an RT-LOTOS expression translation (The same TPN and current
state without the unrechable structure).

Let us illustrate the template of the proof on the parallel synchronization.

Notation. A paragraph starting with R−→ proves that each time progression which
applies to the RT-LOTOS term is acceptable in its associated component. Con-
versely, R←− denotes the opposite proof. Similarly a−→ and a←− are used for the proof
on actions occurrences.

Proof of the synchronization Pattern (Fig. 7)

R−→: A time progression is acceptable in CP|[A]|Q iff it is acceptable for each
enabled transition.
By construction, TP|[A]|Q = (TP\T A’

P)∪ (TQ\T A’
Q)∪E, with E the set of newly

created transitions: E =
⋃

tp∈T A’
P ,tq∈T A’

Q
merge(tp, tq).

Let t be an enabled transition of CP|[A]|Q.
If t is in (TP\T A’

P), by construction this time progression is acceptable for
t since its initial timing constraint in CP has not been changed, and it is not
involved in the synchronization. The same applies if t is in (TQ\T A’

Q).

5 Our temporal branching bisimulation looks like the weak bisimulation of CCS which
abstracts the internal actions. The difference with ours is that the time-event tran-
sitions do not resolve the choice and the disabling contrary to the internal actions
of CCS.

372 T. Sadani et al.

If t is in E, we show that Lab(t) �= exit. Let us assume that Lab(t) =
exit. By construction, it exists tp and tq such that t = (tp, tq) and Lab(tp) =
Lab(tq) = exit. exit is a special urgent action (cf. H5), its execution is
enforced as soon as it is enabled. By construction •t = •tp ∪ •tq: if t is
enabled, then tp is enabled in CP and tq is enabled in CQ. The enabling of
tp and tq precludes any time progression. By induction, it precludes time

progression in P and Q and then in P|[A]|Q (� R−→).
From H5, we have that all non exit transitions in E are associated with a

time interval equal to [0,∞). Therefore, time progression is also acceptable
in CP|[A]|Q.

R←−: The proof is similar to R−→.
a−→: Assuming P|[A]|Q

a−→, is this action acceptable for CP|[A]|Q?
Two cases must be discussed: either action a is a synchronization action
between P and Q (a ∈ A’), or it is not.
Case a∈A’: A synchronization action a is possible in P|[A]|Q iff it is pos-

sible in P and in Q. By induction, it exists transitions tp and tq labelled
by a firable in CP and in CQ.
That is to say, marking •pt ⊆MP, and the same for Q. By construction,
we have •(tp, tq) = •tp ∪ •tq, then the marking MP|[A]|Q enables (tp, tq).
After the firing, the marking of CP|[A]|Q can be seen as the union of the
one of CP’ and CQ’ because (tp, tq)

• = tp
• ∪ tq

•.
Case a/∈A’: If action a occurs in P|[A]|Q it either is an action of P or an

action of Q. By induction hypothesis, it is either a firable transition in
CP or in CQ. Since this transition is not modified in CP|[A]|Q, it is firable
in CP|[A]|Q.

a←−: Similarly to a−→.

5 Tools and Experiments

5.1 Tools

RTL. The Real-Time LOTOS Laboratory developed by LAAS-CNRS [17], takes
as input an RT-LOTOS specification and generates either a simulation trace or
a reachability graph. RTL generates a minimal reachability graph preserving the
CTL6 properties.

TINA. (TIme petri Net Analyzer [3]) is a software environment to edit and
analyze Petri nets and Time Petri nets.

TINA offers various abstract state space constructions that preserve specific
classes of properties of the concrete state space of the nets. Those classes of
properties include general properties (reachability properties, deadlock freeness,
liveness), and specific properties.

6 Computational Tree Logic.

Mapping RT-LOTOS Specifications into Time Petri Nets 373

Fig. 11. RT-LOTOS specification of the Multimedia scenario

RTL2TPN. is a translator prototype, which implements the translation pattern
of Sect. 4. It takes as an input an RT-LOTOS specification and outputs a TPN in
the format accepted by TINA. RTL2TPN reuses RTL’s parser and type-checker.

5.2 Case Studies

Multimedia scenario. The author of this multimedia scenario wants to present
3 medias named A, B and C, respectively. The duration of these medias are
respectively defined by the following time intervals [3,6], [3,5] and [3,8]. This
means that the presentation of the media A will last at least 3 sec and at most
6 sec. From the author’s point of view, any duration of the media presentation
is acceptable, as long as it belongs to the specified time interval. Besides, the
author expresses the following global synchronization constraints:

1) The presentation of medias A and B must end simultaneously.
2) The presentation of medias B and C must start simultaneously .
3) The beginning of the multimedia scenario is determined by the beginning

of A and its termination is determined by the end of A and B, or by the end of
C (cf Fig. 12(a)).

(a) The MM constraints .44

(b) The component

374 T. Sadani et al.

Fig. 12(b) depicts the associated TPN generated by RTL2TPN. For this ex-
ample TINA builds a graph of 230 classes and 598 transitions.

The scenario is potentially consistent because it exists a path starting by
action sA (sA characterizes the beginning of the scenario) and leading to the
end of scenario presentation (occurrence of either eAB or eC).

Dinning philosophers. We use one well known multi-process synchronization
problem: the Dinning philosophers to check the robustness of the solutions pro-
posed in the paper while facing a state explosion situation. We propose a timed
extension of the problem which goes like this: A certain number of philosophers,
sitting around a round table spend their lives thinking and eating. Each of them
has in front of him a bowl of rice. Between each philosopher and his neighbor is
a chopstick. Each philosopher thinks for a while, then gets hungry and wants to
eat. In order to eat, he has to get two chopsticks. Once a philosopher picks his
left chopstick, it will take him between 0 and 10 seconds to take the right one.
Once he possesses two chopsticks, he can begin eating and it will take him 10
to 1000 seconds7 to finish eating, then he puts back down his left chopstick and
the right one in a delay between 0 to 10 seconds.

Fig. 12. RT-LOTOS specification of the dinning philosophers

The RT-LOTOS specification of the problem consists in the parallel syn-
chronization of different instances of processes Philosopher and Chopstick8 (cf
Fig 12).

Timed Milner scheduler. This is a temporal extension of Milner’s scheduler prob-
lem [18]. The interesting point about this example is that the timing constraints
as introduced in the system, do not increase the state space (compared to the
untimed version of the problem). However they complicate the computation of
the system’s state space.

Let us consider a ring of n process called Cyclers. A Cycler should cycle end-
lessly as follows: (i) Be enabled by predecessor at gi, (ii) after a non deterministic
delay between 0 and 10 units of time, receive initiation request at ai, (iii) af-
ter a certain amount of time between 10 and 100 units of time, it receives a
termination signal at bi and enables its successor at gi+1(in either order).
7 delay and latency may be expressed together by a single syntactic construct de-

lay(dmin, dmax)meaning delay(dmin)latency(dmax-dmin).
8 All the experiments described in this paper have been performed on a PC with 512

Mo memory and a processor at 3.2 GHz.

Mapping RT-LOTOS Specifications into Time Petri Nets 375

Fig. 13. RT-LOTOS specification of the timed Milner scheduler

Table 1. Performance comparison of RTL2TPN+TINA vs RTL

The reachability algorithm implemented in RTL is exponential in number of
clocks. As the number of philosophers (respectively Cyclers) grows RTL does
not challenge TINA’s runtime performances. However the size of state space
generated by RTL for the RT-LOTOS specifications is more compact than the
one generated by TINA for the associated TPNs issued by RTL2TPN. This is due
to a useful but however expensive minimization procedure carried out in RTL.
This minimization adapted from [19] permits to consider regions larger than the
ones required from a strict reachability point of view, thereby minimizing the
number of regions.

6 Related Work

Much work has been done on translating process algebras into Petri Nets, by
giving a Petri net semantics to process terms [20,15,21]. [21] suggests that a
good net semantics should satisfy the retrievability principle, meaning that no
new ”auxiliary” transitions should be introduced in the reachability graph of
the Petri net. [20,15] do not satisfy this criterion. In this paper, we define a
one-to-one mapping which is compliant with this strong recommendation.

376 T. Sadani et al.

Untimed models. A survey of the literature indicates that proposals for LOTOS
to Petri net translations essentially deal with the untimed version of LOTOS
[22,23,24,25,26,27]. The opposite translation has been discussed by [26] where
only a subset of LOTOS is considered, and by [28] where the authors addressed
the translation of Petri nets with inhibitor arcs into basic LOTOS by mapping
places and transitions into LOTOS expressions. [25] demonstrated the possibility
to verify LOTOS specifications using verification techniques developed for Petri
nets by implementing a Karp and Miller procedure in the LOTOS world.

Among all these approaches, [22,27] is the only one operating a complete
translation of LOTOS (it handles both the control and data parts of LOTOS).
Moreover, it just considers regular LOTOS terms, and so do we. The LOTOS
to PN translation algorithms of [22,27] were implemented in the CAESAR tool.
Besides the temporal aspects addressed in this paper, a technical difference with
[22,27] lies in the way we structure TPNs. Our solution is based on TPNs com-
ponents. In our approach, a component may contain several tokens. Conversely,
[22,27] structures Petri nets into units, each of them containing one token at
most. This invariant limits the size of markings, and permits optimizations on
memory consumption. The counterpart is that [22,27] use ε-transitions. The
latter introduces non determinism. They are eliminated when the underlying
automaton is generated (by transitive closure). The use of ε-transitions may be
inefficient in some particular cases, such as the example provided in [29].

The major theoretical study on taking advantage of both Petri nets and pro-
cess algebras is presented in [12]. The proposed solution is Petri Box Calculus
(PBC), a generic model that embodies both process algebra and Petri nets. The
authors start from Petri nets to come up with a CCS-like process algebra whose
operators may straightforwardly be expressed by means of Petri nets.

Timed models. [30] pioneered work on timed enhancements of the control part of
LOTOS inspired by timed Petri nets models. [31] defined a mapping from TPNs
to TE-LOTOS which makes it possible to incorporate basic blocks specified as
1-bounded TPNs into TE-LOTOS specifications. However, because of the strong
time semantics of TPNs (a transition is fired as soon as the upper bound of its
time interval is reached unless it conflicts with another one) a direct mapping
was not always possible.

A Timed extension of PBC has been proposed in [14]. Although the compo-
nent model proposed in this paper is not a specification model but an intermedi-
ate model used as gateway between RT-LOTOS and TPNs, we find it important
to compare our work with [14].

Of prime interest to us is the way [14] introduces temporal constraints in his
framework by providing each action with two time bounds representing the earli-
est firing time and latest firing time. This approach is directly inspired by TPNs,
where the firing of actions is driven by necessity. However, a well known issue
with this strategy is that it is badly compatible with a compositional and in-
cremental building of specifications. The main difficulty is to compose time in-
tervals when dealing with actions synchronization. The operational semantics of

Mapping RT-LOTOS Specifications into Time Petri Nets 377

[14] relies on intervals intersection to calculate a unique time interval for a syn-
chronized transition. However, this approach is not always satisfactory(see [13]).

7 Conclusion

Search for efficiency in RT-LOTOS specification verification is the main moti-
vation behind the work presented in this paper. We propose a transformational
approach between RT-LOTOS, which is a compositional FDT, and Time Petri
Nets, which are not. The semantics of the two FDTS are compared. In order
to bridge the gap between RT-LOTOS and TPNs, the latter are embedded into
components that may be composed. RT-LOTOS-to-TPN translation patterns
are defined in order to match the RT-LOTOS composition operators. The trans-
lation has been formally proved to be semantics preserving. The patterns have
been implemented in a prototype tool which takes as input an RT-LOTOS spec-
ification and outputs a TPN in a format that may be processed by TINA [3].
The benchmarks provided in Section 6 demonstrate the interest of the proposed
approach.

One major contribution of the paper is to give RT-LOTOS an underlying
semantics expressed in terms of TPNS and to clarify the use of RT-LOTOS
operators, in particular the latency operator. Discussion in this paper is never-
theless limited to the control part of the RT-LOTOS FDT defined in [2]. We
have recently extended our work to the data part of RT-LOTOS. RT-LOTOS
specifications will be translated into the new format supported by TINA: Pred-
icates/Actions Time Petri nets. The latter enhance the modelling capabilities
of TPNs with global variables associated with the nets together with predicates
and actions associated with transitions.

The verification approach developed for RT-LOTOS is being adapted to TUR-
TLE, a real-time UML profile based on RT-LOTOS. We thus expect to develop
an interface between the TURTLE toolkit [32] and TINA.

References

1. ISO - Information processing systems - Open Systems Interconnection: LOTOS
- a formal description technique based on the temporal ordering of observational
behaviour. ISO International Standard 8807:1989, ISO (1989)

2. Courtiat, J.P., Santos, C., Lohr, C., Outtaj, B.: Experience with RT-LOTOS, a
temporal extension of the LOTOS formal description technique. Computer Com-
munications 23(12) (2000)

3. Berthomieu, B., Ribet, P., Vernadat, F.: The TINA tool: Construction of abstract
state space for Petri nets and time Petri nets. Int. Journal of Production Research
42(14) (2004)

4. Milner, R.: Communications and Concurrency. Prentice Hall (1989)
5. Hoare, C.: Communicating Sequential Processes. Prentice-Hall (1985)
6. Courtiat, J.P.: Formal design of interactive multimedia documents. In H.Konig,

M.Heiner, A., ed.: Proc. of 23rd IFIP WG 6.1 Int Conf on Formal Techniques for
Networked and distributed systems (FORTE’2003). Volume 2767 of LNCS. (2003)

378 T. Sadani et al.

7. Courtiat, J.P., de Oliveira, R.: On RT-LOTOS and its application to the formal
design of multimedia protocols. Annals of Telecommunications 50(11–12) (1995)
888–906

8. Merlin, P.: A study of the recoverability of computer system. PhD thesis, Dep.
Comput. Sci., Univ. California, Irvine (1974)

9. Merlin, P., Faber, D.J.: Recoverability of communication protocols. IEEE Trans-
actions on Communications COM-24(9) (1976)

10. Berthomieu, B., Menasche, M.: Une approche par énumération pour l’analyse des
réseaux de Petri temporels. In: Actes de la conférence IFIP’83. (1983) 71–77

11. Berthomieu, B., Diaz, M.: Modeling and verification of time dependant systems
using Time Petri Nets. IEEE Transactions on Software Engineering 17(3) (1991)

12. Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. Monographs in Theoretical
Computer Science: An EATCS Series. Springer-Verlag (2001) ISBN: 3-540-67398-9.

13. Sadani, T., Boyer, M., de Saqui-Sannes, P., Courtiat, J.P.: Effective representation
of regular RT-LOTOS terms by finite time petri nets. Technical Report 05605,
LAAS/CNRS (2006)

14. Koutny, M.: A compositional model of time Petri nets. In: Proc. of the 21st Int.
Conf. on Application and Theory of Petri Nets (ICATPN 2000). Number 1825 in
LNCS, Aarhus, Denmark, Springer-Verlag (2000) 303–322

15. Taubner, D.: Finite Representations of CCS and TCSP Programs by Automata
and Petri Nets. Number 369 in LNCS. Springer-Verlag (1989)

16. Yi, W.: Real-time behaviour of asynchronous agents. In: Proc. of Int. Conf on
Theories of Concurrency: Unification and Extension (CONCUR). Volume 458 of
LNCS. (1990)

17. RT-LOTOS: Real-time LOTOS home page. (http://www.laas.fr/RT-LOTOS/)
18. Milner, R.: A calculus of communication systems. Volume 92 of LNCS. (1980)
19. Yannakakis, M., Lee, D.: An efficient algorithm for minimizing real-time transition

system. In: Proc. of f the Conf. on Computer-Aided Verification (CAV). Volume
697 of LNCS., Berlin (1993)

20. Goltz, U.: On representing CCS programs by finite Petri nets. In: Proc. of Int.
Conf. on Math. Foundations of Computer Science. Volume 324 of LNCS. (1988)

21. Olderog, E.R.: Nets, Terms, and formulas. Cambridge University Press (1991)
22. Garavel, H., Sifakis, J.: Compilation and verification of LOTOS specifications.

In Logrippo, L., et al., eds.: Protocol Specification, Testing and Verification, X.
Proceedings of the IFIP WG 6.1 Tenth International Symposium, 1990, Ottawa,
Ont., Canada, Amsterdam, Netherlands, North-Holland (1990) 379–394

23. Barbeau, M., von Bochmann, G.: Verification of LOTOS specifications: A Petri
net based approach. In: Proc. of Canadian Conf. on Electrical and Computer
Engineering. (1990)

24. Larrabeiti, D., Quelmada, J., Pavón, S.: From LOTOS to Petri nets through expan-
sion. In Gotzhein, R., Bredereke, J., eds.: Proc. of Int. Conf. on Formal Description
Techniques and Theory, application and tools (FORTE/PSV’96). (1996)

25. Barbeau, M., von Bochmann, G.: Extension of the Karp and Miller procedure to
LOTOS specifications. Discrete Mathematics and Theoretical Computer Science
3 (1991) 103–119

26. Barbeau, M., von Bochmann, G.: A subset of LOTOS with the computational
power of place/transition-nets. In: Proc. of the 14th Int. Conf. on Application and
Theory of Petri Nets (ICATPN). Volume 691 of LNCS. (1993)

27. Garavel, H., Lang, F., Mateescu, R.: An overview of cadp 2001. European Asso-
ciation for software science and technology (EASST) Newsletter 4 (2002)

Mapping RT-LOTOS Specifications into Time Petri Nets 379

28. Sisto, R., Valenzano, A.: Mapping Petri nets with inhibitor arcs onto basic LOTOS
behavior expressions. IEEE Transactions on computers 44(12) (1995) 1361–1370

29. Sadani, T., Courtiat, J., de Saqui-Sannes, P.: From RT-LOTOS to time Petri nets.
new foundations for a verification platform. In: Proc. of 3rd IEEE Int Conf on
Software Engineering and Formal Methods (SEFM). (2005)

30. Bolognesi, T., Lucidi, F., Trigila, S.: From timed Petri nets to timed LOTOS.
In: Protocol Specification, Testing and Verification X (PSTV), Proceedings of the
IFIP WG6.1 Tenth International Symposium on Protocol. (1990) 395–408

31. Durante, L., Sisto, R., Valenzano, A.: Integration of time Petri net and TE-LOTOS
in the design and evaluation of factory communication systems. In: Proc. of the
2nd IEEE Workshop on Factory Communications Systems (WFCS’97). (1997)

32. Apvrille, L., Courtiat, J.P., Lohr, C., de Saqui-Sannes, P.: TURTLE : A real-
time UML profile supported by a formal validation toolkit. IEEE Transactions on
Software Engineering 30(4) (2004)

Reasoning Algebraically About
Probabilistic Loops

Larissa Meinicke and Ian J. Hayes

School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, Australia

Abstract. Back and von Wright have developed algebraic laws for rea-
soning about loops in the refinement calculus. We extend their work to
reasoning about probabilistic loops in the probabilistic refinement cal-
culus. We apply our algebraic reasoning to derive transformation rules
for probabilistic action systems. In particular we focus on developing
data refinement rules for probabilistic action systems. Our extension is
interesting since some well known transformation rules that are appli-
cable to standard programs are not applicable to probabilistic ones: we
identify some of these important differences and we develop alternative
rules where possible. In particular, our probabilistic action system data
refinement rules are new.

1 Introduction

Back and von Wright [5] have used algebraic rules from fixpoint theory to de-
rive transformation rules for loop constructs in the refinement calculus [2,15].
Such transformation rules may be used to reason about practical program deriva-
tions, such as data refinement and atomicity refinement of action systems. These
practical program derivations were traditionally verified using either informal or
semantic arguments [5]. The algebraic approach has advantages over these meth-
ods because it can be used to construct simpler proofs that are easier to check.
Here we extend the work of Back and von Wright to develop transformation
rules for loop constructs in the probabilistic refinement calculus [13], and we
demonstrate how these rules may be used to generate data refinement rules for
probabilistic action systems. Many of the transformation rules that are presented
here are the same as those for standard (non-probabilistic) programs, however
some of them are not, in particular our data refinement rules for probabilistic
action systems are new. Others (for example McIver and Morgan [13] and Hurd
[11]) have demonstrated how to reason formally about probabilistic loops, us-
ing invariant based techniques, directly in probabilistic program semantics. Our
work on reasoning algebraically about loop transformations may be seen as a
complement to theirs, and vice versa.

In the standard refinement calculus [2], sequential imperative programs that
may include angelic and demonic nondeterminism are represented using predicate
transformers. The probabilistic refinement calculus [13] is a generalisaton of the
refinement calculus, in which programs may also include discrete probabilistic

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 380–399, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Reasoning Algebraically About Probabilistic Loops 381

choice. Probabilistic programs are modeled using expectation transformers. Stan-
dard programs that may include demonic, but not angelic nondeterminism, are
characterised by the conjunctive predicate transformers. Likewise the property
that characterises probabilistic programs that may include discrete probabilistic
choice and demonic, but not angelic nondeterminism, is sublinearity. We find that
some well known algebraic laws that apply to conjunctive predicate transform-
ers, do not in general apply to sublinear expectation transformers. We identify
some of these important rules and supply alternative ones where possible.

In the following section we briefly describe the expectation transformer model
of Morgan and McIver [13] for probabilistic programs. We extend this model
so that miraculous programs can be expressed, and we verify that sublinear ex-
pectation transformers are cocontinuous. In Sect. 3 the iteration constructs are
introduced, and algebraic properties of these constructs are presented and veri-
fied. Probabilistic action systems are introduced in Sect. 4, and algebraic rules
are constructed to reason about them: in particular we focus on data refinement
rules.

2 Expectation Transformers as Program Statements

Standard (non-probabilistic) imperative programs may be described using a
weakest precondition semantics [9], similarly imperative probabilistic programs
in which discrete probabilistic choices as well as angelic and demonic nondeter-
ministic choices may be made, may be described using the weakest expectation
semantics of McIver and Morgan [13]. We assume that the reader is familiar
with such semantics and the basic notions of probabilistic program refinement,
as well as the predicate transformer semantics of standard (non-probabilistic
programs). We briefly describe the notion of states, expectations and expecta-
tion transformers that are used in this paper. Note that we have extended the
work of McIver and Morgan to deal with miraculous programs so that we may
express guards. This extension is conservative: we explain the minor differences
in the model.

2.1 Expectation Transformers

In order to simplify our reasoning we assume that we are only dealing with pro-
grams over finite state spaces1. An expectation on a state space Σ is a function
from Σ to R∞

≥0, where R∞
≥0 is defined as R≥0 ∪{∞}. (McIver and Morgan define

expectations to be functions from states to the positive real numbers (excluding
infinity) [13]. We extend this to include infinity so that we may model miraculous
programs.)

Fig. 1 formally defines the set of expectations, and operators that are defined
on them. Expectations are ordered with respect to the ≤ operator. Predicates,
1 McIver and Morgan have extended their work on expectation transformer semantics

to deal with infinite state spaces [13]. Our finite state space assumption mainly
influences our proof of cocontinuity, which we believe will be able to be verified
using a more complex proof for infinite state spaces.

382 L. Meinicke and I.J. Hayes

Let φ and ψ be of type EΣ, c be a constant of type R≥0. When applied to real numbers,
� is the minimum operator (meet), � is the maximum operator (join), and × denotes
multiplication.
EΣ Σ → R∞

≥0
φ ≤ ψ ∀ σ : Σ • φ.σ ≤ ψ.σ
φ× ψ λσ : Σ • φ.σ × ψ.σ
φ � ψ λσ : Σ • φ.σ � ψ.σ
φ � ψ λσ : Σ • φ.σ � ψ.σ
φ ∗ c λσ : Σ • φ.σ × c
φ c λσ : Σ • (φ.σ − c) � 0
¬φ λσ : Σ • 1− φ.σ

Fig. 1. Expectation notation

Σ → {0, 1}, are a subset of expectations: we equate the boolean value true with
1 and false with 0. Predicate True is defined as (λσ • 1), and False is defined as
(λσ • 0). For predicates we use the operator ∧ to mean �, and ∨ to mean �.
The set of all expectations forms a complete lattice, where the top expectation
is (λ σ •∞), and the least expectation is False.

Expectation transformers are used to model probabilistic programs [13]. An
expectation transformer is a function from expectations on the output state
space, Γ , to expectations on the input state space, Σ. Expectation transformers
are the probabilistic equivalent of predicate transformers in the refinement cal-
culus [2]: given an expectation transformer S and an expectation φ on the output
state space, S .φ returns the weakest expectation of φ in program S . Refinement
between two expectation transformers S ,T : EΓ → EΣ is defined as follows.

S � T � ∀φ : EΓ • S .φ ≤ T .φ

The set of all expectation transformers forms a complete lattice, where the top
element is magic, and the least element is abort (see Fig. 2).

Basic Operators. The four basic composition operators: probabilistic, de-
monic, and angelic choice, and sequential composition, are shown in Fig. 2. The
iteration operators, which are discussed in Sect. 3, have the highest precedence,
followed by sequential composition, and then with equal precedence demonic,
angelic, and probabilistic choice. From initial state σ, the probabilistic choice
statement S p⊕ S ′, performs S with probability p.σ, and S ′ with probability
1 − p.σ. The demonic choice operator on expectation transformers is defined
using the meet (pointwise minimum) operator, while the angelic choice operator
is defined using the join (pointwise maximum) operator. Given the definition of
refinement between expectation transformers, a demonic choice, S�S ′, is able to
be refined by any probabilistic choice between S and S ′. The unit of sequential
composition is skip, the program that does not modify the state, and the unit
of demonic choice is magic. For predicate g, the assertion command {g} aborts
from states in which g does not hold and performs no action from states satisfy-
ing g, while the guard [g] is miraculous from states which do not satisfy g, and

Reasoning Algebraically About Probabilistic Loops 383

Let g be a predicate on state space Σ; θ and φ be expectations of type EΣ; ψ be
an expectation of type EΓ ; S and S ′ be expectation transformers of type EΓ → EΣ;
R : EΘ → EΣ; R′ : EΓ → EΘ; T : EΣ → EΣ; and p a probability function of type
Σ → [0..1], where [0..1] is the closed interval from 0 to 1.
assertion {θ}.φ λ σ : Σ • if θ.σ = 0 then 0 else θ.σ × φ.σ
guard [g].φ λ σ : Σ • if g .σ then φ.σ else ∞
bottom abort.φ False
top magic.φ (λσ : Σ • ∞)
unit of composition skip.φ φ
sequential composition (R; R′).ψ R.(R′.ψ)
demonic choice (S � S ′).ψ S .ψ � S ′.ψ
angelic choice (S � S ′).ψ S .ψ � S ′.ψ
probabilistic choice (S p⊕ S ′).ψ ({p}; S).ψ + ({¬p}; S ′).ψ
strong iteration (Tω).φ (µX • T ; X � skip).φ)
weak iteration (T ∗).φ (νX • T ; X � skip).φ
infinite iteration (T∞).φ (µX • T ; X).φ

Fig. 2. Weakest expectation semantics for probabilistic operators

performs no action from other states. The assertion command is also defined
more generally when g is an expectation. Note that in this program model, we
have chosen to model miraculous program behaviour in such a way that, for any
expectation transformer S , program S p⊕magic is miraculous for states σ from
which p.σ does not equal one. This may seem to be restrictive, and there are
other ways to model miraculous behaviour in probabilistic programs in which
we are able to distinguish between programs that are miraculous with certain
probabilities. It would be interesting to perform a further investigation into such
models, however, for the purpose of reasoning about loops and action systems,
we find that we do not need such a richer semantics. We must also take care
when using such models, since they are unlikely to share the same properties as
our current model.

When predicates are used, guards and assertions satisfy many of the same
basic properties as they satisfy in the standard refinement calculus [5]. For pred-
icates p, and q,

[p]; [q] = [p ∧ q] {p}; {q} = {p ∧ q}
[p] � [q] = [p ∨ q] {p} � {q} = {p ∧ q}
[p] = [p]; {p} {p} = {p}; [p]
skip � [p] {p} � skip
{p} = [¬p]; abort � [p] [p] = {¬p}; magic � {p}

Healthiness Properties. As for predicate transformers, expectation trans-
formers can be classified by a number of healthiness properties [13] (Fig. 3).
Primarily we consider sublinear expectation transformers. The sublinear set of
expectation transformers characterise the set of probabilistic programs that may

384 L. Meinicke and I.J. Hayes

Let S be an expectation transformer, c1, c2, and c be constants of type R≥0, β1 and
β2 be expectations, B be a directed set of expectations, and B′ be a co-directed set of
expectations.

(c1 ∗ S .(β1) + c2 ∗ S .(β2)) c ≤ S .((c1 ∗ β1 + c2 ∗ β2) c) (sublinearity)

S .φ � S .ψ = S .(φ � ψ) (conjunctivity)

β1 ≤ β2 ⇒ S .β1 ≤ S .β2 (monotonicity)

S .(�β : B • β) = (�β : B • S .β) (continuity)

S .(�β : B′ • β) = (�β : B′ • S .β) (cocontinuity)

Fig. 3. Healthiness properties for expectation transformers

be expressed using a slight variation2 of the relational probabilistic model of He
et al. [10]: a model that captures probabilistic and demonic nondeterministic
behaviour, but not angelic nondeterministic behaviour. The operators given in
Fig. 2, apart from angelic choice, preserve sublinearity of their arguments. Stan-
dard (non-probabilistic) programs with demonic choice, but no angelic choice,
are characterised by the set of conjunctive predicate transformers. We have that
not all sublinear expectation transformers are conjunctive.

McIver and Morgan [13] have proved that sublinear expectation transformers
are monotonic, here we prove that they are also cocontinuous. Continuity and
cocontinuity are important properties because they simplify the treatment of
least and greatest fixpoints over a complete lattice. Their definition involves the
use of directed, and codirected sets, which are defined as follows [8]. For any
subset B of a partially ordered set A,

directed .B � B �= {} ∧ (∀α, β : B • (∃ γ : B • α (γ ∧ β (γ))
codirected .B � B �= {} ∧ (∀α, β : B • (∃ γ : B • γ (α ∧ γ (β))

A codirected set is the dual of a directed set, and cocontinuity is the dual of
continuity. Our proof of cocontinuity is similar to McIver and Morgan’s proof of
bounded continuity [13].

Theorem 1 (cocontinuity). Sublinear expectation transformers are cocontin-
uous.
2 The original semantics of He et al. did not facilitate the expression of magical be-

haviour: programs were expressed as a function from input states to non-empty sets
of discrete distributions over the output states that satisfy certain closure properties
(see [13] for more details). In order to express magical behaviour, we simply remove
the assumption that the sets of distributions must be non-empty. McIver and Morgan
expressed and verified the correspondence between non-miraculous sublinear expec-
tation transformers and the original model of He et al. [13]. For our minor extension,
the same correspondence and proof used by McIver and Morgan still applies.

Reasoning Algebraically About Probabilistic Loops 385

Proof. For any sublinear expectation transformer T : EΣ → EΓ , and B a
≤-codirected subset of EΣ, we are required to show that

T .(�β : B • β) = (�β : B • T .β)

By monotonicity of expectation transformers we only need to show that
T .(�β : B • β) ≥ (�β : B • T .β).

For any constant c > 0, for each state σ : Σ, there exists an expectation βσ : B
such that βσ.σ 3 c ≤ (�β : B • β).σ. Since B is codirected, and the state space
Σ is finite we then have that there exists a βc : B such that for all σ : Σ,
βc.σ ≤ βσ.σ, and hence βc 3 c ≤ (�β : B • β). We then have that

T .(�β : B • β)
≥ {monotonicity and the above}

T .(βc c)
≥ {sublinearity}

T .βc c
≥ {βc ∈ B and monotonicity}

(�β : B • T .β) c

Which suffices because c may be arbitrarily close to zero. �

Basic Algebraic Properties. Monotonic expectation transformers share the
same set of basic algebraic rules as monotonic predicate transformers [19] (Fig. 4).
However, unlike conjunctive predicate transformers, in general sublinear expecta-
tion transformers satisfy right sub-distributivity R; (S �T) (R; S �R; T , but
not right distributivity R; (S � T) = R; S � R; T . For example, given

R � (x := 0 1
2
⊕ x := 1)

S � [x = 0]; y := 0 � [x = 1]; y := 1
T � [x = 0]; y := 1 � [x = 1]; y := 0

Then,

R; (S � T) = (x := 0 1
2
⊕ x := 1); (y := 0 � y := 1)

R; S � R; T = (x , y := 0, 0 1
2
⊕ x , y := 1, 1) � (x , y := 0, 1 1

2
⊕ x , y := 1, 0)

In program R; S � R; T we have that y is chosen to be 0 with probability
1
2 , and 1 with probability 1

2 , whereas in R; (S � T), y is not guaranteed to
be assigned 0 with probability 1

2 , nor is it guaranteed to be assigned 1 with
probability 1

2 : the value of y may be chosen nondeterministically.

3 Iteration Constructs

We use the same iteration constructs for probabilistic programs as those that are
used for standard programs [5,2]. These constructs are expressed using fixpoints,
and may be reasoned about using the usual fixpoint theory [8,5,2].

386 L. Meinicke and I.J. Hayes

R; (S ; T) = (R; S); T (associativity)

skip; S = S and S ; skip = S (unit)

R � (S � T) = (R � S) � T (associativity)

magic � S = S (unit)

R � S = S � R (commutativity)

R � R = R (idempotence)

(R � S); T = R; T � S ; T (left distributivity)

R; (S � T) � R; S � R; T (right sub-distributivity)

magic; R = magic (preemption)

abort; R = abort (preemption)

Fig. 4. Basic algebraic properties of monotonic expectation transformers

Lemma 2 (Knaster-Tarski). Every monotonic function on a complete lattice
has a complete lattice of fixpoints.

Recall from earlier that because we have introduced the ability to express mirac-
ulous behaviour in probabilistic programs, we have that the set of probabilistic
programs forms a complete lattice. The least, µ, and greatest, ν, fixpoint oper-
ators satisfy the following induction and unfolding properties.

f .(µ .f) = µ .f and f .(ν.f) = ν.f (unfolding)

f .x � x ⇒ µ .f � x and x � f .x ⇒ x � ν.f (induction)

We also use the rolling rules for fixpoints [5].

Lemma 3 (rolling). Given monotonic functions f and g on a complete lattice,

f .(µ .(g ◦ f)) = µ .(f ◦ g) and f .(ν.(g ◦ f)) = ν.(f ◦ g)

The following fusion lemma [2] (attributed to Kleene) is used.

Lemma 4 (fusion). Let f and g be monotonic functions on complete lattices
Σ and Γ . If h : Σ → Γ is continuous, then

if h ◦ f � g ◦ h, then h.(µ .f) � µ .g
if h ◦ f = g ◦ h, then h.(µ .f) = µ .g

And if h : Σ → Γ is cocontinuous, then

if h ◦ f � g ◦ h, then h.(ν.f) � ν.g
if h ◦ f = g ◦ h, then h.(ν.f) = ν.g

The following lemma can be used to simplify reasoning about fixpoints over
continuous and cocontinuous functions on a complete lattice [8].

Reasoning Algebraically About Probabilistic Loops 387

Lemma 5. The greatest fixed point of a cocontinuous function, f , on a complete
lattice is the colimit

ν.f = (�i : N • f i .#)

where � is the top element of the complete lattice and f 0.x � x , and f i+1.x =
f .(f i .x). And the least fixed point of the continuous function f on a complete
lattice is the limit

µ .f = (�i : N • f i .⊥)

where ⊥ is the bottom element of the complete lattice.

3.1 Iteration Operators

The iteration operators are given in Fig. 2. Informally, T ∗ executes T any finite
number of times, T∞ executes T an infinite number of times, and Tω executes
T any infinite or finite number of times. From the definition of our iteration op-
erators, and the induction and unfolding properties of fixpoints we immediately
get the usual unfolding and induction rules:

Rω = R; Rω � skip (unfold strong iteration)

R∗ = R; R∗ � skip (unfold weak iteration)

R∞ = R; R∞ (unfold infinite iteration)

R; X � skip � X ⇒ Rω � X (strong iteration induction)

X � R; X � skip ⇒ X � R∗ (weak iteration induction)

R; X � X ⇒ R∞ � X (infinite iteration induction)

For conjunctive expectation transformer R, R∗ satisfies the Kleene axioms of
Kozen [12] and Cohen [6], in particular,

R∗ = (�i : N • Ri)

But this equivalence does not hold in general for sublinear expectation trans-
formers. Instead the definition of weak iteration satisfies the following alternative
theorem.

Theorem 6 (Kleene star equivalence). Let R be a sublinear expectation
transformer, and R0 � skip and Ri+1 � R; Ri for i ∈ N, then

R∗ = �i : N • (R � skip)i

Proof. Before verifying our statement we prove four lemmas. The first lemma
is used in the verification of lemmas two and three, and the second and third
lemmas are used to verify the fourth.

1. ∀ i : N • R; (R � skip)i � skip = (R � skip)i+1

(a) Base case: i = 0
R; (R � skip)0 � skip

= {definition}
R; skip � skip

= {skip is unit}
(R � skip)1

388 L. Meinicke and I.J. Hayes

(b) Inductive case: assume R; (R � skip)i � skip = (R � skip)i+1

(R � skip)i+2

= {definition}
(R � skip); (R � skip)i+1

= {left distributivity}
R; (R � skip)i+1 � skip; (R � skip)i+1

= {inductive assumption}
R; (R � skip)i+1 � R; (R � skip)i � skip

= {by monotonicity, (R � skip)i+1 � (R � skip)i

and from basic lattice properties we have that x � y ⇒ x � y = x}
R; (R � skip)i+1 � skip

2. ∀ i : N • (λX • R; X � skip)i+1.magic � (R � skip)i

(a) Base case: i = 0
(λX • R; X � skip)0+1.magic

= {function application}
R; magic � skip

� {general lattice rule x � y � x}
skip

= {definition}
(R � skip)0

(b) Inductive case: assume (λX •R; X � skip)i+1.magic � (R � skip)i

(λX • R; X � skip)i+2.magic
= {definition}

(λX • R; X � skip).((λX • R; X � skip)i+1.magic)
� {inductive assumption and monotonicity}

(λX • R; X � skip).(R � skip)i

= {function application}
R; (R � skip)i � skip

= {By 1.}
(R � skip)i+1

3. ∀ i : N • (R � skip)i � (λX • R; X � skip)i .magic

(a) Base case: i = 0
(R � skip)0

� {magic is top element}
magic

= {definition}
(λX • R; X � skip)0.magic

(b) Inductive case: assume (R � skip)i � (λX •R; X � skip)i .magic
(λX • R; X � skip)i+1.magic

= {definition}
(λX • R; X � skip).((λX • R; X � skip)i .magic)

% {inductive assumption and monotonicity}
(λX • R; X � skip).(R � skip)i

= {function application}
R; (R � skip)i � skip

= {By 1.}
(R � skip)i+1

Reasoning Algebraically About Probabilistic Loops 389

4. �i : N • (λX •R; X � skip)i .magic = �i : N • (R � skip)i

For any monotonic function f we have that, �i : N • f i .# = �i : N • f i+1.#, hence
from 2 we have that �i : N • (λX •R; X � skip)i .magic � �i : N • (R � skip)i . The
other direction follows from 3.

We have that function (λX •R; X �skip) is cocontinuous because from Theorem
1 we have that function (λX •R; X) is cocontinuous. As a result, the following
derivation proves our goal:

(νX •R; X � skip)
= {cocontinuity of (λX •R; X � skip), and Lemma 5}
�i : N • (λX • R; X � skip)i .magic

= {By 4.}
�i : N • (R � skip)i �

Note that for conjunctive R, (�i : N • Ri) = (�i : N • (R � skip)i). For con-
junctive predicate transformers we can decompose Rω into its terminating (R∗)
and nonterminating (R∞) behaviours: that is we have that Rω = R∗ �R∞. For
sublinear expectation transformers this is, in general, not the case. The main
reason for this difference is that, from a particular initial state, a standard pro-
gram may either exhibit non-terminating behaviour (that is it may abort) or it
may behave miraculously, or it may terminate in a set of states. A probabilis-
tic program may exhibit some probabilistic distribution of these behaviours: for
example it may not terminate (abort) with probability a half, and it may pro-
duce some distribution of states with the other half. Because of this, we cannot
trivially separate out the strong iteration operator into its finite and infinite
behaviours. For example, take R = [x = 1] � [x = 0]; (x := 1 1

2
⊕ x := 2), we

have that

Rω = [x = 1]; abort � [x = 0]; (abort 1
2
⊕ x := 2) � skip

R∗ = [x = 1]; skip � ([x = 0]; (x := 1 1
2
⊕ x := 2)) � skip

R∞ = [x = 1]; abort � [x = 0]; magic
R∗ � R∞ = [x = 1]; abort � [x = 0]; (x := 1 1

2
⊕ x := 2) � skip

For a conjunctive predicate transformer R, we also have that the strong iter-
ation operator may be expressed in terms of the weak iteration operator as
follows [5]: Rω = {Rω.True}; R∗. Again, this relationship does not hold in gen-
eral for sublinear expectation transformers. Using our previous example, we can
see that

{Rω.True}; R∗

= {λσ • (σ.x �∈ {0, 1}) × 1 + (σ.x = 1) × 0 + (σ.x = 0)× 1
2}; R∗

= [x = 1]; abort � [x = 0]; (abort 1
2
⊕ ((x := 1 1

2
⊕ x := 2) � skip)) � [x �∈ {0, 1}]

Since we equate program non-termination with abortion, the infinite iteration
operator is not as interesting as the other two, and so in the remainder of this
paper we focus on constructing transformation rules for the weak and strong
iteration operators.

390 L. Meinicke and I.J. Hayes

3.2 Generalised Induction Properties

The following two lemmas may be used to specify more general induction rules.

Lemma 7. Given monotonic expectation transformers S and T,

Sω; T = (µX • S ; X � T)

S∗; T = (νX • S ; X � T)

Proof. The proof presented by Back and von Wright [5] applies to monotonic
expectation transformers. �

For conjunctive expectation transformers S and T , we have that

T ; S∗ = (νX • X ; S � T)

but this equivalence does not hold in general for sublinear expectation trans-
formers, so we present an alternative theorem:

Theorem 8. Let S and T be sublinear expectation transformers. Then

T ; S∗ = (νX • X ; (S � skip) � T)

Proof

(νX •X ; (S � skip) � T)
= {Lemma 5 and cocontinuity of (λX • X ; (S � skip) � T)

follows from left distributivity of monotonic expectation transformers}
�i : N • (λX • X ; (S � skip) � T)i .magic

= �{magic, T , T ; (S � skip), T ; (S � skip)2, ...}
= �i : N • T ; (S � skip)i

= {{i : N • (S � skip)i} is a codirected set, and cocontinuity of
sublinear expectation transformers (Theorem 1)}
T ; (�i : N • (S � skip)i)

= {Theorem 6}
T ; S∗ �

Theorem 9 (general induction). Let R, S and T be monotonic expectation
transformers, then

S ; X � R � X ⇒ Sω; R � X (1)

X � T ; X � R ⇒ X � T ∗; R (2)

X � X ; (T � skip) � R ⇒ X � R; T ∗ if T and R sublinear (3)

Proof. The first two properties are consequences of Lemma 7 and induction,
and the third follows from Theorem 8 and induction. �

3.3 Basic Properties of Iterations

The following properties of iterations hold for both predicate and expectation
transformers [5,19]:

Reasoning Algebraically About Probabilistic Loops 391

Lemma 10. For monotonic expectation transformer S,

S � T ⇒ Sω � Tω and S � T ⇒ S∗ � T ∗ (4)

Sω � S and S∗ � S (5)

Sω � skip and S∗ � skip (6)

Sω; Sω = Sω and S∗; S∗ = S∗ (7)

(Sω)ω = abort and (Sω)∗ = Sω (8)

(S∗)ω = abort and (S∗)∗ = S∗ (9)

S∞ = Sω; magic (10)

Proof. The proofs provided by Back and von Wright [5,19] for these properties
are valid here. They do not require any properties not satisfied by monotonic
expectation transformers. �

The decomposition property also holds for monotonic expectation transformers
(note that we do not require conjunctivity for this proof, we require left, but not
right distributivity, which is implied by monotonicity alone (Fig. 4)).

Lemma 11 (decomposition). For monotonic expectation transformers R and
S,

(R � S)ω = Rω; (S ; Rω)ω and (R � S)∗ = R∗; (S ; R∗)∗

Proof. See Back and von Wright [5]. �

The leapfrog property [5] is valid for conjunctive expectation transformers, but
not for all sublinear expectation transformers. For monotonic expectation trans-
formers we have a weaker result.

Lemma 12 (leapfrog). For monotonic expectation transformers R and S. If
R is conjunctive then

R; (S ; R)ω = (R; S)ω; R and R; (S ; R)∗ = (R; S)∗; R

otherwise

R; (S ; R)ω � (R; S)ω; R and R; (S ; R)∗ � (R; S)∗; R

Proof. The proof of the leapfrog property for when R is sublinear, is very similar
to the proof for conjunctive R [5]: in the third proof step we have refinement
instead of equality. The proof for strong iteration is as follows, the proof for weak
iteration is similar.

R; (S ; R)ω

= {definition}
R; (µX • S ; R; X � skip)

392 L. Meinicke and I.J. Hayes

= {rolling (Lemma 3) with f � (λX •R; X) and g � (λX • S ; X � skip)}
(µX • R; (S ; X � skip))

� {right sub-distributivity and for any functions f and g ,
f � g ⇒ (µX • f .X) � (µX • g .X)}

(µX • R; S ; X � R)
= {Lemma 7}

(R; S)ω; R �

A consequence of the leapfrog rule (with R = skip) is that for sublinear expecta-
tion transformer S , we have that S ; Sω (Sω; S , and S ; S ∗ (S ∗; S , but not
necessarily S ; Sω = Sω; S , and S ; S ∗ = S ∗; S . For example, take
S � [x = 0]; (skip 1

2
⊕ x := 1), we then have that

Sω = [x = 0]; (skip � x := 1) � [x �= 0]
S ; Sω = [x = 0]; ((x := 1 � skip) 1

2
⊕ x := 1)

Sω; S = [x = 0]; (skip 1
2
⊕ x := 1)

From a start state in which x is 0, Sω may either skip or it may iterate until it
assigns x to 1, or it may do some probabilistic combination of these behaviours:
it is possible for Sω to assign x to the value 1 because on each iteration of the
loop it has a constant, non-zero probability of assigning x to 1.

3.4 Commutativity Properties

In this section we describe how commutativity properties are inherited by it-
erations. Such properties are useful when reasoning about data refinements of
iterations.

Theorem 13. Let R, S , and T be monotonic expectation transformers,

R; S � T ; R ⇒ R; S∗ � T ∗; R (11)

R; S � T ; R ⇒ R; Sω � Tω; R if R is continuous (12)

S ; R � R; T ⇒ S∗; R � R; T ∗ if R is conjunctive (13)

S ; R � R; T ⇒ Sω; R � R; Tω if R is conjunctive (14)

S ; R � R; (T � skip) ⇒ S∗; R � R; T ∗ if R and T are sublinear (15)

S ; R � R; (T � skip) ⇒ Sω; R � R; Tω (16)

Proof. The proofs for the first four commutativity rules have been verified
by Back and von Wright [5]: the proofs for these do not require any proper-
ties that are not satisfied by monotonic expectation transformers. We focus on
proving the last two rules because they differ from the usual rules for conjunc-
tive predicate transformers. Assume R, S , and T are monotonic expectation
transformers.

Reasoning Algebraically About Probabilistic Loops 393

Proof of (15): Assume R and T are sublinear.

S∗; R � R; T ∗

⇐ {general induction (Theorem 9(3))}
S∗; R � S∗; R; (T � skip) � R

⇔ {unfolding and left distributivity}
S ; S∗; R � R � S∗; R; (T � skip) � R

⇐ {S ; S∗ � S∗; S is a consequence of Lemma 12}
S∗; S ; R � R � S∗; R; (T � skip) � R

⇐ {monotonicity}
S ; R � R; (T � skip)

Proof of (16): Assume S ; R (R; (T � skip). First we have that

Sω; R � R; Tω

⇐ {general induction (Theorem 9(1))}
S ; R; Tω � R � R; Tω

We may show that the antecedent follows from the assumption as follows.

S ; R; Tω � R
� {general lattice property x � y � x}

S ; R; Tω

� {assumption}
R; (T � skip); Tω

� {general lattice property x � y � x , and skip is unit}
R; Tω �

For monotonic expectation transformers, Theorem 13 parts (13) and (14) do not
hold in general if R is sublinear (and not conjunctive).

Different commutativity rules can be generated for guarded loops: we present
two of these. Both rules are used in Sect. 4.1 to verify transformation rules for
action systems3. Before we introduce these two rules we define some necessary
terminology. Given an expectation transformer S , we refer to the set of states
from which S may abort with probability one as fail.S :

fail.S � λσ • (S .True.σ = 0)

Theorem 14. Given monotonic expectation transformers R, S and T such that
R is continuous, and standard predicates g and p, we have that

R; Sω; [g] � Tω; [p]; R

if

R; S � T ; R (17)

R; [g ∨ fail.S] � [p]; R (18)

3 Note that neither of these rules are present in the work of Back and von Wright
[5,19]: the commutativity laws they present for guarded loops are weaker than these.

394 L. Meinicke and I.J. Hayes

Proof

R; Sω; [g] � Tω; [p]; R
⇔ {Lemma 7}

R; (µX • S ; X � [g]) � (µX • T ; X � [p]; R)
⇐ {fusion (Lemma 4) and continuity of R}

(λX •R; X) ◦ (λX • S ; X � [g]) � (λX • T ; X � [p]; R) ◦ (λX • R; X)
⇔ (λX •R; (S ; X � [g])) � (λX • T ; R; X � [p]; R)

R; (S ; X � [g])
= {meet is idempotent}

R; (S ; X � [g]) � R; (S ; X � [g])
� {right sub-distributivity, general lattice property x � y � x ,

basic guard rule skip � [g] }
R; S ; X � R; ([fail.S]; S ; X � [g])

= {from the definition of fail, [fail.S]; S = [fail.S]; abort}
R; S ; X � R; ([fail.S]; abort � [g])

� {abort is the least element and basic guard rules}
R; S ; X � R; [fail.S ∨ g]

� {assumption (17) and (18)}
T ; R; X � [p]; R �

As suggested by the commutativity rule for iterations, Theorem 13 (16), the
conditions required to prove a refinement of the form ([g]; S)ω; [¬g]; R (
R; ([p]; T)ω ; [¬p], for sublinear expectation transformers S , R, and T , differ
from those that one would normally expect for the case when R is conjunctive.

Theorem 15. Given monotonic expectation transformer R, S and T, and stan-
dard predicates g and p, we have that

([g]; S)ω; [¬g]; R � R; ([p]; T)ω; [¬p]

if

{g}; S ; R � R; {p}; T (19)

R; [¬p] � [¬g]; R (20)

Proof

([g]; S)ω; [¬g]; R � R; ([p]; T)ω; [¬p]
⇐ {general induction (Theorem 9 (1))}

[g]; S ; R; ([p]; T)ω; [¬p] � [¬g]; R � R; ([p]; T)ω; [¬p]

[g]; S ; R; ([p]; T)ω; [¬p] � [¬g]; R
= {basic guard and assertion rules}

[g]; {g}; S ; R; ([p]; T)ω; [¬p] � [¬g]; R
� {assumption (19)}

[g]; R; {p}; T ; ([p]; T)ω; [¬p] � [¬g]; R
= {basic guard rule {p} = [¬p]; abort � [p], left distributivity and preemption}

[g]; R; ([p]; T ; ([p]; T)ω; [¬p] � [¬p]; abort) � [¬g]; R

Reasoning Algebraically About Probabilistic Loops 395

� {abort is the least element}
[g]; R; ([p]; T ; ([p]; T)ω; [¬p] � [¬p]) � [¬g]; R

= {left distributivity and unfolding}
[g]; R; ([p]; T)ω; [¬p] � [¬g]; R

� {basic guard rule skip � [g]}
[g]; R; ([p]; T)ω; [¬p] � [¬g]; R; [¬p]

= {from the basic guard rules [¬p]; [p] = magic and magic is unit}
[g]; R; ([p]; T)ω; [¬p] � [¬g]; R; ([¬p]; [p]; T ; ([p]; T)ω; [¬p] � [¬p])

= {right and left distributivity of conjunctive programs}
[g]; R; ([p]; T)ω; [¬p] � [¬g]; R; [¬p]; ([p]; T ; ([p]; T)ω � skip); [¬p]

= {unfolding}
[g]; R; ([p]; T)ω; [¬p] � [¬g]; R; [¬p]; ([p]; T)ω; [¬p]

� {assumption (20) and basic guard rules}
[g]; R; ([p]; T)ω; [¬p] � [¬g]; R; ([p]; T)ω; [¬p]

= {left distributivity and basic guard rules}
[g ∨ ¬g]; R; ([p]; T)ω; [¬p]

= {definition of skip}
R; ([p]; T)ω; [¬p] �

4 Action Systems

So far we have investigated properties of the general iteration constructs. We
now follow the lead of Back and von Wright [5] by applying these results to more
well known and useful programming constructs: namely action systems. Action
systems can be used to model parallel or distributed systems in which concurrent
behaviour is modeled my interleaving atomic actions [3,4]. Probabilistic action
systems (originally proposed by Sere and Troubitsyna [16,18]) are an extension of
standard action systems in which actions are defined to be sublinear expectation
transformers instead of conjunctive predicate transformers. The input/output
behaviour of a probabilistic action system is defined in terms of the iteration
constructs as follows:

do A1 � ... �An od � (A1 � ... � An)ω; [¬gd .A1 ∧ ... ∧ ¬gd .An]

where for all i : [1, ..,n], the action Ai is a sublinear expectation transformer.
gd .A is a standard predicate that specifies the set of states from which A does
not behave like magic.

gd .A � λσ • (A.False.σ = 0)

Note that because of how we model magic, for any action A, we have that
[gd .A]; A = A, and “{gd .A}; A” is strict (an expectation transformer S is strict
if S ; abort = abort). It is also useful to observe that gd .(A1� ...�An) = gd .A1 ∨
... ∨ gd .An . In this model infinite behaviours are considered to be aborting: we
do not model reactive behaviour. Using our algebraic framework, we construct
and verify data refinement rules for probabilistic action systems.

396 L. Meinicke and I.J. Hayes

4.1 Data Refinement

An expectation transformer S is said to be data refined by T through R if either

R; S � T ; R or S ; R � R; T

In the first instance R can be seen as mapping from the concrete state of T to
the abstract state of S , and in the second R can be seen to map the abstract
state of S to the concrete state of T . We refer to data refinement in the first
instance as cosimulation, and simulation in the latter.

We present basic cosimulation and simulation rules for probabilistic action
systems. These rules are stuttering insensitive, that is they require a direct cor-
respondence between actions. The cosimulation rule has a similar form to the
cosimulation data refinement rule for standard action systems [1]. The simula-
tion rule has (necessarily) a different form to the corresponding standard action
system rule. Our rules are more general than the stuttering insensitive data
refinement rules verified by Back and von Wright using algebraic methods for
standard action systems [5,19]: they are more general because they take into con-
sideration the failure condition of the actions. We demonstrate our simulation
rule using a simple example.

The cosimulation and simulation rules are as follows.

Theorem 16 (cosimulation). Given sublinear expectation transformers R, S
and T, we have that R; do S od (do T od; R, if R is continuous and

R; S � T ; R (21)

R; [¬gd .S ∨ fail.S] � [¬gd .T]; R (22)

Proof. This follows directly from the definition of action systems, assumptions
(21) and (22), and Theorem 14. �

Theorem 17 (simulation). Given sublinear expectation transformers R, S
and T, we have that do S od; R (R; do T od, if

{gd .S}; S ; R � R; {gd .T}; T (23)

R; [¬gd .T] � [¬gd .S]; R (24)

Proof. This follows directly from the definition of action systems, assumptions
(23) and (24), and Theorem 15. �

We present a simple example to demonstrate how the simulation rule may be
used in practice.

Example. Action system S1 (see Fig. 5) may be used to represent the behaviour
of a unfair scheduler with two processes, P1 and P2, where both P1 and P2
are feasible. Predicates env1 and env2 indicate when processes P1 and P2 are
able to be executed. If both processes are able to be executed at the same time,
then the scheduler may demonically chose between executing P1 or P2, if only
one process is ready, then it must execute that process, and if neither process

Reasoning Algebraically About Probabilistic Loops 397

is ready it terminates. We may use representation program R to show that this
scheduler is data refined by action system S2. S2 represents a fair scheduler
that has the same processes as S1, but, when both processes are able to be
executed simultaneously, it chooses between them with equal probability. The
fair scheduler, S2, uses fresh variable a to determine which process to execute.

S1 � do [env1]; P1 � [env2]; P2 od
S2 � do [a = 1]; P1; R � [a = 2]; P2; R od
R � [env1 ∧ env2]; (a := 1 1

2
⊕ a := 2)

� [env1 ∧ ¬env2]; a := 1
� [¬env1 ∧ env2]; a := 2
� [¬env1 ∧ ¬env2]; a := 0

Fig. 5. Unfair and fair schedulers S1 and S2

We use Theorem 17 to show that S1; R (R; S2.

Proof of condition (23): Starting with the right hand side

R; {a = 1 ∨ a = 2}; ([a = 1]; P1; R � [a = 2]; P2; R)
= {definition of R, left distributivity of meet and probabilistic choice}

[env1 ∧ env2]; (a := 1; {a = 1 ∨ a = 2}; ([a = 1]; P1; R � [a = 2]; P2; R)
1
2
⊕ a := 2; {a = 1 ∨ a = 2}; ([a = 1]; P1; R � [a = 2]; P2; R))

�[env1 ∧ ¬env2]; a := 1; {a = 1 ∨ a = 2}; ([a = 1]; P1; R � [a = 2]; P2; R)
�[¬env1 ∧ env2]; a := 2; {a = 1 ∨ a = 2}; ([a = 1]; P1; R � [a = 2]; P2; R)
�[¬env1 ∧ ¬env2]; a := 0; {a = 1 ∨ a = 2}; ([a = 1]; P1; R � [a = 2]; P2; R)

= {simplify}
[env1 ∧ env2]; (a := 1; P1; R 1

2
⊕ a := 2; P2; R)

� [env1 ∧ ¬env2]; a := 1; P1; R
� [¬env1 ∧ env2]; a := 2; P2; R
� [¬env1 ∧ ¬env2]; abort

= {basic guard rule {p} = [¬p]; abort � [p] and left distributivity}
{env1 ∨ env2};
([env1 ∧ env2]; (a := 1; P1; R 1

2
⊕ a := 2; P2; R)

� [env1 ∧ ¬env2]; a := 1; P1; R
� [¬env1 ∧ env2]; a := 2; P2; R)

% {by definition demonic choice is refined by probabilistic choice}
{env1 ∨ env2};
([env1 ∧ env2]; (a := 1; P1; R � a := 2; P2; R)
� [env1 ∧ ¬env2]; a := 1; P1; R
� [¬env1 ∧ env2]; a := 2; P2; R)

= {simplify}
{env1 ∨ env2}; ([env1]; a := 1; P1; R � [env2]; a := 2; P2; R)

= {left distributivity, definition of R}
{env1 ∨ env2}; ([env1]; P1 � [env2]; P2); R

398 L. Meinicke and I.J. Hayes

Proof of condition (24):

R; [a �= 1 ∧ a �= 2]
= {definition of R and left distributivity}

[env1 ∧ env2]; (a := 1 1
2
⊕ a := 2); [a �= 1 ∧ a �= 2]

� [env1 ∧ ¬env2]; a := 1; [a �= 1 ∧ a �= 2]
� [¬env1 ∧ env2]; a := 2; [a �= 1 ∧ a �= 2]
� [¬env1 ∧ ¬env2]; a := 0; [a �= 1 ∧ a �= 2]

= {simplify}
[¬env1 ∧ ¬env2]; a := 0

= {definition of R}
[¬env1 ∧ ¬env2]; R

5 Conclusion

Back and von Wright have demonstrated how to reason about standard loops
in a concrete algebraic setting [5,2]. We have demonstrated how probabilistic
loops may be reasoned about in a similar way. We have identified a number of
important transformation rules that are common to both probabilistic and stan-
dard loops. In addition, we have identified a number of standard transformation
rules that are not applicable to probabilistic programs. For the latter rules, we
have developed alternative transformation rules that are suitable in the proba-
bilistic context. In particular, we have constructed new data refinement rules for
probabilistic action systems.

There are many benefits to taking an algebraic approach to reasoning about
iterations and loops: the main benefit being that it can simplify reasoning about
complex theorems. The transformation rules that we have developed may be
used as a basis to develop further rules. For instance, they could be used to
develop rules for stuttering sensitive data refinement in action systems.

In their earlier work [5,2], Back and von Wright derived their transformation
rules within the predicate transformer model. In later work von Wright [19,20],
constructed a more abstract refinement algebra that is independent of a par-
ticular program model. Solin and von Wright [17] have further extended this
abstract refinement algebra with enabledness and termination axioms and used
these to reason about action systems on an abstract level. Their algebra is simi-
lar to the Kozen’s Kleene algebra with tests [12], and Cohen’s Omega algebra [7],
however it differs because it deals with total correctness as well as partial cor-
rectness. The refinement algebra of von Wright [19] is less general than the lazy
Kleene algebra of Möller [14]: a relaxation of Kleene algebra in which strictness
and right-distributivity are omitted. While Möller’s lazy Kleene algebra sup-
ports the lack of strictness (R; magic is not in general equal to magic) and right
distributivity (R; (S � T) is in general not equal to R; S � R; T) as required
for the probabilistic programs presented here, our probabilistic programs do not
satisfy Möller’s iteration axioms.

Reasoning Algebraically About Probabilistic Loops 399

Acknowledgments. This research was supported by Australian Research Coun-
cil (ARC) Discovery Grant DP0558408, Analysing and generating fault-tolerant
real-time systems.

References

1. Ralph-Johan Back and Joakim von Wright. Trace refinement of action systems.
In International Conference on Concurrency Theory, volume 836 of LNCS, pages
367–384. Springer Verlag, 1994.

2. Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic
Introduction. Springer, 1998.

3. R.J.R. Back and R. Kurki-Suonio. Decentralization of process nets with central-
ized control. In Proc. of the 2nd ACM SIGACT-SIGOPS Symp. on Principles of
Distributed Computing, pages 131–142. ACM Press, 1983.

4. R.J.R. Back and R. Kurki-Suonio. Distributed cooperation with action systems.
ACM Trans. Program. Lang. Syst., 10(4):513–554, 1988.

5. R.J.R Back and J. von Wright. Reasoning algebraically about loops. Acta Infor-
matica, 36:295–334, 1999.

6. Ernie Cohen. Hypotheses in Kleene algebra. Technical Report TM-ARH-023814,
Belcore, 1994.

7. Ernie Cohen. Separation and reduction. In Mathematics of Program Construction,
volume 1837 of LNCS, pages 45–59. Springer, 2000.

8. B. A. Davey and H.A Priestley. Introduction to Lattices. Cambridge University
Press, 1990.

9. Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
10. J. He, K. Seidel, and A. McIver. Probabilistic models for the guarded command

language. Science of Computer Programming, 28(2-3):171–192, 1997.
11. Joe Hurd. A formal approach to probabilistic termination. In TPHOLs, volume

2410 of LNCS, pages 230–245. Springer-Verlag, 2002.
12. Dexter Kozen. Kleene algebra with tests. ACM Transactions on Programming

Languages and Systems, 19(3):427–443, 1997.
13. Annabelle McIver and Carroll Morgan. Abstraction, Refinement and Proof for

Probabilistic Systems. Monographs in Computer Science. Springer, 2005.
14. Bernhard Möller. Lazy Kleene algebra. In Mathematics of Program Construction,

volume 3125 of LNCS, pages 252–273. Springer-Verlag, 2004.
15. C. Morgan. Programming from Specifications. Prentice Hall, second edition, 1994.
16. Kaisa Sere and Elena Troubitsyna. Probabilities in action systems. In Proc. of the

8th Nordic Workshop on Programming Theory, 1996.
17. Kim Solin and Joakim von Wright. Refinement algebra with operators for enabled-

ness and termination. In Mathematics of Program Construction, volume 4014 of
LNCS, pages 397–415, 2006.

18. Elena A. Troubitsyna. Reliability assessment through probabilistic refinement.
Nordic Journal of Computing, pages 320–342, 1999.

19. Joakim von Wright. From Kleene algebra to refinement algebra. In Mathematics
of Program Construction, volume 2386 of LNCS, pages 233–262. Springer, 2002.

20. Joakim von Wright. Towards a refinement algebra. Science of Computer Program-
ming, 51, 2004.

Formal Verification of the Heap Manager
of an Operating System Using Separation Logic

Nicolas Marti1, Reynald Affeldt2, and Akinori Yonezawa1,2

1 Department of Computer Science, University of Tokyo
2 Research Center for Information Security,

National Institute of Advanced Industrial Science and Technology

Abstract. In order to ensure memory properties of an operating system,
it is important to verify the implementation of its heap manager. In
the case of an existing operating system, this is a difficult task because
the heap manager is usually written in a low-level language that makes
use of pointers, and it is usually not written with verification in mind.
In this paper, our main contribution is the formal verification of the
heap manager of an existing embedded operating system, namely Topsy.
For this purpose, we develop in the Coq proof assistant a library for
separation logic, an extension of Hoare logic to deal with pointers. Using
this library, we were able to verify the C source code of the Topsy heap
manager, and to find and correct bugs.

1 Introduction

In order to ensure memory properties of an operating system, it is important
to verify the implementation of its heap manager. The heap manager is the set
of functions that provides the operating system with dynamic memory alloca-
tion. Incorrect implementation of these functions can invalidate essential memory
properties. For example, task isolation, the property that user processes cannot
tamper with the memory of kernel processes, is such a property: the relation
with dynamic memory allocation comes from the fact that privilege levels of
processes are usually stored in dynamically allocated memory blocks (see [5] for
a detailed illustration).

However, the verification of the heap manager of an existing operating system
is a difficult task because it is usually written in a low-level language that makes
use of pointers, and it is usually not written with verification in mind. For these
reasons, the verification of dynamic memory allocation is sometimes considered
as a challenge for mechanical verification [15].

In this paper, our main contribution is to formally verify the heap manager
of an existing embedded operating system, namely Topsy [2]. For this purpose,
we develop in the Coq proof assistant [4] a library for separation logic [1], an
extension of Hoare logic to deal with pointers. Using this library, we verify the
C source code of the Topsy heap manager. In fact, this heap manager proves
harder to deal with than dynamic memory allocation facilities verified in previous
studies (see Sect. 8 for a comparison). A direct side-effect of our approach is to

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 400–419, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Formal Verification of the Heap Manager of an Operating System 401

provide advanced debugging. Indeed, our verification highlights several issues
and bugs in the original source code (see Sect. 7.1 for a discussion).

We chose the Topsy operating system as a test-bed for formal verification
of memory properties. Topsy was initially created for educational use and has
recently evolved into an embedded operating system for network cards [3]. It is
well-suited for mechanical verification because it is small and simple, yet it is a
realistic use-case because it includes most classical features of operating systems.

The paper is organized as follows. In Sect. 2, we give an overview of the Topsy
heap manager, and we explain our verification goal and approach. In Sect. 3, we
introduce separation logic and explain how we encode it in Coq. In Sect. 4, we
formally specify and prove the properties of the underlying data structure used
by the heap manager. In Sect. 5, we formally specify and explain the verification
of the functions of the heap manager. In Sect. 6, we discuss practical aspects of
the verification such as automation and translation from the original C source
code. In Sect. 7, we discuss the outputs of our experiment: in particular, issues
and bugs found in the original source code of the heap manager. In Sect. 8, we
comment on related work. In Sect. 9, we conclude and comment on future work.

2 Verification Goal and Approach

2.1 Topsy Heap Manager

The heap manager of an operating system is the set of functions that provides
dynamic memory allocation. In Topsy, these functions and related variables
are defined in the files Memory/MMHeapMemory.{h,c}, with some macros in the file
Topsy/Configuration.h. We are dealing here with the heap manager of Topsy
version 2; a browsable source code is available online [2].

The heap is the area of memory reserved by Topsy for the heap manager. The
latter divides the heap into allocated and free memory blocks: allocated blocks
are memory blocks in use by programs, and free blocks form a pool of memory
available for new allocations. In order to make an optimal use of the memory,
allocated and free memory blocks form a partition of the heap. This is achieved
by implementing memory blocks as a simply-linked list of contiguous blocks. In
the following, we refer to this data structure as a heap-list.

In a heap-list, each block consists of a two-fields header and an array of mem-
ory. The first field of the header gives information on the status of the block
(allocated or free, corresponding to the Alloc and Free flags); the second field
is a pointer to the next block, which starts just after the current block. For
example, here is a heap-list with one allocated block and one free block:

A
l
l
o
c

allocated block

F
r
e
e

allocated block

A
l
l
o
c

n
u
ll

block size block size

Observe that the size of the arrays of memory associated to blocks can be com-
puted using the values of pointers. (In this paper, when we talk about the size of

402 N. Marti, R. Affeldt, and A. Yonezawa

a block, we talk about its “effective” size, that is the size of the array of memory
associated to it, this excludes the header.) The terminal block of the heap-list
always consists of a sole header, marked as allocated, and pointing to null.

Initialization of the heap manager is provided by the following function:

Error hmInit(Address addr) {...}

Concretely, hmInit initializes the heap-list by building a heap-list with a single
free block that spans the whole heap. The argument is the starting location of
the heap. The size of the heap-list is defined by the macro KERNELHEAPSIZE. The
function always returns HM_INITOK.

Allocation is provided by the following function:

Error hmAlloc(Address* addressPtr, unsigned long int size) {...}

The role of hmAlloc is to insert new blocks marked as allocated into the heap-list.
The first argument is a pointer provided by the user to get back the address of
the allocated block, the second argument is the desired size. In case of successful
allocation, the pointer contains the address of the newly allocated block and the
value HM_ALLOCOK is returned, otherwise the value HM_ALLOCFAILED is returned. In
order to limit fragmentation, hmAlloc performs compaction of contiguous free
blocks and splitting of free blocks.

Deallocation is provided by the following function:

Error hmFree(Address address) {...}

Concretely, hmFree turns allocated blocks into free ones. The argument cor-
responds to the address of the allocated block to free. The function returns
HM_FREEOK if the block was successfully deallocated, or HM_FREEFAILED otherwise.

2.2 Verification Goal and Approach

Our goal is to verify that the implementation of the Topsy heap manager is
“correct”. By correct, we mean that the heap manager provides the intended ser-
vice: the allocation function allocates large-enough memory blocks, these mem-
ory blocks are “fresh” (they do not overlap with previously allocated memory
blocks), the deallocation function turns the status of blocks into free (except
for the terminal block), and the allocation and deallocation functions does not
behave in unexpected ways (in particular, they do not modify neither previ-
ously allocated memory blocks nor the rest of the memory). Guaranteeing the
allocation of fresh memory blocks and the non-modification of previously allo-
cated memory blocks is a necessary condition to ensure that the heap manager
preserves exclusive usage of allocated blocks. Formal specification goals corre-
sponding to the above informal discussion are explained later in Sect. 5.

Our approach is to use separation logic to formally specify and mechanically
verify the goal informally stated above. We choose separation logic for this pur-
pose because it provides a native notion of pointer and memory separation that
facilitates the specification of heap-lists. Another advantage of separation logic

Formal Verification of the Heap Manager of an Operating System 403

is that it is close enough to the C language to enable systematic translation from
the original source code of Topsy.

In the next sections, we explain how we encode separation logic in the Coq
proof assistant and how we use this encoding to specify and verify the Topsy
heap manager. All the verification is available online [6].

3 Encoding of Separation Logic

Separation logic is an extension of Hoare logic to reason about low-level programs
with shared, mutable data structures [1]. Before entering the details of the formal
encoding, we introduce the basic ideas behind separation logic.

Brief Introduction to Separation Logic. Let us consider the program x *<- 4 that
puts the value 4 into a memory cell pointed to by the variable x. Let us assume
that this cell originally contained a pointer to a contiguous cell with the value
2. Informally, the corresponding Hoare triple could be written as follows:

2

x

{ }
4 2

x

{ }
x *<- 4

Separation logic provides connectives to conveniently specify and reason about
such Hoare triples. In particular, it extends the language of assertions of Hoare
logic with a separating conjunction & that asserts that its subformulas hold
for disjoint parts of the memory. For illustration, the pre/post-conditions above
would be respectively written (x #→ p)&(p #→ 2) and (x #→ 4)&(p #→ 2), where p is
the location held by variable x. Separation logic also provides us with “axioms”
to verify such triples. For example, by applying the “axiom of backward reasoning
for mutation” (to be defined formally later in this section), the verification is
reduced to the proof of the (classical) implication (x #→ p) & (p #→ 2) → (x #→
p) & ((x #→ 4)−&((x #→ 4) & (p #→ 2))) where −& is the separating implication; this
formula is easily provable using the properties of separation logic.

In the rest of this section, we explain the formal definition of separation logic
that we implemented in Coq to perform such reasoning as above. The code
displayed is directly taken from the implementation; we use traditional mathe-
matical notations instead of ASCII for Coq primitives (e.g., ∀, ∃, →, ∧, �=, ≥
instead of forall, exists, ->, /\, <>, >=).

3.1 The Programming Language

The programming language of separation logic is imperative. The current state
of execution is represented by a pair of a store (that maps local variables to
values) and a heap (a finite map from locations to values). We have an abstract
type var.v for variables (ranged over by x, y), a type loc for locations (ranged
over by p, adr), and a type val for values (ranged over by v, w) with the condi-
tion that all values can be seen as locations (so as to enable pointer arithmetic).

404 N. Marti, R. Affeldt, and A. Yonezawa

Our implementation is essentially abstracted over the choice of types, yet, in our
experiments, we have taken the native Coq types of naturals nat and relative in-
tegers Z for loc and val so as to benefit from better automation. Stores and heaps
are implemented by two modules store and heap whose types are (excerpts):

Module Type STORE.
Parameter s : Set. (* the abstract type of stores *)
Parameter lookup : var.v → s → val.
Parameter update : var.v → val → s → s.
End STORE.

Module Type HEAP.
Parameter l : Set. (* locations *)
Parameter v : Set. (* values *)
Parameter h : Set. (* the abstract type of heaps *)
Parameter emp : h. (* the empty heap *)
Parameter singleton : l → v → h. (* singleton heaps *)
Parameter lookup : l → h → option v.
Parameter update : l → v → h → h.
Parameter union : h → h → h. Notation "h1 ' h2" := (union h1 h2).
Parameter disjoint: h→h →Prop. Notation "h1 ⊥ h2" := (disjoint h1 h2).
End HEAP.

Definition state := prod store.s heap.h.

To paraphrase the implementation, (store.lookup x s) is the value of the vari-
able x in store s; (store.update x v s) is the store s in which the variable x

has been updated with the value v; (heap.lookup p h) is the contents (if any) of
location p; (heap.update p v h) is the heap h in which the location p has been
mutated with the value v; h ' h’ is the disjoint union of h and h’; and h ⊥ h’

holds when h and h’ have disjoint domains.
The programming language of separation logic manipulates arithmetic and

boolean expressions that are evaluated w.r.t. the store. They are encoded by
the inductive types expr and expr_b (the parts of the definitions which are not
essential to the understanding of this paper are abbreviated with “. . . ”):

Inductive expr : Set :=
var_e : var.v → expr

| int_e : val → expr
| add_e : expr → expr → expr Notation "e1 ’+e’ e2" := (add_e e1 e2).
...
Definition null := int_e 0%Z.
Definition nat_e x := int_e (Z_of_nat x).
Definition field x f := var_e x +e int_e f.

Notation "x ’-.>’ f " := (field x f).
Inductive expr_b : Set :=
eq_b : expr → expr → expr_b Notation "e == e’" := (eq_b e e’).

| neq_b : expr → expr → expr_b Notation "e =/= e’" := (neq_b e e’).
| and_b : expr_b → expr_b → expr_b Notation "e &&& e’" := (and_b e e’).
| gt_b : expr → expr → expr_b Notation "e >> e’" := (gt_b e e’).
...

There is an evaluation function eval such that (eval e s) is the result of evalu-
ating the expression e w.r.t. the store s.

Formal Verification of the Heap Manager of an Operating System 405

The commands of the programming language of separation logic are also en-
coded by an inductive type:

Inductive cmd : Set :=
assign : var.v → expr → cmd Notation "x <- e" := (assign x e).

| lookup : var.v → expr → cmd Notation "x ’<-*’ e" := (lookup x e).
| mutation : expr → expr → cmd Notation "e ’*<-’ f" := (mutation e f).
| seq : cmd → cmd → cmd Notation "c ; d" := (seq c d).
| while : expr_b → cmd → cmd
| ifte : expr_b → cmd → cmd → cmd Notation "’ifte’ b ’thendo’ c ’elsedo’ c"
... := (ifte b c d).

From this presentation, we omit the memory allocation and deallocation com-
mands of separation logic (they are not useful for our use-case precisely because
we verify the implementation of a memory allocation facility).

The operational semantics of the programming language of separation logic is
defined by the following inductive type. An object of type (exec s c s’) repre-
sents the execution of the command c from state s to state s’. Because heaps are
finite maps, lookup and mutation may fail; to take this possibility into account,
we use an option type.

Inductive exec : option state → cmd → option state → Prop :=
exec_assign : ∀ s h x e,
exec (Some (s, h)) (x <- e) (Some (store.update x (eval e s) s, h))

| exec_lookup : ∀ s h x e p v,
val2loc (eval e s) = p → heap.lookup p h = Some v →
exec (Some (s, h)) (x <-* e) (Some (store.update x v s, h))

| exec_lookup_err : ∀ s h x e p,
val2loc (eval e s) = p → heap.lookup p h = None →
exec (Some (s, h)) (x <-* e) None

| exec_mutation : ∀ s h e e’ p v,
val2loc (eval e s) = p → heap.lookup p h = Some v →
exec (Some (s, h)) (e *<- e’) (Some (s, heap.update p (eval e’ s) h))

| exec_mutation_err : ∀ s h e e’ p,
val2loc (eval e s) = p → heap.lookup p h = None →
exec (Some (s, h)) (e *<- e’) None

...

3.2 Assertions and Reynolds’ Axioms

Assertions of Hoare logic are predicate calculus formulas with the same expres-
sions as the programming language. In consequence, the validity of an assertion
depends on the current execution state of the program. There are mainly two
ways to encode the semantics of such assertions in a proof assistant:

1. Deep encoding : define a syntax for assertions and a satisfaction relation
between states and assertions.

2. Shallow encoding : identify formulas with functions from states to some
“boolean type”.

The advantage of shallow encoding over deep encoding is that deciding the va-
lidity of formulas becomes a function computation, for which the proof assistant
provides native facilities (for example, tactics to prove tautologies).

406 N. Marti, R. Affeldt, and A. Yonezawa

We have developed a shallow encoding of separation logic in Coq. For this
purpose, we identify assertions of separation logic with functions from states to
Prop, the native type for predicate calculus formulas. For example, True:Prop

represents truth and ∧:Prop → Prop → Prop represents classical conjunction in
Coq. This gives rise to the type assert below. By way of example, we also show
the encoding of truth and conjunction in separation logic.

Definition assert := store.s → heap.h → Prop.
Definition TT : assert := fun s h => True.
Definition And (P Q:assert) : assert := fun s h => P s h ∧ Q s h.

Assertions of Separation Logic. The assertion that holds for empty heaps is
defined by testing whether the heap is empty:

Definition emp : assert := fun s h => h = heap.emp.

e �→ e’ is the formula that holds for a singleton heap whose only location is the
result of evaluating e and this location has for contents the result of evaluating e’:

Definition mapsto e e’ s h := ∃ p,
val2loc (eval e s) = p ∧ h = heap.singleton p (eval e’ s).

Notation "e1 �→ e2" := (mapsto e1 e2).

For example, (var_e x �→ int_e 4) asserts that the variable x points to a cell that
contains the integer 4. The following derived definitions will prove useful later: e
�→ _ asserts that the cell e has some undefined contents, and e �⇒ l asserts that
there is a list l of contiguous cell contents starting from e.

The separating conjunction P � Q holds for a heap that can be decomposed
into two disjoint heaps for which P and Q respectively hold:

Definition con (P Q:assert) : assert := fun s h =>
∃ h1, ∃ h2, h1 ⊥ h2 ∧ h = h1 ' h2 ∧ P s h1 ∧ Q s h2.

Notation "P � Q" := (con P Q).

For example, (var_e x �→ nat_e p) � (nat_e p �→ int_e 2) is the formal version
of the example given in the beginning of this section.

The separating implication P −� Q is less intuitive. It is used to represent logi-
cally mutations. In particular, the idiom (e �→ _ � (e �→ e’ −� P)) holds for a heap
such that the mutation of location e to contents e’ leads to a heap that satis-
fies P. Section 4.2 gives a concrete example of such a formula together with its
utilization. For the time being, we limit ourselves to the formal definition:

Definition imp (P Q:assert) : assert := fun s h =>
∀ h’, h ⊥ h’ ∧ P s h’ → ∀ h’’, h’’ = h ' h’ → Q s h’’.

Notation "P −� Q" := (imp P Q).

Reynolds’ Axioms. The axioms of separation logic are defined by the following
inductive type. An object of type (semax P c Q) represents the fact that, going
from a state satisfying P, the execution of the command c leads to a state satis-
fying Q:

Formal Verification of the Heap Manager of an Operating System 407

Inductive semax : assert → cmd → assert → Prop :=
semax_assign : ∀ P x e,
semax (update_store2 x e P) (x <- e) P

| semax_lookup : ∀ P x e,
semax (lookup2 x e P) (x <-* e) P

| semax_mutation : ∀ P e e’,
semax (update_heap2 e e’ P) (e *<- e’) P

| semax_seq : ∀ P Q R c d,
semax P c Q → semax Q d R → semax P (c ; d) R

...
Notation "{{ P }} c {{ Q }}" := (semax P c Q).

where update_store2, etc. are predicate transformers, for example:

Definition update_store2 (x:var.v) (e:expr) (P:assert) : assert :=
fun s h => P (store.update x (eval e s) s) h.

Using these definitions, we have implemented much of [1], including the proof
of soundness of the axioms of separation logic, the “frame rule”, various axioms
for backward reasoning, etc. For example, let us just give the axiom for backward
reasoning used in the example at the beginning of this section:

Lemma semax_mutation_backwards : ∀ P e e’,
{{ fun s h => ∃ e’’,(e �→ e’’ � (e �→ e’ −� P)) s h }} e *<- e’ {{ P }}.

4 The Heap-List Data Structure

4.1 The Heap-List Assertion

We define an assertion called Heap_List that holds for heaps that contain a well-
formed heap-list. Separation logic is very convenient for this purpose. In partic-
ular, the property that blocks are disjoint can be expressed using the separating
conjunction. The fact the blocks are contiguous relies on pointer arithmetic and
this can also be expressed directly in separation logic.

Before defining the Heap_List assertion, we define an assertion to represent
arrays of memory, i.e. sets of contiguous locations. Array p sz holds for a heap
whose locations p, . . . , p+sz-1 have some contents:

Fixpoint Array (p:loc) (size:nat) {struct size} : assert :=
match size with

O => emp
| S n => (fun s h => ∃ y, (nat_e p �→ int_e y) s h) � Array (p+1) n

end.

We now come to the definition of heap-lists without terminal block (let us
call them pre-heap-lists for convenience). Intuitively, (hl p l) represents the set
of headers of a pre-heap-list whose first block starts at location p together with
the set of free blocks (the allocated blocks are left outside); information about
the blocks is captured by the parameter (l:list (nat*bool)): the list of sizes
and flags of the blocks (:: is the list constructor and nil is the empty list):

408 N. Marti, R. Affeldt, and A. Yonezawa

Inductive hl : loc → list (nat*bool) → assert :=
| hl_last: ∀ s p h,

emp s h → hl p nil s h
| hl_Free: ∀ s h p h1 h2 size tl,

h1 ⊥ h2 → h = h1 ' h2 →
((nat_e p �⇒ Free::nat_e (p+2+size)::nil)�(Array (p+2) size)) s h1 →
hl (p+2+size) tl s h2 →
hl p ((size,free)::tl) s h

| hl_Allocated: ∀ s h p h1 h2 size tl,
h1 ⊥ h2 → h = h1 ' h2 →
(nat_e p �⇒ Allocated::nat_e (p+2+size)::nil) s h1 →
hl (p+2+size) tl s h2 →
hl p ((size,alloc)::tl) s h.

where free and alloc are synonymous for booleans. The first constructor spec-
ifies empty pre-heap-lists. The second constructor specifies pre-heap-lists that
start with a free memory block (that is, a header marked as free and its associ-
ated block) followed by a pre-heap-list. The third constructor specifies pre-heap-
lists that start with an allocated memory header (in this case, the associated
block is left outside). Observe that the definition above uses pointer arithmetic
to guarantee that there is no lost space between linked blocks.

Finally, we define heap-lists (with terminal block). This is simply the sepa-
rating conjunction of a pre-heap-list with a terminal block (an allocated block
pointing to null):

Definition Heap_List (l:list (nat*bool)) (p:nat) : assert :=
(hl p l) � (nat_e (get_endl l p) �⇒ Allocated::null::nil).

where (get_endl l p) returns the location at the end of the list l starting from
location p, i.e., the location of (the header of) the terminal block.

4.2 Properties of Heap-Lists

The heart of our verification of the Topsy heap manager consists of a few basic
lemmas capturing the properties of operations such as compaction of blocks,
splitting of a block, changing the status of blocks, etc. Since these operations
rely on destructive updates, the properties in question are adequately expressed
using the separating implication.

For example, the following lemma expresses compaction of two contiguous
free blocks (++ is the list append function of Coq):

Lemma hl_compaction: ∀ l1 l2 size size’ p s h,
Heap_List (l1 ++ (size,free)::(size’,free)::nil ++ l2) p s h →
∃ y, (nat_e (get_endl l1 p + 1) �→ y �

(nat_e (get_endl l1 p + 1) �→ nat_e (get_endl l1 p + size + size’ + 4) −�
Heap_List (l1 ++ (size+size’+2,free)::nil ++ l2) p)) s h.

The left-hand side of the (classical) implication states the existence of two con-
tiguous free blocks (size,free) and (size’,free). The right-hand side represents
the destructive update of the “next” field of the first block that is made to point

Formal Verification of the Heap Manager of an Operating System 409

to the block following the second block. As a result, the first block sees its size in-
creased by the size of the second block. The function get_endl is used to compute
the starting location of a block.

We can use this lemma to verify that a destructive update really performs
compaction of blocks. Let us consider a concrete example:

F
r
e
e

F
r
e
e

8 10

p

{ }

F
r
e
e

p

{ }
p + 1 *<- p + 22 8 + 2 + 10

In Coq, we input the following goal, that makes use of Heap_List assertions:

Goal ∀ p, {{ Heap_List ((8,free)::(10,free)::nil) p }}
nat_e p +e int_e 1 *<- nat_e p +e int_e 22
{{ Heap_List ((20,free)::nil) p }}.

The application of the axiom for backward reasoning (seen in Sect. 3.2) leads to:

p : nat
s : store.s
h : heap.h
H : Heap_List ((8, free) :: (10, free) :: nil) p s h
============================
∃ e’’ : expr,
((nat_e p +e int_e 1) �→ e’’ �
((nat_e p +e int_e 1) �→ (nat_e p +e int_e 22) −�
Heap_List ((20, free) :: nil) p)) s h

This new goal is precisely the conclusion of the lemma we gave above. Application
of this lemma terminates the proof.

5 Formal Verification

For each function of the heap manager, we give formal specifications using Hoare
triples written with the encoding of Sect. 3 and the assertions of Sect. 4. We
explain in more details the verification of the allocation function, because it is
the most involved.

Prior to verification, the C source code of each function is translated into the
programming language of separation logic. As a result of this translation, the
signature of each function is augmented with parameters to represent local vari-
ables and the return value. This explains the differences between the signatures
given in this section and in Sect. 2.1. The translation is explained in Sect. 6.2.

5.1 Formal Verification of Initialization

The initialization function hmInit transforms a given area of raw memory into an
initial heap-list that consists of a single free block. In the source code, this area
starts at location hmStart and has a fixed length KERNELHEAPSIZE. We formally
verify hmInit for the general case of any starting location and any size greater
than 4: the minimal space needed for two headers (the header of the free block
and the header of the terminal block):

410 N. Marti, R. Affeldt, and A. Yonezawa

Definition hmInit_specif := ∀ p size, size ≥ 4 →
{{ Array p size }} hmInit p size {{ Heap_List ((size-4,free)::nil) p }}.

The size of the array of memory corresponding to the free block is the size of
the whole area of memory minus the size of the two headers. The verification
of this triple is done almost automatically using a tactic provided by our Coq
implementation. The non-automatic part is due to the translation of the asser-
tions Array and Heap_List into the fragment of separation logic handled by this
tactic. See Sect. 6.1 for more details.

Despite its apparent simplicity, this function turns out to be buggy, as we
explain in Sect. 7.1.

5.2 Formal Verification of Allocation

The allocation function hmAlloc searches for a large-enough free block in the
heap-list, possibly performing compaction of free blocks if needed. If an adequate
block is found, it is split into an allocated block (whose location is returned) and
a free block (available for further allocations); otherwise, an error is returned.

We introduce new assertions to simplify specifications. Under the hypothesis
that (Heap_List lst p0) holds, the assertion (In_hl lst (p,size,flag) p0) means
that the block starting at location p has size size and flag flag. The assertion
(s |= b) holds when b is true in the store s.

As stated informally in Sect. 2.2, the specification of the allocation function
consists in checking that (1) newly allocated blocks have at least the requested
size, (2) they do not overlap with already allocated memory blocks (they are
“fresh”), and (3) neither previously allocated memory blocks nor the rest of the
memory is modified.

The formal specification of hmAlloc follows. In the pre-condition, we isolate
some already allocated block (x,sizex,alloc). In the post-condition, we ensure
that (1) the newly allocated block (y,size’’,alloc) has an appropriate size
(i.e., greater than the requested size), (2) this newly allocated block does not
overlap with previously allocated blocks (more precisely, the newly allocated
block is built out of free blocks since (Heap_List l adr � Array (y+2) size’’),
and it cannot be the previously allocated block x since x �= y), and (3) previously
allocated memory blocks and the rest of the memory are not modified (because
these areas are left outside of the area described by the Heap_List assertion).
The second disjunction in the post-condition applies when allocation fails.

Definition hmAlloc_specif := ∀ adr x sizex size, adr > 0 → size > 0 →
{{ fun s h => ∃ l, Heap_List l adr s h ∧ In_hl l (x,sizex,alloc) adr ∧

(s |= var_e hmStart == nat_e adr) }}
hmAlloc result size entry cptr fnd stts nptr sz

{{ fun s h => (∃ l, ∃ y, y > 0 ∧ (s |= var_e result == nat_e (y+2)) ∧
∃ size’’, size’’ ≥ size ∧ (Heap_List l adr � Array (y+2) size’’) s h ∧
In_hl l (x,sizex,alloc) adr ∧ In_hl l (y,size’’,alloc) adr ∧ x �= y)
∨
(∃ l, (s |= var_e result == nat_e 0) ∧
Heap_List l adr s h ∧ In_hl l (x,sizex,alloc) adr) }}.

Formal Verification of the Heap Manager of an Operating System 411

Other assertions are essentially technical. The equality about the variable hmStart
and the location adr is necessary because the variable hmStart is actually global
and written explicitly in the original C source code of the allocation function.
The inequality about the location adr is necessary because the function implicitly
assumes that there is no block starting at the null location. The inequality about
the requested size is not necessary, it is just to emphasize that null-allocation is
a special case (see Sect. 7.1 for a discussion).

The allocation function relies on three functions to do (heap-)list traversals,
compaction of free blocks, and eventually splitting of free blocks. In the rest of
this section, we briefly comment on the verification of these three functions.

Traversal. The function findFree traverses the heap-list in order to find a large-
enough free block. It takes as parameters the requested size and a return variable
entry to be filled with the location of an appropriate block if any:

Definition findFree_specif := ∀ adr x sizex size, size > 0 → adr > 0 →
{{ fun s h => ∃ l, Heap_List l adr s h ∧ In_hl l (x,sizex,alloc) adr ∧

(s |= (var_e hmStart == nat_e adr) &&& (var_e result == null)) }}
findFree size entry fnd sz stts

{{ fun s h => ∃ l, Heap_List l adr s h ∧ In_hl l (x,sizex,alloc) adr ∧
(s |= (var_e hmStart == nat_e adr) &&& (var_e result == null)) ∧
((∃ y, ∃ size’’, size’’ ≥ size ∧ In_hl l (y,size’’,free) adr ∧
(s |= (var_e entry == nat_e y) &&& (nat_e y >> null)))
∨
s |= var_e entry == null) }}.

The post-condition asserts that the search succeeds and the return value corre-
sponds to the starting location of a large-enough free block, or the search fails
and the return value is null.

Compaction. The function compact is invoked when traversal fails. Its role is to
merge all the contiguous free blocks of the heap-list, so that a new traversal can
take place and hopefully succeeds:

Definition compact_specif:= ∀ adr size sizex x, size > 0 → adr > 0 →
{{ fun s h => ∃ l, Heap_List l adr s h ∧ In_hl l (x,sizex,alloc) adr ∧

(s |= (var_e hmStart == nat_e adr) &&& (var_e result == null) &&&
(var_e cptr == nat_e adr)) }}

compact cptr nptr stts
{{ fun s h => ∃ l, Heap_List l adr s h ∧ In_hl l (x,sizex,alloc) adr ∧

(s |= (var_e hmStart == nat_e adr) &&& (var_e result == null)) }}.

The formal specification of compact asserts that it preserves the heap-list struc-
ture. Its verification is technically involved because it features two nested loops
and therefore large invariants. The heart of this verification is the application of
the compaction lemma already given in Sect. 4.2.

Splitting. The function split splits the candidate free block into an allocated
block of appropriate size and a new free block:

412 N. Marti, R. Affeldt, and A. Yonezawa

Definition split_specif := ∀ adr size sizex x, size > 0 → adr > 0 →
{{ fun s h => ∃ l, Heap_List l adr s h ∧ In_hl l (x,sizex,alloc) adr ∧

(s |= (var_e hmStart == nat_e adr) &&& (var_e result == null)) ∧
(∃ y, ∃ size’’, size’’ ≥ size ∧ In_hl l (y,size’’,free) adr ∧
(s |= var_e entry == nat_e y) ∧ y > 0 ∧ y �= x) }}

split entry size cptr sz
{{ fun s h => ∃ l, In_hl l (x,sizex,alloc) adr ∧

(∃ y, y > 0 ∧ (s |= var_e entry == int_e y) ∧
(∃ size’’, size’’ ≥ size ∧

(Heap_List l adr � Array (y+2) size’’) s h ∧
In_hl l (y,size’’,alloc) adr ∧ y �= x)) }}.

The pre-condition asserts that there is a free block of size greater than size

starting at the location pointed by entry (this is the block found by the previous
list traversal). The post-condition asserts the existence of an allocated block of
size greater than size (that is in general smaller than the original free block used
to be).

5.3 Formal Verification of Deallocation

The deallocation function hmFree does a list traversal; if it runs into the location
passed to it, it frees the corresponding block, and fails otherwise. Besides the
fact that an allocated block becomes free, we must also ensure that hmFree does
not modify previously allocated blocks nor the rest of the memory; here again,
this is taken into account by the definition of Heap_List:

Definition hmFree_specif := ∀ p x sizex y sizey statusy, p > 0 →
{{ fun s h => ∃ l, (Heap_List l p � Array (x+2) sizex) s h ∧

In_hl l (x,sizex,alloc) p ∧ In_hl l (y,sizey,statusy) p ∧
x �= y ∧ s |= var_e hmStart == nat_e p }}

hmFree (x+2) entry cptr nptr result
{{ fun s h => ∃ l, Heap_List l p s h ∧

In_hl l (x,sizex,free) p ∧ In_hl l (y,sizey,statusy) p ∧
s |= var_e result == HM_FREEOK }}.

The main difficulty of this verification was to identify a bug that allows for
deallocation of the terminal block, as we explain in Sect 7.1.

6 Practical Aspects of the Implementation

6.1 About Automation

Since our specifications take into account many details of the actual implemen-
tation, a number of Coq tactics needed to be written to make them tractable.

Tactics to decide disjointness and equality for heaps turned out to be very im-
portant. In practice, proofs of disjointness and equality of heaps are ubiquitous,
but tedious because one always needs to prove disjointness to make unions of
heaps commute; this situation rapidly leads to intricate proofs. For example, the
proof of the lemma hl_compaction given in Sect. 4.2 leads to the creation of 15

Formal Verification of the Heap Manager of an Operating System 413

sub-heaps, and 14 hypotheses of equality and disjointness. With these hypothe-
ses, we need to prove several goals of disjointness and equality. Fortunately, the
tactic language of Coq provides us with a means to automate such reasoning.

We also developed a certified tactic to verify automatically programs whose
specifications belong to a fragment of separation logic without the separating
implication (to compare with related work, this is the fragment of [9] without
inductively defined datatypes).

We used this tactic to verify the hmInit function, leading to a proof script three
times smaller than the corresponding interactive proof we made (58 lines/167
lines). Although the code in this case is straight-line, the verification is not fully
automatic because our tactic does not deal directly with assertions such as Array
and Heap_List.

Let us briefly comment on the implementation of this tactic. The target frag-
ment is defined by the inductive type assrt. The tactic relies on a weakest-
precondition generator wp_frag whose outputs are captured by another inductive
type L_assrt. Using this weakest-precondition generator, a Hoare triple whose
pre/post-conditions fall into the type assrt is amenable to a goal of the form
assrt → L_assrt → Prop. Given a proof system LWP for such entailments, one can
use the following lemma to automatically verify Hoare triples:

Lemma LWP_use: ∀ c P Q R,
wp_frag (Some (L_elt Q)) c = Some R →
LWP P R →
{{ assrt_interp P }} c {{ assrt_interp Q }}.

—The function assrt_interp projects objects of type assrt (a deep encoding)
into the type assert (the shallow encoding introduced in this paper).
Goals of the form assrt → L_assrt → Prop can in general be solved automati-
cally because the weakest-precondition generator returns goals that are inside
the range of Presburger arithmetic (pointers are rarely multiplied between each
other) for which Coq provides a native tactic (namely, the Omega test).

6.2 Translation from C Source Code

The programming language of separation logic is close enough to the subset of the
C language used in the Topsy heap manager to enable a translation that preserves
a syntactic correspondence. Thanks to this correspondence, it is immediate to
identify a bug found during verification with its origin in the C source code.
Below, we explain the main ideas behind the translation in question. Though it
is systematic enough to be automated, we defer its certified implementation to
future work and do it by hand for the time being.

The main difficulty in translating the original C source code is the lack of
function calls and labelled jumps (in particular, the break instruction) in sepa-
ration logic. To deal with function calls, we add global variables to serve as local
variables and to carry the return value. To deal with the break instruction, we
add a global variable and a conditional branching to force exiting where loops
can break.

414 N. Marti, R. Affeldt, and A. Yonezawa

static void compact(HmEntry at) {
HmEntry atNext;

while (at != NULL) {
atNext = at->next;

while ((at->status == HM_FREED) &&
(atNext != NULL)) {

if (atNext->status != HM_FREED)
break;

at->next = atNext->next;

atNext = atNext->next;
}
at = at->next;}

}

Definition compact (at
atNext
brk tmp cstts nstts:var.v) :=

while (var_e at =/= null) (
atNext <-* (at -.> next);
brk <- nat_e 1 ;
cstts <-* (at -.> status);
while ((var_e cstts == Free) &&&

(var_e atNext =/= null) &&&
(var_e brk == nat_e 1)) (

nstts <-* (atNext -.> status);
ifte (var_e nstts =/= Free) thendo (

brk <- nat_e 0
) elsedo (

tmp <-* atNext -.> next;
at -.> next *<- var_e tmp;
atNext <-* atNext -.> next

));
at <-* (at -.> next)

).

Fig. 1. Code Translation from C to Coq—Example

Another minor point is that we need to add temporary variables to make up
for the restricted set of expressions and commands of separation logic. For exam-
ple, the evaluation of an expression in separation logic never returns a location,
only values, thus we need beforehand to load a location into variable to be able
to use it in a boolean expression; also, there is no command to lookup and mu-
tate memory at the same time. We overcome these restrictions by decomposing
complex expressions and commands, and using temporary variables. These tem-
porary variables correspond to the parameters written without vowels in our
specifications.

By way of example, Fig. 1 displays side-by-side the original compact function
and its Coq counterpart.

The tables below summarize the whole Coq implementation:

Script files Contents (lines)

util.v Non-standard lemmas about integers, lists, etc. (825)
heap.v Modules for locations, values, and heaps (2388)
bipl.v Separation logic connectives (with tactics) (1579)
axiomatic.v Separation logic triples, frame rule (1080)
vc.v Weakest-precondition generator (196)
contrib.v Various lemmas (arrays, etc.) (1077)
contrib tactics.v Various tactics (Omega extensions, etc.) (324)
examples.v Small examples (411)
example reverse list.v Reverse-list example (383)
frag.v Tactic for a fragment of separation logic (1972)
frag examples.v Examples for the tactic above (176)

total: 10411 lines

Formal Verification of the Heap Manager of an Operating System 415

Script files Contents (lines)
topsy hm.v Heap-list definition and properties (1015)
topsy hmInit.v Initialization code, specification, and verification (313)
topsy hmAlloc.v Allocation code, specifications, and verifications (2762)
topsy hmFree.v Deallocation code, specification, and verification (536)
hmAlloc example.v Example of Sect. 7.2 (130)

total: 4756 lines

7 Benefits of Formal Verification

The main output of our experiment is that we have found several issues and
bugs in the original source code of the Topsy heap manager. Another output is
the Coq implementation of separation logic, that is readily available for other
experiments. In particular, the verification of the Topsy heap manager in itself
can actually be used for other verifications.

7.1 Issues and Bugs Found in the Original Source Code

Out of Range Initialization. When verifying the initialization function of the
heap manager (Sect. 5.1), we found that the header of the terminal block was
actually written outside of the memory area reserved for the heap manager. This
illegal destructive update made the Heap_List assertion unprovable because the
latter holds for a fixed area of memory. We corrected this bug by changing a
single arithmetic operation, suggesting a programming miss. In all fairness, we
must say that this bug was corrected in versions of Topsy posterior to version 2
(that we are using for verification).

Optimizations of Allocation. When verifying the allocation function (Sect. 5.2),
we found several useless operations that suggested immediate optimizations.

One such useless operation is the possibility to allocate a non-empty memory
block (that is, a header and a non-empty array of memory) when performing a
null-size allocation. Since null-size allocations are not filtered out, the alignment
calculation is applied anyway, resulting in a non-empty allocation (in addition
to the header). This was highlighted when writing assertions. We improved the
implementation by forcing failure for null-size allocation.

Among other optimizations, there were useless assignments (to dead variables)
and useless tests. For example, there were two identical variables assignments
before calling and at the beginning of the findFree function; this was highlighted
when writing the loop invariant in findFree. More interestingly, there was a
useless test in the compact function. The second conjunct of the test of the inner
loop (see Fig. 1) is useless because only the terminal block marked as allocated
can point to null. Such an optimization cannot be done by an ordinary compilers,
contrary to the former one.

Deallocation of the Terminal Block. When verifying the deallocation function
(Sect. 5.3), we found that it was possible to suppress allocable space without

416 N. Marti, R. Affeldt, and A. Yonezawa

performing any allocation. This is because it is possible to deallocate the terminal
block of the heap-list to trick compaction. The problem is better explained by
the following scenario:

F
r
e
e

A
l
l
o
c

n
u
ll

F
r
e
e

F
r
e
e

n
u
ll

hmFree

F
r
e
e

n
u
ll

compact

In this scenario, the terminal block is preceded by a free block. If we deallo-
cate the terminal block and try to allocate a too-large block, this will trigger
compaction and cause the leading free block to point to null. This problem is
easily identified by the Heap_List assertion that enforces the terminal block to
be marked as allocated. We fixed this problem by adding a test on the “next”
field of the block to be deallocated in the deallocation function.

7.2 Using the Verification Result to Verify Other Code

Our verification of the Topsy heap manager provides us with new separation
logic axioms that can be used for dynamic memory allocation without resorting
to the native malloc/free commands of separation logic. In other words, we can
use the specifications of hmAlloc and hmFree as triples to verify programs. For
example, let us consider the following program:

Definition hmAlloc_example result entry cptr fnd stts nptr sz v :=
hmAlloc result 1 entry cptr fnd stts nptr sz;
ifte (var_e result =/= nat_e 0) thendo (

(var_e result *<- int_e v)
) elsedo (skip).

This program allocates a new block using hmAlloc, stores its location into the
variable result, and stores some value v into this block. Using the specification
of hmAlloc proved in Sect. 5.2, we can prove the following specification:

Definition hmAlloc_example_specif := ∀ v x e p, p > 0 →
{{ (nat_e x �→ int_e e) �

(fun s h => ∃ l, (s |= var_e hmStart == nat_e p) ∧
Heap_List l p s h ∧ In_hl l (x,1,alloc) p) }}

hmAlloc_example result entry cptr fnd stts nptr sz v
{{ fun s h => s |= var_e result =/= nat_e 0 →

((nat_e x �→ int_e e) � (var_e result �→ int_e v) � TT �
(fun s h => ∃ l, Heap_List l p s h ∧ In_hl l (x,1,alloc) p)) s h }}.

The post-condition asserts that, in case of successful allocation, the newly allo-
cated block is separated from any previously allocated block.

8 Related Work

Our use case is reminiscent of work by Yu et al. that propose an assembly lan-
guage for proof-carrying code and apply it to certification of dynamic storage
allocation [7]. The main difference is that we deal with existing C code, whose

Formal Verification of the Heap Manager of an Operating System 417

verification is more involved because it has not been written with verification in
mind. In particular, the heap-list data structure has been designed to optimize
space usage; this leads to trickier manipulations (e.g., nested loop in compact),
longer source code, and ultimately bugs, as we saw in Sect. 7.1. Also both al-
locators differ: the Topsy heap manager is a real allocation facility in the sense
that the allocation function is self-contained (the allocator of Yu et al. relies on a
pre-existing allocator) and that the deallocation function deallocated only valid
blocks (the deallocator of Yu et al. can deallocate partial blocks).

The implementation of separation logic we did in the Coq proof assistant
improves the work by Weber in the Isabelle proof assistant [8]. We think that
our implementation is richer since it benefits from a substantial use case. In
particular, we have developed several practical lemmas and tactics. Both imple-
mentations also differ in the way they implement heaps: we use an abstract data
type implemented by means of modules for the heap whereas Weber uses partial
functions.

Mehta and Nipkow developed modeling and reasoning methods for imperative
programs with pointers in Isabelle [12]. The key idea of their approach is to model
each heap-based data structure as a mapping from locations to values together
with a relation, from which one derives required lemmas such as separation
lemmas. The combination of this approach with Isabelle leads to compact proofs,
as exemplified by the verification of the Schorr-Waite algorithm. In contrast,
separation logic provides native notions of heap and separation, making it easier
to model, for example, a heap containing different data structures (as it is the
case for the hmInit function). The downside of separation logic is its special
connectives that call for more implementation work regarding automation.

Tuch and Klein extended the ideas of Mehta and Nipkow to accommodate
multiple datatypes in the heap by adding a mapping from locations to types [13].
Thanks to this extension, the authors certified an abstraction of the virtual
mapping mechanism in the L4 kernel from which they generate verified C code.
Obviously, such a refinement strategy is not directly applicable to the verification
of existing code such as the Topsy heap manager. More importantly, the authors
point that the verification of the implementation of malloc/free primitives is not
possible in their setting because they “break the abstraction barrier” (Sect. 6
of [13]).

Schirmer also developed a framework for Hoare logic-style verification inside
Isabelle [11]. The encoded programming language is very rich, including in par-
ticular procedure calls, and heap-based data structures can be modeled using
the same techniques as Mehta and Nipkow. Thanks to the encoding of proce-
dure calls, it becomes easier to model existing source code (by avoiding, for
example, the numerous variables we needed to add to translate the source code
of the Topsy heap manager into our encoding of separation logic). However, it is
not clear whether this richer encoding scales well for verification of non-trivial
examples.

Caduceus [14] is a tool that takes a C program annotated with assertions
and generates verification conditions that can be validated with various theorem

418 N. Marti, R. Affeldt, and A. Yonezawa

provers and proof assistants. It has been used to verify several non-trivial C pro-
grams including the Schorr-Waite algorithm [15]. The verification of the Topsy
heap manager could have been done equally well using a combination of
Caduceus and Coq. However, Caduceus does support separation logic. Also, we
needed a verification tool for assembly code in Topsy; for this purpose, a large
part of our implementation for separation logic is readily reusable (this is actu-
ally work in progress). Last, we wanted to certify automation inside Coq instead
of relying on a external verification condition generator.

Berdine, Calcagno and O’Hearn have developed Smallfoot, a tool for checking
separation logic specifications [10]. It uses symbolic execution to produce verifi-
cation conditions, and a decision procedure to prove them. Although Smallfoot
is automatic (even for recursive and concurrent procedures), the assertions only
describe the shape of data structures without pointer arithmetic. Such a limita-
tion excludes its use for data structures such as heap-lists.

9 Conclusion

In this paper, we formally specified and verified the heap manager of the Topsy
operating system inside the Coq proof assistant. In order to deal with pointers and
ensure the separation of memory blocks, we used separation logic. This verification
approach proved very effective since it enabled us to find bugs in the original C
source code. In addition, this use-case led us to develop a Coq library of lemmas
and tactics that is reusable for other formal verifications of low-level code.

Recent Work. According to the specification described in this paper, an alloca-
tion function that always fails is correct. A complementary specification should
make clearer the condition under which the allocation function is expected to
succeed. In Topsy, allocation always succeeds when there is a list of contiguous
free blocks whose compaction has the requested size. We have recently completed
the verification of such a specification:

Definition hmAlloc_specif2 := ∀ adr size, adr > 0 → size > 0 →
{{ fun s h => ∃ l1, ∃ l2, ∃ l,

(Heap_List (l1 ++ (Free_block_list l) ++ l2) adr) s h ∧
Free_block_compact_size l ≥ size ∧
(s |= var_e hmStart == nat_e adr) }}

hmAlloc result size entry cptr fnd stts nptr sz
{{ fun s h => ∃ l, ∃ y,

y > 0 ∧ (s |= var_e result == nat_e (y+2)) ∧
∃ size’’, size’’ ≥ size ∧
(Heap_List l adr � Array (y+2) size’’) s h ∧
In_hl l (y,size’’,alloc) adr }}.

This verification turned out to be technically more involved than the one de-
scribed in this paper because of the numerous clauses required by the verification
of compact.

Formal Verification of the Heap Manager of an Operating System 419

Acknowledgments. The authors would like to thank Prof. Andrew W. Appel and
his colleagues at INRIA for numerous suggestions that substantially improved
the Coq implementation.

References

1. John C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures.
In 17th IEEE Symposium on Logic in Computer Science (LICS 2002), p. 55–74.
Invited lecture.

2. Lukas Ruf and various contributors. TOPSY – A Teachable Operating System.
http://www.topsy.net/.

3. Lukas Ruf, Claudio Jeker, Boris Lutz, and Bernhard Plattner. Topsy v3: A NodeOS
For Network Processors. In 2nd International Workshop on Active Network Tech-
nologies and Applications (ANTA 2003).

4. Various contributors. The Coq Proof assistant. http://coq.inria.fr.
5. Nicolas Marti, Reynald Affeldt, and Akinori Yonezawa. Towards Formal Verifica-

tion of Memory Properties using Separation Logic. In 22nd Workshop of the Japan
Society for Software Science and Technology (JSSST 2005).

6. Reynald Affeldt and Nicolas Marti. Towards Formal Verification of Memory Prop-
erties using Separation Logic. http://savannah.nongnu.org/projects/seplog.
Online CVS.

7. Dachuan Yu, Nadeem Abdul Hamid, and Zhong Shao. Building Certified Li-
braries for PCC: Dynamic Storage Allocation. Science of Computer Programming,
50(1-3):101–127. Elsevier, Mar. 2004.

8. Tjark Weber. Towards Mechanized Program Verification with Separation Logic.
In 13th Conference on Computer Science Logic (CSL 2004), volume 3210 of LNCS,
p. 250–264. Springer.

9. Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. A Decidable Fragment
of Separation Logic. In 24th International Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2004), volume 3328 of
LNCS, p. 97–109. Springer.

10. Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Symbolic Execution
with Separation Logic. In 3rd Asian Symposium on Programming Languages and
Systems (APLAS 2005), volume 3780 of LNCS, p. 52–68. Springer.

11. Norbert Schirmer. A Verification Environment for Sequential Imperative Programs
in Isabelle/HOL. In 11th International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR 2004), volume 3452 of LNCS, p. 398–
414. Springer.

12. Farhad Mehta and Tobias Nipkow. Proving Pointer Programs in Higher-Order
Logic. In Information and Computation, 199:200–227. Elsevier, 2005.

13. Harvey Tuch and Gerwin Klein. A Unified Memory Model for Pointers. In 12th
International Conference on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR 2005), volume 3835 of LNCS, p. 474–488. Springer.

14. Jean-Christophe Filliâtre. Multi-Prover Verification of C Programs. In 6th Inter-
national Conference on Formal Engineering Methods (ICFEM 2004). volume 3308
of LNCS, p. 15–29. Springer.

15. Thierry Hubert and Claude Marché. A case study of C source code verification:
the Schorr-Waite algorithm. In 3rd IEEE International Conference on Software
Engineering and Formal Methods (SEFM 2005).

A Statically Verifiable Programming Model for
Concurrent Object-Oriented Programs

Bart Jacobs1,�, Jan Smans1,�, Frank Piessens1, and Wolfram Schulte2

1 DistriNet, Dept. Computer Science, K.U. Leuven
Celestijnenlaan 200A, 3001 Leuven, Belgium
{bartj, jans, frank}@cs.kuleuven.be

2 Microsoft Research
One Microsoft Way, Redmond, WA, USA

schulte@microsoft.com

Abstract. Reasoning about multithreaded object-oriented programs is
difficult, due to the non-local nature of object aliasing, data races, and
deadlocks. We propose a programming model that prevents data races
and deadlocks, and supports local reasoning in the presence of object
aliasing and concurrency. Our programming model builds on the multi-
threading and synchronization primitives as they are present in current
mainstream languages. Java or C# programs developed according to
our model can be annotated by means of stylized comments to make the
use of the model explicit. We show that such annotated programs can be
formally verified to comply with the programming model. In other words,
if the annotated program verifies, the underlying Java or C# program is
guaranteed to be free from data races and deadlocks, and it is sound to
reason locally about program behavior. We have implemented a verifier
for programs developed according to our model in a custom build of the
Spec# programming system, and have validated our approach on a case
study.

1 Introduction

Writing correct multithreaded software in mainstream languages such as Java or
C# is notoriously difficult. The non-local nature of object aliasing, data races,
and deadlocks makes it hard to reason about the correctness of such programs.
Moreover, many assumptions made by developers about concurrency are left
implicit. For instance, in Java, many objects are not intended to be used by
multiple threads, and hence it is not necessary to perform synchronization before
accessing their fields. Other objects are intended to be shared with other threads
and accesses should be synchronized, typically using locks. However, the program
text does not make explicit if an object is intended to be shared, and as a
consequence it is practically impossible for the compiler or other static analysis
tools to verify if locking is performed correctly.
� Bart Jacobs and Jan Smans are Research Assistants of the Fund for Scientific Re-

search - Flanders (Belgium) (F.W.O.-Vlaanderen).

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 420–439, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Statically Verifiable Programming Model 421

We propose a programming model for concurrent programming in Java-like
languages, and the design of a set of program annotations that make the use of
the programming model explicit. For instance, a developer can annotate his code
to make explicit whether an object is intended to be shared with other threads
or not. These annotations provide sufficient information to static analysis tools
to verify if locking is performed correctly: shared objects must be locked before
use, unshared objects can only be accessed by the creating thread. Moreover, the
verification can be done modularly, hence verification scales to large programs.

Several other approaches exists to verify race- and deadlock-freedom for mul-
tithreaded code. They range from generating verification conditions [1,2,3,4,5,6],
to type systems [7,8]. (See Section 7 for an overview of related work.)

Our approach is unique, in that it builds around protecting invariants and
that it allows sequential reasoning for multithreaded code. The contributions of
this paper are thus as follows:

– We present a programming model and a set of annotations for concurrent
programming in Java-like languages.

– Following our programming model ensures absence of data races and dead-
locks.

– The generated verification conditions allow sound local reasoning about pro-
gram behavior. Note that in this paper we ignore null dereference checking
to avoid clutter, although our prototype fully supports it.

– We have prototyped a verifier as a custom build of the Spec# programming
system [9,10], and in particular its program verifier for sequential programs.

– Through a case study we show the model is usable in practice, and the
annotation overhead is acceptable.

The present approach evolved from [11]. It improves upon it by directly
supporting platform-standard locking primitives, by preventing deadlocks, by
adding support for immutable objects, and by reporting on experience gained
using a prototype implementation. As did [11], it builds on and extends the
Spec# programming methodology [12] that enables sound reasoning about ob-
ject invariants in sequential programs.

The rest of the paper is structured as follows. We introduce the method-
ology in three steps. The model of Section 2 prevents low-level data races on
individual fields. Section 3 adds deadlock prevention. The final model, which
adds prevention of races on data structures consisting of multiple objects, is pre-
sented in Section 4. Each section consists of three subsections, that elaborate the
programming model, the program annotations, and the static verification rules,
respectively. The remaining sections discuss immutable objects, experience, and
related work, and offer a conclusion.

2 Preventing Data Races

A data race occurs when multiple threads simultaneously access the same vari-
able, and at least one of these accesses is a write access. Developers can protect

422 B. Jacobs et al.

data structures accessed concurrently by multiple threads by associating a mu-
tual exclusion lock with each data structure and ensuring that a thread accesses
the data structure only when it holds the associated lock. However, mainstream
programming languages such as Java and C# do not force threads to acquire
any locks before accessing data structures, and they do not enforce that locks
are associated with data structures consistently.

A simple strategy to prevent data races is to lock every object before accessing
it. Although this approach is safe, it is rarely used in practice since it incurs
a major performance penalty, is verbose, and is prone to deadlocks. Instead,
standard practice is to only lock the objects that are effectively shared between
multiple threads. However, it is hard to distinguish shared objects (which should
be locked) from unshared objects based on the program text. As a consequence,
a compiler cannot enforce a locking discipline where shared objects can only be
accessed when locked without additional annotations.

An additional complication is the fact that the implementation of a method
may assume that an object is already locked by its caller. Hence, the implemen-
tation will access fields of a shared object without locking the object first. In
such a case, merely indicating which objects are shared does not suffice. The
implementor of a method should also make his assumptions about locks that are
already held by the calling thread explicit in a method contract.

In this section, we describe a simple version of our programming model that
deals with data races on the fields of shared objects. Later sections develop this
model further to deal with deadlocks and high-level races on multi-object data
structures.

2.1 Programming Model

We describe our programming model in the context of Java, but it applies equally
to C# and other similar languages.

In our programming model, accesses to shared objects are synchronized using
Java’s synchronized statement. A thread may enter a synchronized (o) block
only if no other thread is executing inside a synchronized (o) block; otherwise,
the thread waits. In the remainder of the paper, we use the following terminology
to refer to Java’s built-in synchronization mechanism: when a thread enters a
synchronized (o) block, we say it acquires o’s lock or, as a shorthand, that it
locks o; while it is inside the block, we say it holds o’s lock ; and when it exits
the block, we say it releases o’s lock, or, as a shorthand, that it unlocks o. Note
that, contrary to what the terminology may suggest, when a thread locks an
object, the Java language prevents other threads from locking the object but
it does not prevent other threads from accessing the object’s fields. This is the
main problem addressed by the proposed methodology. While a thread holds an
object’s lock, we also say that the object is locked by the thread.

An important terminological point is the following: when a thread t’s program
counter reaches a synchronized (o) block, we say the thread attempts to lock
o. Some time may pass before the thread locks o, specifically if another thread
holds o’s lock. Indeed, if the other thread never unlocks o, t never locks o. The

A Statically Verifiable Programming Model 423

distinction is important because our programming model imposes restrictions on
attempting to lock an object.

Our programming model prevents data races by ensuring that no two threads
have access to a given object at any one time. Specifically, it conceptually asso-
ciates with each thread t an access set t.A, which is the set of objects whose fields
thread t is allowed to read or write at a given point, and the model ensures that
no two threads’ access sets ever intersect. Access sets can grow and shrink when
objects are created, objects are shared, threads are created, or when a thread
enters or exits a synchronized block. Note that these access sets do not exist
at run time: we use them to explain the programming model, and to implement
the static verification.

– Object creation. When a thread creates a new object, the object is added
to the creating thread’s access set. This means the constructor can initialize
the object’s fields without acquiring a lock first. This also means single-
threaded programs just work: if there is only a single thread, it creates all
objects, and can access them without locking.

– Object sharing. In addition to an access set, our model associates with
each run-time state a global shared set S. We call the objects in S shared
and objects in the complement of S unshared. The shared set, like the access
sets, is conceptual: it is not present at run time, but used to explain the
model and implement the verification.
A new object is initially unshared. Threads other than the creating thread
are not allowed to access its fields. In addition, no thread is allowed to
attempt to lock an unshared object: our programming model does not allow
a synchronized(o){...} operation unless o is shared. In our programming
model, objects that are not intended to be shared are never locked.
If, at some point in the code, the developer wants to make the object available
for concurrent access, he has to indicate this through an annotation (the
share o annotation). When an object is being shared, the object is removed
from the creating thread’s access set and added to the shared set. From
that point on, the object o is shared, and threads can attempt to acquire
the object’s lock. If, subsequent to this transition, any thread, including the
creating thread, wishes to access the object, it must acquire its lock first.
Once shared, an object can never revert to the unshared state.

– Thread creation. Starting a new thread transfers the accessibility of the
receiver object of the thread’s main method (i.e. the Runnable object in Java,
or the ThreadStart delegate instance’s target object in the .NET Framework)
from the starting thread to the started thread. Otherwise, the thread’s main
method would not be allowed to access its receiver.
In addition, the precondition requires this receiver object to be unshared.
As a consequence, the invariant that shared objects in a thread’s access set
are also locked by that thread is maintained.

– Acquiring and releasing locks. When an object is being shared, it is
removed from the creating thread’s access set and added to the shared set.
Since the object is now not part of any thread’s access set, no thread is

424 B. Jacobs et al.

allowed to access it. To gain access to such a shared object, a thread must
lock the object first. When a thread acquires an object’s lock, the object is
added to that thread’s access set for the duration of the synchronized block.

As illustrated in Figure 1, an object can be in one of three states: unshared ,
free (not locked by any thread and shared) or locked (locked by some thread and
shared). Initially, an object is unshared. Some objects will eventually transition
to the shared state (at a program point indicated by the developer). After this
transition, the object is not part of any thread’s access set and is said to be
free. To access a free object, it must be locked first, changing its state to locked
and adding the object to the locking thread’s access set. Unlocking the object
removes it from the access set and makes it free again.

Fig. 1. The three states of an object

Let’s summarize. Threads are only allowed to access objects in their corre-
sponding access set. A thread’s access set consists of all objects whose lock it
holds, the objects it has created but not shared yet, and of the receiver ob-
ject of the thread’s main method, if the thread did not share this object yet.
Our programming model prevents data races by ensuring that access sets never
intersect.

2.2 Program Annotations

In this section, we elaborate on the annotations needed by our approach by
means of the example shown in Figure 2. The example consists of a program that
observes events from different sources and keeps a count of the total number of
events observed. Since the count is updated by multiple threads, it is subject to
data races unless precautionary measures are taken. Our approach ensures that
it is impossible to “forget” to take such measures.

In our prototype implementation (see Section 6), annotations are written as
stylized comments. But to improve readability, we use a language integrated
syntax in this paper. Furthermore, in this paper := denotes assignment and =
denotes equality.

The program shown in Figure 2 is a Java program augmented with a number of
annotations (indicated by the gray background). More specifically, three sorts of
annotations are used: share commands, shared modifiers and method contracts.

– The share command makes an unshared object available for concurrent
access by multiple threads. In the example, the counter object is shared
between all sessions.

A Statically Verifiable Programming Model 425

class Counter {
int count ;
Counter()

ensures this ∈ tid.A ∧ this �∈ S;
{}

}
class Session implements Runnable {

shared Counter counter ;
int sourceId ;
Session(Counter counter , int sourceId)

requires counter ∈ S;

ensures this ∈ tid.A ∧ this �∈ S;
{

this.counter := counter ;
this.sourceId := sourceId ;

}
public void run()

requires tid.A = {this} ∧ this �∈ S;
{

for (; ;) {
// Wait for event from source sourceId (not shown)
synchronized (counter) {

counter .count++;
}

}
}

}
class Program {

static void start()
requires tid.A = ∅;

{
Counter counter := new Counter ();
share counter ;
new Thread(new Session(counter , 1)).start ();
new Thread(new Session(counter , 2)).start ();

}
}

Fig. 2. Example program illustrating the approach of Section 2

– Fields and parameters can be annotated with a shared modifier, indicating
they can only hold shared objects. The field counter of Session is an example
of a field with a shared modifier.

– Method contracts are needed to make modular verification possible. They
consist of preconditions and postconditions. A precondition states what
the method implementation assumes about the current thread’s access set

426 B. Jacobs et al.

(denoted as tid.A) and about the global shared set. For instance, the pre-
condition of Program ’s start method requires the access set to be empty.
Postconditions state properties of access sets and the shared set. For ex-
ample, the postcondition of Session’s constructor guarantees that the new
object is in the current thread’s access set and unshared.

Note that our annotations are entirely erasable, i.e. they have no effect what-
soever on the execution of the program.

The example program is correctly synchronized, and the annotations enable
our static verifier to prove this. We discuss in the next subsection how this
is done. If the developer forgets to write the synchronized block in the run
method, the program is no longer correctly synchronized. Specifically, the access
of counter .count in method run violates the programming model, since object
counter is not in the thread’s access set.

Thread Creation. To verify the example, we also need the method contracts
of all library methods used by the program. These are shown in Figure 3.

The method contracts shown in Figure 3 encode the programming model’s
rules regarding thread creation.

– The Thread constructor requires its argument to be part of the calling
thread’s access set and unshared. The constructor removes the Runnable
object from the access set and associates it with the Thread object. Indeed,
the constructor’s postcondition does not state that in the post-state, the
Runnable object is still in the access set, and therefore the caller cannot
assume this and can no longer access the Runnable object.

– When method start is called, a new thread is started and the Runnable
object associated with the Thread object is inserted into the new thread’s
access set. Method run’s precondition allows the method to assume that its
receiver is the only object in the access set and that this object is unshared.

public interface Runnable {
void run();

requires tid.A = {this} ∧ this �∈ S;
}
public class Thread {

public Thread(Runnable runnable)
requires runnable ∈ tid.A ∧ runnable �∈ S;

ensures this ∈ tid.A ∧ this �∈ S;
{ . . . }
public void start()

requires this ∈ tid.A;
{ . . . }

}

Fig. 3. Contracts for the library methods used by the program in Figure 2

A Statically Verifiable Programming Model 427

2.3 Static Verification

We have explained our programming model informally in the previous sections.
In this section we define the model formally, and show how we can statically
verify adherence to the model in a modular (i.e. per-method) way.

We proceed as follows: a program P enriched with our annotations is trans-
lated to a verification-time program P ′ enriched with assertions and classical
method contracts. This translation defines the semantics of our annotations,
and is the formal definition of our programming model: the original annotated
program P is correct according to our model, if and only if the translated pro-
gram P ′ is correct with respect to its assertions and classical method contracts.
To check if the translated program P ′ is correct, we use an existing automatic
program verifier for single-threaded programs. Our experiments show (Section 6)
that state-of-the-art verifiers are capable of verifying realistic programs in this
way.

The contributions of this paper are in the design of the annotation syntax (for
the multithreading-specific annotations) and the translation of the annotated
program; we use existing technology [10] for sequential program verification.
The translation involves two things. In a first step, we insert two verification-
only variables into the program (so called ghost variables) to track the state
necessary to do the verification. The ghost variable tid.A represents the current
thread’s access set, while S represents the set of shared objects.

Then, in a second step each method of the original program is translated in
such a way that the translated method can be verified modularly. The method
contracts that the developer writes in annotations are classical method contracts
on the ghost state introduced in the first step. The code and other annotations
written by the developer are translated into verification-time code and proof
obligations (written as assertions) for the verifier. The essence of the transla-
tion of code and annotations is shown in Figure 4. It is a formalization of the
programming model rules introduced in Section 2.1. We ignore the fact that

o := new C; ≡
o← new C;
assume o �∈ S;
tid.A← tid.A ∪ {o};

x := o.f ; ≡
assert o ∈ tid.A;
x← o.f ;

o.f := x; ≡
assert o ∈ tid.A;
if (f is declared shared)

assert x ∈ S;
o.f ← x;

share o; ≡
assert o ∈ tid.A;
assert o �∈ S;
tid.A← tid.A \ {o};
tid.S ← tid.S ∪ {o};

synchronized (o) B ≡
assert o ∈ S;
assert o �∈ A;
havoc o.∗;
tid.A← tid.A ∪ {o};
B
tid.A← tid.A \ {o};

Fig. 4. Translation of source program commands to verification-time commands

428 B. Jacobs et al.

object references can be null to reduce clutter. The verification-time code for a
synchronized block includes a havoc operation that assigns an arbitrary value
to all fields of the object being locked. This reflects the fact that other threads
may have modified these fields. Source program assignment and verification-time
assignment are shown as := and ←, respectively.

3 Lock Levels for Deadlock Prevention

The approach of Section 2 prevents data races but it does not prevent deadlocks.
In this section, we introduce our approach to deadlock prevention.

For the purpose of this paper, we define a deadlock to be a cycle of threads
such that each thread is waiting for the next thread to release some lock. For-
mally, a deadlock is a sequence of threads t0, . . . , tn−1 and a sequence of objects
o0, . . . , on−1 such that ti holds oi’s lock and is trying to acquire o(i+1) mod n’s
lock. Threads involved in a deadlock are stuck forever.

The prototypical way in which a developer can avoid deadlocks is by defining
a partial order over all shared objects, and by allowing a thread to attempt to
acquire an object’s lock only if the object is less than all objects whose lock the
thread already holds.

There are different common strategies for defining such a partial order. A
first one is to define the order statically. This approach is common in case the
shared objects protect global resources: code will have to acquire these resources
in the statically defined order. A second strategy is to define the order based
on some field of the objects involved. For instance to define a transfer operation
between accounts, the two accounts involved can be locked in order of the account
number, thus avoiding deadlocks while locking account objects.

In some cases the developer of a particular module may only wish to impose
partial constraints on the locking order or may wish to abstract over a set of
objects. For instance the developer of the Subject class in the Subject-Observer
pattern may wish to specify that Observers should be locked before locking the
Subject and not vice-versa. In other words, all Observers are above the Subject
in the deadlock prevention ordering.

3.1 Programming Model

Our programming model is designed to support all three scenarios outlined
above. The developer can indicate his intended ordering through the interme-
diary of lock levels. A lock level is a value of the new primitive type (existing
only for verification purposes) locklevel. A new lock level can be constructed
between given existing lock levels using the constructor

between({�A
1 , . . . , �

A
m}, {�B

1 , . . . , �B
n }),

where 0 ≤ m,n, provided that each specified lower bound is below each specified
upper bound; formally, for each 1 ≤ i ≤ m and 1 ≤ j ≤ n, �A

i < �B
j . The

new value is above �A
1 , . . . , �A

m and below �B
1 , . . . , �B

n . There is no other way to

A Statically Verifiable Programming Model 429

construct a lock level, which ensures that the less-than (<) relation on lock levels
is always a partial order.

In the model, a lock level is associated with an object the moment the object is
shared. This defines the lock order: for shared objects o1 and o2, we have o1 < o2
iff o1.lockLevel < o2.lockLevel . A thread is only allowed to lock an object if the
object is less than the objects whose lock the thread already holds.

The level of indirection introduced by the lock levels provides an easy way to
abstract over sets of objects. In the Subject-Observer example discussed above,
all Observer objects can be given the same lock level (that should be above the
Subject lock level).

3.2 Program Annotations

In a concurrent Java or C# program, a lock ordering adopted by the developers
of a program for the purpose of deadlock prevention is not explicit in the program
text, although it can be documented informally in comments. We propose anno-
tations that make it possible for a developer to document the intended ordering
formally. As a consequence, static verification of adherence to the ordering is
possible (Section 3.3).

Three kinds of annotations are important. We discuss them using the exam-
ple of the Dining Philosophers program in Figure 5. The program implements
a deadlock-free solution to the Dining Philosophers problem with three philoso-
phers. Our annotations explain formally why the program is deadlock-free.

The first kind of annotation is the creation of a lock level using the between
constructor. The example defines the lock levels and their ordering statically in
class Program ’s start method. Three linearly ordered levels are defined: level1 <
level2 < level3 .

The second kind of annotation associates lock levels with shared objects. The
share annotation is extended to accept a lock level as the second argument.
Again, this happens three times in the example: each of the forks is shared with
its associated lock level. As a consequence, fork objects are totally ordered, with
fork1 < fork2 < fork3 . Hence, forks can only be locked in descending order.

The third kind of annotations are the method contracts that make modular
static verification possible. Method contracts make explicit what assumptions the
method makes about the ordering of parameter objects, or about locks already
held by the current thread. For instance the constructor of Philosopher expects
its first argument to have a lower lock level than the second argument, and the
run method requires that the current thread holds no locks.

These annotations enable a formal static verification of deadlock-freeness.

3.3 Static Verification

Static verification is again done by translating the annotated program P into
a program P ′ enriched with proof obligations for a static verifier (in the form
of classical method contracts and assertions). The translation adds ghost fields
and variables to track the necessary state. To track the lock level of objects, we
add to each object a ghost field called lockLevel , whose value is either null or a

430 B. Jacobs et al.

class Fork {
}
class Philosopher implements Runnable {

shared Fork fork1 ;
shared Fork fork2 ;

Philosopher (shared Fork fork1 , shared Fork fork2)
requires fork1 .lockLevel < fork2 .lockLevel ;

ensures this ∈ tid.A ∧ this �∈ S
{

this.fork1 := fork1 ;
this.fork2 := fork2 ;

}
public void run()

requires tid.A = {this} ∧ this �∈ S;

requires tid.lockStack .isEmpty();
{

for (; ;) {
synchronized (fork2) {

synchronized (fork1) {
// Use the forks to eat...

}
}

}
}

}
class Program {

static void start()
requires tid.lockStack .isEmpty();

{
locklevel level1 := between({}, {});
locklevel level2 := between({level1}, {});
locklevel level3 := between({level2}, {});
Fork fork1 := new Fork();
share (fork1 , level1);
Fork fork2 := new Fork();
share (fork2 , level2);
Fork fork3 := new Fork();
share (fork3 , level3);
new Thread(new Philosopher(fork1 , fork2)).start();
new Thread(new Philosopher(fork2 , fork3)).start();
new Thread(new Philosopher(fork1 , fork3)).start();

}
}

Fig. 5. Deadlock prevention for the Dining Philosophers

A Statically Verifiable Programming Model 431

lock level and whose initial value is null . The field is written only once: when
the object is shared a non-null lock level is assigned to this field. This way, each
shared object has an immutable association with a lock level.

To track the locks that the current thread holds, we introduce a ghost variable
tid.lockStack, which is a stack containing the objects whose lock the thread
holds. Whenever a thread acquires an object’s lock, the object is pushed onto
the stack. Note that it follows that the top of the stack is always the least of
all objects on the stack. A thread is allowed to acquire an object o’s lock only if
the lock stack is empty or o’s lock level is strictly less than the lock level of the
object at the top of the stack.

The essence of the translation of an annotated program is summarized in
Figure 6. Note that the rules for object creation and field access have been
omitted since they are unchanged from the previous section.

share (o, l); ≡
assert o ∈ tid.A;
assert o �∈ S;
tid.A← tid.A \ {o};
tid.S ← tid.S ∪ {o};
o.lockLevel ← l;

synchronized (o) B ≡
assert o ∈ S;
assert tid.lockStack .isEmpty()∨

o.locklevel < tid.lockStack .top().locklevel ;
tid.lockStack.push(o);
havoc o.∗;
tid.A← tid.A ∪ {o};
B
tid.A← tid.A \ {o};
tid.lockStack.pop();

Fig. 6. Translation of source program commands to verification-time commands

4 Invariants and Ownership

The approach as described in the preceding sections ensures absence of low-
level data races and deadlocks. However, it does not prevent higher-level race
conditions, where the programmer protects individual field accesses, but not
updates involving accesses of multiple fields or objects that are part of the same
data structure. As a result, accesses may be interleaved in such a way that the
data structure’s consistency is not maintained.

4.1 Programming Model

To prevent race conditions that break the consistency of multi-object data struc-
tures, we integrate the Spec# methodology’s object invariant and ownership
system [12] into our approach, to obtain the final programming model of this
paper. This model supports objects that use other objects to represent their
state, and object invariants that express consistency constraints on such multi-
object structures.

432 B. Jacobs et al.

The programming model requires the programmer to designate a subset of
each class’s fields as the class’s rep fields. The objects pointed to by an object o’s
non-null rep fields in a given program state are called o’s rep objects. An object’s
rep objects may have rep objects themselves, and so on; we refer to all of these
as the object’s transitive rep objects. The fields of an object, along with those of
its transitive rep objects, are considered in our approach to constitute the entire
representation of the state of the object; hence the name. As will be explained
later, a shared object o’s lock protects both o and its transitive rep objects.

In addition to a set of rep fields, the programming model requires the pro-
grammer to designate, for each class C, an object invariant, denoted InvC(o)
when applied to an object o of C. InvC(o) is a predicate that may depend on
the state of o, i.e. the fields of o and of its transitive rep objects.

The object invariant for an object o need not hold in each program state;
rather, the programming model associates with each object a boolean state vari-
able called its inv bit.1 The programming model requires the object invariant to
hold only when the inv bit is true.

The programming model requires an object’s inv bit to be true when a thread
shares the object or unlocks it, i.e. when the object becomes free. It follows that
each free object’s inv bit is true and its object invariant holds. As a result, when
a thread locks an object, it may assume that the object’s inv bit is true and its
object invariant holds.

At the start of an object’s constructor, its inv bit is false. The programming
model requires the programmer to designate the regions of code where an ob-
ject’s invariant is supposed to hold by designating the points where pack o; and
unpack o; operations occur. The former sets o’s inv bit to true, and the latter
sets it to false.

To ensure that whenever an object’s inv bit is true, its object invariant holds,
the programming model imposes the following restrictions:

– A thread may assign to an object’s fields only when the object is in the
thread’s access set and the object’s inv bit is false. Furthermore, the re-
maining restrictions ensure that whenever an object’s inv bit is true, then
so are those of its transitive rep objects. As a result, an object’s state does
not change while its inv bit is true.

– A thread is allowed to perform a pack o; operation only when o’s object
invariant holds, its inv bit is false, and the inv bits of o’s rep objects are
true. Furthermore, besides setting o’s inv bit to true, the operation removes
o’s rep objects from the thread’s access set.

– A thread is allowed to perform an unpack o; operation only when o’s inv
bit is true. The operation sets o’s inv bit to false and adds o’s rep objects
to the thread’s access set.

We say that an object owns its rep objects whenever its inv bit is true. It
follows from the above restrictions that an object has at most one owner.
1 The inv bit is not a field in the actual program; it is a variable introduced only to

explain the programming model.

A Statically Verifiable Programming Model 433

class Point {
int x, y;
void move(int dx , int dy)

requires this ∈ tid.A ∧ this.inv ; ensures this ∈ tid.A ∧ this.inv ;

{ unpack this; x := x+ dx ; y := y + dy ; pack this; }
}
class Rectangle {

rep Point ul , lr ;

invariant ul .x ≤ lr .x ∧ ul .y ≤ lr .y;
void move(int dx , int dy)

requires this ∈ tid.A ∧ this.inv ; ensures this ∈ tid.A ∧ this.inv ;

{ unpack this; ul .move(dx , dy); lr .move(dx , dy); pack this; }
int getHeight()

requires this ∈ tid.A ∧ this.inv ; ensures this ∈ tid.A ∧ this.inv ;

ensures 0 ≤ result;

{ unpack this; int h := lr .y − ul .y; pack this; return h; }
}
class Application {

shared Rectangle windowBounds ;
void paint()

requires tid.lockStack .isEmpty();

requires this ∈ tid.A ∧ this.inv ; ensures this ∈ tid.A ∧ this.inv ;
{

int height ;
synchronized (windowBounds) {

height := windowBounds.getHeight ();
}
. . .

}
}
class WindowManager {

shared Rectangle windowBounds ;
void mouseDragged (int dx , int dy)

requires tid.lockStack .isEmpty();

requires this ∈ tid.A ∧ this.inv ; ensures this ∈ tid.A ∧ this.inv ;
{

synchronized (windowBounds) {
windowBounds.move(dx , dy);

}
}

}

Fig. 7. An example illustrating our data race and deadlock prevention strategy, com-
bined with object invariants and ownership

434 B. Jacobs et al.

Note that our approach supports ownership transfer; a rep object can be
moved from one owner to another by first unpacking both owners and then
simply updating the relevant rep fields.

4.2 Program Annotations

The example in Figure 7 shows the annotations required by our final methodol-
ogy. A Rectangle object is used to store the bounds of an application’s window.
The Rectangle’s state is represented internally using two Point objects, that rep-
resent the location of upper-left and lower-right corner, respectively. If the user
drags the window’s title bar, the window manager moves the window, even if
the application is painting the window contents. Our methodology ensures that
the application sees only valid states of the Rectangle object.

Developers designate a class’s rep fields using the rep modifier, they define a
class’s object invariant using invariant declarations, and they insert pack and

o := new C; ≡
o← new C;
assume o �∈ S;
tid.A← tid.A ∪ {o};
o.inv ← false;

pack o; ≡
assert o ∈ tid.A;
assert ¬o.inv
assert (∀p ∈ repobjects(o) •
p ∈ tid.A ∧ p �∈ S ∧ p.inv);

assert Inv(o);
o.inv ← true ;
foreach (p ∈ repobjects(o))

tid.A← tid.A \ {p};

unpack o; ≡
assert o ∈ tid.A;
assert o.inv ;
o.inv ← false;
foreach (p ∈ repobjects(o)){

tid.A← tid.A ∪ {p};
assume p �∈ S;

}

x := o.f ; ≡
assert o ∈ tid.A;
x← o.f ;

o.f := x; ≡
assert o ∈ tid.A;
assert ¬o.inv ;
if (f is declared shared)

assert x ∈ S;
o.f ← x;

share (o, l); ≡
assert o ∈ tid.A;
assert o.inv ;
assert o �∈ S;
o.lockLevel ← l;
S ← S ∪ {o};
tid.A← tid.A \ {o};

synchronized (o) B ≡
assert o ∈ S;
assert tid.lockStack .isEmpty()∨

o.locklevel < tid.lockStack .top().locklevel ;
tid.lockStack .push(o);
foreach (p /∈ tid.A) havoc p.∗;
tid.A← tid.A ∪ {o};
assume o.inv ;
B
assert o.inv ;
tid.A← tid.A \ {o};
tid.lockStack .pop();

Fig. 8. Translation of source program commands to verification-time commands (with
invariants and ownership)

A Statically Verifiable Programming Model 435

unpack commands in method bodies. Additionally, developers may denote an
object o’s inv bit in method contracts, using the o.inv notation.

4.3 Static Verification

Figure 8 shows the translation of source program commands to input for the
sequential program verifier.

Note that the verification-time commands for a synchronized (o) block havoc
all objects that are not in the thread’s access set, rather than just object o. This
is necessary since other threads may have modified not just o, but o’s transitively
owned objects as well. Also, the assumption encoded by the assume statement
is justified by the programming model, as explained above.

The verifier is additionally made aware of the following properties:

(∀o • o.inv ⇒ Inv(o))
(∀o, p • o.inv ∧ p ∈ repobjects(o)⇒ p.inv)

These are guaranteed to hold in each program state by the programming model,
as explained above.

5 Immutable Objects

In this section we briefly describe how the approach we implemented supports
sharing immutable objects without synchronization.

If after an object is shared, it is only ever inspected and never mutated,
then there’s no need to synchronize accesses. Our approach supports this by
splitting a thread’s access set into a read set and a write set, and by splitting
the shared sharing mode into a lockprotected mode and an immutable mode.
Correspondingly, the share command is replaced with a share lockprotected
command and a share immutable command. Sharing an object as immutable
requires that it is unshared and in the current thread’s write set. It removes
the object from the write set and adds it to each thread’s read set (even if
the thread has not yet been started). If the object has rep objects, they are
recursively shared as immutable and added to all read sets.

Whether an object is shared as lock-protected or as immutable, it must be
fully packed in both cases. As a result, an immutable object’s invariant holds at
all times.

Our approach supports writing classes that allow client code the freedom
to use some of the class’s objects as thread-local (unshared) objects, to share
some and protect them by their lock, and to share some as immutable. Such a
class typically provides inspector methods and mutator methods. Only inspector
methods can be called on immutable objects.

The unpack o; command requires o to be in the thread’s write set. To allow
an inspector method to access its receiver’s rep objects, regardless of whether
the receiver is writable or only readable, our approach includes a read (o) block
that adds o’s rep objects to the thread’s read set for the duration of the block.
It also temporarily removes o itself from the write set (but not the read set);
this is required for soundness.

436 B. Jacobs et al.

6 Experience

To verify the applicability of our approach to realistic, useful programs, we im-
plemented it in a custom build of the Spec# program verifier [10] and used it to
verify a chat server application written in C# with annotations inserted in the
form of specially marked comments. The application verifies successfully; this
guarantees the following:

– The program is free from data races and deadlocks
– Object invariants, loop invariants, method preconditions and postconditions,

and assert statements declared by the program hold
– The program is free from null dereferences, array index out of bounds errors,

and typecasting errors
– The program is free from races on platform resources such as network sockets.

This is achieved by enforcing concurrency contracts on the relevant API
methods.

Table 1 shows the annotation overhead of four programs which we annotated
and verified. Programs chat and phone were derived from the ones used in [7].

Table 1. Annotation overhead

Program
Lines

of Code
Lines

Changed or Added
Overhead

chat 344 117 34%
phone 222 50 23%

prod-cons 84 24 29%
philosophers 64 21 33%

The prototype verifier and the sample programs are available from the first
author’s web site at http://www.cs.kuleuven.be/˜bartj/.

7 Related Work

The Extended Static Checkers for Modula-3 [1] and for Java [2] attempt to
statically find errors in object-oriented programs. These tools include support
for the prevention of data races and deadlocks. For each field, a programmer
can designate which lock protects it. However, these two tools trade soundness
for ease of use; for example, they do not take into consideration the effects of
other threads between regions of exclusion. Moreover, various engineering trade-
offs in the tools notwithstanding, the methodology used by the tools was never
formalized enough to allow a soundness proof.

Method specifications inourmethodologypertainonly to thepre-state andpost-
state of method calls. Some systems [4,3] additionally support specification and
verification of the atomic transactions performed during a method call. We focus
on verification of object invariants, which does not require such specifications.

A Statically Verifiable Programming Model 437

A number of type systems have been proposed that prevent data races in
object-oriented programs. For example, Boyapati et al. [7] parameterize classes
by the protection mechanism that will protect their objects against data races.
The type system supports thread-local objects, objects protected by a lock (its
own lock or its root owner’s lock), read-only objects, and unique pointers. How-
ever, the ownership relationship that relates objects to their protection mecha-
nism is fixed. Also, the type system does not support object invariants.

Boyapati et al. prevent deadlocks by allowing the developer to declare a fixed
set of lock levels. Lock levels are assigned to objects as type arguments. Addi-
tional expressiveness is gained by supporting locking the nodes of a mutable tree
data structure or an immutable dag data structure, and by ordering the objects
of designated classes at run time.

We enable sequential reasoning and ensure consistency of aggregate objects by
preventing data races. Some authors propose pursuing a different property, called
atomicity, either through dynamic checking [13], by way of a type system [8], or
using a theorem prover [6]. An atomic method can be reasoned about sequen-
tially. However, we enable sequential reasoning even for non-atomic methods, by
assuming only the object invariant for a newly acquired object (see Figure 8).
Also, in [8] the authors claim that data-race-freedom is unnecessary for sequen-
tial reasoning. It is true that some data races are benign, even in the Java and
C# memory models; however, the data races allowed in [8] are generally not
benign in these memory models; indeed, the authors prove soundness only for
sequentially consistent systems, whereas we prove soundness for the Java mem-
ory model, which is considerably weaker.

Ábrahám-Mumm et al. [5] propose an assertional proof system for Java’s
reentrant monitors. It supports object invariants, but these can depend only on
the fields of this. No claim of modular verification is made.

The rules in our methodology that an object must be consistent when it is
released, and that it can be assumed to be consistent when it is acquired, are
taken from Hoare’s work on monitors and monitor invariants [14].

There are also tools that try dynamically to detect violations of safe con-
currency. A notable example is Eraser [15]. It finds data races by looking for
locking-discipline violations. The tool has been effective in practice, but does not
come with guarantees about the completeness nor the soundness of the method.

In the straightforward implementation proposed in this paper, mutual ex-
clusion is achieved through coarse-grained locking. However, the methodology
allows one to use other semantically equivalent techniques that may be more ap-
propriate for particular contention patterns, while preserving the same reason-
ing framework and safety guarantees. Possible alternatives include fine-grained
locking of the objects within an ownership domain, or a form of optimistic con-
currency, such as transactional monitors [16].

The present approach evolved from [11]. It improves upon it by supporting
standard locking primitives, by preventing deadlocks, by supporting immutable
objects, and by reporting on experience gained using a prototype verifier.

438 B. Jacobs et al.

8 Conclusion

We propose a programming model for concurrent programming in Java-like lan-
guages, and the design of a set of program annotations that make the use of
the programming model explicit and that enable automated verification of com-
pliance. Our programming model ensures absence of data races and deadlocks,
and provides a sound approach for local reasoning about program behavior. We
have prototyped the verifier as a custom build of the Spec# programming sys-
tem. Through a case study we show the model is usable in practice, and the
annotation overhead is acceptable.

Our verification approach is sound; the proof of soundness is largely analogous
to the one given in [17] for an earlier version of the approach.

We are currently further extending the programming model to encompass
static fields, lock re-entry, and read-write locks.

References

1. Detlefs, D.L., Leino, K.R.M., Nelson, G., Saxe, J.B.: Extended static checking.
Research Report 159, Compaq Systems Research Center (1998)

2. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: PLDI 2002. Volume 37 of SIGPLAN Notices.,
ACM (2002) 234–245

3. Freund, S.N., Qadeer, S.: Checking concise specifications for multithreaded soft-
ware. Journal of Object Technology 3(6) (2004) 81–101

4. Qadeer, S., Rajamani, S.K., Rehof, J.: Summarizing procedures in concurrent
programs. In: POPL 2004. Volume 39 of SIGPLAN Notices., ACM (2004) 245–255

5. Ábrahám-Mumm, E., de Boer, F.S., de Roever, W.P., Steffen, M.: Verification
for Java’s reentrant multithreading concept. In: FoSSaCS 2002. Volume 2303 of
LNCS., Springer (2002) 5–20

6. Rodŕıguez, E., Dwyer, M., Flanagan, C., Hatcliff, J., Leavens, G.T., Robby: Ex-
tending sequential specification techniques for modular specification and verifi-
cation of multi-threaded programs. In: ECOOP 2005. Volume 3586 of LNCS.,
Springer (2005) 551–576

7. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: Pre-
venting data races and deadlocks. In: OOPSLA 2002. Volume 37 of SIGPLAN
Notices., ACM (2002) 211–230

8. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: PLDI 2003,
ACM (2003) 338–349

9. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An
overview. In: CASSIS. Volume 3362 of LNCS., Springer (2004)

10. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: Proceedings of the
Fourth International Symposium on Formal Methods for Components and Objects
(FMCO 2005). (2006) To appear.

11. Jacobs, B., Leino, K.R.M., Piessens, F., Schulte, W.: Safe concurrency for aggregate
objects with invariants. In: Proc. Int. Conf. Software Engineering and Formal
Methods (SEFM 2005), IEEE Computer Society (2005) 137–146

A Statically Verifiable Programming Model 439

12. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification
of object-oriented programs with invariants. Journal of Object Technology 3(6)
(2004) 27–56

13. Flanagan, C., Freund, S.N.: Atomizer: A dynamic atomicity checker for multi-
threaded programs. In: POPL 2004. Volume 39 of SIGPLAN Notices., ACM (2004)
256–267

14. Hoare, C.A.R.: Monitors: An operating system structuring concept. Communica-
tions of the ACM 17(10) (1974) 549–557

15. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.E.: Eraser: A
dynamic data race detector for multi-threaded programs. ACM Transactions on
Computer Systems 15(4) (1997) 391–411

16. Welc, A., Jagannathan, S., Hosking, A.L.: Transactional monitors for concurrent
objects. In: ECOOP 2004. Volume 3086 of LNCS., Springer (2004)

17. Jacobs, B., Leino, K.R.M., Piessens, F., Schulte, W.: Safe concurrency for aggre-
gate objects with invariants: Soundness proof. Technical Report MSR-TR-2005-85,
Microsoft Research (2005)

Model Checking Dynamic UML Consistency�

Xiangpeng Zhao1, Quan Long1,2, and Zongyan Qiu1

1 LMAM and Department of Informatics, School of Math., Peking University, Beijing, China
2 IBM China Research Laboratory

{zxp, qzy}@math.pku.edu.cn, longquan@cn.ibm.com

Abstract. UML is widely accepted and extensively used in software modeling.
However, using different diagrams to model different aspects of a system brings
the risk of inconsistency among diagrams. In this paper, we investigate an ap-
proach to check the consistency between the sequence diagrams and statechart
diagrams using the SPIN model checker. To deal with the hierarchy structure of
statechart diagrams, we propose a formalism called Split Automata, a variant of
automata, which is helpful to bridge the statechart diagrams to SPIN efficiently.
Compared with the existing work on model checking UML which do not have
formal verification for their translation from UML to the model checker, we for-
mally define the semantics and prove that the automatically translated model (i.e.
Split Automata) does simulate the UML model. In this way, we can guarantee
that the translated model does represent the original model.

Keywords: UML, Consistency, Semantics, Simulation, Model Checking,
Algorithm.

1 Introduction

Model Checking has been proven an effective approach in formally verifying finite-
state concurrent systems [3]. Efficient algorithms are used to traverse the model defined
by the system and check whether the given specification holds or not. However, in
contrast to its good acceptance in hardware industry, there is few large success case
studies in software development [2,17]. One of the main reasons is that the state space
of software systems, or even components is too large, thus causes the infamous “state
exploration” problem in model checking. To reduce the state space, how to model the
software system in an abstract way has been recognized as a central task.

Being the de facto standard of software modeling industry, the Unified Modeling
Language (UML) [10] is now widely used in the development of software intensive
systems. Compared to the other programming languages, UML is an abstract language
for specifying software requirements, specifications, and designs in the early stages of
development. This offers a natural platform to scale up the use of model checking.

Furthermore, the model checking technique can be helpful in solving new problems
aroused in applying UML. In a UML-based development process, several kinds of mod-
els are used to represent and analyze the artifacts created in certain phases of the sys-
tem development. This multi-view modeling has its advantages. Each view focuses on

� Supported by NNSF of China (No. 605730081).

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 440–459, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Model Checking Dynamic UML Consistency 441

a different aspect, so that the analysis and understanding of the various features of the
modeled system can be done separately [1]. These different views might come from
different people relative to the system, and reflect their requirements or expectations.
Splitting a system model into several views can also decompose the model into chunks
of manageable sizes, which is also important for tool development such as code gener-
ation and verification. However, a multi-view model is confronted with the problem of
inconsistency among the different models in the whole system, since the aspects of the
system described by these models may be overlapped. In this case, the developers hope
to recognize these inconsistencies as early as possible.

Researchers, e.g. [5,1], have realized that the difficulties in consistency checking lie
in the fact that the syntax and semantics of UML are informal and imprecise compared
with formal modeling notations. For example, many features including role names in
class diagrams and object names in sequence diagrams are optional and may not appear
in the diagrams. This is not harmful if UML is only used in sketchy mode, but not
satisfactory in the modes of blueprint and programming language [4], nor for code
generation. According to our knowledge, current popular UML tools, such as Rational
Rose, MagicDraw and Fujaba support very poor functionality in consistency checking,
especially for the consistency between sequence diagrams and statechart diagrams.

We have investigated the consistency issue and the code generation problem in our
earlier work [14], where the consistency of class diagrams and sequence diagrams is
discussed and rCOS [7]1 code for the method bodies is generated. In this paper, we
discuss the consistency issue between sequence diagrams and statechart diagrams. A
sequence diagram is described by a modeler who cares about the interaction between
some objects, but has less knowledge about the internal behavior of the objects reflected
by the statechart diagrams; and vice versa for the modeler of the statechart diagrams.
The consistency issue between statechart diagrams and sequence diagrams is dynamic,
hence quite complicated. We choose to use the SPIN model checker [8] to solve this
problem in this paper. Besides, note that collaboration diagrams can be realized by
sequence diagrams, and vice versa. This implies that the solution to the consistency
issue between sequence diagrams and statechart diagrams also apply to collaboration
diagrams.

The basic idea is that invocation between different objects in a sequence diagram
should conform to the transitions of the corresponding statechart diagrams. Firstly, we
formalize sequence diagrams and statechart diagrams by giving the syntax of both dia-
grams in textual form2, and then the semantics. Then we present algorithms for translat-
ing diagrams to SPIN specifications. Sequence diagrams can be formalized as a “never
claim” assertion, which is a sequence of events describing unwanted behaviors; while
the statechart diagrams are translated into a set of processes. SPIN can automatically
verify whether the never claim is a valid trace of the system, thus answers the consis-
tency problems.

An essential difficulty in the above scenario is the translation of statecharts. In gen-
eral, model checkers can only deal with automata without hierarchical states, which is
clearly not the case for statecharts. Motivated by this problem, we propose a formalism

1 rCOS is an object-oriented design language equipped with a relational semantics.
2 In our ongoing work, we have developed a tool to support this process.

442 X. Zhao, Q. Long, and Z. Qiu

named Split Automata which is an automata network plus a special control mechanism.
Any statechart diagram can be mapped to a split automaton. The idea is to encode the
data structures of statechart diagram as control structure. The mapping preserves dy-
namic behaviors of statecharts, and the interactions of the hierarchy are managed by
the events passed between different automata. The semantics of split automata is quite
similar to the semantics of process in Promela (the input language of SPIN), hence it is
straightforward to be implemented.

To prove the fact that the mapping preserves the dynamic behavior of statechart dia-
grams, we use the notion of Simulation. We give formal operational semantics for both
statechart diagrams and split automata. Supported by these semantics, we prove that a
given statechart diagram can be simulated by a split automaton, hence guaranteeing the
correctness of the translation.

Related works. There are many research work on model checking UML diagrams. Lil-
ius and Paltor [13] provide a full operational semantics for UML state machines, and
allows model checking using a tool called vUML. They perform unfolding of the hi-
erarchical structure only when encoding the states, thus also having a similar benefit
compared with our split automata mechanism. However, they do not prove the cor-
rectness of the translation from state machines to vUML. Küster et al. [12] present a
translation from sequence and statechart diagrams to CSP processes, and use the FDR
model checker to verify the consistency issue. Gallardo et al. [6] first translate the se-
quence diagram to MSC diagram, and the statechart diagram to SDL diagram, and then
perform model checking to detect inconsistency in a similar manner. Inverardi et al. [9]
use SPIN to check the consistency between diagrams and provides a systematic de-
velopment methodology starting from software requirement. Hugo/RT [16,11] also use
SPIN to verify the consistency between sequence diagrams and statechart diagrams, but
they support timed verification by translating the model into the timed model checker
UPPAAL instead of SPIN. However, they do not provide semantics and do not have for-
mal treatment on their approaches. Therefore, whether the translated models checked
by the tools really represent the original models with respect to the checking motiva-
tion remains doubtable. To solve this problem, we have defined and proved the simula-
tion between the UML model and our formalism, which assures the correctness of the
translation.

The rest of the paper is organized as follows. Section 2 introduces the formaliza-
tion of sequence diagrams. Section 3 presents our treatment of statechart diagrams,
including the syntax and semantics of both statechart diagrams and split automata, the
mapping between them, and the proof of the simulation relation. In Section 4 we give
two translation algorithms: an algorithm for translating a statechart diagram into a set
of processes which is motivated by the split automata; and an algorithm for translating a
sequence diagram to a never claim. We give a simple case study in Section 5. Section 6
concludes and some future research directions are discussed.

2 Sequence Diagrams

In this paper we consider sequence diagrams as a static model. Thus the syntax of the
sequence diagram is a simplified version of the ones in [14].

Model Checking Dynamic UML Consistency 443

:O1 :O3:O2

(1)
(2)

 (3)
(4)

(5)
(6)

(0)

(7)

(9)

(8)

(10)

Fig. 1. A sequence diagram

A sequence diagram SD consists of three main parts:

1. A sequence of time-points 〈p1, p2, · · · , pn〉 representing the time points during the
lifetime of all objects under consideration. These points represent the order of mes-
sages sending and receiving. The set of these points is called Points.

2. A sequence of objects: 〈O1, O2, · · · , Om〉, which is denoted by SD.Objects. Each
object Oi has the following structure:

– Oi is associated with a type, denoted by type(O), which is a class name. Since
we consider only the consistency between sequence and statecharts diagrams,
the details of the class declaration are not important here. (Please refer [14] for
details of class diagrams)

– There is a sequence of time-points 〈pi1 , pi2 , · · · , pik
〉which represents the time

points during the lifetime of Oi, where Oi.Points ⊆ Points. The set of these
points, namely Oi.Points, is a subset of the global set Points. Furthermore,
for any ia and ib in Oi.points, if a < b, then ia < ib, that is, pia appears before
pib

in the global sequence.
We have a function stamp at each time-point on an object O. For p ∈

O.Points, stamp(p,O) ∈ {send, ack, receive, receiveack}. stamp(p, O)=send
means a message (or equivalently, a method call) is sent from object O at time
p, where p ∈ O.Points. Similarly, receive means a message reaches O at
p. The message between a send point and a receive point will be drawn as a
solid line arrow in the graph, e.g. the message (0) and (1) in Fig. 1. ack and
receiveack points are used to denote the returned messages which are dotted
line back to the sending lifeline, e.g. the message (4) and (5) in Fig. 1. Because
we have “call back” messages (such as the message (3) in Fig. 1), so we need
to draw all the returned messages.

3. A set MSG of messages: msg ∈ MSG is of the form (source,m, target, p) where
– source, denoted by src(msg), represents the source object of the message.
– target, denoted by tgt(msg), represents the target object of the message.
– m, denoted by method(msg), represents a method call3. If the source and the

target are identical, it represents an internal action (e. g. message (8) in Fig. 1).
Finally, a message can be a return signal and in this case m is the empty mes-
sage ε.

3 To simplify the syntax, we ignore the parameters of methods, which can be easily added.

444 X. Zhao, Q. Long, and Z. Qiu

– p, denoted by time(msg), represents the time-point when the message occurs.
We suppose that the message transfer does not consume time; therefore, when
the message occurs in the source object src(msg), it simultaneously occurs in
the target object tgt(msg).

Moreover, the target or source object may be empty. If the target is empty, then the
message is an outgoing message of the whole sequence diagram (message (10) in
Fig. 1); or an incoming message (message (0) in Fig. 1) when the source is empty.

2.1 Semantics

We will consider only the well-formed sequence diagrams. The well-formedness of a
sequence diagram concerns the following items:

– For each message msg in the sequence diagram, the stamp of the source point of
msg must be a send or ack and the stamp of target point of msg must be a receive
or receiveack, respectively.

– It should be ensured that the sequence diagram indeed represents a scenario of
method calls. This means (a) the order of the message sending and receiving must
be consistent, and for all messages from the same object, the earlier it is sent, the
earlier it is received by the target object; (b) if a message msg invokes message
msg1, then msg1 must return before msg does. This can be checked easily by a
simple token-traverse algorithm.

The semantics of the sequence diagram is defined as a trace of messages that oc-
curs according to the order of the time-points. Since our main focus is the consistency
between the sequence diagram and the statechart diagrams, we ignore the returned mes-
sages in the semantics.

Definition 2.1 (Sequence Diagram). For a given sequence diagram SD involving ob-
jects O1, · · · , Om, its semantics, denoted by [[SD]] is defined as

[[SD]] def= 〈msg1,msg2, · · · ,msgn〉

where each message msgi is in the set MSG of SD, and time(msgi) < time(msgi+1) for
each i < n. ��

3 Statechart Diagrams and Split Automata

In this section we will give the syntax and semantics of statecharts. With respect to
the model checking strategy in this paper, we will also introduce our special formal-
ism Split Automata which is essentially an automata network plus a special controlling
mechanism by which an automaton can activate or stop other automata. We will present
the syntax and the operational semantics of Split Automata. Based on the semantics, we
will prove that the transition system of the corresponding split automata can simulate
the one of the original statechart.

Model Checking Dynamic UML Consistency 445

P4

P2P1

P3

 msg(1)/
ScD3.msg(2)

 msg(7)

msg(8)

Fig. 2. A statechart ScD2

3.1 Statechart Diagram

To facilitate our discussion, we use similar textual representation for statecharts in [15].
We only support a small subset of UML statecharts related to consistency checking. In
order to keep the formalism concise, we omit guards, entry/exit actions, history states,
OCL constraints in the statechart, and only allow one action in each transition. The
formal syntax for statecharts is given as follows.

Suppose we have the following sets:

– N : The set of names used to denote statecharts.
– Π : The set of all possible events corresponding to the messages in the sequence

diagrams. In this paper, the words “message” and “event” mean the same thing.
The empty event ε is also included in Π .

– T : The set of all possible transitions, T ⊆ N ×Π × (N ×Π)×N , where

• The first N denotes the source sub-statechart, while the last N is the target
sub-statechart.
• Π denotes the trigger. Note that we do not allow guards here. Since guards do

not appear in sequence diagrams, they are not useful in consistency checking.
• (N × Π) denotes the action, which stands for new event generated by the

transition. For example, if (n, e) is an element of the action of the transition, e
stands for what event the transition generates and n stands for which statechart
should receive the newly generated event. Potentially, n can be the name of
another statechart. We only allow one action in each transition here to simplify
the semantics. It is not hard to extend the notation to support multiple actions.

Thus, (pi, e, A, pj) is a transition from sub-statechart pi to pj with trigger e and
action set A. For example, in Fig. 2, we have three transitions:

τ1 = (P1,msg(1), ScD3.msg(2), P2)
τ2 = (P2,msg(7), ε, P3)
τ3 = (P3,msg(8), ε, P4)

Definition 3.1 (Statechart diagram). The set ScD of statecharts is defined inductively
as follows:

1. Basic: N → ScD:

Basic(n) def= [n]

446 X. Zhao, Q. Long, and Z. Qiu

2. Or: N × 〈ScD〉 × 2T → ScD:

Or(n, 〈P1 , · · · , Pm〉, T) def= [n, 〈P1, · · · , Pm〉, T]

3. And: N × 2ScD → ScD:

And(n, {P1, · · · , Pm})
def= [n, {P1, · · · , Pm}] ��

Note that we use square brackets to enclose one statechart, and use 〈· · ·〉 to denote a
sequence of statecharts. Here are some explanations.

• Basic(n) denotes a basic statechart named n.
• Or(n, 〈P1, · · · , Pm〉, T) denotes an Or-statechart named n with a sequence of sub-

statecharts 〈P1, · · · , Pm〉, where P1 is the default sub-state. T is the set composed
of all possible transitions among the sub-statecharts of n.
• And(n, {P1, · · · , Pm}) denotes the And-statechart named n, which contains a

number of parallel sub-statecharts P1, · · · , Pm, where P1, · · · , Pm are basic state-
charts or Or-statecharts (but not And-statecharts).

Fig. 2 shows an Or-statechart with four sub-statecharts.
The behavior of a statechart is composed of a sequence of macro-steps, each of which

comprises a sequence of micro-steps. A statechart reacts to any stimuli from the envi-
ronment at the beginning of each macro-step by performing a sequence of transitions
and generating some internal events (by the actions of the transitions it performs), which
can in turn fire other state transitions. These lead to a chain of micro-steps. During this
chain of micro-steps, the statechart does not respond to any (potentially) further exter-
nal stimulus. In case that no more transitions are enabled, the macro-step comes to the
end. Please notice that the action of a transition can be invocations to other statecharts,
which will consider them as external stimulus.

Let us consider the operational semantics of the statecharts. We give the definition of
configurations by adding the label of the active immediate sub-statechart and the current
event e for each Or-statechart. For an And-statechart, all immediate sub-statecharts are
active simultaneously.

Definition 3.2 (Configuration). A configuration C of a statechart ScD is defined as
follows,

– For an Or-statechart ScD = [n, 〈P1, · · · , Pm〉, T], its configuration has the form
[n, 〈P1, · · · , Pm〉, Ṗl, T, e] where Ṗl is a configuration of Pl; l denotes that the sub-
statechart Pl is the current active state (1 ≤ l ≤ m); and e represents the current
incoming event. When there is no event coming from the environment for the state-
chart, we have e = eε, where eε is the dummy event.

– For an And-statechart ScD = [n, {P1, · · · , Pm}], its configuration has the form
[n, {Ṗ1, · · · , ˙Pm}], where Ṗi is a configuration of Pi.

– The configuration of a basic statechart [n] has the form [n].

We give the following operational transition rules, where we assume that the default
configuration has the dummy event eε at the beginning.

The first transition rule initiates a macro-step for a statechart. It performs only when
event e arrives (due to the environment which is composed of the actor of the system or
other statecharts) and the statechart is ready to accept it.

Model Checking Dynamic UML Consistency 447

Rule 3.3 (Initiate). Assume CP = [n, 〈P1, · · · , Pm〉, Pl, T, eε] is a stable configura-
tion, i.e., a configuration with dummy event, and e is an incoming event form the envi-
ronment. Then we have

e

CP −→ [n, 〈P1, · · · , Pm〉, Pl, T, e]
��

For an Or-statechart, if a transition between two immediate connected sub-statecharts
is enabled, the transition can be performed.

Rule 3.4 (Or). Suppose P is an Or-statechart [n, 〈P1, · · · , Pm〉, T] and configuration
CP = [n, 〈P1, · · · , Pm〉, Pl, T, e]. Then we have

τ ∈ En(CP , e)

(CP
trig(τ)−→ [n, 〈P1, · · · , Pm〉, a2d(tgt(τ)), T, eε])||Update(act(τ))

where

– En(CP , e) def= {τ ∈ T |src(τ) = Pl ∧ trig(τ) = e} is the set of transitions en-
abled in current configuration on the “highest level”. Note that there will be a non-
deterministic choice when there are multiple transitions in the set.

– src(τ) and tgt(τ) are the source and target states of transition τ , respectively.
– trig(τ) denotes the event triggers the transition τ , and act(τ) denotes the event

generated by transition τ .
– (CP → [..])||Update(...) means to change the configuration and simultaneously

execute the Update function.
– Update(act(τ)) is equivalent to the following execution: Suppose act(τ) = (n, e)

and n is the name of a (sub)statechart, then the incoming event of n becomes e, i.e.
n.e = e.

– The function a2d(C) maps the sub-statecharts of C to its default sub-states (recur-
sively). Its definition is:

a2d([n]) def= [n]
a2d([n, 〈P1, · · · , Pm〉, T]) def= [n, 〈P1, · · · , Pm〉, a2d(P1), T, eε]
a2d([n, {P1, · · · , Pm}])

def= [n, {a2d(P1), · · · , a2d(Pm)}]
��

If no transition among immediate sub-states of an Or-statechart is enabled, then the
transitions in its active sub-state can be performed.

Rule 3.5 (Or-Substate). Suppose CP = [n, 〈P1, · · · , Pm〉, Pl, T, e] is a configuration
of an Or-statechart, then

En(CP , e) = ∅, [Pl]
trig(τ)−→ [P ′

l]

CP
trig(τ)−→ [n, 〈P1, · · · , Pm〉, P ′

l , T, e]
��

Rule 3.6 (And). Suppose CP = [n, {P1, · · · , Pm}] is a configuration of an And-
statechart. For i = 1, 2, · · · ,m, Pi is a basic statechart or a configuration of an Or-
statechart,

Pi
trig(τi)−→ P ′

i , i = 1, . . . ,m

CP

�m
i=1 trig(τi)−→ [n, {P ′

1, · · · , P ′
m}]

448 X. Zhao, Q. Long, and Z. Qiu

If no transition can be performed in Pi and its all sub-statecharts, then the sub-
configuration is considered as staying the same. That is

Pi → Pi ��

Please note that as the execution goes, the incoming event e may become eε because
of Rule 3.4. If all the incoming events become empty, the execution of the statecharts
will end. Thus we do not need a transition rule for the ending of the execution explicitly.

3.2 Split Automata

As stated, the formalism of split automata is motivated by the use of model checking.
A split automaton is a network of automata defined as follows.

Definition 3.7 (Split Automata). A Split Automaton is a set of interactive automata
A = {A1, · · · , An} where each Ai has the following structure:

1. A set of states Si

2. A set Ti of transitions with the form 〈s1, e1, A
′, e2, s2〉, where s1 ∈ Si and s2 ∈ Si

are the source and the target state; e1 is the name of a trigger event; e2 is the event
name of the action triggered by e1, and A′ is the target automaton of e2.

3. A mapping switchi : Ti ⇀ 2A×{0, 1} denoting the activation relationship between
the events and the corresponding automaton. ��

Here are some explanations:

– A split automaton is actually an automata network, where each automaton is an
ordinary automaton plus that each transition has an action. The action is a pair of
an automaton A′ and an event name which stands for the event within the target
automaton A′.

– The mapping switch denotes the interactions between different automata. If
(A, 1) ∈ switch(τ), then A will be activated when executing the transition τ ; while
(A, 0) ∈ switch(τ) will stop A.

– Please notice that all the automata are at the same level. The hierarchical data struc-
tures of the statechart is encoded in the control structure of the split automata.

The intention of defining split automata is to bridge the statechart to the formal-
ism accepted by model checkers. We want to translate a statechart to a corresponding
split automaton, which can correctly simulate the behavior of the statechart. For the
statechart shown in Fig. 3, the correspondent split automaton is shown in Fig. 4. We
have switch(τ1) = {(A2, 1), (A3, 1)}, switch(τ2) = {(A2, 0), (A3, 0), (A4, 0)}, and
switch(τ3) = {(A4, 1)}. The other transitions have empty switches. The formal defini-
tion of the translation will be presented soon.

Now we define the semantics of the split automata.

Definition 3.8 (Configuration). Suppose A is a split automaton. Its Configuration
CA has the form [A, {(A1, si1 , ei1), · · · , (Am, sim , eim)}], which denotes the fact that
{A1, · · · , Am} are the active automata with active states {si1 , · · · , sim} and incoming
event {ei1 , · · · , eim}. ��

Model Checking Dynamic UML Consistency 449

stopped

service

ready

contactAirline

wait

replySuccess

replyFailure

q&a

book/a.requestTicket

noTicket/c.failure

hasTicket/c.success

cancel

query/c.answer

Fig. 3. Travel Agency Statechart

waitready contactAirline

bookTicket/a.requestTicket

replyFailure

noTicket/c.failure

stopped q&a query/c.answerTravelAgency
cancel

replySuccesshasTicket/c.success

service

A1

A2

A3

A4

1 2

3

Fig. 4. Split Automaton Example

In contrast to the complicated rules of statecharts, the execution of split automata is
quite simple. Its operational semantics has only one rule as follows, which tells us that
the automaton will switch its state and active (or stop) some corresponding automata
when the related incoming event occurs.

Rule 3.9 (Split Automata). Suppose a configuration of split automaton CA is of the
form [A, {(A1, si1 , ei1), · · · , (Ak, sik

, eik
), · · · , (Aj , sj,−), · · · , (Am, sim , eim)}], and

– τ ∈ Tk is a transition in automaton Ak with the form 〈sik
, eik

, Aj , ej , sl〉
– switch(τ) = {(A′

1, 0), · · · , (A′
p, 0), (A′

p+1, 1), · · · , (A′
q, 1)}

Then we have

CA
τ−→ [A, {(A1, si1 , ei1), · · · , (Ak, sl, eε), · · · , (Aj , sj , ej), · · · , (Am, sim , eim)}

/{(A′
1, -, -), · · · , (A′

p, -, -)} ⊕ {(A′
p+1, s

′
p+1, eε), · · · , (A′

q, s
′
q, eε)}]

where s′p+1, · · · , s′q are the initial states of the corresponding automata. We use / to
denote set difference without considering the state and incoming event of the automata,

450 X. Zhao, Q. Long, and Z. Qiu

and ⊕ to denote basically the set union, except overriding the existing automata with
the same names4. ��

In the above we have only considered the configuration for one statechart and one split
automaton. For multiple statecharts, we can view them as a big And-statechart, thus
the configuration and the operational semantics remain the same. Therefore, there is no
need to consider multiple split automata.

3.3 Simulation

In this subsection we give the definition of Simulation and prove that our split au-
tomata can simulate statecharts. We also define a translation to obtain a split automaton
from a given statechart. Suppose A is a split automaton and S is a statechart. We use
CS ⇒S C′

S to denote that the configuration CS can reach another configuration C′
S

by the operational rules defined by the statechart S. Similarly, we use CA ⇒A C′
A to

denote that the configurationCA can reach another configuration C′
A by the operational

rules defined by A.

Definition 3.10 (Simulation). Suppose A is a split automaton and S is a statechart.
We say A can Simulate S, if and only if there exists a binary relation S between the
configuration spaces of A and S such that

– For the initial configuration C0
S of S and the initial configuration C0

A ofA, we have
C0

ASC0
S

– For any given configuration CS of S and configuration CA of A, if CASCS

and CA ⇒A C′
A, then there exists another statechart configuration C′

S , such that
C′

ASC′
S and CS ⇒S C′

S ��

As stated, the split automata is an unfolded statechart. We define a translation from a
given statechart to a split automaton as follows:

Definition 3.11. Suppose S is a statechart. We recursively define a translation mapping
f : S ⇀ A as follows, where all A represent fresh automata names:

– Basic: If S = [n], then f([S]) = {A}, where the state set of A is {n}, and TA = ∅,
switchA = ∅.

– Or: If S = [n, 〈P1, · · · , Pm〉, T], then f([S]) = {A}∪f(P1)∪· · ·∪f(Pm), where
the state set of A is {s1, · · · , sm}, and

• TA = {〈si, e, f(Pk), a, sj〉 | 〈Pi, e, Pk, a, Pj〉 ∈ T }
• suppose τ = 〈si, e, A

′, a, sj〉, then switchA(τ) = R, and the construction of
set R is defined as follows:
1. initially, let R = {(f(Pi), 0)} ∪ {(f(Pj), 1)}
2. if Pi = [n1, {Pi1 , · · · , Pip}], add {(f(Pi1), 0), · · · , (f(Pip), 0)} to R.
3. if Pj = [n2, {Pj1 , · · · , Pjq}], add {(f(Pj1), 1), · · · , (f(Pjq), 1)} to R.

4 In fact, as will be seen later, this overriding will not happen in the split automata generated
from statecharts.

Model Checking Dynamic UML Consistency 451

– And: If S = [n, {P1, · · · , Pm}], then f([S]) = {A}∪ f(P1)∪ · · · ∪ f(Pm), where
the state set of A is {n}, and TA = ∅, switchA = ∅.

The definition of switch ensures that when we leave or enter an And-statechart, all the
corresponding automata are activated or stopped. In the translation of the basic And-
statechart, we have introduced a redundant automaton A to assist the definition and
implementation, which can be eliminated by a post processing (optimizing).

As shown in Fig.4, the statechart diagram depicted in Fig.3 will be translated into a
split automaton using the mapping given above. Note that the redundant automata have
been omitted.

Following theorem guarantees that our split automata simulates the corresponding
statechart.

Theorem 3.12 (Simulation). For a given statechart S, the split automatonA generated
by f(S) simulates S. ��

PROOF: The essence of this proof is to give the binary relation between configurations
of S and A.

We give it as follows:

1. For the initial configurations, we denote the statechart configuration which has only
dummy incoming events as C0

S , and the split automaton configuration which has
only dummy events as C0

A. As expected, it is defined that C0
SSC0

A.
2. For other configurations, we recursively give the as follows:

– Basic: If CS = [n] is a configuration, then let (CS , f([n])) ∈ S ,
– Or: If CS = [n, 〈P1, · · · , Pm〉, Pl, T, e] is a configuration of S, and PiSCAi

(i = 1, · · · ,m). then let CSS [f(S), 〈(A0, sl, e), CA1 , · · · , CAm〉], where A0
is the first automaton defined in f(S), sl is the state corresponding to Pl.

– And: If CS = [n, {P1, · · · , Pm}] is a configuration of S, and PiSCAi (i =
1, · · · ,m), then let CSS [f(S), 〈(A, n, eε), CA1 , · · · , CAm〉], where n is the
only state of A. ��

By structural induction on the combination of configurations of statecharts, it is trivial
to prove that the above defined S is a simulation.

4 Consistency Checking

A well-formed sequence diagram is consistent with a set of statecharts if the trace of
the sequence diagram is in the trace set of the statecharts. Supported by the notion of
split automata, in this section, we discuss how to verify the consistency between a given
sequence diagram and a set of statecharts using the SPIN model checker [8].

The input language of SPIN is called Promela, which is a language for modeling
finite-state concurrent processes. SPIN can verify or falsify (by generating counterex-
amples) linear temporal logic properties of Promela specifications using an exhaustive
state space search. It also allows to specify the “never claim”, which is a process de-
scribing unwanted behaviors.

452 X. Zhao, Q. Long, and Z. Qiu

Given the diagrams, we design an algorithm which automatically generates the cor-
responding Promela specification. It consists of some communicating concurrent pro-
cesses in which each process denotes an automaton in the corresponding split automata
and a never claim denoting the sequence diagram. Afterwards, if SPIN reports that the
system has a trace that agrees with the never claim, then we know the sequence diagram
is consistent with the statecharts. Otherwise, if SPIN reports that the system will never
act as the never claim, then there must be some inconsistency.

4.1 Translation from Split Automata to Promela

Suppose that we have translated the statecharts into split automata. Now we go ahead
to translate each automaton into a Promela process, specified by the proctype key-
word. In Promela, local variables can be defined in processes; values can be sent or
received from channels, using the exclamation mark and the question mark, respec-
tively. A channel is defined (using keyword chan) for each automaton, in order to send
or receive events, which are stored in an enumeration set mtype. An auxiliary variable
msg is used to record the event that has just been transferred through a channel, which
will be used in the never claim later to describe the sequence diagram.

The control flow in an automaton is implemented by a do loop with a variable state
that enumerates on states S = {s1, · · · , sn}. The loop has the form of

do
::state == s1 -> ...

...
::state == sn -> ...
od

where the guard state==si is enabled only when the current active state is si. For
a transition 〈si, e1, A

′, e2, sj〉 in automaton A, we implement it as a guarded com-
mand: state==s i -> if ::A?e 1 -> {A’!e 2; msg=e 2; state = s j} fi.
The trigger is implemented as channel receiving A?e 1, while the action is implemented
as channel sending A’!e 2. The current state is changed by state=s j, thus the guard
for sj will be enabled in the next round of the loop. If there are more than one transitions
leaving si, we can add corresponding trigger/action statements in the if statement. Fi-
nally, we use an auxiliary variable msg to record the event that just happens.

The switch mechanism in split automata requires us to implement the activation and
stop of an automata. The activation is directly implemented by keyword run which cre-
ates a new instance of a process. To implement stop, we introduce an auxiliary event
stop. The automaton may stop other automata by sending stop event to them. We also
add a simple guarded command A?stop -> break in each process. That is, when
the process receives stop, we simply break the loop; then the process terminates. For
example, statement atomic {run A1(); run A2(); A3!stop;} represents a cor-
responding switch = {(A1, 1), (A2, 1), (A3, 0)}. Note that we use keyword atomic to
make sure that these statements are executed as a non-interruptible atomic block.

A complete translation algorithm (from statechart to Promela) is shown in Fig. 5 and
Fig. 6. Note that in the algorithm we have also considered the translation from a state in
a statechart to an automaton, hence the cases for And-statechart and Or-statechart are
distinguished. The algorithms are quite detailed and we do not need more explanations
here.

Model Checking Dynamic UML Consistency 453

void Or-State (State s) {
output ("proctype p_" + s.name + " () {");
output ("mtype state = " + s.initState.name + ";"); // init state
output ("do");
foreach (State substate in s.states) {
if (exists t in s.transitions s.t. substate == t.source){ // has transition

output (":: state == " + substate.name + "->");
output ("if");
foreach (t in s.transitions s.t. substate == t.source) { // do transition

output ("::");
if (t.trigger != null)

output ("c_" + s.chartName + "?" + t.trigger); // trigger
output ("-> atomic { msg = " + t.trigger + ";");
if (substate.isCompositeState) {

output ("c_" + substate.name + "! stop"); // stop substate
output ("c_" + substate.name + "? finish"); // substate stopped

}
if (t.target.isCompositeState)

output ("run p_" + t.target.name + "();" //run next substate
foreach (Action a in t.actions) { // do actions

output ("c_" + a.name + "! " + a.event);
}
output ("state = "+t.target.name); // goto next substate
output ("}");

} // end for
output (":: c_" + s.name + "?stop -> atomic {"); // receive stop signal
if (substate.isCompositeState) {

output ("c_" + substate.name + "! stop;"); // stop substate
output ("c_" + substate.name + "? finish;");

}
output ("break;}"); // exit s

output ("fi");
} //end if

} // end for
output ("od"); output ("c_" + s.name + "! finish;"); // s is finished

}

Fig. 5. Or-state Translation Algorithm

4.2 Translation from Sequence Diagrams to Promela

Compared with the translation of statecharts, the translation of sequence diagrams is
trivial. Since we have used the variable msg to record every event that takes place, we
can simply translate each event as a loop with guard msg==x, where x is the name
of the event. When the guard is true, we know that event x has taken place, then we
break the loop and try to match the next event; otherwise we do nothing but wait. If we
can match all the events, then we know that the system does have a trace as claimed,
which means that the diagrams are consistent. SPIN will report a counter example for
the trace, which can run in the simulator to present a visual way for the user to analyze
the statecharts. Fig. 7 shows an example of the never claim. Note that we have defined
a macro Event to simplify the code, which is an adopted technique from [8]. The event
sequence is listed in the never block.

If the diagrams are not consistent and the trace is not valid, SPIN will simply tell the
user “inconsistent” as the result. However, we may want to find out the longest valid
sub-trace (LVS) of the given trace, which may be helpful in the analysis of the reason for
inconsistency. There is not an automatic way to get the LVS. We can try to find it using
a binary search method: given a trace t, we cut the invalid trace into two sub-traces of
equal length, namely t1 and t2. Then we try to verify the first half, i.e. t1. When it is still

454 X. Zhao, Q. Long, and Z. Qiu

void And-State (State s) {
output ("proctype p_" + s.name + " () {");
output ("atomic {"); // run each substate
foreach (State substate in s.states) {
output ("run p_" + substate.name + " ();");

}
output ("}");
output ("atomic {");
output ("c_" + s.name + "? stop;"); // receive stop signal
foreach (State substate in s.states) { // stop each substate
output ("c_" + substate.name + "! stop;");

}
output ("}");
foreach (State substate in s.states) { // each substate is finished
output ("c_" + substate.name + "? finish;");

}
output ("c_" + s.name + "! finish;"); // s is finished

}

Fig. 6. And-state Translation Algorithm

#define Event(x) do :: msg == x -> break :: else od
never{

Event(book);
Event(requestTicket);
Event(hasTicket);
Event(success);

}

Fig. 7. Translated Sequence Diagram Example

invalid, we know that the LVS must be a sub-trace of t1, hence in the next try we shrink
our sub-trace by testing only the first half of t1, i.e. the first quarter of the full trace.
Otherwise when t1 is a trace of the statecharts, we know that t1 must be a sub-trace of
the LVS, hence we extend the sub-trace as t1 followed by the first half of t2, i.e. the
first three quarters of the full trace. We need to do lg(n) rounds of verification when
the length of the sequence is n. For example, 6 rounds of verification is needed when
the sequence’s length is 100. After the LVS is found, the user can simulate it with SPIN
and try to get a clue to solve the inconsistency.

5 Example

In this section we present an example of travel agency. Agency t acts as a middle-man
between airline company a and client c who wants to book an air ticket. The client may
consult the travel agency by querying the flight number and time information, or try to
book a ticket from the airline company through the agency. The Fig. 3 and Fig. 8 show
the statecharts of the agency, airline company and client respectively.

The airline company statechart is the simplest; it only has one state named ticket-
Service. When there is a trigger requestTicket, the airline company may respond either
t.hasTicket or t.noTicket, depending on whether there is any available ticket left for the
flight. We use t here to denote the travel agency statechart. Similarly we use c and a to
denote the client and airline company statechart, respectively.

The client statechart begins from try state, where he may try to ask the agency by
action t.query. When the trigger answer happens, then the client receives the queried

Model Checking Dynamic UML Consistency 455

ticketService

requestTicket/t.noTicket

requestTicket /t.hasTicket

happy

unhappy

try

/t.query

answer wait/t.cancel

success

failure

/t.book

Fig. 8. Airline company and Client Statechart

information. However, the client may be inpatient and do not wait for the answer, or has
enough knowledge about the flight so he does not need to ask. In these cases, the client
simply book the ticket by proceeding to wait state with the action t.book. Note that this
transition does not has a trigger, so it can happens at any time. After this, the client have
to wait for the answer from the agency. If trigger success happens, meaning the ticked
is successfully booked, then the client moves and stays in happy state. The situation is
similar when Failure happens. But when the client waits for too long without receiving
a reply, he can cancel the transaction by action t.cancel.

The travel agency statechart (Fig. 3) is the most complex one in the three. The two
services run in parallel, thus results in an And-state named sevice. The agency will
stop working if the client cancels the request. This is ensured by putting the cancel
trigger on the transition starting from service. According to the kind of service re-
quested, the travel agency will answer the client’s information query (this service does
not require interaction with the airline company) as described in the lower pane of
service, or try to buy the ticket from the airline company as described in the upper
pane. The information query service is represented simply by one state q&a, which
does action c.answer when trigger query happens. For the booking service, when trig-
ger book happens, the agent will first call the airline company by action a.requestTicket
and then go to the Or-state contactAirline. In the Or-state, the agency waits for the air-
line company’s reply and will forward the reply to the client, as described by the two
transitions.

The sequence diagram shown on the left side of Fig. 9 shows a consistent scenario
where the booking is successful. The client first sends a book message to the agency.
Then the agency forwards this message by sending requestTicket to the airline com-

Client TravelAgency Airline

book

requestTicket

hasTicket

success

Client TravelAgency Airline

book

requestTicket

success

noTicket

query

answer

Fig. 9. Two Scenarios

456 X. Zhao, Q. Long, and Z. Qiu

pany. After the airline company replies the hasTicket message, the agency will reply
the client a success message. Although syntactically correct, the diagram on the right
side is inconsistent with the statecharts. Firstly, the agency has wrongly replied success
when the airline company does not have a ticket. Secondly, suppose we correct the first
mistake, there is still another problem: the query and answer happens after the booking
is reasonable, but it is not allowed by the client’s statechart. This may imply that the
client’s statechart is not very well designed.

We have translated both the statecharts and the sequence diagrams into Promela
codes, as shown in the Appendix. Using SPIN we have successfully verified that the
first sequence diagram is consistent while the second one inconsistent, as expected. The
verification procedure only costs a few seconds and 3.7MB memory in a Pentium-4
machine, showing that our method is both effective and efficient.

6 Conclusions and Future Work

In this paper, we have syntactically defined sequence diagrams and statechart diagrams
and given the semantics as well. What is more, we propose the notion of split automata
by advancing the traditional concept of automata. It encodes the hierarchy data struc-
tures of statechart diagrams to its control structure hence can be implemented in model
checker easily and effectively. Based on these definitions we developed a framework
to check the inconsistency between the sequence and statechart diagrams in which the
central parts are the algorithms for translating the diagrams to Promela, which is the
input language of model checker SPIN.

Compared with the concept of “flattened automata” which unfolds all the hierar-
chical structure of the original statechart, split automata can prevent the states from
explicitly exponential increasing. Also, the split automata can make the specifications
in Promela much clearer than those written with flattened automata. What we have to
point out is that, in essence, the split automata do NOT solve the problem of state ex-
plosion problem because the model checker, say, SPIN itself will generate exponential
increasing states when it does verification. However, what we would like to argue is
that the model checker can use the on-the-fly strategy to reduce the states existing at the
same time, hence ease the problem quite a lot.

As for the future work, we can promise the following three aspects. Firstly, we
will give fully tool support for the algorithm designed in this paper. Secondly, we
will continue investigate semantics for the sequence diagrams which supports all the
features of sequence diagrams in UML 2.0, and develop the corresponding algorithm
as well. The last, but not the least one, is that we will develop the refinement calcu-
lus in UML design models with respect to the consistency in this paper and our ear-
lier work [14]. We hope with this calculus, the modelers who use UML can develop
their systems step by step without worrying about inconsistencies between different
models.

Acknowledgement. We would like to thank Dr. Zhiming Liu and the anonymous re-
viewers for many helpful comments on the research of UML consistency checking and
much other help.

Model Checking Dynamic UML Consistency 457

References

1. E. Astesiano and G. Reggio. An attempt at analysing the consistency problems in the UML
from a classical algebraic viewpoint. In WADT 2002, LNCS 2755. Springer, 2003.

2. J. R. Burch, E. M. Clarke, K. L. McMillan, and David L. Dill. Sequential circuit verification
using symbolic model checking. In DAC ’90: Proceedings of the 27th ACM/IEEE conference
on Design automation, pages 46–51, New York, NY, USA, 1990. ACM Press.

3. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 2000.
4. M. Fowler. What is the point of UML. In LNCS 1618. Springer, 1998.
5. J.M. Kuester G. Engels and L. Groenewegen. Consistent interaction of software components.

Proc. of IDPT 2002, 2002.
6. M. M. Gallardo, P. Merino, and E. Pimentel. Debugging UML designs with model checking.

Journal of Object Technology, 1(2):101–117, 2002.
7. J. He, X. Li, and Z. Liu. rCOS : A refinement calculus for object-oriented systems. Accepted

for publication in Theoretical Computer Science. Also available as Technical Report 322.
UNU/IIST, P.O.Box 3058, Macao SAR China (http://www.iist.unu.edu).

8. G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley,
2003.

9. P. Inverardi, H. Muccini, and P. Pelliccione. Checking consistency between architectural
models using SPIN. In Proc. of STRAW’01, 2001.

10. I. Jacobson, J. Rumbaugh, and G. Booch. The Unified Modelling Language Reference Man-
ual. Addison-Wesley, 1999.

11. A. Knapp, S. Merz, and C. Rauh. Model checking timed UML state machines and collabora-
tions. In 7th Int. Symp. Formal Techniques in Real-Time and Fault Tolerant Systems, volume
2469 of LNCS, pages 395–416. Springer, 2002.

12. J.M. Küster and J. Stehr. Towards explicit behavioral consistency concepts in the UML. In
Proc. of the 2nd International Workshop on Scenarios and State Machines: Models, Algo-
rithms, and Tools, Portland, USA, 2003.

13. J. Lilius and I. P. Paltor. Formalising UML state machines for model checking. In Robert
France and Bernhard Rumpe, editors, UML’99 - The Unified Modeling Language. Beyond the
Standard. Second International Conference, Fort Collins, CO, USA, October 28-30. 1999,
Proceedings, volume 1723 of LNCS, pages 430–445. Springer, 1999.

14. Q. Long, Z. Liu, X. Li, and J. He. Consistent code generation from UML models. In Proc.
of Australian Software Engineering Conference (ASWEC’2005), Brisbane, Australia, 2005.
IEEE Computer Society.

15. Q. Long, Z. Qiu, and S. Qin. The equivalence of statecharts. In Jin Song Dong and Jim
Woodcock, editors, Formal Methods and Software Engineering, ICFEM’03, LNCS 2885,
Singapore, 2003. Springer.

16. T. Schäfer, A. Knapp, and S. Merz. Model checking UML state machines and collaborations.
Electronic Notes in Theoretical Computer Science, 55(3), 2001.

17. W. Visser, K. Havelund, G. Brat, and S.J. Park. Model checking programs. In ASE’00,
Washington, DC, USA, 2000. IEEE Computer Society.

Appendix: Promela Code of the Travel Agency Example

mtype {s_init, s_try, s_wait, s_happy, s_unhappy, s_service, s_stop,
s_ready, s_contactAirline, s_replySuccess, s_replyFailure, s_qanda,
s_ticketService, finish, stop, nil, query, answer, book, cancel,
requestTicket, hasTicket, noTicket, success, failure }; chan
c_client = [0] of {mtype}; chan c_travelAgency = [0] of {mtype};
chan c_airline = [0] of {mtype}; chan c_service = [0] of {mtype};

458 X. Zhao, Q. Long, and Z. Qiu

chan c_service1 = [0] of {mtype}; chan c_service2 = [0] of {mtype};
chan c_contactAirline = [0] of {mtype}; mtype msg = nil;

active proctype client() {
mtype state = s_try;
do
::state == s_try ->
if
:: atomic {c_travelAgency! query; state = s_try;}
:: atomic {c_travelAgency! book; state = s_wait;}
:: c_client? answer -> atomic {msg = answer; state = s_try;}
fi

::state == s_wait ->
if
:: c_client? success -> atomic {msg = success; state = s_happy;}
:: c_client? failure -> atomic {msg = failure; state = s_unhappy;}
:: atomic {c_travelAgency! cancel; state = s_try;}
fi

od;
}

active proctype airline() {
mtype state = s_ticketService;
do
::state == s_ticketService ->
if
::c_airline? requestTicket ->

atomic {msg = requestTicket; c_travelAgency! hasTicket; state = s_ticketService;}
::c_airline? requestTicket ->

atomic {msg = requestTicket; c_travelAgency! noTicket; state = s_ticketService;}
fi

od;
}

active proctype travelAgency() {
mtype state = s_init; /* initial state */
do
::state == s_init -> atomic {state = s_service; run p_service();}
::state == s_service ->
if
:: c_travelAgency? cancel ->

atomic {msg = cancel; c_service! stop; c_service? finish; state = s_stop;}
fi

od;
}

proctype p_service() {
atomic {run p_service1(); run p_service2();}
atomic {c_service? stop; c_service1! stop; c_service2! stop;}
c_service1? finish; c_service2? finish; c_service! finish;

}

proctype p_service1() { /* the upper parallel region */
mtype state = s_ready;
do
::state == s_ready ->
if
::c_service1? stop -> break;
::c_travelAgency? book -> atomic {msg = book; c_airline! requestTicket;

run p_contactAirline(); state = s_contactAirline;}
fi

::state == s_contactAirline ->
if
::c_service1? stop ->

atomic {c_contactAirline! stop; c_contactAirline? finish; break;}
fi

od;
c_service1! finish;

Model Checking Dynamic UML Consistency 459

}

proctype p_contactAirline() {
mtype state = s_wait;
do
::state == s_wait ->
if
:: c_contactAirline? stop -> break;
:: c_travelAgency? hasTicket ->

atomic {msg = hasTicket; c_client! success; state = s_replySuccess;}
:: c_travelAgency? noTicket ->

atomic {msg = noTicket; c_client! failure; state = s_replyFailure;}
fi

od;
c_contactAirline! finish;

}

proctype p_service2() { /* the lower parallel region */
mtype state = s_qanda;
do
::state == s_qanda ->
if
::c_service2? stop -> break;
::c_travelAgency? query ->

atomic {msg = query; c_client! answer; state = s_qanda;}
fi

od;
c_service2! finish;

}

/* never claim */
#define Event(x) do :: msg == x -> break :: else od
never {

Event(book);
Event(requestTicket);
Event(hasTicket);
Event(success);

}

Conditions for Avoiding Controllability
Problems in Distributed Testing

Jessica Chen and Lihua Duan

School of Computer Science, University of Windsor
Windsor, Ont. Canada N9B 3P4
{xjchen, duan1}@uwindsor.ca

Abstract. Finite-state-machine-based conformance testing has been ex-
tensively studied in the literature in the context of centralized test ar-
chitecture. With a distributed test architecture which involves multiple
remote testers, the application of a test sequence may encounter control-
lability problems. This problem can be overcome by introducing addi-
tional external coordination messages exchanged among remote testers.
Such an approach requires for extra resources for the communication
among remote testers and sometimes suffers from unexpected delay. It is
thus desirable to avoid the controllability problem by selecting suitable
test sequences. However, this is not always possible. For some finite state
machines, we cannot generate a test sequence without using external co-
ordination messages and apply it without encountering controllability
problems during testing. In this paper, we present sufficient and nec-
essary conditions on a given finite state machine for constructing test
sequences so that it does not involve external coordination messages and
its application to the implementation under test is free from controlla-
bility problems.

Keywords: Conformance testing, finite state machine, controllability,
test sequence, unique input/output sequence.

1 Introduction

Given an implementation under test (IUT) from which we can only observe its
input/output behavior, conformance testing can be conducted to improve our
confidence that this implementation conforms to its specification M . Confor-
mance testing is often carried out by i) constructing a test sequence, which is
an input/output sequence, from the specification of the system; ii) applying the
input portion of this sequence to the IUT, which is considered as a black box,
according to the given test architecture; and iii) determining whether the actual
output sequence is produced as expected. Conformance testing has been exten-
sively studied in the context where M is a Finite State Machine (FSM). This
was mainly motivated by the fact that FSMs have been widely used to model the
abstract behavior of sequential circuits [11,28], lexical analysis systems [15,17],
and communications protocols [1,8,24,36]. Our interest in FSM-based confor-
mance testing is further stimulated by the fact that quite some more expressive

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 460–477, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Conditions for Avoiding Controllability Problems in Distributed Testing 461

specification languages such as SDL, Estelle and Statecharts are based on ex-
tensions of FSMs, and that FSM-based conformance testing techniques can be
applied to the settings where system specifications are given in such languages
[2,12,22,30,33].

In the context where the system is modeled as an FSM, an essential task
to carry out conformance testing is to automatically generate an efficient and
effective test sequence from the given FSM specification. Various approaches
have been explored in this regard according to different test criteria. See [21,19]
for comprehensive surveys on this topic.

For centralized test architecture, the same tester can apply a test sequence
derived from the specification of an IUT, observe its external input/output be-
havior and determine whether the behavior is as expected. When we consider
distributed systems, the testing may involve multiple testers, each residing on a
separate interface called port.

When we apply a test sequence to an IUT in a distributed architecture,
the existence of multiple testers may introduce possible coordination problems
known as controllability problem (or synchronization problem) [31] and observ-
ability problem [23]. Controllability problem occurs if a tester cannot determine
when to apply a particular input to an IUT. It manifests itself when the tester
who is expected to send an input to the IUT does not get involved in the previ-
ous transition, i.e., both the input and the output of the previous transition are
observed by other testers. Observability problem occurs if a tester cannot deter-
mine whether a particular output is a response to a specific input. It manifests
itself when the tester is expected to receive an output in response to either a
previous input or the current input and because the tester is not the one who
sends the current input, it is unable to determine when to start and stop waiting.

There are typically two approaches to solving controllability and observability
problems: one is to allow testers to communicate with each other by exchang-
ing external coordination messages [4,35]. The other is to try to eliminate the
need for explicit coordination by selecting a suitable test sequence [7,31]. Us-
ing external coordination messages introduces the necessity to set up a separate
communication network as well as delays which can be problematic if we have
timing issues in our testing. Thus the second approach is often preferred. How-
ever, there exist finite state machines with which we cannot generate a test
sequence without using external coordination messages and that can be applied
without encountering controllability or observability problems. In [5], a sufficient
and necessary condition is given on a specification FSM for resolving observabil-
ity problems without employing external coordination messages. In this paper,
we present sufficient and necessary conditions on a given specification FSM for
avoiding controllability problems without employing external coordination mes-
sages. Various conditions are given here according to different criteria on the
test sequences well-used in the literature.

The rest of the paper is structured as follows. Section 2 introduces the basic
concepts and notations used in this paper. In Section 3, we present our sufficient
and necessary conditions for avoiding controllability problems in constructing

462 J. Chen and L. Duan

test sequences. This is followed by discussions (Section 4) on these conditions
including the time complexity to check if a given FSM satisfies these conditions.
Concluding remarks are given in Section 5.

2 Preliminaries

Figure 1 shows a test architecture proposed by International Organization for
Standardization (ISO) for testing distributed systems [16]. Here, IUT can be
part of the System Under Test (SUT) and include a set of protocols, namely, P1,
P2, . . ., Pn. IUT has an explicit boundary to its local tester, i.e., it can provide
services to its upper layer. Therefore, we call this local tester an upper tester (U).
IUT can also be accessed by a remote tester through underneath service provider
platform which has an explicit boundary to the outer environment. We call this
remote tester a lower tester (L). Sometimes, a Test Coordination Procedure is
built to coordinate the cooperation between the upper and the lower testers.

This 2-port test architecture can be generalized into an n-port one [23], which
allows n testers to participate in the testing. Formally, we use n-port FSM to
describe the abstract behavior of the distributed systems with n ports.

An n-port finite state machine M (simply called FSM M below) is defined as
M = (S, I, O, δ, λ, s0) where

– S is a finite set of states of M ;
– s0 ∈ S is the initial state of M ;
– I =

⋃n
i=1 Ii, where Ii is the input alphabet of port i, and Ii ∩ Ij = ∅ for

i, j ∈ [1, n], i �= j;

X-Service Provider

Test System

Lower
Tester

SUT

Upper
Tester

IUT

X- ASPs

Y- ASPs
P1 to Pn

PDUs

Test Coordination Procedure

(N) - ASP: abstract N-service primitive, an implementation-independent
description of an interaction between a service-user and a service-
provider at an (N)-service boundary.
PDU: protocol data unit.

Fig. 1. A test architecture of distributed systems [16]

Conditions for Avoiding Controllability Problems in Distributed Testing 463

– O =
∏n

i=1(Oi ∪ {−}), where Oi is the output alphabet of port i, and −
means null output;

– δ is the transition function that maps S × I to S, i.e., δ: S × I → S;
– λ is the output function that maps S × I to O, i.e., λ: S × I → O.

By definition, an FSM M is: i) deterministic in the sense for each input x ∈ I,
there is at most one transition defined at each state of M ; ii) completely specified,
i.e., for each input x ∈ I, there is a transition defined at each state of M .

Like in the literature, we assume “slow environment”, i.e., whenever an input
reaches the system, the system will prompt the output for it before the second
input can reach the system.

Note that each y ∈ O is a vector of outputs, i.e., y = 〈o1, o2, . . . , on〉 where
oi ∈ Oi ∪ {−} for i ∈ [1, n]. In the rest of the paper, p ∈ [1, n] is a port, x ∈ I
is a general input, and xp ∈ Ip is an input at the specific port p. We use y|p to
denote the output at port p in y.

We extend input symbols and output symbols of the transition function δ
and output function λ to strings as follows: For input x1, . . . , xk ∈ I, output
y1, . . . , yk ∈ O, and s1, . . . , sk+1 ∈ S, if λ(si, xi) = yi and δ(si, xi) = si+1 for
i ∈ [1, k], then λ(s1, x1 . . .xk) = y1 . . . yk, δ(s1, x1 . . .xk) = sk+1.

We will use 2-port FSMs in all examples in this paper. In a 2-port FSM, U
and L stand for the upper port and the lower port of the FSM, respectively. An
output vector y = 〈o1, o2〉 in a transition of a 2-port FSM is a pair of outputs
with o1 ∈ O1 at U and o2 ∈ O2 at L.

A transition of an FSM is a triplet t = (s1, s2, x/y), where s1, s2 ∈ S, x ∈ I,
and y ∈ O such that δ(s1, x) = s2, and λ(s1, x) = y. s1 and s2 are called the
starting state and the ending state of t respectively. The input/output pair x/y
is called the label of the transition.

A path ρ in M is either null, denoted by ε, or a finite sequence of transitions
t1t2 . . . tk (k ≥ 1) in M such that for k ≥ 2, the ending state of ti is the
starting state of ti+1 for all i ∈ [1, k − 1]. A transition tour, simply called tour
below, is a special path ρ such that the starting state of t1 and the ending state
of tk are the same. Let ti = (si, si+1, xi/yi) for i ∈ [1, k]. The label of ρ is the
sequence of input/output pairs of the transitions in ρ: l = x1/y1 x2/y2 . . . xk/yk.
in = x1x2 . . .xk and out = y1y2 . . . yk are called the input sequence and output
sequence of ρ respectively. For convenience, we also use the pair of input and
output sequence in/out for the input/output sequence x1/y1 x2/y2 . . . xk/yk.

When ρ �= ε, we use first(ρ) and last(ρ) to denote the first and last transition
in ρ respectively. The starting state of ρ, denoted by start(ρ), is the starting state
of the first transition of ρ, and the ending state of ρ, denoted by end(ρ), is the
ending state of the last transition of ρ. Sometimes, we also use (s1, sk+1, in/out)
for path ρ with starting state s1, ending state sk+1, and whose label is in/out.
Let ρ1, ρ2 be two paths in M . When end(ρ1) and start(ρ2) are the same state,
we use ρ1ρ2 to denote the concatenation of ρ1 and ρ2. For clarity, sometimes we
also use ρ1@ρ2 for ρ1ρ2.

Two states si and sj are equivalent if applying any input sequence at si and
sj results in the same output sequence. Two FSMs M and M ′ are equivalent if

464 J. Chen and L. Duan

for every state in M there is a corresponding equivalent state in M ′, and vice
versa. An FSM M is minimal if for any two states si, sj ∈ S, i �= j implies si,
sj are not equivalent. In this paper, we assume that the given specification FSM
M is minimal.

2.1 Test Sequence

Various test criteria have been used to conduct conformance testing. They were
originally defined on single-port FSMs and have been used in general on n-port
FSMs as well. We summarize three most commonly-used ones below.

a) The corresponding path of the generated test sequence in the specification
FSM M should start from and end at the initial state of M and covers each
transition of M at least once.

This is the criterion adopted in T-method [27,35] and below we use T-sequence
to denote a test sequence satisfying this criterion. As showed in [32], although T-
sequence may have a shorter length compared to test sequences satisfying some
other criteria, it does not have a good fault detection capability.

Given FSM M that models the required behavior of an IUT, it is normal
to assume that the IUT behaves like some (unknown) FSM N with the same
input and output alphabets as M . To achieve better fault coverage, the following
stronger criterion is required:

b) The corresponding path of the generated test sequence in the specification
FSM M should start from and end at the initial state of M and contain each
transition in M followed by a path to verify the corresponding ending state
of this transition in N .

We will use U-sequence to denote a test sequence satisfying this criterion
as most of the discussions considering this criterion are based on U-method
[1,24,29,31].

The generation of U-sequence involves the use of UIO-sequences. A UIO-
sequence is an input sequence such that the output sequence produced in re-
sponse to this input sequence by M on a particular state is unique from those
on any other states. We use UIOi to denote the UIO-sequence for state si. For-
mally, given an FSM M = (S, I, O, δ, λ, s0), UIOi is a UIO-sequence for si ∈ S
if for any sj ∈ S, sj �= si implies λ(si,UIOi) �= λ(sj ,UIOi).

When we assume the existence of a UIO-sequence for each state of M , a test
segment for a transition t = (si, sj , x/y) of M is x/y@UIOj/λ(sj ,UIOj) which
consists of the label of t followed by a test sequence to verify the ending state in
N by using UIO-sequence for state sj .

Criterion b) essentially requires that the test sequence contains at least one
test segment for each transition in M . During the testing, for each transition
in M , we first use a so-called transfer sequence to lead to the starting state of
this transition, and then apply its test segment. The study of [26,32] shows that
U-sequences are quite effective in detecting faults in the IUT.

Conditions for Avoiding Controllability Problems in Distributed Testing 465

Neither T-sequence nor U-sequence supports for full fault coverage: having
applied a T-sequence or U-sequence successfully to the IUT does not guarantee
that if we apply any input/output sequence generated from M to test the IUT,
the observed output will be consistent to the expected one.

A more rigorous criterion is expressed in checking sequence which, under cer-
tain assumptions, supports for full fault coverage.

c) The corresponding path of the generated test sequence in the specification
FSM M should start from and end at the initial state of M and contain each
transition in M such that the corresponding starting state of this transition
in N is recognized and the ending state of this transition in N is verified.

This criterion has been adopted in W-method [8] and D-method [10,11,36]
and a test sequence satisfying this criterion is called a checking sequence.

As a common assumption used in the literature, N does not have more states
than M . Let Φ(M) denote the set of FSMs that have the same input and output
alphabets as M and have no more states than M . A checking sequence of M
guarantees that when we apply it to the IUT, it can distinguish M from any
element of Φ(M) not equivalent to M . Since M is minimal, the correct output
from applying a checking sequence of M to the IUT actually ensures that N is
isomorphic to M .

The problem of generating a checking sequence from an FSM M is simplified
when M has a set of UIOs or a distinguishing sequence. A distinguishing sequence
of M is an input sequence DS with the following characteristics: the output
sequences produced by M in response to DS on different states of M are all
different. Formally, DS is a distinguishing sequence of M if for any si, sj ∈
S, sj �= si implies λ(si,DS) �= λ(sj ,DS). In the literature, there has been much
interest in generating efficient checking sequence from an FSM M when a set of
UIOs [14] or a distinguishing sequence is known [10,11,13,36]. We use UIO-based
and DS-based checking sequence to denote the checking sequence generated using
a set of UIOs and using a distinguishing sequence respectively.

Example 1. Figure 2 shows a specification of a 2-port FSM. Here u1 ∈ I1,
o1 ∈ O1 at U , l1 ∈ I2, o2 ∈ O2 at L. Let ρ = t1t2t3t2t5t4t5t6. As ρ covers each
transition in M at least once, its input/output sequence u1/〈o1,−〉 l1/〈o1, o2〉
l1/〈o1,−〉 l1/〈o1, o2〉 u1/〈−, o2〉 u1/〈o1, o2〉 u1/〈−, o2〉 l1/〈o1,−〉 is a T-type se-
quence. The UIOs for each states are UIO1 = UIO2 = UIO3 = u1. In this case,
u1 is also a distinguishing sequence.

2.2 The Controllability Problem

Given an FSM M and an input/output sequence x1/y1 x2/y2 . . . xk/yk of M ,
where xi ∈ I and yi ∈ O, i ∈ [1, k], a controllability problem occurs when, in the
labels xi/yi and xi+1/yi+1 of any two consecutive transitions, ∃p ∈ [1, n] such
that xi+1 ∈ Ip, xi �∈ Ip, yi|p = − (i ∈ [1, k − 1]).

Example 2. In Figure 2, suppose we apply the input/output sequence of ρ =
t1t2t3t2t5t4t5t6 to the IUT. For the consecutive transitions t1t2, the tester at L

466 J. Chen and L. Duan

s0

s2 s1

u1/<o1, ->

l1/<o1, o2>

l1/<o1, ->

u1/<o1, o2>

u1/<-, o2>

l1/<o1, ->

t1 = (s0, s0, u1/<o1, ->)

t2 = (s0, s1, l1/<o1, o2>)

t3 = (s1, s0, l1/<o1, ->)

t4 = (s2, s1, u1/<o1, o2>)

t5 = (s1, s2, u1/<-, o2>)

t6 = (s2, s0, l1/<o1, ->)

Fig. 2. A given FSM

is not involved in the input or output activity in t1, so it cannot determine when
to provide input l1 of t2 during the application of this input/output sequence on
IUT, and thus a controllability problem occurs.

Two consecutive transitions ti and ti+1, whose labels are xi/yi and xi+1/yi+1,
form a synchronizable pair of transitions (ti, ti+1) if ti+1 can follow ti without
causing a controllability problem. Any path in which every pair of transitions is
synchronizable is called a synchronizable path. An input/output sequence is said
to be synchronizable if it is the label of a synchronizable path.

Clearly, our ultimate goal is to generate synchronizable T-sequence, U-
sequence, and checking sequence. Let ρ be a synchronizable input/output
sequence of a transition tour t1 . . . tk. ρ is called closed if (tk, t1) is a synchro-
nizable pair of transitions. The conditions we present here are to guarantee the
existence of synchronizable T-sequence, U-sequence, and checking sequence that
are closed. This gives us the flexibility to start the testing from any (known) state
in N : we can open tour ρ from any state and obtain its input/output sequence
as a synchronizable one.

One of the major requirements for an FSM to have a synchronizable test
sequence is that the FSM should be intrinsically synchronizable [6]. An FSM M
is intrinsically synchronizable if for any ordered pair of transitions (t1, t2), there
exists a path ρ such that t1@ρ@t2 is synchronizable. The FSM M in Figure 2
is not intrinsically synchronizable because there is no path ρ such that t1ρt2 is
synchronizable.

3 Conditions for Avoiding Controllability Problems

In this section, we present the sufficient and necessary conditions for generating
synchronizable T-type sequences, U-type sequences, and checking sequences.

3.1 Conditions for T-Sequences

Theorem 1. There exists a synchronizable T-sequence in an FSM M if and
only if M is intrinsically synchronizable.

Conditions for Avoiding Controllability Problems in Distributed Testing 467

Proof. (⇒) Suppose a synchronizable T-sequence γ exists in M , and its corre-
sponding path is �. According to the definition of T-sequence, � is a path starting
from and ending at the initial state. So �′ = �1@�2, where �1 = �2 = �, is also a
path in M . Since γ is synchronizable and closed, �′ is synchronizable. Now given
any ordered pair of transitions (t1, t2) in M , since � covers every transition in
M at least once, there exists an occurrence of t1 in �1 and an occurrence of t2
in �2. Let ρ be the path between these two occurrences in �′ (including these
two transitions). Apparently, ρ is synchronizable, first(ρ) = t1 and last(ρ) = t2.
Therefore, M is intrinsically synchronizable.

(⇐) Given an intrinsically synchronizable FSM M , we show how to construct a
synchronizable path � whose input/output sequence can form a synchronizable
T-sequence.

Suppose there are m transitions t1, . . ., tm in M where the starting state of
t1 is the initial state. Let � = ρ1ρ2 . . . ρm, where ρi (ρi ∈ [1, m]) is defined as
follows:

(1) for i ∈ [1, m − 1], ρi is a synchronizable path such that first(ρi) = ti,
(last(ρi), ti+1) is a synchronizable pair. The existence of ρi is guaranteed
because M is intrinsically synchronizable.

(2) ρm is a synchronizable path such that first(ρm) = tm and (last(ρm), t1) is a
synchronizable pair. Again, the existence of ρm is guaranteed because M is
intrinsically synchronizable.

Now, � contains all the transitions in M and is a closed synchronizable path
starting from and ending at the initial state, i.e. the starting state of t1. Thus,
the label of � is a synchronizable T-sequence.

3.2 Conditions for U-Sequences

Most of the discussions on generating U-sequences are UIO-based, so we first
present our result for UIO-based synchronizable U-sequence with detailed proof.
Similar result for DS-based synchronizable U-sequence is given thereafter. Its
proof can be analogously given and is omitted.

Theorem 2. There exists a UIO-based synchronizable U-sequence in an FSM
M if and only if

C1: M is intrinsically synchronizable;
C2: for any transition t = (si, sj , x/y) in M , there exists a UIOj such that

t@(sj , δ(sj , UIOj), UIOj/λ(sj , UIOj))

is synchronizable.

Proof. (⇒) Suppose there exists a UIO-based synchronizable U-sequence in M .
Let the corresponding path of this U-sequence in M be �.

First, U-sequence is a special T-sequence: it includes one test segment for each
transition in M , and thus � apparently covers each transition in M at least once.

468 J. Chen and L. Duan

So, given a synchronizable U-sequence, similar as in the proof of Theorem 1, we
can show that M is intrinsically synchronizable.

For UIO-based test sequence, a test segment for a transition t = (si, sj , x/y)
is

t@(sj , δ(sj ,UIOj),UIOj/λ(sj ,UIOj))

for some UIOj . Since a U-sequence includes one test segment for each transition
in M , there exists a UIOj such that

t@(sj , δ(sj ,UIOj),UIOj/λ(sj ,UIOj))

appears in �. As � is synchronizable, clearly the above path is also synchronizable.

(⇐) Suppose we are given an intrinsically synchronizable FSM M with m tran-
sitions t1, . . . , tm, and for each transition ti (i ∈ [1, m]), there exists a UIOj such
that sj = end(ti) and ti@(sj, δ(sj ,UIOj),UIOj/λ(sj ,UIOj)) is synchronizable.
We show how to construct a synchronizable path � whose label is a U-sequence.

Let ρi = ti@(sj , δ(sj ,UIOj),UIOj/λ(sj ,UIOj)) (i ∈ [1, m]). Let σi (i ∈
[1, m− 1]) be a path such that last(ρi)@σi@t(i mod m)+1 is synchronizable. The
existence of σi (i ∈ [1, m]) is guaranteed because M is intrinsically synchroniz-
able. Let � = ρ1σ1ρ2σ2 . . . ρmσm. Apparently, � is synchronizable. According
to the construction of �, its label is a synchronizable U-sequence. Note that σi

(i ∈ [1, m]) may be ε if (last(ρi),first(ρ(i mod m)+1)) forms a synchronizable pair.

Since DS is a special set of UIO-sequences such that the UIO sequence for
each state is the same, similar result of Theorem 2 can be induced for DS-based
synchronizable U-sequence as stated below.

Theorem 3. There exists a DS-based synchronizable U-sequence in an FSM M
if and only if

C1: M is intrinsically synchronizable;
C3: There exists a distinguishing sequence DS of M such that for any transition

t = (si, sj, x/y) in M , t@(sj , δ(sj , DS), DS/λ(sj , DS)) is synchronizable.

3.3 Conditions for Checking Sequence

Most discussions in the literature on checking sequence generation are DS-based.
Various techniques have been proposed to reduce the length of the checking
sequences. Typically, the checking sequence generation is divided into two phases:
state identification and transition verification. In the first phase, the states in N
are identified for their correspondence in M . This is accomplished by applying
distinguishing sequence to each state: from the output sequence of applying
the distinguishing sequence, we can identify the state where we have applied
the distinguishing sequence. In the second phase, we verify each transition t in
M by applying the input of t to the state in N that has been recognized as
the corresponding state of the starting state of t, and verify that the output
of this transition in N is correct and that the ending state in N after this
transition does correspond to the ending state of t by applying the distinguishing

Conditions for Avoiding Controllability Problems in Distributed Testing 469

sequence. The so-called transfer sequence is used wherever necessary to connect
these subsequences.

Below we present our condition for the existence of a DS-based synchroniz-
able checking sequence, providing full details of the proof. The proof is based on
the following Proposition 1, which claims if an FSM M is intrinsically synchro-
nizable, then for any outgoing transition t of si ∈ S, there exists an incoming
transition t′ of si such that (t′, t) is a synchronizable pair of transitions.

Proposition 1. If an FSM M is intrinsically synchronizable, then for any tran-
sition t of M , there exists transition t′ of M such that (t′, t) is a synchronizable
pair of transitions.

Proof. Given any transition t of M , let t′′ be any transition of M . Since M
is intrinsically synchronizable, there exists a synchronizable path ρ such that
first(ρ) = t′′ and last(ρ) = t. If ρ = t′′@t, then (t′′, t) is a synchronizable pair. If
ρ = t′′@ρ′@t where ρ′ �= ε, then (last(ρ′), t) is a synchronizable pair.

Theorem 4. There exists a DS-based synchronizable checking sequence in FSM
M if and only if

C1: M is intrinsically synchronizable;
C3: There exists a distinguishing sequence DS of M such that for any transition

t = (si, sj, x/y) in M , t@(sj , δ(sj , DS), DS/λ(sj , DS)) is synchronizable.

Proof. (⇒) Suppose there exists a DS-based synchronizable checking sequence
in M . Let the corresponding path of this checking sequence in M be �.

Note that checking sequence is a special T-sequence: for each transition t, it
includes a test segment to recognize its starting state, and verify its output and
its ending state. Thus � apparently covers each transition in M at least once. So,
given a synchronizable checking sequence, similar as in the proof of Theorem 1,
we can show that M is intrinsically synchronizable.

Checking sequence � needs to verify the ending state of each transition. For
DS-based checking sequence, this means there exists a distinguishing sequence
DS such that for each transition t = (si, sj , x/y),

t@(sj , δ(sj ,DS),DS/λ(sj ,DS))

appears in �. As � is synchronizable, clearly the above path is also synchronizable.

(⇐) Given an FSM M where conditions C1 and C3 hold. We show how to
construct a synchronizable path � whose label is a checking sequence.

Suppose there are k states s0, . . ., sk−1 where s0 is the initial state, and m
transitions t1, . . ., tm in M . Let � = �1@�2@�3, where �1, �2, and �3 are defined
as follows.

(1) �1 is for state identification:
Let ρi = (si, δ(si, DS), DS/λ(si, DS)), i.e., ρi is the path obtained by ap-
plying input sequence DS at si (i ∈ [0, k − 1]).

470 J. Chen and L. Duan

(i) for any si (i ∈ [0, k−1]), we compute the minimal set of transitions MSi

such that for any outgoing transition t from si, there exists t′ ∈ MSi

such that (t′, t) forms a synchronizable pair of transitions. According to
Proposition 1, MSi is non-empty. Give an arbitrary order to the tran-
sitions in MSi and we use t′i,j to denote the j-th incoming transition
to state si in MSi. For any transition t′i,j ∈ MSi, we construct a path
ρ′i = t′i,1@ρi@γi,1@ . . . t′i,|MSi|−1@ρi@γi,|MSi|−1@t′i,|MSi|@ρi, where γi,j

(for j ∈ [1, |MSi| − 1]) is a synchronizable transfer sequence starting
from end(t′i,j@ρi) and ending at start(t′i,j+1) such that last(t′i,j@ρi)@γi,j

@t′i,j+1 is synchronizable. γi,j exists because M is intrinsically synchro-
nizable. As t′i,j@ρi is also synchronizable according to condition C3, ρ′i
is synchronizable.

(ii) for i ∈ [0, k − 2], find a transfer sequence σi from end(ρ′i) to t′i+1,1 such
that last(ρ′i)@σi@first(ρ′i+1) is a synchronizable path.

(iii) find a transfer sequence σk−1 from end(ρ′k−1) to s0 such that
last(ρ′k−1)@σk−1@first(ρ′0) is a synchronizable path.

(iv) let �1 = ρ′0@σ0@ . . .@ρ′k−1@σk−1@ρ0.

According to the above definition, �1 identifies all states in N and it is
synchronizable.

(2) �2 is for transition verification:
For ti = (su, sv, x/y) (i ∈ [1, m]), let

θ′i = θi@ti@(end(ti), δ(end(ti), DS), DS/λ(end(ti), DS)).
The label of this path will be used to verify transition ti. It contains a
transfer sequence θi leading to ti, transition ti, and the path for applying
DS on end(ti). The transfer sequence θi is defined as follows:

(i) For t1, let θ1 be the transfer sequence from end(�1) to t1. According to
Proposition 1 and our definition of MS, we know there exists a transition
t′u,j in MSu such that (t′u,j , t1) is a synchronizable pair of transitions.

If j = 1 and u �= 0, find a transfer sequence ς1 from state end(�1) to
start(t′u−1,|MSu−1|), such that last(�1)@ς1@t′u−1,|MSu−1| is a synchroniz-
able path. In this case, θ1 = ς1@t′u−1,|MSu−1|@ρu−1@σu−1@t′u,1.

If j = 1 and u = 0, find a transfer sequence ς1 from state end(�1) to
start(t′k−1,|MSk−1|), such that last(�1)@ς1@t′k−1,|MSk−1| is a synchroniz-
able path. In this case, θ1 = ς1@t′k−1,|MSk−1|@ρk−1@σk−1@t′0,1.

If j > 1, find a transfer sequence ς1 from state end(�1) to start(t′u,j−1),
such that last(�1)@ς1@t′u,j−1 is a synchronizable path. In this case, θ1 =
ς1@t′u,j−1@ρu@γu,j−1@t′u,j .

(ii) for ti (i ∈ [2, m]), let θi be the transfer sequence from last(θ′i−1) to ti.
According to Proposition 1 and our definition of MS, we know there
exists a transition t′u,j in MSu such that (t′u,j , ti) is a synchronizable pair
of transitions.

If j = 1 and u �= 0, find a transfer sequence ςi from state end(θ′i−1) to
start(t′u−1,|MSu−1|), such that last(θ′i−1)@ςi@t′u−1,|MSu−1| is a synchro-
nizable path. In this case, θi = ςi@t′u−1,|MSu−1|@ρu−1@σu−1@t′u,1.

Conditions for Avoiding Controllability Problems in Distributed Testing 471

If j = 1 and u = 0, find a transfer sequence ςi from state end(θ′i−1)
to start(t′k−1,|MSk−1|), such that last(θ′i−1)@ςi@t′k−1,|MSk−1| is a synchro-
nizable path. In this case, θi = ςi@t′k−1,|MSk−1|@ρk−1@σk−1@t′0,1.

If j >1, find a transfer sequence ςi from state end(θ′i−1) to start(t′u,j−1),
such that last(θ′i−1)@ςi@t′u,j−1 is a synchronizable path. In this case,
θi = ςi@t′u,j−1@ρu@γu,j−1@t′u,j .

(iii) Let �2 = θ′1@θ′2@ . . .@θ′m.

Finally, let �3 be a transfer sequence from end(�2) to s0 such that
last(�2)@�3@first(�1) is synchronizable. Again, such a �3 exists since M is in-
trinsically synchronizable.

Now, let � = �1@�2@�3. From the above construction, � is synchronizable. So
the label of � is synchronizable. Moreover, �1@�2 contains both state identifica-
tion for each state in M and transition verification for each transition in M . So
the label of � forms a checking sequence.

s0

s2 s1

u1/<o1, o3>

l1/<o1, o2>

l1/<o1, ->

u1/<o1, o2>

u1/<-, o2>

l1/<o1, ->

t1 = (s0, s0, u1/<o1, o3>)

t2 = (s0, s1, l1/<o1, o2>)

t3 = (s1, s0, l1/<o1, ->)

t4 = (s2, s1, u1/<o1, o2>)

t5 = (s1, s2, u1/<-, o2>)

t6 = (s2, s0, l1/<o1, ->)

Fig. 3. An example that satisfies both C1 and C3

Example 3. To illustrate the proof of Theorem 4, we use the example of Figure 3
to show how a synchronizable checking sequence is constructed. Here u1 ∈ I1,
o1 ∈ O1 at U , l1 ∈ I2, o2, o3 ∈ O2 at L. DS = u1.

In this example, �1 = t1t2t5t4t3t1; �2 = t2t5t4t3t1t1 t2t5t4t3t2t5 t6t1t2t3t1
t2t5t4t5 t6t1t2t5t4 t5t6t1; �3 = ε. The synchronizable checking sequence is the
label of the concatenation of �1, �2 and �3:

u1/〈o1, o3〉 l1/〈o1, o2〉 u1/〈−, o2〉 u1/〈o1, o2〉 l1/〈o1,−〉 u1/〈o1, o3〉
l1/〈o1, o2〉 u1/〈−, o2〉 u1/〈o1, o2〉 l1/〈o1,−〉 u1/〈o1, o3〉 u1/〈o1, o3〉
l1/〈o1, o2〉 u1/〈−, o2〉 u1/〈o1, o2〉 l1/〈o1,−〉 l1/〈o1, o2〉 u1/〈−, o2〉
l1/〈o1,−〉 u1/〈o1, o3〉 l1/〈o1, o2〉 l1/〈o1,−〉 u1/〈o1, o3〉 l1/〈o1, o2〉
u1/〈−, o2〉 u1/〈o1, o2〉 u1/〈−, o2〉 l1/〈o1,−〉 u1/〈o1, o3〉 l1/〈o1, o2〉
u1/〈−, o2〉 u1/〈o1, o2〉 u1/〈−, o2〉 l1/〈o1,−〉 u1/〈o1, o3〉

The generation of UIO-based checking sequence is a bit more complicate: in
the first phase, we need to apply UIOi for each state si in M to the same state
in N in order to identify this state in N . In the second phase, we verify each

472 J. Chen and L. Duan

transition in the same way as in the setting of using distinguishing sequence: to
verify the ending state of the transition being verified, the UIO-sequence for the
ending state is used instead of the distinguishing sequence.

We use the following example to show that the satisfaction of C1 and C2
cannot guarantee the existence of a UIO-based synchronizable checking sequence.
We leave it open to find the sufficient and necessary conditions for the existence
of UIO-based synchronizable checking sequence.

si

sj
sr

u1/<o1, -> u1/<-, o2 >

UIOi UIOh

t1 = (sj, si, u1/<o1, ->)

t2 = (sr, si, u1/<-, o2 >)

Fig. 4. An example to show C1 and C2 are not sufficient for generating a UIO-based
synchronizable checking sequence

Example 4. Figure 4 shows part of an FSM M . We assume M is intrinsically
synchronizable, and the set of UIO sequences for M is {UIOi|∀si ∈ S}. u1 is an
element of the input alphabet for port U . o1 and o2 are elements of the output
alphabet for port U and L respectively. For a specific state si, there are two
incoming transitions t1 and t2. We assume t1@(si, δ(si,UIOi),UIOi/λ(si,UIOi))
and t2@(si, δ(si,UIOi),UIOi/λ(si,UIOi)) are synchronizable.

For state identification, every element in {UIOi|∀si ∈ S} should be applied
at state si; however, there may exist UIOh such that neither t1 nor t2 followed
by the test sequence with UIOh as the input portion can form a synchronizable
path. Therefore, no synchronizable checking sequence can be constructed.

4 Discussions on the Conditions

In this section, we discuss the time complexity to determine if a given FSM holds
conditions C1, C2 or C3, and the relationships among these conditions.

4.1 Checking If the Conditions are Satisfied

First, we unveil the relationship between an intrinsically synchronizable FSM
and a strongly connected FSM.

A directed graph (digraph) G is defined by a pair (V, E) where V is a set of
vertices and E is a set of directed edges between vertices. Each edge may have
a label. As we know, an FSM can be represented by a digraph where i) each
vertex represents a state; ii) each edge represents a transition; iii) the label of an
edge is the label of its corresponding transition. A walk is a sequence of pair-wise

Conditions for Avoiding Controllability Problems in Distributed Testing 473

adjacent edges in G. A digraph is strongly connected if for any ordered pair of
vertices (vi, vj) there is a walk from vi to vj . An FSM M is strongly connected if
the digraph that represents M is strongly connected, i.e., for every pair of states
si and sj, there exists an input sequence in such that δ(si, in) = sj .

Apparently an FSM M is strongly connected if M is intrinsically synchroniz-
able, while the reverse is not true.

Let GM = 〈V, E〉 be the digraph representing FSM M . Define digraph G′
M =

〈V ′, E′〉 as follows:

– V ′ = {ve | ∀e ∈ E}
– E′ = {(ve1 , ve2) | ∀e1, e2 ∈ E, (e1, e2) is a synchronizable pair }

Then we have that M is intrinsically synchronizable if and only if G′
M is

strongly connected. While most of the discussions in test sequence generation
require that GM be strongly connected, for avoiding controllability problem, it
is also important that G′

M is strongly connected.
An algorithm adapted from Depth First Search Algorithm [34] can be imple-

mented to check if a digraph G is strongly connected. This algorithm has time
complexity O(|V |+ |E|), where |V | and |E| are the number of vertices and the
number of edges in G respectively. Given an FSM M with m transitions, it takes
time O(m2) to transform GM to G′

M . In the worst case, there are m2 transi-
tions in G′

M . Therefore, it takes time O(m2) to check whether M is intrinsically
synchronizable.

Determining the existence of UIOs or a DS of an FSM is a PSPACE-complete
problem [20]. If UIOi exists for any si ∈ S, and the maximum length of UIOi is
l, then determining whether C2 is satisfied takes time O(ml). Similarly, deter-
mining whether C3 is satisfied takes time O(m|DS|).

4.2 Relationship Among the Conditions

The intrinsically synchronizable condition is stronger than the negation of the
intrinsically non-synchronizable condition [31]. An FSM is intrinsically non-
synchronizable if it has non-synchronizable transitions or non-synchronizable
states. A transition t = (si, sj, x/y) is non-synchronizable if t fails to form a
synchronizable pair of transitions with any incoming transition to state si. A
state si is non-synchronizable if it has no outgoing transition t′ which forms
a synchronizable pair of transitions with any of its incoming transitions. If a
given FSM is intrinsically non-synchronizable, then there is no synchronizable
T-sequence, U-sequence or checking sequence [31].

Clearly, if an FSM M is intrinsically synchronizable, then M is not intrin-
sically non-synchronizable. However, it is possible that M is not intrinsically
non-synchronizable, and it is also not intrinsically synchronizable.

Example 5. The FSM in Figure 2 is not intrinsically non-synchronizable because
there is no non-synchronizable transition and there is no non-synchronizable
state. However M is not intrinsically synchronizable: there is no synchronizable
path to connect t1 and t2.

474 J. Chen and L. Duan

s0

s3 s2

u1/<-, o2>

s1

u1/<o1, o2>

u1/<o1, ->

l1/<-, o2 >

l1/<o1, ->

u1/<-, o3>

l1/<-, o2>l1/<-, o3>

t1 = (s0, s1, u1/<o1, ->)

t2 = (s1, s0, l1/<-, o2 >)

t3 = (s1, s2, u1/<-, o2>)

t4= (s2, s1, l1/<o1, ->)

t5 = (s2, s3, u1/<o1, o2>)

t6 = (s3, s2, u1/<-, o3>)

t7 = (s0, s2, l1/<-, o2>)

t8 = (s3, s0, l1/<-, o3>)

Fig. 5. An example that does not satisfy C3

Next, we give an example to show that conditions C1 and C2 are independent.
Analogously, conditions C1 and C3 are also independent.

Example 6. Figure 2 gives an example where C1 is not satisfied while conditions
C2 and C3 are satisfied. C1 is not satisfied because there is no synchronizable
path to connect t1 and t2. It is obvious that no synchronizable checking sequence
can be constructed because there is no way to leave state s1 after executing t1
without encountering controllability problem.

Figure 5 gives an example where C1 is satisfied while C3 is not. This example
has the same input and output alphabets as the one in Figure 3, and DS = u.
C2 is not satisfied because

t2@(end(t2), δ(end(t2), DS), DS/λ(end(t2), DS))

t7@(end(t7), δ(end(t7), DS), DS/λ(end(t7), DS))

t8@(end(t8), δ(end(t8), DS), DS/λ(end(t8), DS))

are not synchronizable. In this case, the ending state of t2, t7, and t8 cannot be
verified without encountering controllability problem, and thus no synchroniz-
able U-sequence or checking sequence can be constructed.

5 Conclusion and Final Remarks

We have presented sufficient and necessary conditions for generating three com-
monly used test sequences so that applying these sequences to the IUT will not
invoke controllability problems. We have considered test sequences whose cor-
responding paths in the specification FSM are transition tours that start from
and end at the initial state. In particular, we require that the last and the first
transition of the tour should form a synchronizable pair. This is based on the
following facts: i) It is very often desirable that the IUT returns to its initial state
after testing. ii) Many systems have the so-called reliable reset feature, in the
sense that there is a special input that can lead the system from any state back

Conditions for Avoiding Controllability Problems in Distributed Testing 475

to the initial state. So we can always start the testing from the initial state by
applying the generated test sequence. iii) In the absence of reliable reset feature,
sometimes there exists a homing sequence [18,25] or a synchronizing sequence
[9,18] in the specification FSM. This means after applying the homing sequence
or the synchronizable sequence, the IUT will be led to a specific state s. In this
case, if we have generated a test sequence whose corresponding path in M is a
synchronizable tour such that its last and the first transitions form a synchro-
nizable pair, then we can break the generated test sequence tour so that the test
sequence is to be applied at s. Of course, for U-sequence and checking sequence,
we cannot break the test sequence (tour) at any place. For example, the test
sequence cannot be broken within a subsequence used for transition verification.

Sometimes, it suffices to have a synchronizable test sequence where the last
and the first transition of its corresponding path do not form a synchronizable
pair. In this setting, the above conditions can be weakened: A weaker condition
is given in [3] for generating synchronizable T-sequence. What remain open are
the conditions in this setting for generating synchronizable U-sequences and
synchronizable checking sequences.

Given a specification FSM satisfying the conditions for the existence of a
synchronizable T-sequence, U-sequence or checking sequence, a procedure for
constructing the corresponding test sequence is actually given in the proof of the
theorems. Of course, such procedures in general do not yield the shortest test
sequences. In this regard, various methods have been proposed in the literature
on how to minimize the length of T-sequence, U-sequence, or checking sequence
[1,13,24,36].

Acknowledgements

This work is supported in part by the Natural Sciences and Engineering Research
Council of Canada under grant number RGPIN 209774.

References

1. A.V. Aho, A.T. Dahbura, D. Lee, and M.U. Uyar. An optimization technique for
protocol conformance test generation based on UIO sequences and Rural Chinese
Postman Tours. IEEE Trans Comm., 39(11):1604–1615, Nov. 1991.

2. G.v. Bochmann, A. Petrenko, O. Bellal, and S. Maguiraga. Automating the process
of test derivation from SDL specifications. In proc. of 8th SDL Forum, 1997.

3. S. Boyd and H. Ural. The synchronization problem in protocol testing and its
complexity. Information Processing Letters, 4(3):131–136, Nov. 1991.

4. L. Cacciari and O. Rafiq. Controllability and observability in distributed testing.
Information and Software Technology, 41:767–780, 1999.

5. J. Chen, R. M. Hierons, and H. Ural. Conditions for resolving observability prob-
lems in distributed testing. In proc. of 24th International Conference on Formal
Techinques in Networked and Distributed Systems (FORTE 2004), LNCS 3235,
pages 229–242. Springer-Verlag, 2004.

476 J. Chen and L. Duan

6. J. Chen, R.M. Hierons, and H. Ural. Overcoming observability problems in dis-
tributed test architectures. Information Processing Letter, 98(5):177–182, June
2006.

7. J. Chen and H. Ural. Detecting observability problems in distributed testing. In
proc. of 19th IFIP International Conference on Testing of Communicating Systems
(TestCom 2006), LNCS, 2006. To appear.

8. T.S. Chow. Testing software design modeled by finite-state machines. IEEE Trans.
Software Eng., SE-4(3):178–187, May 1978.

9. D. Eppstein. Reset sequences for monotonic automata. SIAM J. Computing,
19(3):500–510, 1990.

10. G. Gonenc. A method for the design of fault detection experiments. IEEE Trans.
Computers, 19(6):551–558, June 1970.

11. F.C. Hennie. Fault detecting experiments for sequential circuits. In proc. of 5th
Ann. Symp. Switching Circuit Theory and Logical Design, pages 95–110, 1964.

12. R. M. Hierons and M. Harman. Testing conformance to a quasi-non-deterministic
stream X-machine. Formal Aspects of Computing, 12(6):423–442, 2000.

13. R. M. Hierons and H. Ural. Reduced length checking sequences. IEEE Transactions
on Computers, 51(9):1111–1117, 2002.

14. R. M. Hierons and H. Ural. UIO sequence based checking sequences for distributed
test architectures. Information and Software Technology, 45(12):793–803, 2003.

15. J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to automata theory,
languages, and computation. Addison-Wesley, 2001.

16. ISO/IEC 9646. Information technology – Open Systems Interconnection – Confor-
mance testing methodology and framework – Part 1-7. ISO, June 1996.

17. W.L. Johnson, J.H. Porter, S.I. Ackley, and D.T. Ross. Automatic generation of
efficient lexical processors using finite state techniques. Communications of the
ACM, 11(12):805–813, 1968.

18. Z. Kohavi. Switching and finite automata theory. New York: McGraw-Hill, 2nd
edition, 1978.

19. R. Lai. A survey of communication protocol testing. Journal of Systems and
Software, 62:21–46, 2002.

20. D. Lee and M. Yannakakis. Testing finite state machines: state identification and
verification. IEEE Tran. Computers, 43:306–320, 1994.

21. D. Lee and M. Yannakakis. Principles and methods of testing finite state machines
— a survey. Proceedings of The IEEE, 84(8):1090–1123, Aug 1996.

22. G. Luo, A. Das, and G. von Bochmann. Generating tests for control portion of
SDL specification. In proc. of Protocol test systems VI, pages 51–66, 1994.

23. G. Luo, R. Dssouli, G.V. Bochmann, P. Venkataram, and A. Ghedamsi. Test gen-
eration with respect to distributed interfaces. Computer Standards and Interfaces,
16:119–132, 1994. Elsevier.

24. R.E. Miller and S. Paul. On the generation of minimal length conformance tests
for communications protocols. IEEE/ACM Transactions on Networking, 1(1):116–
129, 1993.

25. E.F. Moore. Gedanken-experiments on sequenctial machines. Automata Studies,
34:129–153, 1956. Princeton Univ. Press.

26. H. Motteler, A. Chung, and D. Sidhu. Fault coverage of UIO-based methods for
protocol testing. In proc. of IFIP TC6/WG6.1 6th International Workshop on
Protocol Test Systems, pages 21–33, 1994.

27. S. Naito and M. Tsunoyama. Fault detection for sequential machines by transition
tours. In proc. of 11th. IEEE Fault Tolerant Computing Symposium, pages 238–243,
1981.

Conditions for Avoiding Controllability Problems in Distributed Testing 477

28. I. Pomeranz and S. M. Reddy. Test generation for multiple state-table faults in
finite-state machines. IEEE Transactions on Computers, 46:783–794, 1997.

29. K.K. Sabnani and A.T. Dahbura. A protocol test generation procedure. Computer
Networks and ISDN Systems, 4(15):285–297, 1988.

30. K. Saleh, H. Ural, and A. Williams. Test generation based on control and data
dependencies within system specifications in SDL. Computer Communications,
23(7):609–627, 2000.

31. B. Sarikaya and G. V. Bochmann. Synchronization and specification issues in
protocol testing. IEEE Transactions on Communications, 32:389–395, 1984.

32. D. P. Sidhu and T.-K. Leung. Formal methods for protocol testing: A detailed
study. IEEE Transactions on Software Engineering, 15(4):413–426, 1989.

33. Q. M. Tan, A. Petrenko, and G.v. Bochmann. Modeling basic LOTOS by FSMs
for conformance testing. In proc. of 15th International Symposium on Protocol
Specification, Testing and Verification (PSTV 15), pages 137–152, 1995.

34. R. Tarjan. Depth-first search and linear graph algorithms. J. SIAM Comput.,
1(2):146–160, 1972.

35. H. Ural and D. Whittier. Distributed testing without encountering controlability
and observability problems. Information Processing Letters, 88:133–141, 2003.

36. H. Ural, X. Wu, and F. Zhang. On minimizing the lengths of checking sequences.
IEEE Transactions on Computers, 46(1):93–99, 1997.

Generating Test Cases for Constraint Automata
by Genetic Symbiosis Algorithm

Samira Tasharofi1, Sepand Ansari1, and Marjan Sirjani1,2

1 Department of Electrical and Computer Engineering,
University of Tehran, Tehran, Iran

2 School of Computer Science, Institute for Studies in Theoretical Physics and
Mathematics (IPM), Niavaran Square, Tehran, Iran

{s.tasharofi, sepans}@ece.ut.ac.ir
msirjani@ut.ac.ir

Abstract. Constraint automata are a semantic model for Reo modeling
language. Testing correctness of mapping black-box components in Reo
to constraint automata is an important problem in analyzing the seman-
tic model of Reo. This testing requires a suite of test cases that cover the
automaton states and transitions and also examine different paths. In
this paper, Genetic Algorithm (GA) is employed to generate such suite
of test cases. This test data generation is improved by Genetic Symbiosis
Algorithm (GSA). The results show that GSA approach brings us a suite
of test cases with full coverage of automata states and transitions and
also diversity of examined paths.

Keywords: Constraint automata, finite-state machine testing, auto-
matic test data generation, genetic algorithms, symbiotic evolutionary
algorithms.

1 Introduction

Software systems are getting more complex day after day. Therefore, there is a
need for techniques to reduce the complexity and consequently development cost
and time of these systems. As a result, many new software design and model-
ing techniques have been introduced. Most of these approaches are shaped by
decomposition of software into several smaller subsystems, called components.
By acquiring component-based design techniques, new software is designed by
using pre-existing and new components in a combination, to achieve the desired
functionality. Reo [1] is a coordination language for modeling component-based
systems. This language is based on a calculus of channels and consists of compo-
nents that are connected via connectors which coordinate their activities. Com-
posability and reconfiguration of connectors in Reo make it suitable for modeling
systems. This modeling language is used for modeling different application in-
cluding software architectures, network protocols and multi-agent systems.

Constraint automata [2] are a semantic model for Reo. Each element of Reo
such as the black-box components must be mapped to a constraint automaton

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 478–493, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Generating Test Cases for Constraint Automata by GSA 479

and the behavior of a system is obtained by composing constraint automata of
its constituent elements.

Now, the question is how we can make sure that the automaton precisely
defines the behavior of our components. One of the approaches is formal verifi-
cation, but this approach has the problem of state-space explosion and high cost,
when the automaton is large. Another approach is testing the automaton; in this
approach, we need a suite of tests that gives us the confidence of traversing all
the reachable states and transitions from the initial state and also examine a
wide range of paths (behaviors).

Genetic Algorithms (GAs) have been used for generating test data for software
systems. Pargas [3] examined statement and branch coverage; in [4], GAs are
applied to branch testing; boundary conditions are analyzed in [5]; and in [6,7,8]
GAs are used for path testing. In [9], functional testing is considered in which
program is treated as a black box and the necessary information is extracted
from the code to calculate the objective function and in [10] the time it takes
for a process is measured.

In order to generate test cases for automated-based languages, classical testing
frameworks based on Mealy machines [11,12] or finite labeled transition systems,
LTSs are developed [13,14,15,16,17].

A type of problem in FSM (Finite State Machine) testing is conformance
testing. In this problem, a specification of finite state machine is given, for which
we have its transition diagram, and an implementation, which is a ”black box”
for which we can only observe its I/O behavior, we want to test whether the
implementation conforms to the specification.

Some proposed approaches for conformance testing are the D-method based
on distinguishing sequences [18], the U-method based on UIO (Unique Input
Output) sequences [19], the T-method based on transition tours [20] and the
W-method based on characterization sets [11] which is improved in [21] and the
generalized form of it for generating test sequences for NFSM’s (Nondetermin-
istic Finite-State Machines) is appeared in [22].

In [23,24] conformance testing methods are proposed for real-time systems
based on specifications modeled as timed automata and are based on on-the-
fly determinization of the specification automaton during the execution of the
test, which in turn relies on reachability computations. These methods focused
on generating a suite of tests which covers the specification with respect to
a number of criteria: location, edge or state coverage. A conformance testing
method for timed I/O automata is presented in [25].

But, constraint automata are different from LTS, FSM, I/O automata and
timed automata as multiple inputs/outputs can be activated in each transition.
Also, unlike I/O automata which at every state must be receptive towards every
possible input action (input enabled) for constraint automata at every state some
inputs may be illegal.

These characteristics of constraint automata cause that the presented testing
approaches couldn’t be applied for constraint automata. So, testing a constraint
automaton is an open problem in testing area. In this paper, we are going to

480 S. Tasharofi, S. Ansari, and M. Sirjani

use two evolutionary algorithms, ordinary Genetic Algorithm (GA) and Ge-
netic Symbiosis Algorithm (GSA), for generating a suite of tests for constraint
automata. Our goal is not only coverage of states and transitions but also ex-
amination of different paths (behaviors) by the test cases.

Structure of the paper. The next section is an introduction to the primitive
concepts of Reo and constraint automata. Section 3, contains a brief overview of
ordinary Genetic Algorithm (GA) and Genetic Symbiosis Algorithm (GSA). The
details of our applied algorithms are described in Section 4. The experimental
results are presented in Section 5. Finally, Section 6 contains the conclusions
derived from these results and the future work.

2 Constraint Automata

Reo is a coordination language for modeling systems based on components.
The components in Reo are coordinated through connectors called channels and
nodes. So, each Reo circuit is constructed from channels, nodes and components.

Constraint automata [2] are proposed as compositional semantics for Reo
based on timed data streams [26]. Each element of a timed data stream is a
pair of time and a data item, where the time indicates when the data item is
being input or output. A transition fires if it observes data item in a port of
the component and according to the observed data, the automaton may change
its state. A constraint automaton (over the data domain Data) is a tuple A =
(Q, Names,−→, Q0) where:

– Q is a finite set of states
– Names is a finite set of names (I/O ports)
– −→ is a finite subset of Q× 2Names×DC×Q, called the transition relation

of A
– Q0 ⊆ Q is the set of initial states

In this model, DC is data constraint that plays the role of guard for transition.
For example d(A) = d(B) is a data constraint that imposes the observed data
on ports A and B must be equal together.

For example, Fig. 1 shows the modeling of the Exclusive-Router component
that has one input A and two outputs B and C. This component accepts data
by its input if it can simultaneously dispenses data on one of its outputs. The
data is copied only on one of its outputs. So, if B and C can accept data, one
of them is selected non-deterministically.

In order to obtain the behavior of a Reo circuit (entire system) by constraint
automata, first, each element is modeled by a constraint automaton; in the next
steps, by composing the automata of Reo elements, the behavior of the entire
system is achieved.

Each component in Reo, may be constructed out of a Reo circuit or may be
a black box that its I/O behavior is specified. In the case that the component
is a Reo circuit, its corresponding constraint automaton can be obtained via
a composition process, which is automated in [27]; otherwise, the constraint

Generating Test Cases for Constraint Automata by GSA 481

Fig. 1. Exclusive-Router component and its modeling by constraint automata

automaton must be defined with respect to the specification of the component
behavior. In the latter case, the correctness of this mapping is a problem.

A constraint automaton is defined in an XML format which is validated by its
corresponding schema provided in [28]. As an example, the XML specification
of the automaton in Fig. 1 is depicted in Fig. 2. The elements node and edge
are used for defining the states and transitions of an automaton respectively.
The edge element is a composite element that consists of two elements, signal
and constraint, for defining the names and data constraints of the transition
respectively.

<gxl><graph>
<signals>

<signal>A</signal>
<signal>B</signal>
<signal>C</signal>

</signals>
<node id="*st0"> *st0 </node>
<edge id="edge0" from="*st0" to="*st0">

<signal>A</signal>
<signal>B</signal>
<constraint>d(A)=d(B)</constraint>

</edge>
<edge id="edge1" from="*st0" to="*st0">

<signal>A</signal>
<signal>C</signal>
<constraint>d(A)=d(C)</constraint>

</edge>
</graph></gxl>

Fig. 2. XML specification of Exclusive-Router constraint automaton which is shown
in Fig. 1

482 S. Tasharofi, S. Ansari, and M. Sirjani

3 Genetic and Genetic Symbiosis Algorithms

Genetic algorithms (GAs) [29] are a particular class of evolutionary algorithms
that use techniques inspired by evolutionary biology and natural selection theory.
GA is a search technique based to find approximate solutions to optimization and
search problems where the problem space is large and complex, and the problem
contains difficulties such as high dimensionality, multiple optima, discontinuity
and noise. In GA, the parameters and properties of a possible solution to the
problem is encoded as a string. Genetic Algorithm maintains a population of
these encodings as chromosomes, each called an individual. Each position of the
chromosome is called a gene, the chromosomal encoding of a solution is called the
genotype, and the encoded properties of solution are called the phenotype of the
individual. In every iteration of GA, called a generation, an objective function
quantifies the fitness of each individual or in other words, measures how good a
solution coded in the chromosomes solves the problem. According to the fitness of
the individuals, certain proportion of the population is selected using the natural
selection mechanism. Most selection mechanisms are stochastic and designed so
that a small proportion of less fit solutions are selected. This helps keep the
diversity of the population large, preventing premature convergence on poor
solutions. One of the most popular and well-studied selection methods is roulette
wheel selection. Using the survived individuals, new offsprings are produced for
the next generation. Usually, reproduction is performed using two operations:
crossover and mutation. Crossover is used to create offspring from two parent
individuals by randomly exchanging parts of their chromosomes, which can be
performed in various ways. An example of one-point crossover is given in the left
hand side of Fig. 3. Subsequently, mutation may be applied to individuals by
randomly changing pieces of their representations, as shown in the right hand
side of Fig. 3. The purpose of mutation in GA is to allow the algorithm to avoid
local minima by preventing the population of chromosomes from becoming too
similar to each other, thus slowing or even stopping evolution and mutation plays
the exploration role in the search. Both crossover and mutation are applied with a
certain probability, called crossover rate and mutation rate, respectively. A high-
level description of Genetic Algorithm is shown in Fig. 4. For more information
on Evolution Strategies, see references [30,31].

Fig. 3. One-point crossover and single mutation are shown in the left hand side and
right hand side respectively

Generating Test Cases for Constraint Automata by GSA 483

Randomly generate or seed initial population P
Repeat

Evaluate fitness of each individual in P
Select parents from P according to selection mechanism
Recombine parents to form new offspring
Construct new population P ′ from parents and offspring
Mutate P ′

P ←− P ′

Until stopping condition reached

Fig. 4. A high level description of Genetic Algorithm

Fig. 5. Structure of GSA

Another variation of Genetic Algorithms is called Genetic Symbiosis Algo-
rithms which is wide spread in complex systems, especially in ecosystems. In the
symbiotic systems, the fitness of each individual is dependent to other individuals
and interaction between different individuals form the fitness. So two individuals
can complement each others and fit into the environment, while none of them
would have fit individually. Four different kinds of symbiotic relations exist:

484 S. Tasharofi, S. Ansari, and M. Sirjani

– parasitism: in which the association is disadvantageous or destructive to one
of the organisms and beneficial to the other (+ -)

– mutualism: in which the association is advantageous to both (+ +)
– commensalisms: in which one member of the association benefits while the

other is not affected (+ 0)
– amensalism: in which the association is disadvantageous to one member while

the other is not affected (- 0)

In [32], the Genetic Symbiosis Algorithms has formulized by introducing sym-
biotic parameters. These parameters represent the symbiotic relations such as
competition, predation, altruism and mutualism between two individuals. The
GSA updates the fitness of individuals according to the symbiotic parameters
before applying the selection mechanism. After a certain number of iterations,
the symbiotic parameters are recalculated using a fuzzy inference function. The
structure of GSA is shown in Fig. 5.

4 The Applied Evolutionary Algorithms

In our algorithms, the problem specification is mapped to GA specification. A
test case corresponds to a chromosome or individual which should be evaluated
according to its fitness for the decision of survival in natural selection mechanism.
Accordingly, the population is a suite of test cases. In the following we will
describe the required steps for problem mapping.

4.1 Planning the Chromosomes

The first step is planning the chromosomes (sequence of genes), representing each
test case. Each gene is an alphabet that corresponds to each name of constraint
automata (component I/O ports). A test case consists of a sequence of names
that represents the sequence of activation of transitions in the automaton and
consequently one path (behavior).

As multiple names can be activated in each transition, in order to clarify the
sequence of traversing transitions by a test case, there must be a signature that
specifies the names of each transition in the test case. Therefore, each sequence
of multiple names must be separated to show the synchronization of them and
so activation of a transition. So, as well as the names of the automaton; we
use another alphabet, the comma ”,”, that plays the role of separator in a test
case. Therefore, the set of genes consists of the names of the automaton and
comma.

Each sequence of alphabet that is separated by a comma represents the names
of one transition traversed by the test case. An example of a test case (chro-
mosome) and its interpretation for the Exclusive-Router automaton in Fig. 1
is illustrated in Fig. 6. According to this test case, if the data constraints of
both transitions are satisfied, first {A,C}-transition is traversed and then {A,B}-
transition and finally {A,C}-transition is traversed again.

Generating Test Cases for Constraint Automata by GSA 485

Fig. 6. Example of a test case (chromosome) for the automaton of Exclusive-Router
in Fig. 1

4.2 Fitness Function

We need a suite of tests that covers maximum number of reachable states and
transitions as well as examination of various paths. In order to achieve these
goals, we applied two evolutionary algorithms, ordinary Genetic Algorithm (GA)
and Genetic Symbiosis Algorithm (GSA) for defining fitness function of individ-
uals (test cases):

First approach: ordinary GA. In this approach, the fitness value of each test
case is determined independent of the other test cases in the test suite. So, the
goal is to generate test cases that maximize the number of states visited and
transitions taken, while minimizing the length of the test case. In view of the
fact that traversing more transitions is much more important than the length of
the test case, the fitness function is defined as:

fGA(ti) =
(nt + ns)5

lengthti

(1)

where ti is a test case, nt and ns are the number of distinct transitions and states
respectively which are visited by the test case, and lengthti is the length of the
test case (length of the string that represents the test case).

Because of the non-deterministic nature of constraint automata, with a cer-
tain sequence of names, different paths can be traversed. In our algorithm, the
path that traverses maximum number of distinct states and transitions, or has
maximum fitness value, is considered.

Second approach: GSA.The main problem with the ordinary GA approach is
the convergence of test cases to similar sequences of names that traverse the
maximum number of states and transitions. This convergence causes to lose the
maximum coverage, because paths that face dead end very soon get a low fitness
value and is eliminated from the test suite; so many states and transitions have
never been visited by the suite of test cases.

In order to address this problem, we use GSA (Genetic Symbiosis Algorithm)
approach. Although in [32], a formal framework for Genetic Symbiotic Algo-
rithms has been proposed, in our work, the GSA is formulated in a simpler
model.

By this approach, when a test case visits a new state or transition, instead of
increasing the fitness value equally for all new states and transitions, the fitness

486 S. Tasharofi, S. Ansari, and M. Sirjani

is increased according to how rarely a transition or state is visited by other test
cases in the test suite. We have for the less visited states or transitions, more
increase in fitness value.

Thus, a test case that passes the small number of transitions and states that
have not been passed by the other test cases must have larger fitness than a test
case that passes a lot of transitions and states that have also been passed by the
other test cases.

Accordingly, before evaluating the fitness values, the number of times a state
or transition is visited by all test cases (the chromosome pool) is counted. freqtr

and freqs are the visited frequency of the transitions and states and used for
this purpose. Using the visited frequency variables, the fitness function is defined
as below:

fGSA(ti) = (
∑

tr∈TRi

1
freqtr

+
∑
s∈Si

1
freqs

)× (
lengthti

lengthti − 1
) (2)

where TRi and Si are the set of transitions and states visited by the test case ti.
The second term of multiplication is used to converge test cases to less possible
length.

When multiple paths can be traversed by a test case, for each path, the fitness
is evaluated and the path that has maximum fitness is selected for that test case.

4.3 Selection Mechanism

We use a common selection method, roulette wheel selection, in which individuals
are selected stochastically in proportion to their fitness.

4.4 Crossover Operator

In our implementation, regular one point crossover is used. The crossover rate
is set to population size/2.

4.5 Mutation Operator

The mutation operator randomly mutates a certain proportion of genes to a
random value taken from automaton names. The proportion of genes that are
stochastically mutated, mutation rate, is set to 0.06.

5 Experimental Results

We have implemented a tool for traversing a constraint automaton which receives
the specification of the constraint automata in XML format and also a suite of
test cases. This tool traverses the automaton by using the test cases and evaluates
the fitness value of each test case according to both methods of ordinary GA
and GSA described in Section 4.

These two methods are examined on several constraint automata with differ-
ent number of transitions and states which are shown in Table 1. The proportion

Generating Test Cases for Constraint Automata by GSA 487

Table 1. Specification of the automata tested

Automaton # of States # of Transitions Proportion of transitions Connectivity
to states

1 9 20 2.22 high
2 14 21 1.50 low
3 7 25 3.57 high
4 17 28 1.67 low
5 14 33 2.35 high
6 30 44 1.46 low
7 21 45 2.14 high
8 31 53 1.70 low
9 22 70 3.18 high
10 45 60 1.33 low

of the number of transitions to the number of states for each automaton is also
shown in Table 1. This information is used to judge about the connectivity of
each automaton. If this proportion is larger than or equal to 2, the automa-
ton is considered as high connected automaton otherwise, it is categorized as
less connected automaton. So, the automata 1, 3, 5, 7, 9 are considered as high
connected and the automata 2, 4, 6, 8, 10 are low connected.

In our experiments, the number of test cases in each test suite (population
size) is approximately two times of the number of automaton transitions.

The results of applying GA and GSA on these automata for 500 generations
are described in the following with respect to the parameters of a good suite of
test cases (state and transition coverage and diversity of paths they pass).

5.1 Transition and State Coverage

According to our results, by using GSA approach, in all of the automata, be-
fore the last generation we have reached the transition coverage of 100% and
consequently state coverage of 100%. However, in ordinary GA approach, after
a certain number of generations the coverage is decreased. By the fitness func-
tion of the first approach (ordinary GA), the test cases that pass more different
transitions will have the largest fitness value. Therefore, after generating these
test cases in a generation, the selection mechanism in the following generations
causes other test cases to get similar to these test cases. So, the test cases that
pass different shorter paths are not selected and consequently the coverage is
reduced.

Another point in our results is that in the case of less connected automaton,
the variation of transition coverage between ordinary GA and GSA is higher than
in high connected automaton. Because, less connectivity causes the number of
unique large paths and as a result, the number of unique test cases that pass
large number of transitions (large paths) reduces. So, the selection mechanism
causes more similar test cases are generated and the coverage is decreased more.

488 S. Tasharofi, S. Ansari, and M. Sirjani

The transition coverage of the test suite for one of the high connected (au-
tomaton 9) and low connected (automaton 8) automata are shown in Fig. 7
and 8 respectively.

Fig. 7. Transition coverage of the test suite generated by GA and GSA approaches for
one of the high connected automaton (automaton 9)

5.2 Diversity of Examined Paths

The results show that in GSA approach, as the algorithm converges, the diversity
of paths that test cases traverse is increased and after a threshold, it remains
approximately constant. It means that despite of the ordinary GA, the test cases
pass divergent transitions and do not get similar to each other.

But, in the ordinary GA approach, as the algorithm converges, the diversity
of paths is decreased. It can be concluded that the number of similar test cases
is increased. Because ordinary GA is going to select only the test cases that
pass more transitions, while there exists test cases that pass less but not yet
been visited transitions and these test cases are not selected in the ordinary GA
approach.

The variation of unique paths passed by the test suite by using GA and
GSA approaches in the case of low connected automata is higher than high
connected automata. It is clear that this phenomenon is the direct consequence
of generating more similar test cases in ordinary GA approach for low connected
automata as explained in Section 5.1. In Fig. 9 and 10 the number of unique
paths traversed by the test suite for one of the high connected (automaton 9)
and low connected (automaton 8) automata are shown.

Generating Test Cases for Constraint Automata by GSA 489

Fig. 8. Transition coverage of the test suite generated by GA and GSA approaches for
one of the low connected automaton (automaton 8)

Fig. 9. Number of unique paths traversed by the test suite generated by GA and GSA
approaches for one of the high connected automaton (automaton 9)

490 S. Tasharofi, S. Ansari, and M. Sirjani

Fig. 10. Number of unique paths traversed by the test suite generated by GA and GSA
approaches for one of the low connected automaton (automaton 8)

6 Conclusion and Future Work

Constraint automata are a semantic model for Reo, which is a modeling language
for the systems based on the components. The black-box components in Reo
language is modeled by constraint automata. In order to check the correctness
of this modeling which corresponds to conformance testing in testing area of
FSMs (Finite State Machines), two evolutionary algorithms for generating test
cases for constraint automata are examined. The purpose is to generate a test
suite that cover maximum number of transitions and states and also examine
more different paths (behaviors).

In the first approach, we used ordinary GA (Genetic Algorithm) in which we
generate test cases that each one of them can traverse more different number
of transitions and states. In the second approach, which is based on GSA (Ge-
netic Symbiosis Algorithm), the test cases are generated in which each test case
traverses transitions and states that are not or less traversed by the other test
cases in the test suite.

The results show that GSA provides a suite of test cases that leads better
state/transition coverage and diversity of examined unique paths than ordinary
GA approach. By applying GSA, in all of the examined automata we obtain the
coverage of 100% before 500 generations. In GSA, as the algorithm converges, the
number of examined unique paths is increased and after a threshold, it remains
approximately constant. It means that they do not get similar to each other.

Generating Test Cases for Constraint Automata by GSA 491

Therefore, by using GSA we can generate test cases that satisfy our desired of
a test suite which are coverage and diversity of examined paths.

Although ordinary GA is going to improve each test case (individual), the gen-
erated test suite is not good. The selection of test cases that pass more different
transitions causes the number of similar test cases increases along generations
and as a result, after a threshold, coverage and diversity of paths traversed by
the test suite are decreased.

In addition, the variation of coverage and number of unique paths traversed
by the test suite between two approaches, ordinary GA and GSA, get clearer
when the connectivity of the examined automaton is low (the ratio of number
of transitions to states is less than 2).

In future developments of this work, it is intended to increase the size of the
problem, applying the same approaches for automata with more transitions and
states and also on the other types of constraint automata, e.g. parameterized
constraint automata and timed constraint automata. Moreover, other kinds of
evolutionary algorithms would be explored, in order to verify its influence on
the completeness of generated test cases. Investigating the effect of other char-
acteristics of an automaton other than the connectivity, on the results of the
proposed approaches is also envisioned.

Acknowledgments. We are grateful to Mehdi Amoui for many inspiring dis-
cussions on the issues raised in this paper. Additionally, the third author is partly
supported by a grant from IPM, project number CS1385-3-01.

References

1. Arbab, F.: Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14(3) (2004) 329–366

2. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.: Modeling component connectors in
Reo by constraint automata. (Science of Computer Programming) accepted 2005,
to appear.

3. Pargas, R.P., Harrold, M.J., Peck, R.: Test-data generation using genetic algo-
rithms. Software Testing, Verification & Reliability 9(4) (1999) 263–282

4. Wegener, J., Baresel, A., Sthamer, H.: Evolutionary test environment for automatic
structural testing. Information & Software Technology 43(14) (2001) 841–854

5. Tracey, N., Clark, J., Mander, K.: Automated program flaw finding using simulated
annealing. In: Proceedings of the 1998 ACM SIGSOFT international symposium
on Software testing and analysis(ISSTA ’98), New York, USA, ACM Press (1998)
73–81

6. Watkins, A.: The automatic generation of software test data using genetic algo-
rithms. In: Proceedings of the Fourth Software Quality Conference. Volume 2.,
Dundee, Scotland (1995) 300–309

7. Borgelt, K.: Software Test Data Generation from a Genetic Algorithm. Industrial
Applications of Genetic Algorithms. CRC Press, Boca Raton, FL (1998)

8. Lin, J.C., Yeh, P.L.: Automatic test data generation for path testing using GAs.
Inf. Sci. 131(1-4) (2001) 47–64

9. Michael, C.C., McGraw, G., Schatz, M.A.: Generating software test data by evo-
lution. IEEE Trans. Softw. Eng. 27(12) (2001) 1085–1110

492 S. Tasharofi, S. Ansari, and M. Sirjani

10. Alander, J.T., Mantere, T., Turunen, P.: Genetic algorithm based software testing.
In: Artificial Neural Nets and Genetic Algorithms, Wien, Austria, Springer-Verlag
(1998) 325–328

11. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Software Eng. 4(3) (1978) 178–187

12. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
A survey. In: Proceedings of the IEEE. Volume 84. (1996) 1090–1126

13. Belinfante, A., Feenstra, J., de Vries, R.G., Tretmans, J., Goga, N., Feijs, L.M.G.,
Mauw, S., Heerink, L.: Formal test automation: A simple experiment. In: 12th
Int. Workshop on Testing of Communicating Systems (IWTCS), Kluwer (1999)
179–196

14. Brinksma, E., Tretmans, J.: Testing transition systems: An annotated bibliography.
In: Proceedings of the 4th Summer School on Modeling and Verification of Parallel
Processes(MOVEP). Volume 2067 of Lecture Notes in Computer Science., London,
UK, Springer-Verlag (2001) 187–195

15. Clarke, D., Jeron, T., Rusu, V., Zinovieva, E.: STG: A symbolic test generation
tool. In: Proceedings of the 8th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems(TACAS’02). Volume 2280 of Lecture
Notes in Computer Science., Springer-Verlag (2002) 470–475

16. J. C. Fernandez, C. Jard, T. Jeron, G. Viho: Using on-the-fly verification tech-
niques for the generation of test suites. In Rajeev Alur, Thomas A. Henzinger, eds.:
Proceedings of the Eighth International Conference on Computer Aided Verifica-
tion CAV. Volume 1102 of Lecture Notes in Computer Science., New Brunswick,
NJ, USA, Springer-Verlag (1996) 348–359

17. Tretmans, J.: Testing techniques. Lecture notes, University of Twente, The Nether-
lands (2002)

18. Hennie, F.C.: Fault detecting experiments for sequential circuits. In: FOCS. (1964)
95–110

19. Sabnani, K., Dahbura, A.: A protocol test generation procedure. Comput. Netw.
ISDN Syst. 15(4) (1988) 285–297

20. Naito, S., Tsunoyama, M.: Fault detection for sequential machines by transitions
tours. In: Proceedings of IEEE Fault Tolerant Computing Symposium, IEEE Com-
puter Society Press (1981) 238–243

21. Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test
selection based on finite state models. IEEE Trans. Softw. Eng. 17(6) (1991)
591–603

22. Luo, G., von Bochmann, G., Petrenko, A.: Test selection based on communicat-
ing nondeterministic finite-state machines using a generalized Wp-Method. IEEE
Trans. Softw. Eng. 20(2) (1994) 149–162

23. Krichen, M., Tripakis, S.: Black-box conformance testing for real-time systems.
In: 11th International SPIN Workshop on Model Checking of Software (SPIN’04).
Volume 2989 of Lecture Notes in Computer Science., Springer-Verlag (2004) 109–
126

24. Krichen, M., Tripakis, S.: Real-time testing with timed automata testers and
coverage criteria. In: FORMATS/FTRTFT. Volume 3253 of Lecture Notes in
Computer Science., Springer-Verlag (2004) 134–151

25. Higashino, T., Nakata, A., Taniguchi, K., Cavalli, A.R.: Generating test cases for a
timed I/O automaton model. In: Proceedings of the IFIP TC6 12th International
Workshop on Testing Communicating Systems, Deventer, The Netherlands, The
Netherlands, Kluwer, B.V. (1999) 197–214

Generating Test Cases for Constraint Automata by GSA 493

26. Arbab, F., Rutten, J.: A coinductive calculus of component connectors.
In Wirsing, M., Pattinson, D., Hennicker, R., eds.: Recent Trends in Alge-
braic Development Techniques, Proceedings of 16th International Workshop
on Algebraic Development Techniques (WADT 2002). Volume 2755 of Lecture
Notes in Computer Science., Springer-Verlag (2003) 35–56 http://www.cwi.nl/
ftp/CWIreports/SEN/SEN-R0216.pdf.

27. Ghassemi, F., Tasharofi, S., Sirjani, M.: Automated mapping of reo circuits to
constraint automata. Electr. Notes Theor. Comput. Sci. 159 (2006) 99–115

28. Ghadiri, A.: A tool for constraint automata join, BS project. Technical report,
ECE Department University of Tehran (2004)004)

29. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor, MI (1975)

30. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1989)

31. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA,
USA (1996)

32. Hirasawa, K., Ishikawa, Y., Hu, J., Murata, J., Mao, J.: Genetic symbiosis algo-
rithm. In: Proc. of the 2000 Congress on Evolutionary Computation, Piscataway,
NJ, IEEE Service Center (2000) 1377–1384

Checking the Conformance of Java Classes Against
Algebraic Specifications

Isabel Nunes, Antónia Lopes, Vasco Vasconcelos, João Abreu, and Luı́s S. Reis

Faculty of Sciences, University of Lisbon, Campo Grande, 1749–016 Lisboa, Portugal
{in, mal, vv, joao.abreu, lmsar}@di.fc.ul.pt

Abstract. We present and evaluate an approach for the run-time conformance
checking of Java classes against property-driven algebraic specifications. Our
proposal consists in determining, at run-time, whether the classes subject to
analysis behave as required by the specification. The key idea is to reduce the
conformance checking problem to the runtime monitoring of contract-annotated
classes, a process supported today by several runtime assertion-checking tools.
Our approach comprises a rather conventional specification language, a simple
language to map specifications into Java types, and a method to automatically
generate monitorable classes from specifications, allowing for a simple, but ef-
fective, runtime monitoring of both the specified classes and their clients.

1 Introduction

The importance of formal specification in software development is widely recognized.
Formal specifications are useful for developers to reuse existing software. They also
help programmers in understanding what they have to provide. Furthermore, they can
be used as test oracles, i.e., system behavior can be checked against the specification.

Currently, Design by Contract (DBC) [18] is the most popular approach for formally
specifying OO software. In this approach, specifications are class interfaces (Java inter-
faces, Eiffel abstract classes, etc.) annotated with pre/post conditions pairs expressed in
a particular assertion language. At runtime, the implementation can be tested against its
specification by means of contract monitorization.

Although the DBC methodology has become very popular, programmers rarely spec-
ify contracts—the strong restrictions to the kind of properties that are both expressible
and monitorable, contribute to the frustration of being left with very poor specifications.
Furthermore, as argued by Barnett and Schulte [3], contract specifications do not allow
the level of abstraction to vary and do not support specifying components independently
of the implementation language and its data structures.

Algebraic specification [2,10,6] is another well-known approach to the specification
of software systems that supports a higher-level of abstraction. Algebraic approaches
can be divided into two classes: model-oriented and property-driven.

From the two, model-oriented approaches to specification, like the ones promoted
by Z [20], Larch [11] and JML [17], definitely prevail within the OO community. In
most of these approaches, the behavior of a class is specified through a very abstract
implementation, based on primitive elements available in the specification language.

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 494–513, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Checking the Conformance of Java Classes Against Algebraic Specifications 495

Implementations can be tested against specifications by means of runtime assertion-
checking tools. This requires an abstraction function to be explicitly provided. In JML,
for instance, a concrete implementation is expected to include JML code defining the
relation between concrete and abstract states. Although we recognize the important
role played by model-based approaches, we believe that, for a significant part of pro-
grammers, understanding or writing this kind of specifications can be rather difficult.
Moreover, programmers implementing a specification have to define the appropriate
abstraction mapping, which can also be rather difficult to obtain.

In contrast, for a certain class of programs, in particular for Abstract Data Types
(ADTs), property-driven specifications [8, 6] can be very simple and concise: the ob-
servable behavior of a program is specified simply in terms of a set of abstract proper-
ties. The simplicity and expressive power of property-driven specifications may encour-
age more programmers to use formal specifications. However, the support for checking
OO implementations against property-driven specifications is far from being satisfac-
tory. As far as we know, it is restricted to previously-presented approaches [13,1], whose
limitations are discussed in detail in Section 8.

This paper presents a new approach for runtime checking OO implementations
against property-driven specifications. The key idea is to reduce the problem to the run-
time monitoring of contracts, which is supported by many runtime assertion checking
tools (e.g., [5, 15, 16, 17, 21]). The classes under testing become wrapped by automat-
ically generated classes. The wrapper classes are annotated with run-time checkable
contracts automatically generated from the corresponding specifications.

A distinguishing feature of the approach is that our module specifications not only
specify behavioral properties required from implementations, but they also define the
required architecture of the implementations, i.e., how the implementation should be
structured in terms of classes. This is important to support reuse: it allows to enforce
that the implementation of a module M is achieved in terms of classes that can be
reused in the implementation of other modules that have elements in common with M .

The approach is tailored to Java and JML [17] but it could as well be defined towards
other OO programming and assertion languages (or other programming languages with
integrated assertions [4,18]). It comprises a specification language that allows automatic
generation of JML contracts, and a language for defining refinement mappings between
specification modules and collections of Java classes. Refinement mappings define how
sort names are mapped to class names and operation signatures are mapped to method
signatures. Because this activity does not require any knowledge about the concrete
representation of data types or component states, refinement mappings are quite simple
to define. Our approach offers several benefits. More significantly:

– Specifications are easier to write and understand since they are written in a more
abstract, implementation independent, language. The same applies to refinement
mappings, whose definition does not require any knowledge about the concrete
representation of data types or component states, as happens for instance in JML.

– Several Java classes or packages can be tested against the same specification. This
contrasts with, for example, the JML approach in which different implementations
may require different JML specifications. For instance, JML contract specifications
appropriate for immutable classes are not suitable for mutable classes.

496 I. Nunes et al.

design time

implementation time

Specification Module
T

uses

Java Class
MyT.java

Java Class
MyT.java

Java Class
MyT$Immutable.java

Java Class
MyT$Original.java

uses

Refinement Mapping
T2MyT

Java Classes
Wrapper

Immutable Class
Generator

Java Class
Renamer

Fig. 1. Approach overview

– The same Java class or package can be tested against several specifications without
requiring any additional effort.

In Section 2 we present a quick overview of our approach. Section 3 describes the
structure of specification modules and our specification language. In Section 4 the world
of specifications and that of implementations are related through the notion of refine-
ment mappings. In Section 5 we describe the wrapper and immutable classes equipped
with contracts that are generated, and illustrate their use through an example. In Sec-
tion 6 we focus on the methodology for generating contracts from specification axioms.
Section 7 reports on the results of our experiments. Section 8 presents related work,
and Section 9 concludes, describing limitations of our approach, and topics that need
further work.

2 Approach Overview

The process of checking the conformance of a collection of Java classes against a spec-
ification module consists in inspecting, during execution, the variances between actual
and required behavior. This presumes that the implementation is structurally consistent
with the specification module which, in our approach, means that there is a refinement
mapping between the module specification and the collection of Java classes, defining
which class implements each sort, and which method implements each operation.

For the purpose of this overview, we start by considering a simplified scenario in
which we want to check a single Java class MyT against a single specification T. In this
case, the user must supply the refinement mapping defining the relationship between
the operation and predicate symbols of T and the method names of MyT.

Figure 1 illustrates the several entities involved in our approach. The left part in-
cludes the entities that the user must supply. The right part shows the classes that are
generated—MyT$Original which is just MyT after renaming, MyT$Immutable equipped
with the contracts generated from the axioms in specification T, and finally MyT which

Checking the Conformance of Java Classes Against Algebraic Specifications 497

is the generated wrapper class. This last one uses MyT$Original, and MyT$Immutable in
order to achieve validation, by contract inspection, of the results of invoking the original
methods.

The approach consists in replacing class MyT by an automatically generated wrapper
class. The wrapper class is client to other classes, automatically generated from speci-
fication T, one of which annotated with contracts. In this way, during the execution of a
system involving classes that are clients of MyT, we have that:

1. The behavior of MyT objects is checked (monitored) against specification T;
2. The correctness of clients’ behavior with respect to MyT operations is monitored;

provided that the system is executed under the observation of a contract monitoring
tool. In both cases violations are reported. Underlying these conditions are the fol-
lowing notions of correction, applicable whenever consistency between class MyT and
specification T is ensured by the existence of a refinement mapping.

Behavioral correctness. This condition assumes the following notion of behav-
ioral correctness of class MyT with respect to the specification: class MyT
is correct if every axiom of T (after the translation induced by the refine-
ment mapping) is a property that holds in every execution of a system in
which MyT is used. Consider, for instance, that Stack is a specification of
stacks including the axiom pop(push(s , e)) = e and that MyStack is an imple-
mentation of integer stacks with methods void push(int) and int pop(). Class
MyStack is a correct implementation of specification Stack only if the property
let t = s in (s.push(i); s.pop(); s.equals(t)) holds for all objects MyStack dur-
ing their entire life. Axiom translation is addressed in detail in Section 6.

Client’s correction. This condition relies on a notion of correctness targeted at the
clients’ classes. As we shall see in Section 3, specifications may include condi-
tions under which the interpretations of some operations are required to be defined.
These are called the domain conditions. A client class is a correct user of MyT, if
it does not invoke MyT methods in states that do not satisfy the domain conditions
of the corresponding operations. For instance, if Stack is a specification of stacks
including a domain condition saying that operation pop(s) is required to be defined
if not isEmpty(s), then a class C is a correct client only if it never invokes method
pop on objects o of type MyStack, such that o.isEmpty() is true.

As mentioned before, a class is generated that has the same name as the original
one—MyT. This class has exactly the same interface as, and their objects behave the
same as those of, the original MyT class, as far as any client using MyT objects can
tell. The generated MyT class is what is usually called a wrapper class because each
of its instances hides an instance of the original MyT class, and uses it when calling
the methods of an immutable version of MyT—the generated class MyT$Immutable—in
response to client calls. MyT clients must become clients of the wrapper instead. To
avoid modifying them, the original class MyT is renamed—its name is postfixed with
$Original— making the wrapping of the original class transparent to client classes.

MyT$Immutable is the class that gets annotated with contracts automatically gener-
ated from specification T: pre-conditions are generated from domain conditions, and

498 I. Nunes et al.

import IntegerSpec
sort I n tS tack
operations and predicates

constructors
c l ea r : I n tS tack −−> I n tS tack ;
push : In tS tack In tege r −−>

I n tS tack ;
observers

top : I n tS tack −−>? In tege r ;
pop : I n tS tack −−>? In tS tack ;
s ize : I n tS tack −−> I n tege r ;

derived
isEmpty : I n tS tack ;

domains
s : Stack ;
top (s) , pop (s) i f not isEmpty (s) ;

axioms
s : Stack ; i : I n tege r ;
top (push (, i) = i ;
pop (push (s ,)) = s ;
s ize (c l ea r ()) = zero () ;
s ize (push (s ,)) = suc (s ize (s)) ;
isEmpty (s) i f f s ize (s) = zero () ;

sort I n tege r
operations and predicates

constructors
zero : I n tege r −−> I n tege r ;
suc : In tege r −−> I n tege r ;
pred : I n tege r −−> I n tege r ;

observers
l t : I n tege r −−> I n tege r ;

axioms
i , j : I n tege r
l t (zero () , suc (zero ())) ;
l t (suc (i) , suc (j)) i f l t (i , j) ;
l t (pred (zero ()) , zero ()) ;
l t (pred (i) , j) i f l t (i , j) ;
l t (pred (suc (i)) , i) ;
pred (suc (i)) = i ;
suc (pred (i)) = i ;

Fig. 2. Specification of (a) integer stacks, (b) integers

post-conditions from the axioms that give semantics to the specification operations.
Monitoring these contracts correspond to checking (i) whether the properties obtained
by translating the specification axioms hold in some particular situations, for some par-
ticular objects (these are determined by the contract generation process which is de-
scribed in Section 6), and (ii) whether client objects do not invoke methods in states that
do not satisfy the domain conditions. The fact that MyT$Immutable is, by construction,
immutable is essential to ensure that the contracts that are generated are monitorable.
Section 5 describes the generated wrapper and immutable classes in more detail.

This approach overcomes the limitations of the direct use of DBC that were men-
tioned in the introduction. All properties are expressible and monitorable because they
are translated into pre- and post-conditions involving only calls to methods that do not
change the objects under monitorization.

3 Specifications and Modules

The specification language is, to some extent, similar to many existing languages. In
general terms, it supports the description of partial specifications with conditional ax-
ioms. It has, however, some specific features, such as the classification of operations in
different categories, and strong restrictions on the form of the axioms. It was conceived
so that conformance checking with respect to OO implementations can be supported
through run-time monitoring of automatically derived contracts. Figure 2 a) presents a
typical example in this setting [13, 1, 14]: the ADT integer stack. Figure 2 b) illustrates
a specification for integers.

A specification defines exactly one sort and the first argument of every operation
and predicate in the specification must belong to that sort. Furthermore, operations are

Checking the Conformance of Java Classes Against Algebraic Specifications 499

classified as constructors , observers or derived. These categories comprise, respec-
tively, the operations from which all values of the type can be built, the operations that
provide fundamental information about the values of the type, and the redundant (but
potentially useful) operations. Predicates can only be classified as either observers or
derived.

Specifications are partial because operation symbols declared with −−>? can be
interpreted by partial functions. In the section domains, we describe the conditions
under which interpretations of these operations are required to be defined. For instance,
in the specification of integer stacks, both top and pop are declared as partial operations.
They are, however, required to be defined for all non empty stacks.

As usual in property-driven specifications, other properties of operations and predi-
cates can be expressed through axioms, which in our case are closed formulæ of first-
order logic restricted to the following specific forms:

– ∀(y(φ ⇒ op′c(opc((x),(t) = t) (relating constructors)
– ∀(y(φ ⇒ opo(opc((x),(t) = t), ∀(y(φ ⇒ predo(opc((x),(t)),
∀(y(φ ⇒ ¬predo(opc(x),(t)) (defining the result of observers on constructors)

– ∀(y(φ ⇒ opd((x) = t), ∀(y(φ ⇒ predd((x)), ∀(y(φ ⇒ ¬predd((x)) (describing the
result of derived operations/predicates on generic instances of the sort).

– ∀(y(φ ⇒ x = x′) (pertaining to sort equality).

where (y, (x are lists of variables, x, x′ are variables, φ is a quantifier free-formula, (t is a
list of terms over (y, t is a term over (y. We use the indexes c, o, d to indicate the kind of
operations and predicates that are allowed (constructors, observers, derived).

Notice that, because operations may be interpreted by partial functions, a term may
not have a value. The equality symbol used in the axioms represents strong equality,
that is to say, either both sides are defined and are equal, or both sides are undefined.

The structure of axioms that is imposed is not only intuitive and easy to understand
and to apply, but it is also effective in driving the automatic identification of contracts
for classes. In what concerns the expressive power of the language, it is only limited by
the fact that we require the sort of the first argument of every operation and predicate in
a specification to be the sort introduced in that specification. This rule forces a specific
method of organizing specifications which, per se, does not constitute a limitation in the
expressive power of the language. The problem is that the rule forbids specifications
with constant constructors to be described. Although these constructors are prevalent
in algebraic specifications, this limitation has short impact in our approach because
it is not possible to provide OO implementations for 0-ary constructors in terms of
object methods. Object creation, with a default initialization, is natively supported by
OO languages and is not under the control of programmers. These can only define
constructors (which are not methods) overriding the default initialization.

Specifications may declare, under import, references to other specifications, and
may use external symbols, i.e., sorts, operations and predicates that are not locally de-
clared. For instance, the specification of integer stacks imports IntegerSpec and uses
sort Integer and operation symbols zero and suc, which are external symbols. Notice
that the specification of integers is self-contained since it does not import any specifi-
cation. We call it a closed specification.

500 I. Nunes et al.

public class In tAr rayStack implements Cloneable {
pr ivate s ta t ic f i n a l in t INITIAL CAPACITY = 10;
pr ivate in t [] elems = new in t [INITIAL CAPACITY] ;
pr ivate in t s ize = 0;
public void c l ea r () { s ize = 0; elems = new in t [INITIAL CAPACITY] ; }
public void push (i n t i) {

i f (elems . length == s ize) r e a l l o c a t e () ;
elems [s ize ++] = i ;

}
public void pop () { size−−; }
public in t top () { return elems [s ize − 1] ; }
public in t s ize () { return s ize ; }
public boolean isEmpty () { return s ize == 0; }
public boolean equals (Object o ther) { . . . }
public Object c lone () { . . . }
pr ivate void r e a l l o c a t e () { . . . }

}

Fig. 3. Java implementation of an integer stack

The meaning of external symbols is only fixed when the specification is embedded,
as a component, in a module. A module is simply a surjective function from a set N (of
names) to a set of specifications, such that, for every specification: (i) the referenced
specification names belong to N and (ii) the external symbols are provided by the cor-
responding specifications in the module. The set N defines the set of components of the
module. For instance, by naming the two specifications presented in Figure 2a) and b)
as IntStackSpec and IntegerSpec , respectively, we obtain a module IntegerStack .

4 Refinement Mappings

In order to check Java classes against specification modules, a user of our approach
must supply a refinement mapping that bridges the gap between the two worlds. These
mappings provide the means for explicitly defining which class implements each type
and which method implements each operation and predicate.

A refinement mapping R between a module and a collection of Java classes identi-
fies the type (class or primitive) that implements each module component, as well as the
binding between the operations and predicates of the corresponding specification in the
module and the methods of the class. Only closed specifications can be implemented
by primitive types. Furthermore, bindings are subject to some constraints: predicates
must be bound to methods of type boolean; every n + 1-ary operation or predicate
opp(s, s1, . . . , sn) must be bound to an n-ary method m(t1, . . . , tn) such that ti is the
type of the class that, according toR, implements sort si. Furthermore, for components
that are implemented by primitive types, the binding defines how operations and pred-
icates are expressed in terms of built-in Java operations. Within the structure imposed
by the specification, there are several implementation styles that can be adopted.

For instance, the most common implementation of stacks in Java is through a class
such as IntArrayStack, presented in Figure 3, where instance methods provide the pred-
icates and mutable implementations for operations. In this case, the first argument of
operations and predicates is implicitly provided—it is the target object of the method
invocation—and the application of an operation whose result type is IntegerStack

Checking the Conformance of Java Classes Against Algebraic Specifications 501

IntegerSpec is pr imit ive in t
zero (x : I n tege r) : I n tege r is 0;
suc (x : I n tege r) : I n tege r is x + 1;
pred (x : I n tege r) : I n tege r is x − 1;
l t (x : In teger , y : I n tege r) is x < y ;

IntStackSpec is class In tAr rayStack
c l ea r (s : I n tS tack) : I n tS tack is void c l ea r () ;
push (s : In tS tack , e : Elem) : I n tS tack is void push (i n t e) ;
pop (s : I n tS tack) : I n tS tack is void pop () ;
top (s : In tegerS tack) : Elem is in t top () ;
s ize (s : I n tS tack) : I n tege r is in t s ize () ;
isEmpty (s : I n tS tack) is boolean isEmpty () ;

Fig. 4. An example of a refinement mapping

induces a state change of the current object. Methods implementing these operations
are usually procedures (void methods) but in some cases programmers decide that the
method should also return some useful information about the object (for example, the
pop method in the Sun’s JDK java.util.Stack class, returns the top element). Although
less common, stacks can also be implemented by immutable classes. The difference
in this case is that the methods that implement the operations whose result type is
IntegerStack return an object of the class; the state change in the current object, if it
exists, is not relevant. Another dimension of variability in the implementation of the
IntegerStack module is related to the choice of the implementation for integers: there
is still the possibility of choosing a (Java) primitive type to implement the type.

An admissible refinement mapping for the module IntegerStack is presented in
Figure 4. It expresses the fact that specification IntStackSpec is implemented by the
class IntArrayStack whereas sort Integer is implemented by the Java primitive type int.

Refinement mappings are quite simple to define because they only involve the inter-
faces of Java classes, that is to say, no knowledge about the concrete representation of
data types or component states is needed. The independence from concrete representa-
tion makes it possible to test several Java classes or packages against a same specifica-
tion module—we just have to create the corresponding refinement mappings. Contracts
are automatically generated. The approach also allows a refinement mapping to define
a mapping from two different components into the same type (class or primitive). This
promotes the writing of generic specifications that can be reused in different situations.

5 The Architecture of Wrapped Implementations

As explained in Section 2, our approach for checking Java implementations against
specifications comprises wrapping these classes with other, automatically generated,
classes. In this section we describe this process in more detail.

Let again T be a specification, MyT a given class, and MyRef describe a refinement
mapping between specification T and class MyT. From these, a series of classes are
generated that allow a client class ClientC to invoke methods of MyT while checking
whether MyT correctly implements T. Remember that the wrapper class gets its name
from the original MyT class, while this is renamed to MyT$Original.

The immutable class equipped with contracts. For each MyT method void m(�p), class
MyT$Immutable defines a static method:

502 I. Nunes et al.

public class In tAr rayStack implements Cloneable {
pr ivate I n tA r rayS tack$Or ig ina l stack = new I n tA r rayS tack$Or ig ina l () ;
public void c l ea r () { stack = IntArrayStack$Immutab le . c l ea r (stack) ; }
public void push (i n t i) { stack = IntArrayStack$Immutable . push (stack , i) ; }
public void pop () { stack = IntArrayStack$Immutable . pop (stack) ; }
public in t s ize () {

i n t $ P a i r p a i r = IntArrayStack$Immutab le . s ize (stack) ;
stack = p a i r . s t a te ;
return p a i r . value ;

}
public in t top () {

i n t $ P a i r p a i r = IntArrayStack$Immutab le . top (stack) ;
stack = p a i r . s t a te ;
return p a i r . value ;

}
. . .

}

Fig. 5. Partial view of the wrapper class that results from applying our approach to the specifica-
tion IntStackSpec and the original IntArrayStack class

public class i n t $ P a i r {
public f i n a l in t value ;
public f i n a l I n tA r rayS tack$Or ig ina l s ta te ;
public i n t $ P a i r (i n t value , I n tA r rayS tack$Or ig ina l s ta te) {

th is . value = value ; th is . s t a te = s ta te ;
}

}

Fig. 6. The auxiliary class int$Pair composed of an integer and an original IntArrayStack

sta t ic MyT$O r i g i n a l m (MyT$O r i g i n a l o , �p) {
MyT$O r i g i n a l aClone = (MyT$O r i g i n a l) c lone (o) ;
aClone .m(�p) ;
return aClone ;

}

and for each MyT method SomeType m(�p), class MyT$Immutable defines a method:

sta t ic SomeType$Pai r m (MyT$O r i g i n a l o , �p) {
MyT$O r i g i n a l aClone = (MyT$O r i g i n a l) c lone (o) ;
return new SomeType$Pai r (aClone .m(�p) , aClone) ;

}

where SomeType$Pair is a generated class that declares two public final attributes—
MyT$Original state and SomeType value—and a constructor that receives the values to
initialize those attributes. Contracts are generated for the methods in MyT$Immutable
that are a translation (see Section 6) of the axioms of the corresponding specification.

The wrapper class. MyT defines a single attribute MyT$Original wrappedObject, im-
plements each method void m(�p) with the following code:

{wrappedObject = MyT$Immutable .m(wrappedObject , �p) ;}

and implements each method SomeType m(�p) with the following code:

{SomeType$Pai r p a i r = MyT$Immutable .m(wrappedObject , �p) ;
wrappedObject = p a i r . s t a te ;
return p a i r . value ;

}

Checking the Conformance of Java Classes Against Algebraic Specifications 503

public class IntArrayStack$Immutable {
/ /@ ensures s ize (\ resu l t) . value == 0;
sta t ic public I n tA r rayS tack$Or ig ina l c l ea r (I n tA r rayS tack$Or ig ina l s) {

I n tA r rayS tack$Or ig ina l aClone = (In tA r rayS tack$Or ig ina l) c lone (s) ;
aClone . c l ea r () ;
return aClone ;

}
/ /@ ensures s ize (\ resu l t) . value == s ize (s) . value + 1;
/ /@ ensures top (\ resu l t) . value == i ;
/ /@ ensures equal (pop (\ resu l t) . s ta te , s) . value ;
sta t ic public I n tA r rayS tack$Or ig ina l push (In tA r rayS tack$Or ig ina l s , i n t i) {

I n tA r rayS tack$Or ig ina l aClone = (In tA r rayS tack$Or ig ina l) c lone (s) ;
aClone . push (i) ;
return aClone ;

}
/ /@ requires ! isEmpty (s) . value ;
sta t ic public I n tA r rayS tack$Or ig ina l pop (In tA r rayS tack$Or ig ina l s) {

I n tA r rayS tack$Or ig ina l aClone = (In tA r rayS tack$Or ig ina l) c lone (s) ;
aClone . pop () ;
return aClone ;

}
sta t ic public i n t $ P a i r s ize (I n tA r rayS tack$Or ig ina l s) {

I n tA r rayS tack$Or ig ina l aClone = (In tA r rayS tack$Or ig ina l) c lone (s) ;
return new i n t $ P a i r (aClone . s ize () , aClone) ;

}
/ /@ ensures (∗ See Sect ion 6 ∗) ;

sta t ic public boolean equals (I n tA r rayS tack$Or i g i na l s , Object t) {
I n tA r rayS tack$Or ig ina l aClone = (In tA r rayS tack$Or ig ina l) c lone (s) ;
return new boolean$Pair (aClone . equals (t) , aClone) ;

}
. . .

}

Fig. 7. Partial view of the immutable class that results from applying our approach to the Inte-
gerStack module and the original IntArrayStack class

The wrapper class uses the value part of the pair to return the value to the client,
and retains the state part in its only attribute (in order to account for methods that, in
addition to returning a value, also modify the current object).

Whenever a class, client to the original class, is executed within the context of this
framework, every call to a method m in the original class is monitored since the wrapper
redirects the call through the corresponding method in the immutable class, forcing the
evaluation of the pre and post-conditions. These are such that the original methods
behavior is monitored without any side effect on the objects created by client classes.

An Example. Figures 5, 6, and 7 illustrate the classes that are generated according
to our approach in the context of the Stack example used throughout the paper—the
specification in Figure 2, the class in Figure 3, and the refinement mapping in Figure 4.
Consider the following code snippet in a client of IntArrayStack class:

In tAr rayStack s = new In tAr rayStack () ;
s . push (3) ;

Figures 8 and 9 present UML interaction diagrams showing the interaction between
the several objects that participate in the realization of the above instructions. The
value of aClone (the return value of the push(stack, 3) operation invoked in 2.1,
Figure 9) is monitored by checking the contracts associated with method push in class

504 I. Nunes et al.

Fig. 8. Creating an IntArrayStack

Fig. 9. Invoking a method upon an IntArrayStack

IntArrayStack$Immutable. The post-condition of push invokes methods size, top, and
pop of the immutable class on object aClone. These methods do not change object
aClone since they invoke the original versions of size, top, and pop on a clone of aClone.
The contracts for these methods are not monitored: the contracts of methods invoked
from contracts are not monitored—this is a feature of JML, crucial to our approach
since it prevents infinite invocation chains.

This example also illustrates what happens in situations where a primitive type is
chosen to implement a specification (in the example, integers are implemented by int).
While monitoring a given implementation for a module, situations may arise where a
class MyT is accused of not correctly implementing specification T because a closed
specification T’ was mapped to a Java primitive type that does not correctly implement
it. This is due to the fact that our approach does not check the conformance of specifica-
tions that are mapped into primitive types. However, this problem can only be overcome
with client-invasive approaches, i.e., that require the modification of client classes.

We experienced the situation just described in one of the modules we used to evaluate
our approach—a Rational module consisting of specifications of integers and rational
numbers, available elsewhere [7]. A traditional immutable implementation of rationals
was found to be incorrect during the manipulation of fractions with large numerators
and denominators, involving cross-products greater than 231 − 1. This is due to the
fact that Java int type does not correctly implements the integer specification, namely
properties such as (i < suc(i)) and (n �= 0 ∧ m �= 0 ⇒ n×m �= 0) do not hold (for
example, 231 − 1 + 1 is a negative number).

Checking the Conformance of Java Classes Against Algebraic Specifications 505

6 Contract Generation

In this section we discuss how contracts are generated from specifications. This process
can be described in two parts: translation of domain-specific properties described by
axioms, and translation of generic properties of equational logic.

6.1 From Axioms to Contracts

Contract generation that captures the properties that are explicitly specified in a given
specification T, is such that:

– a domain restriction for an operation op generates a pre-condition for the method
that implements op;

– axioms which relate constructors opc and op′c, and axioms that specify the result of
observers on a given constructor opc generate post-conditions for the method that
implements opc;

– axioms that describe the result of a given derived operation/predicate oppd on
generic instances of the sort, generate post-conditions for the method that imple-
ments oppd;

– axioms that pertain to sort equality generate post-conditions for the equals method.

A refinement mapping induces a straightforward translation of formulæ and terms
into Java expressions. There are a few points of complexity however: (1) the translation
of terms op(t1, . . . , tn) into method invocations; (2) the translation of strong equality
used in axioms; (3) avoiding calls to methods, within contracts, in cases where their
arguments are undefined.

In what concerns point (1), the return type of the method that implements op of
specification T dictates the form of the translation: (i) if method m of class MyT that
implements op is void, then op(t1, . . . , tn) is translated into an expression of the form
MyT$Immutable.m(...); (ii) if method m of class MyT that implements op is not void,
then a pair <value, state> must be returned by the MyT$Immutable version of method
m, where value stands for the result of the method, and state stands for the target object
state after m’s invocation. op(t1, . . . , tn) is translated into an expression of the form
MyT$Immutable.m(...).state if the sort of op is T, and MyT$Immutable.m(...).value in all
other cases.

In what concerns point (2), the meaning of an equality t1 = t2 in the axioms of
a specification is that the two terms are either both defined and have the same value,
or they are both undefined. To be consistent with this definition, the evaluation of
equals(t1, t2) within contracts should only be performed if t1 and t2 are both defined.
If t1 and t2 are both undefined then the equality t1 = t2 is considered to hold and if just
one of them is undefined, then the equality is false.

Finally, point (3) has to do with the fact that contracts of methods invoked within con-
tracts are not monitored by the JML runtime assertion checker. Thus, we have to avoid
making, in our contracts, method invocations with undefined arguments. A def function
is defined and used in the translation process that supplies the definedness conditions
for both terms and formulæ of our specification language (see [19] for the definition).
As an example, the definedness condition for an operation call op(t1, . . . , tn) is the

506 I. Nunes et al.

IntegerSpec is pr imit ive in t
zero (x : I n tege r) : I n tege r is 0;
suc (x : I n tege r) : I n tege r is x + 1;
pred (x : I n tege r) : I n tege r is x − 1;
l t (x : In teger , y : I n tege r) is x < y ;

ElemSpec is class S t r i ng ;
StackSpec is class Str ingArrayStack

c l ea r (s : Stack) : Stack is void c l ea r () ;
push (s : Stack , e : Elem) : Stack is void push (S t r i ng e) ;
pop (s : Stack) : Stack is S t r i ng pop () ;
top (s : Stack) : Elem is S t r i ng top () ;
s ize (s : Stack) : I n tege r is in t s ize () ;
isEmpty (s : Stack) is boolean isEmpty () ;

Fig. 10. A refinement mapping for GenericStack

public class Str ingArrayStack implements Cloneable {
. . .
public void c l ea r () { . . . }
public void push (S t r i ng i) { . . . }
public S t r i ng pop () { . . . }
public S t r i ng top () { . . . }
public in t s ize () { . . . }
public boolean isEmpty () { . . . }
public boolean equals (Object o ther) { . . . }
public Object c lone () { . . . }

}

Fig. 11. Java implementation of a String array stack

conjunction of the definedness conditions of terms t1 to tn with the domain condition
of op.

We now present in more detail, for each type of axiom, the contract that result from
applying the automatic translation process rules. A more complete description of the
translation process can be found elsewhere [19]. We use [φ] to denote the translation of
a formula φ, and def(φ) to denote the definedness condition for φ.

We illustrate the translation rules with a module GenericStack, with three compo-
nents: the specification of integers presented in Figure 2 under the name IntegerSpec , a
specification that simply declares the sort Elem under the name ElemSpec and a speci-
fication of stacks, under the name StackSpec, that only differs from the one in Figure 2
by the sort of its elements, which is the external sort Elem belonging to the imported
specification ElemSpec. We choose the classes StringArrayStack and java.lang.String to
refine module GenericStack through the refinement mapping of Figure 10.

Translation of Domain Restrictions. A domain restriction φ for an operation op gen-
erates a pre-condition for the method that implements op. In JML, pre-conditions are
preceded by keyword requires and, thus, the pre-condition that results from translating
the domain condition is requires [def(φ)⇒ φ].
Example: Domain restriction top(s): if not isEmpty(s) in specification StackSpec,
Figure 2, produces pre-condition

requires true ==> ! isEmpty (s) . value ;

Checking the Conformance of Java Classes Against Algebraic Specifications 507

in method String$Pair top(StringArrayStack$Original s) of class StringArrayStack$Im
mutable. The expression true is the definedness condition of variable s.

Translation of Axioms about Constructors and Observers. Axioms that specify the
result of both constructors and observers on a given constructor opc generate post-
conditions for the method that implements opc. In JML, post-conditions are preceded
by keyword ensures. The post-conditions that result from translating axioms of the
form (φ ⇒ op(opc((x),(t) = t) and (φ ⇒ predo(opc((x),(t)) are

ensures [def(φ) ∧ φ ⇒ op(r,�t) = t]
ensures [def(φ) ∧ φ ∧ def(predo(r,�t)) ⇒ predo(r,�t)]

where op is a constructor or an observer operation, predo is an observer predicate, and
where r stands for the result of opc((x).
Example: Axiom pop(push(s , i)) = s produces post-condition

ensures true ==> [φ] i mp l i es
! (true && ! isEmpty (\ resu l t) . value) && ! true | | both undef ined or
(true && ! isEmpty (\ resu l t) . value) && true && (both def ined and

equals (pop (\ resu l t) . s ta te , s) . value ; equal)

for method StringArrayStack$Original push (StringArrayStack$Original s, String i) in
class StringArrayStack$Immutable. The expression \result in JML represents the re-
sult of the method to which the post-condition is attached. The argument of pop
in the axiom is push(s , i) which is precisely the result of method push. This post-
condition is the translation of an equality between the terms pop(push(s , i)) and
s, thus it must evaluate to true if either both terms are undefined or they are both
defined and have the same value. Remember that the definedness condition of an
operation invocation is the conjunction of the definedness conditions of its argu-
ments and the domain condition of the operation itself. The translation of the axiom
top(push(s , i)) = i would be similar, except in the last part where we would have
String$Immutable.equals(top(\result).value, i).

Translating Axioms about Derived Operations/Predicates. Axioms that describe the
result of a given derived operation/predicate oppd on generic instances of the sort, gen-
erate post-conditions for the method that implements oppd. The post-conditions that
result from translating axioms (φ ⇒ opd((x) = t) and (φ ⇒ predd((x)) are

ensures [def(φ) ∧ φ ⇒ r = t]
ensures [def(φ) ∧ φ ⇒ r]

where opd and predd denote derived operations and predicates, and r stands for the
result of opd((x) or predd((x).
Example: Axiom isEmpty(s) if size (s) = zero () translates into the following post-
condition in method boolean$Pair isEmpty (StringArrayStack$Original s).

ensures ! (true && true) && ! true | | both undef ined or
(true && true) && true && (both def ined and
s ize (s) . value == 0 ==> equal) imply
\ resu l t . value [r]

Translation of Axioms about Equality. Equality between values of a given type are
regarded, to some extent, as type-specific predicates. In this way, axioms of the form
(φ ⇒ x = x′) generate post-conditions ensures [def(φ) ∧ φ]==> \result.value for

508 I. Nunes et al.

method equals. We do not illustrate this case since no specification in module Generic-
Stack defines axioms of this kind.

Closing Assertions. Whenever the assertions (pre and post-conditions) contain a vari-
able v that does not correspond to any of the parameters of the method to which the
assertion belongs, the assertion must be preceded by a JML quantifier \ forall that quan-
tifies over that variable within a given domain. Populating these domains is orthogonal
to contract generation. In a technical report [19] we present a specific strategy for pop-
ulating these domains—the one we have used for benchmarking our approach.

6.2 Enforcing Generic Properties

So far we have focused on the generation of contracts capturing user-defined properties,
specific for a given type. In addition, there are generic properties concerning equality
and cloning that are important to capture through contracts.

Contract for equals. In equational logic, any two terms that are regarded as equal must
produce equal values for every operation and predicate. In order to check the consis-
tency of an implementation in what respects these properties, our approach involves
the automatic generation of post-conditions for the equals method that test the results
given by all methods that implement observer operations and predicates when applied
to the two objects being compared. More concretely, for every observer operation and
predicate oppo, the post-condition

ensures \ resu l t . value ==> (o ther instanceof C$O r i g i n a l &&
[oppo (one , �x) = oppo ((C$O r i g i n a l) other , �x))]

is generated for the boolean$Pair equals(C$Original one, Object other) method of a
class C$Immutable, where C is the class that implements the given specification.

The first part of the above expression is a Java boolean expression, while the second
part denotes the translation of an equality between terms of our specification language
extended with the (C) x term. The translation of this new term is itself, as expected. The
translation of the term equality follows the rules previously explained.
Example: Returning to our StringArrayStack example, the contract generated
for method boolean$Pair equals(StringArrayStack$Original one, Object other) in class
StringArrayStack$Immutable includes the following pre-condition.

ensures \ resu l t . value ==> other instanceof S t r i ngA r rayS tack$Or i g i na l &&
(! ! isEmpty (one) . value &&

(! ! isEmpty ((S t r i ngA r rayS tack$Or i g i na l) o ther) . value | |
(true && ! isEmpty (one) . value && true) &&
(true && ! isEmpty ((S t r i ngA r rayS tack$Or i g i na l) o ther) . value && true) &&
Str ing$Immutable . equals (top (one) . value ,

top ((S t r i ngA r rayS tack$Or i g i na l) o ther) . value))

This contract does not completely capture congruence—it only tests observers ap-
plied to the left and right terms of equality. The process of testing equality between
all terms obtained from the application of all combinations of observers is not realistic
in this context. Instead, we rely on the not completely exhaustive process of monitor-
ing, which heavily uses the equals method. Although the contracts of methods invoked
from contracts are not monitored, we may force the execution of equals from within the
immutable class equipped with contracts—this is a subject for further work.

Checking the Conformance of Java Classes Against Algebraic Specifications 509

We do not generate post-conditions for properties other than congruence, e.g. reflex-
ivity and symmetry. Although these properties are crucial (as testified by the Java API
contract for equals saying that it should implement an equivalence relation), given that
they are independent of the target specification we chose not to enforce their checking—
it would impose an important overhead.

Contracts for clone. Our approach makes use of cloning so, its soundness can be
compromised if given implementations for clone do not meet the following correctness
criteria: (i) the clone method is required not to have any effect whatsoever on this;
(ii) clone’s implementation is required to go deep enough in the structure of the object
so that any references shared with the cloned object cannot get modified through the
invocation of any of the remaining methods of the class. For example, an array based
implementation of a stack, in which one of its methods changes the state of any of its
elements, requires the elements of the stack to be cloned together with the array itself.

The post-condition that we want for method clone is one that imposes equality be-
tween the cloned object and the original one: ensures equals(\result, o) is generated
as a post-condition for the method Object clone(C$Original o) of class C$Immutable.

7 Congu

Congu [7] is a prototype that supports the approach by checking the consistency of
specification modules and refinement mappings, and generating the classes required
for monitorization. Given the user supplied entities—specification module, refinement
mapping and classes—the following situations are identified as errors: the refinement
mapping refers to an operation that is not present in the specification module; the re-
finement mapping refers to a method that is not present in the implementing classes;
there are specification operations that are not mapped into any class method; among
many others. Once contracts are generated and execution is monitored, the usual pre
and post-condition exceptions are launched whenever invocations violate specification
domain conditions, and operation implementations violate specification axioms.

We have tested our architecture on four data types: the stack specification described
in this paper (both with Stack refined into an array-based “standard” class (Figure 3)
and into java.util.Stack), a data type representing rational numbers, and a data structure
Vector whose elements are indexed by integer values. The source code for the test cases
can be found elsewhere [7]. For each data type we assessed the time and space used in
five different situations.

1. The user’s class and the test class only, both compiled with Sun’s Java compiler,
thus benchmarking the original user’s class only;

2. The whole architecture compiled with Sun’s Java compiler, thus benchmarking the
overhead of our architecture, irrespective of the contracts;

3. The class responsible for checking the contracts, with its contracts removed, com-
piled with the JML compiler; all other classes in the architecture compiled with
Sun’s Java compiler.

4. As above but with all contracts in place, except that JML \ forall ranges were not
generated;

510 I. Nunes et al.

5. As above but monitoring \ forall assertions with a limit of 20 elements in each
range (see below).

All tests were conducted on a PC running Linux, equipped with a 1150 MHz CPU
and 512Mb of RAM. We have used J2SE 1.4.2 09-b05 and JML 5.2. The runtime in
seconds for 1.000.000 random operations, average of 10 runs, are as follows.

Case 1 Case 2 Case 3 Case 4 Case 5 Slowdown
StringArrayStack 2.71 3.26 11.58 21.21 21.21 7.8
java.util.Stack 2.27 4.35 10.66 23.07 23.07 10.2
Rational 2.97 4.71 26.74 38.06 58.72 19.8
Vector 3.80 5.24 15.30 26.34 425.18 111.9

Inspecting the numbers for the first and the fifth case one concludes that monitoring
introduces a 10 to 100-fold time penalty, depending on how many \ forall assertions are
needed (none for the stacks, very little for the rational, a lot for the vector). The numbers
for the second case indicate that conveying all calls to the data structure under testing
through the Immutable class imposes a negligible overhead, when compiled with Sun’s
Java compiler. The numbers for the third case allow to conclude that roughly half of the
total overhead reported in the fourth column is due to contract monitoring alone, while
the other half to the fact that we are using the JML compiler. Comparing the fourth
to the fifth case one concludes that monitoring \ forall assertions can impose quite an
overhead, if the number of elements inside the \ forall domain is not properly limited.
We omit the results on the space used; it suffices to say that the largest increase was
reported for the Vector test, where we witnessed a negligible 5% increase from case 1
to case 5.

8 Related Work

There is a vast amount of work in the specification and checking of ADTs and software
components in general; the interested reader may refer to previous publications [9, 12]
for a survey. Here we focus on attempts to check OO implementations for conformance
against property-driven algebraic specifications.

Henkel and Diwan developed a tool [13] that allows to check the behavioral equiva-
lence between a Java class and its specification, during a particular run of a client appli-
cation. This is achieved through the automatic generation of a prototype implementation
for the specification which relies on term rewriting. The specification language that is
adopted is, as in our approach, algebraic with equational axioms. The main difference is
that their language is tailored to the specification of properties of OO implementations
whereas our language supports more abstract descriptions that are not specific to a par-
ticular programming paradigm. Being more abstract, we believe that our specifications
are easier to write and understand.

Figure 12 presents an example. The axioms define that removeLast operation pro-
vides the last element that was added to the list and define the semantics of get opera-
tion: get(l , i) is the i-th element in the list l . The symbols retval and state are primitive

Checking the Conformance of Java Classes Against Algebraic Specifications 511

f o r a l l l : L i nkedL i s t f o r a l l o : Object f o r a l l i : i n t
removeLast (add (l , o) . s ta te) . r e t v a l == o
i f i > 0 get (addF i r s t (l , o) . s ta te , intAdd (i , l) . r e t v a l) . r e t v a l == get (l , i) . r e t v a l

axioms
l : L i nkedL i s t ; o : Elem , i : I n tege r ;
removeLast (add (, o)) = o ;
get (AddF i rs t (l , o) , suc (i)) = get (l , i) i f gt (i , zero ()) ;

Fig. 12. An example of the specification of two properties of linked lists as they are presented by
Henkel and Diwan [13] and as they would be specified in our approach

constructs of the language adopted by Henkel and Diwan [13] to talk about the return
value of an operation and the state of the current object after the operation, respectively.

When compared with our approach, another difference is that their language does
not support the description of properties of operations that modify other objects, reach-
able from instance variables, nor does the tool. In contrast, our approach supports the
monitoring of this kind of operation.

Another approach whose goal is similar to ours is Antoy and Hamlet’s [1]. They
propose an approach for checking the execution of an OO implementation against
its algebraic specification, whose axioms are provided as executable rewrite rules.
The user supplies the specification, an implementation class, and an explicit map-
ping from concrete data structures of the implementation to abstract values of the
specification. A self-checking implementation is built that is the union of the im-
plementation given by the implementer and an automatically generated direct imple-
mentation, together with some additional code to check their agreement. The abstrac-
tion mapping must be programmed by the user in the same language as the imple-
mentation class, and asks user knowledge about internal representation details. Here
lies a difference between the two approaches: our refinement mapping needs only
the interface information of implementing classes, and it is written in a very ab-
stract language. Moreover, there are some axioms that are not accepted by their ap-
proach, due to the fact that they are used as rewrite rules; for example, equations like
insert (X, insert (Y, Z)) = insert (Y, insert (X,Z)) cannot be accepted as rewrite
rules because they can be applied infinitely often. We further believe that the rich struc-
ture that our specifications present, together with the possibility to, through refinement
mappings, map a same module into many different packages all implementing the same
specification, is a positive point in our approach that we cannot devise in the above
referred approaches.

9 Conclusion and Further Work

We described an approach for testing Java classes against specifications, using an alge-
braic, property-driven, approach to specifications as opposed to a model-driven one. We
believe that the simplicity of property-driven specifications will encourage more soft-
ware developers to use formal specifications. Therefore, we find it important to equip
these approaches with tools similar to the ones currently available for model-driven
ones.

512 I. Nunes et al.

Specifications define sorts, eventually referring to other sorts defined by other spec-
ifications, which they import. Specifications are nameless, so, the decision of which
specification to choose to define a given sort, is made only at module composition time.
This promotes reuse at the specification level.

Due to the abstract, implementation independent, nature of the specification language
we adopted, it is easy to check different Java packages against the same specification
module. This only requires the definition of appropriate refinement mappings. In the
case of different classes that implement the same interface, refinement mappings can be
reused as well.

Our approach has some limitations, some of these being structural in the sense that
they are not solvable in any acceptable way while maintaining the overall structure:

– Self calls are not monitored. This limitation has a negligible impact if client classes
call all the methods whose behavior needs to be tested.

– The approach is highly dependent on the quality of the clone methods, supplied by
the user.

– Conformance checking ignores properties of specifications when implemented by
primitive types. However, as described at the end of Section 5, our approach un-
veiled a problem we were not aware of, in a given module. This problem can only
be overcome with client-invasive approaches.

We intend to investigate the best way to solve the problem of side-effects in contract
monitoring due to changes in the state of method parameters—our approach does not
cover this problem yet. Cloning all parameters in every call to a method in the generated
immutable class—as we do for the target object—does not seem a plausible solution.
We believe that methods that change the parameters’ state do not appear very often in
OO programming, except perhaps in implementations of the Visitor pattern and other
similar situations. In our opinion a better solution would allow the user to explicitly
indicate in the refinement mapping whether parameters are modified within methods
(the default being that they are not modified).

The relation between domain conditions of specifications and exceptions raised by
implementing methods is also a topic to investigate and develop, insofar as it would
widen the universe of acceptable implementation classes.

We also plan to investigate possible extensions of both the specification and refine-
ment languages in order to be possible to define 0-ary constructors, and refine them into
Java constructors that override the default initialization.

A further topic for future work is the generation, from specifications and refinement
mappings, of Java interfaces annotated with human readable contracts. Once one is con-
vinced that given classes correctly implement a given module, it is important to make
this information available in the form of human-readable contracts to programmers that
want to use these classes and need to know how to use and what they can expect from
them.

Acknowledgments. This work was partially supported through the POSI/CHS/48015/
2002 Project Contract Guided System Development project. Thanks are due to José
Luiz Fiadeiro for many fruitful discussions that have helped putting the project together.

Checking the Conformance of Java Classes Against Algebraic Specifications 513

References

1. S. Antoy and R. Hamlet. Automatically checking an implementation against its formal spec-
ification. IEEE TOSE, 26(1):55–69, 2000.

2. E. Astesiano, H.-J. Kreowski, and B. Krieg-Brckner, editors. Algebraic Foundations of Sys-
tems Specification. IFIP State-of-the-Art Reports. Springer, 1999.

3. M. Barnett and W. Schulte. Spying on components: A runtime verification technique. In
Proc. WSVCBS — OOPSLA 2001, 2001.

4. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The spec# programming system:
An overview. In Proc. of CASSIS 2004, number 3362 in LNCS. Springer, 2004.

5. D. Bartetzko, C. Fisher, M. Moller, and H. Wehrheim. Jass - Java with assertions. ENTCS,
55(2), 2001.

6. M. Bidoit and P. Mosses. CASL User Manual. Number 2900 in LNCS. Springer, 2004.
7. Contract based system development. http://labmol.di.fc.ul.pt/congu/.
8. H. Ehrig and G. Mahr, editors. Fundamentals of Algebraic Specification 1: Equations and

Initial Semantics. Springer, 1985.
9. J. Gannon, J. Purtilo, and M. Zelkowitz. Software specification: A comparison of formal

methods, 2001.
10. J. Goguen, J. Thatcher, and E. Wagner. An initial algebra approach to the specification,

correctness, and implementation of abstract data types. In Current Trends in Programming
Methodology, volume IV: Data Structuring, pages 80–149. Prentice-Hall, 1978.

11. J. Guttag, J. Horning, S. Garland, K. Jones, A. Modet, and J. Wing. Larch: Languages and
Tools for Formal Specification. Springer, 1993.

12. J. Henkel and A. Diwan. Discovering algebraic specifications from java classes. In Proc.
ECOOP 2003, LNCS, 2003.

13. J. Henkel and A. Diwan. A tool for writing and debugging algebraic specifications. In Proc.
ICSE 2004, 2004.

14. M. Huges and D. Stotts. Daistish: Systematic algebraic testing for OO programs in the
presence of side-effects. In Proc. ISSTV, pages 53–61. ACM, 1996.

15. M. Karaorman, U. Holzle, and J. Bruno. jContractor: A reflective Java library to support
design by contract. In Proc. of Meta-Level Architectures and Reflection, number 1616 in
LNCS. Springer, 1999.

16. R. Kramer. iContract - The Java Design by Contract Tool. In Proc. TOOLS USA’98. IEEE
Computer Society Press, 1999.

17. G. Leavens, K. Rustan, M. Leino, E. Poll, C. Ruby, and B. Jacobs. JML: notations and tools
supporting detailed design in java. In OOPSLA’00 Companion, pages 105–106. ACM Press,
2000.

18. B. Meyer. Object-Oriented Software Construction. Prentice-Hall PTR, 2nd edition, 1997.
19. I. Nunes, A. Lopes, V. Vasconcelos, J. Abreu, and L. Reis. Testing implementations of

algebraic specifications with design-by-contract tools. DI/FCUL TR 05–22, 2005.
20. J. Spivey. The Z Notation: A Reference Manual. ISCS. Prentice-Hall, 1992.
21. Man Machine Systems. Design by contract for java using jmsassert. Published on the

internet, 2000.

Incremental Slicing�

Heike Wehrheim

Universität Paderborn, Institut für Informatik
33098 Paderborn, Germany
wehrheim@uni-paderborn.de

Abstract. Slicing is one of a number of techniques for reducing the state
space of specifications during verification. Unlike techniques as e.g. data
abstraction slicing is precise: the slice exactly reflects the property to be
verified. This necessitates keeping large parts of the specification.

In this paper we relax this requirement and instead compute slices
overapproximating the behaviour of the specification. This can lead to
substantially smaller slices. We consequently adapt the technique of ab-
straction refinement to slicing as to improve the slice once a false negative
is detected. Slicing thus becomes an incremental method: it starts with
a small, minimal part of the specification and successively adds further
parts until either the property under interest holds on the slice or a real
counterexample is found. We show correctness and termination of our
technique.

1 Introduction

Model checking [3] is a technique for automatically verifying that a certain prop-
erty (usually written in a temporal logic) holds for a specification / program /
hardware design. One of the major hurdles to a widespread use of model check-
ing is the state explosion problem: model checking algorithms need to search
the whole state space of specifications and thus often fail due to its complexity.
A large number of different techniques for fighting this problem has been de-
veloped, e.g. data abstractions [5,11], partial order [14] or symmetry reductions
[10] or heuristic search [6]. All of these techniques aim at reducing the number
of states to be inspected during model checking.

Slicing is another one of these techniques. Slicing originates from program
analysis where it was first applied in debugging [17,18]. In contrast to data ab-
stractions which change data domains of variables, predicates and operations,
slicing essentially removes all parts of a program which cannot influence a cer-
tain property under interest (called the slicing criterion). This technique has also
successfully been employed for model checking [8,13,16]; in this area the slicing
criterion is usually a temporal logic formula. Slicing is a precise (or conservative)
technique in that the property holds on the reduced specification if and only if
� This work was partly supported by the German Research Council (DFG) as part

of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 514–528, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Incremental Slicing 515

it holds on the full specification. This requirement usually necessitates keeping
large parts of the specification. Data abstraction techniques on the other hand
take a different approach [4]: The abstraction usually makes an overapproxima-
tion of the behaviour which, however, still guarantees that properties holding on
the abstracted specification hold on the original one as well. Counterexamples
found in the abstraction thus have to be validated on the original specification.
If the counterexample is spurious the abstraction has to be refined and veri-
fication to be repeated. The advantage of this approach is that it allows for
much coarser abstractions yielding smaller state spaces, however, at the prize of
additional refinement steps.

In this paper, we develop a slicing technique which basically follows the same
approach. We determine a small, minimally necessary part of the specification.
On this slice the property to be verified is checked. When the property holds
on the slice we are done and can conclude validity on the full specification as
well. When a counterexample is found it has to be checked against the full
specification. If it is found to be spurious the slice has to be refined, i.e., further
parts of the specification have to be added to the slice. This is repeated until
finally the property holds or a real counterexample is found. Slicing thus gets an
incremental technique. On a small example we show that this way smaller slices
can indeed be obtained.

We exemplify our approach on a tiny specification formalism containing fa-
cilities for defining variables and operations as well as describing the ordering
of operations (by means of a finite state automaton). Besides developing an ap-
proach for slicing and not abstraction, it is the latter which distinguishes our
approach from [4]. The existence of an automaton defining orderings of oper-
ations and the fact, that slicing removes operations, necessitates a new refine-
ment technique. The reason for including automata as part of our specification
formalism lies in our ultimate goal of applying incremental slicing to CSP-OZ
specifications [7] which consist of state-based parts (described in Object-Z) and
dynamic behaviour parts (given in the process algebra CSP). This formalism has
the two dimensions of static / dynamic behaviour as well and furthermore an
ordinary slicing algorithm already exists for CSP-OZ [1]. Here, we refrain from
using CSP-OZ directly and instead move to a simpler formalism which allows
for a straightforward illustration of the main techniques.

The paper is structured as follows: The next section shortly introduces the
specification formalism, its semantics and the logic used for describing properties.
It furthermore gives an example which is used throughout the whole paper.
Section 3 defines ordinary slicing for this specification formalism. Sections 4 and
5 develop incremental slicing and the refinement technique. The last section
concludes.

2 Background and Example

In this section we shortly describe the formalism that we use for specification,
give its semantics and explain how slicing in general works.

516 H. Wehrheim

2.1 Specifications

The specification language is a very simple formalism, used for the purpose of
illustration only. The ultimate goal is to use the technique presented here on
CSP-OZ specifications [7], for which ordinary slicing has already been developed
[1]. CSP-OZ is a combination of the process algebra CSP and the state-based
formalism Object-Z, thus allowing for the modelling of static as well as dynamic
behaviour. Our tiny formalism will thus have these ingredients as well: vari-
ables and operations define the state space and an automaton specifies possible
orderings of operations.

A specification Spec has the following ingredients:

– A set of variables V = {v1, . . . , vn} and operations OP = {op1, . . . , opm},
– for every variable v a data domain Dv , letting D =

⋃
v∈V Dv ,

– a finite state automaton A (without final states) for fixing the ordering of
operations: A = (Q , q0,−→) contains a set of states Q , an initial state q0 ∈ Q
and a transition relation −→ ⊆ Q ×OP ×Q ,

– an initialisation of variables given by a (sort-respecting) mapping Init :
V → D ,

– a description of the semantics of operations given by a mapping M : OP →
(AtomV × AssV) assigning to each operation a guard and an effect.

Here, AtomV is the set of predicates over V comparing variables with constants
(e.g. x < 1 ∧ y = 2). AssV are assignments to variables in V of the form
v := expr , where expr is an expression possibly involving other variables of V
(e.g. x := y + 2, y := 0 are assignments). A tupel (or valuation of variables)
(d1, . . . , dn) ∈ Dv1× . . .×Dvn will often be abbreviated as d . A predicate p holds
for d , i.e., p(d) is true, if the predicate evaluates to true when replacing variable
vi with di . The effect of an operation op on some value d (effect(op, d)) with
effect of op defined as vi := expr is some valuation d ′ which coincides with d
except for vi , for which the value of expr (in d) is taken. For an expression or
predicate p we refer to vars(p) as the set of variables appearing in p.

Note that in contrast to [4] we also allow for a specification of the dynamic
behaviour in terms of an automaton here.

1
ready steady

go

don’t go

32

Fig. 1. Automaton of RSG-Specification

Incremental Slicing 517

As running example, consider the following simple specification of a system
continously performing the operations ready, steady and go (thus called RSG-
specification). Another operation is don ′t go which can however be shown never
to be taken. The system has three variables: x , y, reset with domains Dx =
Dy = {0, . . . , 5},Dreset = {0, 1} and Init(x) = Init(y) = Init(reset) = 0. The
automaton is depicted in Figure 1, the meaning of operations is given in the
table below.

guard effect
ready true x := 5
steady x > 0 y := 5
go y > 0 reset := 0
don’t go y = 0 reset := 1

2.2 Kripke Structures and Temporal Logic

The semantics of this simple language can be defined in terms of a Kripke struc-
ture, labelled over the operation names OP and predicates AtomV .

Definition 1. A Kripke structure M = (S ,R,L, I) over a set of operations OP
and a set of atomic propositions AtomV consists of

– a set of states S ,
– transitions R ⊆ S ×OP × S,
– a labelling of states with atomic propositions L : S → 2AtomV and
– I ∈ S an initial state.

Note that we only consider one initial state here. We often use a mapping like Init
as also denoting a tuple or a predicate, i.e. Init = (d1, . . . , dn) if Init(vi) = di ,
and Init(d1, . . . , dn) is true precisely if Init(vi) = di . For a subset V ′ ⊆ V we
let d |V ′ denote the tuple consisting of values for variables in V ′ only.

Definition 2. The Kripke structure of a specification Spec with automaton A =
(Q , q0,−→) is defined as S = Dv1 × . . .×Dvn ×Q, I = (Init , q0) and

– R((d , q), op, (d ′, q ′)) iff q −op−→A q ′, guard(op, d) ∧ d ′ = effect(op, d),
– L(d , q) = {p ∈ AtomV | p(d)}.

The Kripke structure of the RSG specification is depicted in Figure 2. States are
denoted as tuples (dreset , dx , dy , q).

Our interest is now in verifying such specifications. The temporal logic which
we use for describing properties is linear-time temporal logic (LTL) [12].

Definition 3. The set of LTL formulae over AP is defined as the smallest set
of formulae satisfying the following conditions:

– p ∈ AtomV is a formula,
– if ϕ1, ϕ2 are formulae, so are ¬ϕ1 and ϕ1 ∨ ϕ2,
– if ϕ is a formula, so are Xϕ (Next), �ϕ (Always), �ϕ (Eventually),
– if ϕ1, ϕ2 are formulae, so is ϕ1 U ϕ2 (Until).

518 H. Wehrheim

(0,0,0,1) (0,5,0,2) (0,5,5,3) (0,5,5,1)
ready steady go

(0,5,5,2)
ready

steady

Fig. 2. Kripke structure of RSG specification

As usual, other boolean connectives can be derived from ¬ and ∨. The next-less
part of LTL is referred to as LTL-X. LTL formulae are interpreted on paths of
the Kripke structure, and a formula holds for the Kripke structure if it holds for
all of its paths. In the following we assume that the transition relation of the
Kripke structure is total, i.e. ∀ s ∈ S ∃ op, s ′ : (s , op, s ′) ∈ R.

Definition 4. Let K = (S ,R,L, I) be a Kripke structure. An infinite sequence
of states and operations π = s0op0s1op1s2 . . . is a path of K iff s0 = I and
(si , opi , si+1) ∈ R for all 0 ≤ i. For a path π = s0op0s1op1s2 . . . we write π[i] to
stand for si (note that this is the state only) and πi to stand for siopisi+1opi+1
si+2

We furthermore let

inf (π) = {op | op = opi for infinitely many i} .

A path is fair with respect to a set of operations F ⊆ OP if inf (π) ∩ F �= ∅.

Fairness is needed later when we move from a full to a reduced specification. Here,
it is defined with respect to a set of operations: paths are fair if they infinitely
often contain operations from a fairness set. Next, we give the interpretation of
LTL formulae.

Definition 5. Let π be a path, ϕ an LTL formula.
π |= ϕ is inductively defined as follows:

– π |= p iff p ∈ L(π[0]),
– π |= ¬ϕ iff not π |= ϕ,
– π |= ϕ1 ∨ ϕ2 iff π |= ϕ1 or π |= ϕ2,
– π |= X ϕ iff π1 |= ϕ,
– π |= �ϕ iff ∀ i ≥ 0 : πi |= ϕ,
– π |= �ϕ iff ∃ i ≥ 0 : πi |= ϕ,
– π |= ϕ1 U ϕ2 iff ∃ k ≥ 0 : πk |= ϕ2 and ∀ j , 0 ≤ j < k : πj |= ϕ1.

For the Kripke structure K a formula holds iff it holds for all of K ’s paths.
In addition we will need the notion of fair satisfaction: K fairly satifies ϕ with
respect to a fairness constraint F ⊆ OP (K |=F ϕ) iff π |= ϕ holds for all F -fair
paths π of K .

2.3 Simple Slicing

Usually, Kripke structures may become quite large, due to the possibly large data
domains of the specification, and might thus make model checking infeasible.

Incremental Slicing 519

Slicing allows to remove those parts of the specification which are irrelevant for
the property to be verified. Slicing is usually an exact reduction technique: given
a property ϕ (specified in LTL-X) and a specification Spec, slicing computes a
reduced specification Specred

ϕ such that the following holds:

Spec |= ϕ iff Specred
ϕ |= ϕ

The Next operator X has to be left out since the full and the reduced specification
differ in the number of steps they make: the full specification has more steps and
these are considered as stuttering steps with respect to the formula.

Here, we will present a very simple slicing algorithm (ignoring the flow of con-
trol) which just serves the purpose of illustrating the concept. A more elaborate
slicing algorithm for CSP-OZ is given in [1]; an overview of slicing techniques in
general is given in [15].

The slicing algorithm incrementally constructs a set of variables which are
relevant for the property to be checked. It starts with the variables appearing in
the formula ϕ itself, vars(ϕ).

V0 = vars(ϕ)

Vi+1 = Vi ∪
⋃

v∈Vi ,op∈OP,(v :=expr)=effect(op)

vars(effect(op)) ∪ vars(guard(op))

This is repeated until some k is reached with Vk = Vk−1. The idea is simply
to compute the variables which can directly or indirectly influence the valuation
of vars(ϕ). First, we need the variables which are in expressions expr such that
a variable v in ϕ is set to expr in some operation op. In addition, since the
guard of op determines whether this operation is executed at all, we also need
the variables in the guard of op. The repetition of this computation also gives
us indirect influences; the variable sets are closed under influences. Note that in
more elaborate algorithms the flow of control is taken into account as well. We
let V ′ denote the variables of this set Vk . These are the variables of the reduced
specification. The operations of the reduced specification are

OP ′ = {op ∈ OP | ∃ v ∈ V ′ : (v := expr) = effect(op)
∨ vars(guard(op)) ⊆ V ′}

We take all operations which either in their guard or in their effect refer to
variables in V ′. We demonstrate this on our example. Assume that the property
to be verified is �(reset = 0) (which holds). Thus V0 = vars(ϕ) = {reset}.

V1 = {reset , y}
V2 = {reset , y, x}

Hence V ′ = V and OP ′ = OP . We thus do not get any reduction at all. Note
that x and y are in V because we have included variables of guards in our
computation of the set V ′. However, looking at the specification we see that
operation ready and variable x are actually irrelevant. ready sets the variable x
in such a way that the guard of the following operation is always true. Thus it

520 H. Wehrheim

would not do us any harm to remove both x and ready and the guard of steady.
On the other hand steady and y are important since they determine which of
the following operations are taken. If we remove them both go and don ′t go can
be executed in the reduced specification and the formula becomes false. Thus it
neither seems to be correct to leave out variables in guards in general, nor does
it seem that keeping them in general is necessary.

3 Approximative Slicing

This section proposes a slicing algorithm which overcomes this problem by suc-
cessively adding variables of guards, however, only when needed. It adopts a
technique which has successfully been employed for abstraction under the name
counterexample-guided abstraction refinement [4]. The approach works as fol-
lows: first, a reduced specification which overapproximates the behaviour of the
original specification is computed. On this reduction the property to be verified
is checked. If it holds we are done. If it does not hold, we check feasibility of
the counterexample. If the counterexample is possible in the full specification, a
real counterexample has been found and we are done. If it is not, the slice has
to be ”refined”, i.e., we have to add some variables and operations as to make
the reduced specification more precise.

We start with explaining the modification of the slicing algorithm, which now
computes slices overapproximating the behaviour of the original specification.
For this, we change the algorithm at one point: we do not consider guards any-
more, both in the computation of the set of relevant variables and for the set of
relevant operations.

V0 = vars(ϕ)

Vi+1 = Vi ∪
⋃

v∈Vi ,op∈OP,(v :=expr)=effect(op)

vars(effect(op))

OP ′ = {op ∈ OP | ∃ v ∈ V ′ : (v := expr) = effect(op)}

Since we will get some reduction for our example now, we also have to explain
how the reduced specification is constructed. The guards of the operations op ∈
OP ′ in Specred only contain predicates over variables of V ′: guardred(op) = true
if1 vars(guard(op)) � V ′, guardred(op) = guard(op) else. By leaving out some
guards although considering the operation we can get new behaviour in Specred .

For the RSG-specification, we now arrive at the following: V0 = V1 = {reset},
thus V ′ = {reset}, OP ′ = {go, don ′t go},Initred(reset) = 0 and guard and effect
are as given in the following table.

guard effect
go true reset := 0
don’t go true reset := 1

1 Note that in our current definition of AtomV there is never more than one variable
in guard(op).

Incremental Slicing 521

The automaton of the specification has to be reduced as well: we collapse all
those states into one, which can be reached from one another without performing
operations in OP ′. For a set O ⊆ OP we define q ≡O q ′ if q−O−→

∗
q ′ or q ′−O−→

∗
q.

The automaton Ared is ([Q]≡OP\OP′ , [q0]≡OP\OP′ ,−→Ared) with [q] −op−→Ared [q ′] iff
∃ q1 ∈ [q], q2 ∈ [q ′] : q1 −op−→A q2. If not stated differently ≡ will always stand for
≡OP\OP ′ . The reduced RSG-automaton is shown in Figure 3.

[1,2,3]

go

don’t go

Fig. 3. Automaton of reduced specification

The slice overapproximates the behaviour of the specification, thus the exactness
of the reduction technique is lost and instead we only get:

Specred
ϕ |= ϕ ⇒ Spec |= ϕ

This can be proven in two steps: by showing that the reduced specification
simulates the full specification and proving that the validity of LTL-X formulae
is preserved under simulation.

Definition 6. Let M = (S ,R,L, I) and M ′ = (S ′,R,L′, I ′) be Kripke structures
labelled over OP ,OP ′ and AtomV ,AtomV ′ , respectively, OP ⊇ OP ′,V ⊇ V ′.
M ′ simulates M (M 5 M ′) if there is a relation H ⊆ S × S ′ such that the
following holds:

1. (I , I ′) ∈ H ,
2. ∀(s1, s2) ∈ H we have

(a) L(s1) ∩ AtomV ′ = L′(s2),
(b) ∀(s1, op, s ′1) ∈ R:

– if op ∈ OP ′ then ∃ s ′2 : (s2, op, s ′2) ∈ R′ ∧ (s ′1, s ′2) ∈ H or
– if op �∈ OP ′ then (s ′1, s2) ∈ H .

Theorem 1. Let M = (S ,R,L, I) be the Kripke structure of the full specifica-
tion Spec, M ′ = (S ′,R′,L′, I ′) the Kripke structure of Specred

ϕ for some formula
ϕ. Then

M 5 M ′ .

Proof: Let V ′ and OP ′ be the set of variables and operations occuring in the
reduced specificiation. We use the following simulation relation H

H = {((d , q), (d |V ′ , [q])) | d ∈ Dv1 × . . .×Dvn , q ∈ Q}

We have to show all simulation conditions.

522 H. Wehrheim

1. ((Init , q0), (InitRed , [q0])) is in H by construction of the reduced specification.
2. L((d , q)) ∩ AtomV ′ = {p ∈ AtomV ′ | p(d)} = {p ∈ AtomV ′ | p(d |V ′)} =

L′(d |V ′ , [q]).
3. Let (s1, s2) ∈ H , (s1, op, s ′1) ∈ R. Assume s1 = (d , q), s2 = (d ′, q ′).

– op ∈ OP ′:
Hence guard(op, d) holds, d ′ = effect(op, d) and q −op−→A q ′. It follows
that [q] −op−→Ared [q ′] in the reduced automaton, and guardred(op, d |V ′)
and d ′ |V ′= effectred(op, d | V ′). Hence ((d |V ′ , [q]), op, (d ′ |V ′ , [q ′])) ∈
R′ and ((d ′, q ′), (d ′ |V ′ , [q ′])) ∈ H .

– op �∈ OP ′:
We first show that the following holds in M : ∀(s , op, s ′) ∈ R, op �∈ OP ′ :
L(s) ∩ AtomV ′ = L(s ′) ∩ AtomV ′ (op �∈ OP ′ are stuttering steps wrt.
AtomV ′). This can be proven by contradiction: assume L(s)∩AtomV ′ �=
L(s ′) ∩ AtomV ′ . Hence there is some v ∈ V ′ on which s and s ′ differ,
thus (v := expr) = effect(op). But then by definition of OP ′ op should
be in OP ′.
By this we get d |V ′= d ′ |V ′ . Furthermore q ≡ q ′. Hence ((d ′, q ′), (d |V ′ ,
[q])) ∈ H .

Theorem 2. Let M = (S ,R,L, I) and M ′ = (S ′,R,L′, I ′) be Kripke structures
labelled over OP ,OP ′ and AtomV ,AtomV ′ , respectively, OP ⊇ OP ′,V ⊇ V ′.
Let ϕ be an LTL-X formula over AtomV ′ and M 5 M ′. Then

M ′ |=OP ′ ϕ ⇒ M |=OP ′ ϕ

Fairness is needed here since there can in principle be paths in M executing no
operations of OP ′ at all. The validity of a property on such paths cannot be
checked in M ′ since there is no corresponding path in M ′.

Proof: The proof proceeds as follows. We assume that M ′ |=OP ′ ϕ holds but
there is some OP ′-fair path π in M such that M �|= ϕ. From such a path we
construct a stuttering equivalent (wrt. propositions in AtomV ′) path π′ of M ′.
Stuttering equivalent paths are known to satisfy the same set of LTL-X formulae
(over AtomV ′) [3]. Hence M ′ �|= ϕ which gives us the contradiction.

Let H be the relation showing simulation of M by M ′. Let π be an OP ′-fair
path of M , π = s0op0s1op1 The path π′ of M ′ is inductively constructed.

Induction base: π′ = I ′.
Induction hypothesis: π′ = s ′0op′

0s ′1 . . . s ′i has already been constructed, having
proceeded in path π to state sj . Then (sj , s ′i) ∈ H . (Note that this is given in
the induction base).

Induction step: Assume opj �∈ OP ′. Then π′ is not extended and in π we
move to sj+1. By definition of the simulation relation H we get (sj+1, s ′i) ∈ H .
If opj ∈ OP ′ then we take as s ′i+1 the state s such that (s ′i , opj , s) ∈ R′ and
(sj+1, s) ∈ H .

Due to the fairness assumption π is an infinite path. Due to condition 2(a)
of simulation π and π′ are stuttering equivalent wrt. the atomic propositions in
AtomV ′ . �

Incremental Slicing 523

Thus, for the reduced RSG specification we can be sure that if a formula holds it
will hold for the full specification as well. Unfortunately, the formula �(reset = 0)
does not hold anymore on the current reduction. The overapproximation we
have made has been too coarse. The counterexample trace simply consists of
one operation: don ′t go. Hence we next need some means of detecting whether
this is an actual counterexample or a spurious one. In case of having found a
spurious counterexample we have to construct a new reduced specification which
is more precise, i.e., does not exhibit this counterexample anymore.

4 Refining the Slice

For checking counterexamples we use (almost) the same approach as [4]. The
difference lies in our explicit treatment (and removal) of operations, which ne-
cessitates a different technique for refining the slice. In general, there may be two
different kinds of counterexamples: path and loop counterexamples. Loop coun-
terexamples arise when checking liveness properties. As [4] shows loop coun-
terexamples can be reduced to path counterexamples, thus we only treat the
latter here.

4.1 Checking Feasibility of Counterexamples

In the following we always let M = (S ,R,L, I) be the Kripke structure of the full
specification, A its automaton and V ′,OP ′ the set of variables / operations com-
puted during slicing. Assume that we are given a finite path π̃ = s̃1op1s̃2op2 . . . s̃n
of the reduced system representing a counterexample for the property to be ver-
ified. The states in this counterexample are of the form (d̃ , [q]) where d̃ is a
valuation of variables in V ′ and [q] an equivalence class of states of the au-
tomaton. For a state (d , q) of the full specification we denote by red(d , q) the
projection (d |V ′ , [q]) onto the reduced specification. For checking whether π̃ is
actually possible in the full specification we have to try to find a path π of the
full specification whose projection onto variables in V ′ and operations in OP ′

gives π̃. Thus, contrary to [4], we might need to fill in additional operations. The
set of concrete paths corresponding to π̃ is the following:

{s1
1op1

1s2
1 . . . opj1

1 s j1+1
1 op1s1

2op1
2 . . . opj2

2 s j2+1
2 op2s1

3 . . . opn−1s1
n |

∀ k : op1
k , . . . , opjk

k �∈ OP ′,R(s l
k , opl

k , s l+1
k),R(s jk+1

k , opk , s1
k+1),

I (s1
1), red(s1

k) = . . . = red(s jk
k) = s̃k}

The question is hence whether this set is empty or contains at least one path. To
determine this we incrementally construct sets of concrete states corresponding
to the states appearing in π̃. We start in the initial state and then successively
determine the sets of states reachable from this state by first executing operations
outside of OP ′ and then the next operation in π̃. This set is then compared with
the next state s̃i and we remove those states which cannot be projected onto s̃i .

We use the notation Rop(T) to denote {s ∈ S | ∃ s ′ ∈ T : (s ′, op, s) ∈ R}.
R∗ is the reflexive and transitive closure of this relation, and RM ,M ⊆ OP , its
extension to sets of operations.

524 H. Wehrheim

S1 = R∗
OP\OP ′(I)

Sk+1 = {s ∈ R∗
OP\OP ′(Ropk (Sk)) | red(s) = s̃k+1}

Then the following holds.

Proposition 1. π is a spurious counterexample if there is some k such that
Sk = ∅.

If such an empty set exists then there is no concrete path starting in the initial
state and executing the operations in π̃, possibly with some operations from
OP \ OP ′ in between. Thus we have to compute the sets Si , i ≥ 1, until we
either reach an empty set or the nonempty set Sn .

We again illustrate this on our sample specification. The counterexample for
the formula �(reset = 0) is depicted in Figure 4. The state on the left hand side
is s̃1, on the right hand side s̃2, π̃ = s̃1don ′t gos̃2.

reset: 0
[1,2,3]

reset: 1
[1,2,3]

don’t go

Fig. 4. Counterexample of reduced RSG

For this counterexample we next determine the sets S1,S2 We again represent
states as tuples (dreset , dx , dy , q) (the last element is the state of the automaton).

S1 = {(0, 0, 0, 1), (0, 5, 0, 2), 0, 5, 5, 3)}
S2 = ∅

S2 is empty: starting from S1 we compute the set of states reached by executing
don ′tgo. Since don ′tgo is not enabled in any of these states the resulting set is
empty. The counterexample is thus spurious.

4.2 Refinement Step

The basic idea is next to refine the slice (add more variables and/or operations)
and redo the verification step on the improved reduced system. This refinement
step has to be repeated until either the property holds or the counterexample
found turns out to exist in the full specification as well. For avoiding a repetition
of this step ad infinitum we have to make sure that each refinement actually
adds variables or operations so that we (in the worst case) end when the full
specification is reached.

Our primary goal is, however, to avoid getting the same counterexample again
in the repetition of the verification step. To this end we more closely examine
the sets of states we have computed and those appearing in the counterexample.
Assume Sk to be the first set of states being empty. Sk−1 contains the states
reachable from the initial state but operation opk−1 was not possible from there.

Incremental Slicing 525

In the slice this operation can however be executed in s̃k−1. This holds because
there are states s ∈ S from which operation opk−1 is possible and which pro-
jected onto V ′ equal s̃k−1. These are called bad states (they cause the spurious
counterexample):

SB = {s ∈ S | red(s) = s̃k−1 ∧ ∃ s ′ ∈ S , red(s ′) = s̃k ∧ s ′ ∈ Ropk−1(s)}

As a first observation note that SB and Sk−1 are disjoint.

Proposition 2. SB ∩ Sk−1 = ∅ .

This is simply due to the fact that Sk is empty and thus opk−1 cannot be
executed from a state in Sk−1. To get rid of the spurious counterexample we
have to ensure that states in Sk−1 and SB are not collapsed into the same state
in the reduced specification. There are two possible ways of doing so:

1. by adding variables to V ′ such that states in SB and Sk−1 will disagree on
their values,

2. or by adding operations to OP ′ such that the automaton states in SB and
Sk−1 are not equivalent anymore.

The ideal candidate for 1. are the variables in guard(opk−1).

Rule 1: If vars(guard(opk−1)) �⊆ V ′ then set V ′ to V ′ ∪ vars(guard(opk−1)).

An addition of these variables might already be sufficient for improving the slice.
After adding them to V ′ we make the closure from slicing again, i.e., we start the
computation of relevant variables and operations with this new set V ′ instead
of with vars(ϕ).

We exemplify this on our example: the first set Sk which is empty is S2, thus
k = 2. Operation opk−1 is don ′t go. The variable in the guard of don ′t go is y
which is not yet in V ′. Thus V ′ is extended to {reset , y}. The closure does not
give us additional variables, however, operation steady modifying y is included
into OP ′. The reduced specification this time is thus:

guard effect
steady true y := 5
go y > 0 reset := 0
don’t go y = 0 reset := 1

The reduced automaton is depicted in Figure 5. When checking the formula
�(reset = 0) on this reduced specification we find that it holds this time. By
Theorem 2 we thus get validity of the formula for the full specification as well.

However, rule 1 does not always yield an extension of V ′, namely if the vari-
ables in guard(opk−1) are already in V ′. Even in the case that it does this might
not yield a complete separation of SB from Sk−1. Nevertheless, when rule 1 is
not applicable anymore we at least know that the reason why opk−1 is possible
from states in SB but not in Sk−1 must lie in the component denoting the state
of the automaton. In this case, we in addition have to separate the automaton

526 H. Wehrheim

[1,2] [3]
steady

go

don’t go

Fig. 5. Reduced automaton after refinement step

states. Let QB = {q ∈ Q | ∃(d , q) ∈ SB} and Qk−1 = {q ∈ Q | ∃(d , q) ∈ Sk−1}
be the automaton states of bad and reachable states. We have to make sure to
have q �≡ p for all q ∈ QB , p ∈ Qk−1. First note that the following holds.

Proposition 3. If vars(guard(opk−1)) ⊆ V ′ then QB ∩Qk−1 = ∅.

Proof: Assume the contrary, i.e., assume there is some q ∈ QB ∩ Qk−1. Since
operation opk−1 is possible from SB , guard(opk−1)(d) and p −opk−1−−−→A holds for all
(d , p) ∈ SB , hence in particular q −opk−1−−−→A. Since the states in SB and Sk−1 agree
on variables in V ′ and vars(guard(opk−1)) ⊆ V ′ we also have guard(opk−1)(d ′)
holds for all (d ′, p′) ∈ Sk−1. But opk−1 is not executable in Sk−1, hence q cannot
be in Qk−1. �

Thus these two sets of states can in fact be separated (wrt. the equivalence ≡).
We have to compute a (at the best minimal) set of operations O such that adding
O to OP ′ yields the following property: ∀ q ∈ QB , p ∈ Qk−1 : q �≡OP\(OP ′∪O) p.
We only give a brute force approach to computing such a set of operations O
here (a more refined technique is the topic of future work). A simple idea is
to take every operation which is the first one on a path from a state in QB to
a state in Qk−1 (or vice versa). Thus set O to be the set of operations op ∈
OP \OP ′ such that there is some qB ∈ QB , qk−1 ∈ Qk−1 with qB −op−→ −→∗ qk−1
or qk−1 −op−→ −→∗ qB . This is certainly not a minimal set (which is to be aimed
at), but it separates the two sets.

The second rule uses the result of this procedure.

Rule 2: Let O ⊆ OP \ OP ′ be a set of operations which separate QB from
Qk−1. Then set OP ′ to OP ′ ∪O .

This guarantees separation of QB and Qk−1. We now (possibly) get operations
op in the reduced specification without having the variables they manipulate in
V ′. For the reduced specification we then simply set effectred(op) = skip (no
assignment).

The refinement step thus consists of two smaller steps. First, rule 1 is applied.
If this changes the variable set V ′ verification is repeated. When this results in
the same counterexample again rule 2 is applied. The prior application of rule
1 guarantees that rule 2 can separate the automaton states (due to Proposition
3), thus the spurious counterexample is eliminated.

The refinement step on the one hand enlarges the reduced specification and
on the other hand makes it more precise (wrt. the full specification). Thus, the

Incremental Slicing 527

refinement and the successive repetition of the verification will eventually end, in
the worst case with a slice that ordinary slicing would have computed. Giving up
exactness of slicing can however lead to much smaller slices, as has been shown
in section 2.

5 Conclusion

In this paper we have developed an incremental slicing technique transferring
the idea of abstraction refinement to slicing. The technique introduces additional
refinement steps into verification, successively making the slice more precise wrt.
to the property to be verified. We have shown that incremental slicing can help
in reducing the size of the slices. In fact, the idea of developing such a form of
slicing grew out of our experiments with slicing CSP-OZ, where it often turns
out that parts of a specification are kept in the slice although they are not
strictly necessary (only for exactness). As future work we thus plan to transfer
this technique to CSP-OZ. The main challenge for this is the adaption of the
refinement step to CSP. Another issue for future work is the improvement of
the algorithm for separating QB from Qk−1 as to compute a minimal set of
operations.

Related work. The work closest to ours is that of counterexample guided abstrac-
tion refinement (CEGAR), as used for instance in [4,2,9]. The main difference
to the work presented here lies in the fact that we employ slicing and not ab-
straction, and thus also remove operations whereas abstraction only collapses
the state space. Thus an abstraction will never have less steps than the concrete
system, though it represents an overapproximation of it. Operations are explic-
itly modelled here and are moreover first class entities like variables, which can
be kept or removed in a slice. Operations (or events) are also treated in [2] giving
a CEGAR approach for state/event-based model checking, however, there the
abstraction and the concrete system are built over the same alphabet and thus
operations are always kept.

References

1. I. Brückner and H. Wehrheim. Slicing an Integrated Formal Method for Verifica-
tion. In ICFEM 2005: Seventh International Conference on Formal Engineering
Methods, volume 3785 of LNCS, pages 360–374. Springer, 2005.

2. S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. State/event-
based software model checking. In Eerke A. Boiten, John Derrick, and Graeme
Smith, editors, IFM, volume 2999 of Lecture Notes in Computer Science, pages
128–147. Springer, 2004.

3. E. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 1999.
4. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided

abstraction refinement for symbolic model checking. JACM, 50(5):752–794, 2003.
5. E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction. In

19th ACM POPL, 1992.

528 H. Wehrheim

6. S. Edelkamp, A. Lluch-Lafuente, and S. Leue. Directed model-checking in HSF-
SPIN. In 8th International SPIN Workshop on Model Checking Software, number
2057 in Lecture Notes in Computer Science, pages 57–79. Springer, 2001.

7. C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In H. Bowman and
J. Derrick, editors, Formal Methods for Open Object-Based Distributed Systems
(FMOODS ’97), volume 2, pages 423–438. Chapman & Hall, 1997.

8. J. Hatcliff, M. Dwyer, and H. Zheng. Slicing software for model construction.
Higher-order and Symbolic Computation, 13(4):315–353, 2000.

9. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
POPL, pages 58–70, 2002.

10. C. Ip and D. Dill. Better verification through symmetry. In International Confer-
ence on Computer Hardware Description Languages, 1993.

11. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal methods in system
design, 6:1–35, 1995.

12. Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems
(Specification). Springer, 1991.

13. L. Millett and T. Teitelbaum. Issues in slicing PROMELA and its applications
to model checking, protocol understanding, and simulation. Software Tools for
Technology Transfer, 2(4):343–349, 2000.

14. D. Peled. All from one, one for all: On model checking using representatives. In
Proc. 5th Workshop on Computer Aided Verification, number 697, 1993.

15. F. Tip. A survey of program slicing techniques. Journal of programming languages,
3(3), 1995.

16. N. Shankar V. Ganesh, H. Saidi. Slicing SAL. Technical report, SRI International,
http://theory.stanford.edu/, 1999.

17. M. Weiser. Program slicing. In Proceedings of the 5th international conference on
Software engineering, pages 439–449. IEEE Press, 1981.

18. M. Weiser. Programmers use slices when debugging. Communications of the ACM,
25(7):446–452, 1982.

Assume-Guarantee Software Verification
Based on Game Semantics∗

Aleksandar Dimovski and Ranko Lazić

Department of Computer Science
University of Warwick

Coventry CV4 7AL, UK
{aleks, lazic}@dcs.warwick.ac.uk

Abstract. We show how game semantics, counterexample-guided ab-
straction refinement, assume-guarantee reasoning and the L∗ algorithm
for learning regular languages can be combined to yield a procedure for
compositional verification of safety properties of open programs. Game
semantics is used to construct accurate models of subprograms composi-
tionally. Overall model construction is avoided using assume-guarantee
reasoning and the L∗ algorithm, by learning assumptions for arbitrary
subprograms. The procedure has been implemented, and initial experi-
mental results show significant space savings.

1 Introduction

One of the most effective methods for automated software verification is model
checking [8]. A software system to be verified is modelled as a finite-state tran-
sition system and a property to be established is expressed as a temporal logic
formula. Given that the state explosion problem is particulary acute in soft-
ware model checking, the most desirable feature of this approach is scalability.
Compositional modelling and verification achieve scalability by breaking up a
larger software system in smaller systems which can be modelled and verified
independently. Hence, the properties of a program can be established from the
properties of its individually checked components without requiring to check the
whole program as an atomic “flat” entity.

Game semantics meets the first requirement for achieving scalability: composi-
tional modelling. Game semantics is denotational, i.e. defined recursively on the
syntax, therefore the model of a larger program is constructed from the models
of its subprograms, using a notion of strategy composition. The other benefits
that game semantics brings to software model checking, compared with classical
state-based approaches [6,17], are:

Modularity. There is a model for any open program, which enables verification
of program fragments which contain free variable and procedure names.

∗ We acknowledge support by the EPSRC (GR/S52759/01). The second author was
also supported by the Intel Corporation, and is also affiliated to the Mathematical
Institute, Serbian Academy of Sciences and Arts, Belgrade.

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 529–548, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

530 A. Dimovski and R. Lazić

Correctness. The generated model is fully abstract (sound and complete), i.e.,
two programs have the same models if and only if they cannot be distin-
guished with respect to operational tests (such as abnormal termination)
in any program context. This means that the model can be used to deduce
properties of programs (soundness), and moreover every observable property
of programs is captured by the model (completeness).

Efficiency. Programs are modelled by how they interact with their environ-
ments. Details of their internal state during computations are not recorded,
which results in small models with a maximum level of abstraction.

Assume-guarantee reasoning addresses the second challenge: compositional
verification. To check that a property P is satisfied by a model M composed of
two components M1 and M2, it suffices to find an assumption A such that

1. the composition of M1 and A satisfies P , and
2. M2 is a refinement of A

If such an assumption A can be found and it is significantly smaller than M2,
then we can verify whether M satisfies P (by checking 1 and 2) without having
to build the whole M .

In this paper, we describe an automatic procedure which generates assump-
tions as above using the L∗ algorithm for learning a game strategy. L∗ iteratively
learns a minimal deterministic finite automaton, which represents the unknown
strategy, from membership and equivalence queries. In each iteration, L∗ pro-
duces a candidate assumption A which is used to check 1 and 2. Depending on
results of the checks, we may conclude that the required property is satisfied,
violated in which case a witness counterexample is reported, or the current A
needs to be revised. This procedure is set within an abstraction refinement loop
which automatically extracts a game-semantic model from a data-abstracted
program and refines the program if a spurious counterexample is found.

Programs are abstracted through approximating infinite integer data types by
partitionings. Any partitioning contains a finite number of partitions, i.e. sets of
integers, which are called abstracted integers. Abstracted programs operationally
behave like their concrete counterparts, but an abstracted integer argument in
any operation is nondeterministically replaced by some concrete integer from
its set of integers (partition), and the concrete integer result is replaced by the
abstracted integer (partition) to which it belongs. As shown in [11], this is a
conservative abstraction. By quotienting over abstracted integers, the models
become finite and can be model-checked. Whenever a spurious counterexample
is found, it is used to refine the partitionings of the program, by splitting some
of their partitions.

We have implemented this approach in the GameChecker tool [12]. We re-
port some initial experimental results, which indicate significant memory savings
compared to a non assume-guarantee approach.

The paper is organized as follows. After discussing related work, Section 2
introduces the programming language we are considering. Game semantics of the
language is presented in Section 3, followed by a description of the L∗ algorithm

Assume-Guarantee Software Verification Based on Game Semantics 531

in Section 4. Details of the verification framework are given in Section 5. Finally,
we present the implementation in Section 6, and conclude in Section 7.

1.1 Related Work

Game semantics emerged in the last decade as a potent framework for modelling
programming languages [2,3,16,18]. The first applications of game-semantic mod-
els to model checking were proposed in [14,1,10]. They were then extended by
adapting the counterexample-guided abstraction refinement technique to this
setting [11]. A tool (GameChecker) based on these ideas was presented in [12].

The assume-guarantee paradigm is the best studied approach to compositional
reasoning [20]. The primary difficulty in applying this approach to realistic sys-
tems is that, in general, the appropriate assumptions have to be constructed
manually.

The work presented in this paper is motivated by a recently proposed approach
[9], which uses learning algorithms to automate assume-guarantee reasoning. In
[9], a variant of Angluin’s L∗ algorithm [5,21] for learning a regular language is
used to generate appropriate assumptions. Compared to this approach, which is
applied at the design level of a software system, our work makes the following
contributions. Firstly, we apply the method at the implementation level, and
verify safety properties of open program fragments. Secondly, while in [9] the
method is used for verifying multi-threaded programs by building models and
checking their constituting threads independently, here we apply compositional
verification on sequential programs where individually checked components can
be arbitrary subprograms of the given input program. Then, the L∗ algorithm is
adapted to the specific game semantics setting for learning a game strategy. Fi-
nally, the method is integrated with a counterexample-guided abstraction refine-
ment style loop. We thus obtain a procedure which embodies both compositional
modelling and compositional verification.

The L∗ learning algorithm has found a number applications to automatic ver-
ification. For example, adaptive model checking [15] uses learning to compute an
accurate finite state model of an unknown system starting from an approximate
model; substitutability analysis of evolving software systems [7] verifies an up-
graded software system by learning; [4] uses a symbolic implementation of the
L∗ algorithm for compositional reasoning about symbolic modules, etc.

2 The Programming Language

The language which will be considered, Abstracted Idealized Algol (AIA), is an
expressive programming language combining usual imperative features, locally-
scoped variables and call-by-name procedures. It also incorporates data abstrac-
tion annotations, which enable the writing of abstracted programs in a syntax
similar to that of concrete programs.

The data types of AIA are booleans and abstracted integers (D ::= bool | intπ).
The phrase types are expressions, variables and commands (B ::= expD | varD |
com) plus functions (T ::= B | T → T).

532 A. Dimovski and R. Lazić

The abstractions π range over computable finite partitionings of the integers
Z. Any such partitioning consists of a finite number of partitions (i.e. sets of
integers). To say that m,n ∈ Z are in the same partition of π, we write m ≈π n.
In particular, we use the following abstractions:

[] = {Z} [n,m] = {<n, {n}, {n + 1}, . . . , {0}, . . . , {m − 1}, {m}, >m}
where <n = {n ′ | n ′ < n}, >n = {n ′ | n ′ > n}. Instead of {n}, we may
write just n. Abstractions are refined by splitting abstract values: [] to [0, 0] by
splitting Z, [n,m] to [n−1,m] by splitting <n, or to [n,m +1] by splitting >m.

We write Γ � M : T to indicate that term M with free identifiers in Γ has
type T . The syntax of the language is defined by the standard typing rules for
forming and applying functions (λ x .M ,MN), augmented with rules for logic and
arithmetic (M opN), branching (if B thenM elseN), iteration (whileB doM), se-
quencing (M ; N, expressions with side effects are also allowed), assignment
(M := N), de-referencing (!M), local variable declaration (newD x := M in N),
then “do nothing” command (skip), and a command which causes abnormal
termination (abort). The typing rules can be found in [11].

The operational semantics is defined as a big-step reduction relation M , s =⇒
K, where M is a term whose free identifiers are assignable variables (i.e. of type
var), s is a state which assigns data values to the free variables, and K is a final
configuration. The final configuration can be either a pair V , s ′ with V a value
(i.e. a language constant or an abstraction λ x : T .M) and s ′ a state, or a special
error configuration E .

The reduction rules are similar to those for IA, with two differences. First,
whenever an integer value n with data type intπ participates in an operation,
any other integer n ′ can be used nondeterministically so long as n ′ ≈π n.

N1, s1 =⇒ n1, s2 N2, s2 =⇒ n2, s n ′
i ≈πi ni , n ′ ≈π n ′

1 opn ′
2

N1 opN2, s1 =⇒ n ′, s
Assignment and de-referencing have similar non-deterministic rules.

Second, the abort program with any state reduces to E , and a composite
program reduces to E if a subprogram is reduced to E .

abort, s =⇒ E M , s =⇒ E
M opN , s =⇒ E

A term M of type com is said to terminate in state s if there exists configura-
tion K such that K = E , or K = skip, s ′ for some state s ′ such that M , s =⇒ K.
M is safe iff it cannot be reduced (from any state) to E .

Term Γ � M : T approximates term Γ � N : T , denoted by Γ � M �∼ N
if and only if for all contexts C[−] : com, i.e. terms with a hole such that �
C[M] : com and � C[N] : com are well formed closed terms of type com, if C[M]
may terminate abnormally (resp. successfully) then C[N] also may terminate
abnormally (resp. successfully). If two terms approximate each other they are
considered safe-equivalent, denoted by Γ �M ∼= N .

A context is safe if it does not include occurrences of the abort command. A
term is safe if for any safe context Csafe[−] program Csafe[M] is safe; otherwise
the term is unsafe.

Assume-Guarantee Software Verification Based on Game Semantics 533

3 Game Semantics of AIA

In this section we review the fundamental concepts of game semantics for call-
by-name programming languages [3].

Game semantics is denotational semantics which models types as games, com-
putation as plays of a game, and programs as strategies for a game. In this
approach, a kind of game is played by two participants. The first, Player, repre-
sents the program under consideration, while the second, Opponent, represents
the environment (context) in which the program is used. The two take turns to
make moves, each of which is either a question (a demand for information) or
an answer (the supply of information).

We now proceed by presenting game semantics formally. A game is played in
an arena which can be thought of as a playing area setting out basic rules and
conventions for the game.

Definition 1. An arena A is a triple 〈MA, λA,�A〉 where:

– MA is a countable set of moves
– λA : MA → {O,P}×{Q,A} is a labelling function which indicates whether a

move is by Opponent(O) or Player(P), and whether it is a question(Q) or an
answer(A). We write λOP

A for the composite of λA with the left projection,
so that λ

OP
A (m) = O if λA(m) = OQ or λA(m) = OA. λ

QA
A is defined as

λA followed by the right projection in a similar way. We denote by λA the

labelling with O/P part reversed, i.e. λ
OP
A (m) = O iff λ

OP
A (m) = P.

– �A is a binary relation between MA +{∗} (∗ �∈ MA) and MA, called enabling
(if m �A n we say that m enables move n), which satisfies the following
conditions:
• Initial moves (a move enabled by ∗ is called initial) are Opponent ques-

tions, and they are not enabled by any other moves besides ∗;
• Answer moves can only be enabled by question moves;
• Two participants always enable each others moves, never their own (i.e.

an Opponent move can only enable a Player move and vice versa).

A justified sequence in arena A is a finite sequence of moves of A together
with a pointer from each non-initial move n to an earlier move m such that
m �A n. We say that n is (explicitly) justified by m. A legal play is a justified
sequence with some additional constraints: alternation (Opponent and Player
moves strictly alternate), well-bracketed condition (when an answer is given, it
is always to the most recent question which has not been answered), visibility
condition (a move to be played depends upon a certain subsequence of the play
so far, rather than on all of it), and haltness (no moves can follow an abort
move). The set of all legal plays in arena A is denoted by LA.

We say that n is hereditarily justified by a move m in a legal play s if there
is a subsequence of s starting with m and ending in n such that every move
is justified by the preceding move in it. We write s�m for the subsequence of
s containing all moves hereditarily justified by m. We similarly define s�I for

534 A. Dimovski and R. Lazić

a set I of initial moves in s to be the subsequence of s consisting of all moves
hereditarily justified by a move of I .

Definition 2. A game is a structure A = 〈MA, λA,�A,PA〉 where 〈MA, λA,�A〉
is an arena, and PA is a non-empty, prefix-closed subset of LA, called the valid
plays, such that for s ∈ PA and I a set of initial moves of s we have s�I ∈ PA.

Example 1. The simplest game is the empty game I = 〈∅, ∅, ∅, ε〉, where ε is the
empty sequence. The base types are interpreted by the following games:

M�expD� = {q, abort ,n | n ∈ D}
λ(q) = OQ, λ(n, abort) = PA

∗ ��expD� q; q ��expD� n, abort
P�expD� = {ε, q, q · abort , q · n | n ∈ D}

M�com� = {run, done, abort}
λ(run) = OQ, λ(done, abort) = PA

∗ ��com� run; run ��com� done, abort
P�com� = {ε, run, run · done, run · abort}

M�varD� = {read ,n,write(n), ok , abort | n ∈ D}
λ�varD�(read ,write(n)) = OQ, λ�varD�(n, ok , abort) = PA

∗ ��varD� read ,write(n); read ��varD� n, abort ; write(n) ��varD� ok , abort

P�varD� =
{
ε, read ,write(n), read · {n, abort},write(n) · {ok , abort} | n ∈ D

}
Thus in the game �expD�, there is an initial move q (a question: “What is the
value of the expression?”) and corresponding to it a value from D or abort 1

(an answer to the question). In the game �com�, there is an initial move run to
initiate a command, an answer move done to signal successful termination of a
command, and abort to signal abnormal termination. In the game �varD�, for
each n ∈ D there is an initial move write(n), representing an assignment. There
are two possible responses to this move: ok , which signals successful completion
of the assignment, and abort . For dereferencing, there is an initial move read , to
which Player may respond with any element of D or abort . ��

Given games A and B , we define new games A× B and A � B as follows:

MA×B = MA + MB (disjoint union)
λA×B = [λA, λB]

∗ �A×B n ⇔ ∗ �A n ∨ ∗ �B n
m �A×B n ⇔ m �A n ∨ m �B n
PA×B = PA + PB

MA�B = MA + MB

λA�B = [λA, λB]
∗ �A�B n ⇔ ∗ �B n
m �A�B n ⇔ m �A n ∨ m �B n ∨

[∗ �B m ∧ ∗ �A n]
PA�B = {s | s � A ∈ PA, s � B ∈ PB}

where s � A is the subsequence of s consisting of moves from MA. A valid play
of A × B is either a play from A or a play from B . Valid plays of A � B are
interleavings of single plays from A and B , and each such play has to begin in
B and only Player can switch between the interleaved plays.
1 Since expressions with side effect are allowed in AIA, evaluating an expression may

indeed abort.

Assume-Guarantee Software Verification Based on Game Semantics 535

Given a game A, we define the game !A as follows: M!A = MA, λ!A = λA,
�!A=�A and P!A = {s ∈ L!A | for each initial move m, s�m ∈ PA}. Hence, legal
plays of !A are interleavings of a finite number of plays from PA. Finally, the
arena A ⇒ B is defined as !A � B . From now on, we work with (well-opened)
games where initial moves can only happen at the first move.

Definition 3. A strategy σ for a game A (written as σ : A) is a prefix-closed
non-empty set of even-length plays in PA.

A strategy specifies what options Player has at any given point of a play, and
it does not restrict the Opponent moves. We say that a play in σ is complete
if either the opening question is answered, or the special move abort has been
played.

Example 2. The only strategy for the empty game I is the empty strategy
⊥= {ε}. For the game �expint�, there is the empty strategy, and one strategy in-
terpreting each natural number n, namely {ε, q ·n}. A strategy which interprets
the successor function succ : N→ N is as follows:

�expint� ⇒ �expint�

O q

P q

������������

O n
��

P n + 1

��

Here Opponent begins a play by asking for output of succ, and Player replies
asking for input. When Opponent provides input n (which can be any number
since a strategy does not restrict O moves), Player will give output (n + 1).
The above strategy can be represented as a regular language (pointers are dis-
regarded)

∑
n∈int

q · q · n · (n + 1), where suitable closure operator is applied. �

The notion of composition of strategies is central to game semantics: just as small
programs can be put together to form large ones, so strategies can be composed
to form new strategies. Strategies compose in a way which is reminiscent of the
two stage process of “parallel composition plus hiding” in CSP [22].

Given a strategy σ : A⇒ B , we define its promotion σ† : !A � !B , which can
play several interleaved copies of σ, by:

σ† = {s ∈ L!A�!B | for all initialm, s�m ∈ σ}

Let σ : A ⇒ B and τ : B ⇒ C are two strategies. Then the composition
σ o

9 τ : A⇒ C is defined as σ†; τ , where ; is linear composition of strategies.
Given strategies σ : A � B and τ : B � C , the linear composition σ; τ :

A � C is defined in the following way. For a sequence u of moves from games
A, B , C with justification pointers, we define u � B ,C to be the subsequence of
u consisting of all moves from B and C (if a pointer from one of these points

536 A. Dimovski and R. Lazić

to a move of A, delete that pointer). Similarly define u � A,B . We say that u is
an interaction sequence of A, B , C if u � A,B ∈ PA�B and u � B ,C ∈ PB�C .
The set of all such sequences is written as int(A,B ,C).

The parallel composition is defined by

σ ‖ τ = {u ∈ int(A,B ,C) | u � A,B ∈ σ, u � B ,C ∈ τ}

So σ ‖ τ consists of sequences generated by playing σ and τ in parallel, making
them synchronize on moves in B .

Suppose u ∈ int(A,B ,C). Define u � A,C to be the subsequence of u con-
sisting of all moves from A and C , but where there was a pointer from a move
mA ∈ MA to an initial move m ∈ IB extend the pointer to the initial move in C
which was pointed to from m. Thus, we complete the definition of composition
by hiding the interaction between σ and τ in B .

σ; τ = {u � A,C | u ∈ σ ‖ τ}

The identity strategy idA : A⇒ A for a game A is defined by

{s ∈ PA⇒A | ∀ s ′ (even s . s ′ � Al = s ′ � Ar}

where we use the l and r tags to distinguish between the two occurrences of A
and s ′ (even s means that s ′ is an even-length prefix of s . So, in any identity
strategy idA, a move by Opponent in either occurrence of A is immediately
copied by Player to the other occurrence.

A term Γ � M : T , where Γ = x1 : T1, . . . , xn : Tn , is interpreted by a
strategy �Γ � M : T � for the game:

�Γ � T � = �T1�× . . .× �Tn�⇒ �T �

Language constants and constructs are interpreted by strategies and com-
pound terms are modelled by composition of the strategies that interpret their
constituents. For example, some of the strategies [16] are: �n : expint� = {ε, q ·n},
�skip : com� = {ε, run · done}, �abort : com� = {ε, run · abort}, free identifiers are
interpreted by identity strategies, etc.

Using standard game-semantic techniques, it has been shown in [11] that this
model is fully abstract for AIA.

Theorem 1 (Full abstraction). For any terms Γ � M ,N : T, we have Γ �
M ∼= N iff �Γ � M : T � = �Γ � N : T �.

We say that a play is safe if it does not terminate in abort, and a strategy if
it consists only of safe plays; otherwise, we will call plays and strategies unsafe.
From the full abstraction result, it follows that:

Corollary 1 (Safety). Γ � M : T is safe iff �Γ �M : T � is safe.

This result ensures that, for any term, model-checking its strategy for safety
(i.e. for unreachability of the abort move) is equivalent to proving the safety of
a term.

Assume-Guarantee Software Verification Based on Game Semantics 537

In the rest of the paper, we work with the 2nd-order recursion-free fragment
of AIA (i.e., AIA2). The 2nd-order restriction means that the function types are
restricted to T ::= B | B → T . Also, without loss of generality, we only consider
terms in β-normal form. For this language fragment, terms define strategies for
which justification pointers are uniquely determined by plays, and they can be
disregarded. Thus, it has been shown in [11] that:

Proposition 1. For any finitely abstracted AIA2 term Γ � M : T, the strategy
�Γ � M : T � is a regular language.

Example 3. Consider the term 2

f : com→ com � newint x := 0 in
f (x := x + 1) ;
if (x == 0) then abort;

in which x is a local block-allocated variable and f is a non-local (safe) procedure.
The procedure-call mechanism is by-name, so every call to the first argument of
f increments x .

The strategy interpreting this term is shown in Fig 1, where dashed edges
indicate moves of the Opponent and solid edges moves of the Player. Accept-
ing states are designated by an interior circle. The states whose interior circles
are filled in, correspond to complete plays in the strategy. We use subscripts to
indicate the component of the context (�Γ �), i.e. the free identifier, to which a
move belongs to. For example, the subscript ‘f , 1’ denotes that a move corre-
sponds to the first argument of the procedure f . The model illustrates only the
possible behaviors of this term: if the non-local procedure f does not evaluate
its argument at all then the term terminates abnormally; otherwise if f calls its
argument, one or more times, then the term terminates successfully. Notice that
no references to the variable x appear in the model because it is locally defined
and so not visible from the outside of the term. ��

runf,1

donef,1

run runf

donef

done

abort

runf,1

donef,1 donef

Fig. 1. A strategy as a finite automaton

Definition 4. If σ and τ are strategies for a game A, we define a binary rela-
tion, refinement, ≤ as: σ ≤ τ ⇔ σ ⊆ τ

2 This is actually an IA2 term since no data-abstractions are applied to x .

538 A. Dimovski and R. Lazić

4 The Learning Algorithm

Central to our compositional verification procedure is an algorithm for learning
strategies, which can be represented as regular languages (see Proposition 1).
The algorithm is an adaptation of the L∗ algorithm introduced by Angluin [5]
which learns an unknown regular language. Since L∗ needs to learn strategies,
the adaptation will consider only non-empty prefix-closed sets of even-length
sequences (words) in which Opponent and Player moves alternate, thus achieving
greater efficiency.

Let A = 〈MA, λA,�A,PA〉 be a game. Let OA = {m ∈ MA | λOP
A (m) = O}

and PA = {m ∈ MA | λOP
A (m) = P} denote the sets of Opponent and Player

moves in A, respectively. Since λA is a total function, {OA,PA} is a partition of
MA. Given that the sequences from a strategy for a game A are valid and satisfy
the alternation condition, it follows that they are sequences from (OAPA)∗.

Let σ be an unknown strategy for a game A. L∗ iteratively learns the structure
of σ using assistance from a Teacher who can answer two kinds of questions about
σ:

Membership query. Given a sequence s from (OAPA)∗, the Teacher answers
true if s ∈ σ, and false otherwise.

Equivalence query. Given a DFA (Deterministic Finite Automaton) D , the
Teacher replies that D is either correct, when L(D) = σ, or incorrect, and in
the latter case gives a counterexample which is a sequence in the symmetric
difference of L(D) and σ.

The basic data structure of the L∗ algorithm is a two-dimensional table, called
observation table (S ,E ,T), which keeps information about a finite collection of
sequences over (OAPA)∗, classified as members or non-members of σ. S is a
prefix-closed set of even-length sequences, E ⊆ (OAPA)∗ is a suffix-closed set
of even-length sequences, and T is a function mapping (S ∪ S · OAPA) · E →
{true, false}, such that:

∀ s ∈ S ∪ S · OAPA. ∀ e ∈ E : T (s , e) = true ⇔ s · e ∈ σ

The rows of the table are the elements of (S ∪ S ·OAPA), while the columns
are the elements of E . Finally T denotes the table entries.

Let us define a function row(s) for any s ∈ S ∪ S ·OAPA as follows:

∀ e ∈ E : row(s)(e) = T (s , e)

A table is closed if for each s ·mOmP ∈ S ·OAPA such that T (s , ε) = true, there
is some s ′ ∈ S such that row(s ′) = row(s ·mOmP). A table is consistent if for
each s , s ′ ∈ S such that row(s) = row(s ′), either T (s , ε) = T (s ′, ε) = false, or
for each mOmP ∈ OAPA, we have that row(s ·mOmP) = row(s ′ ·mOmP).

We define an equivalence relation ≡ over sequences in S ∪ S ·OAPA such that
s ≡ s ′ iff row(s) = row(s ′). Denote by [s] the equivalence class which includes
s . Given a closed and consistent table (S ,E ,T), L∗ constructs a candidate DFA

Assume-Guarantee Software Verification Based on Game Semantics 539

D = (Q , q0,OAPA, δ) as follows: Q = {[s] | s ∈ S ,T (s , ε) = true}, q0 = [ε], and
for every s ∈ S and mOmP ∈ OAPA, the transition from [s] on input mOmP

is enabled iff T (s ·mOmP , ε) = true and then δ([s],mOmP) = [s ·mOmP]. The
facts that the table is closed and consistent guarantee that the transition relation
is well-defined. All states in the automaton are accepting, since the language we
learn is prefix closed. Note that every transition in this automaton is labelled by
two-letters sequence: an Opponent and a Player move.

let L∗(S ,E) be
repeat :

Update T using queries
while (S ,E ,T) is not consistent or not closed do

if (S ,E ,T) is not consistant then
find s ∈ S , mOmP ∈ OAPA, e ∈ E :

row(s) = row(s ′) and T (s ·mOmP , e) �= T (s ′ ·mOmP , e)
E = E ∪ {mOmP · e}
Update T using queries

if (S ,E ,T) is not closed then
find s ∈ S , mOmP ∈ OAPA

s ·mOmP �∈ [t], for all t ∈ S
S = S ∪ {s ·mOmP}
Update T using queries

D = MakeAutomaton(S ,E ,T)
if D is correct then

return D
else

let c be reported counterexample
foreach (s ∈ even prefix(c) and s �∈ S) S = S ∪ {s}

Fig. 2. L∗ algorithm

Fig. 2 contains the L∗ algorithm. Each iteration of this algorithm starts with
either a table with S = E = {ε}, or a table which was prepared in the previous
step. Then T is updated using membership queries until the table is consistent
and closed. Next a candidate automaton D is proposed and an equivalence query
with D is made. If the answer for the equivalence query is true, L∗ terminates
and returns the automaton D . Otherwise, L∗ analyzes the counterexample c
reported by the Teacher and adds all even-length prefixes of c to S . Then, a new
iteration is started.

L∗ is guaranteed to construct a minimal DFA equivalent to the unknown
strategy using at most n−1 equivalence queries where n is the number of states
in the minimal DFA, and in time polynomial in n and the length of the longest
counterexample provided by the Teacher.

Each new call to L∗ starts normally with S = E = {ε}. But in cases where a
previously learned candidate exists, we want to start the algorithm by reusing
the information proposed in the previous table. Thus with this dynamic version

540 A. Dimovski and R. Lazić

of L∗, we try to speed up the learning by reusing the previously inferred sets S
and E for strategy σ, to learn a new modified strategy σ′ which differs slightly
from σ. We apply this optimisation using the fact that if L∗ starts with any non-
empty valid table (i.e. valid function T) then it will terminate with a correct
result [7]. A table is said to be valid if the answers to the membership queries
for all sequences in the table are correct with respect to the unknown language
which is learned by L∗.

We can apply some further optimizations to the L∗ algorithm specific for the
languages we learn. Since the sequences from an strategy are valid plays, we test
for membership only valid plays. All other sequences are certainly not in the
strategy, and they are marked as false without any checks. Then, a prefix closed
language has the property that extensions of rejected sequences are rejected, i.e.,
if s �∈ σ, then no extension of s is in σ. Therefore, since the language we learn is
prefix closed, before any membership query s ∈ σ, we first test whether it is an
extension of a sequence already observed to be rejected. If so, we add the result
immediately to the table.

5 Compositional Verification

In this section we describe in detail the compositional verification procedure
which combines assume-guarantee reasoning and abstraction refinement.

5.1 Overview

We first examine how the game semantics of β-normal AIA2 terms Γ � M : B
is obtained. Since terms are interpreted recursively over the typing rules, con-
sider a derivation tree of such a term Γ � M : B . At the leaves, we have base
subterms, which are language constants and free identifiers, and are interpreted
by appropriate constant and identity strategies. At each node, there is a sub-
term obtained by a language construct c from some children subterms M1, . . . ,
Mn . Then, c(M1, . . . ,Mn) is interpreted by composing the interpretations of the
subterms and of the construct σc:

�c(M1, . . . ,Mn)� = (�M1�, . . . , �Mn�) o
9 σc = (�M1�

†, . . . , �Mn�†) ; σc

We also note that † is applied only to strategies σ for games of the form
�Γ � ⇒ �B ′�, where B ′ are base types. The games �B ′� are flat, i.e. all their
questions are initial and Player moves can only be answers. So σ† consists of
iterated plays of σ, such that a new play of σ can be started only when the
previous one is completed. Basically, σ† contains plays of the form s1 . . . sk sk+1
where each si is a play of σ and s1, . . . , sk are complete. That is a regular
language operation.

Now, for any strategies σ1, . . . , σn and τ , we have
(
(σ†

1, . . . , σ
†
n) ; τ

)† =
(σ†

1, . . . , σ
†
n) ; τ† [3]. By thus distributing † over ; , we conclude that the game

semantics of Γ � M : B can be obtained by repeatedly applying ; to promoted

Assume-Guarantee Software Verification Based on Game Semantics 541

strategies for base subterms and language constructs. In other words, † does not
need to be applied to any composite strategy.

By the same argument, if Γ ′ � N : B ′ is a subterm of Γ � M : B , the game
semantics of Γ � M : B is given by:

�Γ � M [N] : B� = �Γ � M [−] : B�(�Γ ′ � N : B ′�†)

where �Γ � M [−] : B�(σ) is an operator on regular languages, which is obtained
from the game semantic definitions for Γ � M : B by replacing the promoted
interpretation of the subterm Γ ′ � N : B ′ by σ, and in which only ; is applied
to languages obtained from σ.

To check safety of �Γ � M [N] : B�, we use the concept of assume-guarantee
(AG) reasoning. We define an assumption for a game A as a prefix-closed non-
empty set of even-length sequences from (OAPA)∗.

Let σ be an assumption for �Γ ′�⇒ !�B ′�. We use the following AG rule:

�Γ � M [−] : B�(σ) is SAFE
�Γ ′ � N : B ′�† ≤ σ

�Γ � M [N] : B� is SAFE

The rule states that if there is an assumption σ for �Γ ′� ⇒ !�B ′�, such that
�Γ � M [−] : B�(σ) is safe and σ is an abstraction of �Γ ′ � N : B ′�†, then
�Γ � M [N] : B� is safe. Our goal is to construct such an assumption σ.

Theorem 2. The AG rule is sound and complete.

Proof. By monotonicity of composition of strategies with respect to the ≤ or-
dering, we have that if σ ≤ σ′ then �Γ � M [−] : B�(σ) ≤ �Γ � M [−] : B�(σ′).
To establish soundness, we use the fact that if σ′ is safe and σ ≤ σ′ then σ is
also safe. Completeness follows by taking σ = �Γ ′ � N : B ′�†. ��

For any operator �Γ � M [−] : B�, where the hole − is in the place of a subterm
of type Γ ′ � B ′, we define the weakest safe strategy σW : �Γ ′�⇒!�B ′� as follows.
Given an even-length play s of �Γ ′�⇒!�B ′�, let τs be the strategy consisting of
s and all its even-length prefixes. Let σW consist of all s such that �Γ � M [−] :
B�(τs) is safe.

Proposition 2. For any AIA2 term with a hole Γ � M [−] : B, σW is a regular
language.

By the definitions of �Γ � M [−] : B� and ; , we have that, for any strategy
σ : �Γ ′�⇒!�B ′�,

�Γ � M [−] : B�(σ) =
⋃
{�Γ � M [−] : B�(τs) | s ∈ σ}

Hence, �Γ � M [−] : B�(σ) is safe if and only σ ≤ σW . For this strategy σW , the
AG rule is guaranteed to return conclusive results: either the resulting term is
safe or unsafe, and in the latter case a counterexample is reported. We use the
L∗ algorithm to learn σW .

542 A. Dimovski and R. Lazić

The verification procedure CompVer which uses the AG rule is presented
in Fig. 3. Given two terms Γ � M [−] : B and Γ ′ � N : B ′, it checks safety
of Γ � M [N] : B . The procedure uses an AGCheck algorithm, and iteratively
performs the following steps:

1. Let �Γ1 � M1[−] : B1� and �Γ ′
1 � N1 : B ′

1� be obtained by data abstraction,
and S 1

1 = E1
1 = {ε}.

2. Apply AGCheck on �Γi � Mi [−] : Bi� and �Γ ′
i � Ni : B ′

i �, using S 1
i and

E1
i . If the result is true, then terminate with answer SAFE. Otherwise, a

counterexample c is returned as well as updated values of S k
i and E k

i .
3. If c is a nondeterministic (i.e. spurious) play, obtain �Γi+1 � Mi+1[−] : Bi+1�

and �Γ ′
i+1 � Ni+1 : B ′

i+1� by refining the abstractions in the current terms
which were involved in causing the nondeterminism in c. Set S 1

i+1 = S k
i and

E1
i+1 = E k

i
3, and repeat from 2.

4. Otherwise, c is deterministic (i.e. genuine) and the procedure terminates with
answer UNSAFE.

L*

(S E ,T)i

k k k
, i i

� � ��� []- � ����’ ’�

[]� �i i� []- []�� i�’i

Data Abstraction

AGCheck

Assump �i
k
[]� � �i i� []-)(i

k
SAFE ?

[]� � �� i i
k

?�’i
�

true

false c

true

SAFE

[]� �i i� []- ()	c SAFE ?
false c

true

false c’
c’ is genuine?

UNSAFEtrue

Refinement
i:=i+1

S =S , E =E

k:=1

1 k 1 k

i i i i

false

Fig. 3. The compositional verification procedure CompVer

We say that a play is nondeterministic if it contains a special marker move nd ,
which identifies points in plays at which abstraction gives rise to nondeterminism.
This happens when an arithmetic/logic operation produces more than one result.
3 If some sequences in S k

i (E k
i) contain abstract values whose abstractions are refined,

we replace them with sequences which are compatible with newly refined abstrac-
tions.

Assume-Guarantee Software Verification Based on Game Semantics 543

We continue by describing the AGCheck algorithm. Details of the data ab-
straction procedure and the abstraction refinement process are beyond the scope
of this paper and can be found in [11].

5.2 Assume-Guarantee Algorithm

The AGCheck algorithm takes as inputs �Γi � Mi [−] : Bi� and �Γ ′
i � Ni : B ′

i � as
well as S 1

i and E1
i , and returns as answer true or a counterexample. AGCheck is

actually the L∗ algorithm given in Fig. 2, where the membership and equivalence
queries are answered using model checking. AGCheck proceeds as follows:

1. Generate a candidate assumption σk
i using L∗.

2. If �Γi � Mi [−] : Bi�(σk
i) is not safe, then return a counterexample to the L∗

algorithm, set k := k + 1 and repeat from 1.
3. If �Γ ′

i � Ni : B ′
i �

† ≤ σk
i is true, terminate with answer true.

4. Otherwise, among the even-length counterexamples from �Γ ′
i � Ni : B ′

i �
†,

report a deterministic one, c. If such one does not exist, then report a non-
deterministic one, c.

5. Generate a strategy τc from the sequence c which contains c and all its even-
length prefixes. If �Γi � Mi [−] : Bi�(τc) is safe, then report c to L∗, set
k := k + 1 and repeat from 1.

6 Otherwise, terminate reporting a deterministic counterexample c′. If such one
does not exist, report a nondeterministic play c′.

If in Step 2 a counterexample c is returned to L∗, then c ∈ σk
i \σW , i.e. the

current assumption σk
i is too weak and it has to be strengthened by removing

some sequences from it. Similarly, if in Step 5 a counterexample c is reported
to L∗, then c ∈ σW \σk

i , i.e. the current σk
i must be weakened by adding some

sequences.
In the above procedure, L∗ iteratively learns the strategy σW , but the proce-

dure terminates as soon as conclusive results are obtained. This is often before
the weakest safe strategy σW is computed by L∗. The Teacher which interacts
with L∗ is implemented using model checking. To answer a membership query
for a sequence s , the Teacher first builds a strategy τs = {s ′ | s ′ (even s}. The
Teacher then model checks �Γ � M [−]�(τs) for safety. If true is returned, then
s ∈ σW and the Teacher answers true, otherwise it answers false. An equiva-
lence query is answered by model-checking two premises of the AG rule in Steps
2 and 3. If both checks succeed, then the answer is true, otherwise either a
counterexample is reported to L∗ or an unsafe counterexample is found.

Theorem 3. Given �Γi � Mi [−] : Bi� and �Γ ′
i � Ni : B ′

i �, the AGCheck
algorithm terminates with either true or an unsafe play from �Γi � Mi [Ni] : Bi�.

Proof. The algorithm returns true when both premises of the AG rule return
true, and therefore correctness is guaranteed by the AG rule. An unsafe play
is returned when there is a sequence s of (�Γ ′

i � Ni�)† which, when applied to
�Γi � Mi [−]� produces an unsafe play, which implies that �Γi � Mi [Ni] : Bi� is
not safe.

544 A. Dimovski and R. Lazić

(b)

ndrun run
� done

�

done

abortreadx Zx ; ; cell� x,0

(a)

run
runf,1

done

donef

runf

readx

donef,1

writeZxZx okx

Fig. 4. Strategies at AR iteration 1: (a) �f (M [−]�(σ) (b) �f , x (f (x := x + 1)�

Termination of AGCheck algorithm is implied by the termination of the L∗

algorithm. At any iteration, AGCheck either terminates or provides a coun-
terexample to L∗. Thus, L∗ will eventually produce σW at some iteration and
the algorithm will return conclusive results and terminate. ��
Theorem 4. If CompVer terminates, its answer is correct.

Proof. This follows from the correctness of the abstraction refinement procedure,
which was shown in [11], and Theorem 3. ��

5.3 Example

Consider the term
f : com→ com � newint x := 0 in

f (x := x + 1) ;
if (x == 0) then abort;

in which x is a local variable, and f is a non-local (safe) function. We want to
check whether this term is safe from terminating abnormally for all safe instan-
tiations of f . The program is not safe if function f does not use its argument at
all.

We start with applying the coarsest abstraction [] to x , which means that x
can only have the value Z (i.e. a nondeterministic choice over all integers).

Let the arbitrary subterm N be f (x := x + 1). The model of the whole term
is obtained by composing the model for the scope of variable declaration with
the strategy cellx ,0, which is used for remembering the initial (0) or the most
recently written value into the variable x . This strategy ensures “good variable”
behavior of x .

In Fig. 4 are shown the models �f �M [−]�(σ) and �f , x � f (x := x + 1)� at
the first Abstraction Refinement iteration. The nd move 4 in the first strategy
4 It is neither Opponent nor Player, but a special marker move.

Assume-Guarantee Software Verification Based on Game Semantics 545

T 1
1 E1

1

ε

ε true
S1

1 run · done false
run · done false
run · readx true

S1 · OAPA run · writeZx true
run · runf true

run readx

run runf

run writeZx

Fig. 5. Observation table and assumption at AR iteration 1

; ; cell� x,0

(a)

run run
� done

�

done

abort

readx

0x

(>0)x

(<0)x

(b)

done

run
runf,1

donef

runf

readx

donef,1

write>0x

0x

okx

(>0)x

(<0)x

nd

write0x

write<0x

Fig. 6. Strategies at AR iteration 2: (a) �f (M [−]�(σ) (b) �f , x (f (x := x + 1)�

run readx

run runf

run {write>0 ,write0 ,write<0 }x xx

Fig. 7. Assumption at AR iteration 2

marks that nondeterminism has occurred due to abstraction. In this case, the
guard of ‘if’ command has been evaluated nondeterministically to true or false,
since the value of x might be any integer.

546 A. Dimovski and R. Lazić

At each iteration, L∗ updates its observation table and constructs a candidate
assumption whenever the table becomes consistent and closed. The first such
table produced and its associated assumption are given in Fig. 5. Note that in
observation tables we list only sequences from S · OAPA which are valid plays,
and all other sequences are false by default. The equivalence query is then asked.
The second AG premise fails and the Teacher returns a negative answer with a
counterexample s = 〈run · runf · donef · done〉, which is not safe when applied to
�f � M [−]�. Thus, AGCheck reports s ′ = 〈run · runf · donef · nd · abort〉. Since
this play is nondeterministic, our procedure decides to refine abstractions that
caused the nondeterminism in s ′ and to continue. In this case, the abstraction
of x is refined to [0, 0], which contains three possible values: < 0, 0 and > 0.

At the second abstraction refinement iteration, the strategies �f � M [−]�(σ)
and �f , x � f (x := x + 1)� are given in Fig. 6.

Since we use a dynamic version of L∗, it starts with an observation table
where S 1

2 and E1
2 are the same as in the previous table T 1

1 . The next candidate
assumption is shown in Fig. 7. The second AG rule premise fails giving s =
〈run · runf · donef · done〉. Now, AGCheck reports a genuine counterexample
s ′ = 〈run · runf · donef · abort〉, and the procedure terminates informing that the
input term is not safe.

6 Implementation

We implemented the compositional verification procedure in the GameChecker
tool [12]. GameChecker compiles an abstracted open program into a process
in the CSP process algebra (e.g. [22]), whose finite traces set represents the
game-semantic model of the program. Membership and equivalence queries are
answered using the FDR refinement checker [13]. If a counterexample is reported
by the procedure, GameChecker is used to analyse the counterexample and
do abstraction refinement.

Consider the following implementation of a stack of maximum size n (a meta
variable). After implementing the stack by a sequence of local declarations, we
export the functions push(x) and pop by calling ANALYSE with arguments
push(p) and pop. In effect, the model contains all interleavings of calls to push(p)
and pop, corresponding to all possible behaviours of the non-local expression p
and non-local function ANALYSE.

empty : com, overflow : com, p : exp int,
ANALYSE(com, exp int) : com �
new int buffer[n] := 0 in new int top := 0 in
let com push(int x) {

if (top == n) then overflow else {buffer[top] := x ; top := top + 1}} in
let exp int pop {

if (top == 0) then empty else {top := top− 1; return buffer[top + 1]}} in
ANALYSE(push(p), pop)

Assume-Guarantee Software Verification Based on Game Semantics 547

Table 1. Experimental results for checking a stack implementation

empty overflow
n Direct AG Direct AG
3 271 107 286 147

10 306 135 937 441
15 331 155 1462 651
25 381 195 2662 1071

By replacing the free identifier empty (resp. overflow) with the abort command,
we can check the safety property that there are no reads from empty stacks (resp.
writes to full stacks). Both errors are present for any n. For the ‘empty’ error,
a genuine counterexample is reported after refining the abstraction of top to
[0, 0]. For the ‘overflow’ error, the abstraction is [0,n]. The counterexamples
correspond to a single call of the pop method (resp. n + 1 consecutive calls of
the push method) after which abort is executed. We applied the AG procedure
by learning an appropriate assumption for the push (resp. pop) method. In both
cases, we obtain conclusive assumptions with 0 states, since counterexamples are
reported for all valid plays of the subterms we learn.

Table 1 contains the experimental results for checking the two properties
by using the AG procedure and the direct verification procedure without AG
reasoning [12]. We list the size of the largest generated transition system in each
case for different values of n.

7 Conclusion

This paper presents a fully compositional approach for verifying safety proper-
ties of open programs. Game semantics is used for compositional modelling of
programs and an automated assume-guarantee procedure with learning is used
for compositional verification.

Important topics for future work are extending data abstractions to arbitrary
predicates, dealing with concurrent programs, and using assume-guarantee rea-
soning for verifying liveness properties.

References

1. S. Abramsky, D. R. Ghica, A. S. Murawski, and C.-H. L. Ong. Applying Game
Semantics to Compositional Software Modeling and Verification. In Proceedings
of TACAS, LNCS 2988, (2004), 421–435.

2. S. Abramsky, R. Jagadeesan, and P. Malacaria. Full Abstraction for PCF. Infor-
mation and Computation, 163(2), (2000).

3. S. Abramsky and G. McCusker. Linearity, sharing and state: a fully abstract
game semantics for Idealized Algol with active expressions. In P.W.O’Hearn and
R.D.Tennent, editors, Algol-like languages. (Birkhaüser, 1997).

4. R. Alur, P. Madhusudan, and W. Nam. Symbolic Compositional Verification by
Learning Assumptions. In Proceedings of CAV, LNCS 3576, (2005), 548–562.

548 A. Dimovski and R. Lazić

5. D. Angluin. Learning Regular Sets from Queries and Counterexamples. Informa-
tion and Computation, 75(2), (1987), 87–106.

6. T. Ball and S. K. Rajamani. Automatically Validating Temporal Safety Properties
of Interfaces. In Proceedings of SPIN, LNCS 2057, (2001), 103–122.

7. S. Chaki, E. Clarke, N. Sharygina, and N. Sinha. Dynamic Component Sub-
stiutability Analysis. In Proceedings of FM, LNCS 3582, (2005), 512–528.

8. E.M. Clarke, O. Grumberg and D. Peled, Model Checking. (MIT Press, 2000).
9. J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning Assumptions

for Compositional Verification. In Proceedings of TACAS, LNCS 2619, (2003),
331–346.

10. A. Dimovski and R. Lazic. CSP Representation of Game Semantics for Second-
Order Idealized Algol. In Proceedings of ICFEM, LNCS 3308, (2004), 146–161.

11. A. Dimovski, D. R. Ghica, and R. Lazic. Data-Abstraction Refinement: A Game
Semantic Approach. In Proceedings of SAS, LNCS 3672, (2005), 102–117.

12. A. Dimovski, D. R. Ghica, and R. Lazic. A Counterexample-Guided Refinement
Tool for Open Procedural Programs. In Proceedings of SPIN, LNCS 3925, (2006).

13. Formal Systems (Europe) Ltd (http://www.fsel.com), Failures-Divergence Refine-
ment: FDR2 Manual, 2000.

14. D. R. Ghica and G. McCusker. The Regular-Language Semantics of Second-order
Idealized Algol. Theoretical Computer Science 309 (1–3), (2003), 469–502.

15. A. Groce, D. Peled, and M. Yannakakis. Adaptive Model Checking. In Proceedings
of TACAS, LNCS 2280, (2002), 357–370.

16. R. Harmer. Games and Full Abstraction for Nondeterministic Languages. PhD
thesis, Imperial College, 1999.

17. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software Verification with
BLAST. In Proceedings of SPIN, LNCS 2648, (2003), 235–239.

18. J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for PCF: I, II, and III.
Information and Computation 163, (2000), 285–400.

19. J. Laird. A Fully Abstract Game Semantics of Local Exceptions. In Proceedings
of LICS, (2001), 105–114.

20. A. Pnueli. In Transition from Global to Modular Temporal Reasoning about Pro-
grams. Logic and Models of Concurrent Systems 13, (1984), 123–144.

21. R.L. Rivest and R.E. Schapire. Inference of finite automata using homing se-
quences. Information and Computation, 103(2), (1993), 299–347.

22. A. W. Roscoe. Theory and Practice of Concurrency. (Prentice-Hall, 1998).

Optimized Execution of Deterministic Blocks
in Java PathFinder

Marcelo d’Amorim, Ahmed Sobeih, and Darko Marinov

Department of Computer Science
University of Illinois at Urbana-Champaign

201 N. Goodwin Ave., Urbana IL, 61801 USA
{damorim, sobeih, marinov}@cs.uiuc.edu

Abstract. Java PathFinder (JPF) is an explicit-state model checker for Java pro-
grams. It explores all executions that a given program can have due to different
thread interleavings and nondeterministic choices. JPF implements a backtrack-
ing Java Virtual Machine (JVM) that executes Java bytecodes using a special
representation of JVM states. This special representation enables JPF to quickly
store, restore, and compare states; it is crucial for making the overall state ex-
ploration efficient. However, this special representation creates overhead for each
execution, even execution of deterministic blocks that have no thread interleav-
ings or nondeterministic choices.

We propose mixed execution, a technique that reduces execution time of de-
terministic blocks in JPF. JPF is written in Java as a special JVM that runs on top
of a regular, host JVM. Mixed execution works by translating the state between
the special JPF representation and the host JVM representation. We also present
lazy translation, an optimization that speeds up mixed execution by translating
only the parts of the state that a specific execution dynamically depends on. We
evaluate mixed execution on six programs that use JPF for generating tests for
data structures and on one case study for verifying a network protocol. The re-
sults show that mixed execution can improve the overall time for state exploration
up to 36.98%, while improving the execution time of deterministic blocks up to
69.15%. Although we present mixed execution in the context of JPF and Java, it
generalizes to any model checker that uses a special state representation.

1 Introduction

Software model checking [3, 6, 12, 27, 19, 32] is a promising approach for increasing
the reliability of programs. The goal of model checking is to explore the program’s
state space to find property violations or confirm absence of violations. While “state-
space explosion” is the key issue in model checking, time efficiency is also an important
problem. Several recent model checking tools—including AsmLT [12], BogorVM [27],
JPF [19], and SpecExplorer [32]—make the trade-off to speed up the overall state ex-
ploration by slowing down a straight-line execution. This work focuses on speeding up
the straight-line execution.

We present our approach in the context of the Java PathFinder (JPF) [33, 19], an
explicit-state model checker for Java programs. JPF takes as input a Java program and
an optional bound on the length of program execution. JPF explores all executions (up

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 549–567, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

550 M. d’Amorim, A. Sobeih, and D. Marinov

to the given bound) that the program can have due to different thread interleavings and
nondeterministic choices. JPF can generate as output those executions that violate a
given (temporal) property, for example violate an assertion or lead to a deadlock. JPF
can also generate as output test inputs for the given program [34, 35].

JPF is implemented in Java as a special Java Virtual Machine (JVM) that runs on
top of the host JVM. The main difference between JPF and a regular JVM is that JPF
can (quickly) backtrack the program execution by restoring any state previously en-
countered during the execution. Backtracking allows exploration of different executions
from the same state. To achieve fast backtracking, JPF uses a special representation of
states and executes program bytecodes by modifying this representation. The special
state representation makes the overall exploration of all different executions efficient,
although it makes each single execution inefficient compared to a regular JVM. An al-
ternative to using special state representation is using the native state representation of
the host JVM throughout model checking; however, while native representation makes
each single execution efficient, it can slow down the overall exploration.

We propose mixed execution, a technique that can reduce execution time in JPF.
The main idea of mixed execution is to execute some parts of the program not on JPF
but directly on the host JVM. With mixed execution, JPF still as usual executes the
other parts of the program and stores, restores, and compares the states. Mixed exe-
cution executes on the host JVM only deterministic blocks, i.e., parts of the execution
that have no thread interleavings or nondeterministic choices. To achieve this, mixed
execution translates the state from JPF to JVM at the beginning of a block and from
JVM to JPF at the end of a block. These two translations introduce an overhead, but
the speedup obtained by executing on the host JVM can easily outweigh the slowdown
due to the translations. Although we present mixed execution in the context of JPF,
our main idea—executing parts of model checking on different state representations—
generalizes to all other model checkers—including AsmLT [12], BogorVM [27], and
SpecExplorer [32]—that use some special state representation; these checkers do not
need to be for Java or even based on virtual machines.

We have implemented mixed execution by modifying the source code of JPF. Our
implementation uses, in a novel way, a mechanism that already exists in JPF; to quote
from the JPF manual [19]:

Host VM Execution - JPF is a JVM that is written in Java, i.e. it runs on top
of a host VM. For components that are not property-relevant, it makes sense to
delegate the execution from the state-tracked JPF into the non-state tracked host
VM. The corresponding Model Java Interface (MJI) mechanism is especially
suitable to handle IO simulaion [sic] and other standard library functionality.

MJI is an API that allows the host JVM to manipulate JPF state. The novelty of mixed
execution is the use of MJI to delegate the execution from the state-tracked JPF into
the non-state tracked host JVM even for components that are property-relevant. Indeed,
mixed execution executes on the host JVM some program code that can modify the
program state and thus affect a property, for example assertion violation. For example,
we use our technique in the execution of property-relevant fragments during the model
checking of a network protocol. In contrast, the previous use of MJI in JPF did not

Optimized Execution of Deterministic Blocks in Java PathFinder 551

execute such program code on JVM and did not translate the state between JPF and
JVM representations.

We also present lazy translation, an optimization that speeds up mixed execution by
translating only the parts of the state that an execution dynamically depends on. The
basic, eager mixed execution always translates from JPF to JVM the entire state reach-
able from a set of roots at the beginning of a deterministic block. (Note that even this
state can be a tiny part of the entire JVM state.) Effectively, the eager mixed execu-
tion translates the entire state that any execution of the deterministic block may read or
write. In contrast, lazy translation starts the execution without translation and then, dur-
ing the execution, translates on demand those state parts that the specific execution does
read or write. As a result, lazy mixed execution performs less translation and can speed
up the eager mixed execution. We have implemented lazy translation by providing an
instrumentation for the classes executed on the host JVM.

We evaluate mixed execution and lazy translation on six subject programs that use
JPF to generate tests for data structures. The experimental results show that mixed ex-
ecution can improve the overall time for state exploration in JPF up to 36.98%, while
improving the time for execution of deterministic blocks up to 69.15%. Additionally,
lazy translation can improve the eager mixed execution up to 25.02%. We also evaluate
mixed execution on a case study that uses JPF to find a bug in a fairly complex routing
protocol, AODV [25]. Note that mixed execution only reduces the execution time for
deterministic blocks and thus the overall exploration time; mixed execution does not
affect the order of exploration, the number of explored states, or any other aspect of
the state exploration. The techniques that improve the latter aspects are orthogonal to
mixed execution, which can be used to further improve them.

2 Example

We next present an example that illustrates how mixed execution can speed up JPF’s
state exploration. Figure 1 shows the example code that was previously used in sev-
eral studies on JPF [34, 35, 36]. The code explores the state space of the java.util.
TreeMap class from the standard Java libraries. This class implements the map inter-
face using red-black trees. The basic operations on the map are put (which adds a
given key-value pair; the example sets all values to null), remove (which removes the
key-value pair for a given key), and get (which gets the value for a given key). The
code represents a driver that explores all sequences of put, remove, and get opera-
tions up to the given bounds M (for the sequence length) and N (for the range of input
values). JPF’s library method Verify.random(int n) nondeterministically returns a
number between zero and the given bound n. JPF’s library methods beginAtomic and
endAtomic mark an atomic block; these (manually added) annotations instruct JPF to
ignore thread interleavings within a given block.

Figure 1 shows relevant fields and methods of the class TreeMap. Objects of the
Entry class represent the nodes of red-black trees. Each node has a key-value pair,
a color (red or black), and pointers to the parent node and the left and right children.
Executions of the put, remove, and get methods manipulate the tree (passed as the
implicit this argument). The goal of the driver is to explore different trees that can

552 M. d’Amorim, A. Sobeih, and D. Marinov

public static void main(String[] args) {
int M = Integer.parseInt(args[0]); // length of the sequence
int N = Integer.parseInt(args[1]); // range of inputs
// initialize N method arguments
Integer[] elems = new Integer[N];
for (int i = 0; i < N; i++) elems[i] = new Integer(i);
// create an empty tree, the root object for exploration
TreeMap t = new TreeMap();
// explore method sequences up to length M
for (int i = 0; i < M; i++) {

Verify.beginAtomic();
switch (Verify.random(2)) {
case 0: t.put(elems[Verify.random(N-1)], null); break;
case 1: t.remove(elems[Verify.random(N-1)]); break;
case 2: t.get(elems[Verify.random(N-1)]); break;
}
Verify.endAtomic();
Verify.ignoreIf(storeIfNotAlreadyStored(t));

}
}

public class TreeMap {
Entry root;
int size;
static class Entry {

Object key;
Object value;
boolean color;
Entry left;
Entry right;
Entry parent; ...

}
public Object put(Object key, Object value) { ... }
public Object remove(Object key) { ... }
public Object get(Object key) { ... } ...

}

Fig. 1. Driver for bounded-exhaustive exploration and parts of TreeMap code

arise during the executions. JPF in general considers the entire state when comparing
different executions, but the driver uses abstract matching [35, 36, 37] to compare only
the state of the tree, namely the state of all objects reachable from the root t. If the state
has been already visited, the JPF’s library method Verify.ignoreIf instructs JPF to
backtrack the execution.

As already mentioned, JPF uses a special representation of the JVM state to effi-
ciently store, restore, and compare states. Without mixed execution, JPF executes put,
remove, and get methods on the special representation, which slows down every field
read and write. Note, however, that JPF needs the state of the tree only at the beginning
and at the end of these methods; in other words, each method can execute atomically.
Mixed execution therefore executes these three methods on the host JVM:

– At the beginning of each method execution, mixed execution translates the objects
reachable from the method parameters (including the tree reachable from this)
from the JPF representation into the host JVM representation. (Lazy translation
does not translate all objects at the beginning but only on demand during the exe-
cution.)

– Mixed execution then invokes the method on the translated state in the host JVM.
The method execution can then modify this state.

Optimized Execution of Deterministic Blocks in Java PathFinder 553

– At the end of each method execution, mixed execution translates the state back
from the host JVM representation into the JPF representation. JPF then compares
whether it has already explored the resulting state, appropriately backtracks the
execution (restores the state), and the process continues.

The speedup (or slowdown) that mixed execution achieves depends on the size of the
state and the length of the method execution. The smaller the state is, the less mixed ex-
ecution has to copy between the JPF and JVM representations. (Lazy translation further
reduces this cost such that it does not depend on the size of the state at the beginning of
the method but on the size of the state that the execution accesses.) Also, the longer the
execution is, the more mixed execution saves by executing on JVM rather than on JPF.

In our running example with TreeMap, the results depend on the value for the bounds
M and N. We set M = N in all experiments, and the value ranges from 6 to 10, as done in the
previous studies with abstract matching [35, 36, 37]. For these bounds, JPF with mixed
execution (and lazy translation) takes from 9.44% to 36.98% less time for overall state
exploration than JPF without mixed execution. Considering only the executions of put,
remove, and get methods, mixed execution provides from 43.15% to 54.95% speedup.
Besides the executions of these methods, the overall state exploration includes state
comparison, backtracking, and other JPF operations. Mixed execution only reduces the
method execution time, while the cost of the rest of state exploration remains the same.

3 Background

We briefly review the parts of JPF relevant for mixed execution. More details on JPF can
be found elsewhere [19, 33]. We first describe how JPF represents state. More specifi-
cally, we focus on how JPF represents the heap. While JPF also represents stack, thread
information, class information, and all other parts of a JVM state, mixed execution di-
rectly manipulates only the heap. We then describe the Model Java Interface (MJI),
an existing mechanism in JPF for accessing the JPF state from the host JVM. Mixed
execution uses MJI to translate the heap between the JPF and JVM representations.

3.1 Heap Representation

Each Java heap consists of a set of objects and some values for the fields of these objects.
Each object has an identity, and each field has a type that can be either primitive (int,
boolean, float, etc.) or a pointer to another object (which can hold the special value
null).

Recall that JPF is implemented in Java. JPF uses Java integers to represent object
identifiers. JPF also uses Java integers to encode all field values, be they primitive
or pointers. (JPF determines the meaning of various integers based on the field types
kept in the class information.) Conceptually, JPF represents each object as an integer
array, and the entire heap is an array of integer arrays. Figure 2 shows an example
red-black tree represented in JVM (as an object graph) and in JPF (as an array of inte-
ger arrays); this example TreeMap object can result from the sequence TreeMap t =

new TreeMap(); t.put(new Integer(2), null); t.put(new Integer(1),

null); t.put(new Integer(3), null). Figure 2 shows for each object its type,

554 M. d’Amorim, A. Sobeih, and D. Marinov

id:94
id:93

value:2

id:96
id:92 id:95

value:3
id:88

value:1

size:3id:71

Entry
Integer

Entry
Entry

key

key

Integer

key

Integer

root

TreeMap

88: [1]

71: [3, 94]

92: [0, 88, −1, 94, −1, −1]

93: [2]

94: [1, 93, −1, −1, 92, 96]

95: [3]

96: [0, 95, −1, 94, −1, −1]

parent parent
rightleft

Fig. 2. An example TreeMap as an object graph and in the JPF heap representation

integer identifier, and the values of primitive fields (with the full and empty circles rep-
resenting the color of the Entry objects). The pointer fields not shown in the graph
have the value null, represented as -1 in JPF.

3.2 Model Java Interface

Model Java Interface (MJI) is a JPF mechanism that allows parts of JPF execution to
be delegated from the JPF into the host JVM. MJI is analogous to the Java Native
Interface (JNI) [2] that allows parts of JVM execution to be delegated from the JVM
into the native code, written in say the C language. MJI, like JNI, splits executions at the
method granularity; namely, each method can be marked to be executed either in JPF or
in the host JVM. (JPF uses special name mangling to mark methods for the host JVM
execution.) MJI also provides API that allows the host JVM execution to manipulate
the JPF state representation, for example to read or write field values or to create new
objects.

The libraries distributed with JPF use MJI to implement several parts of the standard
Java library. MJI, like JNI, is used to implement functionality that either requires higher
performance or is not available at the target level (e.g., reflection [11] in Java). Specif-
ically, JPF uses MJI to implement several classes and methods from the java.io and
java.lang packages. These existing methods do not modify the heap; they either only
affect the IO or only return primitive values or new objects. In contrast, our mixed ex-
ecution leverages MJI to execute code that can and does modify the heap. Also, mixed
execution does not operate on the JPF representation of state; instead, mixed execution
translates the state between the JPF representation and the host JVM representation.

4 Technique

We next present mixed execution in more detail. Like MJI and JNI (Section 3), mixed
execution operates at the method granularity: the user can mark each method to be
executed either in JPF or in the host JVM. We first present how mixed execution invokes
the methods to be executed on the host JVM. We then present the basic version of mixed
execution that eagerly translates the state between JPF and JVM at the boundaries of a

Optimized Execution of Deterministic Blocks in Java PathFinder 555

void jpfInvoke(Method m, int[] args) {
if (m.shouldBeExecutedOnJVM()) {

// get the JPF execution environment
MJIEnv env = JPF.getMJIEnv();
// translate arguments from JPF to JVM
Object[] inputs = translateJPF2JVM(env, args);
try {

// use reflection to invoke the method on JVM,
// giving it the translated values as the arguments
Object result = m.invoke(inputs);
// translate the heap reachable from the roots from JVM to JPF
translateJVM2JPF(env, inputs);
// translate the return value
int jpfResult = translateObjectJVM2JPF(env, result);
MJI.pushOnStack(jpfResult);

} catch (Throwable t) {
translateJVM2JPF(env, inputs);
// translate the exception
int jpfThrowable = translateObjectJVM2JPF(env, t);
MJI.raiseJPFException(jpfThrowable);

}
}

}

Fig. 3. Pseudo-code of the method invocation for the host JVM execution

method call. We finally present lazy translation, an optimization that translates only the
parts that the execution actually needs.

4.1 Overview

Figure 3 shows how mixed execution invokes methods for host execution. Whenever the
program is about to execute a method, mixed execution checks whether the method is
marked to be executed in the host JVM. If so, mixed execution translates the state from
JPF to JVM, executes the method, and then translates the state back from JVM to JPF.
Note that mixed execution handles both cases when the method returns normally and
when the method throws an exception; mixed execution catches the (JVM) exceptions
and translates them accordingly (into the JPF exceptions), together with the rest of the
post-state.

Mixed execution assumes that the methods marked for execution in the host JVM are
deterministic, i.e., are not affected by any interleaving of threads and have no nondeter-
ministic choices. (This is always the case when JPF is used to explore method sequences
as shown in Section 5.1; the code is single-threaded and there are no Verify.random

calls in the methods.) Each method takes several arguments (one of which is the im-
plicit this argument for instance methods). Some of the arguments may be pointers to
objects, and a method execution can access or modify a field of any object reachable
from these pointers. The arguments thus represent the roots for the part of the heap that
the method can manipulate. The heap may be much larger than the part reachable from
the roots, but the method cannot manipulate the part that is not reachable from the roots.
(In general, the roots should also include all static fields.)

4.2 Eager Translation

Figure 4 shows the pseudo-code of the method that translates the state from JPF to
JVM. The inputs to the method are an MJIEnv object, which encodes the entire envi-

556 M. d’Amorim, A. Sobeih, and D. Marinov

Map<int, Object> mapJPF2JVM;
Map<Object, int> mapJVM2JPF;
// main method that translates all arguments in the pre-state
Object[] translateJPF2JVM(MJIEnv env, int[] args) {

mapJPF2JVM = new Map<int, Object>();
mapJVM2JPF = new Map<Object, int>();
Object[] result = new Object[args.length];
for (int i = 0; i < args.length; i++) {

Type t = env.typeOf(args[i]);
if (t.isPrimitive()) {

result[i] = correspondingPrimitiveObject(t, args[i]);
} else {

result[i] = translateObjectJPF2JVM(env, args[i]);
}

}
return result;

}
// helper method that translates all fields reachable from a reference
Object translateObjectJPF2JVM(MJIEnv env, int jpfPointer) {

if (jpfPointer == MJIEnv.NULL) return null;
if (mapJPF2JVM.contains(jpfPointer)) return mapJPF2JVM.get(jpfPointer);
// create a new object
Object o = translateOneReferenceJPF2JVM(env, jpfPointer);
// set the fields of the object recursively
foreach (field f in o.getFields()) {

int value = env.getFieldValue(jpfPointer, f);
Type t = env.typeOf(f);
if (t.isPrimitive()) {

setField(o, f, correspondingPrimitiveObject(t, value));
} else {

setField(o, f, translateObjectJPF2JVM(env, value));
}

}
// return the new object with all fields translated
return o;

}
// helper method that translates only one reference
Object translateOneReferenceJPF2JVM(MJIEnv env, int jpfPointer) {

if (jpfPointer == MJIEnv.NULL) return null;
if (mapJPF2JVM.contains(jpfPointer)) return mapJPF2JVM.get(jpfPointer);
// get the type of JPF object "jpfPointer"
Class c = env.getClass(jpfPointer);
// create a new object of class "c" using reflection
Object o = c.newInstance();
// update the mappings between JPF and JVM objects
mapJPF2JVM.put(jpfPointer, o);
mapJVM2JPF.put(o, jpfPointer);
return o;

}

Fig. 4. Pseudo-code of the algorithm that translates the state from JPF to JVM

ronment/state of the JPF execution, and an array of method arguments, encoded in JPF
as integers (Section 3). (For instance methods, the first argument represents this.) The
output of the method is an array of JVM objects that correspond to the arguments. The
method uses a depth-first traversal of the JPF heap reachable from args to create an
isomorphic JVM heap [5]. The method creates two maps that keep the correspondence
between the JPF and JVM object identities. These maps initially start empty, but the
helper method adds for each JPF object an appropriate JVM object. The method uses
the map from JPF to JVM to handle heap aliases. (The use of the map also ensures that
the translation terminates when the heap has cycles.) The map from JVM to JPF will be
used during the translation at the end of the execution. The method and the helper use

Optimized Execution of Deterministic Blocks in Java PathFinder 557

Set<Object> visited;
// main method that translates the post-state
void translateJVM2JPF(MJIEnv env, Object[] inputs) {

visited = new Set<Object>();
for (int i = 0; i < inputs.length; i++) {

if (!(env.typeOf(inputs[i]).isPrimitive())) {
translateObjectJVM2JPF(env, inputs[i]);

}
}

}
// helper method that translates one object
int translateObjectJVM2JPF(MJIEnv env, Object o) {

if (o == null) return MJIEnv.NULL;
if (!visited.contains(o)) {

visited.add(o);
// get type of the object
Class c = o.getClass();
// get (or create if necessary) the corresponding JPF object
int jpfPointer;
if (!mapJVM2JPF.contains(o)) {

// create new JPF object of the same type
jpfPointer = env.createNewObject(c);
mapJVM2JPF.add(o, jpfPointer);

} else {
jpfPointer = mapJVM2JPF.get(o);

}
// set the fields of the object recursively
foreach (field f in c.getFields()) {

// use reflection to get the field value
Object value = f.getFieldValue(o);
Type t = f.getType();
if (t.isPrimitive()) {

env.setFieldValue(jpfPointer, f, correspondingPrimitiveJPF(t, value));
} else {

env.setFieldValue(jpfPointer, f, translateObjectJVM2JPF(env, value));
}

}
}
return mapJVM2JPF(o);

}

Fig. 5. Pseudo-code of the algorithm that translates the state from JVM to JPF

several MJI calls (on the env objects) to get the values of fields and to get the types of
the arguments and fields.

Figure 5 shows the pseudo-code of the method that translates the state from JVM
to JPF. The inputs to the method are an MJIEnv object and an array of the inputs,
which represent the roots of the heap at the beginning of the execution. The effect of
the method is to update the JPF state. The method uses a depth-first traversal of the
JVM heap reachable from the inputs roots to appropriately update the JPF heap to
be isomorphic to the corresponding JVM heap. The traversals keep the set of visited
objects. It is important to distinguish this set and the map from JVM to JPF objects.
In the translation from JPF to JVM, a map is used both to keep track of visited (JPF)
objects and to provide the mapping of identities. However, in the translation from JVM
to JPF, a map is only used to provide the mapping of identities, because an object should
be traversed even if it is in the map. Moreover, the translation must preserve the original
JPF identity of nodes. The translation method and its helper use several MJI calls (on
the env objects) to create new objects and set the values of fields.

558 M. d’Amorim, A. Sobeih, and D. Marinov

// Original code, before instrumentation.
public class TreeMap {

static class Entry {
Entry left;
...

}
public Object put(Object key, Object value) {

... = e.left; // field read
e.left = ...; // field write

} ...
}

// Code after instrumentation.
public class TreeMap {

static class Entry {
Entry left;
boolean _mixed_is_copied_left = false;
Entry _mixed_get_left() {

if (!_mixed_is_copied_left) {
MJIEnv env = JPF.getMJIEnv();
int jpfPointer = env.getFieldValue(mapJVM2JPF(this), "left");
left = translateOneReferenceJPF2JVM(env, jpfPointer);
_mixed_is_copied_left = true;

}
return left;

}
void _mixed_set_left(Entry e) {

left = e;
_mixed_is_copied_left = true;

}
...

}
public Object put(Object key, Object value) {

... = e._mixed_get_left(); // field read
e._mixed_set_left(...); // field write

} ...
}

Fig. 6. Example code before and after instrumentation

4.3 Lazy Translation

Lazy translation is an optimization that translates between JPF and JVM only the parts
of the heap that a method execution actually needs. While eager translation translates
the entire heap at the beginning of the execution, lazy translation translates only the
arguments and not all fields reachable from them. During the execution, however, lazy
translation performs a check for each field read and write to determine whether the field
has been translated from JPF to JVM. If not, lazy translation translates only that one
field and continues the execution. By the end of the execution, lazy translation typically
translates into JVM only a small part of the heap reachable from the method arguments
at the beginning.

Lazy translation requires some changes to the code of the methods executed by
mixed execution. Specifically, lazy translation requires the checks for each field read
and write. We achieve those checks using code instrumentation. Figure 6 shows a part
of the code from the TreeMap example before and after instrumentation. For each field,
the instrumentation adds (i) a boolean flag that tracks whether the field has been trans-
lated from JPF to JVM, (ii) a method for reading the field value (translating it from JPF
if necessary), and (iii) a method for writing the field value. The instrumentation also

Optimized Execution of Deterministic Blocks in Java PathFinder 559

replaces all field reads and writes in the original code with the invocations of appro-
priate methods. Finally, the instrumentation adds a special constructor to create objects
without setting the flags. A similar instrumentation has been used previously in testing
and model checking [5, 34].

At the end of a method execution on the host JVM, mixed execution with lazy trans-
lation traverses the JVM heap similarly as mixed execution with eager translation. In
contrast to eager translation, however, only those fields whose flags are set to true

are translated from JVM to JPF and recursively followed further. A further optimiza-
tion would be to have “dirty flags” to avoid translation from JVM to JPF for the fields
whose value was not changed.

5 Experiments

We next discuss the experiments used to evaluate mixed execution. We have imple-
mented mixed execution by modifying the JPF code [19] to include the algorithms
from figures 3, 4, and 5. We have also implemented a prototype tool that automates
instrumentation for lazy translation as shown in Figure 6.

We evaluate mixed execution on six subject programs that use JPF for state ex-
ploration in data structures. We also evaluate mixed execution on a network protocol
for which JPF finds an injected error. The blocks of code delegated to mixed exe-
cution are deterministic: they are sequential code without non-deterministic choices
(Verify.random calls).

We conducted all the experiments on a dual-processor Intel Xeon 2.8 GHz machine
running Linux version 2.6.15 with 2 GB memory. We used Sun’s 1.4.2 06-b03 JVM,
allocating 1.5 GB for the maximum heap size. We compare the time that JPF takes for
exploration with and without mixed execution. In both cases, we set JPF to use breadth-
first state exploration. We also enable all JPF optimizations, including partial-order re-
ductions [33], the use of MD5 hashing function [19], and the exact state comparison
with respect to isomorphism [35, 36].

5.1 Data Structures

We evaluate mixed execution on the six data structures listed in Figure 7. We take the
subjects from previous studies on model checking and testing:

– UBStack is an implementation of a stack bounded in size, storing integer objects
without repetition [30, 37, 8, 23].

– DisjSet is an implementation of a union-find data structure implementing disjoint
sets [37].

– Trie implements a dictionary, i.e., it stores a collection of strings sorted lexico-
graphically [38].

– Vector, LinkedList, and TreeMap are from the Java 1.4 Collection Framework.

Our state exploration considers the methods that add, remove, and search for elements
in each data structure, as listed in Figure 7.

Each experiment uses an execution driver similar to that in Figure 1. By default,
we use mixed execution with lazy translation. Figure 8 tabulates the results. We set

560 M. d’Amorim, A. Sobeih, and D. Marinov

subject methods explored

UBStack push, pop
DisjSet union, find

Trie add, is word, is proper prefix
Vector addElement, removeElement, elementAt

LinkedList add, removeLast, contains
TreeMap put, remove, get

Fig. 7. Subjects used in the experiments

bytecodes total time method exec. only
subject bound # states JPF mixed JPF mixed speedup JPF mixed speedup

[ms] [ms] [%] [ms] [ms] [%]

UBStack 5 929 181217 19677 2318 2137 7.81 490 276 43.67
UBStack 6 5776 1561823 132475 5605 4367 22.09 1836 726 60.46
UBStack 7 41094 14940706 1038230 31602 20889 33.90 14301 4412 69.15

DisjSet 5 624 207261 21507 2546 2500 1.81 187 233 -24.60
DisjSet 6 4653 2067901 161408 9602 8902 7.29 1146 789 31.15
DisjSet 7 47480 27152409 1874435 92054 82169 10.74 14133 8194 42.02

Trie 5 129 120869 4839 1686 1636 2.97 262 221 15.65
Trie 6 257 293899 10855 2068 1966 4.93 419 287 31.50
Trie 7 513 690129 24359 2804 2572 8.27 752 460 38.83
Trie 8 1025 1679127 54311 4834 4149 14.17 1440 847 41.18
Trie 9 2049 4018501 120103 9329 7730 17.14 2929 1446 50.63
Trie 10 4097 9190465 263549 18946 15599 17.67 6547 3064 53.20

Vector 5 7057 892349 120244 4513 4074 9.73 1001 522 47.85
Vector 6 91706 13596654 1605126 38360 30534 20.40 11504 4462 61.21
Vector 7 1466919 247371240 26241690 1276992 1124545 11.94 206508 74046 64.14

LinkedList 5 5471 302914 105134 4390 4256 3.05 914 808 11.60
LinkedList 6 74652 4218361 1446823 35109 33453 4.72 10128 9367 7.51
LinkedList 7 1235317 70962644 24157788 578847 553095 4.45 175267 151016 13.84

TreeMap 5 187 92740 7586 1841 1735 5.76 364 201 44.78
TreeMap 6 534 361600 25864 2532 2293 9.44 761 410 46.12
TreeMap 7 1480 1223256 79470 4294 3490 18.72 1738 988 43.15
TreeMap 8 4552 4629574 277476 10489 7556 27.96 5718 2805 50.94
TreeMap 9 13816 16681289 952976 32254 20897 35.21 20096 9424 53.11
TreeMap 10 39344 54581750 3008954 98633 62162 36.98 66336 29887 54.95

Fig. 8. Comparison of JPF without and with mixed execution

the same bounds for the method-sequence length and for the range of values. For each
subject and several bounds, we tabulate the number of states that JPF explores (which
is the same with or without mixed execution), the total number of bytecodes that JPF
executes (with mixed execution, the host JVM executes some bytecodes), the overall
time for exploration, and the time for execution of methods marked for mixed execution.
All times are in milliseconds. The columns labeled JPF and mixed represent the runs
of JPF without and with mixed execution, respectively. The speedup columns show the
improvement that mixed execution provides.

The results show that mixed execution can reduce the overall state exploration time
up to 36.98%, while reducing the method execution time up to 69.15%. Note that for
very short executions (such as DisjSet for bound 5), mixed execution may actually
slow down JPF as the overhead of translation outweighs the benefit of execution on the
host JVM. As a matter of fact, for all subjects and small bounds, mixed execution slows

Optimized Execution of Deterministic Blocks in Java PathFinder 561

total time method exec. only
name bound # states eager lazy speedup eager lazy speedup

[ms] [ms] [%] [ms] [ms] [%]

Trie 5 129 1785 1748 2.07 234 202 13.68
Trie 6 257 2118 2052 3.12 393 295 24.94
Trie 7 513 2842 2650 6.76 635 465 26.77
Trie 8 1025 4958 4574 7.75 1660 833 49.82
Trie 9 2049 10150 7911 22.06 3595 1446 59.78
Trie 10 4097 20678 15730 23.93 8217 3018 63.27

TreeMap 5 187 1842 1820 1.19 305 218 28.52
TreeMap 6 534 2685 2651 1.27 571 403 29.42
TreeMap 7 1480 3901 3498 10.33 1338 962 28.10
TreeMap 8 4552 9089 7548 16.95 4308 2864 33.52
TreeMap 9 13816 27595 21014 23.85 15235 9425 38.14
TreeMap 10 39344 83744 62789 25.02 49212 29600 39.85

Fig. 9. Comparison of eager and lazy translations

down JPF. However, the more important cases are when the execution is long. As the
results show, the longer the execution gets, the more benefit mixed execution provides.

All above experiments with mixed execution use lazy translation. Figure 9 shows the
benefit of this optimization. For two subjects and several sizes, we tabulate the overall
execution time for state exploration and the time for execution of methods marked for
mixed execution. Compared to eager translation, lazy translation reduces the overall
time up to 25.02%, while reducing the method execution time up to 63.27%. Note again
that the longer the execution gets, the more benefit lazy translation provides.

5.2 The AODV Case Study

We next present the evaluation of mixed execution on Ad-Hoc On-Demand Distance
Vector (AODV) routing [26], a widely used network protocol for wireless multihop ad
hoc networks. We consider an implementation of AODV based on the AODV Draft
(version 11) [25] and implemented in J-Sim [1, 31], a component-based network simu-
lator written entirely in Java. AODV is a fairly complex network protocol whose J-Sim
implementation (not including the J-Sim library) has about 1200 lines of code. This case
study was used previously to evaluate a model checker specialized for J-Sim [28, 29].

We first give an overview of AODV and its loop-free safety property. We then explain
the details of the driver for AODV and an error that we injected in the AODV code. We
finally present the improvements obtained by using mixed execution to find the error.

An ad hoc network is a wireless network that comes together when and where needed,
as a collection of wireless nodes, without relying on any assistance from an existing net-
work infrastructure such as base stations or routers. Due to the lack of complete con-
nectivity and routers, the nodes are designed to serve as routers (i.e., relays) and assist
each other in delivering data packets. Hence, the route between two nodes may consist
of multiple wireless hops through other nodes; this is called multihop routing.

In AODV, each node n in the ad hoc network maintains a routing table. A routing
table entry (RTE) at node n to a destination node d contains, among other fields: a
next hop address nexthopn,d (the address of the node to which n forwards packets
destined for d), a hop count hopsn,d (the number of hops needed to reach d from n),

562 M. d’Amorim, A. Sobeih, and D. Marinov

and a destination sequence number seqnon,d (a measure of the freshness of the route
information). Each RTE is associated with a lifetime. Periodically, a route timeout event
is triggered invalidating (but not deleting) all the RTEs that have not been used (e.g.,
to send or forward packets to the destination) for a time interval that is greater than the
lifetime. Invalidating a RTE involves incrementing seqnon,d and setting hopsn,d to∞.

Each node n also maintains two monotonically increasing counters: a node sequence
number seqnon and a broadcast ID bidn. When node n requires a route to a desti-
nation d to which n does not already have a valid RTE, n creates an invalid RTE
to d with hopsn,d set to ∞. Node n then broadcasts a route request (RREQ) packet
with the fields 〈n, seqnon, bidn, d, seqnon,d, hopCountq〉 and increments bidn. The
hopCountq field is initialized to 1. The pair 〈n, bidn〉 uniquely identifies a RREQ
packet. Each node m, receiving the RREQ packet from node n, keeps the pair 〈n, bidn〉
in a broadcast ID cache so that m can later check if it has already received a RREQ
with the same source address and broadcast ID. If so, the incoming RREQ packet is dis-
carded. If not, m either satisfies the RREQ by unicasting a route reply (RREP) packet
back to n if it has a fresh enough route to d (or it is d itself) or rebroadcasts the RREQ
to its own neighbors after incrementing the hopCountq field if it does not have a fresh
enough route to d (nor is it d). An intermediate node m determines whether it has a fresh
enough route to d by comparing the destination sequence number seqnom,d in its own
RTE with the seqnon,d field in the RREQ packet. Each intermediate node also records
a reverse route to the requesting node n; this reverse route can be used to send/forward
route replies to n. The requesting node’s sequence number seqnon is used to maintain
the freshness of this reverse route. Each entry in the broadcast ID cache has a lifetime.
Periodically, a broadcast ID timeout event is triggered causing the deletion of cache
entries that have expired.

Overview of AODV. A RREP packet, which is sent by an intermediate node m,
contains the following fields 〈hopCountp, d, seqnom,d, n〉. The hopCountp field is
initialized to 1 + hopsm,d. If it is the destination d that sends the RREP packet, it
first increments seqnod and then sends a RREP packet containing the following fields
〈1, d, seqnod, n〉. The unicast RREP travels back to the requesting node n via the re-
verse route. Each intermediate node along the reverse route sets up a forward pointer to
the node from which the RREP came, thus establishing a forward route to the destina-
tion d, increments the hopCountp field and forwards the RREP packet to the next hop
towards n.

If node m offers node n a new route to d, n compares seqnom,d (the destination
sequence number of the offered route) to seqnon,d (the destination sequence number
of the current route), and accepts the route with the greater sequence number. If the
sequence numbers are equal, the offered route is accepted only if it has a smaller hop
count than the hop count in the RTE; i.e., hopsn,d > hopsm,d.

Safety property. An important safety property in a routing protocol such as AODV
is the loop-free property. Intuitively, a node must not exist at two points on a routing
path; therefore, at each hop along a path from a node n to a destination d, either the
destination sequence number must increase or the hop count must decrease. Formally,

Optimized Execution of Deterministic Blocks in Java PathFinder 563

AODV # bytecodes total time method exec. only
nodes path len. # states JPF mixed JPF mixed speedup JPF mixed speedup

[ms] [ms] [%] [ms] [ms] [%]

8 8 5806 24571290 17425293 61347 54384 11.35 9107 3457 62.04
9 9 7960 37106325 26683825 92266 82231 10.88 13520 4892 63.82

10 10 10585 54077303 39272619 161578 110132 31.84 19495 6578 66.26

Fig. 10. Model checking AODV without and with mixed execution

consider two nodes n and m such that m is the next hop of n to some destination d; i.e.,
nexthopn,d = m. The loop-free property can be expressed as follows [4, 22]:

seqnon,d < seqnom,d ∨ (seqnon,d = seqnom,d ∧ hopsn,d > hopsm,d)

Test driver. We wrote a test driver for the J-Sim implementation of AODV. The driver
produces an environment that executes all sequences of protocol events up to a config-
urable bound. The driver considers these events [29]:

– Initiation of a route request to a destination d: This event is enabled if the node does
not have a valid RTE to the destination d. The event is handled by broadcasting a
RREQ.

– Restart of the AODV process at node n: This event may take place because of a
node reboot. The event is always enabled and is handled by reinitializing the state
of the AODV process at node n.

– Broadcast ID timeout at node n: This event is enabled if there is at least one entry
in the broadcast ID cache of node n. The event is handled by deleting this entry.

– Timeout of the route to destination d at node n: This event is enabled if n has a
valid RTE to d. The event is handled by invalidating this RTE.

– Delivering an AODV packet to node n: This event is enabled if the network contains
at least one AODV packet such that n is the destination (or the next hop towards the
destination) of the packet and n is one of the neighbors of the source of the packet.
The event is handled by removing this packet from the network and forwarding it
to node n in order to be processed according to the AODV implementation.

– Loss of an AODV packet destined for node n: This event is enabled if the network
contains at least one AODV packet that is destined for node n. The event is handled
by removing this packet from the network.

Since JPF could not execute the code for the entire J-Sim simulator and the AODV
protocol, we created a simplified version of the networking layer used by AODV. This
version does not have the full generality of the J-Sim simulator but provides the func-
tionality needed to run AODV.

Finding error. We consider an initial state of an ad hoc network consisting of K
nodes: n0, n1, . . . , nK−1 (where nK−1 is the only destination node) arranged in a
chain topology where each node is a neighbor of both the node to its left and the node
to its right (if they exist). In the initial state, nodes ni for all 0 ≤ i ≤ K − 2 have valid
routing table entries to the destination nK−1. We manually injected an error as follows:

564 M. d’Amorim, A. Sobeih, and D. Marinov

a RTE is deleted (instead of invalidated) when a route timeout event occurs. Consider
the case of K = 3. A routing loop may occur because if nexthop0,2 = 1 and a route
timeout event takes place at n1, if n1 is later offered a route to n2 by n0, this route will
be accepted because seqno0,2 > seqno1,2. The case of K > 3 is similar. The interested
reader can find a detailed explanation of this injected error elsewhere [28]. We instruct
JPF to stop the exploration as soon as it finds this error.

Mixed execution. To apply mixed execution on AODV, we needed to determine which
parts of the AODV code to execute on the host JVM. We first marked for host exe-
cution the data structures (such as vectors) that AODV uses to represent protocol data
(including routing tables and packet queues). We then used profiling to find that AODV
spends a lot of execution time in the methods of the J-Sim library class Port that han-
dles sending and receiving of packets between network nodes [31], so we also marked
those methods for host execution. Figure 10 shows the improvements obtained with
mixed execution on AODV. We tabulate, for a range of number of nodes and length of
the event path, the overall state-space exploration time and the method execution time.
Mixed execution improves the overall exploration time from 10.88% to 31.84%, and
the method execution time from 62.04% to 66.26%.

6 Related Work

Traditional model checkers such as SPIN [15], SMV [18], or Murphi [9] have been ex-
tensively used in formal reasoning of both hardware and software systems. These tools
analyze the models written in the special modeling languages. To analyze a system, the
user thus needs either to manually write a model of the system in a language understood
by the tools [4] or to automatically translate an implementation of the system from a
programming language (e.g., Java) into the modeling language of the tools [24,14,7,10].
Our work considers model checkers that directly analyze the systems written in a pro-
gramming language.

Verisoft [13] was the first model checker to directly analyze the implementation
code, specifically code written in the C language. Several recent model checkers such
as CMC [22], BogorVM [27], or JPF [33] also focus on analyzing the actual code
written in a programming language (C or Java). For example, CMC has been used to
model check Linux implementations of networking code (e.g., AODV and TCP) and
file systems [22, 21, 39]. We have also developed a model checker [29] tailored for the
J-Sim network simulator [1] and used it to find errors in the J-Sim implementation of
AODV [29]. The model checker extends J-Sim with the capability to explore the state
space created by a network protocol, whose simulation code is written in Java. The
model checker operates on the concrete memory state and clones/copies large portions
of the state for each transition. Our current work targets model checkers that operate on
a special representation of state such as AsmLT, BogorVM, JPF, or SpecExplorer.

Handling state is a central issue in explicit-state model checkers [15,17,16,20]. Work
in this area focuses on efficient implementation of state operations, including updating,
storing, restoring, and comparing states. For example, JPF implements techniques such
as efficient encoding of Java program state and symmetry reductions to help reduce

Optimized Execution of Deterministic Blocks in Java PathFinder 565

the state-space size [17]. As another example, Musuvathi and Dill recently proposed
an algorithm for incremental heap canonicalization [20], which speeds up the hashing
of states and thus state comparisons. While these techniques focus on speeding up the
operations on state (or the overall state-space exploration), we propose mixed execution
that focuses on speeding up the executions that operate on the state that can be translated
between the special (JPF) and the host (JVM) representation. Our technique is thus
orthogonal to the techniques for state operations and can be combined with them to
achieve even higher speed ups.

Our evaluation of mixed execution uses data-structure subjects and the AODV case
study. The data-structure subjects have been used in other projects on testing and model
checking [30, 37, 8, 38, 23], including in the context of JPF [34, 35, 36]. The most re-
cent work in the context of JPF [35, 36] proposes test-input generation techniques that
depend on the abstract state matching to avoid the generation of redundant tests. Our
experiments rely on that work because our drivers match the state of the data structure
(reachable from a root) and not the entire heap. As the results show, however, mixed ex-
ecution still achieves significant improvements even when used with abstract matching.
Finally, the AODV case study presented in this paper is, to the best of our knowledge,
one of the largest case studies that have been model checked using JPF.

7 Conclusions

We have presented mixed execution, a technique that reduces the execution time of de-
terministic blocks in Java PathFinder (JPF). JPF is a special JVM that runs on top of a
regular, host JVM; mixed execution translates the state between the special JPF repre-
sentation and the host JVM representation to enable faster execution of Java bytecodes.
We have also presented lazy translation, an optimization that speeds up mixed execution
by translating only the parts of the state that an execution dynamically depends on. Our
evaluation shows that mixed execution can significantly improve the time for execution
of deterministic blocks and thus the overall time for state-space exploration.

Mixed execution points out the importance of studying the trade-offs used in state-
space explorations for model checking and testing. We plan to further investigate these
trade-offs, focusing on the differences between stateful and stateless search (i.e., be-
tween backtracking and re-execution). We also plan to consider the use of memoization
and incremental computation in speeding up re-execution. We believe that the straight-
line execution in model checkers can be further improved, building on the ideas of
mixed execution.

Acknowledgments

We thank Willem Visser for repeatedly and promptly helping us with JPF, Corina
Pasareanu and Mahesh Viswanathan for discussing mixed execution with us, and Steven
Lauterburg and Nikolai Tillmann for their comments on a previous draft of this paper.
This work was partially supported by CAPES fellowship under grant #15021917. We
also acknowledge support from Microsoft Research.

566 M. d’Amorim, A. Sobeih, and D. Marinov

References

1. J-Sim. http://www.j-sim.org/.
2. Java Native Interface: Programmer’s Guide and Specification. Online book. http://

java.sun.com/docs/books/jni/.
3. T. Ball and S. K. Rajamani. Automatically validating temporal safety properties of interfaces.

In SPIN ’01: Proc. of the 8th international SPIN workshop on Model checking of software,
pages 103–122, New York, NY, 2001.

4. K. Bhargavan, D. Obradovic, and C. A. Gunter. Formal verification of standards for distance
vector routing protocols. Journal of the ACM, 49(4):538–576, July 2002.

5. C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing based on Java predicates.
In Proc. International Symposium on Software Testing and Analysis, pages 123–133, 2002.

6. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2004), volume 2988 of
LNCS, pages 168–176, 2004.

7. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, and H. Zheng.
Bandera: extracting finite-state models from Java source code. In Proc. 22nd International
Conference on Software Engineering, pages 439–448, 2000.

8. C. Csallner and Y. Smaragdakis. JCrasher: an automatic robustness tester for Java. Software:
Practice and Experience, 34:1025–1050, 2004.

9. D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol verification as a hardware design
aid. In IEEE International Conference on Computer Design (IEEE ICCD), pages 522–525,
1992.

10. A. Farzan, F. Chen, J. Meseguer, and G. Rosu. Formal analysis of Java programs in JavaFAN.
In Proc. of CAV’04, July 2004.

11. D. Flanagan. Java In A Nutshell. O’Reilly, 1997.
12. Foundations of Software Engineering at Microsoft Research. The AsmL test generator tool.

http://research.microsoft.com/fse/asml/doc/AsmLTester.html.
13. P. Godefroid. Model checking for programming languages using Verisoft. In Proc. 24th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 174–
186, 1997.

14. K. Havelund. Java Pathfinder, a translator from Java to Promela. In Proc. of SPIN’99, 1999.
15. G. J. Holzmann. The model checker SPIN. IEEE Trans. on Software Engineering, 23(5):279–

295, 1997.
16. R. Iosif. Symmetry reduction criteria for software model checking. In Proc. 9th SPIN Work-

shop on Software Model Checking, volume 2318 of LNCS, pages 22–41, July 2002.
17. F. Lerda and W. Visser. Addressing dynamic issues of program model checking. In SPIN

’01: Proc. of the 8th international SPIN workshop on Model checking of software, pages
80–102, Toronto, Canada, 2001.

18. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
19. P. C. Mehlitz, W. Visser, and J. Penix. The JPF runtime verification system. Online manual.

http://javapathfinder.sourceforge.net/JPF.pdf.
20. M. Musuvathi and D. L. Dill. An incremental heap canonicalization algorithm. In SPIN,

pages 28–42, 2005.
21. M. Musuvathi and D. Engler. Model checking large network protocol implementations. In

Proc. of The First Symposium on Networked Systems Design and Implementation (NSDI),
pages 155–168, 2004.

22. M. Musuvathi, D. Park, A. Chou, D. R. Engler, and D. L. Dill. CMC: A pragmatic approach
to model checking real code. In Proc. 5th Symposium on Operating Systems Design and
Implementation, pages 75–88, December 2002.

Optimized Execution of Deterministic Blocks in Java PathFinder 567

23. C. Pacheco and M. D. Ernst. Eclat: Automatic generation and classification of test inputs. In
Proc. 19th European Conference on Object-Oriented Programming, pages 504–527, Glas-
gow, Scotland, July 2005.

24. D. Y. Park, U. Stern, J. U. Skakkebæk, and D. L. Dill. Java model checking. In Proc. of
IEEE ASE’00, 2000.

25. C. E. Perkins, E. M. Belding-Royer, and S. Das. Ad hoc on demand distance vector (aodv)
routing, January 2002. IETF Draft.

26. C. E. Perkins and E. M. Royer. Ad-hoc on-demand distance vector routing. In Proc. IEEE
Workshop on Mobile Computing Systems and Applications (WMCSA), pages 90–100. IEEE
Computer Society Press, 1999.

27. Robby, M. B. Dwyer, and J. Hatcliff. Bogor: an extensible and highly-modular software
model checking framework. In Proc. 9th European Software Engineering Conference held
jointly with 11th ACM SIGSOFT International Symposium on Foundations of Software En-
gineering, pages 267–276, 2003.

28. A. Sobeih, M. Viswanathan, and J. C. Hou. Incorporating bounded model checking in net-
work simulation: Theory, implementation and evaluation. Technical Report UIUCDCS-R-
2004-2466, Department of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, Illinois, July 2004.

29. A. Sobeih, M. Viswanathan, D. Marinov, and J. C. Hou. Finding bugs in network protocols
using simulation code and protocol-specific heuristics. In K.-K. Lau and R. Banach, editors,
ICFEM, volume 3785 of LNCS, pages 235–250, 2005.

30. D. Stotts, M. Lindsey, and A. Antley. An informal formal method for systematic JUnit test
case generation. In Proc. 2002 XP/Agile Universe, pages 131–143, 2002.

31. H.-Y. Tyan. Design, Realization and Evaluation of a Component-based Compositional Soft-
ware Architecture for Network Simulation. Ph.D., Department of Electrical Engineering, The
Ohio State University, 2002.

32. M. Veanes, C. Campbell, W. Schulte, and N. Tillmann. Online testing with model programs.
In ESEC/FSE-13: Proc. of the 10th European Software Engineering Conference and the 13th
ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages
273–282, New York, NY, 2005. ACM Press.

33. W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. In Proc. 15th IEEE
International Conference on Automated Software Engineering, 2000.

34. W. Visser, C. S. Pasareanu, and S. Khurshid. Test input generation with Java PathFinder.
In Proc. 2004 ACM SIGSOFT International Symposium on Software Testing and Analysis,
pages 97–107, 2004.

35. W. Visser, C. S. Pasareanu, and R. Pelanek. Test input generation for red-black trees us-
ing abstraction. In Proc. of IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 414–417, 2005.

36. W. Visser, C. S. Pasareanu, and R. Pelanek. Test input generation for Java containers using
state matching. In Proc. 2006 ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2006.

37. T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for detecting redundant object-
oriented unit tests. In Proc. 19th ASE, pages 196–205, Sept. 2004.

38. T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A framework for generating object-
oriented unit tests using symbolic execution. In Proc. 11th TACAS, pages 365–381, Apr.
2005.

39. J. Yang, P. Twohey, D. R. Engler, and M. Musuvathi. Using model checking to find serious
file system errors. In OSDI, pages 273–288, 2004.

A Tool for a Formal Pattern Modeling Language

Soon-Kyeong Kim and David Carrington

School of Information Technology and Electrical Engineering
The University of Queensland 4072, Australia
soon@itee.uq.edu.au, davec@itee.uq.edu.au

Abstract. This paper presents a formal but practical approach for
defining and using design patterns. Initially we formalize the concepts
commonly used in defining design patterns using Object-Z. We also
formalize consistency constraints that must be satisfied when a pattern
is deployed in a design model. Then we implement the pattern modeling
language and its consistency constraints using an existing modeling
framework, EMF, and incorporate the implementation as plug-ins to the
Eclipse modeling environment. While the language is defined formally
in terms of Object-Z definitions, the language is implemented in a
practical environment. Using the plug-ins, users can develop precise
pattern descriptions without knowing the underlying formalism, and can
use the tool to check the validity of the pattern descriptions and pattern
usage in design models. In this work, formalism brings precision to the
pattern language definition and its implementation brings practicability
to our pattern-based modeling approach.

Keywords: Design Pattern, Object-Z, Formal Pattern Modeling Lan-
guage, Model Evolution, Model Transformation, Pattern Tool.

1 Introduction

Design patterns are often proposed as a means to evolve models in a model-
driven development approach such as MDA [16]. Since design patterns describe
solutions for well-known design problems, evolving models based on design pat-
terns seems an effective approach. While design patterns can provide an effective
basis for model evolution, the current approaches to describing patterns fall short
of what design patterns can offer for model evolution in the MDA context. Pat-
terns are typically defined imprecisely using natural language descriptions with
graphical annotations. It is also common to describe patterns using a concrete
design or a specific example of a pattern use, as is done in [13,6]. The problem
typically originates from the limitations of using object notations for describing
patterns (e.g. OMT and UML [17]). Object notations are basically designed to
describe concrete designs and they are not appropriate for describing patterns in
an abstract manner [1,5]. Object notations also typically lack precision in their
notations. To enhance this situation, the following problems have to be solved:

– There must be a way to define patterns precisely, so a tool applying patterns
can interpret the properties of the patterns, and a set of transformation rules
can be applied to the patterns for model evolution.

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 568–587, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Tool for a Formal Pattern Modeling Language 569

– Patterns must be described in an abstract manner allowing various deploy-
ments of the patterns in different applications.

To address these issues, we define a formal pattern modeling language in
terms of a role metamodel using Object-Z [18]. The role metamodel defines role
concepts that are commonly used to define design patterns. It also defines con-
sistency constraints that must be preserved when the role concepts are used
together to define a pattern. Using Object-Z, each role concept and its associ-
ated consistency constraints are formally defined as an Object-Z class. Given
the Object-Z classes, we can define patterns precisely by using the instantiation
mechanism in Object-Z (see Section 2.3 for an example). Since the pattern mod-
eling language is designed to describe design patterns, patterns developed in this
way are abstract allowing various deployments of the patterns. Despite its poten-
tial, developing patterns using a formalism may not be practical due to difficulty
using the formalism. In addition, pattern descriptions in Object-Z cannot be di-
rectly interpreted by most existing modeling tools. These drawbacks potentially
limit the practicability of our approach to support pattern-based modeling.

To overcome these drawbacks, we transform the role metamodel in Object-
Z to an ecore model (role.ecore1) in the Eclipse Modeling Framework (EMF)
[7], and implement it using the code generation facility provided in the EMF.
The artefacts of this implementation are Java code implementing meta-classes
defined in the role metamodel and an editor to create pattern models. We incor-
porate these artefacts as a plug-in for Eclipse (called the pattern plug-in). Since
the detailed constraints of the role metamodel expressed in Object-Z cannot be
implemented directly using the EMF, we customize the generated Java code and
the editor to implement the constraints (see Figure 1 for the overall architecture
of our approach). Given the plug-in, users can define and check patterns using
the role concepts without knowing the underlying formalism used to define the
concepts. The patterns defined in this way are in an XMI format, so they are
understood by MDA tools.

In our approach, patterns are deployed in a design model by developing a role
binding model that maps pattern entities to the design model entities. When
a pattern is deployed in a design model, certain constraints must be preserved
to make the pattern deployment valid. We define these properties using Object-
Z, and implement the properties as a plug-in for Eclipse (called the binding
plug-in) in the same way that we implement the role metamodel. The binding
plug-in maintains a pattern repository, and allows the user to select a pattern
and deploy it in their design models. Once a binding model is developed, an
automatic model transformation takes place to evolve the design model into
a pattern-deployed design model, but we do not discuss this automatic model
evolution in this paper, instead focusing on explaining the tool for the formal
pattern modeling language. With the two plug-ins, we are able to provide an
1 Ecore is an object-oriented modeling language used to create models in EMF. It

defines simple class constructs in object-orientation such as classes, attributes, op-
erations, and references. These concepts are compatible to the class concepts used
in Object-Z, so we map an Object-Z class to an Ecore class in our translation.

570 S.-K. Kim and D. Carrington

Fig. 1. Architecture of Formal Metamodeling Framework

integrated modeling framework where both developing patterns and deploying
them in designs takes place in a single development environment.

In our work, formalism brings precision to the language definition and MDA
techniques are used to develop tools for the formal technique. In fact, the ap-
proach introduced in this paper proposes a Formal Metamodeling Framework
(FMF) where a formal language is used as a rigorous means to define a domain-
specific modeling language (in this paper the pattern modeling language). Ex-
isting modeling tools are used as a means to implement the language. This
approach brings precision and practicability to defining and implementing a
domain-specific modeling language.

The rest of this paper is structured as follows. Section 2 provides a review
of the role concepts used in our work and their formal definition in Object-Z.
Section 3 presents how we implement these role concepts using EMF and how
to describe patterns precisely and abstractly using this implementation. Section
4 provides a formal definition of the constraints that must be preserved when a
pattern is deployed in a design model and describes the implementation of these
constraints using EMF. Section 5 discusses related work. Section 6 draws some
conclusions and discusses future work.

2 A Formal Definition of Role Concepts Used in Design
Patterns

In the literature, roles are often used for describing design patterns [19,12,5].
However, the notion of role differs in each work (see Section 5 for details). In
our approach, we first identify the underlying role concepts that are commonly
used to define existing design patterns and then abstract these concepts as meta-
modeling elements in a role metamodel that constitutes our pattern modeling

A Tool for a Formal Pattern Modeling Language 571

language. The following sections provide a brief summary of the pattern model-
ing language. We assume that all metaclasses defined in the role metamodel are
formalized as Object-Z classes and refer readers to [11] for a full formal definition
of the pattern modeling language.

2.1 Role Concepts in Patterns

A pattern involves a set of roles that are played by participants in the pattern.
Figure 2 shows a class diagram visualizing the role concepts we define.

Fig. 2. Role model elements and their structure [11]

The metaclass RoleElement is the top-level model element from which all
role concepts in our role modeling language are drawn. Inheriting from this
class, we have two metaclasses: NamedRoleElement and RoleBindingProperty.
NamedRoleElement is an abstract metaclass from which all role elements with a
name are drawn. RoleBindingProperty defines the occurrence property of a role
in a single pattern realization in a design model (e.g. the ConcreteFactory class
role in the Abstract Factory pattern [6] can occur multiple times in a single
pattern realization). RoleNamespace is an element that can own other elements
(such as class roles or operation roles).

Using these concepts, we define a class role. A class role owns feature roles
such as attribute roles and operation roles, and it can occur multiple times in a
single pattern realization, so it inherits from both RoleNamespace and RoleBind-
ingProperty. A class role is a role type, so it also inherits from RoleType. The

572 S.-K. Kim and D. Carrington

following Object-Z class is a formal definition of the class role concept. Within
a class role, attribute role names and operation role names should be unique
(the c© symbol stands for object containment in Object-Z). This property is
formalized as a constraint in the Object-Z class.

ClassRole
RoleType
RoleNameSpace
RoleBindingProperty

attributeRoles : PAttributeRole c©
operationRoles : P OperationRole c©

∀ a1, a2 : attributeRoles • a1.name = a2.name ⇒ a1 = a2
∀ o1, o2 : operationRoles • o1.name = o2.name ⇒ o1 = o2

2.2 Role Relationships in Patterns

Roles in a pattern may have relationships between them. These relationships
also play a role in the pattern. We define the relationships as a role element in
our modeling language (see Fig. 3).

Fig. 3. Various role relationships [11]

A Tool for a Formal Pattern Modeling Language 573

In the metamodel, RoleRelationship is an abstract metaclass from which all
types of relationships between role elements can be drawn. One relationship
often found in patterns is a hierarchical relationship between class roles. The
metaclass ClassRoleHierarchy captures this relationship. Since a hierarchy rela-
tionship can appear several times in a single pattern realization (e.g. the hierar-
chy between AbstractProduct and ConcreteProduct class roles in the Abstract
Factory pattern), it inherits from RoleBindingProperty. A hierarchy relationship
also has a super class role that defines abstract role features (e.g., operation
roles) and a subclass role that realizes the abstract role features. The follow-
ing Object-Z class is a formal definition of the class role hierarchy concept. In
each class role hierarchy, the super class role is abstract and may occur only
once, but the subclass role is not abstract and may occur multiple times, so its
occurrence property remains unconstrained. A subclass role cannot be its own
super class role. These properties are formalized as constraints in the Object-Z
class.

ClassRoleHierarchy

RoleBindingProperty
RoleRelationship

superRole : ClassRole
subRole : ClassRole

superRole.isAbstract ∧ superRole.occurrence = 1
¬ subRole.isAbstract ∧ superRole �= subRole

...

Another type of relationship often found in patterns is a dependency relation-
ship between various role elements (RoleDependency). Due to page limits, we
refer readers to [11] for a full definition of these relationships.

2.3 Developing Patterns Using Role Concepts

Given the Object-Z classes, defining patterns is achieved by instantiating the
Object-Z classes and assigning values for the features defined in the classes.
Integrity consistency between role elements is ensured by constraints defined
in the Object-Z classes. We use the Abstract Factory pattern as an example
in this section. The Abstract Factory pattern has two class hierarchies Factory
and Product each of which contains two class roles. For example, the Factory
hierarchy has two class roles: AbstractFactory and ConcreteFactory. Each of
these class roles has one operation role, CreateProduct. The following Object-Z
class is a formal description of the Factory class role hierarchy in the Abstract
Factory pattern.

574 S.-K. Kim and D. Carrington

Factory

factoryHierarchy : ClassRoleHierarchy
absFactory : ClassRole
absCreateProduct : OperationRole
conFactory : ClassRole
conCreateProduct : OperationRole
absCreateProductConCreateMethod : OperationRoleDependency

factoryHierarchy.superRole = absFactory
factoryHierarchy.subRole = conFactory
absCreateProduct ∈ absFactory.operationRoles
absCreateProduct .isAbstract ∧ absCreateProduct .owner = absFactory
conFactory.occurrence ≥ 1
conCreateProduct ∈ conFactory.operationRoles
¬ conCreateProduct .isAbstract ∧ conCreateProduct .owner = conFactory
absCreateProductConCreateMethod .client = absCreateProduct
absCreateProductConCreateMethod .supplier = conCreateProduct

Once each class role hierarchy in the pattern is defined, we can define the
entire pattern using the inheritance mechanism in Object-Z.

AbstractFactory

Including Factory and Product class role hierarchies

Factory Product

absCreateProductAbsProduct : SimpleOccurrenceDependency
conFactoryConProduct : HierarchyOccurrenceDependency
conCreateProductConProduct : CreateDependency

absCreateProductAbsProduct .client = absCreateProduct
absCreateProductAbsProduct .supplier = absProduct
absCreateProductAbsProduct .isIsomorphic
conFactoryConProduct .client = conCreateFactory
conFactoryConProduct .supplier = productHierarchy
conFactoryConProduct .supplier .dependentClassRole = conProduct
conFactoryConProduct .supplier .isFamily
conCreateProductConProduct .client = conCreateProduct
conCreateProductConProduct .supplier = conProduct
conCreateProductConProduct .isIsomorphic

Role occurrence properties at the pattern-level
factoryHierarchy.occurrence = 1 ∧ productHierarchy.occurrence ≥ 1
absCreateProduct .occurrence ≥ 1 ∧ conCreateProduct .occurrence ≥ 1

A Tool for a Formal Pattern Modeling Language 575

The Object-Z class AbstractFactory is a formal definition of the Abstract Fac-
tory pattern. It inherits from the Object-Z classes Factory and Product. Since
the product hierarchy can occur multiple times, the occurrence property of the
product roles is defined as greater than or equal to 1. In addition, various de-
pendency relationships between the roles are formally defined using their corre-
sponding Object-Z classes. For example, the variable absCreateProductAbsProd-
uct formally defines the isomorphic occurrence dependency between the create
operation role of the factory class role and an abstract product class role.

3 Implementation of the Formal Role Concepts

We use an existing modeling framework, EMF, to implement the role meta-
model in Object-Z. EMF is a Java framework for building applications based
on simple class models. EMF plays a very important part in our pattern-based
modeling approach as it is used to implement the role metamodel and to de-
velop pattern models. The implementation is achieved by developing an ecore
model (role.ecore) for the role metamodel. From the ecore model, we can gener-
ate Java code using the Java code generation facility provided in EMF. It should
be noted that we automatically generate an ecore model from the Object-Z role
metamodel using a model transformation tool, Tefkat [23]. That is, given the
metamodels of Ecore and Object-Z, we define a set of transformation rules be-
tween the two languages, and use these rules to generate an ecore model from
the role metamodel in Object-Z. Previously we presented model transformation
between Object-Z and UML. Transformation between Object-Z and Ecore is
similar, so we refer readers to [10] for details on this topic.

Once we have an ecore model of the role metamodel, using the code generation
facility of EMF we can generate Java code implementing the metaclasses in the
role metamodel. Given this Java code, EMF also allows the automatic generation
of an editor to create instance models of the metamodel. Using this editor,
users can develop pattern models based on the role concepts defined in the role
metamodel. Figure 4 shows the editor generated by EMF from the role.ecore.
The editor shows a list containing all role elements definable at the model level
such as class roles and relationship roles. To create a pattern model, we simply
choose ClassRole from the list and fill in properties such as role name in the
property window. Once an instance of a class role is created, we can define
attribute roles and operation roles using the editor. Once a pattern model is
created, EMF generates an XMI output file and this file can be understood by
MDA tools.

The example pattern model in Fig. 4 defines the AbstractFactory pattern.
It contains several class roles: an AbstractFactory class role, a ConcreteFactory
class role, an AbstractProduct class role and a ConcreteProduct class role. Since
the product hierarchy can occur multiple times when the pattern is realized in
a design, the occurrence property of the product roles is defined as greater than
or equal to 1. On the other hand, the AbstractFactory has 1 for the value of its
occurrence feature because this role can be bound only once when the pattern is

576 S.-K. Kim and D. Carrington

realized in a design. Complex occurrence dependencies between the roles are also
precisely defined. For example, the isomorphic occurrence dependency between
the abstract CreateProduct operation role and the AbstractProduct class role
is modelled by defining a SimpleOccurrenceDependency between the roles. The
dependency between the ConcreteFactory class role and a family of the Con-
creteProduct class roles in the Product hierarchy is also modelled by defining a
HierarchyOccurrence Dependency between the role elements. Patterns developed
in this way capture the properties defined using Object-Z in Section 2.3.

Fig. 4. The pattern model editor generated by EMF

3.1 Validation of Pattern Models

Although we implement the ecore model generated from the formal role meta-
model using EMF, constraints expressed in Object-Z in the formal model cannot
be implemented directly using the EMF code generation facility. This means that
using the editor generated by EMF, users cannot check the conformance of pat-
terns to the constraints defined in the role metamodel in Object-Z. We address
this issue by adding several validation features to the generated pattern editor.
For example, we use the EMF Validation Framework [7] to implement a vali-
dation facility to check pattern descriptions against the role metamodel. When
we implement the role metamodel using EMF, EMF generates Java classes im-
plementing the meta-classes defined in the ecore role metamodel (i.e. these Java
classes are called model classes). Within these model classes, we implement a
method named invariant that checks the constraints of the meta-classes that we
defined using Object-Z in the formal role metamodel. When invariant methods

A Tool for a Formal Pattern Modeling Language 577

are found in the model classes, EMF generates a special Validator class called
PatternsValidator. This class is used by the EMF Validation Framework to check
user-defined constraints in the model classes. The generated EMF editor includes
a user-invoked action for validating instances of the role metamodel.

We also customize the generated editor to provide interactive feedback while
a pattern model is being edited by displaying error messages in the Problems
tab. This ensures that if the pattern model violates any constraints, the problem
is reported immediately. Consider the constraint that says that every class role
in a pattern must have a different role name, which is a constraint defined for
the metaclass Pattern in Fig. 2. The following is partial Java code implement-
ing this constraint using the EMF Validation framework. The method is added
to the generated Java class that implements the Pattern metaclass in the role
metamodel.

public boolean invariant(DiagnosticChain diagnostics, Map context) {
// Check for duplicate named role element names

for(int j = i; j < names.size(); j++) {
String nextName = (String)names.get(j);
if(nextName != null && nextName.equals(name)) {

if (diagnostics != null) {
diagnostics.add(new BasicDiagnostic(
Diagnostic.ERROR, PatternsValidator.DIAGNOSTIC_SOURCE,

PatternsValidator.PATTERN__INVARIANT,
"Duplicate named role element: " + name,

new Object [] { this })); }
...

}

The example pattern in Fig. 5 violates this constraint since it has two class
roles with the same name. An error message is displayed in the problem tab.

3.2 Customization to Prevent Errors

It is always better to prevent errors if possible rather than identify and correct
them after they are introduced. To prevent user errors, we constrain the choices
that the editor offers to the user in a selection. For example, one of the constraints
in the HierarchyOccurrenceDependency class requires that the supplier role must
be an instance of ClassRoleHierarchy. However, since the supplier reference is
inherited from the RoleDependency class, its type is RoleElement. Although
the invariant in the model class requires that the supplier is an instance of
ClassRoleHierarchy, the generated editor allows any RoleElement to be selected,
since the type of the reference is RoleElement. A better approach is to restrict
the possible values that can be selected to just the ClassRoleHierarchy instances.
EMF generates two different plugins that deal with user interface code. The edit
plugin provides code that is meant to be reused, while the editor plugin provides
the specific editor code for Eclipse. The editor plugin uses item providers to

578 S.-K. Kim and D. Carrington

Fig. 5. The problems tab showing errors

Fig. 6. Customized Pattern Editor and a pattern browser

A Tool for a Formal Pattern Modeling Language 579

interact with the model. Item providers adapt model objects so they can provide
interfaces to be viewed or edited. We customize the editor plugin to provide
constraints at the editor level that involve restricting the possible items (e.g. the
dropdown menu in Fig. 6 only shows class roles to define a class role hierarchy).
In this way, the pattern editor now only displays role elements that are relevant,
thus preventing potential user errors.

Once pattern models are defined, they are placed in a pattern repository. A
pattern browser that allows the user to browse and select patterns is added to
the pattern modeling framework. A general description of each pattern such as
intent and motivation is also displayed in the pattern browser (see the left hand
side in Fig. 6).

4 Deploying Patterns in Models

In our approach, a pattern is deployed in a design model by developing a binding
model that maps pattern entities to the design entities. This separation of role
binding information from the design model has several advantages:

– It does not increase the complexity of the design model, which can occur if
pattern deployment information is included in the model.

– After a design model evolves, pattern deployment information remains in
the binding model. Any modifications of pattern use in the design model or
checking any conflicts with pattern properties after design model evolution
can be achieved by tracing the binding models.

4.1 Formal Definition of the Role Binding Model

A role binding metamodel captures all information linking role elements defined
in a pattern to model elements defined in a design model. Figure 7 shows the
structure of a role binding model. A role binding model is associated with a
pattern model and a design model. It has a set of bindings; each binding maps
a role element to a design model element in the design model.

Our role binding metamodel is generic and does not restrict pattern realization
in a particular way. Instead it defines a small set of integrity constraints that
must be preserved in any pattern realization to make the pattern realization

Fig. 7. Role binding model structure

580 S.-K. Kim and D. Carrington

valid. The validity of the pattern realization can be checked using the binding
model. Since patterns are realized mainly in class models, we restrict design
models to class models.

Prior to providing a formal definition of the role binding model, we give a
formal definition of a class model below. A class model has a set of classes and
relationships between the classes. A class has attributes and operations and a
relationship has associated information such as its source, target and multiplicity.

ClassConstruct ==Class
⋃

Attribute
⋃

Operation
⋃

Relationship
⋃

Parameter
ClassModel

class : PClass
rel : P Relationship

We then define an Object-Z class Binding to describe mappings from a role
element to a design model element. Since roles can be instances of any subclasses
of the metaclass RoleElement, the ↓ operator defining polymorphism in Object-Z
[18] is attached to the type of the roleElement attribute.

Binding

roleElement : ↓RoleElement
designElement : ClassConstruct

Using the concepts above, we give a formal definition of a role binding model. A
role binding model has a role model defining a pattern and a class model realizing
the pattern, and a set of role bindings between role elements and design elements.
The integrity constraints that must be preserved in any pattern realization are
defined as constraints in the Object-Z class. For example, for each role in a pat-
tern except dependencies (which will be realized by the bindings of their associ-
ated roles), the occurrence property of each role must be preserved in the binding.
This integrity constraint of the binding model is formalized as a constraint in the
Object-Z class (see [11] for a full formal description of the role binding model).

RoleBindingModel

classModel : ClassModel
pattern : RoleModel
bindings : P Binding⋃
{b : bindings • b.roleElement} ⊆ pattern.roles⋃
{b : bindings • b.designElement} ⊆ classModel .class ∪ classModel .rel
∀ r : {rr : pattern.roles | rr �∈ RoleDependency} •

#{b : bindings | b.roleElement = r} ≤ r .occurrence

...

A Tool for a Formal Pattern Modeling Language 581

4.2 Implementation of the Role Binding Model and Consistency
Checking

The role binding model is implemented using EMF in the same way as we imple-
ment the role metamodel. The binding editor, like the pattern editor, is based
on the generated EMF editor for the binding meta-model. Patterns can be used
in software development in various ways2, so we support pattern use in any class
model that is defined as a MOF or Ecore model (see Fig. 8).

Fig. 8. Generic Pattern Binding Architecture

To provide generic support for any class model, some customizations are re-
quired since the generated editor refers to two different models (the target class
model and the role model defining a pattern) and the user should be able to
select any element in the class model as the target for a binding instance model.
We have developed a Pattern Deployment Wizard that allows the user to choose
a class model to deploy patterns. Once a model is selected, a role binding editor
generated by EMF is displayed (see Fig. 9). Using this editor, a user can define
how to deploy a pattern in that design model. The role binding editor lists all
the roles defined in the pattern and provides the pattern description. When a
role is selected, the property window shows relevant model elements that can be
mapped to this role. The validity of binding models can be checked at binding
time or when the binding is completed. The validity checks are implemented as
class invariants. When a binding model is incomplete (some role elements not
mapped to design model elements), the validator displays warnings and checks
the integrity of the binding model for the mapped role elements (see the Prob-
lems view in Fig.9).

2 [4,21] use patterns to build a design model while others use patterns for refactoring
existing models [20] or code refactoring [8].

582 S.-K. Kim and D. Carrington

Fig. 9. Role binding editor and binding model validator

Fig. 10. Role binding model example 1 deploying the AbstractFactory pattern

4.3 Examples of the Role Binding Model

Figures 10 and 11 show two different binding model examples for the Abstract-
Factory pattern. The example in Fig. 10 shows a simple application of this

A Tool for a Formal Pattern Modeling Language 583

Fig. 11. Role binding model example 2 deploying the AbstractFactory pattern

Fig. 12. Evolved design model example deploying the AbstractFactory pattern

pattern where the product class role hierarchy is mapped once to a design model.
Within the product hierarchy, the concrete product class role is mapped to two
different classes in the design model (see the partial class diagram added to the

584 S.-K. Kim and D. Carrington

example purely for descriptive purposes). On the other hand, the example in Fig.
11 shows another application of the same pattern where the product hierarchy
is mapped twice, and then within each hierarchy, the concrete product class role
is mapped just once to a different class in the design model. The role binding
models of both examples are valid since they satisfy the integrity constraints
defined in the role binding metamodel, so the binding validator does not report
any errors.

As mentioned, once a binding model is created for a design model, the model
is automatically evolved into a pattern-deployed model using model transfor-
mation techniques. Figure 12 shows the resulting design models deploying the
AbstractFactory pattern based on the two binding models in Fig. 10 and 11.

The original design models are evolved by adding new model elements accord-
ing to the binding properties defined in the binding models. For any unbound
role elements, we provide a set of default rules to transform those role elements
to design model elements. In the examples, we create new classes that correspond
to the factory class role and the abstract product class role in the pattern. Then
the relationships between these classes are defined based on the relationships be-
tween their corresponding class roles in the pattern. The default rules are readily
customized by the user.

5 Related Work

Lano et. al [9] formalize patterns using VDM++ and prove design patterns as
refinement transformations using the Object Calculus. Flores et al. [2] use the
RAISE Specification Language to formally specify properties of patterns focusing
on the responsibilities and collaborations of the pattern participants. Eden et al.
[1] present patterns as formulae in LePUS, a language defined as a fragment of
higher order monadic logic. These works bring precision to pattern descriptions.
However, they focus mainly on pattern creation and do not cover pattern use as
we do.

There is also interest in defining patterns using UML. Fontoura and Lucena
[13] use new stereotypes and tagged values to improve the presentation of design
pattern configurations. Similarly, Sanada and Adams [24] define a UML profile
for patterns in which several stereotypes are defined to support the presentation
of design patterns. Another approach uses metamodeling to define pattern con-
cepts in the context of the UML metamodel. For example, Guennec et al. [3]
use meta-level collaborations to present design patterns and specify some pat-
tern properties as a set of constraints using OCL. Mak et al. [14] present similar
work to [3] using meta-level UML collaborations to present design patterns. All
these works discuss patterns in the context of UML and limit their application
to UML.

Using role modeling techniques, Riehle [5] and Lauder et al. [12] use role con-
cepts to describe patterns, but they limit the role concepts mainly to objects and
do not capture other roles played by different entities in a pattern such as classes,
features of the classes and relationships between classes. Also object notations

A Tool for a Formal Pattern Modeling Language 585

used by Riehle and Lauder et al. such as type models in [12] or class templates
in [5] do not reflect the full generality of patterns. France et al. [19] reduce these
problems by extending the role concepts beyond objects to all features in UML
such as classes, attributes, operations, associations, and generalizations. They
also use OCL to specify those pattern properties that can be only decided at
pattern instantiation time in terms of meta-level pattern constraints. The use
of roles facilitates describing patterns in an abstract manner by utilizing roles
as placeholders for types or classes. Nevertheless, France et al. discuss role con-
cepts in the context of UML only. Also utilizing role concepts in any UML model
construct makes the overall pattern description unnecessarily complex.

Neal et al. [21] define the Pattern Constraints Language (PCL) to describe
patterns based on roles and role behaviours. They also developed a tool to check
that the behaviour of a system implementing a pattern is consistent with the
pattern specification. Soundarajan et al. [15] present an approach to specifying
patterns based on roles and their responsibilities. Nevertheless, the main focus
of these approaches is on describing patterns using role concepts. They do not
consider pattern use as we do in the context of MDA. Also their approaches are
not as generic as ours, which is applicable to any modeling language at any level
of abstraction.

There is also research that uses patterns for software evolution. For example,
Mens et al. [22] present a declarative metamodeling approach to specify design
patterns and their evolution in the software. Mapelsden et al. [4] introduce a tool
that supports pattern use in UML models. They use a notation called the De-
sign Pattern Modeling Language (DPML) to specify patterns. A design pattern
instantiation model is created by copying the structure of the pattern specifica-
tion. This instantiation model is then used to check correct usage of the pattern
in a UML model by linking all design pattern instance elements to the UML
design model elements. Unlike our work, this work is not generic just supporting
pattern use in UML; they do not separate pattern usage information from the
design model; they do not use model transformation techniques to evolve models
based on patterns.

France et al. [20] present a metamodeling approach to model refactoring based
patterns. This approach shares some ideas with our work, but it is not generic
like ours and they do not implement their ideas as a supporting tool. In addition,
most of the tools introduced in this area are stand-alone, while we incorporate
the pattern development environment into an existing modeling environment
providing an integrated modeling framework.

6 Conclusions and Future Work

In this paper we have presented a formal pattern modeling language that is
designed specifically to describe design patterns and we have implemented the
language using an existing modeling framework. We have provided a plugin tool
for the same modeling framework that supports the creation and validation of
pattern descriptions and also supports pattern-based model evolution in the

586 S.-K. Kim and D. Carrington

MDA context. When a model is completed based on patterns, we can apply an
MDA tool to generate code from the model. Using formalism, we bring precision
to the language definition. Using an existing modeling framework, we provide
tools for the formal technique. We have defined the design patterns in the GoF’s
pattern book [6] using the pattern language and built a pattern repository. Cur-
rently we are investigating the scalability and feasibility of our approach using
enterprise scale applications, and improving the usability of the role binding
process.

Acknowledgements

This research is funded by an Australian Research Council Discovery grant,
DP0451830: Formalizing Software Design Pattern Concepts and Pattern Speci-
fications using Metamodeling. We wish to thank Alejandro Metke for his assis-
tance in implementing the plugins.

References

1. Eden A., Y. Hirshfeld, and A. Yehudai. Lepus - a declarative pattern specification
language. Technical Report 326/98, Department of Computer Science, Tel Aviv
Uni., http://www.math.tau.ac.il/ eden/bibliography.html#lepus, 1998.

2. Flores A., L. Reynoso, and R. Moore. A formal model of object-oriented design
and GoF patterns. Technical Report 200, UNU/IIST, 2000.

3. Guennec A., G. Sunye, and J. Jezequel. Precise modeling of design patterns. In
UML2000, volume 1939 of LNCS, pages 482–496. Springer, 2000.

4. Mapelsden D, J. Hosking, and J. Grundy. Design pattern modeling and instantia-
tion using DPML. In TOOLS Pacific, pages 3–11, 2002.

5. Riehle D. Describing and composing patterns using role diagrams. In Ubilab
Conference, pages 137–152, 1996.

6. Gamma E., R. Helm, R. Johnson, and J. Vlissidese. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, 1995.

7. EMF. Eclipse modeling framework, http://www.eclipse.org/emf/.
8. Kerievsky J. Refactoring to Patterns. Addison Wesley, 2005.
9. Lano K., S. Goldsack, and J. Bicarregui. Formalizing design patterns. In BCS-

FACS, http://www1.bcs.org.uk/DocsRepository/02700/2790/lano.pdf, 1996.
10. Soon-Kyeong Kim, Damian Burger, and David A. Carrington. An MDA approach

towards integrating formal and informal modeling languages. In Formal Methods,
volume 3582 of LNCS, pages 448–464. Springer, 2005.

11. Soon-Kyeong Kim and David A. Carrington. A rigorous foundation for pattern-
based design models. In International Conference of B and Z Users, volume 3455
of LNCS, pages 242–261. Springer, 2005.

12. Anthony Lauder and Stuart Kent. Precise visual specification of design patterns.
In ECOOP, volume 1445 of LNCS, pages 114–134. Springer, 1998.

13. Fontoura M. and C. Lucena. Extending UML to improve the representation of
design patterns. Journal of Object-Oriented Programming, 13(11):12–19, 2001.

14. Jeffrey Ka-Hing Mak, Clifford Sze-Tsan Choy, and Daniel Pak-Kong Lun. Precise
modeling of design patterns in UML. In International Conference on Software
Engineering.

A Tool for a Formal Pattern Modeling Language 587

15. Soundarajan N. and J. Hallstrom. Responsibilities and rewards: Specifying design
patterns. In International Conference on Software Engineering, pages 666 – 675,
2004.

16. Object Management Group, Framingham, Massachusetts. MDA Guide Version
1.0.1, June 2003.

17. Object Management Group, Framingham, Massachusetts. UML 2.0 Superstructure
Specification, October 2004.

18. Duke R. and G. Rose. Formal Object-Oriented Specification Using Object-Z.
Macmillan, 2002.

19. France R., D.-K. Kim, G. Sudipto, and E. Song. A UML-based pattern specification
technique. IEEE Transactions on Software Engineering, 30(3):193–206, 2004.

20. France R., G. Sudipto, E. Song, and D.-K. Kim. A metamodeling approach to
pattern-based model refactoring. IEEE Software, 20(5):52–58, 2003.

21. Neal S. and P. Linington. Tool support for development using patterns. In Inter-
national Enterprise Distributed Object Computing, pages 237–248, 2001.

22. Mens T. and Tourwe T. A declarative evolution framework for object-oriented
design patterns. In International Conference on Software Maintenance, pages 570–
579, 2001.

23. Tefkat. The EMF transformation engine, https://sourceforge.net/projects/tefkat/.
24. Sanada Y. and R. Adams. Representing design patterns and frameworks in UML

- towards a comprehensive approach. Journal of Object-Oriented Programming,
2:143–154, 2002.

An Open Extensible Tool Environment for Event-B�

Jean-Raymond Abrial1, Michael Butler2, Stefan Hallerstede1, and Laurent Voisin1

1 ETH Zurich, Switzerland
{jabrial, halstefa, lvoisin}@inf.ethz.ch

2 University of Southampton, United Kingdom
M.J.Butler@ecs.soton.ac.uk

Abstract. We consider modelling indispensable for the development of complex
systems. Modelling must be carried out in a formal notation to reason and make
meaningful conjectures about a model. But formal modelling of complex sys-
tems is a difficult task. Even when theorem provers improve further and get more
powerful, modelling will remain difficult. The reason for this that modelling is
an exploratory activity that requires ingenuity in order to arrive at a meaningful
model. We are aware that automated theorem provers can discharge most of the
onerous trivial proof obligations that appear when modelling systems. In this arti-
cle we present a modelling tool that seamlessly integrates modelling and proving
similar to what is offered today in modern integrated development environments
for programming. The tool is extensible and configurable so that it can be adapted
more easily to different application domains and development methods.

1 Introduction

We consider modelling of software systems and more generally of complex systems to
be an important development phase. This is certainly the case in other engineering dis-
ciplines where models are often produced in the form of blueprints. We also believe that
more complex models can only be written when the method of stepwise refinement is
used. In other words, a model is built by successive enhancement of an original simple
“sketch” carefully transforming it into more concrete representations. As an analogy,
the first sketchy blueprint of an architect is gradually zoomed in order to eventually
represent all the fine details of the intended building. On the way decisions are made
concerning the way it can be constructed, thus yielding the final complete set of blue-
prints. We believe that formal notation is indispensable in such a modelling activity.
It provides the foundation on which building models can be carried out, similar to the
formal conventions that are used when drawing blueprints. Simply writing a formal text
is insufficient, though, to achieve a model of high quality. However, we cannot test or
execute a model to verify that the model has the properties that we demand of it. Simi-
larly, we cannot open a window in the blueprint of a building. The only serious way to
analyse a model is to reason about it, proving in a mathematically rigorous way that the
properties are satisfied.

� This research was carried out as part of the EU research project IST 511599 RODIN (Rigorous
Open Development Environment for Complex Systems) http://rodin.cs.ncl.ac.uk

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 588–605, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Open Extensible Tool Environment for Event-B 589

In order for formal modelling to be used safely and effectively in engineering prac-
tice, good tool support is necessary. Present day integrated development environments
used for programming do carry out many tasks automatically in the background, e.g.
[13], and provide fast feedback when changes are made to a program text. In particular,
there is no need for the user to start processes like compilation. A program is written and
then run or debugged without compiling it. We present a tool for Event-B [3] that applies
these techniques used in programming to formal modelling. Instead of compilation, we
are interested in proof obligation generation and automatically discharging trivial proof
obligations. Instead of running a program we reason about models or analyse them.

Verification by proof is not restricted to modelling. It has a long tradition in pro-
gramming methodology, too, e.g. [17]. Software tools that support formal verification
methods in programming have been developed, e.g. [7,14]. We mention [7], in partic-
ular, because the Boogie architecture presented in the article provides characteristics
similar to the Event-B tool. We quote two points from [7] about Boogie and present our
view of them:

(1) “Design-Time Feedback”. The tool is very responsive and provides almost imme-
diate feedback that easily relates to the program, (resp. model).

(2) “Distinct Proof Obligation Generation and Verification phases”. This allows decou-
pling the development of the programming (resp. modelling) method and prover
technologies. It also allows the origin of a proof obligation to be traced easily. This
is particularly important when proofs fail.

The third point in the list describing Boogie in [7] is “Abstract Interpretation and Verifi-
cation Condition Generation”. The corresponding problem does not exist in the Event-B
notation because it has been designed to be very close to the proof obligations by means
of which we reason about Event-B. Technical difficulties encountered in Event-B stem
more from the support of refinement and from the requirement that proof obligations
appear transparent to the user. By transparency we mean that the user should look at
the proof obligation as being part of the model. When a proof obligation cannot be
proved, it should be almost obvious what needs to be changed in the model. When
modelling, we usually do not simply represent some system in a formal notation. At the
same time we learn what the system is and eliminate misunderstandings, inconsisten-
cies, and specification gaps. In particular, in order to eliminate misunderstandings, we
first must develop an understanding of the system. The situation is quite different when
programming. When we start programming we should already understand what we are
implementing. We do not look any longer at the system as a whole but only at the parts
that we have to implement, and our main concern is doing this correctly. The task of a
tool is to point out programming errors to the user.

In this article we focus on the Event-B tool. This tool is implemented on top of
the RODIN open tools kernel [24] which is developed alongside the Event-B tool. The
motivation and background of the RODIN open tools kernel is discussed in Section 1.2.

1.1 Existing Tools for Modelling and Proof

We review a selection of formal modelling tools. It is not intended to be complete but to
explain the kind of problems that we try to overcome with the Event-B tool described
in this article.

590 J.-R. Abrial et al.

The use of general purpose theorem provers with modelling notations like Z [10,29],
Action Systems [4,19], or Abstract State Machines [6,9] usually requires a lot of expert
knowledge in order to make efficient use of them when reasoning about formal models.
This is not a problem of bad design of the theorem prover, but more a problem of bridg-
ing the gap between the notation and the logic underlying the theorem prover. General
purpose theorem provers are well-suited to proving mathematical theorems in mathe-
matical domains. The main problem solved by the theorem prover is to provide efficient
ways to prove theorems. They are not specifically geared for modelling or the typical
proof obligations associated with modelling. Theorem provers do assume that the prob-
lems to be proved, i.e. the proof obligations, are stated by the user and their proofs as
such matter to the user. However, if the main interest of the user is modelling, the user
is more concerned with understanding and learning about a model than with the proofs.
In particular, generation of the proof obligations should be build into the tool to free the
user from tedious work of writing them explicitly. In addition, we expect such a tool
to be extensible and adaptable to cope with new and changing applications. This is not
an issue with a general purpose theorem prover because proof obligation generation is
manual anyway. In the Event-B tool we ensure that proof obligation generation remains
extensible and adaptable.

Isabelle [23,30] has been used with Z [10]. Although well-integrated the main prob-
lem remains that the user must explicitly specify proof obligations and is responsible for
maintaining them. Another problem is that the user must understand the Isabelle logic as
well as that of Z. To some degree this is alleviated by the Isar language [22] that extends
Isabelle with more legible proofs. Similarly, abstract state machines (ASM) have been
used with the KIV theorem prover [6]. The refinement theory used with ASM is stated
in KIV and the user has to state the relevant theorems (proof obligations). When dealing
with large models the amount of proof obligations is simply to high to load the user with
this task [5]. Our tool overcomes these problems by maintaining proof obligations and
by providing a prover that is tailored for first-order logic and set theory (which are the
basic mathematical theories of Event-B). In the design of the tool great care has been
taken to easily relate proof obligations to a model, so that the user can quickly return to
the model when a proof fails. The prover interface has also been designed to appear as
natural as possible to the user. It gives a graphical representation of a sequent calculus
for classical logic that has been further developed from the Click’n’Prove tool [2]. The
major shortcoming of Click’n’Prove is that it is built on top of a theorem prover that
executes proof scripts. As a consequence, feedback to the user is slow. In addition, the
user must explicitly start tools to type-check a model, or generate proof obligations for
it. Because the proof obligation generator has been developed for models of sequential
programs with the B-Method [1], some proof obligations have variables renamed or are
rewritten to a point where they are difficult to relate to the model. This violates our re-
quirement for transparency. Following the experience with Click’n’Prove, we have also
simplified Event-B (see Section 2) so that it does not hinder the design of a transparent
proof obligation generator. In the Event-B tool, models are stored in a repository and
manipulated like spread sheets. Furthermore, all elements of a model (e.g. invariants,
axioms) are named. This makes it possible for the tool to analyse models differentially,

An Open Extensible Tool Environment for Event-B 591

only generating proof obligations when necessary. The proof obligations are connected
to the model by referring to involved repository elements.

The Z/EVES system [26] has a graphical front-end for Z specifications. It has auto-
matic support for type-checking and some related properties. Although its prover is part
of the tool, the user is responsible for stating relevant proof obligations. Z/EVES mostly
provides a good interface for entering models graphically but less so for reasoning about
them.

The approach of embedding a modelling notation into a general purpose theorem
prover [10] like Isabelle [23] or Coq [8] provides a strong logical foundation. This is
very satisfactory from a logicians point of view. From an industrial point of view, logical
soundness is only one design consideration. We also need reactivity, i.e. immediate
feedback, speed, and a notation and logic that is familiar to the user of the tool. This is
very difficult to achieve in embedded designs. In the area of safety-critical embedded
software, the approach of directly implementing provers has been proved fruitful. The
Atelier B tool [11] has been used in large scale industrial projects, e.g. [5].

1.2 The Significance of Extensibility and Configurability

We take the view that no one tool can solve all our development problems and that it is
important to apply a range of tools in a complementary way in rigorous development.
For example, it makes sense to apply model checking as a pre-filter, before applying a
theorem prover to a proof obligation. Similarly the use of a diagrammatic views (e.g.,
UML) of a formal model can aid with construction and validation. Many analysis tools,
such as model checkers, theorem provers, translation tools (e.g., UML to B and code
generators), have been developed, some of which are commercial products and some
research tools. However a major drawback of these tools is that they tend to be closed
and difficult to use together in an integrated way. They also tend to be difficult for
other interested parties to extend, making it difficult for the work of a larger research
community to be combined. Our aim with the RODIN open tools kernel is to greatly
extend the state of the art in formal methods tools, allowing multiple parties to integrate
their tools as plug-ins to support rigorous development methods. This is likely to have a
significant impact on future research in formal methods tools and will encourage greater
industrial uptake of these tools.

As well as supporting the combination of different complementary tools, openness
and customizability is very important in that it will allow users to customize and adapt
the basic tools to their particular needs. For example, a car manufacturer using Event-B
to study the overall design of a car information system might be willing to plug some
special tools able to help defining the corresponding documentation and maintenance
package. Likewise, a rocket manufacturer using Event-B might be willing to plug a
special tool for analysing and developing the failure detection part of its design.

2 The Event-B Method

Event-B is defined in terms of a few simple concepts that describe a discrete event sys-
tem and proof obligations that permit verification of properties of the event system. We
present the notation using some syntactical conventions. The keywords when, then,

592 J.-R. Abrial et al.

end, and so on, are just delimiters to make the textual representation more readable.
Introduction of a syntax in the definition of the notation would make it much more
difficult to extend the notation, e.g. by introducing probabilities [21].

An Event-B model consists of contexts and machines. In this description we focus
on machines. A complete description of Event-B can be found in [3].

Contexts contain the static parts of a model. These are constants and axioms that
describe the properties of these constants.

Machines contain the dynamic parts of a model. A machine is made of a state, which
is defined by means of variables. Variables, like constants, correspond to simple math-
ematical objects: sets, binary relations, functions, numbers, etc. They are constrained
by invariants I(v) where v are the variables of the machine. Invariants are supposed to
hold whenever variable values change. But this must be proved first (see Section 2.1).

Besides its state, a machine contains a number of events which show the way it may
evolve. Each event is composed of a guard and an action. The guard is the necessary
condition under which the event may occur. The action, as its name indicates, deter-
mines the way in which the state variables are going to evolve when the event occurs.

An event may be executed only when its guard holds. Events are atomic and when the
guards of several events hold simultaneously, then at most one of them may be executed
at any one moment. The choice of event to be executed is non-deterministic. Practically
speaking, an event, named evt, is presented in one of the three following simple forms:

evt =̂ begin S(v) end

evt =̂ when P (v) then S(v) end
evt =̂ any t where P (t, v) then S(t, v) end ,

where P (. . .) is a predicate denoting the guard, t denotes some variables that are local
to the event, and S(. . .) denotes the action that updates some variables. The variables
of the machine containing the event are denoted by v.

The action consists of a collection of assignments that modify the state simultane-
ously. An assignments has one of the following three simple forms:

Assignment Before-After Predicate

x := E(t, v) – x′ = E(t, v)
x :∈ E(t, v) – x′ ∈ E(t, v)

x :| Q(t, v, x′) – Q(t, v, x′) ,

where x are some variables, E(. . .) denotes an expression, and Q(. . .) a predicate.
Simultaneity of the assignments is expressed by conjoining the before-after predicates
of an action. Variables y that do not appear on the left hand side of an assignment of
action do not change. Formally this is achieved by conjoining y′ = y to the before-after
predicate of the action. Note, that Event-B requires actions to be feasible under the
guard of the corresponding events. For instance, for the non-deterministic assignment
we must prove

I(v) ∧ P (t, v) ⇒ (∃x′ ·Q(t, v, x′)) ,

where I(v) is the invariant of the machine and P (t, v) the guard of the event.

An Open Extensible Tool Environment for Event-B 593

In order to be able to provide better tool support invariants, guards, actions are lists
of named predicates and assignments. These names can be used to refer to these objects
from within the documentation of a machine. But foremost, these names are used to
identify all objects and provide helpful information about the origin of proof obligations
in the prover interface. The different predicates in the list are implicitly conjoined.

2.1 Consistency of a Machine

Once a machine has been written, one must prove that it is consistent. This is done
by proving that each event of the machine preserves the invariant. More precisely, it
must be proved that the action associated with each event modifies the state variables
in such a way that the modified variables satisfy the invariant, under the hypothesis
that the invariant holds presently and the guard of the event is true. For a machine with
state variable v, invariant I(v), and an event when P (v) then v := E(v) end the
statement to be proved is the following:

I(v) ∧ P (v) ⇒ I(E(v)) . (1)

Note that, in practice we carry out a decomposition of (1) according to the lists of
named invariants, guards, and actions. So statement (1) is not the proof obligation the
user gets to see. Instead the user sees a collection of simpler proof obligations.

2.2 Refining a Machine

Refining a machine consists of refining its state and its events. A concrete machine
(with regards to the more abstract one) has a state that should be related to that of the
abstraction by a so-called glueing invariant, which is expressed in terms of a predicate
J(v, w) connecting the abstract state represented by the variables v and the concrete
state represented by the variables w.

Each event of the abstract machine is refined to one or more corresponding events of
the concrete one. Informally speaking, a concrete event is said to refine its abstraction
(1) when the guard of the former is stronger than that of the latter (guard strengthening),
(2) and when the glueing invariant is preserved by the conjoined action of both events.
In the case of an abstract event abs and a corresponding concrete event con of the form

abs =̂ when P (v) then v := E(v) end

con =̂ when Q(w) then w := F (w) end ,

the statement to prove is the following:

I(v) ∧ J(v, w) ∧ Q(v) ⇒ P (v) ∧ J(E(v), F (w)) , (2)

where I(v) is the abstract invariant and J(v, w) is the glueing invariant.
Similarly to (1) the user never gets to see (2) but only the decomposed form.

2.3 Adding New Events in a Refinement

When refining a machine by another one, it is possible to add new events. Such events
must be proved to refine a dummy event that does nothing (skip) in the abstraction.

594 J.-R. Abrial et al.

Moreover, it may be proved that the new events cannot collectively take control forever.
For this, a unique variant expression V (w) has to be provided, that is decreased by each
new event. In case the new event has the form:

evt =̂ when R(w) then w := G(w) end ,

the following statements have to be proved:

I(v) ∧ J(v, w) ⇒ J(v, G(w)) (3)

I(v) ∧ J(v, w) ⇒ V (w) ∈ N ∧ V (G(w)) < V (w) , (4)

where we assume that the variant expression is a natural number (but it can be more
elaborate).

2.4 More on Event-B

We have kept the presentation of Event-B concise in order to avoid too many defi-
nitions. The article [3] provides more detail. The work on Event-B originates in the
Action System formalism [4]. So techniques developed for Action Systems can often
also be used with Event-B. However, unlike Action Systems the distinguishing charac-
teristic of Event-B is that the notation has been designed with efficient tool support in
mind. Action Systems impose less restrictions in modelling but are difficult to support
efficiently by means of a software tool.

3 The Event-B Modelling Tool

The software tool support for Event-B should not be just another theorem prover. It
should be a modelling tool that constrains modelling activity as little as possible. Pow-
erful theorem provers are available [8,12,16,23] but not enough attention has been paid
in formal methods to tool support for the modelling activity per se. Traditionally, it
is assumed that one begins a formal development with a specification and develops it
into a correct implementation. The flaw in this description is that, initially, there is no
specification. Writing a specification involves making errors. The Event-B modelling
tool takes this into account by being reactive and efficiently supporting incremental
changes to models. Development towards an implementation will profit from this, too.
In fact, we consider both, writing a specification and implementing it, to be part of the
modelling activity.

Modelling the Modelling Tool. Although, we do not have translators that could generate
plug-ins for the RODIN platform, modelling its components is still useful. As a matter
of fact, formal models for most kernel components concerned with Event-B have been
created before they were implemented. Some models use Event-B itself, but not all. In
this section we also describe the different models that have been created and discuss
their use and usefulness.

Architecture of the Tool. The tool for Event-B (see Figure 1) is incorporated into the
RODIN platform which is an extension of the Eclipse platform. We do not explain
Eclipse in this article but only refer to the existing literature [15].

An Open Extensible Tool Environment for Event-B 595

POG
Event−B

SC
Event−B

POM
Event−B

Event−B
SEQP

Rodin Event−B
AST

Eclipse
Platform

Event−B
Core

Event−B
UI

Platform
Rodin

Event−B

Core

Library

Event−B Event−B
MUI PUI

Bundles

Fig. 1. Architectural Overview of the Event-B Tool

3.1 The RODIN Core

The RODIN Core consists of two components: the RODIN repository and the RODIN
builder. These two components are tightly integrated into Eclipse based on designs
derived from the Java Development Tools of Eclipse. Informal specifications for the
repository and the builder have been developed. Their functionality is simple. They are
however very dependent on the resources and concurrency model of Eclipse. Neither
the repository nor the builder make any assumptions about elements being stored. In
particular, they are independent of Event-B. The use of a repository instead of a fixed
syntax for the modelling notations makes extending, e.g. Event-B, much easier. It is not
necessary to change the syntax or to make extensions inside comments (in order not to
change the syntax).

The RODIN repository manages persistence of data elements. There is a simple
correspondence between data elements in form of Java objects and their persistent
storage in XML files. The main design characteristic of the RODIN repository is easy
extensibility.

The RODIN builder schedules jobs depending on changes made to files contained
in the RODIN repository. The builder concept is supplied by the Eclipse platform. It
is responsible for automatically launching jobs in the background to achieve higher
responsiveness. The builder can be extended by adding new tools to it that keeps derived
data elements in the RODIN repository up to date.

3.2 The Event-B Library Packages

Event-B as a whole does not have a syntax that needs to be parsed. Event-B models
are kept in a repository. However, the mathematical notation used, e.g., in invariants or

596 J.-R. Abrial et al.

guards, has a syntax. It is specified by an attributed grammar that is used to produce the
abstract syntax tree (AST) package. The grammar has not been specified in Event-B,
although, in principle this should be possible similarly to the technique proposed by
Lamport based on TLA+ [18].

The sequent prover (SEQP) library provides the proof engine. It contains the nec-
essary data types, notably the sequent data type, some inference rules and support for
tactics. The inference rules have been chosen to represent proof trees that can be easily
manipulated in interactive proofs (see Section 3.4).

3.3 The Event-B Core

The Event-B Core consists of three components: the static checker (SC), the proof
obligation generator (POG), and the proof obligation manager (POM). Their connec-
tion is shown in Figure 2 and their purpose is described below. The scheduling of the
three components is taken care of by the RODIN builder (see Section 3.1).

Event−B
SC

Unchecked
Elements

Well−formed
Elements

Event−B
POG

Proof
Obligations

Event−B
POM

Error Messages

Proof Status
and Proofs

Fig. 2. Tool-Chain in Event-B Core

The static checker for Event-B analyses Event-B contexts and Event-B machines and
provides feedback to the user about syntactical and typing errors in them. The mathe-
matical notation of Event-B is specified by a context-free grammar, whereas the rest of
Event-B is specified by a graph grammar based on the repository elements. The static
checker rejects data elements that do not satisfy the Event-B grammar and produces er-
ror messages. It does, however, accept machines and contexts that only partially satisfy
the grammar. It filters (and annotates) data elements that are grammatically correct for
use by the proof obligation generator that is described in the next paragraph. The static
checker can be extended by rejecting more elements and by dealing with new elements
that can be added to the repository.

The proof obligation generator for Event-B is specified in a simplified notation used
with generalised substitutions described in [1]. Compared to the classic B Method [1],
Event-B has been simplified with proof obligation generation in mind. The specification
of the proof obligation generator does not just serve for its implementation, it has also
inspired some simplifications of the mathematical notation. The proof obligation gen-
erator produces proof obligations that have already been simplified. This makes them
easier to prove automatically and to read in case automatic proof fails. Information

An Open Extensible Tool Environment for Event-B 597

about the origin of a proof obligation in a model is also provided in order to easily re-
late them to the model. The role of the static checker is to filter all elements from the
repository that would cause errors in the proof obligation generator. Separating the two
yields a much simplified proof obligation generator. This separation is similar to that of
front-end and code generator in a compiler.

The proof obligation manager keeps track of proof obligations and associated proofs.
It offers three functionalities:

(1) it matches existing proofs with proof obligations that have changed;
(2) it discharges proof obligations automatically (i.e. without user interaction) if

possible;
(3) it provides an interface for interactive proof, in particular, proof tree manipulation.

The functionality referred to in Figure 2 concerns points (1) and (2). Support for inter-
active proof (3) is used by the graphical user interface (see Section 3.4).

3.4 The Graphical User Interface

The graphical user interface consists of two parts: one user interface for modelling
(MUI) and one user interface for proving (PUI). Figure 3 shows how the core compo-
nents and the user interface are integrated. The proving user interface does not access
proof obligations and proofs directly but uses the services of the proof obligation man-
ager. Appendix A contains a screen shot of the modelling perspective and the proving
perspective respectively.

Event−B
SC

Unchecked
Elements

Error Messages

Well−formed
Elements

Event−B
POG

Proof
Obligations

Proof Status
and Proofs

ProvingModelling

Event−B
PUI

POM
Event−B

MUI
Event−B

Fig. 3. The User Interface

The two user interfaces are connected by the tool chain of the Event-B core. They
are available to the user in form of Eclipse perspectives between which the user can
switch easily. The two perspectives are seamlessly integrated so that it is not suggested
that modelling and proving are different activities. The user is intended to perceive
reasoning about models as being part of modelling. Proof obligations are equipped with
hypertext links so that the user can select instantaneously modelling elements related to
that proof obligation.

598 J.-R. Abrial et al.

3.5 On Openness

Integrating formal methods requires a lot of foresight. We would like the integrated
method to be used for years to come, estimating where the integrated method could
be useful and making reasonable restrictions on the development processes in which it
would be used. Next we would develop a tool that would support the integrated method
to support its use. Can this work? Being pessimistic about our capacity of predicting
the future and the ability to dictate changes, radical or not, to industries that could
profit from the integrated method, we choose not to integrate in advance. Instead, we
propose an approach where the method from which we depart is open with respect to
extensions and even changes. We have the same requirement for the accompanying tool
to be open for extension and change. By adopting the open source model, we allow
users to integrate their own tools into the tool.

4 Incremental Construction of a Small Example

In this section we outline the construction of a small Event-B model using the tool.
Our aim is to illustrate the reactive nature of the support provided by the tool as we
incrementally construct the model.

The model is of a system for checking registered users in and out of a building.
We start the construction of the model by dealing only with registration of users. In
the tool we create a new context and introduce a given set USER in the context. We
create a new machine and add a variable register to the machine to represent the set of
registered users. We create an invariant to type the register:

inv1 register ⊆ USER

We also create an event to add a new user to the register:

Register =̂ any u where

u ∈ USER \ register

then

register := register ∪ {u}
end

Notice that the guard of this event ensures that the new user is not already in register.
With the above elements (set USER, variable register, invariant inv1 and event

Register) added to the project, the only error message we get is that the register
variable has not been initialised. This is remedied by adding the action register := ∅
to the machine initialisation. The resulting model results in 2 proof obligations, both of
which are automatically discharged.

Now we add variables to represent the set of people who are in the building (in)
and those that are outside the building (out). These are typed through the following
invariants:

inv2 in ⊆ register

inv3 out ⊆ register

An Open Extensible Tool Environment for Event-B 599

We ensure that in and out are initialised to be empty. We have an obvious requirement
that a user cannot be simultaneously inside and outside the building so we add a further
invariant:

inv4 in ∩ out = ∅

The resulting model now gives rise to 7 proof obligations all of which are discharged
automatically.

We add events to model users entering and leaving the building. Our first attempt at
the Enter event is

Enter =̂ any u where

u ∈ out

then

in := in ∪ {u}
end

This event gives rise to 3 new proof obligations, 1 of which is not automatically dis-
charged. Using the proof obligation explorer we can inspect this unproved proof oblig-
ation and see that it has hypotheses and a goal as follows:

Hyp1 : in ∩ out = ∅

Hyp2 : u ∈ out

Goal : (in ∪ {u}) ∩ out = ∅

Clearly this cannot be proved so either the invariant it is associated with (inv4) is wrong
or the Enter event is wrong and one or both need to be changed. The obligation ex-
plorer provides hyperlinks to both inv4 and Enter to facilitate any changes to either.
In this case we decide that the error is in the Enter operation since we neglected to
remove the user from the variable out. We remedy this by clicking on the link to the
Enter event and adding the following action to this event:

out := out \ {u}

This addition results in all 10 proof obligations being discharged automatically. Note
that having a proof obligation that is not automatically discharged does not necessarily
mean there is an error in the model. It may be that the proof obligation can be proved
using the interactive prover.

A further requirement on the model is that each registered user must either be inside
or outside the building. Our existing invariants are not sufficient to express this property
so we add a further invariant:

inv5 register ⊆ in ∪ out

This addition gives rise to 3 new proof obligations, 1 of which is not automatically
discharged:

600 J.-R. Abrial et al.

Hyp1 : register ⊆ in ∪ out

Hyp2 : u ∈ USER \ register

Goal : (register ∪ {u}) ⊆ in ∪ out

Clearly this obligation is not provable: if u is not in register, then it is not in in∪ out.
The obligation explorer tells us that this proof obligation arises from both inv5 and
the Register event. Inspection of the Register event shows that it adds a user u to
register but not to either in or out. We remedy this by deciding that newly registered
users should be recorded as being outside the building and adding the following action
to the existing Register event:

out := out ∪ {u}

The resulting model gives rise to 14 proof obligations, all of which are automatically
discharged.

We have now completed our construction of the small Event-B model. With the old
style tools for B, after constructing the model, we would have separately invoked the
proof obligation generator and then the automatic prover. With our new Event-B tool,
this is taken care of automatically as we construct the model. Our experience is that by
making use of the feedback from the tool as we construct the model, e.g., the unproved
proof obligations, we are guided towards construction of a model that has less errors and
is more easily proved than if we were to delay any proof analysis until after constructing
the full model.

5 Extensions

The RODIN open tools platform will allow other parties to integrate their tools, such as
model checkers and theorem provers, as plug-ins to support rigorous development. This
will allow many researchers to contribute to the provision of a comprehensive integrated
toolset and we believe it will encourage greater industrial uptake of these tools. Along
with the open tools platform, RODIN is developing a collection of plug-in tools to be
integrated in the RODIN platform [25]. Developing these plug-in tools has two major
aims:

– To provide extra functionality on top of the core platform to support more fully the
application of the RODIN methodology being.

– To validate the open architecture of the platform by populating it with a collection
of plug-in tools covering a range of functionalities.

This section outlines our initial effort at providing a collection of plug-in tools.

5.1 Animation and Model-Checking

The PROB animator and model checker has been presented in [20]. Based on Prolog, the
PROB tool supports automated consistency checking of B machines via model checking.

An Open Extensible Tool Environment for Event-B 601

For exhaustive model checking, the given sets must be restricted to small finite sets, and
integer variables must be restricted to small numeric ranges. This allows the checking
to traverse all the reachable states of the machine. PROB can also be used to explore
the state space non-exhaustively and find potential problems. The user can set an upper
bound on the number of states to be traversed or can interrupt the checking at any
stage. PROB will generate and graphically display counter-examples when it discovers
a violation of the invariant. PROB can also be used as an animator of a B specification.
So, the model checking facilities are still useful for infinite state machines, not as a
verification tool, but as a sophisticated debugging and testing tool.

The interactive proof process with the B tools can be quite time consuming. We see
one of the main uses of PROB as a complement to interactive proof in that errors that
result in counterexamples should be eliminated before attempting interactive proof. For
finite state B machines it may be possible to use PROB for proving consistency without
user intervention. We also believe that PROB can be very useful in teaching B, and
making it accessible to new users. Finally, even for experienced B users PROB may
unveil problems in a specification that are not easily discovered by existing tools.

5.2 Unified Modelling Language

The UML-B [27] is a profile of UML that defines a formal modelling notation. It has
a mapping to the Event B language. UML-B consists of class diagrams with attached
statecharts, and an integrated constraint and action language, called µB, based on the
Event B notation. UML-B provides a diagrammatic, formal modelling notation based
on UML. The popularity of the UML enables UML-B to overcome some of the barriers
to the acceptance of formal methods in industry. Its familiar diagrammatic notations
make specifications accessible to domain experts who may not be familiar with formal
notations. UML-B consists of:

– A subset of the UML - including packages, class diagrams and state charts
– Specialisations of these features via stereotypes and tagged values,
– Structuring mechanisms (systems, components and modules) based on specialisa-

tions of UML packages
– UML-B clauses - a set of textual tagged values to define extra modelling features

for UML entities,
– µB - an integrated action and constraint language based on Event B,
– Well-formedness rules

The U2B [27] translator converts UML-B models into Event B models. Translation
from UML-B into Event B enables the Event B checkers and provers to be utilised.
Since the B language is not object-oriented, class instances must be modelled explicitly
in the generated B. Attributes and associations are represented as variables whose type
is a function from the class instances to the attribute type or associated class. Operation
behaviour may be represented textually in µB, as a state chart attached to the class, or
as a simultaneous combination of both. Further details of UML-B are given in [27].
Examples of previous case studies using UML-B and U2B are given in [27,28].

602 J.-R. Abrial et al.

5.3 More

Other plug-ins currently under development in RODIN include a petri-net based model
checker for an integration of B and the π-calculus, documentation tools for B models,
graphical animation tools, code generation tools and test generation tools.

6 Conclusion

We have presented the architecture of a modelling tool that offers the same comfort for
writing models as do modern integrated development environments for programming.

We believe that modelling will remain difficult. This does not mean, however, that it
is impossible to develop a productive modelling tool. Programming is difficult, too. Still
we have very efficient programming tools. But we also have many people who simply
got used to the difficulties of programming. Hopefully, they will also get used to the
difficulties of modelling when appropriate tools are available.

The Event-B tool presented in this article provides a seamless integration between
modelling and proving. This is important for the user to focus on the modelling task
and not on switching between different tools. The purpose of modelling is not just to
write a specification. It also serves to improve our understanding of the system being
modelled. The Event-B tool tries to reflect this view by providing a lot of help for
exploring a model and reasoning about it.

The tool is extensible and configurable because we cannot predict future uses of
Event-B. The architecture has been designed to make this as easy as possible to invite
users who need a (formal) modelling tool tailor it to their needs. We hope this will make
it possible to employ the tool in very different development processes.

Acknowledgements

We would like to thank all members of the RODIN project who have contributed to the
toolset especially Thai Son Hoang, Cliff Jones, Thierry Lecomte, Michael Leuschel,
Farhad Mehta, Christophe Métayer, Colin Snook and Francois Terrier.

References

1. Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings. Cambridge Univer-
sity Press, 1996.

2. Jean-Raymond Abrial and Dominique Cansell. Click’n’Prove: Interactive Proofs within Set
Theory. In Theorem Proving in Higher Order Logics, volume 2758 of LNCS, pages 1–24,
2003.

3. Jean-Raymond Abrial and Stefan Hallerstede. Refinement, decomposition and instantiation
of discrete models. Fundamentae Informatica, 2006. To appear.

4. R. J. R. Back. Refinement calculus, part II: Parallel and reactive programs. In J. W. de
Bakker, W.-P. de Roever, and G. Rozenberg, editors, Stepwise Refinement of Distributed
Systems, volume 430 of Lecture Notes in Computer Science, pages 67–93. Springer-Verlag,
1990.

An Open Extensible Tool Environment for Event-B 603

5. Frédéric Badeau and Arnaud Amelot. Using B as a high level programming language in an
industrial project: Roissy VAL. In Helen Treharne, Steve King, Martin Henson, and Steve
Schneider, editors, ZB 2005, volume 3455 of LNCS, pages 334–354, 2005.

6. M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Thums. Formal system development
with KIV. In T. Maibaum, editor, Fundamental Approaches to Software Engineering, number
1783 in LNCS. Springer, 2000.

7. Mike Barnett, Bor-Yuh Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino. Boogie:
A Modular Reusable Verifier for Object-Oriented Programs. In FMCO 2005, volume LNCS.
Springer-Verlag, 2005. to appear.

8. Yves Bertot and P. (Pierre) Castéran. Interactive theorem proving and program develop-
ment: Coq’Art: the calculus of inductive constructions. Texts in theoretical computer science.
Springer-Verlag, 2004.

9. Egon Börger and Robert Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer-Verlag, 2003.

10. Achim D. Brucker, Frank Rittinger, and Burkhart Wolff. HOL-Z 2.0: A proof environment
for Z-specifications. Journal of Universal Computer Science, 9(2):152–172, February 2003.

11. Clearsy. Atelier B tool homepage. http://www.atelierb.societe.com/.
12. David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for program

checking. J. ACM, 52(3):365–473, 2005.
13. Eclipse. Eclipse platform homepage. http://www.eclipse.org/.
14. J.-C. Filliâtre. Verification of Non-Functional Programs using Interpretations in Type Theory.

Journal of Functional Programming, 13(4):709–745, July 2003.
15. Erich Gamma and Kent Beck. Contributing to Eclipse. Addison Wesley, 2003.
16. Matt Kaufmann and J. Strother Moore. An industrial strength theorem prover for a logic

based on common lisp. IEEE Transactions on Software Engineering, 23(4):203–213, 1997.
17. James C. King. A new approach to program testing. In Proceedings of the international

conference on Reliable software, pages 228–233, New York, NY, USA, 1975. ACM Press.
18. Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and Soft-

ware Engineers. Addison-Wesley, 2002.
19. Thomas Långbacka and Joakim von Wright. Refining reactive systems in HOL using action

systems. In Elsa L. Gunter and Amy P. Felty, editors, Theorem Proving in Higher Order Log-
ics, 10th International Conference, TPHOLs’97, volume 1275 of Lecture Notes in Computer
Science, pages 183–197. Springer, 1997.

20. M. Leuschel and M. Butler. ProB: A Model Checker for B. In Keijiro Araki, Stefania Gnesi,
and Dino Mandrioli, editors, Proceedings FME 2003, Pisa, Italy, LNCS 2805, pages 855–
874. Springer, 2003.

21. Carroll Morgan, Thai Son Hoang, and Jean-Raymond Abrial. The challenge of probabilistic
event B - extended abstract. In Helen Treharne, Steve King, Martin C. Henson, and Steve A.
Schneider, editors, ZB 2005: Formal Specification and Development in Z and B, 4th Inter-
national Conference of B and Z Users, volume 3455 of Lecture Notes in Computer Science,
pages 162–171. Springer, 2005.

22. Tobias Nipkow. Structured Proofs in Isar/HOL. In H. Geuvers and F. Wiedijk, editors, Types
for Proofs and Programs (TYPES 2002), volume 2646 of LNCS, pages 259–278. Springer,
2003.

23. Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes in
Computer Science. Springer Verlag, 1994.

24. RODIN. RODIN project homepage. http://rodin.cs.ncl.ac.uk/.
25. RODIN. Deliverable D16: Prototype Plug-in Tools. http://rodin.cs.ncl.ac.uk/

deliverables.htm, 2006.

604 J.-R. Abrial et al.

26. Mark Saaltink. The Z/EVES system. In Jonathan P. Bowen, Michael G. Hinchey, and David
Till, editors, ZUM ’97: The Z Formal Specification Notation, 10th International Conference
of Z Users, volume 1212 of Lecture Notes in Computer Science, pages 72–85. Springer, 1997.

27. C. Snook and M. Butler. UML-B: Formal modelling and design aided by UML.
ACM Transactions on Software Engineering and Methodology, 2006. To appear.
eprints.ecs.soton.ac.uk/10169/.

28. C. Snook and K. Sandstrom. Using UML-B and U2B for formal refinement of digital com-
ponents. In Proceedings of Forum on specification and design languages (FDL03), 2003.

29. J. Michael Spivey. The Z Notation: A Reference Manual. International Series in Computer
Science. Prentice-Hall, New York, NY, second edition, 1992.

30. Daniel Winterstein, David Aspinall, and Christoph Lüth. Proof general / eclipse: A generic
interface for interactive proof. In IJCAI, pages 1587–1588, 2005.

A The User Interface

Fig. 4. The Modelling Perspective

An Open Extensible Tool Environment for Event-B 605

Fig. 5. The Proving Perspective

Tool for Translating Simulink Models into Input
Language of a Model Checker

Meenakshi B., Abhishek Bhatnagar, and Sudeepa Roy�

Honeywell Technology Solutions Lab
Bangalore 560076, India

Meenakshi.Balasubramanian@honeywell.com

Abstract. Model Based Development (MBD) using Mathworks tools
like Simulink, Stateflow etc. is being pursued in Honeywell for the devel-
opment of safety critical avionics software. Formal verification techniques
are well-known to identify design errors of safety critical systems reduc-
ing development cost and time. As of now, formal verification of Simulink
design models is being carried out manually resulting in excessive time
consumption during the design phase. We present a tool that automati-
cally translates certain Simulink models into input language of a suitable
model checker. Formal verification of safety critical avionics components
becomes faster and less error prone with this tool. Support is also pro-
vided for reverse translation of traces violating requirements (as given
by the model checker) into Simulink notation for playback.

1 Introduction

Model Based Development (MBD) is a concept of software development in which
models are developed as work products at every stage of the development life-
cycle. Models are concise and understandable abstractions that capture critical
decisions pertaining to a development task and have semantics derived from the
concepts and theories of a particular domain. Models supersede text and code as
the primary work products in MBD and most development activities are carried
out by processing models with as much automation as possible.

MBD is known to improve the quality of the product being developed. Formal
models of design are used for proving the design correct with respect to functional
requirements, identifying errors early in the life-cycle. Automatic methods for
generating code and test cases helps to reduce coding errors and save total
development time spent in coding and testing phases.

Formal verification techniques like theorem proving and model checking are
well-known to reduce defects in the design stage by checking if a design meets
its functional requirements [9]. Presence of formal models in MBD gives room
for analysis using formal verification. Both MBD and formal verification are
practices that put emphasis on detecting design errors (that have high leakage
rate) rather than implementation errors (that have low leakage rate).

� Presently at Google, Bangalore, India.

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 606–620, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Tool for Translating Simulink Models 607

DO-178B [1] standard produced by Radio Technical Commission for Aero-
nautics Inc. defines guidelines for development of avionics software and is the
accepted means of certifying all new avionics software. DO-178B is obsolete with
respect to MBD process but recognizes formal methods as a way to prevent and
eliminate requirements, design and code errors throughout the development life-
cycle. The benefit of formally verifying models at design stage is also validated
by its successful use in various industrial examples [9].

In spite of all the above advantages, formal verification has not been success-
fully integrated into many development processes. The main issues are related to
making it easy to use by the system engineers. Formal verification tools typically
do not support standard design modeling notations but have their own notations
related to the theories of the tool. The extra effort to learn the notations to use
these tools is usually not welcome due to the delays it causes in development
time. Consequently, there is a need to automate the formal verification process
as much as possible for use by system engineers.

One possible step towards automation is to make formal verification tools
available in notations that system engineers typically use. Mathworks tools like
Simulink [2], Stateflow [3] etc. are extensively used in Honeywell for avionics
software development. For system engineers to formally verify their design, it
would be ideal if these modeling tools can automatically link to suitable model
checking tools. We meet such a need in this paper by developing a translator
from Simulink to the model checker NuSMV [4]. NuSMV is an open source
symbolic model checker jointly developed by ITC-IRST, CMU, University of
Genova and University of Trento. The translator takes a Simulink model as
input and generates an equivalent NuSMV model.

The translator supports all the basic blocks that constitute a finite state subset
of Simulink, i.e., any Simulink model obtained by putting together these blocks
constitutes a finite state machine. The model generated by the translator can be
formally verified against temporal logic requirements using the NuSMV model
checker. We are working on providing support for specifying requirements by
using a template based tool along the lines of the specification pattern system
developed in [11]. These two tools put together would constitute a full-fledged
verification tool for Simulink models.

Some other tools have been developed for formally verifying Simulink models.
Commercial tools like SCADE design verifier [8], Embedded Validator [5] support
formal verification of Simulink models against safety properties and work with
their customized library of Simulink blocks, again mainly blocks from the discrete
library. These tools were not expressive enough to translate some of models
used in Honeywell, one such model involving an avionics triplex sensor voter is
presented in the paper.

Checkmate [6] is a research tool developed to translate Simulink models into
hybrid automata notation and verification is done using abstraction and cer-
tain semi-decision procedures involving reachability analysis of hybrid automata
which are not guaranteed to terminate. Since Checkmate can translate Simulink
models into hybrid automata, the translation also supports certain continuous

608 B. Meenakshi, A. Bhatnagar, and S. Roy

basic blocks of Simulink. Thus, even though a larger set of Simulink models
can be translated, fully automated verification of models is not possible as the
reachability analysis procedures of the considered class of hybrid automata are
not guaranteed to terminate.

Our algorithm works with standard Simulink notation and semantics and the
models are translated into NuSMV which is an open source verification tool
supporting the fully automatic technique of model checking. This achieves the
main goal of providing a fully automated formal verification support to system
engineers using MBD based on Simulink models.

2 Preliminaries

We briefly describe Simulink and NuSMV tools in this section.

2.1 Simulink

Simulink is a computer aided design tool widely used in the aerospace industry
to design, simulate and auto code software for avionics equipment [2]. A Simulink
model of a system is a hierarchical representation of the design of the system
using a set of blocks that are interconnected by lines. Each block represents an
elementary dynamic system that produces an output either continuously (con-
tinuous block) or at specific points in time (discrete block). The lines represent
connections of block inputs to block outputs. Simulink provides various libraries
of such blocks and in addition, some additional blocks can also be user-defined.
Interconnected blocks are used to build sub-systems which in turn are put to-
gether to form a system model.

Simulink, considered as a de-facto standard in control design, is proven to be
expressive enough to model many avionics systems and offers extensive simula-
tion capabilities for de-bugging the design model.

2.2 NuSMV Model Checker

NuSMV [4] is a symbolic model checker based on Binary Decision Diagrams
(BDDs) [7]. It allows for the description of systems as finite state machines,
both synchronous and asynchronous. Specifications regarding the system can
be given as Computation Tree Logic (CTL) and Linear Temporal Logic (LTL)
formulas. Model checking algorithms in NuSMV check if the system meets the
specifications using BDD-based and SAT-based model checking techniques and
are ideally suited for verifying hardware designs.

The data flow block diagram of a Simulink model resembles control flow like
that of hardware design even though Simulink models are finally implemented in
software. This is the main reason behind choosing NuSMV as the target model
checking tool for formally verifying Simulink diagrams apart from the fact that
NuSMV is an open source tool. Also, NuSMV being a symbolic model checker is
capable of handling systems with huge state space size. We illustrate this fact by

Tool for Translating Simulink Models 609

applying the translator algorithm on the Simulink model of an avionics triplex
sensor voter. The details are described in a subsequent section.

NuSMV input language. The input language of NuSMV is designed to allow for
specification of system models as finite state machines. The data types provided
by the language are Booleans, bounded integer sub-ranges, symbolic enumerated
types and bounded arrays of these basic data types.

Complex system models can be described by decomposing it into modules.
Each module defines a finite state machine and can be instantiated many times.
Modules can be composed either synchronously or asynchronously to get the full
system description. In synchronous computation, a single step in the composed
model corresponds to a single step in each of the modules. In asynchronous
computation, a single step in the composed model corresponds to a single step
performed by exactly one module.

3 The Translator Algorithm

We describe the translator algorithm from Simulink models into NuSMV model
checker in this section along with details about the execution semantics and
the reverse translation. Working of the algorithm along with its use in formal
verification of Simulink models will be illustrated in the next section with an
example from the avionics domain.

3.1 Description of the Algorithm

The translator algorithm takes the MDL file format (textual representation)
of the Simulink model as input and outputs its equivalent model in the input
notation of NuSMV as described in Section 2.2.

Each basic block in Simulink (in the libraries supported by the translator algo-
rithm) is translated into its equivalent module in NuSMV. For a given Simulink
model, the NuSMV model that is output by the translator varies with the type
of input ports of the Simulink model. Basic blocks of Simulink are generic, for
example, the basic block corresponding to addition can add two scalars or two
vector inputs, type matching and conversion are taken care of automatically.
However, this is not the case with NuSMV, the module that adds two scalar
inputs is different from the one that adds two vector inputs. Consequently, there
is one NuSMV module corresponding to a given basic block and input type in
Simulink.

A library of routines to generate NuSMV modules equivalent to basic blocks
in Simulink are written to be re-used while generating NuSMV models from
given Simulink models. The routines in this library respect the correspondence
between basic blocks and modules mentioned above. For example, consider the
standard relational operator block in Simulink given in Figure 1. Assume that
the first input (in1) to the block is a vector of length 2, the second input (in2) is

610 B. Meenakshi, A. Bhatnagar, and S. Roy

a scalar and the operation being checked for is ≤. The NuSMV module equivalent
to the relational operator basic block is given below:

MODULE relational operator 2(in1, in2)

VAR
out : array 0..1 of boolean;

ASSIGN
out[0] := in1[0] <= in2;
out[1] := in1[1] <= in2;

in1

in2
Relational operator

out

Fig. 1. Relational operator block in Simulink

The above module will be generated by a routine in the library to be re-used
whenever the relational operator block with two inputs (of types as above) is
being used in a model.

The translator algorithm is divided into the following steps:

1. Parsing the model: The model is read from its textual representation,
irrelevant information involving the graphics of the model (like color, font
size etc.) are discarded and information regarding blocks and subsystems,
input and output ports, variables, inter-connection of blocks etc. is extracted.

2. Computing input type of blocks and sub-systems: In this step, a walk
through the output of the graph structure extracted from step (1) is done
wherein the type of input of each block is computed depending upon the
output of preceding blocks.
(a) For each block of source library of Simulink, input types of all the con-

nected blocks is populated. Output type information for source block
can be calculated directly from Simulink model.

(b) If depending upon the input type, any decision regarding block output
type can be taken (For example, in the case of Add block, if one of
the inputs is a vector of n-dimension then output will be of n-dimension,
where n > 1, or when all input port types are of 1-dimension then output
will also be of type 1-dimension), then all the blocks further connected
to this block are populated with input port type.

Tool for Translating Simulink Models 611

(c) The above step is continued for all the blocks in the graph until a block
for which output type cannot be computed is reached. At this stage,
control is transferred to the parent of this block in the model and the
previous step and this one are repeated for the other connected blocks
from the output port of the parent. This is done iteratively till all the
blocks connected to one of the source blocks (in the first step above) are
exhausted.
Note that this step is guaranteed to terminate as the input model has a
fixed number of blocks.
If block is of type subsystem, then, blocks inside this sub-system are
populated as per step 2 above. Once output port is reached, all the
blocks connected to this output port of the subsystem are populated as
done in step 2(c).

3. Writing the final file: In the final step, routines from the library described
above are used to write the NuSMV model wherein each basic block is re-
placed by its equivalent modules(s). Here again, sub-systems are translated
first respecting the hierarchy in the model.

Notice that the translation preserves the structure (hierarchy of the blocks,
their names and interconnections) of the input Simulink model. The NuSMV
model output by the translator follows the same hierarchical structure as the
input Simulink model and variable names are also retained to be the same. Also,
there is one module in NuSMV model corresponding to each basic block in the
Simulink model. These features are important in MBD for answering traceability
related questions and also for the verification of requirements as some of them
might be specified by fully exploiting the structure in the model.

The above algorithm has been implemented and has been tested on some
examples to check for the translation preserving the model. We present a detailed
example involving the translation of Simulink model corresponding to an avionics
triplex sensor voter in the next section.

3.2 Simple Abstraction Feature

The size of the translated NuSMV model is an important factor to make it
amenable for verification. Many abstraction techniques are used to avoid the
famous state space explosion problem. The fact that NuSMV is a symbolic model
checker comes in useful here as such model checkers are well-known to handle
systems with large state space size.

We have provided a simple state abstraction feature to be able to model
check Simulink models that are too huge even for symbolic model checkers like
NuSMV. While running the above translation algorithm, the system engineer
has the option of bounding the ranges of certain/all variables that occur in
the model. If no ranges are specified, the translator assumes maximum range.
Otherwise, ranges of certain variables can be bounded by the system engineer and
are incorporated into the translated model. This will help in reducing the state
space size whenever required, while retaining the features required for verification
of requirements.

612 B. Meenakshi, A. Bhatnagar, and S. Roy

3.3 Execution Semantics

Some points are worth noting regarding the translator algorithm preserving the
behavior of the Simulink model. Semantics of systems modeled using Simulink
is presented through simulations, which are done by sampling the data in the
model. As mentioned above, Simulink models have both discrete and continuous
blocks. Sample time parameter talks about the rate at which the states of the
Simulink model are updated. The sample time is by definition, continuous for
continuous blocks and is explicitly specified by the user for discrete blocks.

The scope of the translator algorithm presented in this paper is restricted to
the discrete blocks of Simulink as the model checker NuSMV is capable of mod-
eling discrete finite state systems only. We assume that one sample time in the
Simulink model is equivalent to one execution step (modeled by a transition from
one state to another) in the NuSMV model. The NuSMV model is equivalent
to the given Simulink model as generated by the translator with respect to this
assumption. Also, as noted in the previous section, for a given Simulink model,
the NuSMV model generated by the translator varies with the type of input
ports. Given the above, the translator algorithm preserves the given Simulink
model as follows: at any point of execution, for every state of the Simulink model
(given by the values which all the variables in the model take), there is a corre-
sponding state in the NuSMV model wherein the variables take the same values.
Also, transitions between states that arise because of change of values of certain
variables in the Simulink model also result in corresponding transitions between
corresponding states in the NuSMV model.

3.4 Finite State Simulink Models

As mentioned in the previous section, the scope of the translator is restricted
to discrete Simulink models only, mainly due to the fact that the model checker
NuSMV is capable of modeling discrete systems only. Here again, the model
checker NuSMV is a finite state verification tool, that is, the class of models
that can be formally verified using NuSMV are finite state machines. Conse-
quently, the translator can support all the basic blocks of Simulink that, when
put together, form a finite state model of a system.

Basic blocks of Simulink are organised into libraries of those with similar
properties. In the translator algorithm, all the blocks of the signal routing, logic
and bit operations, math operations (discrete), sources, discontinuities and dis-
crete libraries are supported as of now with integer and Boolean data types for
variables. As we illustrate in a subsequent section, the translator algorithm is ex-
pressive enough to translate non-trivial avionics Simulink models that are built
using basic blocks from these libraries. Detailed list of the various blocks (listed
within the libraries they belong to) are given below.

– Signal routing library
• Demux and mux blocks
• Switch block

Tool for Translating Simulink Models 613

• Selector block
• Multi-port switch, index vector blocks
• Merge block

– Logic and bit operations library
• Relational block
• Logical block
• Interval test block
• Interval test dynamic block
• Compare to zero, compare to constant blocks

– Math operations library
• Sum, add, subtract and sum of elements blocks
• Product, divide and product of elements blocks
• Abs block
• Unary minus block
• Sign block
• Bias block
• Min-max block
• Gain block

– Sources library
• Ground block
• Constant block
• In port block
• Uniform Random Number
• Step
• Counter Free Running
• Counter Limited
• Read From File

– Discontinuities library
• Saturation block
• Saturation dynamic block
• Dead zone block
• Dead zone dynamic block
• Wrap to zero block
• Coulomb and vicious function block

– Discrete blocks library
• Unit delay and integer delay blocks

– Sinks blocks Library
• Out port Block

3.5 Reverse Translation

NuSMV (and many other model checking tools) take a system model and a
requirement as input and provide a yes/no answer depending on whether the
system satisfies the requirement or not respectively. In the latter case, a system
run violating the requirement is also output by the model checking tool as evi-
dence to the fact the system does not meet the requirement. This feature is very
useful in de-bugging the system design to meet the requirement.

614 B. Meenakshi, A. Bhatnagar, and S. Roy

In order to facilitate the Simulink system engineer to de-bug the model,
we provide a reverse translation routine that takes a system run produced by
NuSMV (as counter example) as input and translates it back into a textual
notation that a Simulink designer can understand.

Since the translation algorithm preserves the structure of the input model, the
counter example output by NuSMV reveals the structure fully in its description.
Consequently, the reverse translation routine is a simple scripting program that
re-writes the example in a notation that a Simulink designer can understand and
simulate. Simulation of a violating run helps in de-bugging the design.

4 Sensor Voter Example

We describe an example involving a Simulink model used in digital flight control,
namely that of an avionics triples sensor voter. This model was automatically
translated into NuSMV by the algorithm and various computational and fault-
handling requirements of the model were verified using NuSMV.

4.1 Triplex Sensor Voter

Almost all digital flight control systems utilize redundant hardware to meet high
reliability requirements. Use of redundant hardware poses two problems: distin-
guishing between operational and failed units and computing the ”mean” value
of the various units for use by other components. A key part of redundant sys-
tems are redundant sensors and algorithms that focus on managing redundant
sensors to provide a high integrity measurement for use by down-stream con-
trol calculations. We consider a voter algorithm that manages three redundant
sensors in this paper. This class of algorithms is applicable to a variety of sen-
sors used in modern avionics, including air data sensors, surface position sensors
etc. The voter model has been translated by hand into the model checking tool
SMV and many requirements were verified [10]. We now describe the sensor
voter model and our work related to its formal verification using the translation
algorithm.

Sensor voter operation. Simulink model corresponding to the sensor voter is
described in Figure 2. The voter takes input from three sensors and produces
a single reliable sensor output. Each sensor produces a measured data value
and a self-check bit indicating whether or not the sensor considers itself to be
operational.

The operation of the voter algorithm is described in the steps below:

– All valid sensor data are combined to produce output.
– If three sensors are available, a weighted average is used in which an outlying

sensor value is given less weight than those that are in closer agreement.
– If only two sensors are available, a simple average is used.
– If only one sensor is available, it becomes the output.

Tool for Translating Simulink Models 615

Fig. 2. Simulink model of avionics triplex sensor voter

616 B. Meenakshi, A. Bhatnagar, and S. Roy

A faulty sensor value is not used in failure comparisons or in the production
of the output signal. The following are the mechanisms by which a faulty sensor
can be detected and eliminated:

– Any sensor input whose own self-check bit is false is not used.
– Next, all the sensor values are compared two at a time. If difference exceeds

threshold, magnitude error is set. If magnitude error persists longer than mag-
nitude threshold, persistent miscompare is set. (threshold, magnitude error and
persistent miscompare are variables in the model).

– If sensors 1 and 2 have persistent miscompare and so do sensors 2 and 3,
sensor 2 is flagged as persistent sensor error and is not used.

– If only two sensors are valid and then miscompare, output depends on the
self-check bit.

Requirements of the sensor voter were either relating to the value of the
output signal computed by the voter or they were fault handling requirements
that talk about mechanisms to detect and isolate faulty sensors. We translated
the requirements manually into CTL formulas for verification using NuSMV.

Sensor voter modeling. In order to perform formal verification, it is just not
sufficient to translate the sensor voter model into NuSMV. We need to model
the environment in which the voter is used so that faults can be injected into
the model externally. The environment was modeled by using a world block that
acts as an abstraction of all the components that provide inputs for the sensors
to measure. There are also three blocks corresponding to the sensors that model
the physical sensors that generate the measured signal. The sensor blocks were
used to inject faults to test the ability of the voter to identify them. These blocks
were added to the original Simulink model to create a model amenable to formal
verification.

Formal verification. The Simulink model of sensor voter (as given in Figure 2)
was modified by adding the world and sensor blocks as described above. The
new model constitutes what we call a fault model where different values can be
injected to perform ”what if” analysis to check if the requirements are met.

The translator tool was invoked to translate the fault model of sensor voter
into NuSMV. Since the sensor voter model is big, the NuSMV code of the model
as generated by the translator is not fully presented. Figure 3 gives a snapshot
of part of the NuSMV model containing the declarations of the modules corre-
sponding to the sub-systems and the blocks in the outermost level of the sensor
voter model.

We now present the results of verifying two requirements related to the sensor
voter. The requirements were given as CTL formulas to NuSMV.

1. The first property relates to the requirement that detection and elimination
of a faulty sensor is final, i.e. once a sensor is detected and eliminated as
being faulty, it is never available as an active sensor again. This requirement

Tool for Translating Simulink Models 617

Fig. 3. Main module of the NuSMV code of triplex sensor voter

618 B. Meenakshi, A. Bhatnagar, and S. Roy

is specified by using the following CTL formula which specifies that there is
no execution path where the number of valid sensors increases.
AG (

(voting3signals.OutputValid = 0 ->
!EF voting3signals.OutputValid = 1)
& (voting3signals.OutputValid = 1 ->
!EF voting3signals.OutputValid = 2)
& (voting3signals.OutputValid = 2 ->
!EF voting3signals.OutputValid = 3))
NuSMV reported this specification to be true. We first ran verification with
unbounded ranges and since NuSMV model checker took about a week to
produce the results, we tried verification algorithm by bounding the range
of one variable, namely, unit delay, to vary from -30 to 30. With this option,
the state space size reduced drastically and verification of the model with
respect to the above property completed with the same result within a few
seconds. This acts as a good illustration of the static abstraction feature
explained earlier.

2. The second requirement relates to fault handling requirements of the sensor
voter. If the number of valid sensors is 2 and the voter output is valid and
the second sensor becomes faulty then in the future, the number of valid
sensors is 1 and the voter output is still valid.
AG (

((voting3signals. Goto1 1 = 2
& voting3signals.OutputValid) & fault2) ->
AF (voting3signals. Goto1 1 = 1
& voting3signals.OutputValid))
NuSMV reported this property to be false and gave a violating run. The
property turned out to be false due to a problem with our fault model (and
not the voter model). We had modeled the sensors in such a way that a
faulty sensor will never exhibit any faulty behavior in terms of the way in
which the values are measured.

5 Model Based Formal Analysis

Engineers traditionally perform well-established but, informal analysis tech-
niques like Fault Tree Analysis (FTA) and Failure Modes and Effects Analysis
(FMEA) for checking for safety requirements of their system. These techniques
are well established and are used extensively during the design of safety critical
systems. Despite this, most of the techniques are highly subjective and depen-
dent on the skill of the practitioner as they are based on informal system models
that are derived in an ad hoc fashion. This results is excessive consumption of
resources and time.

Due to these reasons, there is an increasing shift towards using MBD tech-
niques for analysis of the design of safety-critical systems. In this approach, var-
ious development activities including design and simulation, verification, testing

Tool for Translating Simulink Models 619

and code generation are based on a formal model of the system. The pres-
ence of formal models makes the development process amenable to using for-
mal verification techniques like model checking. However, there are certain gaps
to be filled for model checking techniques to be directly used by system
engineers.

We already discussed one of the gaps in the introduction, namely that of
the model checking notations not being easy-to-use by system engineers. The
translator algorithm presented in this paper fills this gap. Few more questions
need to be answered to fully integrate techniques like model checking with MBD.
The first among them is to be able to formalize a fault model of the system under
test. Fault model captures the various ways in which the components of the
system can malfunction. This information is provided by modeling the entities
that the system interacts with so that faults can be externally introduced into
the system without altering the system model. For example, in the verification of
sensor voter presented in the previous section, fault model comprises of abstract
models of the sensors and the world block gives data to the sensors. This step
has to be done by the system engineers themselves, manually.

The second gap comes from the requirements side. Functional requirements
which ensure safe behavior of the system are usually specified in text docu-
ment along with other requirements. The safety properties must be expressed
in some formal notation to support automated analysis. There are several for-
mal specification languages like CTL, LTL, finite state machines etc. that are
supported by many model checkers. We are working on automating this step
by exploiting the work done in [11] where the authors provide a repository of
commonly occurring specification patterns in the specification of concurrent,
reactive systems. There is a mapping from these specification patterns to a
number of formalisms that are supported by tools for formal analysis. LTL
and CTL languages that are supported by NuSMV are also provided amongst
the formalisms.

A template-based description of these specification patterns is being developed
with facilities to include model specific values to the specification templates.
These will be translated into equivalent CTL/LTL formulas so that they can
be fed into the model checker NuSMV for verification automatically. This step
would fill all the gaps that exist for fully automated use of model checking
techniques by Simulink system engineers.

6 Conclusions

We have presented a translator algorithm that translates a subset of Simulink
into input language of the model checker NuSMV. The subset of Simulink
blocks supported by the translator is expressive enough to translate many in-
teresting classes of avionics models like the avionics triplex sensor voter pre-
sented in this paper. The tool aids in automating formal verification of Simulink
models and will be of valuable use in model based formal safety analysis of
systems.

620 B. Meenakshi, A. Bhatnagar, and S. Roy

References

1. DO-178B guidelines. Available from: http://www.rtca.org/.
2. Simulink web page: http://www.mathworks.com/products/simulink/.
3. Stateflow web page: http://www.mathworks.com/products/stateflow/.
4. NuSMV web page: http://nusmv.irst.itc.it/.
5. Embedded Validator web page:

http://www.dspaceinc.com/ww/en/inc/home/
products/sw/pcgs/automatic model validation.cfm.

6. Checkmate web page: http://www.ece.cmu.edu/∼webk/checkmate/.
7. Randal E. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Transactions on Computers, 35(8):677–691, 1986.
8. Jean-Louis Camus and Bernard Dion. Efficient development of airborne software

with scade-suite. Technical report, Esterel Technologies, 2003.
9. Edmund M. Clarke and Jeannette M. Wing. Formal methods: state of the art and

future directions. ACM Computing Surveys, 28(4):626–643, 1996.
10. Samar Dajani-Brown, Darren Cofer, Gary Hartman, and Steve Pratt. Formal

modeling and analysis of an avionics triplex sensor voter. In Proc.SPIN, pages
34–48. Springer, 2003.

11. Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property spec-
ification patterns for finite-state verification. In Mark Ardis, editor, Proc. 2nd
Workshop on Formal Methods in Software Practice (FMSP-98), pages 7–15, New
York, 1998. ACM Press.

Verifying Abstract Information Flow Properties
in Fault Tolerant Security Devices

Tim McComb and Luke Wildman

School of Information Technology and Electrical Engineering
The University of Queensland, 4072, Australia

{tjm, luke}@itee.uq.edu.au

Abstract. The verification of information flow properties of security
devices is difficult because it involves the analysis of schematic diagrams,
artwork, embedded software, etc. In addition, a typical security device
has many modes, partial information flow, and needs to be fault tolerant.
We propose a new approach to the verification of such devices based upon
checking abstract information flow properties expressed as graphs. This
approach has been implemented in software, and successfully used to find
possible paths of information flow through security devices.

1 Introduction

High-grade security devices, like data-diodes, encryption hardware, and con-
text filters, are used to electronically separate high-security domains from low-
security domains, and thus provide a degree of protection against unwanted
information flow. These devices are commonly used by intelligence agencies and
corporations to safeguard confidential information – a domain in this sense nor-
mally referring to a computer or a network of computers. The devices need to
be carefully designed and evaluated to ensure that the requirement of domain
separation is always satisfied, that is, to ensure that information cannot flow
from a high-security domain to a low-security one where it is impermissible to
do so, even in the presence of component failures.

A previous approach [12] has considered the problem from a graph theo-
retic standpoint, analysing transitive connectivity between vertices to establish
whether there exists the possibility of information flow, both when the device
is operating normally and when subcomponents have failed. A significant lim-
itation of this theory is its inability reason about partial connectivity. Partial
connectivity arises when certain types of information flow are permissible and
these types need to be distinguished from impermissible information flow. The
previous approach considered any connectivity to be disallowed, and this lack of
expressiveness inhibits the analytical power of the framework.

In this paper, we present an alternative framework for analysing the infor-
mation flow properties of systems. Our approach is based upon checking con-
sistency relations between abstract and concrete models, where the information
flow characteristic to be checked is expressed in the abstract model, and the

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 621–638, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

622 T. McComb and L. Wildman

concrete model contains the relevant implementation detail. Since the abstract
models are in themselves arbitrary, this allows an evaluator to express and ver-
ify information flow properties (with respect to points-of-failure), including those
that pertain to partial connectivity.

Our approach only considers static connectivity, that is, we do not consider
the dynamic properties (control flow etc.) of the system in the analysis. However,
we do allow for modes to be expressed at the system (rather than component)
level, which can capture such properties. This approach is safe in that all possible
information flows are explored, however, because some combinations of modes
may not be possible in reality, it can report false-positives. The benefit of this
approach is that it can scale to systems of a reasonable size (thousands of com-
ponents), with components each having several normal modes and fault modes.
(In fact we treat all modes, normal or faulty, equally, except that fault modes
may be shared amongst components.).

In this paper we use the Z specification language [1] to specify the modelling
and analytical framework, and also briefly discuss an implementation of the
specification. This implementation has allowed us to utilise the technique to
automatically verify existing devices, and also to detect possible single points-
of-failure.

Frameworks for analysing information flow properties over networks (partic-
ularly hardware devices) have been previously presented by Rae and Fidge [12]
and McComb and Wildman [6]. Our approach improves upon that work in the
sense that we can effectively reason about partial connectivity without having to
identify and eliminate false positives. Our abstraction based modelling approach
also lends itself to the validation of designs at a high level, which provides a
scalable alternative to the previous work (for which no abstraction mechanism
was considered).

In the following section we discuss our technique for analysing information
security in relation to existing methods. In Section 3 we describe a graph-based
model of information flow and introduce our example: a simple cryptographic
device. Here, we give a description of a connectivity model without modes and
define a simple consistency relation between such models. In Section 4 we ex-
tend this model with alternative information flows corresponding to different
modes; either normal or faulty. Section 5 details the consistency analysis for
the combined model (connectivity and modes) and applies it to the example
cryptographic device. We conclude in Sections 6 and 7 with related work, and a
summary of our approach (with some directions for future work) respectively.

2 Motivation

Non-interference based approaches to the verification of information flow prop-
erties such as theorem proving [13] or static analysis techniques such as those
applied to programs [14] are difficult to apply to the problem of information flow
analysis of hardware devices in the presence of faults. Firstly, these approaches
do not scale well to the size of the circuits that need to be evaluated in practice.

Verifying Abstract Information Flow Properties 623

The devices that we consider typically have thousands of components. Secondly,
interference based approaches infer information flow from the logical functions
of the components. In order to extend this approach to include fault modes of
hardware components one would have to create a logical characterisation of the
faults: this introduces an additional step in the evaluation process which it turns
out can be avoided. Thirdly, logical approaches to the characterisation of in-
formation flow do not apply to all aspects of the devices under consideration.
For instance, we need to consider the potential for information flow to be in-
troduced by failure modes which occur due to the placement of multiple logical
components on a single chip. We must also consider information flow introduced
by both the normal and faulty behaviour of the circuitry intended to supply
power to the components, and additionally the potential for information flow to
introduced by EMF (electromagnetic field) interference across the circuit.

For these reasons we have abstracted the notion of information flow to reach-
ability across a graph. This allows us to combine multiple sources of information
together and allows very large circuits to be analysed. However, we consequently
rely on information flow details to be supplied from a number of different sources.
The information flow across components in both normal and failure modes is sup-
plied by a pre-fabricated (but extensible) component library. Information flow
across the circuit (and from global fault modes) is supplied by the logical con-
nectivity of the circuit and from the failure analysis technique described in [10].
Information flow introduced by the physical layout of the circuit and the group-
ing of logical components into common packages/chips is supplied by an analysis
of the PCB (printed circuit board) artwork.

A final criticism of non-interference based approaches is that it is difficult
to deal with partial information flow. That is, domain separation devices are
typically used to enforce a security policy that allows some information to be
transmitted (e.g. encrypted streams or trusted words) but not all (e.g. unen-
crypted streams or untrusted words). In our approach we are able to specify the
information flow that we allow through the device, and then check that no other
flow is present. The same technique can also be applied to partial information
flow introduced by faults. That is, we are able to specify that certain informa-
tion flow introduced by some faults is acceptable. This is often the case if the
(non-silent) failure is mitigated against in some way.

A consequence of our approach is that it can produce false positives (report
undesired information flow that does not exist). For example, information flow
may be reported that is produced by combinations of modes that cannot occur in
practice. More seriously, it can also suffer false negatives (fail to report undesired
information flow where some exists). This may be due to an inadequacy of the
model, where there is incompleteness in the information flows supplied. The
problem of false positives is partially addressed by the ability to specify the
desired information flow in the manner described above. However, to completely
eliminate false positives and negatives, one would need to augment our approach
with a more sophisticated technique such as those based on non-interference
or traditional model-checking. Note that this is easily achieved because of our

624 T. McComb and L. Wildman

abstraction of information flow. However, it is likely that such techniques will
only need to be applied to specific subcomponents, such as programmable chips,
or to particularly complicated configurations of logic.

3 Connectivity Model

Abstractly, we consider information flow as a graph of possibilities, where a
directed edge between two vertices in the graph represents the possibility of
information flow from one vertex to another. Vertices may in reality be any
entity, but we are interested in electronic devices so they typically correspond
to ports or pins on a circuit board. We also assume that information flow is
transitive, that is, if two components each communicate information in certain
modes then if those components are connected, information will also flow through
the combination of those components when they are in those modes. Thus, we
calculate the potential for information flow by reasoning about connectivity.

Input I/O Main PIC

Comparator

Output I/OGate

Sec. PIC

a d

i j

m
n

l

f gecb h

k

Bypass
o p

Fig. 1. Block diagram for cryptographic device

Consider the cryptographic device represented by Figure 1. This device has
two PIC processors that perform an encryption function over the data stream-
ing through the input I/O, where each processor performs precisely the same
encryption operation. The comparator unit compares the output of the two pro-
cessors and releases data from the main processor to the output I/O through the
gate only when the output from the two processors match. In the event that the
output from the processors does not match, no data is released to the output
I/O, and the circuit is disabled. Additionally, the device has a bypass channel,
through which plain-text may be sent if the unit is in the appropriate mode.

We consider this device design as a GRAPH , which is illustrated in Figure 2.
A GRAPH is a relation between PORT types,

[PORT]
GRAPH == PORT ↔ PORT

where the ports correspond to the vertices labelled a through p.
Paths from a high-security input to a low-security output are referred to as

leaks. If we trace all of the leaky paths, we find that there are four:

Verifying Abstract Information Flow Properties 625

j

c

m

l

fa b d
n

i
k

e g h

po

Fig. 2. Information flow graph for cryptographic device

1. a → b → c → d → e → f → g → h
2. a → b → c → d → l → m → n → f → g → h
3. a → b → i → j → k → m → n → f → g → h
4. a → b → o → p → g → h

Of these paths, we must ensure that each achieves the function of domain sepa-
ration. In this example, the four paths do so because the connections from c to d
(paths 1 and 2) and from i to j (path 3) both encrypt the data, and removing
these connections disconnect all of the paths except for the bypass channel (path
4), which we must assume is not active.

While this is a rather straight-forward way to reason about information secu-
rity, it becomes unwieldy for large systems . There are three reasons for this: first,
we are required to demonstrate the security property with rigour, and to do so
requires that the graph of the device is constructed directly from the schematic
diagrams. These devices may have thousands of components, and thus the accom-
panying graphs become too large, with thousands of ports and edges. Secondly,
we need to reason about partial connectivity. Some paths of information flow are
perfectly acceptable (and expected), like the bypass channel, while others may
indicate a potential problem — through our formalisation we need to express
these properties in order to carefully direct and focus the analysis. Thirdly, we
need to consider the possibility of component and multiple-component faults,
and the resulting effects upon information flow.

3.1 Abstraction of Information Flow

We address these issues through abstraction, where an abstract model of the
device is created which captures the intended security function, and this model
is then checked for consistency against the much larger concrete representation.
For example, the model in Figure 3 abstractly captures the fact that the encryp-
tion device has one part that is responsible for separating the domains through
encryption, and a bypass channel; the details of the secondary processor, the
comparator, and the gate have been elided.

There are fewer paths through this abstract model than in the concrete one,
but our primary concern is that the abstraction is not deceptive with respect
to the cut-sets of the concrete information flow graph. That is, the edges of

626 T. McComb and L. Wildman

Input I/O
cb

Bypass
o

f

p

g
Output I/O

ha

i

Encryption

(a) Block diagram

cb f ha

p

g

o

i

(b) Information flow graph

Fig. 3. Abstract cryptographic device

the abstract graph that are critical for obtaining domain separation over all of
the paths (the cut-sets) should accurately represent the reality of the concrete
model.

3.2 Analysis

Port labels must be shared between the models to indicate that they refer to
common parts of the system; the abstract model must be similar to the concrete
model in this respect. By comparing the possible paths through the abstract
model with those in the concrete model, we can observe whether any discrep-
ancies exist. To do this, we consider only the ports on the paths through the
concrete graph that also appear in the abstract graph, so that we can rewrite
the concrete paths with respect to the abstract model. In our example,

1. a→ b→ c→ d → e → f → g → h
becomes a → b → c → f → g → h

2. a→ b→ c→ d → l → m → n → f → g → h
becomes a → b → c → f → g → h

3. a→ b→ i→ j → k → m → n → f → g→ h
becomes a → b → i → f → g → h

4. a→ b→ o→ p→ g→ h
becomes a → b → o → p → g → h

Each of these (filtered) concrete paths corresponds to a path through the abstract
graph, so we consider the two models to be consistent. If the abstract model were
such that the encryption function did not connect i to f , then the third path
enumerated above would not appear in the abstract model and the models would
be inconsistent. Thus, our abstraction needs to contain all of the connectivity of

Verifying Abstract Information Flow Properties 627

the concrete model, but need not use all of the ports from the concrete model
to do so.

Formally, we consider a path to be an injective sequence of ports (an injective
sequence contains no repetitions).

PATH [X] == iseqX

The paths over a graph then correspond to all such sequences where each
adjacent pair of ports in each path are contained in the graph.

[R]
pathsOver : (R ↔ R)→ PPATH [R]

(∀ g : R ↔ R • pathsOver(g) =
{p : PATH [R] | (∀ i1, i2 : (dom p) | i2 = i1 + 1 • (p i1, p i2) ∈ g)})

Given an abstract and a concrete graph, with ports connected to the high and
low domains, we ensure that all paths over the concrete graph can be matched
by a path in the abstract graph when we only consider the ports from the
concrete paths that appear in the abstract graph. Furthermore, we only consider
paths that result in a leak (paths from high to low) — this is advantageous for
forming succinct security arguments: parts of the system that are irrelevant for
information security may be ignored.

high, low : P PORT

ConnectivityConsistency
abstract , concrete : GRAPH

∀ p : pathsOver(concrete) | head(p) ∈ high ∧ last(p) ∈ low •
p � (dom abstract ∪ ran abstract) ∈ pathsOver(abstract)

The filter operator (�) above is used to restrict the sequence p to the ports
appearing in the abstract graph, and ‘squash’ them into a sequence.

4 Mode Model

The analysis of information flow consistency over different levels of abstraction
presented in Section 3 does not distinguish the multiple operating modes of
components, nor does it allow us to express the way in which component faults
may contribute to information flow. To address this, we abandon the single
GRAPH as a model of information flow properties through a system. Instead,
we model a system as an interconnected set of COMPONENT s, where each
component is associated with a set of possible MODEs (ComponentModes), and
each mode is (possibly) related to a set of edges (ModeEdges).

628 T. McComb and L. Wildman

[COMPONENT ,MODE]
ComponentModes == COMPONENT ↔ MODE
ModeEdges == MODE ↔ (PORT × PORT)

The contents of both the abstract model and the concrete model are expressed
formally by populating these data structures.

Some of the modes are considered to be fault modes, so we distinguish between
normal operating modes and fault modes for the purpose of counting points
of failure later. The schema Model consolidates the data required to form a
complete model, and, as a convenience, in the Model schema we also derive the
set of all ports used. Note that we ensure every component has at least one mode
that is not a fault.

Model
componentModes : ComponentModes
faultModes : PMODE
modeEdges : ModeEdges
allPorts : PPORT

allPorts = dom(ranmodeEdges) ∪ ran(ranmodeEdges)
dom(componentModes −� faultModes) = dom componentModes

The edges that connect components, as opposed to those that are internal to
components, are modelled by a special component called the “parent”. The par-
ent component has only one mode for which all such edges are associated.

For example, the concrete model in Figure 1 is represented by ExampleCon-
creteModel in Figure 4. Here, each component has associated with it a set of
modes, some of which are categorised as fault modes. The parent component’s
mode, “parent mode”, holds all of the interconnecting edges.

4.1 Fault Modes

It is unusual to consider a component fault to be an operating mode of the
component. Normally, behaviour under fault conditions is reasoned about inde-
pendently using analysis techniques like Fault Trees [8] or Failure Modes and
Effects Analysis [7]. Our application, however, is rather unusual. Failures are
considered as connections across the circuit; faults which contribute to failures
introduce connectivity into the circuit. Consequently, there is a symmetry be-
tween the architecture of the device under analysis and the corresponding fault
tree which would model that device for domain separation failure. For exam-
ple, consider the simple design presented in Figure 3(a). Figure 5 shows a fault
tree for this device, modelling the circumstances under which the device fails to
ensure domain separation.

Components that lay serially along the path translate to conjuncts in the
tree, while components that are in parallel become disjuncts. This semantics is
identical to our connectivity analysis (the paths from cause to effect trace along
the same lines), so there is no need to perform this translation explicitly.

Verifying Abstract Information Flow Properties 629

ExampleConcreteModel
Model

componentModes =
{inputIO �→ inputIO normal , inputIO �→ inputIO fault ,
mainPIC �→ mainPIC normal ,mainPIC �→ mainPIC fault ,
secPIC �→ secPIC normal , secPIC �→ secPIC fault ,
comparator �→ comparator normal , comparator �→ comparator fault ,
comparator �→ comparator signal fault , gate �→ gate open,
gate �→ gate closed , gate �→ gate fault ,
gate �→ comparator signal fault , bypass �→ bypass on,
bypass �→ bypass off , outputIO �→ outputIO normal ,
outputIO �→ outputIO fault , parent �→ parent mode}

faultModes =
{inputIO fault ,mainPIC fault , secPIC fault , comparator fault ,
gate fault , comparator signal fault , outputIO fault}

modeEdges =
{inputIO normal �→ (a �→ b),mainPIC fault �→ (c �→ d),
secPIC fault �→ (i �→ j), comparator fault �→ (l �→ m),
comparator fault �→ (k �→ m), gate open �→ (e �→ f),
gate fault �→ (n �→ f), comparator signal fault �→ (e �→ f),
bypass on �→ (o �→ p), outputIO normal �→ (g �→ h),
parent mode �→ (b �→ i), parent mode �→ (b �→ c),
parent mode �→ (b �→ o), parent mode �→ (j �→ k),
parent mode �→ (d �→ l),parent mode �→ (d �→ e),
parent mode �→ (m �→ n), parent mode �→ (p �→ g),
parent mode �→ (f �→ g)}

Fig. 4. Example concrete model

However, this method assumes that all possible faults are component-level
faults. Unfortunately, we know this to not always be the case. For example,
Figure 6 represents a simple system where a common controller C opens and
closes a data channel at two distinct points A and B . Assume that both A
and B are normally closed. If we consider only component-level faults then to
send information over the channel it would require both A and B to be open.
If this was a fault mode for these components, then it counts as two faults for
the entire channel to be open. Otherwise, if this is not a fault mode, then it
requires no faults. For an accurate model, it should only require one fault—that
of component C—to cause the failure.

To provide for such scenarios, we allow fault modes to be shared amongst
components. In this case, components A, B , and C could all share a fault mode
controller signal fault that modelled the situation described above. Thus, the
connectivity over the channel is correctly modelled as requiring a single fault.

The example concrete model shown in Figure 4 illustrates one fault mode that is
shared between two components. Here, the fault mode is comparator signal fault

630 T. McComb and L. Wildman

Security Critical Region Breach

OR

Encryption
fault

Bypass
on

Input I/O
normal

Output I/O
normal

AND

AND

Domain Separation Failure

I/O Functioning

Fig. 5. Fault tree for abstract cryptographic device

C

A B

Fig. 6. Faults in controlling circuitry

and it is shared between the comparator and the gate. It models the scenario
when the comparator fails to close the gate, allowing a signal to propagate from e
to f .

4.2 Modes and Consistency

In Section 3 we described connectivity consistency by matching paths from the
concrete model to paths in the abstract model. Consistency was achieved if every
concrete path could be matched by an abstract path. When considering fault
modes, if a path exists in the concrete model that requires the presence of a fault,
then the matching abstract path should also require a fault. Intuitively, the ab-
stract paths should exactly match the number of faults in the concrete model
to form an accurate representation. However, this constraint is too strong; it is
difficult to achieve because the abstract model will most likely have fewer com-
ponents than the concrete model. Therefore, the abstract model will have fewer
faults along those paths involving extra concrete components. Consequently, we

Verifying Abstract Information Flow Properties 631

require that the concrete model be ‘at least as safe’ as the abstract model un-
der failure. Every path in the concrete model must be matched by a path in
the abstract model in terms of connectivity, and additionally the concrete path
must always require at least as many faults to form a complete connection across
the graph than the corresponding abstract path requires. As the concrete path
requires at least as many faults, it is at least as safe.

While this technique ensures that the abstract model accurately portrays the
concrete model in terms of the number of faults required to compromise the
domain separation functionality, it is possible that the abstraction has the faults
in different places to the concrete model. This might occur if the number of
points-of-failure required to cross one part of the circuit were decreased (making
that part more fault prone) but a corresponding increase in points-of-failure were
to occur somewhere else. For the purpose of showing the consistency between
models of information flow with respect to points of failure, it is not clear whether
we should allow this much flexibility. For the sake of being able to report when
such differences occur we have chosen the stronger consistency relationship, that
is, we check that between any two matching abstract ports along a pair of
matching paths, the number of faults in the abstract model between those ports
is fewer than, or equal to, the number of faults in the concrete model.

In the next section, we present the method we use to translate the model
such that we are able to consider faults and connectivity simultaneously, and
then revise our notion of model consistency accordingly.

4.3 Combining Connectivity and Modes

To simultaneously reason about connectivity and faults, we must derive a graph
that describes the connectivity by assigning to each component a specific mode,
some of which may be fault modes. We then consider all possible combinations of
such assignments, ensuring that the abstract and concrete graphs are consistent
regardless of the combination of modes (i.e., the abstraction is always a genuine
representation of the system, regardless of the system state).

We specify the set of possible mode assignments for a graph by taking the
set of all total functions that can be formed from the componentModes relation.
Components may share fault modes, so we also stipulate that whenever a fault
is selected it applies to all components that are capable of expressing that fault.

assignments : ComponentModes → PComponentModes

∀ rel : ComponentModes • assignments(rel) =
{fs : ((dom rel)→ MODE) ∩ P rel |
∀ f : fs • ∀ fault : (ran f) ∩ faultModes •

f � {fault} = componentModes � {fault}}

For a particular assignment, we construct a CombinedGraph where each vertex
is a schema binding that contains both a port label and the set of faults required
to reach that port.

632 T. McComb and L. Wildman

Reachable
port : PORT
modes : P MODE

CombinedGraph == Reachable ↔ Reachable

To construct a CombinedGraph we first start with an initial graph containing
just a reflexive map of the high ports with no faults (it requires no faults to
“reach” a port designated as high).

initialGraph : CombinedGraph

initialGraph = id {r : Reachable | r .port ∈ high ∧ r .modes = ∅}

We then extend it by progressively adding edges and vertices that corre-
spond to the connectivity graph, and the modal assignment over that graph.
This effectively mimics a breadth-first search, such that when a fixed point is
reached (when further extending the search is futile) the combined graph is fully
constructed.

The higher-order function extend , when given the set of fault modes, and
a ModeEdges relation, returns a function that extends a combined graph with
respect to the ModeEdges and the fault modes.

extend == (λ faults : P MODE ; connectivity : ModeEdges •
(λ g : CombinedGraph • g ∪

⋃
{s : ran g •

{t : connectivity | (t .2).1 = s .port •
s #→ ((t .2).2, s .modes ∪ {t .1} ∩ faults)}}))

We also introduce the function fix which, given a function and an argument,
finds and returns the fixed-point of that function with respect to the argument
(if there exists a fixed-point, otherwise fix is undefined).

[X]
fix : (X → X)×X #→ X

∀ f : X → X ; x : X •
(f (x) = x ⇒ fix (f , x) = x) ∧
(f (x) �= x ⇒ fix (f , x) = fix (f , f (x)))

We can now generate a combined graph searchGraph by finding the fixed-point
of the extend function as applied to the initialGraph:

searchGraph ==
(λ faults : PMODE ; connectivity : ModeEdges •

fix (extend(faults, connectivity), initialGraph))

For example, the following assignment models the case where the bypass mode
is off, the gate is open, and the main processor has a fault, in the ExampleCon-
creteModel (Figure 4):

Verifying Abstract Information Flow Properties 633

assignment ==
{(bypass, bypass off), (comparator , comparator normal),
(gate, gate open), (inputIO , inputIO normal),
(mainPIC ,mainPIC fault), (outputIO , outputIO normal),
(parent , parent mode), (secPIC , secPIC normal)}

Given conc as an instance of ExampleConcreteModel , Figure 71 illustrates the
searchGraph resulting from restricting the modeEdges relation in conc to the
modes in assignment .

searchGraph(conc.faultModes, (ran assignment) � conc.modeEdges)

 a ~ {} b ~ {} c ~ {} d ~ {mainPIC_fault}

 l ~ {mainPIC_fault} i ~ {}

 o ~ {} f ~ {mainPIC_fault, comparator_signal_fault}

 h ~ {mainPIC_fault, comparator_signal_fault}

 e ~ {mainPIC_fault}

 g ~ {mainPIC_fault, comparator_signal_fault}

Fig. 7. An example search graph (for the concrete model)

Although the search graph may contain paths to sinks that are not in low , (i ,
o, and l exemplify this), when determining consistency we are only interested
in the set of paths that connect high and low , so such dead-ends are eventually
disregarded.

5 Analysis of Combined Model

It is possible to construct a searchGraph for every assignment of modes to com-
ponents in both the concrete and the abstract models. The abstract model must
be consistent with the concrete model regardless of the concrete model’s state.
Therefore, the consistency property ensures that for every path through every
searchGraph in the concrete model, an assignment can be found for the abstract
model that produces a searchGraph matching that path — in terms of connec-
tivity, number of points of failure, and the location of failures.

We begin by finding the set of all paths allLeaks , over every possible searchGraph
(mode assignment), that exist in a model where the path constitutes a leak.

1 For brevity, we use the following abbreviation to denote a schema binding of
Reachable: a � b == 〈| port == a; modes == b |〉.

634 T. McComb and L. Wildman

allLeaks : Model → P PATH [Reachable]

∀m : Model • allSearchPaths(m) =⋃
{assignment : assignments(m.componentModes) •
{path : pathsOver(searchGraph(m.faultModes,

(ran assignment) � m.modeEdges)) ∧
first(path).port ∈ high ∧ last(path).port ∈ low}}

We only consider paths that breach domain separation (leaks), so our concept
of consistency only extends that far. Like the model of connectivity presented in
Section 3, one need not capture in the abstraction parts of the concrete model
that cannot possibly contribute to a leak.

Our consistency constraint ensures not only that a matching path can be
found in the abstract model for every path through the concrete model, but also
that the matching abstract path is consistent with respect to points of failure.
Consistency, defined below, relates an abstract and a concrete model under these
conditions.

Consistency
abs , conc : Model

∀ c path : allLeaks(conc) •
(let c filtered == c path � {r : Reachable | r .port ∈ abs .allPorts ∧

r .modes ∈ P conc.faultModes} •
(∃ a path : allLeaks(abs) •

(∀ i1, i2 : dom a path | i2 > i1 •
(a path i1).port = (c filtered i1).port ∧
(a path i2).port = (c filtered i2).port ∧
#(a path i2).modes −#(a path i1).modes ≤

#(c filtered i2).modes −#(c filtered i1).modes)))

In Section 3.2 we filtered concrete paths by removing ports that did not appear
in the abstract model, and in Consistency we filter the concrete paths on the
same premise. The variable c filtered represents the concrete path c path, after
the Reachable vertices that contain port labels not appearing in the abstract
model are filtered out. This filtering occurs irrespective of the fault modes in the
concrete path, such that the only vertices retained are those where the port is
in abs .allPorts and the fault mode set is any subset of conc.faultModes.

For a particular filtered concrete path, we find an abstract path and examine
all possible sub-paths. Since a path is a sequence, its domain contains natural
numbers that index the values in the sequence: the variables i1 and i2 thus
denote a sub-path from index i1 to index i2. The predicate stipulates that at
both indices, the port labels in the tuples match. Furthermore, between both
indices the number of faults accrued in a path is less than, or equal to, the
number of faults accrued in c filtered .

Verifying Abstract Information Flow Properties 635

ExampleAbstractModel
Model

componentModes =
{inputIO �→ inputIO normal , inputIO �→ inputIO fault ,
encryption �→ encryption normal ,
encryption �→ encryption fault , encryption �→ encryption leak
bypass �→ bypass on, bypass �→ bypass off ,
outputIO �→ outputIO normal , outputIO �→ outputIO fault ,
parent �→ parent mode}

faultModes =
{inputIO fault , encryption fault , encryption leak , outputIO fault}

modeEdges =
{inputIO normal �→ (a �→ b), encryption fault �→ (c �→ f),
encryption leak �→ (i �→ f), bypass on �→ (o �→ p),
outputIO normal �→ (g �→ h), parent mode �→ (b �→ i),
parent mode �→ (b �→ c), parent mode �→ (b �→ o),
parent mode �→ (f �→ g), parent mode �→ (p �→ g)}

Fig. 8. Example abstract model

5.1 Example

Revisiting the example in Section 4, we presented a concrete model and we
also illustrated a possible abstraction of this model as a block diagram (refer to
Figure 3). We now compliment that block diagram with the model in Figure 8,
which includes information pertaining to the modes of the abstract components.

We wish to verify ExampleAbstractModel to ensure that it can match all
leaky paths through ExampleConcreteModel according to Consistency. If we
enumerate allLeaks for our ExampleConcreteModel, then c filtered can take the
following values:

1. 〈a � ∅, b � ∅, c � ∅, f � {mainPIC fault , comparator signal fault},
g � {mainPIC fault , comparator signal fault},
h � {mainPIC fault , comparator signal fault}〉

2. 〈a � ∅, b � ∅, c � ∅, f � {mainPIC fault , comparator fault , gate fault},
g � {mainPIC fault , comparator fault , gate fault},
h � {mainPIC fault , comparator fault , gate fault}〉

3. 〈a � ∅, b � ∅, i � ∅, f � {secPIC fault , comparator fault , gate fault},
g � {secPIC fault , comparator fault , gate fault},
h � {secPIC fault , comparator fault , gate fault}〉

4. 〈a � ∅, b � ∅, o � ∅, p � ∅, g � ∅, h � ∅〉

Likewise, a path can take on the following values if we consider allLeaks over
the ExampleAbstractModel :

636 T. McComb and L. Wildman

1. 〈a � ∅, b � ∅, i � ∅, f � {encryption leak}, g � {encryption leak},
h � {encryption leak}〉

2. 〈a � ∅, b � ∅, c � ∅, f � {encryption fault}, g � {encryption fault},
h � {encryption fault}〉

3. 〈a � ∅, b � ∅, o � ∅, p � ∅, g � ∅, h � ∅〉

Consistency requires that for every c filtered path we can find an a path to
match it in terms of connectivity. In Section 3.2 we have already shown that
this is indeed the case. Further to this constraint, the matching a path must not
require a greater number of faults to traverse any particular sub-path than the
c filtered path for the same sub-path.

For example, c filtered path numbers (1) and (2) above both match with
a path number (2). The only point on any of the paths where faults are added
to the fault sets is between c and f . In the abstract path, one fault is added, and
in the filtered concrete paths at least one fault is added on this step. Since no
faults are added anywhere else, the a path is a match for both filtered concrete
paths. Similarly, c filtered path number (3) above matches with a path number
(1), and c filtered path number (4) matches a path number (3).

6 Related Work

The relational algebra system RelView [2] makes possible the specification and
exploration of relational problems likes ours. They employ model checking tech-
niques in order to automatically calculate the solutions to problems expressed
in a general relational programming language. They do not address problems in
security, fault tolerance, or graph consistency specifically.

The ability to restate our problem as a model checking problem was discovered
early in the project: one may consider an edge in the information flow model as a
transition in a finite state machine (FSM) and check that there are no leaks from
high to low by way of a state reachability analysis. If our abstract model were
also expressed as an FSM then the consistency problem may also be expressed
as a variant of Kripke-structure abstraction refinement [3].

This paper has avoided the discussion of particular implementation issues in
order to focus on the specification of the problem domain.

7 Conclusion and Future Work

In this paper we have presented an abstraction mechanism that is suitable for the
large scale analysis of information flow properties over systems in the presence
of faults. Although we have concentrated on hardware devices, the theory can be
applied to arbitrary networks of objects. We are implementing the approach into
the SIFA2 (Secure Information Flow Analyser) software [6], which has resulted
in the identification of previously unknown possible information flow pathways

2 http://www.itee.uq.edu.au/~infosec/SIFA

Verifying Abstract Information Flow Properties 637

through two prototype security devices. The concrete models for these devices are
directly imported into the tool from VHDL (a hardware description language)
and checked for consistency against an abstract model created by hand from
the design documentation. A primary advantage of using SIFA is the tool’s
ability to compose together multiple views to form a single model: normally
this involves overlaying the electronic schematics (logical connectivity) with the
artwork design (physical connectivity).

Our technique for checking consistency is analogous to symbolic model check-
ing [4] in many respects, but we only deal with abstract states, i.e. states that
have no associated semantic model (guards, transitions, etc.) Additionally, we
do not require a deep semantic model for representing failure modes as these just
correspond to connectivity. In further work we hope to automatically incorpo-
rate control flow into the dynamic properties of states (giving a richer semantic
model), so the dependencies between states that give rise to shared fault modes
may be automatically derived [9,11].

Our analysis technique overlooks the potential for information flow between
component operating modes, i.e., via components that store information in one
mode and release it in another [5]. Thus, the possibility for information flow
paths to be present over sequences of modes is not detected. In future work
we will extend the consistency checking technique presented in this paper to
incorporate information flow over sequences of mode changes.

Additionally, we plan to increase the expressiveness of our methodology with a
probabilistic model of failure. Of particular interest is the likelihood, impact, and
observability of failures. For instance, unlikely failures with a low impact may be
ignored, and we need to be able to distinguish failures that occur silently from
those that do not, as silent failures can lead to a catastrophic (and unmitigated)
leak of information.

Acknowledgements. This research is funded by an Australian Research Coun-
cil Linkage grant, LP0347620: Formally-Based Security Evaluation Procedures
conducted in conjunction with the Defence Signals Directorate.

References

1. ISO/IEC 13568, Information Technology—Z Formal Specification Notation—
Syntax, Type System and Semantics, 2002. First edition 2002-07-01.

2. R. Behnke, R. Berghammer, E. Meyer, and P. Schneider. RELVIEW – a system for
calculating with relations and relational programming. In FASE, pages 318–321,
1998.

3. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM, 50(5):752–794, 2003.

4. E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press, Cam-
bridge, MA, USA, 1999.

5. C. Fidge and T. McComb. Tracing information flow through mode changes. In
Vladimir Estivill-Castro and Gillian Dobbie, editors, Twenty-Ninth Australasian
Computer Science Conference (ACSC 2006), volume 48 of CRPIT, pages 303–310,
Hobart, Australia, 2006. ACS.

638 T. McComb and L. Wildman

6. T. McComb and L. Wildman. SIFA: A tool for evaluation of high-grade security
devices. In ACISP, pages 230–241, 2005.

7. MIL-STD. Procedures for performing a failure mode, effects and criticality analysis.
Department of Defense (USA), 1629A.

8. U. S. Nuclear Regulatory Commission NRC. Fault Tree Handbook. NUREG-0492,
Springfield, 1981.

9. A. Rae and C. Fidge. Identifying critical components during information security
evaluations. Journal of Research and Practice in Information Technology, 37(4),
November 2005.

10. A. Rae, C. Fidge, and L. Wildman. Fault evaluation for security-critical commu-
nications devices. Computer, 39(5):61–68, 2006.

11. A. Rae, C. Fidge, and L. Wildman. Information security fault mode evaluation for
communications devices. IEEE Computer, 39(3), March 2006.

12. A. J. Rae and C. J. Fidge. Information flow analysis for fail-secure devices. The
Computer Journal, 48(1):17–26, January 2005.

13. J. Rushby. Noninterference, transitivity, and channel-control security policies.
Technical Report CSL-92-02, Computer Science Laboratory, SRI International,
December 1992.

14. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, 2003.

A Language for Modeling Network Availability

Luigia Petre, Kaisa Sere, and Marina Waldén

IT Department, Åbo Akademi University, FIN-20520 Turku, Finland
{luigia.petre, kaisa.sere, marina.walden}@abo.fi

Abstract. Computer networks have become ubiquitous in our society
and thus, the various types of resources hosted by them are becoming
increasingly important. In this paper we study the resource availability
in networks by defining a dedicated middleware language. This language
is a conservative extension of the action system formalism, a general
state-based approach to modeling and analyzing distributed systems.
Our language formally treats aspects such as resource accessibility, repli-
cated and homonym resources, their mobility, as well as node failure and
maintenance in networks. The middleware approach motivates the sepa-
ration of the views and formalisms used by the various roles such as the
network user, the application developer, and the network manager.

1 Introduction

The networks have become an ubiquitous component of our society. Network ap-
plications range from e-commerce and Internet banking to digital TV, video-on-
demand, and network games. Envisioned applications link the existing networks
with more mundane appliances already containing embedded software, such as
microwave ovens, refrigerators, VCRs, or the house clocks. With these applica-
tions it would be possible to check online the contents of the fridge, schedule
the recording of a TV programme from work, or have the clocks automatically
switched to the daylight saving time [25]. As users of such a network-oriented
world, we would like to access all the applications we need at any time, without
having to know about the network functioning mechanisms.

Meeting such a goal requests a high degree of reliance on the correct function-
ing and availability of the networks. Numerous formal frameworks have been
developed to address the former issue, namely to specify a network-oriented
application and then analyze its properties. Examples of such frameworks are
CSP [11] and CCS [17], UNITY [7], Object-Z [24], and action systems [1]. To
partially address the latter issue of network availability, some formalisms define
concepts such as locations and mobility: π-calculus [18], Ambient Calculus [5],
Mobile UNITY [22], and topological action systems [21]. These formalisms are
mostly targeted to application developers who need the concepts of location and
mobility in their specifications. The proper network availability is to be treated at
a more specialized lower level. Hence, we need to separately analyze the network
user requirements using any formal framework dedicated to network-aware ap-
plications. These requirements may need to be expressed more precisely in terms
of locations and mobility by the application developer, using a properly equipped

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 639–659, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

640 L. Petre, K. Sere, and M. Waldén

formal framework. Then, the capabilities of the network in handling the func-
tioning of various applications can be expressed by the network manager at an
even lower layer. This layer is commonly referred to as the middleware layer.

In this paper we present a middleware language called MIDAS (MIDdle-
ware based on Action Systems) for supporting resource-centric computing. Our
proposed language is based on topological action systems introduced in [21]
as a framework extending the action system formalism conservatively towards
location-aware computing. Here we build on this work by providing an approach
dedicated to the network resources and nodes. A resource can be a data-oriented
repository, a piece of code, or a combination of data and code, the latter referred
to as a computation unit. Our language handles resource accessibility, replicated
and homonym resources, their mobility, as well as node failure and maintenance.

To make a clear distinction between the contribution of the application de-
veloper and that of the network manager, we employ action system refine-
ment [1,2]. This technique ensures that a high-level system specification can
be transformed by a sequence of correctness-preserving steps into an executable
and more efficient system that satisfies the original specification. In this pa-
per we assume to have two specification levels: one expressed with topological
action systems and written by the application developer, say Level1Spec and
another written in MIDAS by the network manager, say Level2Spec. The latter
includes the former together with additions handling the network availability
for the application, so that Level1Spec is refined by Level2Spec. The two speci-
fications are thus intermediate steps between requirements and implementation,
preserving the refinement relation that needs to exist between them. Namely,
Requirements (Level1Spec (Level2Spec (Implementation, where ‘(’ is the
refinement relation notation. The table below summarizes this.

Role Specification Represents
User Requirements
Application Developer Level1Spec Application
Network Manager Level2Spec Middleware
Programmer Implementation Code

We proceed as follows. In Section 2 we present the language of topological
action systems used throughout the paper. Based on some properties of this
language, we define in Section 3 the network resource and its location. We also
explain the difference between the specifications written by the application de-
veloper and the network manager. The following sections treat various aspects of
MIDAS: Section 4 introduces the replicated resources, Section 5 the homonym
resources, Section 6 the resource mobility, and in Section 7 we discuss the failure
and maintenance of network nodes. Conclusions and related work are presented
in Section 8.

2 Topological Action Systems

A topological action system is defined based on a connected graph. The nodes
of this graph model the nodes of a network where computation can take place
or where data can reside, i.e., the set of possible locations for resources. Let

A Language for Modeling Network Availability 641

therefore G = (V ,E) be a connected graph, where V is the finite, non-empty
set of nodes in the graph and E the set of edges.

A topological action system consists of a finite set of actions that can evaluate
and modify a finite set of variables. The values of the variables form the state
of the system. In the following, we first concentrate on the variables and actions
and then define formally the topological action system.

Variables. Let Var be a finite set of variable names. We define a variable of
a topological action system to be a quadruple (v , loc,Val , val) where v ∈ Var ,
loc ⊆ V , Val is a nonempty set of values, and val ∈ Val . The first field v denotes
the name of the variable, the second (loc) its location in the network (V ,E),
the third (Val) the variable type, and the fourth (val) the current value of the
variable. To avoid working with this quadruple in specifications, a few shorthand
notations are introduced. We express the location of a variable called v by the
expression v .loc and the names of the variables located at a location α by the
expression α.var . The value of a variable called v is given by the expression
v .val and the type of a variable called v by the expression v .type. When we
are interested only in the location of a variable, we can express this by v@α,
where α ∈ v .loc (α ∈ V) or v@Γ , where Γ ⊆ v .loc (Γ ⊆ V). When |v .loc| > 1
we say that the variable is replicated. We assume that the type of a variable is
unchangeable.

Actions. Let Act be a finite set of action names, distinct from Var . We define
an action of a topological action system to be a triple (a, loc,A) where a ∈ Act
is an informal, optional name for the action, loc ⊆ V is its location in the
network (V ,E), and A is its body, i.e., a statement that can model evaluation
and updates of the variables. A set of shorthand notations is introduced to avoid
working with such triples in specifications. We express the location of an action
(a, loc,A) by the expression a.loc or A.loc and the bodies of the actions located
at a location α by the expression α.action. When we are interested only in the
location of an action, this is given by A@α, where α ∈ A.loc (α ∈ V) or A@Γ ,
where Γ ⊆ A.loc (Γ ⊆ V); a similar notation is used with the name a of the
action instead of its body A. When |A.loc| > 1 (or |a.loc| > 1) we say that the
action is replicated. The name of an action is unchangeable. The body A of an
action named a is described by the following grammar:

A ::= abort | skip | v .val : = e | b→ A | A ; A | []i∈I A | if b then A else A fi (1)

Here (v , loc,Val , val) is a variable so that v ∈ Var , e ∈ Val , b is a predicate, and
I an index set. Intuitively, abort is the action that always deadlocks, skip is the
stuttering action, v .val : =e is an assignment, b→ A is a guarded action, that can
be executed only when b evaluates to true, A1 ; A2 is the sequential composition
of two actions A1 and A2, []i∈IAi is the non-deterministic choice among actions
Ai , i ∈ I , and if b then A1 else A2 fi is the conditional composition of two actions
A1 and A2. The nondeterministic assignment []v ′∈Valv .val : = v ′ is denoted by
v .val : ∈ Val .

Action semantics. The semantics of the action bodies in a topological action sys-
tem is expressed with the weakest precondition predicate transformer (wp) [2].

642 L. Petre, K. Sere, and M. Waldén

Assume an action body A and a postcondition q for A, i.e., a predicate describ-
ing the state after the execution of A. A and q are then mapped into the weakest
predicate wp(A, q) describing the state before A was executed, so that A estab-
lishes q. For the action bodies described by the grammar (1) we give below their
corresponding wp expressions:

wp(abort, q) =̂ false
wp(skip, q) =̂ q
wp(v .val : = e, q) =̂ q[e/v .val]
wp(b→ A, q) =̂ (b ⇒ wp(A, q))
wp(A1 ; A2, q) =̂ wp(A1, wp(A2, q))
wp([]i∈I Ai , q) =̂ ∀i ∈ I · wp(Ai , q)
wp(if b then A1 else A2 fi, q) =̂ (b ⇒ wp(A1, q) ∧ ¬b ⇒ wp(A2, q)).

We say that an action behaves miraculously when it establishes any postcondi-
tion, including false which models an aborting state. The guard condition g(A)
defined as g(A) =̂ ¬wp(A, false) gives those states in which the action behaves
non-miraculously.

Topological action systems. The computation unit in the network (V ,E) is mod-
eled by a topological action system, defined in the following form:

A =̂ |[exp y ;
var x ;
imp z ;
do []i∈I Ai od

]|

(2)

The first three sections are for variable declaration and usage, while the last
describes the computation involved in A, when I is finite. We assume that x , y
and z are lists of variables whose names are pairwise disjoint, i.e., the name of
a variable is unique in a topological action system.

The exp section describes the exported variables y of A, y = {(yl , yl .loc,
yl .type, y0

l)}l∈L, where L is a finite index set. These variables can be used within
A, as well as within other topological action systems that import them. Initially,
they are assigned the values y0

l and are located at yl .loc. If the initialization is
missing, arbitrary values from the type sets yl .type are assigned as initial values,
while a default location {λ}, λ �∈ V is assigned as initial location. As the exported
variables can be imported by other systems, their names are unchangeable.

The var section describes the local variables x ofA, x = {(xj , xj .loc, xj .type,x 0
j

)}j∈J , where J is a finite index set. These variables can be used only within A.
Initially they are assigned the values x 0

j and locations xj .loc, or, if the initializa-
tion is missing, some arbitrary values from their type sets and {λ} for location.
As the variables are local to A, their names can be changed. This change has
to respect the requirement of unique names for variables in a topological action
system and has to be propagated in all the action bodies that use the respective
local variables.

The imp section describes the imported variables z , z = {(zk , Γk ,Tk)}k∈K ,
where K is a finite index set. These variables are specified by name (zk), desired
locations of import (Γk), and desired import type (Tk). They are used in A and
are declared as exported in other topological action systems. The imported and
the exported variables form the global variables of A, used for communication

A Language for Modeling Network Availability 643

between topological action systems. The desired locations of import Γk can also
be denoted by zk .iloc and the desired type of import Tk by zk .itype. The locations
Γk can also be left unspecified (z = {(zk ,Tk)}k∈K), denoting the need of A to
use variables with predefined names and types, independently of their location.
In this case we write zk .iloc = ∅. As the imported variables refer to exported
variables of other topological action systems, their names are unchangeable.

The do...od section describes the computation involved in A, modeled by
a non-deterministic choice between actions with bodies Ai described by the
grammar (1). If some of these actions are replicated, |Ai .loc| > 1, then Ai in the
do...od section stands for Ai@ρi1 [] Ai@ρi2 [] ... [] Ai@ρihi , where |Ai .loc| = hi

and Ai .loc = {ρi1 , ρi2 , ..., ρihi }. We refer in the following to actions of the form1

(a, ρ,A), ρ ∈ V .
Assume that the names of all the variables used by an action (a, ρ,A) are in the

set vA and the names of the used imported variables are in the set iA, iA ⊆ vA.
It can often be the case that the variables vA and the action a are located at
different nodes of the network and, hence, the accessibility of the variables from
the action is not necessarily guaranteed. To model the network accessibility of
an action (a, ρ,A), ρ ∈ V , we define a function depending on the action and
its location, called cell: cell(A, ρ) ⊆ V . The cell comprises the set of accessible
locations for each action A at a certain location ρ ∈ V .

To model that the variables vA are accessible to the action (a, ρ,A), ρ ∈ V ,
we define a predicate called location guard, denoted lg(A@ρ):

lg(A@ρ) =̂ ∀v ∈ vA · (∃α ∈ cell(A, ρ) · (v ∈ α.var)∧
(v ∈ iA ∧ v .iloc �= ∅ ⇒ α ∈ v .iloc))

(3)

Before executing the action, the location guard verifies that, for each variable
named v , v ∈ vA, there is a location α in the cell of the action that contains a
variable with this name. Furthermore, if an imported variable v ∈ iA is specified
together with its desired locations of import (v .iloc �= ∅), then the location α is
one of the desired locations of import v .iloc.

Enabledness. The guard of the action (a, ρ,A) is defined as
gd(A@ρ) =̂ lg(A@ρ) ∧ g(A), (4)

where g(A) is the guard condition. An action (a, ρ,A) of a topological action
system is said to be enabled, if its guard gd(A@ρ) evaluates to true. An action
can be chosen for execution only if it is enabled.

The topological action system A in formula (2) thus models computation via
the action []i∈I (Ai@ρi1 [] Ai@ρi2 [] ... [] Ai@ρihi). Hence, A is a set of actions with
bodies Ai at locations ρij , i ∈ I , j ∈ {1, 2, ..., hi}, operating on local and global
variables. First, the local and exported variables whose values form the state
of A are initialized. Then, repeatedly, enabled actions at various locations in
{Ai .loc}i∈I are non-deterministically chosen and executed, typically updating
the state of A. Actions that do not access each other’s variables and are enabled
at the same time can be executed in parallel. This is possible because their

1 The correct form of an action located at a single location ρ ∈ V is (a, {ρ},A), ρ ∈ V .
Here we use (a, ρ,A), ρ ∈ V instead, for simplicity.

644 L. Petre, K. Sere, and M. Waldén

sequential execution in any order has the same result and the actions are taken
to be atomic. Atomicity means that, if an enabled action is chosen for execution,
then it is executed to completion without any interference from the other actions
of the system. The computation terminates if no action is enabled, otherwise it
continues infinitely.

Example 1. Consider an electronic library that provides books and other reading
material as PDF-files on a server. A topological action system modeling such a
library has the form below:

Library =̂ |[exp (books, {α}, set of PDF);
var (x , {α},PDF);
do add :: x .val : ∈ PDF ; books.val : = books.val ∪ {x .val}
[]delete :: x .val : ∈ books.val ; books.val : = books.val \ {x .val}
[]skip
od

]|

(5)

An action (a, ρ,A) is denoted as a :: A in the body of the topological action
system. The variable books stores a finite set, books .val = {bookl |l ∈ L}, where L
is a finite index set. The actions add and delete model the updating of the book
collection. The execution of Library is a nondeterministic choice between doing
nothing (skip), adding books (add), or deleting books from the library collection
(delete). We assume that all the resources of Library are located at the server’s
location, α ∈ V : books .loc = x .loc = add .loc = delete.loc = skip.loc = {α}. The
location guard of the action add is ∃β ∈ cell(add , α) · {x , books} ⊆ β.var . Since
x .loc = books .loc = {α}, then {x , books} ⊆ α.var and, hence, the location guard
reduces to α ∈ cell(add , α). Similarly, lg(delete@α) = α ∈ cell(delete, α).

3 Modularity Techniques, Resources, and Role Views

In this section we employ two modularity techniques that topological action sys-
tems inherit from the action system formalism. First, via parallel composition, we
define our concept of resource and its location. Second, via refinement, we show
the distinction between the specifications written by the application developer
and the network manager.

Parallel composition. The topological action system is defined as the basic com-
putation unit. Yet, in order to model complex systems we need to compose such
units. This operation is described using the parallel composition operator.

Consider the topological action systems A and B below:
A = |[exp y ; B = |[exp v ;

var x ; var w ;
imp z ; imp t ;
do []i1∈I1

Ai1 od do []i2∈I2
Bi2 od

]|]|
We assume that the local variables of A and B have distinct names: {xj1}j1∈J1 ∩
{wj2}j2∈J2 = ∅. If this is not the case, we can always rename a local variable to

A Language for Modeling Network Availability 645

meet this requirement. The exported variables declared in A and B are required
to have distinct names: {yl1}l1∈L1∩{vl2}l2∈L2 = ∅. The parallel composition A||B
of A and B has the following form:

A || B =̂ |[exp u ;
var s ;
imp r ;
do A [] B od

]|

(6)

where u = y ∪ v , s = x ∪ w and r = (z ∪ t) \ u. Also, A = []i1∈I1Ai1 and
B = []i2∈I2Bi2 . The initial values and locations of the variables, as well as the
actions in A || B consist of the initial values, locations, and the actions of the
original systems, respectively. The well-definedness ofA||B is ensured by the fact
that all its variables have unique names. Thus, the exported and local variables
of A and of B have distinct names and, moreover, the local variables of A can
always be renamed in order not to be homonym with the exported variables of
B (and vice versa). The binary parallel composition operator ‘||’ is associative
and commutative and thus extends naturally to the parallel composition of a
finite set of systems.

Scalability and network resources. Based on the parallel composition operator,
our approach is enabled to scale up, i.e., to model larger systems. We can thus
specify the computation of entire networks, including the location of their various
resources. Based on this operator, more flexibility of the approach has been
demonstrated in [21]. Thus, we can decompose a topological action system into
parallel ‘smaller’ units, so small that they encompass only a variable or an action.
For instance, if the topological action system A in (2) has only two exported
variables, two local variables, one imported variable and two actions (I = {1, 2}),
then we can rewrite it as follows:

A = |[exp y1]| || |[exp y2]| || |[var x1]| || |[var x2]| || C1 || C2

C1 = |[imp z , y1, x1 ; do A1 od]|
C2 = |[imp z , y2, x2 ; do A2 od]|

(7)

where z , yi , xi are the names of the variables imported by Ci , i ∈ I . Hence, we
have a collection of topological action systems, each describing only one variable
or action and running in parallel with each other.

We define a network resource to be a topological action system. The flexibility
provided by the topological action systems approach allows the computation unit
to scale down to fine grains of data and code resources. This is important because
it provides a unique notation for modeling different kinds of resources in a net-
work. Thus, a topological action system denotes not only an entire computation
unit that acts via actions over a set of variables, but also a data repository (a vari-
able or a set of variables) or mere code resources (an action or a set of actions).

Location of resources. Topological action systems of the form A1 =|[exp y@Γ1]|,
A2 =|[var y@Γ2]|, and A3 =|[imp z ;do A@Γ3 od]| can be seen as taking the lo-
cation of their declared entities: A1@Γ1,A2@Γ2, A3@Γ3. This rises the question
of defining locations also for the entire computation unit, i.e., the topological
action system, not only for base resources such as variables and actions. If all

646 L. Petre, K. Sere, and M. Waldén

the components of a topological action system have the same location, then this
location is propagated to the topological action system. In case the locations dif-
fer, the topological action system gets the default location {λ}. Thus, we define
the location of a topological action system A,

A = |[exp {(y1, Φ1, · · ·), · · · , (yn , Φn , · · ·)};
var {(x1, Ψ1, · · ·), · · · , (xm , Ψm , · · ·)};
imp z ;
do []i∈I Ai od

]|
with Ai .loc = ∆i , ∀i ∈ I as:

A.loc =̂

{
Φi , Φi = Ψj = ∆k , ∀i , j , k
{λ}, otherwise.

(8)

We also use the notation A@α or A@Γ for expressing that α ∈ A.loc or
Γ ⊆ A.loc, respectively. The reverse relation, of a topological action system prop-
agating its location to its components holds in the following form. If A.loc ⊆ V ,
then all the components of A have the same location A.loc. Yet, if A.loc = {λ}
then we cannot say anything about the locations of the topological action system
components.

Refinement. In the Introduction we defined informally the concept of refinement.
When discussing refinement techniques for a system A we refer to the behavior
of A as the set of state sequences that correspond to all the possible executions of
A. In this context, we say that the system A1 is superposition refined [2] by the
system A2 when the behavior of A1 is still modeled by A2 and the new behavior
introduced by A2 does not influence or take over the behavior of A1. This means
that new variables and actions can be added by A2, in addition to those of A1,
but in such a manner that they do not modify or take over the state evolution of
A1. Superposition (only one of the refinement types) is the technique we employ
in this paper to show the distinction between the specifications written by the
application developer and the network manager.

More precisely, a specification written by the application developer (say
Level1Spec) contains the resources and their locations as introduced so far. These
resources can be composed in parallel and may contain finer grained resources:
a topological action system typically contains variables and actions with their
own location. Some other features, introduced in the following sections, can also
be a part of the application developer domain and thus, of Level1Spec.

A MIDAS specification written by the network manager (say Level2Spec)
contains Level1Spec and the necessary additions for handling the network avail-
ability. In particular, the guards of the actions are strengthened and some new
actions that do not influence or take over the state evolution of Level1Spec are
added. Thus, we can informally2 say that Level1Spec (Level2Spec.

Strengthening the guards here means considering a guard as a conjunction
between the guard condition and the location guard, as defined in (4). The
2 The formal rules for strengthening the guards and introducing new action are given

in [2].

A Language for Modeling Network Availability 647

application developer is only concerned with specifying the guard condition,
while the network manager is interested in the location guard. The location
guards together with the definitions of the cell functions model the resource
accessibility in MIDAS. The example below extends (5) in Section 2 and empha-
sizes the parts of the specifications that belong to the application developer and
the network manager.

Example 2. The library system defined in (5) has the location {α}: Library.loc =
{α} (8). For using the collection of books, we define below a set of topological
action systems, called Readerk , k ∈ K , where K is a finite index set:

Readerk =̂ |[var {(x , {βk},PDF), (books to read , {βk}, set of PDF , ∅)};
imp (books, set of PDF);
do borrow :: x .val : ∈ books.val ;

books to read .val : = books to read .val ∪ {x .val}
[]return :: ∃z ∈ books to read .val · duedate(z) →

x .val : ∈ {z |z ∈ books to read .val ∧ duedate(z)};
books to read .val : = books to read .val \ {x .val}

[]skip
od

]|

(9)

We assume that the actions ofReaderk , k ∈ K are located at {βk} as are its vari-
ables: borrow .loc = return.loc = skip.loc = {βk}. Hence, we have Readerk .loc =
{βk} (8). A reader keeps track of all its borrowed books using the variable
books to read , initially set to ∅. Borrowing a book implies choosing it from the
list of books exported by the library system (x .val : ∈ books .val) and adding it
to the set books to read . We assume that the files storing the reading material
come with an embedded application, that removes them from the reader’s lo-
cation when the returning date comes. The latter condition is modeled by the
predicate duedate(x), x ∈ PDF . The book returning is then expressed by the
guarded action return that chooses among the books with expired due dates
and removes their copies from the collection of borrowed books.

In order for the library example to function properly, the topological ac-
tion systems Library and Readerk , k ∈ K are composed in parallel: Library ||
(||k∈KReaderk). The local variables of Readerk can be renamed from x to
xk and from books to read to books to readk . The application developer has
thus produced a working specification of an electronic library: Level1Spec =
Library || (||k∈KReaderk).

What does the network manager add in Level2Spec? First, a list of the cell
functions for the actions add , delete, borrow , and return is specified. Second, the
location guards are defined for each of these actions. The skip actions do not
access any variable and, hence, their location guards evaluate to true.

We have already specified the location guards of add and delete in Section 2.
For the actions borrow and return, we need to ensure that the local variables
x and books to read as well as the imported variable books are located in the
cell of each action. For the local variables, the location guard reduces to βk ∈
cell(borrow , βk) and βk ∈ cell(return, βk), following a similar reasoning as in

648 L. Petre, K. Sere, and M. Waldén

Example 1. For the imported variable of action borrow we need to ensure the
less obvious condition ∃γ ∈ cell(borrow , βk) · books ∈ γ.var and similarly for the
return action.

Compatibility. The default location {λ} models the location of a server for which
the entire network is accessible and vice versa, any resource located at {λ} is
accessible to every action located in V . More precisely, an action with body A
so that A.loc = {λ} has cell(A, λ) = V , hence lg(A@λ) = true. This action
is therefore enabled whenever the guard condition g(A) holds. We also assume
that λ ∈ cell(A, ρ), for every action (a, ρ,A), ρ ∈ V . Thus, if an action requires
some variable located at {λ}, then the variable is accessible. This mechanism of
default location is intended as a compatibility means with the more traditional
local area networks where there is no replication and no significant mobility, and
hence no location information is necessary. Such a local area network can be
seen as located at {λ}, and so, is location-transparent.

4 Replicated Resources

Besides resource accessibility, another aspect of MIDAS is the definition and
maintenance of replicated resources. The replication mechanism is intended for
optimal availability of resources and, thus, we do not replicate resources located
at {λ}. Such resources are anyway accessible to the whole network as explained
above. In the following, we study the replication of each resource type in turn:
first we consider variables, then actions, and then topological action systems. All
the actions defined in this section as well as their necessary location guards are
the job of the network manager, hence, they belong to Level2Spec.

4.1 Variables

In the previous sections we have seen the impact of variable names, in the defi-
nition of action enabledness as well as in the well-definedness of parallel compo-
sition. We now study variables having the same name.

A replicated variable is by definition a variable whose location has more than
one element. More precisely, the replicas of a variable named v and located at
Γ = {α1, α2, ..., αn}, Γ ⊆ V have the same name, type, and value, but different
locations excluding {λ}: v@α1, v@α2, ..., v@αn . Moreover, it makes no sense to
have more than one replica of the same resource at the same location.

Accessing replicated variables depends on whether the access is (only) for
reading or for (reading and) updating the variable value. If a variable is only
accessed for reading, then no special rule is needed, hence the location guard
in (3) is used. We can reinterpret this rule as follows: For any variable named
v , v ∈ vA, we choose a location of one of its replicas so that this location is in
the cell of the action. If a variable is accessed also for updating its value, then
all its replicas have to be updated simultaneously to the same value. We model
this case in two steps. First, we enforce a more restrictive form of the location
guard than the one in (3):

A Language for Modeling Network Availability 649

lg(A@ρ) =̂ ∀v ∈ vA · (∃α ∈ cell(A, ρ) · (v ∈ α.var)∧
(|v.loc| > 1⇒ v.loc ⊆ cell(A, ρ))∧
(v ∈ iA ∧ v .iloc �= ∅ ⇒ α ∈ v .iloc))

(10)

This restricted form ensures that we can access all the replicas of a variable
named v that needs to be updated. Second, if the above action with body A
is enabled and chosen for execution, then every assignment to the replicated
variable named v is replaced by the sequential composition of assignments to all
its replicas. As an example, the action in the topological action system

|[exp (y , {α, β}, · · ·) ; do (y .val �= 5 → y .val : = 5)@ρ od]|
first checks the guard condition y.val �= 5, then the location guard (∃δ∈cell(y.val
�= 5→ y.val : =5, ρ) ·y ∈ δ.var)∧{α, β} ⊆ cell(y.val �= 5→ y.val : =5, ρ). If both
conditions evaluate to true, then both y@α and y@β are updated to the value
5. The atomicity property for actions ensures that other computations will not
access the variable named y until all its copies are updated.
Creating replicas. There are two ways to create replicas for a variable. We can
either declare the variable as replicated or we can update its location via actions
during the execution of the topological action system. In the latter case, consider
that we have a variable named v . We create another replica of this variable at
the location Γ , Γ ⊆ V using a special copy action:

A ::= ... | copy(v , Γ),
copy(v , Γ) =̂ v .loc �= {λ} → v .loc : = v .loc ∪ Γ (11)

This action is semantically sound, its wp expression having the following form:
wp(copy(v , Γ), q) = (v .loc �= {λ} ⇒ q [(v .loc ∪ Γ)/v .loc])

Its guard condition is v .loc �= {λ}. To create replicas at Γ , the action copy needs
to have Γ accessible to its cell. Hence, the location guard is

lg(copy(v , Γ)@ρ) = ∃α ∈ cell(copy(v , Γ), ρ) · v ∈ α.var
∧ Γ ⊆ cell(copy(v,Γ), ρ)

Since copy(v , Γ) does not modify v .val , the fact that this variable may already be
replicated or may be imported makes no difference. We only need to access one
of its copies and the set Γ , as expressed above. Hence, the last two conjunctions
of (10) are not needed in the location guard of the copy(v , Γ) action.
Removing replicas. The reverse of the copy operation is that of removing replicas
of a variable named v :

A ::= ... | remove(v , Γ),
remove(v , Γ) =̂ if v .loc \ Γ �= ∅ then v .loc : = v .loc \ Γ

else v .loc : = {λ} fi
(12)

This action is semantically sound having the following wp expression:

wp(remove(v , Γ), q) = (v .loc \ Γ �= ∅ ⇒ q [(v .loc \ Γ)/v .loc])∧
(v .loc \ Γ = ∅ ⇒ q [{λ}/v .loc]),

while its guard condition is true and its location guard is similar to the location
guard of copy(v , Γ). If v .loc = Γ and we want to remove all its replicas, then the
copies atΓ are indeed removed, but the variable is saved at the default location {λ}.

650 L. Petre, K. Sere, and M. Waldén

4.2 Actions

Actions have a different replication pattern compared to variables. They model
active code resources, i.e., code which executes itself following its own seman-
tic rules. Executing A [] A is equivalent to executing A, except that some of
the nodes containing A may be unavailable (see Section 7). Hence, by having
replicas of an action executed in parallel at different locations, we increase the
enabledness of the code modeled by this action, i.e., we ensure a better code
availability.

A replicated action is by definition an action whose location has more than
one element. More precisely, the replicas of an action (a, loc,A) so that A.loc =
{ρ1,ρ2,...,ρn} have the same name and body, but different locations excluding
{λ}: A@ρ1, A@ρ2,..., A@ρn . It makes no sense to have more than one replica of
an action at the same location.

Creating replicas. There are two ways to create replicas for an action. We can
either declare the action as replicated or we can update its location via actions
during the execution of the topological action system. In the latter case, consider
that we have an action with body A. We create another replica of this action at
the location Γ , Γ ⊆ V using a special copy action:

A ::= ... | copy(A, Γ),
copy(A, Γ) =̂ A.loc �= {λ} → A.loc : = A.loc ∪ Γ (13)

This action is semantically sound, its wp expression having the following form:

wp(copy(A, Γ), q) = (A.loc �= {λ} ⇒ q [(A.loc ∪ Γ)/A.loc])

Its guard condition is A.loc �= {λ} and its location guard is

lg(copy(A, Γ)@ρ) = ∃α ∈ cell(copy(A, Γ), ρ) · A ∈ α.action
∧ Γ ⊆ cell(copy(A,Γ), ρ)

We note that the action body needs to be appropriately located in order for the
copy operation to succeed. In this case, the action (code resource) to be copied
behaves more like a data resource.

Removing replicas. The reverse of the copy operation is that of removing replicas
of an action with body A:

A ::= ... | remove(A, Γ),
remove(A, Γ) =̂ if A.loc \ Γ �= ∅ then A.loc : = A.loc \ Γ

else A.loc : = {λ} fi
(14)

This action is semantically sound having the following wp expression:
wp(remove(A, Γ), q) = (A.loc \ Γ �= ∅ ⇒ q [(A.loc \ Γ)/A.loc])∧

(A.loc \ Γ = ∅ ⇒ q [{λ}/A.loc]),

while its guard condition is true and its location guard is similar to the location
guard of copy(A, Γ). If A.loc = Γ and we want to remove all its replicas, then
the copies from Γ are indeed removed, but the action is saved at the default
location {λ}.

A Language for Modeling Network Availability 651

4.3 Topological Action Systems

Consider a topological action system A as in (2) so that A.loc �= {λ}. A is called
replicated if |A.loc| > 1. This means that all the variables and actions of A are
replicated at A.loc. Creating and removing replicas of A is based on creating
and removing replicas for all the variables and actions of A. We formally extend
the action grammar (14) with two more actions:

A ::= ... | copy(Γ) | remove(Γ),
copy(Γ) =̂ A.loc �= {λ} →

∀l ∈ L · copy(yl , Γ);
∀j ∈ J · copy(xj , Γ);
∀i ∈ I · copy(Ai , Γ)

remove(Γ) =̂ if A.loc \ Γ �= ∅ then
∀l ∈ L · remove(yl , Γ);
∀j ∈ J · remove(xj , Γ);
∀i ∈ I · remove(Ai , Γ)

else A.loc : = {λ} fi

(15)

These actions are semantically sound, having tedious but obvious wp expressions.
The actions copy(Γ) and remove(Γ) refer to the topological action system they
are specified in, hence, we cannot manipulate other systems based on these
actions. Namely, computation units can only duplicate themselves and similarly
for reducing their number of replicas.

Example 3. The library system introduced in (5) provides data to be used by
readers (9). If the reading data is only stored on one server, then it is lost in
case this server fails. Hence, the Library system should have some replicas in
the network (V ,E). For this, the network manager adds an action in Library:
· · · [] skip []copy(α′), at the middleware layer. This action creates a replica of
Library at the α′ node, α′ ∈ V , so that Library.loc = {α, α′}. The copy action
executes every time it is chosen for execution; however, the library system’s
location is changed from {α} to {α, α′} only following its first execution, due to
the form of the action copy (see (11), (13), (15)).

Adding the action copy(α′) in Level2Spec preserves the refinement relation be-
tween Level1Spec and Level2Spec. However, it implies some other modifications
in Level2Spec. The location guards of actions borrow and return do not change,
even though we now have |books .loc| > 1; this is because these actions only read
the variable books . On the contrary, the actions add and delete modify the value
of the variable books . Due to the condition |books .loc| > 1, we need to ensure that
books .loc ⊆ cell(add , α) ∧ books .loc ⊆ cell(add , α′) and similarly for the action
delete. This means strengthening the guards of actions add and delete and, thus,
Level1Spec (Level2Spec holds. Moreover, we need to update both copies of the
variable books , books@α and books@α′ in the body of the actions add and delete,
as explained in Section 4.1. Since these changes do not influence the behavior
of Level1Spec, the refinement relation is preserved. Similar guard strengthen-
ing and updates need to be made for the local and replicated variable x in the
actions add and delete. All these changes preserve Level1Spec (Level2Spec.

652 L. Petre, K. Sere, and M. Waldén

5 Homonym Variables

Another capability of MIDAS is the treatment of homonym variables. The gen-
eral case of such variables having the same name, but possibly different types
and values, is different with respect to replication. These resources can be de-
clared in different topological action systems: T1 = |[exp (zk , {α},T1, a)]| and
T2 =|[exp (zk , {β},T2, b)]|, where zk is their common name, {α} and {β} their
distinct locations, T1 and T2 their types, and a and b their values. The types
T1 and T2 can be identical. The difference with respect to a replicated variable
located at {α, β} is that each homonym variable has its own update history, i.e.,
their updates are independent of each other.

Clearly, the systems where homonym variables are declared cannot compose in
parallel with each other. However, another topological action system importing
the variable (zk , Γk , zk .type) can compose with either of T1 or T2. In this case,
for importing a variable both its name and its type have to match with its
specification (zk , Γk , zk .type). Hence, the last conjunction in the location guard
formula (3) (v ∈ iA ∧ v .iloc �= ∅ ⇒ α ∈ v .iloc) becomes (v ∈ iA ⇒ v .type =
v .itype ∧ (v .iloc �= ∅ ⇒ α ∈ v .iloc)), where v .iloc = Γk . In this way, the rightly
typed variable is imported.

Besides the above modification, we need to ensure that at a certain location
there is only one variable with a certain name v , ∀v ∈ Var . This integrity
condition is modeled by a function that records, for every location in V and
every variable name in Var , the number of variables having that name and
located there: ∀v ∈ Var , ∀α ∈ V · α.no(v) ∈ {0, 1}. Thus, α.no(v) = 1 means
that a variable called v is located or has a replica at α and α.no(v) = 0 means
that there is no variable called v located or with a replica at α. The network
manager has to ensure the well-definedness of this function: a replicated variable
named v has only one copy at every α ∈ v .loc and there are no homonym
variables named v with common locations, ∀v ∈ Var . Hence, the guards of
the actions that could modify the values of the function during execution have
to prohibit this. The action copy(v , Γ) thus becomes: copy(v , Γ) =̂ (v .loc �=
{λ}) ∧ (∀α ∈ Γ · α.no(v) = 0)→ v .loc : = v .loc ∪ Γ .

The declaration of homonym variables zk is typically done by the application
developer. Hence, they belong to Level1Spec together with the possible mod-
ifications for importing the variables zk . The well-definedness of the function
α.no(v), ∀v ∈ Var , ∀α ∈ V and the location guards above are the job of the
network manager, and, hence, belong to Level2Spec. As before, the relationship
Level1Spec (Level2Spec is preserved.

Example 4. The example (5),(9) can also include the specification of a homonym
variable books , exported by a bookshop system like the one sketched below:

Bookshop =̂ |[exp (books, {α′′}, set of Book)
do · · · od

]|
(16)

In this case, the two homonym variables called books (the one declared in Library
and the one in Bookshop) have different types and locations. Hence, the Readerk

A Language for Modeling Network Availability 653

system specifies the importing of the variable books together with its desired
import type: imp (books , set of PDF). The location guards of the actions borrow
and return need to check the extra conjunction books .type = books .itype, which
ensures that the variable books from Library is the one used.

If Bookshop declares exp (books , {α′′}, set of PDF), then the location is the
only way to differentiate between the variables to be used in Readerk (we assume
that α′′ /∈ {α, α′}). Hence, when importing the variable books in this system, the
desired import location has to also be specified: imp (books , {α, α′}, set of PDF).
This ensures that the actions borrow and return will choose one of the library
locations for the imported variable books .

6 Mobility of Resources

Mobility is a central feature in network computations as well as in the middleware
language handled by the network manager. We can model data, code, as well
as computation unit mobility using the topological action system framework.
Hence, we obtain a model for resource mobility.

We start by extending the grammar (15) with the following actions:

A ::= ... | move(v , α0, α) | move(A, α0, α) | move(α0, α),
α0, α ∈ V

move(v , α0, α) =̂ α0 ∈ v .loc → v .loc : = v .loc \ {α0} ∪ {α}
move(A, α0, α) =̂ α0 ∈ A.loc → A.loc : = A.loc \ {α0} ∪ {α}
move(α0, α) =̂ α0 ∈ A.loc →

∀l ∈ L ·move(yl , α0, α);
∀j ∈ J ·move(xj , α0, α);
∀i ∈ I ·move(Ai , α0, α)

(17)

Here v is the name of a variable, A is the body of an action, andA is a topological
action system. The move actions model the movement of resources (variable,
action, topological action system) from the initial location α0 to a location α in
the network. These actions are guarded by the condition that the initial location
of the resource contains the location α0. The move actions are semantically
sound; the first two have the following wp expressions and guard conditions:

wp(move(v , α0, α), q) = (α0 ∈ v .loc ⇒ q [(v .loc \ {α0} ∪ {α})/v .loc])
wp(move(A, α0, α), q) = (α0 ∈ A.loc ⇒ q [(A.loc \ {α0} ∪ {α})/A.loc])
g(move(v , α0, α)) = α0 ∈ v .loc
g(move(A, α0, α)) = α0 ∈ A.loc

Moving A from α0 to α is based on moving all the variables and actions of
A. The corresponding action is also semantically sound, its wp-expression be-
ing based on the above given expressions. The action move(α0, α) refers to the
topological action system it is specified in. Hence, computation units can only
move themselves; we cannot manipulate other systems based on this action.

We note the role of the guard condition α0 ∈ r .loc (see (17)) of a move action
for the replicated resource r , |r .loc| > 1. This condition ensures that only the
copy located at α0 is moved to α while the rest of the copies of r do not change
their location.

654 L. Petre, K. Sere, and M. Waldén

Similarly as for the copy action, the guard condition of the move action is
strengthened so that ∀v ∈Var , ∀α∈ V the function α.no(v) remains well-defined.
The action move(v , α0, α) thus becomes:

move(v , α0, α) =̂ α0 ∈ v .loc ∧ α.no(v) = 0→ v .loc : = v .loc \ {α0} ∪ {α}

The actions specified in (17) are usable by both the application developer
and the network manager. However, the network manager has to handle the
necessary location guards.

Location guards. In order for the move actions to be executable, the target
location α needs to be accessible. Furthermore, the variable called v and the
action with body A have to be available in the cell of their move actions. Hence,
since these resources are located at α0 (as ensured by the guard condition), the
location α0 also needs to be available to the move actions. We have the following
location guards:

lg(move(v , α0, α), ρ) = {α0, α} ⊆ cell(move(v , α0, α), ρ)
lg(move(A, α0, α), ρ) = {α0, α} ⊆ cell(move(A, α0, α), ρ)
lg(move(α0, α), ρ) = {α0, α} ⊆ cell(move(α0, α), ρ) ∧∧

l∈L lg(move(yl , α0, α), ρl) ∧∧
j∈J lg(move(xj , α0, α), ρj) ∧∧
i∈I lg(move(Ai , α0, α), ρi)

(18)

The location guard of the action move(α0, α) also contains the location guards
of the move actions for the variables and actions of A.

Example 5. For the Readerk system we can assume that it will not be repli-
cated: |Readerk .loc| = 1. This ensures the natural requirement that no clones
are created for such systems (the condition can be handled by either the network
manager or the application developer). However, the initial βk location can be
modified via movement through the network. The following additions are made
to the form specified in (9):

Readerk =̂ |[var {· · · , (x ′, {βk},V), (x ′′, {βk},V)} ; · · ·
do · · ·
[]goto :: x ′.val : ∈Readerk .loc; x ′′.val : ∈ V ;move(x ′.val , x ′′.val)
od

]|

(19)

The action goto can change the location of Readerk (and thus, the location of
all its resources). The new location x ′′.val is chosen nondeterministically from
the network nodes V , hence, it can also be the location Readerk .loc. In such a
case goto is equivalent to skip.

Having the Library system replicated on two network nodes provides even
more useful when we take into account the movement of Readerk . The exported
variable books of Library is then imported from α or α′, depending on the current
position of Readerk . If both α and α′ are accessible to the cells of actions borrow
or return from Readerk , then one is chosen by the middleware location guard.
If neither location is accessible, then these actions of Readerk cannot execute
until Readerk has moved to a more suitable location in the network.

A Language for Modeling Network Availability 655

7 Node Failure and Maintenance

The status of the network nodes greatly influences the availability of the network
resources. We model the node status in MIDAS as described below. Consider a
partition of the network nodes V into active nodes, nodes under maintenance,
and failed nodes: V = Vact ∪ Vmaint ∪ Vfail , so that Vact ∩ Vmaint = ∅, Vact ∩
Vfail = ∅, Vmaint ∩ Vfail = ∅. We extend the grammar (17) with the following
actions:

A ::= ... | fail(α) | begin maint(α) | end maint(α),
fail(α) =̂ α∈Vact → Vact : = Vact \ {α}; Vfail : = Vfail ∪ {α}
begin maint(α) =̂ α∈Vact → Vact : = Vact \ {α}; Vmaint : = Vmaint ∪ {α}
end maint(α) =̂ α∈Vmaint → Vact : = Vact ∪ {α}; Vmaint : = Vmaint \ {α}

(20)

We assume here that α ∈ V , α �= λ, i.e., the server does not fail and does
not need to be maintained. Intuitively, we want to interpret the above actions
as follows. The action fail(α) models the failure of node α, hence the node
changes its status from active to failed. The action begin maint(α) models that
the node α will have some maintenance procedures performed for it and the
action end maint(α) models that the node α has returned to normal operation
after certain maintenance procedures have been performed for it.

Besides modeling the node status, it is important to model in MIDAS what
happens to the resources located at these nodes. For instance, if the node α fails,
then we want to model that all its resources disappear or become unavailable.
We do this by refining fail(α) to the following form:

fail(α) =̂ α ∈ Vact → Vact : = Vact \ {α}; Vfail : = Vfail ∪ {α};
∀v ∈ α.var · remove(v , α);
∀A ∈ α.action · remove(A, α)

We observe that such a fail operation is relatively safe: in the worst case –
when a resource is only located at the failing node α – it saves a copy of each
such resource at the default location {λ}. This is ensured by the remove actions
defined in (12) and (14).

When a node α is not in Vact due to maintenance procedures, then we would
like to ‘save’ the resource information so that we can restore it when the node
functions normally again. This is modeled by keeping the form of the actions
begin maint(α) and end maint(α) as in (20), but ensuring that all the resources
having α ∈ Vmaint as location are not used or executed. We do this by enforcing
slightly stronger location guards. First, actions will execute only when their
accessed variables are located at active locations. Thus, instead of (∀v ∈ vA ·
(∃α ∈ cell(A, ρ) · (v ∈ α.var) ∧ ...)) in the location guard, we require (∀v ∈
vA · (∃α ∈ cell(A, ρ) ∩ Vact · (v ∈ α.var) ∧ ...)). Second, the location guard
lg(A@ρ) of an action (a, ρ,A) also needs to verify the extra condition ρ ∈ Vact,
and so lg(A@ρ) = ρ ∈ Vact ∧ (∀v ∈ vA · ...).

Moreover, the actions that handle locations need to ensure their active status.
It is meaningless to create replicas or move resources to locations that are inactive
or to remove replicas from inactive locations, since the resources there might
already have been removed by the safe failure operation. Hence, the condition

656 L. Petre, K. Sere, and M. Waldén

α ∈ Vact has to be conjuncted with the location guards of the actions copy,
move, and remove.

Specifying node failure and maintenance together with the strengthened lo-
cation guards for the actions of the system is the job of the network man-
ager. The application developer should not have to deal with such issues. Since
treating failure and maintenance implies only adding actions and strengthen-
ing guards according to [2], this middleware aspect also keeps the relationship
Level1Spec (Level2Spec preserved. Thus, the node failure and maintenance in
MIDAS offers a simple model for describing the status of the network nodes,
building on the resource model presented in the previous sections.

Example 6. The network manager can use the system below to model unexpected
node failure:

A =̂ |[var(x , {γ},V); do x .val : ∈ V [] fail(x .val) [] skip od]| (21)
Any system S that can have unexpected node failures can be modeled as S || A.

8 Conclusions and Related Work

In this paper we have focused on the network availability to applications. We have
addressed issues such as resource accessibility, replicated and homonym resources,
their mobility, as well as failure and maintenance of network nodes. These net-
work aspects are expressed in a dedicated language named MIDAS. This is rig-
orously defined by a grammar of actions (20) and supplemented with various lo-
cation guards and functions as explained throughout the paper. Thus, MIDAS
is a language that treats network resources in a general and thorough manner.
Compared with our earlier work in [21], the focus shifted from a general view of
networks expressed by action systems with locations to a clearly scoped language,
addressing the network availability to applications. Therefore, we have provided
here a careful systematization and extension of the material introduced in [21].

Expressing issues of network availability for applications belongs to the mid-
dleware level of specification. Numerous middleware approaches have been de-
veloped in the last decade or so [15] to address the network availability to ap-
plication developers. Location-aware middleware systems [20,9] have been built
to integrate different positioning technologies such as outdoor GPS and indoor
infrared via a common interface. Location is only one aspect of the more gen-
eral context information that an application can use. Context-aware middleware
systems have also been developed [23], allowing the application to influence
the middleware by inspecting and modifying the context. Various middleware
systems are oriented towards data sharing as a communication paradigm that
maximizes data availability via replicas. These replicas are not necessarily kept
consistent with each other. For instance, Bayou [8] employs a weak consistency
that ensures that only eventually all the copies will be synchronized; the ap-
plication developer is aware of the fact and can provide specific procedures to
resolve intermediate conflicts. XMIDDLE [16] focuses on representing the data
as XML trees that can be shared when their declaring devices are connected;
if these devices are disconnected, then offline operations can be performed on

A Language for Modeling Network Availability 657

the trees. Reconciliation takes place when the devices are reconnected later on.
Each device has access points for each of its trees, defining the branches that can
be read or modified by other connected devices that previously linked to that
tree. Thus, the unit of replication is very adaptable. Another class of middleware
systems use tuple spaces (as introduced by the coordination language Linda [10])
for computation and communication. For instance, Lime [19] adapts Linda to
mobility by breaking the centralized tuple space into multiple tuple spaces, each
owned by a mobile entity. These exclusive spaces are dynamically recomputed
to illustrate the tuple spaces of all the devices that are connected.

Following the middleware classification introduced in [15], MIDAS is sup-
porting systems with mobile entities, intermittent connection, and a dynamic
execution context. The computational load is not intended as heavy-weight, ex-
cept that our replicas are kept consistent with each other at all times. However,
since the propagation of changes is done only when all the copies are in the
action’s cell, this does not seem a restriction. The communication paradigm is
asynchronous, via data sharing, and the context of the application is available to
the developer. For instance, the application is aware that a resource is replicated
or not and can use locations in its specification. More context-awareness in the
action system framework was analyzed earlier [26]. A missing feature of MIDAS
is the discovery of resources and the dynamic adaptation to them. We did not
discuss how to define new resources nor how can a system use any resources
that are not declared in its specification. However, we can employ refinement
techniques towards this goal, as shown in [3].

An advantage of our approach is in its formal semantics that enables the verifi-
cation of various properties. A similar foundation based on Mobile UNITY [22] has
been used for Lime and EgoSpaces [12], the latter being a middleware approach
to the development of context-aware applications. A special framework based on
co-algebras has been introduced in [4], for defining orchestrators – a form of mid-
dleware agents. Another interesting approach called MTLA [13] has been devised
(based on Lamport’s TLA [14]) for the specification, verification, and formal de-
velopment of mobile code systems. MTLA is a spatio-temporal logic resembling
the modal logic for mobility developed for the Ambient Calculus in [6]. MTLA se-
mantics is used to identify refinement strategies for the mobile code systems. We
use refinement in this paper in a special manner – for distinguishing the specifi-
cations written by the application developer and the network manager. Still, we
can also employ the refinement technique in the traditional way: the application
developer specification can be refined by either making the algorithms more de-
terministic or by making the data structures more precise and implementable.

References

1. R. J. Back and R. Kurki-Suonio. Decentralization of process nets with central-
ized control. In Proceedings of the 2nd ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, pp. 131-142, 1983.

2. R. J. Back and K. Sere. Superposition Refinement of Reactive Systems. In Formal
Aspects of Computing, Vol. 8, No. 3, pp. 324-346, Springer-Verlag, 1996.

658 L. Petre, K. Sere, and M. Waldén

3. M. Bonsangue, J. N. Kok, and K. Sere. An Approach to Object-Orientation in
Action Systems. In J. Jeuring (ed), Proceedings of MPC’98 – Fourth International
Conference on Mathematics of Program Construction. Lecture Notes in Computer
Science, Vol. 1422, pp. 68-95, Springer-Verlag, 1998.

4. M. A. Barbosa and L. S. Barbosa. An Orchestrator for Dynamic Interconnection
of Software Components. In Proceedings of the 2nd International Workshop on
Methods and Tools for Coordinating Concurrent, Distributed and Mobile Systems
(MTCoord06), Elsevier, 2006 (to appear).

5. L. Cardelli. Abstractions for Mobile Computation. In J. Vitek and C. Jensen
(eds). Secure Internet Programming: Security Issues for Mobile and Distributed
Objects. Lecture Notes in Computer Science, Vol. 1603, pp. 51-94, Springer-Verlag,
1999.

6. L. Cardelli and A. D. Gordon. Anytime, Anywhere: Modal Logics for Mobile Am-
bients. In Proceedings of the 27th ACM Symposium on Principles of Programming
Languages, pp. 365-377, 2000.

7. K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley, 1988.

8. A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and B. Welch. The
Bayou Architecture: Support for Data Sharing among Mobile Users. In Proceed-
ings of the IEEE Workshop on Mobile Computing Systems and Applications, pp.
2-7, 1994.

9. D. Fritsch, D. Klinec, and S. Volz. NEXUS - Positioning and Data Management
Concepts for Location Aware Applications. In Proceedings of the 2nd Interna-
tional Symposium on Telegeoprocessing, pp. 171-184, 2000.

10. D. Gelernter. Generative Communication in Linda. In ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), Vol. 7, No. 1, pp. 80-112, 1985.

11. C.A.R. Hoare. Communicating Sequential Processes. In Communications of the
ACM, Vol. 21, No. 8, pp. 666-677, 1978.

12. C. Julien and G.-C. Roman. EgoSpaces: Facilitating Rapid Development of
Context-Aware Mobile Applications. In IEEE Transactions on Software Engi-
neering, 2006 (to appear).

13. A. Knapp, S. Merz, M. Wirsing, and J. Zappe. Specification and Refinement of
Mobile Systems in MTLA and Mobile UML. In Theoretical Computer Science,
Vol. 351, No. 2, pp. 184-202, Elsevier, 2006.

14. L. Lamport. The Temporal Logic of Actions. In ACM Transactions on Program-
ming Languages and Systems (TOPLAS), Vol. 16, No. 3, pp. 872-923, 1994.

15. C. Mascolo, L. Capra, and W. Emmerich. Mobile Computing Middleware. In
E. Gregori et al. (eds), Networking 2002 Tutorials, Lecture Notes in Computer
Science, Vol. 2497, pp. 20-58, Springer-Verlag, 2002.

16. C. Mascolo, L. Capra, S. Zachariadis and W. Emmerich. XMIDDLE: A Data-
Sharing Middleware for for Mobile Computing. In Wireless Personal Communi-
cations Journal, Vol. 21, No. 1, pp. 77-103, Springer, 2002.

17. R. Milner. A Calculus of Communicating Systems. Lecture Notes in Computer
Science, Vol. 92, Springer-Verlag, 1980.

18. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes I and II. In
Information and Computation, Vol. 100, No. 1, pp. 1-77, 1992.

19. A. L. Murphy, G. P. Picco, and G.-C. Roman. LIME: A Middleware for Physi-
cal and Logical Mobility. In Proceedings of the 21st International Conference on
Distributed Computing Systems, pp. 524-533, 2001.

20. Oracle Technology Network. Oracle Application Server Wireless, 10g. http://
www.oracle.com/technology//products/iaswe/index.html, 2005.

A Language for Modeling Network Availability 659

21. L. Petre, K. Sere, and M. Waldén. A Topological Approach to Distributed Com-
puting. In Proceedings of WDS 99 – Workshop on Distributed Systems, Electronic
Notes in Theoretical Computer Science, Vol. 28, pp. 97-118, Elsevier Science,
1999.

22. G.-C. Roman and P. J. McCann. A Notation and Logic for Mobile Computing.
In Formal Methods in System Design, Vol. 20, No. 1, pp. 47-68, 2002.

23. M. Roman, C. Hess, R. Cerqueira, A. Ranganat, R. Campbell, and K. Nahrstedt.
A middleware infrastructure for active spaces. In IEEE Pervasive Computing,
Vol. 1, No. 4, pp. 74-83, 2002.

24. G. Smith. The Object-Z Specification Language. Kluwer Academic Publishers,
2000.

25. A. S. Tanenbaum. Computer Networks, fourth edition. Pearson Education, Inc.,
Prentice Hall PTR, 2003.

26. L. Yan and K. Sere. A Formalism for Context-Aware Mobile Computing. In Pro-
ceedings of ISPDC/HeteroPar’04, pp. 14-21, IEEE Computer Society Press, 2004.

Multi-process Systems Analysis Using Event B:
Application to Group Communication Systems

J. Christian Attiogbé

LINA - FRE CNRS 2729 - University of Nantes, France
Christian.Attiogbe@univ-nantes.fr

Abstract. We introduce a method to elicit and to structure using Event
B, processes interacting with ad hoc dynamic architecture. A Group
Communication System is used as the investigation support. The method
takes account of the evolving structure of the interacting processes; it
guides the user to structure the abstract system that models his/her re-
quirements. The method also integrates property verification using both
theorem proving and model checking. A B specification of a GCS is built
using the proposed approach and its stated properties are verified using
a B theorem prover and a B model checker.

Keywords: Event B, Group Communication Systems, Dynamic Archi-
tecture, Property verification.

1 Introduction

The rigorous description of dependable systems starts from the formal specifi-
cations of their requirements. It is crucial for the subsequent development steps
to use an adequate specification. But according to the features of the system to
be studied the elicitation and structuring of formal specifications is still a chal-
lenging concern. Moreover asynchronous systems with evolving structure are
especially difficult. Structuring not only deals with the readability of the pro-
duced specifications but it is also important for the requirement capture and for
the specification analysis.

The B method [2,4] is one of the well-mechanized formal methods that cover
the development process from specification to code generation. However there is
no specific guidance at the specification level. This is a shortcoming shared by
general purpose formal methods such as PVS or Isabelle.

The general motivation of this work is the search for practical methods, tech-
niques and tools to help the developers in specifying and analysing their systems;
the emphasis is put on methods appropriate for the class of systems to be treated.

Distributed systems design, analysis and implementation are difficult engi-
neering tasks. They still pose challenging specification and analysis problems.
To master this difficulty several layers of concerns are distinguished. The lower
one is the network and operating system layer; a group communication layer
is built on the top of the former. Finally the application layer is the one close
to the user. The reliability of distributed applications requires the proof of cor-
rectness at various layers: a layered property verification approach. We consider

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 660–677, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Multi-process Systems Analysis Using Event B 661

Group Communication Systems [14,11] as our investigation support as it con-
centrates non-trivial modelling and analysis concerns, and also will contribute
to the layered property verification of distributed applications.

In this article we focus on the systematic specification and analysis of multi-
process systems, especially those with evolving structure. The contribution of
this work is threefold: i) a method to guide the development of systems with
multi-processes and dynamic architecture; ii) a proof of concept of group commu-
nication modelling and analysis using B; iii) a combined use of theorem proving
and model checking to hasten correctness analysis of non-trivial system.

The remainder of the article is organized as follows: in the Section 2 we provide
an overview of the used Event B framework. Section 3 introduces the features of
group communication systems. Section 4 deals with the proposed specification
method. In Section 5 we consider the properties that are verified. Finally Section
6 concludes the article.

2 Event B Method

2.1 An Overview of Event B

Within the Event B framework, asynchronous systems may be developed and
structured using abstract systems [2,4]. Abstract systems are the basic struc-
tures of the so-called event-driven B, and they replace the abstract machines
which are the basic structures of the earlier operation-driven approach of the B
method[1]. An abstract system [2,4] describes a mathematical model of a sys-
tem behaviour1. It is made mainly of a state description (constants, properties,
variables and invariant) and several event descriptions. Abstract systems are
comparable to Action Systems [6]; they describe a nondeterministic evolution of
a system through guarded actions. Dynamic constraints can be expressed within
abstract systems to specify various liveness properties [4,10]. The state of an
abstract system is described by variables and constants linked by an invariant.
Variables and constants represent the data space of the system being formalized.
Abstract systems may be refined like abstract machines [10,3].

Data of an Abstract System. At a higher level an abstract system models and
contains the data of an entire model, be it distributed or not. Abstract systems
have been used to formalize the behaviour of various (including distributed)
systems [2,9,10,3]. Considering a global vision, the data that are formalized
within the abstract system may correspond to all the elements of the distributed
system.

Events of an Abstract System. Within B, an event is considered as the
observation of a system transition. Events are spontaneous and show the way a
system evolves. An event e is modelled as a guarded sustitution: e =̂ eG =⇒ eB
where eG is the event guard and eB the event body or action.

1 A system behaviour is the set of its possible transitions from state to state beginning
from an initial state.

662 J.C. Attiogbé

eventName �=
select

P(gcv)

then
GS(gcv)

end

(SELECT Form)

eventName �=
any bv where

P(bv,gcv)

then
GS(bv,gcv)

end

(ANY Form)

Fig. 1. General Forms of Events

An event may occur or may be observed only when its guard holds. The ac-
tion of an event describes with generalized substitutions how the system state
evolves when this event occurs. Several events may have their guards hold simul-
taneously; in this case, only one of them occurs. The system makes internally
a nondeterministic choice. If no guard is true the abstract system is blocking
(deadlock). An event has one of the general forms (Fig. 1) where gcv denotes
the global constants and variables of the abstract system containing the event;
bv denotes the bound variables (variables bound to any). P(bv ,gcv) denotes a
predicate P expressed with the variables bv and gcv ; in the same way GS(bv ,gcv)
is a generalized substitution S which models the event action using the variables
bv and gcv . The select form is a particular case of the any form. The guard
of an event with the select form is P(gcv). The guard of an event with the any
form is ∃(bv).P(bv ,gcv).

Semantics and Consistency. The semantics of an abstract system relies on
its invariant and is guaranteed by proof obligations(POs). The consistency of
the model is established by such proof obligations: i) the initialisation U should
establish the invariant I : [U]I ;

ii) each event of the given abstract system should preserve the invariant of the
model. The proof obligation of an event with the any form (Fig. 1) is:

I(gcv) ∧ P(bv ,gcv) ⇒ [GS(bv ,gcv)]I(gcv)

where I(gcv) stands for the invariant of the abstract system. Moreover the events
should terminate: I(gcv) ∧ P(bv ,gcv) ⇒ fis(GS(bv ,gcv)). The predicate fis(S) ex-
presses that the substitution S does not establish False: fis(S)⇔ ¬ [S]False.

The deadlock-freeness should be established for an abstract system: the dis-
junction of the event guards should be true. The B method is supported by
theorem provers which are industrial tools (Atelier-B [12] and B-Toolkit [5]).

The event-based semantics of an abstract system A is the event traces of A
(traces(A)); the set of finite event sequences generated by the evolution of A.

2.2 Overview of the ProB Tool

The ProB tool [18,19] is an animator and a model checker for B specifications.
It provides functionalities to display graphical view of automata. It supports
automated consistency checking of B specifications (an abstract machine or a

Multi-process Systems Analysis Using Event B 663

refinement with its state space, its initialization and its operations). The consis-
tency checking is performed on all the reachable states of the machine. ProB also
provides a constraint-based checking; with this approach ProB does not explore
the state space from the initialization, it checks whether applying one of the op-
eration can result in an invariant violation independently from the initialization.

ProB offers many functionalities. The main ones are organized within three cat-
egories:Animation, Verification and Analysis. Several functionalities are provided
for each category but here, we just list a few of them which are used in this article.

The Animation category gathers the following functionalities:

Random Animation: it starts from an initial state of the abstract machine and
then, it selects in a random fashion one of the enabled operations, it computes
the next state accordingly and proceeds the animation from this state with one
of the enabled operations;
View/Reduced Visited States: it displays a minimized graph of the visited states
after an animation;
View/Current State: it displays the current state which is obtained after the
animation.

In the Verification category, the following functionalities are available:

Temporal Model Checking: starting from a set of initialization states (initial nodes),
it systematically explores the state space of the current B specification. From a
given state (a node), a transition is built for each enabled operation and it ends
at a computed state which is a new node or an already existing one. Each state
is treated in the same way.
Constraint Based Checking: it checks for invariant violation when applying opera-
tion independently of initialization states.

In the Analysis category we have the following functionalities:

Compute Coverage: the state space (the nodes) and the transitions of the current
specification are checked, some statistics are given on deadlocked states, live
states2, covered and uncovered operations.
Analyse Invariant: it checks if some parts of the current invariant are true or false;
Analyse Properties: the property clause of the current specification is checked.

The ProB tool is used to check liveness properties. Besides, note that if a B
prover has been used to perform consistency proof, the invariant should not be
violated; the B consistency proof consists in checking that the initialization of an
abstract machine establishes the invariant and that all the operations preserve
the invariant. In the case where the consistency is not completely achieved ProB
can help to discover the faults.

3 Group Communication System: Experiment Support

GCSs have motivated several works [14,11] and there are several well-know
GCSs such as Isis[8], Horus[25], Ensemble[16,17]. In this experiment we do not
2 Those already computed.

664 J.C. Attiogbé

consider a specific GCS but the main features that are common to most of
the GCSs.

3.1 Overview of Group Communication System

A process group is a set of processes interacting to achieve a common goal defined
by their designer. A group communication system (GCS) [14] is the support of
multicast communication among a process group. This communication support
should have a reliability property which is the main property of GCS: a message
sent by a process to a process group is delivered once to each current member
of the group. Therefore the main task of a GCS (with regard to a given user
application) is to simulate an environment in which message delivery is reliable
between the involved processes. There are various kind of groups: open group
where processes outside the group may send a message to the group taken as an
entity; closed group where a process outside the group can send a message to a
given process of the group but not to all the members.

The processes which are members of a group exchange messages between
themselves. Message exchange between one process of a group and other pro-
cesses outside the group is permitted in the case of open group.

Sending a message to a group (multicast) is the basic communication action.
Unlike unicast message which is sent by one process to one other process, a
multicast message is a message sent to all the members of a group. The structure
of a GCS is changing as well as the structure of a group. At a given moment the
processes and groups that pertain to the GCS form its view. View changing is
notified to the environment. A group is created at any time by one process. The
process that creates a group is the owner of it and also the first member of the
created group (Self Inclusion property). A group can be removed by its owner if
there is no other member in the group. A process may join (becoming member)
or leave a group. A process may be member of several groups. A process may
own several groups. A group owner cannot leave its group.

Membership changes are reported through messages to the environment (ap-
plication layer).

The interaction between an application and a GCS is structured as follows:
the application sends/receives messages to/from the GCS. The GCS notifies
memberships changes to the application. The interaction at the GCS layer in-
volves group installation, group deletion, memberships action (joining or leaving
a group).

3.2 Analysis and Modelling Assumptions

To model a GCS we need to describe several sets of interacting processes; each set
identifies a group. A group has some members which are processes. The number
of processes in a set is varying. A group is identified and thus it is distinguished
from the others; it has a view which is its current members. The union of the
views of groups forms the GCS view. A GCS is a multi-process system whose
architecture is dynamic.

Multi-process Systems Analysis Using Event B 665

The main events (observed from an abstract point of view) that describe the
evolution of a GCS are:

– newPrc: a (new) process appears;
– byeProc: a process leaves the system;
– newGrp: a process creates a group;
– rmvGrp: a process removes a group;
– joinGrp: a process joins a group;
– leaveGrp: a process leaves a group;
– snd2grp: a process sends a message to a group;
– rcvFgrp: a process receives a message from the group.

The behaviour of a GCS is the combined behaviours of the processes that
constitute the groups. A process behaviour is characterized by several events:
an alphabet. At this stage we may describe a process with an abstract sys-
tem equipped with the event alphabet: newPrc, leaveSys, newGrp,rmvGrp, join-
Grp, leaveGrp, snd2grp, rcvFgrp. A precise investigation of the process behaviour
within the GCS reveals that the events should be more specific than the listed
ones. This is detailed in the sequel (see Section 4.4).

The processes of a GCS exchange messages which are unique: two different
sent messages cannot be confused. The messages convey data. Therefore a good
abstraction is to consider a set of messages exchanged within the GCS; each one
is made with an (unique) identifier and a data part. A message is viewed as a
pair: 〈identifier , data〉.

We then consider a set of identifiers (MId) to catch the unicity of exchanged
messages. The set of messages to be considered is the union of the messages
exchanged by all the processes that participate in the GCS.

A process that joins the system should be able to interact with the existing
processes. A process also has a data storage where the received messages are
stored. Acknowledgement may be sent for received data. We study in the follow-
ing a method to specify such an interacting system that has an ad hoc evolving
structure. The logical behaviour of the system is handled as event orderings or
event traces.

4 Specifying Interacting Group Processes in B

The interaction between several processes which cooperate to achieve a given
common goal is often handled using communication between the processes. Two
main paradigms support communication: message passing and variable sharing.
The former is adapted to distributed systems and therefore used for GCS. The ar-
chitecture of a group communication system is dynamic. The processes involved
in a group interact using the current ad hoc structure of the processes. This
structure is changing as the processes evolve. We focus here on the systematic
specification of the interacting processes.

666 J.C. Attiogbé

4.1 Dynamic Process Architecture

Process algebras (such as CCS [22], CSP[24], LOTOS[20]) generalize state tran-
sition approaches and are widely used to model interacting processes; herein the
behaviours of elementary processes are described and then the parallel composi-
tion operators are used to combine the processes. Therefore the architecture of
a system is a static composition of a finite number of processes. The π−calculus
[23] permits the description of evolving structures of processes but it is not well
supported by tools.

In many specification circumstances, one has to deal with dynamic configu-
ration of the system architecture: an example is the growing number of client
processes in a resource allocation problem. Such circumstances are often dealt
with by considering the reasoning on an arbitrary high number of processes.
However, it is a biased solution of the problem.

The approach proposed here combines a process-oriented approach and B
system; it copes with the specification of dynamic interacting processes and
deals with the limitations of both cited approaches.

State Transitions Approach. Capturing a process behaviour is intuitive but state
transition systems lack high level structures for complex processes. Handling an
undefined, variable number of processes is not tractable. Dealing with several
instances of the same processes is not possible. Synchronization of processes
should be made explicit.

B System Approach. A difficult concern is that of the completeness with respect
to event ordering (liveness concerns): did the specification covers all the possible
evolution (event sequences) expressed in the requirement? Indeed one can have
a consistent system (with respect to the stated invariant) which does not meet
the desired logical behavioural requirements.

Rigorous guidelines may help to discover and express the desired behaviours;
liveness properties help to cover the related completeness aspect. That is the
basis of the proposed approach.

4.2 Event Orderings: Causality and Liveness

In this section we explain our policy to constrain event occurrences according
to the user requirements. We make it clear the event orderings. This enable
us to express event causality. But liveness property (something good eventually
happens) may also be expressed considering the event orderings.

Because we do not want to change the B method and its semantics in our
approach to obtain B models for multi-process systems, we avoid using temporal
logics to state liveness properties and checking the obtained models again these
properties (that is the more classical way). Therefore instead of pure liveness
properties, we consider causalities which are more intuitive at modelling level.
It is easier for the developper to express the ordering of his/her system events
as causality relation; for example a requirement such as ”the event e1 always
precede the event e2” is simply captured by a causality: e2 follow e1. Implicitely,
each event of the ongoing system alphabet should possibly occurs (liveness).

Multi-process Systems Analysis Using Event B 667

Using a LTL formula, the same example requirement is expressed as follows:

�(e1 → �e2)

Therefore the user’s requirements related to event orderings can be easily ex-
pressed with a collection of event causalities as above. That is the principle we
use in our approach: the user makes it explicit the ordering of the system events.
Technically, considering a process behaviour, the analysis of liveness properties
can only be performed on infinite traces (from the exploration of the process
behaviour graph); that means using a Büchi automata.

From a methodological point of view, we use a (directed) graph to describe the
process behaviours. The graph described with a relation on events. This relation
is called follow in the sequel and it describes a transition relation labelled with
events. The follow relation is given by the user to capture the needed event
orderings.

The follow relation is sufficient to describe even complicated situation; for
example a causality such as: ”an event e3 is caused by a disjunction of e1 and
e2” is captured by the relation {(e1, {e2, e3}), (e2, {e1, e3})}. That is graphically

e1 e2

e1e2

e3

e3

e3

According to a B system to be constructed, the constraints that are captured
with event orderings (through the follow relation) should appear in event guards,
hence the B abstract system is correctly built.

4.3 The Proposed Specification Method: Illustration with a GCS

According to a given requirement statement (here a GCS), one has to build an
abstract system A that models the behaviour of a set Pr of interacting processes.
This behaviour is described with a set of events that are observed when the
system evolves. The interacting processes may be of different types; they may
use resources or data which are shared or not.

The proposed method is a methodological approach to build the behaviour
of the given system in such a way that it corresponds to the stated informal
requirements. Accordingly the built system should ensure safety and the event
orderings should be the expected ones. Several steps are distinguished for the
method.

Step 1. General frame of the abstract system
• Begin the construction of an abstract system A that is the B formal model of
the studied system. The semantics of A (see Section 2.1) is not modified. A is
made of S , E , follow , Evts where S is the state space that will be described with
variables and predicates, E is an event alphabet, follow is a transition relation on
E and Evts is a set of event specifications. The relation follow is neither reflexive

668 J.C. Attiogbé

nor symmetric nor transitive. Moreover when (e1, e2) ∈ follow , each occurrence
of e2 should be preceded (immediately or not; depending on the other elements
of follow) by an occurrence of e1. This evolution constraint is introduced latter
(Step 5.) through the guard of events.

As A is a multi-process system, several process types will contribute to define
its behaviour. These process types are described in the following.
• Identify the set Pr of (types of) processes that interact within A: Pr =
{P1,P2, · · ·}. Put into the SET clause of A an abstract set Pi for each pro-
cess type.
For the GCS a process type PROCESS is considered. It does not matter the
number of the process of each type.
• For each process type P ∈ Pr

– consider a new variable to model the set of processes of this type. According
to the GCS we have processes ⊆ PROCESS .

– Identify the system resources or data and distinguish the shared ones. The
data manipulated in the GCS are a set of process groups (GROUP), a set
of messages; each message is made with an identifier (MId) and a data part
(DATA).

– Fill in the SET clause of A with the identified abstract sets: GROUP, DATA,
MId, ...

• The shared resources need a specific access policy. For each kind of shared
resources,

– define a B event to access/get/free the resource. Typically an event that
reads a common data is to be distinguished from the one that write the
data.

The resources of the GCS are not shared.
• Identify the set of events that make the system evolves: E . These events may
be split into two classes of events: the general events (GE) that affect the whole
system and the process-specific events (SE) which correspond to the evolution
of the identified (type of) processes.

As far as the GCS is concerned, we have the following events:
GE = {newPrc, newGrp, · · ·};
SE = {joinGrp, mleaveGrp, ojoinGrp, oleaveGrp, snd2grp, rcvFgrp, · · ·}.

This distribution of the events into classes favours the decomposition of the
abstract system since the events may be shared between subsystems.

Step 2. Modelling the state space: S
• Identify the global resources and properties with an invariant predicate that
characterizes S . For the GCS we have a set of groups, a set of processes, etc.
• Fill in the VARIABLES clause and the INVARIANT clause of A with the
resource declarations and the identified properties. The result for the GCS is as
follows:

Multi-process Systems Analysis Using Event B 669

processes ⊆ PROCESS
groups ⊆ GROUP
data ⊆ DATA
mesgs ⊆ MId × data

The set of exchanged messages is: mesg ⊆ MId×DATA. The sent messages with
their senders are handle with a function:

sender : mesgs → process

The messages received by the processes are modelled with a relation:

store : mesgs ↔ processes

The set of messages sent to the groups are also recorded with a relation:

sent2gr : mesgs ↔ groups

A function msgId gives the identifier of each message.

msgId : mesgs → MId

The members of a process group are handled with a relation:

members : groups ↔ processes

These relations and other identified properties are gathered in the INVARIANT
clause of A.

Step 3. Describing event ordering: the follow relation
• Identify the properties of the behaviour of the whole system; that is a specific
ordering of the event occurrences according to the liveness requirements. The
relation follow : E ↔ E (see Step 1) captures the required ordering of the
events.

According to the GCS an example is: a process cannot leave a group that it
had not joined; that means an event joinGrp is observed before the occurrence
of the leaveGrp one; therefore leaveGrp follows joinGrp. It remains to complete
follow according to the classes (GE, SE) of events in E .

Step 4. Defining the general events: EvtsGE

• Increase A with the B specifications of the general events. For illustration the
events newPrc and newGrp are considered for the GCS. The first one is specified
as follows:

newPrc �= /* a new process enters the system */
any pr where

pr ∈ PROCESS − processes
then

processes := processes ∪ {pr}
end

670 J.C. Attiogbé

Step 5. Defining specific process behaviour: EvtsSE

• For each process type P ∈ Pr we supplement A with AP which is made of SP ,
EP , followP , EvtsP . Consider PROCESS as an illustration of P .

1. EP : identify the event subset of SE that make the evolution of P ;
2. followP : define an ordering relation on these events by considering the specific

requirements on P ; this results in describing a subset of follow related to P :
followP . A rather small state transition system (a behaviour graph where the
transitions are labelled with the event names) may help here. The following
table illustrates a part of the ordering relation for the PROCESS type.

followPROCESS

newPrc {snd2grp, snd2prc, rcvFgrp,newGrp, joinGrp, byePrc}
snd2grp {snd2grp, snd2prc, rcvFgrp, joinGrp,newGrp, byePrc}
snd2prc {snd2grp, snd2prc, rcvFgrp, joinGrp,newGrp, byePrc}
· · · · · ·

The process event alphabet should be more precise than it was described
previously (Section 3.2); a thorough analysis of the process behaviour is
needed (see Section 4.4) to discover the event alphabet of process types. All
the processes that reach a given evolution stage (corresponding to a state
of the behaviour graph)) may nondeterministically evolve in the same way.
This is captured with variables denoting sets of processes that reach given
evolution stages; the guard of events are then written with these variables.
For instance a variable siprocesses denotes the set of processes in a given
state si ;

joinGrp �=
any pr where

pr ∈ siprocesses ∧ · · ·
then

siprocesses := siprocesses − {pr}
sjprocesses := sjprocesses ∪ {pr}
· · ·

end

si

sj
joinGrp

snd2prc

Thereafter only the processes in the state si may perform the events associ-
ated to this state. The event guards handle this constraint.

3. EvtsP :

– Describe each event of the current process P as a B event (guard and
substitution).

– Increase the EVENTS clause of A with the new described event.

The following example gives the specification of the mleaveGrp event.

Multi-process Systems Analysis Using Event B 671

mleaveGrp �= /* a process leaves a group */
any pr , gr , ngm where

pr : grpMembers ∧ gr : groups
∧ (gr , pr) ∈ members ∧ ngm ⊆ processes
∧ ngm = ran(members − {gr �→ pr})
then

members := members − {gr �→ pr}
‖ grpMembers := ngm
end

In the same way the B specifications are described for all the events of the
alphabet EP .

After the current step, the abstract system A under construction is equipped
with the B specifications of all the events.

Step 6. Consistency
• Complete the abstract system A with the desired properties; fill in the IN-
VARIANT clause with the related predicates and
• prove its consistency using B provers such as Atelier B (theorem proving as-
pect). All the proof obligations should be discharged. However we have not yet
the means to guarantee the liveness requirements captured within follow ; we
shall prove that traces(A) coincides with the follow relation. That is the role of
the following step.

Step 7. Completeness and Liveness
• Analyze and improve the A abstract system; this is achieved with the help
of model checking and animation with ProB. First, model-check (see 2.2) the A
abstract system to detect deadlocks. Correct the specification accordingly.
• When A is deadlock-free, check that it fulfills the requirements in follow . Us-
ing ProB (see 2.2), check that all the events are enabled (this corresponds to no
uncovered operations).
Moreover, we have to check that each event (evt) enables the events in follow(evt).
This is checked by visualizing the reduced visited states (see 2.2). Another way to
check this is by stepwise animations; ProB displays the operations enabled by
each activated operation; they should be in correspondence with the given follow
relation. The A abstract system is updated accordingly, by tuning the B speci-
fication of the events.

As the follow relation expresses the set of all possible orderings of the events
that could happen in the system, after the Step 7., the logical behaviour anal-
ysis is complete and we get a correct specification of A with respect to the
requirements.

Proof: The occurrences of event orderings of A are checked with respect to
follow . Formally, the occurrence of an event e1 =̂ eG1 =⇒ eB1 is:

∃ vi , vi+1.[v := vi]eG1 ∧ [v , v ′ := vi , vi+1]prdv (eB1)

672 J.C. Attiogbé

The occurrence of a sequence of two events e1.e2 is:

∃ vi , vi+1, vi+2.[v := vi]eG1 ∧ [v , v ′ := vi , vi+1]prdv (eB1) ∧
[v := vi+1]eG2 ∧ [v , v ′ := vi+1, vi+2]prdv (eB2)

This generalizes easily to the sequences of n events and it corresponds to traces(A).
prdv (S) is the before-after predicate of the substitution S ; it relates the values
of the state variable just before (v) and just after (v ’) the substitution S . The
closure of follow (noted follow∗) is the event occurrences that correspond to the
requirements captured by follow . Therefore we have

follow∗ = traces(A)

4.4 Enhancement of Process Behaviour

The B specification of a process strongly depends on the set of events that are
considered. Remenber that an event is guarded and simulates an evolution step
of the system. Specific care should be taken to identify the appropriate event
granularity. We give here some rules that govern the improvement of the process
specification.

Rule BasicEvent. A process event alphabet and a transition relation sholud be
considered to get the basic behaviour of each process type (Step 3. above). This
basic behaviour constitutes a starting point to discover and improve the process
behaviour. A state transition system (a behaviour graph) is helpful but insuf-
ficient; it may be too complex and even practically indescribable for complex
behaviour.

Rule EvtSplit. An event with a disjunctive guard and related effects on the
substitution should be split into different events with each disjunct as a guard.

Indeed there are multiple conditions where a given event is observed. Consider
for instance the behaviour of a process p1 that joins a group, sends multicast
messages and leaves the group versus the behaviour of a process p2 that cre-
ates a group, joins another group, sends multicast messages and then leaves
the recently joined group. The remainder of the process behaviour depends on
its history. When the event joinGrp is observed, it may be the case where p1
(not yet member of any group) joins a group. It also may be the case where
the process p2 which is a group owner joins another group. The specification
of the event depends on the considered case: in this circumstance two specific
events should be considered to distinguish between the cases and to prepare the
remainder of the behaviours. The event mjoinGrp is used in the first case; its
substitution updates a variable (nonMembers) that represents the process which
are not members of a group. The event ojoinGrp is used in the second case; its
substitution updates a variable groupOwners but does not modifies the variable
nonMembers.

Multi-process Systems Analysis Using Event B 673

Rule StepEvent. The evolution of a process, described by a set of events, de-
pends on the current evolution phase and also on the history of this evolution.
For example the following four evolution phases distinguish a process of the GCS:
it is not a member of a group, it is a member of a group, it is a group owner, it
is both a group owner and member of other groups. At each phase, the process
can perform or not some actions that correspond to the observed events. Dur-
ing the specification these phases are then distinguished and constrain the events.

When we put these rules into practice on the GCS, we have the following
ordering of events:

followPROCESS

newPrc {snd2grp, snd2prc, rcvFgrp,newGrp, joinGrp, byePrc}
snd2grp {snd2grp, snd2prc, rcvFgrp, joinGrp,newGrp, byePrc}
snd2prc {snd2grp, snd2prc, rcvFgrp, joinGrp,newGrp, byePrc}
joinGrp {msnd2grp,msnd2prc,mrcvFprc,mleaveGrp,mjoinGrp,

mnewGrp}
mrcvFgrp {msnd2grp,msnd2prc,mrcvFprc,mleaveGrp}
mrcvFprc {snd2grp, snd2prc, rcvFgrp,newGrp, joinGrp, byePrc}
msnd2prc {snd2grp, snd2prc, rcvFgrp,newGrp, joinGrp, byePrc}
msnd2grp {snd2grp, snd2prc, rcvFgrp,newGrp, joinGrp, byePrc}
mleaveGrp {snd2grp, snd2prc, rcvFgrp,newGrp, joinGrp, byePrc}
newGrp {ormvGrp, osnd2grp, osnd2prc, orcvFprc, ojoinGrp, omrmvGrp,

onewGrp}
rmvGrp {snd2grp, snd2prc, rcvFgrp,newGrp, joinGrp, byePrc}
· · · · · ·

This ordering is partially summarized in the Figure 2. We indicate with the [g]
anotation the events that are specifically strengthened according to their history.

Using the presented method we have specified the described group communi-
cation system: a GCS formal model that incorporates goals and assumptions that
drive the GCS. The specification obtained is improved by performing stepwise
formal analysis.

5 Analysis Issues

The obtained B specification enables us to explore in detail the formal model
of the GCS and to overcome problems. The analysis of the specification is per-
formed during Step 6 and Step 7 in the method. It is worth noting that the
combined use of theorem proving (via Atelier B) and model checking (via ProB)
enhances the study of the system. Consistency checking alone is definitely not
satisfactory for a complex study; it is well supplemented by model checking. The
approach to combine both is as follows. First of all theorem proving is performed
by considering the properties expressed within the invariant and the assertion
clauses of the abstract system. Either the POs are all discharged or not. In any
case, model checking is applied; deadlock states are revealed and corrected by

674 J.C. Attiogbé

orcvFprc

msnd2prc
rcvFgrp

snd2prc

snd2grp

newProc

mleaveGrp

joinGrp

byePrc

ormvGrp[g]

msnd2grp

mrcvFprc

mleaveGrp

mjoinGrp

newGrp

ormvGrp osnd2prc[g]

[g]

[g]

ojoinGrp

osnd2grp

mnewGrp [g]omrmvGrp

[g]oleaveGrpnewGrp

Fig. 2. A Partial State Model of a GCS Behaviour

examining the involved states and variables. When the system is deadlock-free
we perform a random traversal of the whole specification (with a high number
of generated states) to be sure that all the events are enabled at least once.
Something is wrong in the specification if there is at least one uncovered event.
We discovered many uncovered events after discharging all the proof obligations
of the abstract system. This is due to imprecise guards (that cannot be detected
by the AtelierB). The specification is then gradually corrected. The main prop-
erties of the GCS are formalised and proved correct.

Reliability. The main property of a GCS is that an event sent to a group is
received by all the member of the group. This property is expressed as follows:

(m, g) ∈ sent2gr ⇒ store(m) = members(g)

It is also simply expressed using relation composition sent2gr o
9members = store.

Message uniqueness. This property is guaranteed through the use of sets to
model the exchanged messages (mesgs and store relation).

Causality. Every delivered message must have been sent before. Two partial
functions are used to manage logical time;

sendDate : Mid #→ N
rcvDate : MId #→ N

Thereafter the messages received by processes (in store) are such that:

(m, p) ∈ store ⇒ sendDate(msgId(m)) < rcvDate(msgId(m))

Multi-process Systems Analysis Using Event B 675

Integrity. The messages that are delivered have been sent by a trusted processes.
This property is captured with the sender function whose range is the (trusted)
processes;

ran(sender) = processes

Virtual Synchrony. If two processes p1 and p2 move to a new view W from a
previous view V , then any message received by p1 in the view V is also received
by p2.

In order to ensure this property, the constructed GCS model was increased
with a function previousGr : groups → groups that is updated each time the
GCS view is changed.

The virtually synchrony is expressed as

∀ gr .((gr ∈ groups ∩ dom(previousGr))⇒
store[sent2gr−1(previousGr(gr))]) =

members(gr) ∩members(previousGr(gr)))

where store[sent2gr−1(previousGr(gr))] gives the processes that received the
messages sent to the previous group of gr .

6 Concluding Remarks

We have presented a specification method dedicated to the specification and the
analysis of multi-process systems in Event B. The specification and analysis of
a group communication system are achieved in light of the proposed method.
A GCS is asynchronous, distributed and it has an ad hoc interaction structure;
processes may join, leave or interact within the system at any time. These fea-
tures make it non-trivial to specify and analyse. We show how such a system can
be systematically treated using Event B increased with the proposed method.
For the analysis our formal model of the GCS integrates the desired GCS proper-
ties (consistency, reliability, integrity, causality, virtual synchrony) and we have
combined theorem proving and model checking to formally analyse the model.
The Atelier B and the ProB tools are used for this purpose. This work is a
step towards a global policy for the layered verification of software systems in
distributed environment where reliability of a software system is not a local con-
cern. Each involved layer should guarantee correctness.

Related works. As far as the GCS case is concerned the experimental support
of the current work follows the stream of a series of works. In [7] the authors
describe a formal model of the Ensemble GCS to support a switching mechanism
for a set of protocols. The Nuprl development system [15] is used to model and
to prove both meta-properties and specific properties on the described model.
A trace semantics is used. A similar work is presented in [17] where the authors
focus on specific properties of the Ensemble GCS. The I/O automaton model
[21] is used for their modelling and Nuprl is use to support proofs. Compared to

676 J.C. Attiogbé

these works the current one provides a formal model that supports the dynamic
aspects of the GCSs and the model makes it easy proof of some of the GCS
properties.

Perspectives. Providing Event B oriented specification methods adapted to other
classes of systems is the general perspective of this work. But as a short term
perspective we intend to cover liveness properties which are not fully consid-
ered in the current experiment. We also plan to extend the proposed method
and experiment in other layers of distributed interacting systems which are not
considered here. The other topic planned in our agenda is the refinement into
existing GCS systems such as Ensemble or Transis [13] which have practical
supports for distributed-application programming.

Acknowledgments. Many thanks to my colleagues and to the anonymous
referees for their valuable comments on the current work.

References

1. J-R. Abrial. The B Book. Cambridge University Press, 1996.
2. J-R. Abrial. Extending B without Changing it (for developping distributed sys-

tems). Proc. of the 1st Conf. on the B method, H. Habrias (editor), France, pages
169–190, 1996.

3. J-R. Abrial, D. Cansell, and D. Mery. Formal Derivation of Spanning Trees Algo-
rithms. In D. Bert et al., editor, ZB’2003 – Formal Specification and Development
in Z and B, volume 2651 of LNCS, pages 457–476. Springer-Verlag, 2003.

4. J-R. Abrial and L. Mussat. Introducing Dynamic Constraints in B. In Proc. of the
2nd Conference on the B method, D. Bert (editor), volume 1393 of Lecture Notes
in Computer Science, pages 83–128. Springer-Verlag, 1998.

5. B-Core. B-Toolkit, www.b-core.com. UK, consulted in 2006.
6. R.J. Back and R. Kurki-Suonio. Decentralisation of Process Nets with Centralised

Control. In Proc. of the 2nd ACM SIGACT-SIGOPS Symp. on Principles of Dis-
tributed Computing, pages 131–142, 1983.

7. M. Bickford, C. Kreitz, R. Van Renesse, and R. Constable. An Experiment in
Formal Design Using Meta-Properties. In DISCEX, volume 02, pages 100–107,
Los Alamitos, CA, USA, 2001. IEEE Computer Society.

8. K. Birman and R. van Renesse. Reliable Distributed Computing with the Isis
Toolkit. IEEE Computer Society Press, 1994.

9. M. Butler and M. Walden. Distributed System Development in B. Proc. of the 1st
Conference on the B method, H. Habrias (editor), France, pages 155–168, 1996.

10. D. Cansell, G. Gopalakrishnan, M. Jones, and D. Mery. Incremental Proof of the
Producer/Consumer Property for the PCI Protocol. In D. Bert, J. P. Bowen, M. C.
Henson, and K. Robinson, editors, ZB’2002 – Formal Specification and Develop-
ment in Z and B, volume 2272 of LNCS, pages 22–41. Springer-Verlag, 2002.

11. Gregory V. Chockler, Idid Keidar, and Roman Vitenberg. Group Communication
Specifications: a Comprehensive Study. ACM Comput. Surv., 33(4):427–469, 2001.

12. ClearSy. Atelier B V3.6, www.clearsy.com. Steria, Aix-en-Provence, France, con-
sulted in 2006.

Multi-process Systems Analysis Using Event B 677

13. D. Dolev and D. Malki. The Design of the Transis System . In Theory and Practice
in Distributed Systems, volume 938 of LNCS, pages 83–98. Springer-Verlag, 1995.

14. D. Powel (Guest Editor). Special Issue on Group Communications Systems. Com-
munications of the ACM, 39(4), 1996.

15. R. L. Constable et al. Implementing Mathematics with the Nuprl Proof Developemnt
System. Prentice Hall, 1986.

16. Mark Hayden and Robbert Van Renesse. Optimizing Layered Communication Pro-
tocols. In HPDC ’97: Proceedings of the 6th International Symposium on High Per-
formance Distributed Computing (HPDC ’97), page 169, Washington, DC, USA,
1997. IEEE Computer Society.

17. J. Hickey, N. Lynch, and R. van Renesse. Specifications and Proofs for Ensemble
Layers. In R. Cleaveland, editor, 5th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems, number 1579 in Lecture
Notes in Computer Science, pages 119–133. Springer-Verlag, 1999.

18. M. Leuschel and M. Butler. ProB: A Model Checker for B. In Keijiro A., Stefania
G., and Dino M., editors, FME 2003: Formal Methods, LNCS 2805, pages 855–874.
Springer-Verlag, 2003.

19. M. Leuschel and E. Turner. Visualizing Larger State Spaces in ProB. In Proc. of
ZB’05, volume 3455 of LNCS, pages 6–23. Springer-Verlag, April 2005.

20. ISO LOTOS. A Formal Description Technique Based on The Temporal Order-
ing of Observational Behaviour. International Organisation for Standardization -
Information Processing Systems - Open Systems Interconnection, Geneva, 1988.
International Standard 8807.

21. N. Lynch and M. Tuttle. Hierarchical Correctness Proofs for Distributed Algo-
rithms, 1987.

22. Robin Milner. Communication and Concurrency. Prentice-Hall, NJ, 1989. Engle-
wood Cliffs.

23. Milner R., Parrow J., and Walker D. A Calculus of Mobile Processes. Journal of
Information and Computation, 100, 1992.

24. A.W. Roscoe. The Theory and Practice of concurrency. Prentice-Hall, 1998.
25. Robbert van Renesse, Kenneth P. Birman, and Silvano Maffeis. Horus: a Flexible

Group Communication System. Commun. ACM, 39(4):76–83, 1996.

Issues in Implementing a Model Checker for Z

John Derrick, Siobhán North, and Tony Simons

Department of Computing, University of Sheffield, Sheffield, S1 4DP, UK
J.Derrick@dcs.shef.ac.uk

Abstract. In this paper we discuss some issues in implementing a model
checker for the Z specification language. In particular, the language design
of Z and its semantics, raises some challenges for efficient model checking,
and we discuss some of these issues here. Our approach to model checking
Z specifications involves implementing a translation from Z into the SAL
input language, upon which the SAL toolset can be applied. In this paper
we discuss issues in the implementation of this translation algorithm and
illustrate them by looking at how the mathematical toolkit is encoded in
SAL and the resultant efficiency of the model checking tools.

Keywords: Z, model-checking, SAL.

1 Introduction

Computing is a tool-based activity, and this applies to design and specification
as much as to programming. Furthermore, all design and development methods
which have ultimately gained acceptance have been supported, if not based on,
toolsets for integral parts of their activity, and this is true for both formal as
well as informal methods.

For example, it is inconceivable to imagine UML without tool support, and
similarly the use of, say, B or SDL depend on their associated toolsets. Indeed,
many notations have been designed with tool support in mind, resulting in effi-
cient type-checkers, simulators, proof assistants etc. for these languages.

However, this is not the case for the specification language Z [14,1], where
the notation and needs of abstraction have been the driver behind the language
and its development rather than tool support. The language itself has been
very successful and the challenge now is to develop usable tool support for it.
The CZT (Community Z Tools) project (see http://czt.sourceforge.net/ or [10])
aims to tackle some of these issues, and is building a range of tools around a
common exchange format. In this paper we discuss some issues in implementing a
model checker for Z which is being developed by the Universities of Queensland,
Australia, and Sheffield, England. In particular, the language design of Z and its
semantics raises some challenges for efficient model checking and we illustrate
some of these issues here.

Model checking [4], which aims to determine whether a specified system satisfies
a given property, works by exhaustively checking the state space of a specification
to determine whether or not the property holds. Model checkers will also provide
a counter-example when the property does not hold, thus giving some insight into

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 678–696, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Issues in Implementing a Model Checker for Z 679

the failure of the property on the current specification. There has been a consid-
erable amount of success in applying model checking to real large-scale systems,
and the technique is now applied routinely in some industrial sectors.

Originally model checking technology was only feasible for small, finite state
spaces, and this meant that their application was restricted to notations suited
to modelling systems where the complexity lay in the control structure, rather
than the data, e.g., hardware systems and communication protocols. However,
these factors have become less of an issue due to the maturity of the tech-
nology. For example, it is now feasible to model check systems involving very
large state-spaces (e.g., systems with 1020 states), and the restriction to spec-
ification notations with control rather than data has now gone. In addition,
automatic techniques for property-preserving abstraction [7,12,3] and bounded
model checking allow systems with infinite state spaces to be checked. Further-
more, powerful automatic decision procedures allow model-checker languages to
support high-level specification constructs such as lambda expressions, set com-
prehensions and universal and existential quantifiers [5].

Instead of implementing a model-checker from scratch we have been investi-
gating using an intermediate format into which we translate a Z specification.
In particular, we have been using the SAL input format as our intermediate for-
mat. SAL [5] is a tool-suite for the analysis and verification of systems specified
as state-transition systems. Its aim is to allow different verification tools to be
combined, all working on an input language designed as a format into which
programming and specification languages can be translated. The input language
provides a range of features to support this aim, such as guarded commands,
modules, definitions etc., and can, in fact, be used as a specification language
in its own right. The tool-suite currently comprises a simulator and four model
checkers including those for LTL and CTL.

The basis of the translation algorithm of Z into SAL was defined by Smith
and Wildman in [13], and in this paper we discuss the implementation of these
ideas. The advantage of using SAL is that many aspects of Z, such as structuring
via schemas, use of primes for after-state etc., can have a similar representation
in SAL. The focus of the translation thus comes down to how the mathematical
toolkit (i.e., sets, relations, sequences etc.) is encoded. We illustrate this point
by discussing the approach, and problems, of representing sets in SAL.

The structure of the paper is as follows. In Section 2 we introduce our run-
ning example. The basic approach to translation is discussed in Section 3 which
briefly explains how a Z specification is translated into a SAL module. Subse-
quent sections discuss the implementation of types (Section 4) and axiomatic
definitions (Section 5) before we focus on the issues surrounding the implemen-
tations of sets in Section 6. Section 7 discusses the use of the tool, and Sections
8 and 9 provide a discussion and some conclusions respectively.

2 Example

A Z specification defines a number of components, including types, constants,
abbreviations and schemas. The schemas define the state space of the system

680 J. Derrick, S. North, and A. Simons

under consideration, its initial configuration and the operations which define the
transitions of the system.

For example, the following defines the process of joining an organisation which
has a set of members and a set of people waiting to join.

[NAME]

Report ::= yes | no

total : N1

total = 4096

capacity : N1

1 < capacity ≤ 4096

#NAME > capacity

State
member ,waiting : PNAME

member ∩ waiting = ∅
#member ≤ 4096
#waiting ≤ total

Init
State ′

member ′ = ∅
waiting ′ = ∅

Join
∆State
n? : NAME

n? ∈ waiting ∧#waiting < capacity
member ′ = member ∪ {n?}
waiting ′ = waiting \ {n?}

Issues in Implementing a Model Checker for Z 681

JoinQ
∆State
n? : NAME

n? �∈ (waiting ∪member)
#waiting < total
waiting ′ = waiting ∪ {n?}
member ′ = member

Remove
∆State
n? : NAME

n? ∈ member
waiting ′ = waiting
member ′ = member \ {n?}

Query
ΞState
n? : NAME
ans ! : Report

n? ∈ member ⇒ ans ! = yes
n? �∈ member ⇒ ans ! = no

3 Basic Translation

Our approach to model checking Z involves implementing a translation from Z
into the SAL input language upon which the SAL toolset can be applied.

The translation scheme is based upon that presented in [13], whose aim was
to preserve the Z-style of specification including predicates where primed and
unprimed variables are mixed, and the approach of the Z mathematical toolkit
to the modelling of relations, functions etc., as sets of tuples. No claim is made
about how optimised the translation is; the aim of [13] was simply to show how
much of the Z style could be preserved within SAL. Here we consider some of
the implementation issues.

A Z specification is translated to a SAL module, which groups together a
number of definitions which include types, constants and modules for describing
the state transition system. In general a SAL module will have the following
form (where elided parts are written ...):

State : MODULE =
BEGIN
INPUT ...

682 J. Derrick, S. North, and A. Simons

LOCAL ...
OUTPUT ...
INITIALIZATION [...]
TRANSITION [

....
]

END

3.1 State and Initialisation Schemas

As seen in the example above, in a states plus operations style, schemas form
one of the basic building blocks of a Z specification. Different schemas take
on different roles, and the translation into SAL needs to take account of the
intended role of each schema in the specification. In our current implementation,
we assume that there is a single state and initialisation schema, and that the first
schema in the Z input is the state schema, and that the second is the initialisation
schema. All other schemas are taken as operation schemas.

In general, schema references are allowed within a schema, and are used in
initialisation and operation schemas, e.g., ΞState in the operation Query above.
However, the schema references can be expanded, and then there is no need for
a predicate in the state schema, since it will be included in the initial and oper-
ation schemas, and for the latter in both primed and unprimed form. Our tool
does this expansion of schema references in the declaration part of any schema
automatically. Once this has been done, the (single) state schema contains only
a list of declarations. These declarations will be translated to local variables of
the SAL module.

In translating the initialisation schema we note that all schema references to
the state will have been expanded out, and the translation of the state schema
will have produced local variables. Currently we do not allow new declarations
(e.g., of inputs) in the initialisation schema, it thus remains to translate the
predicate of the initialisation which becomes a guard of the initialisation section
of the module. The guard is followed by a list of assignments, one for each
declaration in the state schema. We allow both styles of specification where
the initialisation can contain either primed or unprimed components in the Z
specification, but all are unprimed in the resultant SAL output. In the translation
these assignments allow any value of the appropriate type to be assigned.

Thus the state and initialisation schemas in our example above produce the
following SAL fragment.

State : MODULE =
BEGIN
INPUT ...
LOCAL member : set{NAME;}!Set
LOCAL waiting : set{NAME;}!Set
OUTPUT ...
INITIALIZATION [

Issues in Implementing a Model Checker for Z 683

member = set{NAME;}!empty_set AND
waiting = set{NAME;}!empty_set

-->
]

3.2 Operation Schemas

For the operation schemas, all schema references to the state will have been
expanded out. The translation of the state schema will have produced local
variables as above. It thus remains to translate the predicate (which will include
the predicate of the expanded state schema reference) and the input and output
of the schema.

Variables of the state schema (e.g., member ,waiting but not the primed ver-
sions) have become local variables of the module. Inputs and outputs of the
operations are translated to input and output variables of the module, respec-
tively. Output variables need to be renamed since ! is not allowed as part of the
variable name in SAL. We choose to translate an output variable output ! in Z
to output_ in SAL prefixed by the schema name and two underscores to avoid
ambiguity. This is possible because the translator ensures unique names are used
by restricting the acceptable Z input to having names involving a single consec-
utive _ character so we can safely use double underlining for system generated
names.

Each operation is translated into one branch of a guarded choice in the tran-
sitions of the SAL module. We choose to label each choice by the name of
the operation in the Z specification, although, strictly speaking this is optional
for SAL.

In addition, it is necessary to ensure that the transition relation is total (for
soundness of the model checking). This is achieved in the translation by a final
guarded command which is an else branch to provide a catch-all, and will
evaluate to true only when all other guards evaluate to false.

Each choice in the transition (e.g., Join : ...) consists of a guarded assign-
ment as in the initialisation. The predicate in the operation schema becomes a
guard of the particular choice. The guard is followed by a list of assignments,
one for each output and primed declaration in the operation schema. In the
translation these assignments allow any compatible value to be assigned.

For example, the translation of our example will result in input and output
declarations and a transition as follows:

INPUT Join__n? : NAME
INPUT JoinQ__n? : NAME
INPUT Remove__n? : NAME
INPUT Query__n? : NAME
OUTPUT Query__ans_ : Report

TRANSITION [
Join : ...

684 J. Derrick, S. North, and A. Simons

...
-->

member’ IN { x : set{NAME;}!Set | TRUE};
waiting’ IN { x : set{NAME;}!Set | TRUE}

[]
JoinQ : ...

...
member’ = member
-->

member’ IN { x : set{NAME;}!Set | TRUE};
waiting’ IN { x : set{NAME;}!Set | TRUE}

[]
...

[]
Query : ...
...

member’ = member AND
waiting = waiting’
-->

member’ IN { x : set{NAME;}!Set | TRUE};
waiting’ IN { x : set{NAME;}!Set | TRUE};
Query__ans_’ IN { x : Report | TRUE}

[]
ELSE -->
]

where we have elided parts of the translation we have not yet defined. In partic-
ular, the assignment of after-state values occurs before the --> in the transitions
in this style of encoding.

Any local declarations, i.e., those not arising from a state schema but declared
locally in the operation are translated with the Op__ prefix as in the inputs and
outputs (where Op is the name of the schema).

4 Implementing Types

The above fragment already includes translations of some types defined in the
specification, and Z includes a limited number of built in types. In particular,
arithmos is defined which provides ‘a supply of values to be used in specifying
number systems’. In practice it is assumed that N and Z are available.

In contrast SAL supports the basic types NATURAL of natural numbers,
and INTEGER of integers. These types can only be used with some of the SAL
model-checkers, thus we will translate them into finite subranges. We translate
the Z types Z and N into bounded SAL types INT and NAT respectively. We also
translate the nonzero Z type N1 into the SAL type NZNAT. SAL definitions for
these bounded types are included if the Z specification requires them.

Issues in Implementing a Model Checker for Z 685

The default finite subrange for NAT contains 4 elements in our implementation.
Thus if N occurs in the LATEX input, then NAT: TYPE = [0..3] will be gener-
ated at the start of the SAL specification. Likewise, the NZNAT type has a default
subrange of 3 elements starting at 1 and the INT type has a default subrange of
5 elements starting at -1. This is to ensure that every type has at least three ele-
ments, while preserving the Z inclusion relationships: N1 ⊂ N ⊂ Z. However, the
user can supply different bounds as parameters to the translator if desired, and a
larger subrange will automatically be used if the specification contains a constant
which is out of range. Our example uses the type N1 and a constant value 4096
occurs of this type. The translator therefore defines NZNAT: TYPE = [1..4097]
automatically.

A given type, as in [NAME] above, represents a user defined unstructured
type. Although SAL supports a range of types, in general, the model checkers
work with finite types. Thus we need to provide a finite enumeration of the given
set NAME , and we translate it to:

NAME: TYPE = {NAME__1,NAME__2,NAME__3};
The number of elements in a given set enumeration is whatever the user has

supplied as a parameter as the upper bound - or 3 by default.
Free types in Z define types whose values are either constants or constructors.

The latter construct values of the free type from other values (see [13] for how
these free types are dealt with). In the example above, we translate Report
directly as

Report: TYPE = DATATYPE
yes,
no

END;

5 Axiomatic Descriptions

After the type declarations, a Z specification continues with the declaration of
uninterpreted constants, which may or may not be constrained. A basic constant
declaration has the form capacity : N1 and a constrained constant is declared
using an axiomatic definition, given in standard schema format:

capacity : N1

1 < capacity ≤ 4096

In the SAL language definition [5] it is clear that the intention is to support
uninterpreted constants, eventually. The obvious translation of an uninterpreted
constant would be capacity : NZNAT;, and the translation of a constrained
constant would rely on SAL’s definition by set comprehension:

capacity : { x : NZNAT | 1 < x <= 4096 };

However, the current SAL toolset does not support uninterpreted constants,
which are rejected by the semantic analyser. This means that the translation

686 J. Derrick, S. North, and A. Simons

from Z into SAL has the choice of initialising all such uninterpreted constants
with suitable sentinel values, or treating them like SAL local variables. The
tradeoff is that the precise sentinel values to choose may be difficult to find;
whereas SAL variables range over many values, causing a state explosion in the
checking tools.

The SAL variable translation treats all uninterpreted constants as LOCAL
variables. If they are constrained, this translation is identical to the translation
of state schemas (see Section 3). Because of the state explosion this approach may
cause, the preferred translation is to choose suitable precise values for constants.
The heuristic chosen is to initialise constants by default to some value within
the range of the type concerned. For example, where NZNAT: TYPE = [1..2] it
would make sense to define:

capacity : NZNAT = 2;

for both of the above cases (constrained and unconstrained). The main concern
is to find a suitable value which satisfies all the predicates in which the constants
appear, otherwise the specification would, as a whole, be false. The assignment of
values to constants is relatively simple for predicates which consist of an identifier
compared to a literal. These straightforward predicates are used to determine
the set of possible values each constant could be given and an initial value is
chosen from these at random. If the predicates are unsatisfiable, our translation
tool displays an error message and halts.

Predicates which compare constants with each other, such as x < y, or, worse
still, (u +v) ≤ (y− z) are dealt with when the limits on each constant have been
determined from the simple predicates. Currently, our tool uses a naive algorithm
which cycles through the remaining possible initial values until a combination is
found that satisfies all of the predicates. After 20 iterations the translator gives
up with a message that the initial constraints cannot be resolved. Clearly, a more
sophisticated constraint solving approach might be used; however the need to
solve large systems of constraints rarely arises in typical Z specifications.

In our particular example we have the following pair of constraints:

capacity : N1

1 < capacity ≤ 4096

#NAME > capacity

In the SAL translation, a value for capacity is chosen (at random) which
satisfies all the constraints, e.g., one possible value it will be instantiated to is:

capacity : NZNAT = 2;

This simplification is possible because the tool knows the size of the given type
NAME and so #NAME is replaced by a constant 3. The largest capacity that is
smaller than 3 is 2. The predicate capacity ≤ 4096 is redundant and is eliminated
by the tool.

Issues in Implementing a Model Checker for Z 687

6 Implementing Sets

A basic translation scheme for sets is given in the set .sal context, provided with
the SAL distribution, and this represents a set as a function from elements to
Booleans. All of the set operations can be expressed in a logically succinct way,
for example the set membership function contains? simply applies the set to
the element. In [13] the set .sal context was extended to include a means of
determining the cardinality of nonempty sets. We have adapted this encoding to
work with all sets as follows:

set{T : TYPE; } : CONTEXT =
BEGIN

Set : TYPE = [T -> BOOLEAN];

empty_set : Set = LAMBDA (e : T) : FALSE;

full_set : Set = LAMBDA (e : T) : TRUE;

insert (aset : Set, e : T) : Set =
LAMBDA (e1 : T) : e = e1 OR aset(e1);

remove (aset : Set, e : T) : Set =
LAMBDA (e1 : T) : e /= e1 AND aset(e1);

contains? (aset : Set, e : T) : BOOLEAN =
aset(e);

empty? (aset : Set) : BOOLEAN =
(FORALL (e : T) : aset(e) = FALSE);

union(aset1 : Set, aset2 : Set) : Set =
LAMBDA (e : T) : aset1(e) OR aset2(e);

intersection(aset1 : Set, aset2 : Set) : Set =
LAMBDA (e : T) : aset1(e) AND aset2(e);

difference(aset1 : Set, aset2 : Set) : Set =
LAMBDA (e : T) : aset1(e) AND NOT aset2(e);

size?(aset:Set, n:NATURAL) : BOOLEAN =
(n = 0 AND empty? (aset)) OR
(n > 0 AND
(EXISTS (f:[[1..n] -> T]) :
(FORALL (x1,x2:[1..n]) : f(x1)=f(x2) => x1=x2) AND
(FORALL (y:T) : aset(y) <=> (EXISTS (x:[1..n]) : f(x) =y))));

END

688 J. Derrick, S. North, and A. Simons

This allows a succinct translation of declarations and predicates involving sets.
A declaration member : P NAME is translated to member : set{NAME;}!Set.
Predicates involving set operators are also translated in the obvious way. For
example, member = ∅ becomes

member = set{NAME;}!empty_set

Similarly, n? ∈ waiting in the operation Join becomes

set{NAME;}!contains?(waiting, Join__n?)

and member ′ = member ∪ {n?} becomes

member’ = set{NAME;}!insert(member, Join__n?)

Set cardinality (the most troublesome operator) cannot be expressed directly
as a function returning the element count in SAL, since nowhere does SAL
store a representation of the set as a whole, but only as a distributed collection
of function-valued variables. Instead, the size function computes the relation
between sets and natural numbers, returning true when a set is of a given size.
Z predicates involving the cardinality of sets, such as #waiting < total , can be
translated to the following existentially quantified SAL predicate:

EXISTS(n: NAT) : set{NAME;}!size?(waiting,n) AND n < total.

Although this implementation of the translation algorithm is correct, a number of
issues arose, some of which were to do with representation, others with efficiency,
and we deal with each in turn.

6.1 Literals

The translation of literal sets causes particular problems as they can only occur
in type declarations in SAL, but can be used in variable declarations or predicates
in Z. The translation process addresses the problem of set literals in declarations
by introducing a named type. Thus a state variable

s : P{1, 2, 3}
becomes

LOCAL s : set{Set__1__2__3;}!Set

and Set__1__2__3: TYPE = { x : NZNAT | x < 4 }; appears before the
state module. Any other use of the same or an equivalent (e.g., {3, 2, 1}) set lit-
eral in a declaration will be translated to the type name. Literal sets in predicates
can be dealt with more simply: x ∈ {1, 2} becomes (x=1 OR x=2).

6.2 Re-implementing Set Cardinality

It was soon discovered that Z specifications that made reference to the cardinality
of sets generated SAL translations which did not execute in any sensible amount
of time. Simulations did not terminate in half a day, whilst some model checks
terminated, depending on how the checked LTL theorem further constrained the
state space search. We therefore experimented with alternative set encodings
that might have a more efficient implementation of size?.

Issues in Implementing a Model Checker for Z 689

Attempt I - A recursive definition of sets. According to the SAL language
manual it should be possible to define inductive data types, similar to the il-
lustrated definition of lists, which have recursive operations. In this case, size?
could be provided as an efficient recursive function on sets. Thus one would
define:

cset{T : TYPE; } : CONTEXT =
BEGIN
Set : TYPE = DATATYPE

add(elem : T, rest : Set),
empty
END;

insert (set : Set, e : T) : Set =
IF empty?(set)
THEN add(e, set)

ELSIF e = elem(set)
THEN set

ELSE
add (elem(set), insert(rest(set), e))

ENDIF;
...

size?(set : Set) : NATURAL =
IF empty?(set)

THEN 0
ELSE

1 + size?(rest(set))
ENDIF;

END

In this, empty and add are the primitive type constructors and elem and rest
are the implicitly defined deconstructors that break apart a set. Set operations
like insert are defined recursively by always adding a new element to an empty
set, otherwise deconstructing the head elem to see if this is equal to the new
element, returning the set unchanged if so, otherwise inserting the new element
into the rest of the set and adding the deconstructed head back onto this. The
size? function recursively counts the number of adds wrapping the empty? set.

Unfortunately, it was discovered afterwards that the current release of the
SAL toolset does not yet support simulation or model checking with inductively
defined datatypes. Even a simple recursive definition of size? fails to load into
the simulator, because SAL attempts to expand all possible recursive trees and
runs out of memory. A future release of the toolset is planned to handle recur-
sively defined functions and inductive types.

Attempt II - countable finite sets. After experimenting with other encod-
ings, a workable SAL translation was found for encoding counted finite sets. This

690 J. Derrick, S. North, and A. Simons

is a brute-force encoding that is specific to the maximum expected set cardinal-
ity. Various set contexts setN were designed for different N, corresponding to
the maximum expected cardinality. This is reasonable in SAL, since every scalar
type must have a known lower and upper bound. Our translation fixes the range
of scalar types for small N. The following excerpt is from the set5 context, which
holds a maximum of five elements.

set5{T : TYPE; e1, e2, e3, e4, e5 : T} : CONTEXT =
BEGIN

%% A countable set over a domain of 5 elements. The context
%% parameters are: the element type T, and an exhaustive
%% enumeration of all the elements e1..e5 of the domain.

Set : TYPE = [T -> BOOLEAN];

empty_set : Set =
LAMBDA (e : T) : FALSE;

full_set : Set =
LAMBDA (e : T) : TRUE;

size? (set : Set) : NATURAL =
IF set(e1) THEN 1 ELSE 0 ENDIF +
IF set(e2) THEN 1 ELSE 0 ENDIF +
IF set(e3) THEN 1 ELSE 0 ENDIF +
IF set(e4) THEN 1 ELSE 0 ENDIF +
IF set(e5) THEN 1 ELSE 0 ENDIF;

... %% the rest as per the set.sal context
END

The main difference between this and the standard set.sal context is that
the context accepts value-parameters for all possible elements of the set, as
well as the usual element type-parameter. This allows a brute-force encoding of
the size? function, which tests for the presence of each element in turn. This
encoding executes very efficiently, since it builds a shallow symbolic execution
tree, in contrast with a recursively-defined function. The rest of the context is
defined exactly as per the original set.sal context, using the encoding of sets
as Boolean-valued functions over its elements, since this is the optimal encoding
for translation to BDDs in the SAL tools.

A number of contexts may be pre-generated, for different N. We have also suc-
cessfully generated different setN.sal on demand, to cater for unknown ranges.
The only changes are the number of value parameters required and the num-
ber of subexpressions in the size? function. To use these bounded contexts, it
is preferred to instantiate all parameters once in a new named context, in the
following style:

Issues in Implementing a Model Checker for Z 691

PersonSet : CONTEXT =
set3{PERSON; PERSON__1, PERSON__1, PERSON__3};

...
LOCAL set : PersonSet!Set
INITIALIZE set = PersonSet!empty_set

Then, all types and operations are accessed from the new named context. This
makes the rest of the generated code easier to read than if the contexts were
instantiated at every point of use.

Attempt III - Direct enumeration. Our current approach to problems in
SAL with cardinality are to limit the state space explosion possibilities in SAL
during the translation process. In general the structure of a predicate in Z is
much the same as its translation in SAL, but not where size? is involved.
When the cardinality of a set is tested for equality (or inequality) the test can
be transformed fairly simply because the SAL size? function is designed to test
for a particular cardinality. Thus #waiting = capacity becomes
set{NAME;}!size?(waiting, capacity).

Our initial approach to translating comparisons like #waiting < 3 was to
use an existential quantifier in the translated expression. However, since the
standard translation of size? already used nested quantification, this merely
exacerbated the state space explosion. Our current solution is to exploit the
translator’s knowledge of the maximum cardinality of the sets we are using to
produce an expression which does not involve an existential quantifier. So if
the maximum cardinality of waiting was 3 the translation of #waiting < 3 is
NOT set{NAME;}!size?(waiting, 3), whereas if the the set waiting could have
up to 5 elements the translation is
(set{NAME;}!size?(waiting, 0) OR set{NAME;}!size?(waiting, 1) OR

set{NAME;}!size?(waiting, 2))

Where the comparison is with a variable the expression is slightly more complex.
So #waiting < capacity, where the maximum cardinality of the sets is 3 and the
variable’s upper bound is 3, becomes
(((0<capacity) AND set{NAME;}!size?(waiting,0)) OR ((1<capacity)

AND set{NAME;}!size?(waiting, 1)) OR ((2<capacity) AND
set{NAME;}!size?(waiting, 2)) OR ((3<capacity) AND
set{NAME;}!size?(waiting, 3)))

This assumes that SAL does a lazy evaluation of the expression but experimental
results seem to confirm this. Evaluating #member > #waiting is possible by this
technique too although the resulting expression does get rather long:

((set{NAME;}!size?(member,0) AND NOT set{NAME;}!size?(waiting,0))
OR

(set{NAME;}!size?(member, 1) AND (set{NAME;}!size?(waiting, 2)
OR set{NAME;}!size?(waiting, 3)))

OR
(set{NAME;}!size?(member, 2) AND (set{NAME;}!size?(waiting, 3))))

692 J. Derrick, S. North, and A. Simons

7 Using the Translation Tool

Currently we use a command line interface. As input format we use the LATEX
markup as given in the Z standard, and the output a plain SAL file. Since
XML markups exist for both Z and SAL, these might eventually be the ultimate
exchange format.

The components of the SAL toolset can now be applied to the output. For
example, we can simulate the specification or use one of the model checkers on
it. As we alluded to above, experiments revealed substantial efficiency problems
with the naive version of size?.

Labelling the three implementations as Original (the first in Section 6), Canon-
ical (Attempt III) and Alternate (Attempt II) we can compare the efficiency of
the different size implementations.

For example, if we run the SAL simulator on the above example using the
Canonical set representation, we find that it takes 2 seconds to create the initial
state(s) of the system. Then invoking

(display-curr-states)

reports that 162 possible initial states were generated.

(display-curr-trace)

gives a single trace (one of the sets of initialisations leading to one of the initial
states):

sal > (display-curr-trace)
Step 0:
--- Input Variables (assignments) ---
(= Join__n? NAME__3);
(= JoinQ__n? NAME__3);
(= Remove__n? NAME__3);
(= Query__n? NAME__3);
--- System Variables (assignments) ---
(= (member NAME__1) false);
(= (member NAME__2) false);
(= (member NAME__3) false);
(= (waiting NAME__1) false);
(= (waiting NAME__2) false);
(= (waiting NAME__3) false);
(= Query__ans_ yes);

The next stage is to try to step through the simulation.

(step!)

advances by a single step.

(display-curr-states)

Issues in Implementing a Model Checker for Z 693

reports that 648 states were created in this first step. This is consistent with
attempting 4 transitions for each of the 162 states in the initialisation (4 * 162
= 648). The simulation can then be continued by exploring subsequent traces,
working our way through the specification.

The performance of the Alternate representation was similar, however, the
Original representation failed to create an initial state of the system in the sim-
ulator in over 12 hours. Experiments with the model checker produced similar
results. We formalised the following three theorems:

th1 : the size of the member set can never reach 3 (expected false)
th2 : the size of the waiting set can never reach 3 (expected false)
th3 : the combined sizes of both sets is always ≤ 3 (expected true)

For the Canonical example, the theorems are expressed:

th1 : THEOREM State |- NOT F(set{NAME;}!size?(member’, 3));
th2 : THEOREM State |- NOT F(set{NAME;}!size?(waiting’, 3));
th3 : THEOREM State |- G((FORALL(x,y:NZNAT) :

(set{NAME;}!size?(member’, x) AND
set{NAME;}!size?(waiting’, y)) => x+y <= 3));

For the Alternate example, the same theorems were supplied slightly differently,
reflecting the simpler size? function:

th1 : THEOREM State |- NOT F(FSet!size?(member’) = 3);
th2 : THEOREM State |- NOT F(FSet!size?(waiting’) = 3);
th3 : THEOREM State |- G((FSet!size?(member) +

FSet!size?(waiting)) <= 3);

The following table gives the approximate timings for the simulation and proof
or refutation of the theorems. The entries marked ”> 12 hours” mean that, for
example, the Canonical representation took over 12 hours for the third theorem
without terminating.

Original Canonical Alternate
Simulation > 12 hours 2 sec 1.5 sec
th1 > 12 hours 4 sec 3 sec
th2 > 12 hours 4 sec 3 sec
th3 > 12 hours > 12 hours 3 sec

Where the model checking was feasible, for theorems th1 and th2, both examples
discovered the path of 3∗JoinQ to fill the waiting set, and the path of 3∗JoinQ+
3 ∗ Join to fill the member set.

As can be seen, the original encoding does not model check in a feasible
time. The Canonical encoding is feasible for some properties (and some speci-
fications), and we have yet to find an example where the Alternate encoding is
infeasible.

694 J. Derrick, S. North, and A. Simons

8 Discussion

Although, it is feasible in general to model check specifications with very large
state spaces, model checking Z specifications poses some serious challenges. The
inclusion of non-trivial data types is well known to cause state-space explosions,
and even the use of small sets in the above example pushed the model checker
to its limits in its memory and time capabilities in some of the encodings. The
restriction to small set sizes and the fact that generic parameters (e.g., capacity
in the example above) have to be instantiated mean that we are really using
model checking to explore the specification rather than to perform the complete
verification of a property. The use of data abstraction to alleviate this problem
is a topic for further investigation.

However, in addition to the inclusion of data, the approach to the semantics in
Z adds to the overhead. Specifically, everything in Z is modelled in the semantics
as a set, thus relations are sets of pairs, functions are relations with a constraint,
sequences are partial functions with a constraint, and so on. If this approach is
preserved in the translation to SAL, as we have done so far, then this results
in a computational overhead for the model checker which is likely to become
prohibitive for any non-trivial specification.

The alternative would be to code the data structures in the mathematical
toolkit directly. For example, SAL has total relations as one of the built in data-
types, but does not have partial relations, however, the latter could be encoded
as total functions with an undefined element to represent elements outside the
precondition (i.e., one would model a partial relation as its totalisation). This
is likely to give a better efficiency than the existing approach but there are
complications in the translation. For example, in Z it is acceptable to write (for
a function f : N #→ N):

f ′ = f ∪ {(1, 3)}

This is translated easily at present, but if functions are coded directly then a
version of set union needs to be defined on the function space, which also has to
be able to mix total and partial functions freely.

9 Conclusions

In this paper, we have discussed our current approach to building a model checker
for Z specifications. This is work in progress, and there is much to be done.
For example, we need to explore the use of constraint solvers in resolving the
instantiation of constants introduced by axiomatic definitions. Similarly we need
to investigate alternative representations for the mathematical toolkit which
are not just their set-based expansion, and to compare the efficiency of such
an approach. Finally, the current prototype is stand-alone, and a re-engineered
version would involve integration with the CZT platform of tools.

Of course, this is not the first attempt to provide model checking facilities
for Z. For example, there have been a number of encoding of subsets of Z-based

Issues in Implementing a Model Checker for Z 695

languages in FDR [6,11,8]. However, FDR is not a temporal logic model checker,
but rather is designed to check whether a refinement relation holds between two
specifications. Additionally, FDR was developed for a process algebra, rather
than a state-based notation, thus encoding a language such as Z is non-trivial,
and to date there is no full encoding of Z in FDR.

Other relevant work directly concerned with state-based languages includes
that on the ProB model checker [9] which provides model checking capabilities for
B. Bolton has recently experimented with using Alloy to verify data refinements
in Z [2]. The Alloy Analyzer is a SAT-based verification tool that automatically
determines whether a model exists for a specification within given set bounds
for the basic types. Bolton translates a Z specification into Alloy by encoding
its relational semantics in Alloy and using the latter to see if a simulation can
be found. However, the encoding of the relational semantics is not automatic in
contrast to the implemented Z to SAL translation discussed above.

Acknowledgements. This work was done as part of collaborative work with the
University of Queensland, and in particular, Graeme Smith and Luke Wildman.
Tim Miller also gave valuable advice on the current CZT tools. Thanks is also
due to the financial support of the EPSRC via the RefineNet grant.

References

1. ISO/IEC 13568:2002. Information technology—Z formal specification notation—
syntax, type system and semantics. International Standard.

2. C. Bolton. Using the Alloy Analyzer to Verify Data Refinement in Z. Electronic
Notes in Theoretical Computer Science, 137(2):23–44, 2005.

3. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided ab-
straction refinement. In E.A. Emerson and A.P. Sistla, editors, International Con-
ference on Computer Aided Verification (CAV’00), volume 1855 of LNCS, pages
154–169. Springer-Verlag, 2000.

4. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
5. L. de Moura, S. Owre, and N. Shankar. The SAL language manual. Technical

Report SRI-CSL-01-02 (Rev.2), SRI International, 2003.
6. C. Fischer and H. Wehrheim. Model-checking CSP-OZ specifications with FDR.

In K. Araki, A. Galloway, and K. Taguchi, editors, International Conference on
Integrated Formal Methods (IFM’99), pages 315–334. Springer-Verlag, 1999.

7. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In In-
ternational Conference on Computer Aided Verification (CAV’97), volume 1254 of
LNCS, pages 72–83. Springer-Verlag, 1997.

8. G. Kassel and G. Smith. Model checking Object-Z classes: Some experiments with
FDR. In Asia-Pacific Software Engineering Conference (APSEC 2001). IEEE
Computer Society Press, 2001.

9. M. Leuschel and M. Butler. Automatic refinement checking for B. In K. Lau
and R. Banach, editors, International Conference on Formal Engineering Methods,
ICFEM 2005, volume 3785 of LNCS, pages 345–359. Springer-Verlag, 2005.

10. Tim Miller, Leo Freitas, Petra Malik, and Mark Utting. CZT Support for Z Ex-
tensions. In Judi Romijn, Graeme Smith, and Jaco Pol, editors, Integrated Formal
Methods, IFM 2005, volume 3771 of LNCS, pages 227–245. Springer-Verlag, 2005.

696 J. Derrick, S. North, and A. Simons

11. A. Mota and A. Sampaio. Model-checking CSP-Z: strategy, tool support and
industrial application. Science of Computer Programming, 40:59–96, 2001.

12. H. Säıdi and N. Shankar. Abstract and model check while you prove. In N. Halb-
wachs and D. Peled, editors, International Conference on Computer Aided Verifi-
cation (CAV’99), volume 1633 of LNCS, pages 443–453. Springer-Verlag, 1999.

13. G. Smith and L. Wildman. Model checking Z specifications using SAL. In H. Tre-
harne, S. King, M. Henson, and S. Schneider, editors, International Conference of
Z and B Users (ZB 2005), volume 3455 of LNCS, pages 87–105. Springer-Verlag,
2005.

14. J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 2nd edition,
1992.

Taking Our Own Medicine: Applying the
Refinement Calculus to State-Rich Refinement

Model Checking

Leo Freitas, Ana Cavalcanti, and Jim Woodcock

Department of Computer Science
University of York, UK

{leo, alcc, jim}@cs.york.ac.uk

Abstract. In this paper, we advocate the use of formal specification and
verification in software development for high-integrity and safety-critical
systems, where mechanical proof plays a central role. In particular, we
emphasise the crucial importance of applying verification in the devel-
opment of formal verification tools themselves. We believe this approach
is very useful to increase the levels of confidence and integrity of tools
that are built to find bugs based on formally specified models. This fol-
lows the trend set out by a UK grand challenge in computer research for
verified software repository.

In this direction, we present our experiences on a case study on the
development process of a refinement model checking tool for Circus, a con-
current refinement language that combines Z, CSP, guarded commands,
and the refinement calculus, with the Unifying Theories of Programming
of Hoare and He as the theoretical background.

Keywords: model checking, theorem proving, formal verification.

1 Introduction

Increased complexity in hardware and software systems has created a demand
for precision and reliability, particularly in the high-integrity and safety-critical
domains [2]. One effective way of achieving this goal is through the use of formal
specification and verification. When it comes to the development of formal tools,
which ultimately will perform such verification, we see the use of formalism as
essential. The same principles apply for critical systems.

A well-known programming technique is stepwise development through refine-
ment, where correctness is guaranteed by construction. That is, starting from
an abstract specification, the system is formally developed by the application of
refinement laws that transform its representation to an artifact closer to a com-
puter implementation (or program), where the properties of the specification are
preserved, provided that generated proof obligations are discharged.

Specifications, intermediate designs, and concrete implementations are usually
represented as mathematical models, where we are mostly interested in their data
and behavioural aspects. The refinement laws enabling correct transformations
are part of a refinement calculus of sequential programs [1, 15].

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 697–716, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

698 L. Freitas, A. Cavalcanti, and J. Woodcock

The problem with applying a refinement calculus is that it is a laborious task,
and rigorous proof is needed. When the complexity and number of operations
involved is high, the proofs become error prone, painstakingly long, and some
sort of tool support would be very helpful, if not an imperative factor.

In this paper, we present our experience in using a refinement calculus in the
development process of a model checking tool, where we have used the Z/Eves
theorem prover [21] to mechanise the proof obligations. With the mechanised
application of the refinement calculus, we strengthened the claims for correctness
of the model checker.

The most important results obtained by this work are: (i) mechanical dis-
charge of proof obligations; (ii) hints or counterexamples for failed proofs, hence
invaluable suggestions for possible amendments in pre or postconditions, or loop
invariants; (iii) hints about efficient use of Z/Eves that enables great reuse
between different proof obligations, hence gained performance and productiv-
ity; and (iv) an informal strategy to translate Z and specification statements into
JML [4], a modelling language that enables formal verification of Java code. This
was developed while applying an extended version of the Z Refinement Calculus
(ZRC) [5], the Circus refinement calculus [17], to an algorithm for refinement
model checking of Circus [11, Chapter 4], which integrates model checking and
theorem proving, in systems where data and behavioural aspects are combined.

The result of applying formal methods in the development of a model checker,
was rewarding: since the encoding of the calculated algorithm, the code has not
changed. Furthermore, as it is possible to (informally) translate these findings
with some level of confidence to JML, we believe we have narrowed the gap
between the concrete model of guarded commands and a Java implementation.

This sort of bootstrapping, where we have used Circus to specify and refine its
own model checker, allows us to find early design flaws, as well as to ensure the
algorithm is correct by construction. Thus, important properties, such as loop
invariants, are precisely documented. That is, we took our own medicine to for-
mally specify key aspects of the architecture, in order to enhance the consistency
of the whole tool throughout the development process.

Whilst the model checker is still a prototype, various examples have been
analysed and no bugs in the refinement algorithm have been found. We believe
that for a formal verification tool, such an approach is essential for the assurance
and credibility of any flaws they might find. This decision follows the trend set
by a grand challenge in computer science research in verified software [2].

In the literature, there are few examples of such an approach, to the extent of
our knowledge. The Mural theorem prover is one tool we know stepwise refine-
ment was used throughout its development process [12] was used. Nevertheless,
other tools, such as Perfect Developer [7], have applied verification of its own
code after being developed.

In the next section, we present Circus and its refinement calculus by illustrating
the application of some laws on simple examples. After that, Section 3 presents
how we use Z/Eves to encode the proof obligations from the refinement calculus.

Taking Our Own Medicine: Applying the Refinement Calculus 699

In Section 4, we present our case study. Finally, Section 5 presents conclusions
and future work.

2 Circus

Circus is a concurrent language built for refinement, which allows the combina-
tion of different language paradigms [23]. It combines Z [22], CSP [9, 20], and
specification statements found in refinement calculi. Other executable commands
are also available, such as assignments, conditionals, and loops. This enables one
to use Circus for both abstract specifications, intermediate designs, and actual
code. Because its semantic model is based on the UTP [10], it is amenable for
extension, and considerable work has already been done in this direction. The
result is a unified programming language that can be used for developing con-
current programs through refinement.

Circus provides a refinement calculus that extends ZRC, hence we can for-
mally specify and derive code not only for abstract data types, but also for
concurrent programs. There is considerable effort in building a set of tools sup-
porting the language. At the time of writing, there is a parser, a typechecker, a
prototype refinement model checker, and the basis of a theorem prover. In fact
the model checker combines both fully automatic verification with interactive
theorem proving due to the presence of state-rich features of Circus.

One of the greatest challenges in combining different programming paradigms
and notions of refinement is the provision of a suitable semantic model. The
UTP model of Circus embeds all the features of Z and CSP. In this framework,
we can guarantee that we can safely use both ZRC and CSP refinement laws, as
well as new Circus laws.

In terms of data or behaviour dealt separately, one can apply either Z or CSP
refinement laws. In situations where both paradigms cannot (or should not) be
separated, new Circus refinement laws can be applied, and they are given in [17,
App C]. This includes ZRC laws, CSP laws, and new Circus laws. For instance,
using the Circus law (C.141) of interchange between alternation and guarded
external choice, we could transform an alternation into an external choice.

For the implementation of a model checker for Circus, we face many chal-
lenges: (i) how to represent Z schemas without loosing their characteristic ab-
straction; (ii) how to represent predicate calculus finitely in order to allow
model checking; (iii) how to model check behavioural and data aspects of sys-
tems; (iv) how to maximise the levels of automation, while combining model
checking with theorem proving, whenever theorem proving is required; etc.

3 Refinement Calculus Automation Strategy in Z/Eves

Firstly, from a Circus specification we apply the refinement strategy proposed
in [6]. As Circus specifications involve specification statements, guarded com-
mands, and Z and CSP operators, we need to find a way to represent these
structures in a theorem prover in order to enable mechanisation. Luckily, proof

700 L. Freitas, A. Cavalcanti, and J. Woodcock

obligations can be described as specification statements mentioning a frame of
variables that can be updated, as well as pre and postconditions with predicate
calculus, hence we can use theorem provers for discharging proof obligations
that would otherwise require to be done by hand. That is, we have used Z/Eves
not to apply refinement laws, but to discharge the proof obligations these laws
generate. Also, as we do not have a suitable refinement calculus tool, the trans-
lation of proof obligations to Z/Eves is done manually. A further step, would be
the construction of a refinement calculation tool for Circus, such as Refine [16]
for ZRC, where the application of laws and the transformations they represent
could also be done by formal tools.

From the Circus specification of the model checker, we decided to apply the
refinement calculus to the refinement model checking algorithm in order to get to
code. This choice was made because we believe this to be the crucial part of the
whole architecture. By using the refinement calculus to reach the code from the
abstract specification, we ensure that the algorithm is correct by construction,
and important properties such as loop invariants are precisely documented. Fur-
thermore, other parts of the architecture have also been formalised in Z/Eves,
but no refinement calculation was performed.

Firstly, from the Z aspect of the Circus specification, we needed to prove
simulation between the abstract and concrete models, which include the state
and related operations. These simulation proofs have been done mechanically in
Z/Eves. This was achieved through simulation laws and corresponding applica-
bility and correctness proof obligations. After that, with the concrete model at
hand, we started applying ZRC laws to transform the Z part of the specification
into guarded commands. Moreover, proof obligations coming from the applica-
tion of CSP and Circus laws can be discharged similarly to the simulation proofs
by using Z/Eves. In this process, various properties of interest were discovered
and altered, such as state and loop invariants. As postconditions of concrete
specifications tend to be quite complex, with predicates often involving schema
inclusions, predicate simplifications were also often important. Thus, whenever
stepwise refinement or formal verification was applied and proof obligations were
generated, we see mechanisation via theorem proving as an essential requirement
for correctness.

For different problems, one can follow a similar strategy. With an abstract
specification either in Circus, if concurrent aspects are relevant, or pure Z, if
only data is under concern, the same ideas for of applying the refinement calculus
hold. In this way, the strategy can be reused to refine specifications down JML
annotations in the actual code.

Mechanisation with Z/Eves means encoding the proof obligations using the
Z schema calculus. For that, we apply the ZRC law of basic conversion (bC)
backwards from specification statements to schemas, and then syntactically re-
arrange the corresponding schema so that it is amenable for mechanical proof in
Z/Eves. Obviously, during the first iterations of stepwise refinement, where one
starts from schemas and usually goes to specification statements, this is not very
helpful. Nonetheless, later on when specification statements are to be refined to

Taking Our Own Medicine: Applying the Refinement Calculus 701

the most common guarded commands, such as alternations and assignments, this
strategy pays off as it allows proof obligations to be mechanically discharged,
like the ones in our case study in the next section.

For instance, assuming square root is well-defined in Z/Eves with signature as
sqrt ∈ N → N, where domain checks were discharged. Let us illustrate how we
encode the proof obligation generated by the application of strengthening the
postcondition (in the example from [15, p. 5])

y : [0 ≤ x ≤ 9, sqrt y = x]
sP
(y : [0 ≤ x ≤ 9, sqrt y = x ∧ y ≥ 0]

provided that ∀ x , y, y ′ : Z • (0 ≤ x ≤ 9) ∧
(sqrt y ′ = x ∧ y ′ ≥ 0) • (sqrt y ′ = x)

which is true based on properties of sqrt defined in Z/Eves as one expected
sqrt to behave, bearing in mind specification/mechanisations issues. Firstly, we
encode the state variables carefully according in the Frame schema. Next, we
encode the pre and post conditions as schemas Pre, Post , and NewPost coming
directly from the specification statement predicates (via bC backwards).

Frame =̂ [x , y, y ′ : Z]
Pre =̂ [Frame | 0 ≤ x ≤ 9]
Post =̂ [Frame | sqrt y ′ = x]
NewPost =̂ Post ∧ [Frame | y ′ ≥ 0]

As the precondition does not mention the after state, we include a read-only
(Ξ) version of Frame in Pre. Finally, we can discharge the proof obligation by
proving the conjecture posP1 as a theorem

theorem posP1
∀Frame | Pre ∧ Post ⇒ NewPost

The complete set of translation strategies for the various ZRC laws used through-
out the formal derivation of the refinement algorithm code can be found in Sec-
tion 6 of [11, App. A]. In this reference, we also include extensive information on
how to drive Z/Eves, so that one can achieve efficient and acceptable (or higher)
levels of automation.

The use of the schema calculus to represent the ZRC proof obligations makes
the proofs concise, elegant, and easier to follow. For example, in our case study,
due to the sheer number and complexity of predicates involved, it soon became
impossible to handle the proofs reliably, as they would easily spread across two
or more A4 pages of mathematical formulae. In spite of some auxiliary lemmas
needed to improve automation in Z/Eves, the mechanised result was much more
tidy, organised, elegant, and reliable than the alternative by hand.

Some Conventions for Z/Eves
For every declaration that might include undefinedness, such as type inconsis-
tencies or partial functions called outside their domain, Z/Eves introduces proof

702 L. Freitas, A. Cavalcanti, and J. Woodcock

obligations as Domain Checks. These are sufficient conditions for definedness
one needs to prove, even if the definitions involved are not being used.

For most declared functions that might become involved in future domain
checks or proof obligations, some housekeeping theorems should be included.
Although these housekeeping theorems are usually obvious, quite repetitive, and
straightforward to prove, they do increase the levels of automation to a great
extent. For instance, we can axiomatically define a total function f that nonde-
terministically creates sequences of size n as

f : N→ seq N

∀n : N • # (f n) = n

In this case, Z/Eves introduces a trivial domain check as the proof obligation

f ∈ seq N ∧ n ∈ N ∧ s ∈ seq N⇒ n ∈ dom f ∧ f n ∈ dom #

Discharging this proof obligation is important in order to ensure we have not
given a definition that might introduce inconsistencies in the model whenever f
is used. If f is not used, one ends up proving more than what is necessary.

We also introduce additional facts about the function’s domain, and result
maximal types, to increase automation of other definitions that depend on f .
In Z/Eves syntax, these facts are introduced as named conjectures to be proved
as theorems, where the names are preceded by modifiers used for controlling
automation granularity.

theorem grule gFMaxType
f ∈ P (Z × P (Z × Z))

theorem grule gFRelMaxType
f ∈ Z↔ P (Z × Z))

theorem rule rFResultMaxType
∀n : N • f n ∈ P (Z × Z)

theorem rule rFIsTotal
∀n : N • n ∈ dom f

In Z/Eves, assumptions (grule) rules are used by every tactic that rewrites the
goal, hence it enables coarse-grained automation for commonly needed type con-
sistency checks that often appear in later proofs where f is used. On the other
hand, rewriting (rule) rules are used by only a few specialised tactics, hence they
enable fine-grained automation for more specialised scenarios.

As we use the schema calculus throughout our case study, and in the proof
obligations from the refinement calculus, it is sometimes necessary to inform
Z/Eves about obvious facts regarding the (maximal) types of the schema com-
ponents, depending on which components are used later on. For instance, in a
schema such as

S =̂ [n : N; s : seq N | ∀ i : dom s • s i < n]

Z/Eves includes a domain check about the application of s to i that is easily
discharged, since i ∈ dom s . Depending on how S might appear, perhaps with

Taking Our Own Medicine: Applying the Refinement Calculus 703

s being created using f , one needs to include additional information about the
type of s with theorems, such as

theorem frule fSsMaxType
∀S • s ∈ P (Z × Z)

This kind of theorem, among other reasons, is useful to avoid the need to always
expand the schema definitions in order to discharge goals where s is involved.
This “use without expansion” is the most useful tool for higher degrees of au-
tomation and modularity of proofs when complex schema inclusions occur. That
is, because we can surgically guide specific aspects of the goal without the need
to expand (possibly a great amount of) unrelated assumptions from included
schemas. This kind of usage is defined as a forward rule (frule).

More details about Z/Eves are beyond the scope of this paper, and are omitted
here for space constraints. An extensive tutorial including detailed information
on how to precisely drive Z/Eves, with higher levels of automation for a variety
of scenarios, can be found in Section 1.1.1 of [11, App. A].

4 Case Study: Witness Search Model Checking
Algorithm

In this section we briefly present the Circus model checker architecture, detail-
ing its refinement checking module. From this module, we include parts of the
abstract model, parts of the sequential algorithm derivation via forward simula-
tion, and the complete refined code of a sequential algorithm from the concrete
model. Moreover, we discuss our findings and present some benchmarks of the
whole project of the model checker tool.

Model Checker Architecture Overview
The architecture of the Circus model checker is inspired by FDR, the refinement
model checker for CSP [8, 18], and it has four components: (i) a parser, (ii) a
typechecker, (iii) a compiler, and (iv) a refinement checker, as shown in Figure 1.
The arrows in the Figure represent the date flow from a Circus specification in
LATEXto the actual set of witnesses the model checker could find. In this flow,
firstly the parser creates an Abstract Syntax Tree (AST) that the typechecker
annotates with type information (AST+). The compiler then transforms the an-
notated AST+ using the operational semantics of Circus into a labelled transition
system with predicates embedded on the arcs (PTS) [11, Chapter 3]. Finally,
these automata are analysed by the witness search algorithm we present here in
order to find possible flaws.

From this architecture, an automaton theory (for PTS), the operational se-
mantics of Circus, and the refinement checker module have been formally defined
as Circus specifications, and mechanical proof of properties and proof obligations
have been carried out using Z/Eves.

The refinement checker module takes two compiled automata representing the
Circus specification and implementation sides of the refinement order, together

704 L. Freitas, A. Cavalcanti, and J. Woodcock

Fig. 1. Circus model checker architecture

Fig. 2. Circus refinement checker

with a criterion (or level of detail) to perform the search. The refinement checker
is defined in Circus by the parallel composition of various processes, as shown
in Figure 2. The gray bars represent parallel composition of Circus processes,
whereas the arrows represent (visible and internal) CSP events. For our case
study, we detail the witness search process only. A full account of each of these
processes, as well as the other components of the whole architecture is given
in [11].

Witness Search
Witness search establishes whether a specification S is refined by a design or
implementation I , denoted by S (I . If it does, a successful report is generated.
If it does not, we provide sufficient debugging information that can be used to
produce a suitable human-readable account of the failures as a set of witnesses.
It works over PTS automata representing the state-rich aspects of Circus.

Witnesses are characterised as a nonempty joint path of node pairs coming
from both automata, since a witness is the result of a search that found at least
one incompatible node pair.

JointPath == { SNP : iseq NodePair ; SCL : seq N | #SCL = #SNP }
Witness == JointPath \ { (〈〉, 〈〉) }

A joint path is formed by a pair of sequences, where the first element is an
injective sequence of node pairs, and the second element is a sequence of layers
of the Breadth First Search performed. It enforces that both sequences must have
the same size, hence both node pairs, and their corresponding search levels, are

Taking Our Own Medicine: Applying the Refinement Calculus 705

accessed at the same index. Injectivity of node pairs is important because it
ensures no pairs are searched twice. Nevertheless, different pairs can searched
at the same level. Search levels are important for memory efficient extraction of
debugging information from witnesses.

Next, we define the conditions for a valid witness: (i) the last element of the
node pair sequence of a witness (sN , iN) must be valid (NodePairInv), but no
information about their compatibility is known, since it is the current pair being
checked; (ii) on the other hand, every node pair in the front of a witness must be
valid (NodePairInv [dn/sN ,n/iN]) and compatible (¬GenVl [dn/sN ,n/iN]); (iii)
there must exist a trace (wtsTrace) from both automata of S (normalised nf)
and I (ip) corresponding to each node pair sequence that is part of a wit-
ness; and (iv) the search level of each node pair recorded strictly increases.

WitnessInv
m : Criterion; nf : NFPTS ; ip : IPTS ; w : Witness ; NodePairInv

(sN , iN) = last (w .1)
∀ dn : DNode; n : Node | (dn,n) ∈ ran (front w .1) •

NodePairInv [dn/sN ,n/iN] ∧ ¬GenVl [dn/sN ,n/iN]
∃T : seq Σ • T = wtsTrace (nf , ip,w)
∀ i : 1 . . (#w .2− 1) • w .2 (i) ≤ w .2 (i + 1)

The existence of a trace in S (nf) and I (ip) from the node pairs in the current
witness (w) establishes the nodes that are mutually reachable, while searching
for new successor pairs. That means, if one can create a valid non-empty se-
quence of node pairs from the two automata, then it must be possible to retrieve
the unique trace related to such witness. The trace of events is unique because
of the deterministic property of the normalised automaton of S . Finally, it en-
sures that lower level nodes must appear before higher level ones. As we do not
store the whole trace a witness represents, these levels allow memory efficient
representation of flaws. This consistency on the levels information is important
for the debugger to provide accurate information while rebuilding the transition
system from the failed pair up to the root of the search. Many of these properties
were found due to failed proofs while mechanising.

The abstract model. Witness search is responsible for finding whether all the
behaviours of I are allowable by at least one behaviour of S , such that they have
a trace in common. The behaviours of interest depend on the selected criterion
to establish refinement, which in turn has specific violation criterion. Due to
space restrictions, we present only the relevant parts.

The general violation criterion is defined next. Regardless of the criterion be-
ing traces, nondeterminism, or divergences, every node pair from S and I must
be valid (NodePairInv), and checked for traces violation (TrVl). For the traces
criterion (tr), this is enough. Other different criteria, such as nondeterminism
(sfl), can also be checked for stable-failures violation (SFlVl). Finally, the diver-
gence violations (DvVl) are checked only for the failures-divergences criterion

706 L. Freitas, A. Cavalcanti, and J. Woodcock

(fldv). The violation of each criterion is defined as a Z schema that establishes
the relationship between node pairs from the automata of S and I .

GenVl
m : Criterion; NodePairInv

TrVl ∨ (¬m = tr ∧ (SFlVl ∨ (m = fldv ∧ DvVl)))

In this way, we separate concerns at the specification level.
The abstract state includes the refinement search parameters (RSParams),

and the set of witnesses found (wts). The invariant of the abstract state (RSState)
guarantees that: (i) the number of witnesses searched (#wts) does not exceed
the amount requested (wr); (ii) the automata involved after the transformations
occurred during normalisation and divergence checking are valid with respect
to the operational semantics (enabled) (see arrows in Figure 2); and (iii) wit-
nesses that have been found, must satisfy the witness invariant (WitnessInv),
and have the last node pair violating some compatibility criteria (GenVl). The
enabled function receives a transition system and a node and return the set of
arcs available from this point.

RSState
RSParams ; wts : P Witness

wts ∈ F Witness ∧ #wts ≤ wr
∀ sN : DNode; iN : Node; a : P1 Σ | NodePairInv ∧ ¬GenVl ∧

a ∈ enabled (ip.ts , iN) • ¬
⋃

(enabled (nf .ts , sN)) ∩ a = { }
∀w : Witness | w ∈ wts • ∃ sN : DNode; iN : Node •

WitnessInv ∧ GenVl

That is, for consistency, if a node pair ((sN , iN)) is valid (NodePairInv), compat-
ible (¬GenVl), and has visible events (a �= ∅) immediately available (enabled)
in the implementation I (ip), then there must be some event in common with
the normalised specification S (nf). Otherwise, either the operational semantics,
or the model checking compatibility criteria, would have been wrongly specified.
These consistency elucidations are due to mechanical proof.

Next is the signature of refinement search operations. It establishes that the
search parameters that are part of the state do not change (Ξ), and that the
set of witnesses (wts) may increase (to wts ′), but previously found witnesses are
not lost (wts ⊆ wts ′).

RSOps
Ξ RSParams ; ∆RSState

wts ⊆ wts ′

In the general violation criterion (GenVl), we factor the searching for witnesses
with respect to each violation criterion. This allows a modular combination of

Taking Our Own Medicine: Applying the Refinement Calculus 707

criteria within the different aspects of the compatibility check. Thus, for each
criterion, we define an operation to search for witnesses. The set of witnesses
found (wts ′) must be a subset of the set containing all valid witnesses (w) ac-
cording to the witness invariant (WitnessInv), and related violation criteria for
traces (TrVl) for a pair of nodes coming from the specification (sN) and the
implementation (iN) automata.

TrWtsSearch
RSOps

m = tr ∧ wts ′ ⊆ {w : Witness ; sN : DNode; iN : Node |
WitnessInv ∧ TrVl • w }

As we do not need to necessarily find all witnesses, but a specific number re-
quested (wr), the value of wts ′ is a subset of, rather than equal to, the entire
space of witnesses. Similarly, for the other criteria, each violation schema is dis-
joined to form the other sets of witnesses

WitnessInv ∧ (TrVl ∨ SFlVl) for stable-failures
WitnessInv ∧ (TrVl ∨ SFlVl ∨ DvVl) for failures-divergences

Finally, we define a total operation for finding witnesses, regardless of the criteria,
as the disjunction of the witness search operations.

FindWitnesses =̂ (TrWtsSearch ∨ SFlWtsSearch ∨ FlDvWtsSearch)

This modular approach gives room for future extensions in a precise fashion. For
instance, one could encode one of the extended failures models for CSP defined
in [3] as an additional violation schema, with the corresponding criterion flag
and schema characterising the space of witnesses to search for. Moreover, for all
available operations in the abstract model, we have proved applicability theorems
about the operation preconditions.

The concrete model. We applied (a trivial) data refinement over the state of
the abstract model (RSState), so that the concrete model has additional com-
ponents: (i) two injective sequences for pending (pd), and already checked node
pairs (ck); (ii) the node pair (wnp) currently being searched; (iii) a sequence of
working levels used to register at which level of the search each (working) node
pair appeared; and (iv) the abstract refinement search parameters. The sequen-
tial state invariant gathers properties about the variables (pd , ck , lvl , wnp, swts)
used in the algorithm’s code, instead of scattered in postconditions of later speci-
fication statements. This decision was taken in order to minimise and modularise
the complexity of proof obligations generated, as the first s (harder) attempt
to discharge the proof obligations when predicates were scattered showed. The
first predicates are about finiteness of witnesses, and an equivalence for wnp
used for better automation. Next we have the number witness we can search
(#swts ≤ wr). The consistency between progress of node pairs from the imple-
mentation (ip) and the normal form (nf) as defined by the operational semantics

708 L. Freitas, A. Cavalcanti, and J. Woodcock

(enabled) comes next, and it is similar to the abstract state (RSState), but men-
tioning the working node pair (wnp). A series of predicates establishing that
the working node pair, and the pending and checking sequences elements are
valid in the product automata (PA), are also included. The product automata
is just the cross product of the available nodes from both the specification and
implementation automata.

SeqRSState
RSParams ; swts : P Witness ; ck , pd : iseq NodePair ; lvl : seq N
wnp : NodePair ; wsN : DNode; wiN : Node; wl : N

swts ∈ F Witness ∧ wnp = (wsN ,wiN) ∧ #swts ≤ wr
∀ a : Arc | ¬GenVl [wsN /sN ,wiN /iN] ∧ ¬a = { } ∧

a ∈ enabled (ip.ts ,wiN) • ¬
⋃

(enabled (nf .ts ,wsN)) ∩ a = { }
#ck = #lvl ∧ wnp ∈ PA (nf , ip) ∧ NodePairInv [wsN /sN ,wiN /iN]
ck ∈ iseq (PA (nf , ip)) ∧ pd ∈ iseq (PA (nf , ip))
∀ sNck : DNode; iNck : Node | (sNck , iNck) ∈ ran ck •

NodePairInv [sNck/sN , iNck/iN] ∧ ¬GenVl [sNck/sN , iNck/iN]
∀ sNpd : DNode; iNpd : Node | (sNpd , iNpd) ∈ ran pd •

NodePairInv [sNpd/sN , iNpd/iN]
ran pd ∩ ran ck = { }
∀ i : 1 . . (#lvl − 1) • lvl (i) ≤ lvl (i + 1)
∀ j : 1 . . #lvl • lvl (j) ≤ wl
∀w : Witness | w ∈ swts • ran pd ∩ ran w .1 = { }
∀w : Witness | w ∈ swts •WitnessInv [wsN /sN ,wiN /iN] ∧

GenVl [wsN /sN ,wiN /iN]

Next, comes the property that pending and checked pairs are disjoint, hence
the search is closed under the elements of these sequences. This is important to
establish the main loop variant, and hence guarantee that the whole search ter-
minates. Finally, we include a series of properties regarding search levels useful
for debugging, together with information about how witnesses relate to pend-
ing and checked pairs, which are further detailed latter. Many of these were
discovered through formal proof.

This is possible by the application of forward simulation rules with a quite
trivial retrieve relation: the set of witness from the abstract world equals the set
of witnesses used in the concrete world. Thus, we have an operational refinement,
rather than data refinement. At first we have used an injective sequence to
represent swts, and the retrieve schema as wts = ran swts, but it increased the
complexity of the proofs in a great extent, because the Z toolkit does not have
great automation for this data type. Fortunately, this was not a problem for
the proof obligations related to the injective sequence of pending and checked
node pairs. Finally, as Java and JML support sets, this choice did not become
an implementation issue.

At this stage, in order to establish refinement, we needed to prove that, for
every available operations of the abstract model, the corresponding concrete

Taking Our Own Medicine: Applying the Refinement Calculus 709

version satisfies the two proof obligations of applicability and correctness gener-
ated [17, Law C.4]. In particular, we have done this for the entire Circus speci-
fication. In here we want to emphasise that the refinement algorithm simulates
the abstract specification.

FindWitnesses 5 SeqWitnesses

Finally, Like in the abstract model, we calculate the preconditions of all concrete
operations to ensure their applicability as well.

The algorithm. It defines how node pairs are checked for compatibility, as well
as how new pairs are found. To give an overview of the algorithm we provide
the entire derived code in Figure 3, which is written in Circus. This code has
been derived using ZRC, and action refinement laws for Circus [17, Appendix C].
Although our algorithm is similar to the algorithm of FDR presented in [19, 14],
the mechanised proof effort precisely exposed loop invariants, and a great amount
of hidden information that is interesting for the understanding of the witness
search problem for refinement model checking in general.

The algorithm is divided into two stages: (i) compatibility check; and (ii) suc-
cessor node pairs search. In the compatibility check, we first assign to the working
node pair (wnp), update the pending pairs (pd), and increment the working level
of the search accordingly. If wnp is incompatible (GenVl), then it must be in-
cluded as a new witness in swts. It is formed by the previous checked pairs,
together with the offending working node pair at the working level. Otherwise,
if wnp is compatible, then the sequence of checked pairs and search level are up-
dated likewise, and the next stage of finding successor pairs starts. The search is
performed while there are pending pairs (pd �= 〈〉) to be searched, and witness
to be found (#swts < wr).

While searching for successors, the arcs immediately available for communi-
cation in the implementation are retrieved through the enabled function repre-
senting all events immediately available from a given node. For each of those
arcs, one needs to progress appropriately in the automata of S and I , accord-
ing to the loop invariant. In order to exhaust all enabled implementation arcs
(arcS), we choose the specification node successor (sN), and select all available
implementation successor nodes (iN ∈ iNS) on the same arc. If it is a silent or
internal transition, here specified as an empty arc, it represents nondeterminism
(from an internal choice, for instance) being resolved in I . Since after normal-
isation the automaton of S is deterministic and has no silent transitions left,
there is no successor node for S in this case. Otherwise, in the case of visible
communication, the selection of successors follows from the arcStep function.
It determines the set of nodes we can reach through a given arc at a particular
node. These two functions represent the formally specified operational semantics
of Circus [11, Chapter 3].

Interesting Properties We Have Discovered
Although this way of building up the witness from the sequence of checked pairs
comes from FDR’s algorithm, some properties to enable us to derive thecode are

710 L. Freitas, A. Cavalcanti, and J. Woodcock

SeqWitnesses =̂
doL0 (#swts < wr ∧ pd �= 〈〉)→

wnp, pd ,wl := head pd , tail pd , (wl + 1) ;
if (GenVl [wsN /sN ,wiN /iN])→

swts := swts ∪ { ((ck � 〈wnp〉), (lvl � 〈wl〉))}
[] (¬GenVl [wsN /sN ,wiN /iN])→

ck , lvl := (ck � 〈wnp〉), (lvl � 〈wl〉) ;
|[var arcS : F Arc •

arcS := enabled (ip.ts,wiN) ;
doL1 (arcS �= ∅)→
|[var arc : Arc; sN : DNode •

arc := elem (arcS) ;
arcS := arcS \ { arc } ;⎛⎜⎜⎜⎜⎝

if (arc �= ∅)→
sN := arcStep (nf .ts,wsN , arc)

[] (arc = ∅)→
sN := wsN

fi

⎞⎟⎟⎟⎟⎠ ;

|[var iNS : F Node •
iNS := arcStep (ip.ts,wiN ,arc) ;
doL2 (iNS �= ∅)→
|[var iN : Node •

iN := elem (iNS) ;
iNS := iNS \ { iN } ;⎛⎜⎜⎜⎜⎝

if ((sN , iN) ∈ ran pd ∪ ran ck) →
Skip

[] ((sN , iN) /∈ ran pd ∪ ran ck) →
pd := pd � 〈(sN , iN)〉

fi

⎞⎟⎟⎟⎟⎠
]|

od
]|

]|
od

]|
fi

od

Fig. 3. Sequential witness search algorithm

not documented, to the extent of our knowledge. In FDR’s algorithm descrip-
tion [19], it is mentioned that the elements of pd and ck are disjoint. Because of
the mechanisation of proof obligations, these well-known and some other facts
must be formally specified. For instance, we need to precisely include obvious
facts not mentioned in [19], such as: (i) all node pairs in ck and pd are valid (or
are part of) the automaton of S and I ; (ii) all node pairs in ck are compatible
in the chosen model (GenVl); (iii) node pairs from ck and pd can only come

Taking Our Own Medicine: Applying the Refinement Calculus 711

from the product automata of S and I , and not any valid node pair from other
automata; and so on.

There are, however, some not entirely obvious facts as well. They must be
clearly stated, otherwise the proof obligations cannot be mechanically discharged.
We see this as a very interesting contribution to the field of refinement model
checking. These facts are mostly related to the normalisation of S that occurs
at the preparation process (see Figure 2), the various relationships between the
witnesses found and the data structures used in the sequential search, and about
loop invariants.

Normalisation properties. During normalisation, the automaton of S is trans-
formed to become deterministic and free of silent transitions. Among other rea-
sons, this is useful because it makes the sequence of node pairs unique, and
hence it enables memory-efficient representation of the search space without
compromising its results. Nonetheless, as witness search and normalisation are
independent Circus processes, we must record that the automata received were
built by the operational semantics. Another example is that, since the normal
form of S is a deterministic automaton, and elements of pd and ck are disjoint,
when the search finishes, the union of elements from pd and ck must be the size
of the product automata of S and I . In this way, we ensure that all node pairs
are checked, hence a precise characterisation of search exhaustiveness is given.

Witness properties related to the sequential state. As pd and ck belong to the
product automata of S and I , and the normalisation guarantees the search paths
to be unique, node pairs from witnesses already found can never appear as
pending. Furthermore, valid node pairs in the product automata that have not
yet being searched (i.e., they are neither pending nor checked), can never be
part of any witnesses that have already been found. These facts are included in
the last predicates of SeqRSState.

Properties of the main loop. Let us explain the invariant, guard, and variant
of each labelled loop from Figure 3. With application of appropriate laws and
further simplifications, the main loop (L0) invariant is reduced to the sequential
state invariant already presented in schema SeqRSState. That is not surprising as
we moved the algorithm main variables to the state on purpose at the beginning,
in order to have the main loop invariant clear from the state invariant itself.
This is crucial for concentrating the proof effort at one hard/difficult point,
whereas the remaining proofs become simpler. The main loop guard defines the
termination condition for the algorithm as

#swts < wr ∧ ¬pd = 〈〉

which means that either enough witnesses have been found, or there are no more
pending pairs to be checked. It has been previously introduced by strengthening
the postcondition right after initialisation of the corresponding variables via
assignment. The main loop variant is defined as

(PS (nf , ip) −#ck) + (wr −#swts)

712 L. Freitas, A. Cavalcanti, and J. Woodcock

because only ck or swts will increase at each iteration but not both, as every
valid node pair being searched is either compatible or not. As a loop variant is
an integer expression whose value is strictly decreased by the loop body, we need
to find the boundaries for both ck and swts. The checking sequence is bound
by the product size of both automata (PS (nf , ip) ∈ N1), as we can never check
more than what is available, whereas the set of witnesses is bound by the number
requested on wr . Moreover, pd cannot be used in the variant because it may not
vary at every iteration.

Properties of loop L1. The next loop encodes the search for successor pairs from a
compatible node pair. As each arc from the set of enabled arcs (enabled) is being
explored, we need to establish via the assignment that the following properties
about arcs hold

arcS ⊆ enabled (ip.ts ,wiN) ∧
(∀ a : Arc | a ∈ arcS • ¬arcStep (ip.ts ,wiN , a) = ∅)

That is, subset containment with respect to the operational semantics (enabled)
guarantees that exploring new arcs (arcS) preserves the amount remaining to be
searched, and valid normal form nodes have no silent transitions. This forms part
of the loop invariant. Moreover, after the assignment on arcS , we also establish
the new properties about a compatible working node pair (wnp)

¬wnp ∈ ran pd ∧ wnp ∈ ran ck ∧
(∀w : Witness | w ∈ swts • ¬wnp ∈ ran w .1)

That is, wnp is not pending, has already been checked, and cannot be part
of any witnesses previously found. This is also important for re-establishing
the main loop invariant, as well as make both loops L0 and L1 work. They are
dischargeable because the normal form is unique, the injective sequences (pd and
ck) are disjoint, and because of the witness properties related to the sequential
state and witness invariant mentioned above. Finally, the invariant of L1 is given
in four parts: (i) the guard from the alternation ensuring the working node pair
is compatible (¬GenVl [wsN /sN ,wiN /iN]); (ii) a simplified version of the state
invariant (SeqRSState) with information about well-formed witnesses removed,
as to search for successors it is irrelevant; (iii) the new properties of the working
node pair after the update of ck ; and (iv) the properties of arcS just mentioned.
Also, since we use the cardinality of arcS as the variant, arcS must be finite.
The loop guard is given as (arcS �= ∅), and the variant is # arcS .

Properties of loop L2. The final part of the algorithm is the possible inclusion of
new successor pairs as pending, whenever they have not been already checked.
We need to iterate over the set of reachable implementation nodes (iNS) to form
new node pairs (sN , iN), where the normal form node (sN) has already been
fixed. Loop L2 has the invariant of L1 conjoined with the property about iNS

iNS ⊆ arcStep (ip.ts ,wiN , arc)

Taking Our Own Medicine: Applying the Refinement Calculus 713

which is dischargeable as the nodes in iNS are reaches from arcS enabled by
the operational semantics. Finally, the guard of L2 is (iNS �= ∅), whereas the
variant is # iNS .

These, and other properties that were found throughout the mechanical for-
malisation process, have proved the whole idea of applying formal methods in the
development of formal tools worthwhile for this case study. Although mechani-
sation can incur some burden and time constraints, in the longer run, we believe
it to be indispensable in discovering information that is crucial for correctness,
and a better understanding of the problem at hand.

Translation into JML
At last, we translate the various predicates representing different properties of
the algorithm into JML notation. They appear as comments in the Java code
that implements the algorithm in Figure 3.

As the proof obligations normally come from specification statements, it is
usually straightforward to translate, because JML allows pre and postconditions
on methods as special predicates directly, as the requires and ensures clauses of
JML annotations, respectively. Similarly, the JML assignable clause is a direct
representation of the specification statement frame.

It is more challenging to translate the loop invariants. At the time when this
case study was performed, the JML documentation and language support for
encoding loop invariants was not as thorough as it is today, where the available
annotations are better documented and supported by the JML tools. Because
of that, we needed to provide an intermediate solution: the predicate’s annota-
tion and the algorithm’s code were scattered into various methods of Java inner
classes, so that the frame, pre and postconditions could be precisely specified at
each different stage. Nonetheless, although this specifies/documents the prob-
lem precisely, it unfortunately complicates the code. Furthermore, the lack of
Z toolkit definitions within the available JML data structures, such as injective
sequences, also limited this translation effort altogether.

Some Benchmarks
In total, the whole formalisation effort in the development of the Circus model
checker is summarised in Table 1. It includes: (i) an extended Z toolkit to handle
finiteness and injections better; (ii) the automata theory for PTS ; (iii) the nor-
malisation, divergence checking, refinement search, and debugger Circus specifi-
cations; and (iv) the refinement proofs for the derivation of the sequential witness
search algorithm.

The complete process took one person working full-time for around one whole
year. For the algorithm derivation alone, we applied around 101 refinement
laws, which generated 42 proof obligations, including: (i) 14 trivial proofs dis-
charged directly by Z/Eves; (ii) 12 easy proofs with (possibly lengthy) straight-
forward manipulations; (iii) 10 hard proofs usually depending on case analysis
and Z/Eves rules; and (iv) 6 difficult proofs that exposed most of the inconsis-
tencies in the automata theory, and in the formal definitions.

Although the number of Z/Eves automation theorems is high, they are repet-
itive and straightforward to prove. Also, many of the given theorems are in fact

714 L. Freitas, A. Cavalcanti, and J. Woodcock

Table 1. Summary of formal declarations for Circus model checker

Formal
item

Ext. Z
toolkit

PTS
theory

Normal
form

Div.
check

Ref.
search

Debugger Total

Abbrev. 2 15 0 0 3 2 22
Given sets 0 2 0 0 0 1 3
Free types 0 2 0 0 4 0 6
Ax. defs. 0 16 6 0 6 1 29
Gen. defs. 10 7 0 0 0 0 17
Schemas 0 8 4 6 108 8 134
Z/Eves rules 81 191 18 5 90 12 397
Lemmas 14 24 0 0 73 0 111
Theorems 11 44 5 1 25 1 87
Proof scripts 103 259 23 6 214 1 606
Domain checks 3 25 7 0 43 0 78
Channels — — 3 3 6 2 14
Actions — — 3 7 25 9 44
Variables — — 0 0 14 1 15

Total 224 593 69 28 611 38 1563

specification statements and proof obligations encoded as schemas by our au-
tomation strategy. To the extent of our knowledge, this code derivation is the
biggest case study in the application of ZRC, and one of the few related to the
development of a formal tool.

5 Conclusion

We expect the experiences shown in this case study to motivate the application of
formal specification and verification, both in theory and practice, for tools aimed
at formal verification, as well as computer systems in general. We advocate the
use of mechanical proof throughout formal specification and verification.

We believe that formalisation plays a crucial role in increasing the integrity
levels of the model checker through a combination of techniques. Together with
the refinement algorithm and the architecture, the operational semantics and the
underlying automata theory are also formally defined. Throughout the develop-
ment process, Z/Eves was used to discharge proof obligations from the algorithm
derivation, animate the operational semantics, prove properties of the theory of
automata, and so on. In this process we presented a recipe showing how to use
a theorem prover to discharge proof obligations generated by the application of
the Circus refinement calculus.

This sort of bootstrapping, where we have used Circus to specify and refine its
own model checker, allows us to find early design flaws, as well as to ensure the
algorithm is correct by construction. For instance, the various properties about
witnesses, pending, and checking sequences, enabled us to properly understand
why some witnesses could not be properly interpreted by the debugger process

Taking Our Own Medicine: Applying the Refinement Calculus 715

due to lack of information. Moreover, to bridge the gap between formal speci-
fication and actual code, we use JML annotations to document our findings at
the level of the Java code. Thus, important properties, such as loop invariants,
are precisely documented and amenable to further verification. This exercise of
taking our own medicine shows how one can go from an abstract formal specifi-
cation to code mechanically, hence gathering the knowledge to step forward on
the roadmap for building formal verification tools formally. In this process, we
found not only bugs, but also unkonwn/undocumented important properties.

Foreseeable extensions to the work are a formal derivation from the abstract
specification of witness search to a parallel refinement model checking algorithm.
Apart from concurrency complexity, there is a further burden while integrating
theorem proving and model checking in a parallel setting, such as dependencies
between their results. Another interesting work is to extend the JML type sys-
tem to include most of the Z toolkit, hence enabling more Z specifications to
be translated and analysed by JML tools. At this point, an automated transla-
tion tool could be created, in the spirit of another interesting tool that already
partially converts B to JML [13].

References

[1] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic
Introduction. Graduate Text in Computer Science. Springer-Verlag, 1998.

[2] J. C. Bicarregui, C. A. R. Hoare, and J. C. P. Woodcock. The Verified Software
Repository: a Step Towards the Verifying Compiler. UK Grand Challenge for
Computer Research, Steering Committee, 2004.

[3] Christie Bolton and Gavin Lowe. A Hierachy of Failures-Based Models: Theory
and Application. Theoretical Computer Science Journal, June 2004.

[4] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R. Kiniry,
Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An Overview of JML
Tools and Applications. In Eighth International Workshop on Formal Methods for
Industrial Critical Systems (FMICS), Electronic Notes in Theoretical Computer
Science, pages 73–89. University of Nijmegen, Elsevier, March 2003.

[5] A. L. C. Cavalcanti and J. C. P. Woodcock. ZRC—A Refinement Calculus for Z.
Formal Aspects of Computing Journal, 10(3):267–289, 1999.

[6] A. L. C. Cavalcanti and A. C. A. Sampaio and J. C. P. Woodcock. A Refinement
Strategy for Circus. Formal Aspects of Computing Journal, 15(2-3):146–181, 2003.

[7] Escher Technologies. Perferct Developer User’s Guide, v.3.0, 2004. Available
on-line at www.eschertech.com/product documentation/UserGuide.htm

[8] M. Goldsmith. FDR2 Manual (v2.82). Formal Systems (Europe) Ltd., June 2005.
[9] C. A. R. Hoare. Communicating Sequential Process. International Series in Com-

puter Science. Prentice-Hall, 1985.
[10] C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. International

Series in Computer Science. Prentice-Hall, 1998.
[11] Leo Freitas. Model Checking Circus. PhD thesis, Univeristy of York, October 2005.
[12] C.B. Jones, K.D. Jones, P.A. Lindsay, and R. Moore. Mural: a Formal Develop-

ment Support System. Springer-Verlang, 1991. ISBN: 3-540-19651-X.

716 L. Freitas, A. Cavalcanti, and J. Woodcock

[13] Petra Malik and Mark Utting. CZT: A Framework for Z Tools. In Helen Tre-
harne, Steve King, Martin Henson, and Steve Schneider, editors, ZB 2005: Formal
Specification and Development in Z and B: 4th International Conference of B and
Z Users, Guildford, UK, pages 13–15. Springer-Verlag, April 2005.

[14] J. M. R. Martin and Y. Huddart. Parallel Algorithms for Deadlock and Livelock
Analysis of Concurrent Systems. Communicating Process Architectures, 2000.

[15] Carroll Morgan. Programming from Specifications. Prentice-Hall, 1994.
[16] M. V.M. Oliveira and M. A. Xavier and A. L. C. Cavalcanti. Refine and Gabriel:

Support for Refinement and Tactics. In J. R. Cuellar and Z. Liu editors, 2nd
IEEE International Conference on Software Engineering and Formal Methods,
pages 310–319. IEEE Computer Society Press, 2004.

[17] Marcel Oliveira. Formal Derivation of State-Rich Reactive Programs using Circus.
PhD thesis, University of York, 2006.

[18] Peter Ryan, Steve Schneider, Bill Roscoe, Michael Goldsmith, and Gave Lowe.
Modelling and Analysis of Security Protocols. Addison Wesley, 2001.

[19] A. W. Roscoe. Model Checking CSP in A Classical Mind: Essays in Honour of
C. A. R. Hoare. International Series in Computer Science. Prentice-Hall, 1994.
Chapter 21, pages 353–378.

[20] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.
[21] Mark Saaltink. Z/Eves 2.0 User’s Guide. ORA Canada, 1999.
[22] Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and Proof.

International Series in Computer Science. Prentice-Hall, 1996.
[23] J. C. P. Woodcock and A. L. C. Cavalcanti. The Semantics of Circus. In D. Bert

and J. P. Bowen and M. C. Henson and K. Robinson, editors, ZB 2002: Formal
Specification and Development in Z and B, number 2272 in Lecture Notes in
Computer Science, pages 184–203, Springer-Verlag, 2002.

Discovering Likely Method Specifications

Nikolai Tillmann1, Feng Chen2, and Wolfram Schulte1

1 Microsoft Research, One Microsoft Way, Redmond, Washington, USA
{nikolait, schulte}@microsoft.com

2 University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
fengchen@cs.uiuc.edu

Abstract. Software specifications are of great use for more rigorous software
development. They are useful for formal verification and automated testing, and
they improve program understanding. In practice, specifications often do not ex-
ist and developers write software in an ad-hoc fashion. We describe a new way to
automatically infer specifications from code. Our approach infers a likely spec-
ification for any method such that the method’s behavior, i.e., its effect on the
state and possible result values, is summarized and expressed in terms of some
other methods. We use symbolic execution to analyze and relate the behaviors of
the considered methods. In our experiences, the resulting likely specifications are
compact and human-understandable. They can be examined by the user, used as
input to program verification systems, or as input for test generation tools for val-
idation. We implemented the technique for .NET programs in a tool called Axiom
Meister. It inferred concise specifications for base classes of the .NET platform
and found flaws in the design of a new library.

1 Introduction

Specifications play an important role in software verification. In formal verification the
correctness of an implementation is proved or disproved with respect to a specifica-
tion. In automated testing a specification can be used for guiding test generation and
checking the correctness of test executions. Most importantly specifications summarize
important properties of a particular implementation on a higher abstraction level. They
are necessary for program understanding, and facilitate code reviews. However, spec-
ifications often do not exist in practice, whereas code is abundant. Therefore, finding
ways to obtain likely specifications from code is highly desired if we ever want to make
specifications a first class artifact of software development.

Mechanical specification inference from code can only be as good as the code. A
user can only expect good inferred specifications if the code serves its purpose most
of the time and does not crash too often. Of course, faithfully inferred specifications
would reflect flaws in the implementation. Thus, human-friendly inferred specifications
can even facilitate debugging on an abstract level.

Several studies on specification inference have been carried out. The main efforts can
be classified into two categories, static analysis, e.g., [16,15,14], and dynamic analysis,
e.g., [13,19]. The former tries to understand the semantics of the program by analyzing
its structure, i.e., treating the program as a white-box; the latter considers the implemen-
tation as a black box and infers abstract properties by observations of program runs. In

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 717–736, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

718 N. Tillmann, F. Chen, and W. Schulte

this article we present a new technique to infer specifications which tries to combine the
strengths of both worlds. We use symbolic execution, a white box technique, to explore
the behaviors of the implementation as thoroughly as possible; then we apply observa-
tional abstraction to summarize explored behaviors into compact axioms that treat the
implementation as a black box.

We applied the technique to infer specifications for implementations of abstract data
types (ADTs) whose operations are given as a set of methods, for example, the public
methods of a class in C#. The technique infers a likely specification of one method,
called the modifier method, by summarizing its behavior, e.g. its effect on the state and
its result value, using other available methods, called observer methods. Interestingly,
our technique does neither require that the modifier methods changes the state nor that
observer methods do not change it.

The inferred specifications are highly abstract and human beings can review them.
In many cases, they describe all behaviors of the summarized method. For example, our
tool, called Axiom Meister, infers the following specification for the Add method of the
BCL Hashtable class using the observer methods ContainsKey, the property Count
and the indexer property [].

void Add(object key, object value)
requires key != null otherwise ArgumentNullException;
requires !ContainsKey(key) otherwise ArgumentException;
ensures ContainsKey(key);
ensures value == this[key];
ensures Count == old(Count) + 1;

Our technique obtains such a specification in three steps, illustrated in Figure 1.

Implementation
General
Axioms

Path Conditions
& States

Path Specific
Axioms

Symbolic
Exploration

Observation
Abstraction

Axiom
Simplification

Fig. 1. Overview of the Specification Inference Process

Firstly, we symbolically execute the modifier method from an arbitrary symbolic
state with arbitrary arguments. We assume single-threaded, sequential execution. Sym-
bolic execution attempts to explore all possible execution paths. Each path is character-
ized by a set of constraints on the inputs called the path condition. The inputs include
the arguments of the method as well as the initial state of the heap. The number of paths
may be infinite if the method contains loops or employs recursion. Our approach selects
a finite set of execution paths by unrolling loops and unfolding recursion only a limited
number of times. A path may terminate normally or have an exceptional result.

Secondly, we evaluate observer methods to find an observational abstraction of the
path conditions which may contain constraints referring to the private state of the im-
plementation. Specifications must abstract from such implementation details. Observer
methods are used to obtain a representation of the path conditions on a higher abstrac-
tion level. This step yields many path-specific axioms, each describing the behavior of
the method under certain conditions, in terms of the observer methods.

Discovering Likely Method Specifications 719

Thirdly, we merge the collected path-specific axioms (to build comprehensive de-
scriptions of behaviors from different cases), simplify them (to make the specification
more concise), and generalize them (to eliminate concrete values inserted by loop un-
folding).

The contributions of our paper are:

– We introduce a new technique for inferring formal specifications automatically. It
uses symbolic execution for the exploration of a modifier method and it summarizes
the results of the exploration using observer methods.

– In certain cases it can detect defective interface designs, i.e., insufficient observer
methods. We show an example in Section 5 that we found when we applied our
technique on code currently being developed at Microsoft.

– We can represent the inferred specifications as traditional Spec# [7] pre- and post-
conditions or as parameterized unit tests [26].

– We present a prototype implementation of our technique, Axiom Meister, which
infers specifications for .NET and finds flaws in class designs.

The rest of this paper is organized as follows. Section 2 presents an illustrative ex-
ample describing our algorithm to infer axioms, and gives an overview of symbolic
execution. Section 3 describes the main steps of our technique. Section 4 discusses the
heuristics we have found useful in more detail. Section 5 discusses features and lim-
itations. Section 6 contains a brief introduction to Axiom Meister. Section 7 presents
our initial experience of applying the technique on various classes. Section 8 discusses
related work, and Section 9 future work.

2 Overview

We will illustrate our inference technique for an implementation of a bounded set of
nonzero integers (Figure 2). Its public interface contains the methods Add, IsFull,
and Contains. The nonzero elements of the repr are the elements of the set.

Here is a reasonable specification of the Add method in the syntax of Spec#’s pre-
and postconditions [7], using IsFull and Contains as observer methods.

void Add(int x)
requires x != 0 otherwise ArgumentException;
requires !Contains(x) && !IsFull() otherwise InvalidOperationException;
ensures Contains(x);

Each requires clause specifies a precondition. Violations of preconditions cause
exceptions of certain types. requires and ensures clauses are checked sequentially,
e.g., !IsFull() && !Contains(x) will only be checked if x!=0. Only if all precon-
ditions hold we can be sure that the method will not throw an exception and that the
ensures clause’s condition will hold after the method has returned.

We can also write an equivalent specification in the form of independent implica-
tions, which we call axioms:

x==0⇒ future(ArgumentException)
x!=0 ∧ (Contains(x) ∨ IsFull())⇒ future(InvalidOperationException)
x!=0 ∧ ¬Contains(x) ∧ ¬IsFull()⇒ future(Contains(x))

720 N. Tillmann, F. Chen, and W. Schulte

public class Set {
int[] repr;
public Set(int maxSize) { repr = new int[maxSize]; }

public void Add(int x) {
if (x == 0) throw new ArgumentException();
int free = -1;
for (int i = 0; i < repr.Length; i++)
if (repr[i] == 0) free = i; // remember index
else if (repr[i] == x) throw new InvalidOperationException(); // duplicate

if (free != -1) repr[free] = x; // success
else throw new InvalidOperationException(); // no free slot means we are full

}

public bool IsFull() {
for (int i = 0; i < repr.Length; i++) if (repr[i] == 0) return false;
return true;

}

public bool Contains(int x) {
if (x == 0) throw new ArgumentException();
for (int i = 0; i < repr.Length; i++) if (repr[i] == x) return true;
return false;

}
}

Fig. 2. Implementation of a set

Here we used the expression future() to wrap conditions that will hold and exceptions
that will be thrown when the method returns. We will later formalize such axioms.

It is easy to see that the program and the specification agree:

The Add method first checks if x is not zero, and throws an exception otherwise.
Next, the method iterates through a loop, guaranteeing that the repr array does not
contain x yet. The expression !Contains(x) checks the same condition. If the set
already contains the element, Add throws an exception.

As part of the iteration, Add stores the index of a free slot in the repr array. After
the loop, it checks if a free slot has indeed been found. !IsFull() checks the same
condition. If the set contains no free slot, Add throws an exception.

Finally, Add stores the element in the repr array’s free slot, so that Contains(x)
will return true afterwards.

2.1 Symbolic Exploration

Our automated technique uses symbolic execution [20] to obtain an abstract represen-
tation of the behavior of the program. A detailed description of symbolic execution of
object oriented programs is out of the scope of this paper, and we refer the interested
reader to [17] for more discussion. Here we only briefly illustrate the process by com-
paring it to normal execution.

Consider symbolic execution of a method with parameters. Instead of supplying nor-
mal inputs, e.g., concrete numeric values, symbolic execution supplies symbols that
represent arbitrary values. Symbolic execution proceeds like normal execution except
that the computed values may be terms over the input symbols, employing interpreted
functions that correspond to the machine’s operations. For example, Figure 3 contains
terms arising from during the execution of the Add method in elliptic nodes. The terms
are built over the input symbols me, representing the implicit receiver argument, and x.

Discovering Likely Method Specifications 721

The terms employ the interpreted functions, including !=, ==, <, selection of a field,
and array access.

Symbolic execution records the conditions that determine the execution path. The
conditions are Boolean terms over the input symbols. The path condition is the con-
junction of all individual conditions along a path. For example, when symbolic exe-
cution reaches the first if-statement of the Add method, it will continue by exploring
two execution paths separately. It conjoins the if-condition to the path condition of the
then-path and the negated condition to the path condition of the else-path. Note that
some branches are implicit, for example, accessing an object member might raise an
exception if the object reference is null, and accessing an array element might fail if
the index is out-of-bounds.

Not all potential execution paths are feasible. For example, after successfully access-
ing an object member, any subsequent member access on the same object will never
fail. We use an automatic theorem prover to prune infeasible path conditions. Figure 3
shows a tree representing all feasible execution paths of Add up to a certain length. A
path condition has a conjunct c = v iff the path includes an arc labeled v from a node
labeled with condition c. The figure omits arcs belonging to infeasible paths. It also
omits nodes with only one outgoing arc.

The diamond nodes S2, S8, S15, S16, S23, and S24 are ends of paths that throw ex-
ceptions, and S4 and S6 represent paths terminating with errors caused by the accesses
of an object member using a null reference. The rectangular node S14 represents a
path with normal termination of the Add method.

2.2 Discovering Specifications from Paths

For each path, symbolic execution derives the path condition and a final program state.
We could declare this knowledge as the method’s specification. However, it would not
be a good specification: While some of the conditions shown in Figure 3 are simple
expression, e.g., x!=0, most expressions involve details that should be hidden from the
user, like the repr array. And even though there are many different cases with detailed
information, it is not even a complete description of the Add method’s behavior, be-
cause symbolic exploration stopped unfolding the loop at some point. While the partial
execution tree might be useful for the developer of the Set class, the information is
simply at the wrong level of abstraction for a user of the class, who is only interested in
the public interface of the ADT.

We use observational abstraction to transform the information obtained by symbolic
execution into a specification, i.e., we will try to express the implementation-level con-
ditions of the explored paths with equivalent observations that we can make on the level
of the class interface. Before we discuss the general process, we will go through the
steps of our technique for our example.

Consider the paths to S4 and S6 in Figure 3. They terminate with a null dereference
error, because either me or me.repr was null. Symbolic execution found these paths
because it started with no assumptions about the me argument or the values of fields.
However, C# semantics preclude a call to an instance-method using a null-receiver,
and the constructor of the Set class will initialize the repr field with a proper array.
Thus, we can safely ignore the paths S4 and S6.

722 N. Tillmann, F. Chen, and W. Schulte

Fig. 3. Tree representation of feasible execution paths of Set.Add up to a certain length. See
Subsection 2.1 for a detailed description.

Consider the path to S2. If x is zero, Add throws an exception. Since x is not private
to the class, no further abstraction is necessary. We get the following precondition.

requires x != 0 otherwise ArgumentException;

Consider the paths to S15, S23 and S24. They all terminate with the same exception.
In each path, the last condition establishes that x is equal to some element of the repr
array. For all such x, Contains(x) clearly returns true. Using this characteristic be-
havior of Contains, we can summarize the paths as follows

requires !Contains(x) otherwise InvalidOperationException;

Consider the path to S8. Along the way we have me!=null, me.repr!=null and
0>=me.repr.Length. It is easy to see that under these conditions the IsFull method
returns true. Later, we will obtain this result automatically by symbolically execut-
ing IsFull under the constraint of path S8. The conditions along the path to S16 are

Discovering Likely Method Specifications 723

more involved; they describe the case where the repr array has length one and its ele-
ment is nonzero. Again, IsFull also returns true under these conditions. Using this
characteristic behavior of IsFull, we deduce:

requires !IsFull() otherwise InvalidOperationException;

We can combine the last two findings into a single requires clause since they have
the same exception types:

requires !Contains(x) && !IsFull() otherwise InvalidOperationException;

Finally consider S14, the only normally terminating path. Its path condition implies
that the repr array has size one and contains the value zero. Under these conditions,
IsFull and Contains return false. (Note that when inferring preconditions, we only
impose the path conditions, but do not take into account any state updates that the Add
might perform.)

We can also deduce postconditions. Consider Contains under the path condition of
S14 with the same arguments as Add, but starting with the heap that is the result of the
updates performed along the path to S14. In this path the loop of Add finds an empty
slot in the array in the first loop iteration, and then the method updates me.repr[0]
to x, which will be reflected in the resulting heap. Operating on this resulting heap,
Contains(x) returns true: the set now contains the added element. Consider IsFull
under the path condition of S14 with the resulting heap. It will also return true, because
the path condition implies that the array has length one, and in the resulting heap we
have me.repr[0]==x where x is not zero according to the path condition.

After the paths we have seen so far, we are tempted to deduce that the postcondi-
tion for the normal termination of me.Add(x) is Contains(x) && IsFull(). How-
ever, when symbolic execution explores longer paths, which are not shown in Figure 3,
we will quickly find another normal termination path whose path condition implies
x!=0, with the repr array of size two and containing only zeros. Under these con-
ditions, IsFull and Contains return false initially, the same as for S14. But for
this new path, IsFull will remain false after Add returns since Add only fills up the
first element of the array. Thus, the deduced postcondition will be Contains(x) &&

(IsFull() || !IsFull()), which simplifies to Contains(x), in Spec#:
ensures Contains(x);

Combined, we obtain exactly the entire specification of Add given at the beginning.
In our experiments on the .NET base class library the inferred specifications are often
as concise and complete as carefully hand-written ones.

3 Technique

We fix a modifier method and a set of observer methods for this section.

3.1 Exploration of Modifier Method

As discussed in Section 2.1, we first symbolically explore a finite set of execution paths
of the modifier method. Since the number of execution paths might be infinite in the
presence of loops or recursion, we unroll loops und unfold recursion only a limited
number of times.

724 N. Tillmann, F. Chen, and W. Schulte

3.2 Observational Abstraction

The building stones of our specifications are observations at the level of the class in-
terface. The observations we have constructed for our example in Section 2 consisted
of calls to observer methods, e.g., Contains, with certain arguments, e.g., me and x.
In this subsection, we introduce the concepts of observer terms and observer equations
which represent such observations, and we describe how we build path-specific axioms
using observations.

We described in Section 2.1 how symbolic execution derives terms to represent state
values and branch conditions. Consider Figure 3. While it mentions me explicitly, it
omits another essential implicit argument: the heap. The (updated) heap is also an im-
plicit result of each method. We view the heap as a mapping of object references to
the values of their fields or array elements. Every access and update of a field or array
element implicitly involves the heap. We denote the initial heap by h, and the updated
heap after the method call by h′.

We extend the universe of function symbols by functions for observer methods. We
write the function symbol of a method in italics. For example, the term representing the
invocation me.Contains(x) in the initial heap h is Contains(h,me, x). We write all
input symbols in cursive.

The arguments are not necessarily plain input symbols, but can be terms them-
selves. Consider for example a method int f(int x), then we can construct arbitrar-
ily nested terms of the form f (h,me, f (h,me, . . .)). We call terms over the extended
universe of function symbols observer terms, as opposed to ordinary terms.

Observer equations are equations over observer terms. A proper observer equation
does not contain heap-access subterms, e.g., field selection terms or array update terms.
An example of a proper observer equation is Contains(h,me, x) = true. In the fol-
lowing, we use shorthand notations for simple equations, e.g. x for x = true, ¬x for
x = false, and x �= y for (x == y) = false.

For each explored path of the modifier method, we select a finite set of proper ob-
server equations that is likely equivalent to the path condition. We will discuss our
selection strategies in Section 4. We call those equations that do not mention the up-
dated heap h′ (likely) preconditions, and all other remaining equations (likely) postcon-
ditions. The implication from a path’s preconditions to its postconditions is a (likely)
path-specific axiom. For example, here is the axiom for path S14 in Figure 3:

x �= 0 ∧ ¬IsFull(h,me) ∧ ¬Contains(h,me, x)⇒
Contains(h′,me, x) ∧ IsFull(h′,me)

3.3 Summarizing Axioms

For each explored path of the modifier method we compute a likely path-specific axiom.
However, in most cases, the number of explored paths and thus the number of axioms is
large. Obviously a human reader prefers a compact description to hundreds of such ax-
ioms. So the final step of our specification inference technique is to merge and simplify
the path-specific axioms as follows:

Discovering Likely Method Specifications 725

1. Disjoin preconditions with the same postconditions
2. Simplify merged preconditions
3. Conjoin postconditions with the same preconditions
4. Simplify merged postconditions

This algorithm computes and simplifies the conjunctions of implications. The order
of step 1 and 3 is not strict; changing it might result in equivalent axioms in different
representations.

If a path terminates with an exception, we add a symbol representing the type of the
exception to the postcondition. Section 5 discusses some exceptions to this rule.

x = 0 ⇒ ArgumentException
x 	= 0 ∧ IsFull(h, me) ∧ ¬Contains(h, me, x) ⇒ InvalidOperationException
x 	= 0 ∧ ¬IsFull(h, me) ∧ ¬Contains(h, me, x) ⇒ IsFull(h′, me) ∧ Contains(h′, me, x)
x 	= 0 ∧ Contains(h, me, x) ⇒ InvalidOperationException
x 	= 0 ∧ IsFull(h, me) ∧ ¬Contains(h, me, x) ⇒ InvalidOperationException
x 	= 0 ∧ ¬IsFull(h, me) ∧ Contains(h, me, x) ⇒ InvalidOperationException
x 	= 0 ∧ Contains(h, me, x) ⇒ InvalidOperationException

Fig. 4. All Path-Specific Axioms for Set.Add

x = 0 ⇒ ArgumentException
x 	= 0 ∧ (IsFull(h, me) ∨ Contains(h,me, x)) ⇒ InvalidOperationException
x 	= 0 ∧ ¬IsFull(h, me) ∧ ¬Contains(h, me, x) ⇒ IsFull(h′, me) ∧ Contains(h′, me, x)

Fig. 5. Merged and Simplified Axioms for Set.Add

Figure 4 shows all path-specific axioms of Figure 3. Figure 5 shows the equivalent
merged and simplified axioms. As we discussed in Section 2.2, only when exploring
longer execution paths the spurious consequence IsFull(h′,me) will disappear from
the summarized implications in Figure 5.

public class Set {
...
public int Count() {

int count=0;
for (int i = 0; i < repr.Length; i++) if (repr[i] != 0) count++;
return count;

}
}

Fig. 6. Implementation of Set.Count

Unrolling loops and unfolding recursion sometimes causes a series of concrete val-
ues in our axioms. Consider the extension of the bounded set class by a new observer
method Count, given in Figure 6. The number of execution paths of the Add method de-
pends on the number of loop unrollings that also determines the return value of Count.
As a consequence, our technique infers many path-specific axioms of the following
form, where α appears as a concrete number.

. . . ∧ Count(h,me) = α ⇒ . . . ∧Count(h′,me) = α + 1

726 N. Tillmann, F. Chen, and W. Schulte

Before we can merge and simplify these concrete conditions we need to generalize
them into more abstract results. In this example, we are able to generalize this series of
path-specific axioms by substitution:

. . . ⇒ . . . ∧ Count(h′,me) = Count(h,me) + 1

We have also implemented the generalization of linear relations over integers.

4 Observational Abstraction Strategies

This section discusses our strategies to select proper observer equations which are likely
equivalent to a given path condition. Developing these strategies is a nontrivial task and
critical to the quality of inferred specifications. What we describe in this section is the
product of our experience.

Since observer equations are built from observer terms, we choose the latter first.

4.1 Choosing Proper Observer Terms

A term representing an observer method call, m(h, me, x1, . . ., xn), involves a
function symbol for the observer method, a heap, and arguments including the receiver.
In the following we describe our strategies to select such proper observer term.

Choosing observer methods. Intuitively, observer methods should be observationally
pure [8], i.e., its state changes (if any) must not be visible to a client. Interestingly,
this is not a requirement for our technique since we ignore state changes performed
by observer methods. However, if the given observer methods are not observationally
pure, the resulting specifications might not be intuitive to users, and they might vio-
late requirements of other tools that want to consume our inferred specifications. For
example, pre- and postconditions in Spec# may not perform state updates. Automatic
observational purity analysis is a non-trivial data flow problem, and it is a problem or-
thogonal to our specification inference. Our tool allows the user to designate any set of
methods as observer methods (Figure 7). By default, it selects all property getters and
query methods with suggestive names (e.g. Get...), which is sufficient in many cases.
Since it is well known that the problem of determining a minimal basis for an axiomatic
specification [12] is undecidable, we do not address this problem in our current work. In
our experience, the effort of manually selecting a meaningful subset from the suggested
observer methods is reasonable with the help of the GUI provided in our interactive tool
which requires only a few clicks to remove or add observer methods and re-generate the
specification. Our tool also allows the user to include general observer methods that test
properties like = null which have been found useful [13,19].

Choosing heaps. We are not interested to observe intermediate states during the execu-
tion of the modifier method since the client can only make observations before calling
the modifier method and after the modifier method has returned. Therefore, we choose
only the initial heap h or the final heap h′. The final heap represents all updates that the
modifier method performs along a path.

Choosing arguments. Recall that we use symbols representing arbitrary argument val-
ues to explore the behaviors of the modifier method. A naive argument selection strategy

Discovering Likely Method Specifications 727

for an observer method is to also simply choose fresh symbols for all arguments. The
following example shows when this strategy fails to detect relationships. Let x and y

be two unrelated symbols, then Contains(x) does not provide any useful information
about the behavior of Add(y). As a consequence, the only symbols we use to build ob-
server terms are the input symbols of the modifier method. And the constructed terms
should be type correct.

However, for some classes this strategy is still too liberal. For example, legacy code
written before generic types were available often employs parameters and results whose
formal type is object, obscuring the assumptions and guarantees on passed values.
Similarly, the presented Set class uses values of type int for two purposes: As el-
ements of the set, e.g. in void Add(int x) and bool Contains(int x), and to
indicate cardinality, e.g. in int Count().

To reduce the set of considered observer terms, we introduce the concept of observer
term groups, or short groups. We associate each formal parameter and method result
with a group. By default, there is one group for each type, and each parameter and
result belongs to its type group. Intuitively, groups refine the type system in a way such
that the program does not store a value of one group in a location of another group, even
if allowed by the type system.

Lackwit [23] is a tool which infers such groups, called extended types, automatically
for C programs. We want to implement such an analysis for .NET programs in future
work. Currently, our tool allows the user to manually annotate parameters and results
of methods with grouping information.

We only build group-correct observer terms: The application of an observer-method
function belongs to the group of the result of the observer method, all other terms belong
to the groups that are compatible with the type of the term, and the argument terms of
an observer-method function must belong to the respective formal parameter group.

For example, we can assign the int parameters of Add and Contains to a group
called ELEM, and the result of Count to a group CARD. When we instantiate the parame-
ter of Addwith x, then we will build Contains(h,me, x) as an observer term. However,
we will not consider Contains(h, me,Count(h,me)).

Also, our tool only builds single-nested observer terms, i.e., f(g(x)), and negations
and equations over such terms. This has been sufficient in our experience.

4.2 Choosing Proper Observer Equations

It is easy to see how symbolic execution can reduce observer terms to ordinary terms:
Just unfold the observer method functions from a given state. For example, the ob-
server term Contains(x) reduces to true when symbolically executing Contains(x)
after Add(x). The reduction is not unique if there is more than one execution path.
For example, before calling Add(x), we can reduce Contains(x) to both true and
false.

We fix a path p of the modifier method for the remainder of this subsection. We
reduce each chosen proper observer term t relative to p as follows. We symbolically
execute the observer method under the path condition of p, i.e. we only consider those
paths of the observer method which are consistent with the path condition of p. Again,
we only explore a limited number of execution paths. We ignore execution paths of

728 N. Tillmann, F. Chen, and W. Schulte

observer methods which terminate with an exception, and thus the reduction may also
result in the empty set, in which case we omit the observer term.

For each execution path of the observer method, we further simplify the resulting
term using the constraints of the path condition. For example, if the resulting term is
x = 0 and the path condition contains x > 0, we reduce the result to false.

If all considered execution paths of the observer method yield the same reduced term,
we call the resulting term the reduced observer term of t, written as tR.

Given a finite set T of observer terms, we define the basic observer equations as
{t = tR : t ∈ T where tR exists}. This set characterizes the path p of the modifier
method by unambiguous observations. For example, the basic observer equations of
S14 in Figure 3 are:

{ x = 0, IsFull(h,me) = false,Contains(h,me, x) = false,

Contains(h′,me, x) = true, IsFull(h′,me) = true }

However, the reductions of the observations may refer to fields or arrays in the heap,
and a specification should not contain such implementation details. Consider for exam-
ple a different implementation of the Set class where the number of added elements is
tracked explicitly in a private field count, and the Countmethod simply returns count.
Then the observer term Count(h,me) reduces to the field access term me.count.

We substitute internal details by observer terms wherever possible, and construct the
completed observer equations as follows. Initially, our completed observer equations
are the basic observer equations. Then we repeat the following until the set is saturated:
For two completed observer equations t = t′ and u = u′, we add t = t′[u′/u] to the set
of completed observer equations if the term t′[u′/u] contains less heap-access subterms
than t.

For example, let h′ be equal to the heap for a path where Add returns successfully and
increments the private field count by one, then Count(h,me) reduces to me.count
and Count(h′,me) to me.count+1 in the initial heap h. Then the completed observer
equations will include the equation Count(h′,me) = Count(h,me) + 1 which no
longer refers to the field count.

We select the set of observer equations likely equivalent to p’s path condition as
follows: the completed observer equations less all tautologies and all equations which
still refer to fields or arrays in a heap. (This way, all the remaining equations are proper
observer equations.)

5 Further Discussion

Detecting insufficient observer methods. When we applied our tool to a code base that
is currently under development (a refined DOM implementation [3]), our tool inferred
a specification for the method XElement.RemoveAttribute that we did not expect.

void RemoveAttribute(XAttribute a)
requires HasAttributes() && a!=null;
ensures false;

Discovering Likely Method Specifications 729

This axiom is contradictory. The reason is the set of available observer methods:
For some paths, RemoveAttribute assumes that the element contains only one at-
tribute, then after removal, HasAttributes will be false. For other paths, it assumes
that the element contains more than one attribute, which makes HasAttributes true
after removal. The existing observer methods of the class XElement cannot distinguish
these two cases. Therefore, for the same preconditions, we may reach two contradictory
postconditions. This actually indicates that the class should have more observer meth-
ods. We call a set of observer methods insufficient if they cause our analysis to derive
contradictory postconditions.

Indeed, after adding a new observer method called AttributesCount to the class
XElement, we obtain the following consistent specification where old(e) denotes the
value of e at the entry of the method.

void RemoveAttribute(XAttribute a)
requires HasAttributes() && a!=null;
ensures old(AttributesCount() > 1) => HasAttributes();
ensures old(AttributesCount() < 2) => !HasAttributes();

This way, our tool examines if a class interface provides sufficiently many observer
methods for the user to properly use the class.

Pruning unreachable states. Since we explore the modifier method from an arbitrary
state, we might produce some path-specific axioms that have preconditions which are
not enabled in any reachable state.

For example, for the .NET ArrayList implementation the number of elements in
the array list is at most its capacity; a state where the capacity is negative or smaller than
the number of contained elements is unreachable. Symbolic execution of a modifier like
Add will consider all possible initial states, including unreachable states. As a conse-
quence, we may produce specifications which describe cases that can never happen in
concrete sequences of method calls. These axioms are likely correct but useless.

Ideally, the class would provide an observer method which describes when a state is
reachable. Fortunately, our experiments show that this is usually not necessary. Explo-
ration from unreachable states often results in violations of contracts with the execution
environment, e.g., null dereferences. Since our approach assumes that the implemen-
tation is “correct,” our tool prunes such error cases.

Computing the set of reachable states precisely is a hard problem. A good approx-
imation of reachable states are states in which the class-invariant holds. If the class
provides a Boolean-valued method that detects invalid program states, our tool will use
it to prune invalid states.

Redundancy. Two observations might be equivalent, e.g., IsEmpty() is usually equiv-
alent to Size()==0. While this may cause some redundancy in the generated speci-
fications, it does not affect the soundness of the specifications. We do not provide an
automatic analysis to find an expressive and minimal yet sufficient set of observer meth-
ods but leave it to the user to select an appropriate set. As we discussed in Section 4,
the required effort of manually selecting observer methods has been reasonable in our
experiences.

730 N. Tillmann, F. Chen, and W. Schulte

Limitations. There is an intrinsic limitation in any automatic verification technique
of nontrivial programs: there cannot be an automatic theorem prover for all domains.
Currently, our exploration is conservative for the symbolic exploration: if the theorem
prover cannot decide a path condition’s satisfiability, exploration proceeds specula-
tively. Therefore, it might explore infeasible paths. The consequences for the generated
axioms are similar to the ones for unreachable, unpruned states.

Moreover, as mentioned, our technique considers only an exemplary subset of ex-
ecution paths and observer terms. In particular, we unroll loops and recursion only a
certain number of times, but the axioms in terms of the observer methods often abstract
from that number, pretending that the number of unrollings is irrelevant. Without pre-
cise summaries of loops and recursion, e.g., in the form of annotated loop invariants,
we cannot do better. The generalization step introduces another source of errors, since
it postulates general relations from exemplary observations using a set of patterns.

While our implementation has the limitations discussed above, in our experience
the generated axioms for well-designed ADTs are comprehensive, concise, sound and
actually describe the implementation.

6 Implementation

We have implemented our technique in a tool called Axiom Meister. It operates on the
methods given in a .NET assembly.

We built Axiom Meister on top of XRT [17], a framework for symbolic execution of
.NET programs. XRT represents symbolic states as mappings of locations to terms plus
a path condition over symbolic inputs. XRT can handle not only symbols for primitive
values like integers, but also for objects. It interprets the instructions of a .NET method
to compute a set of successor states for a given state. It uses Simplify [11] or Zap [6] as
automatic theorem provers to decide if a path condition is infeasible.

Corresponding to the three steps of the inference process, Axiom Meister consists
of three components: the observer generator, the summarization engine, and the sim-
plification engine. The observer generator manages the exploration process. It creates
exploration tasks for the modifier and observer methods which it hands down to the
XRT framework. From the explored paths it constructs the observation equations, as
discussed in Section 4.1. The simplification engine uses Maude [4].

Axiom Meister is configurable to control the execution path explosion problem: The
user can control the number of loop unrollings and recursion unfoldings, and the user
can control the maximum number of terminating paths that the tool considers. By de-
fault, Axiom Meister will terminate the exploration when every loop has been unrolled
three times, which often achieves full branch coverage of the modifier method. So far,
we had to explore at most 600 terminating paths of any modifier method to create com-
prehensive axioms.

Axiom Meister can output the inferred specifications as formulas, parameterized unit
tests [26], or as Spec# specifications.

The user can control Axiom Meister from the command line and it has a graph-
ical user interface (Figure 7). The user can choose the modifier method to explore,
Hashtable.Add in this example, and a set of observer methods on the left panel. The

Discovering Likely Method Specifications 731

Fig. 7. Screenshot of Axiom Meister

right window shows the generated axioms, here as parameterized unit tests. It also pro-
vides views of the modifier exploration tree (Figure 3), and the code coverage of the
modifier and observer methods.

7 Evaluation

We have applied Axiom Meister on a number of nontrivial implementations, including
several classes of the .NET base class library (BCL), classes from the public domain,
as well as classes currently under development by a Microsoft product group.

Table 1. Example Classes for Evaluating Axiom Meister

Class Modifiers Observers LOC Source
Stack 3 3 200 .NET BCL
BoundedStack 2 4 160 Other
ArrayList 7 6 350 .NET BCL
LinkedList 6 4 400 Other
Hashtable 5 4 600 .NET BCL
XElement 2 3 800 MS internal

Table 1 shows some of the investigated classes along with the numbers of the cho-
sen modifier and observer methods. The LOC column gives the number of lines of
non-whitespace, non-comment code. We took Stack, ArrayList and Hashtable

from the BCL; BoundedStack is a modified version of Stack with a bounded size;
LinkedList from [1] implements a double linked list with an interface similar to

732 N. Tillmann, F. Chen, and W. Schulte

ArrayList; XElement is a class of a refined DOM model [3], which is currently under
development at Microsoft. We did not change the implementations with the exception
of Hashtable: we restricted the size of its buckets array; this was necessary to improve
the performance due to limitations of the theorem prover that we used.

In addition to the regular observer methods, we included a general observer method
which checks if a value is null.

Table 2 gives the evaluation results of these examples. The first two columns show
the number of explored paths and the time cost to infer specifications for multiple modi-
fier methods of the class. Both measurements are obviously related to the limits imposed
on symbolic exploration: exploration unrolls loops and recursion only up to three times.
We inspected the inferred specifications by hand to collect the numbers of the last three
columns. They illustrate the number of merged and simplified axioms generated, the
number of sound axioms, the number of methods for which complete specifications
were generated, and the percentage of methods for which full branch coverage was
achieved during symbolic execution.

Table 2. Evaluation Results of Axiom Meister

Class Paths Time(s) Axioms Sound Complete Coverage
Stack 7 1.78 6 6 3 100%
BoundedStack 17 0.84 12 12 2 100%
ArrayList 142 28.78 26 26 7 100%
LinkedList 59 9.28 16 13 6 100%
Hashtable 835 276.48 14 14 5 100%
XElement 42 2.76 14 13 2 100%

Most BCL classes are relatively self-contained. They provide sufficient observer
methods whereas new classes under development, like XElement, as discussed in Sec-
tion 5, often do not. In these examples branch coverage was always achieved, and the
generated specifications are complete, i.e., they describe all possible behaviors of the
modifier method. However, some of the generated specifications are unsound. A miss-
ing class invariant causes the unsound axioms for LinkedList, and we discussed the
unsound axioms for XElement in Section 5. After adding additional observer methods,
we infer sound axioms only.

8 Related Work

Due to the importance of formal specifications for software development, many ap-
proaches have been proposed to automatically infer specifications. They can be roughly
divided into static analysis and dynamic detection.

8.1 Static Analysis

For reverse engineering Gannod and Cheng [16] proposed to infer detailed specifica-
tions by computing the strongest postconditions. But as mentioned, pre/postconditions
obtained from analyzing the implementation are usually too detailed to understand and

Discovering Likely Method Specifications 733

too specific to support program evolution. Gannod and Cheng [15] addressed this defi-
ciency by generalizing the inferred specification, for instance by deleting conjuncts, or
adding disjuncts or implications. This is similar to the merging stage of our technique.
Their approach requires loop bounds and invariants, both of which must be added man-
ually. There has been some recent progress in inferring invariants using abstract in-
terpretation. Logozzo [22] infers loop invariants while inferring class invariants. The
limitation of his approach are the available abstract domains; numerical domains are
best studied. The resulting specifications are expressed in terms of the fields of classes.
Our technique provides a fully automatic process. Although loops can be handled only
partially, in many cases, our loop unrolling has explored enough behavior to deduce
reasonable specifications.

Flanagan and Leino [14] present another lightweight verification based tool, named
Houdini, to infer ESC/Java annotations from unannotated Java programs. Based on spe-
cific property patterns, Houdini conjectures a large number of possible annotations and
then uses ESC/Java to verify or refuse each of them. This way it reduces the false alarms
produced by ESC/Java and becomes quite scalable. But the ability of this approach is
limited by the patterns used. In fact, only simple patterns are feasible, otherwise Hou-
dini generates too many candidate annotations, and consequently it will take a long
time for ESC/Java to verify complicated properties. Our technique does not depend on
patterns and is able to produce complicated relationship among values.

Taghdiri [25] uses a counterexample-guided refinement process to infer over-appro-
ximate specifications for procedures called in the function being verified. In contrast to
our approach, Taghdiri aims to approximate the behaviors for the procedures within the
caller’s context instead of inferring specifications of the procedure.

There are many other static approaches that infer some properties of programs,
e.g., shape analysis [24] specifies which object graph the program computes, termi-
nation analysis decides which functions provide bounds to prove that a program termi-
nates [10]. All these analyses are too abstract for us; we really wanted to have axioms
that describe the precise input/output behavior.

8.2 Dynamic Analysis

Dynamic detection systems discover general properties of a program by learning from
its execution traces.

Daikon [13] discovers Hoare-style assertions and loop invariants. It uses a set of in-
variant patterns and instruments a program to check them at various program points.
Numerous applications use Daikon, including test generation [30] and program verifi-
cation [9]. Its ability is limited by patterns which can be user-defined. We use observer
methods instead: they are already part of the class may carry out complicated compu-
tations that are hard to encode as patterns, e.g., membership checking. Also, Daikon
is not well-suited for automatically inferring conditional invariants. The Java front end
of Daikon, Chicory [2], can make observations using pure methods. However, it only
supports pure methods without arguments, which are essentially derived variables of
the class state. Daikon and our technique have different goals. We focus on inferring
pre- and postconditions for methods, whereas Daikon infers invariants.

734 N. Tillmann, F. Chen, and W. Schulte

Groce and Visser [18] recently integrated Daikon [13] into JavaPathFinder [27].
Their main goal is to find the cause of a counterexample produced by the model checker.
Their approach compares invariants of executions that lead to errors and those of similar
but correct executions. They use Daikon to infer the invariants.

Henkel and Diwan [19] have built a tool to discover algebraic specifications for in-
terfaces of Java classes. Their specifications relate sequences of method invocations.
The tool generates many terms as test cases from the class signature. It generalizes
the resulting test cases to algebraic specifications. Henkel and Diwan do not support
conditional specifications, which are essential for most examples we tried.

Dynamic invariant detection is often restricted by a fixed set of predefined patterns
used to express constraints and the code coverage achieved by test runs. Without using
patterns, our technique can often detect relationships between the modifier and observer
methods from the terms over the input symbols that symbolic execution computes. We
also do not need a test suite.

Xie and Notkin [29] recently avoid the problem of inferring preconditions by infer-
ring statistical axioms. Using probabilities they infer which axiom holds how often. But
of course, the probabilities are only good with reference to the test set; nevertheless,
the results look promising. They use the statistical axioms to guide test generation for
common and special cases.

Most of the work on specification mining involves inferring API protocols dynami-
cally. Whaley et al. [28] describe a system to extract component interfaces as finite state
machines from execution traces. Other approaches use data mining techniques. For in-
stance Ammons et al. [5] use a learner to infer nondeterministic state machines from
traces; similarly, Evans and Yang [31] built Terracotta, a tool to generate regular pat-
terns of method invocations from observed program runs. Li et al. [21] mine the source
code to infer programming rules, i.e., usage of related methods and variables, and then
detect potential bugs by locating violations of these rules. All these approaches work
for different kinds of specifications and our technique complements them.

9 Future Work

Although this paper focuses on examples of classes implementing ADTs, we believe
that our technique can be adopted to work for cooperating classes, like collections and
their iterators, or subjects and their observers. We intend to address these challenges
next. Other future work includes inferring specifications for sequences of modifier
methods, inferring grouping information automatically, and inferring class invariants.

Acknowledgements

We thank Wolfgang Grieskamp for many valuable discussions and for his contributions
to the Exploring Runtime, XRT, which is the foundation on which we built Axiom
Meister. We also thank Tao Xie, who participated in the initial discussions that shaped
this work, and Michael D. Ernst for his comments on an early version of this paper. We
thank Colin Campbell and Mike Barnett for proof-reading. The work of Feng Chen was
conducted while being an intern at Microsoft Research.

Discovering Likely Method Specifications 735

References

1. Codeproject. http://www.codeproject.com.
2. Daikon online manual. http://pag.csail.mit.edu/daikon/download/doc/daikon.html.
3. Document object model(DOM). http://www.w3.org/DOM/.
4. Maude. http://maude.cs.uiuc.edu.
5. G. Ammons, R. Bodik, and J. R. Larus. Mining specifications. In Proc. 29th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages 4–16, 2002.
6. T. Ball, S. Lahiri, and M. Musuvathi. Zap: Automated theorem proving for software analysis.

Technical Report MSR-TR-2005-137, Microsoft Research, Redmond, WA, USA, 2005.
7. M. Barnett, R. Leino, and W. Schulte. The Spec# programming system: An overview. In

M. Huisman, editor, Construction and Analysis of Safe, Secure, and Interoperable Smart
Devices: International Workshop, CASSIS 2004, volume 3362 of LNCS, pages 49–69, 2005.

8. M. Barnett, D. A. Naumann, W. Schulte, and Q. Sun. 99.44% pure: Useful abstractions in
specifications. In Proc. 6th Workshop on Formal Techniques for Java-like Programs, June
2004.

9. L. Burdy, Y. Cheon, D. Cok, M. D. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino, and
E. Poll. An overview of JML tools and applications. International Journal on Software
Tools for Technology Transfer, 7(3):212–232, June 2005.

10. A. R. Byron Cook, Andreas Podelski. Abstraction-refinement for termination. In 12th Inter-
national Static Analysis Symposium(SAS’05), Sept 2005.

11. D. Detlefs, G. Nelson, and J. Saxe. Simplify: A theorem prover for program checking.
Technical Report HPL-2003-148, HP Labs, Palo Alto, CA, USA, 2003.

12. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1985.

13. M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering likely
program invariants to support program evolution. IEEE Transactions on Software Engineer-
ing, 27(2):99–123, 2001.

14. C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for esc/java. In FME ’01:
Proceedings of the International Symposium of Formal Methods Europe on Formal Methods
for Increasing Software Productivity, pages 500–517, London, UK, 2001.

15. G. C. Gannod and B. H. C. Cheng. A specification matching based approach to reverse
engineering. In ICSE ’99: Proceedings of the 21st international conference on Software
engineering, pages 389–398, Los Alamitos, CA, USA, 1999.

16. G. C. Gannod and B. H. C. Cheng. Strongest postcondition semantics as the formal basis
for reverse engineering. In WCRE ’95: Proceedings of the Second Working Conference on
Reverse Engineering, pages 188–197, July 1995.

17. W. Grieskamp, N. Tillmann, and W. Schulte. XRT - Exploring Runtime for .NET - Architec-
ture and Applications. In SoftMC 2005: Workshop on Software Model Checking, Electronic
Notes in Theoretical Computer Science, July 2005.

18. A. Groce and W. Visser. What went wrong: Explaining counterexamples. In 10th Interna-
tional SPIN Workshop on Model Checking of Software, pages 121–135, Portland, Oregon,
May 9–10, 2003.

19. J. Henkel and A. Diwan. Discovering algebraic specifications from Java classes. In Proc.
17th European Conference on Object-Oriented Programming, pages 431–456, 2003.

20. J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394, 1976.
21. Z. Li and Y. Zhou. PR-Miner: Automatically extracting implicit programming rules and

detecting violations in large software code. In 13th ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (FSE’05), Sept 2005.

736 N. Tillmann, F. Chen, and W. Schulte

22. F. Logozzo. Automatic inference of class invariants. In Proceedings of the 5th International
Conference on Verification, Model Checking and Abstract Interpretation (VMCAI ’04), vol-
ume 2937 of Lectures Notes in Computer Science, Jan. 2004.

23. R. O’Callahan and D. Jackson. Lackwit: a program understanding tool based on type infer-
ence. In ICSE ’97: Proceedings of the 19th international conference on Software engineer-
ing, pages 338–348, New York, NY, USA, 1997.

24. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. ACM
Trans. Program. Lang. Syst., 24(3):217–298, 2002.

25. M. Taghdiri. Inferring specifications to detect errors in code. In 19th IEEE International
Conference on Automated Software Engineering (ASE’04), Sept 2004.

26. N. Tillmann and W. Schulte. Parameterized unit tests. In Proceedings of the 10th Euro-
pean Software Engineering Conference held jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,, pages 253–262, 2005.

27. W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. In Proc. 15th IEEE
International Conference on Automated Software Engineering, pages 3–12, 2000.

28. J. Whaley, M. C. Martin, and M. S. Lam. Automatic extraction of object-oriented component
interfaces. In Proc. the International Symposium on Software Testing and Analysis, pages
218–228, 2002.

29. T. Xie and D. Notkin. Automatically identifying special and common unit tests for object-
oriented programs. In Proceedings of the 16th IEEE International Symposium on Software
Reliability Engineering (ISSRE 2005), November 2005.

30. T. Xie and D. Notkin. Tool-assisted unit test generation and selection based on operational
abstractions. Automated Software Engineering Journal, 2006.

31. J. Yang and D. Evans. Dynamically inferring temporal properties. In Proc. the ACM-
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,
pages 23–28, 2004.

Time Aware Modelling and Analysis of
Multiclocked VLSI Systems

Tomi Westerlund1,2 and Juha Plosila2

1 Turku Centre for Computer Science
Lemminkäisenkatu 14 A, FI-20520 Turku, Finland

2 Department of Information Technology, University of Turku
University of Turku, Department of Information Technology, FI-20014 Turku, Finland

{tomi.westerlund, juha.plosila}@utu.fi

Abstract. We introduce a formal, time aware framework for modelling and anal-
ysis multiclocked VLSI systems. We define a delay calculus framework for our
timed formalism, and, furthermore, constraints with which to confine the correct-
ness of the system under development, not only logically but also with respect
to timing characteristics. We give an elaborate definition of the timed formalism,
Timed Action Systems, and its delay models. With the timing aware formal de-
velopment framework it is possible to obtain information of multiclocked VLSI
systems already at high abstraction levels as our application, a GALS (globally
asynchronous, locally synchronous) system, shows.

Keywords: Timed Action Systems, GALS, formal methods, time.

1 Introduction

The traditional communication schemes are facing the reality of being unable to answer
the challenges given by the continuously increasing system complexities and the level
of integration. Furthermore, large Systems-on-Chip (SoC) designs need large and power
hungry clock distribution network that has been recognised one of the major challenges
in modern deep-submicron VLSI designs.

A commonly used method to alleviate the problems indicated above is to use globally
asynchronous, locally synchronous (GALS) design method introduced in [7]. Further-
more, by adopting formal methods we gain the capability to specify, design and validate
these systems with the benefits of a rigorous mathematical basis. Therefore, in industry
and academia the interest towards formal methods and GALS architecture is continu-
ously increasing. The formal basis for our study is provided by the timing information
spiced Action Systems, called Timed Action System [24]. The base formalism, Action
Systems [3], henceforward called conventional Action Systems, is based on an extended
version of Dijkstra’s guarded command language [8]. The timing information allows us
to model both logical and temporal aspects of multiclocked VLSI systems. One of the
benefits on using Timed Action Systems is the ability to use it throughout the design
project. However, in this paper we do not cover the synthesis problem of transforming
an abstract system specification down to an implementable specification.

The main contribution of this study is the introduction of the delay calculus as well
as the definition of constraints that are used to ensure the correct operation of the VLSI

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 737–756, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

738 T. Westerlund and J. Plosila

systems, not only logically but also with respect to temporal properties. We define a
constraint that behaves as a skip action, an empty statement, if the condition holds,
but otherwise as abort, an abnormal termination. Furthermore, we give an elaborate
introduction of the revised time enhanced Action Systems.

To model VLSI systems several synchronous formalisms exists such as Lustre [11],
Signal [10] and ESTEREL [4]. From these languages ESTEREL is extended to multiple
clock domains in two studies [20, 5]. However, for our knowledge these synchronous
formalisms do not support rigorous stepwise development of an abstract specification
down to an implementation level as our formalism does [27]. In addition to mentioned
synchronous languages, there exists several powerful formalisms that are applied to the
time aware modelling of VLSI designs, see for example [23, 12, 2].

Outline. The rest of the paper is organised as follows: In Sect. 2 we start by introducing
Timed Action Systems after which we introduce how the temporal properties of timed
actions are modelled and constrained in Sect. 3. Then, in Sect. 4 we show how multi-
clocked VLSI systems are modelled in our framework. Finally, in Sect. 5 we end with
concluding remarks.

2 Timed Action Systems

Let us start this section by giving a short overview of conventional actions that form
the formal basis for our timed formalism after which we continue to a quite elaborate
introduction to our timed notation.

2.1 Conventional Actions

An action A is defined (for example) by:

A ::= abort (abortion, non-termination)

| skip (empty statement)

| {p} (assert statement)

| [p] (assumption statement)

| x := x′.R (non-deterministic assignment)

| x := e ((multiple) assignment)

| p→ A (guarded action)

| A1 � A2 (non-deterministic choice)

| A1;A2 (sequential composition)

| |[var x := x0; A]| (block with local variables)

| do A od (iterative composition)

where A and Ai, i = 1, 2, are actions; x is a variable or a list of variables; xo some
value(s) of variable(s) x; e is an expression or a list of expressions; and p and R are
predicates (boolean conditions). The variables which are assigned within the action A
are called the write variables of A, denoted by wA. The other variables present in the
action A are called the read variables of A, denoted by rA. The write and read variables
form together the access set vA of A: vA=̂ wA ∪ rA.

Time Aware Modelling and Analysis of Multiclocked VLSI Systems 739

Semantics of actions. The total correctness of an action A with respect to a precon-
dition p and a postcondition q is denoted pAq and defined by: pAq=̂ p ⇒ wp(A, q),
where wp(A, q) stands for the weakest precondition for the action A to establish the
postcondition q. We define, for example: wp(skip, q) = q, wp((A0 � A1), q) =
wp(A0, q) ∧ wp(A1, q), wp({p}, q) = p ∧ q, wp([p], q) = p ⇒ q, wp((A0;A1), q) =
wp(A0,wp(A1, q)), wp(x := e, q) = q[e/x], wp(p → A, q) = p ⇒ wp(A, q)
and wp(do A od, q) = (∃k.k ≥ 0 ∧ H(k)) , where H(0) = Q ∧ ¬gA, k = 0 and
H(k) = (gA∧wp(A,H(k− 1)))∨H(0), k > 0, where gA is the guard of A. That is,
the weakest precondition of the iterative composition requires that after k repetitions of
A the loop terminates, that is, A becomes disabled in a state where the post-condition
Q holds. If k = 0, A is disabled and the iteration behaves as the skip action.

Quantified composition. A quantified composition of actions is defined by: [• 1 ≤
i ≤ n : Ai], and it is defined by: A1 • . . . • An, where the bullet • denotes any of the
composition operators, and n is the number of actions.

Substitution. A substitution operation within an action Ai, denoted by A[e′/e], where
e refers to an element such as variables and predicates of the original action Ai and e′

denotes the new element, which replaces e in Ai. The same notation is applied to action
systems as well.

Prioritised composition. A prioritised (’ � ’) composition [21] is a composition in
which the execution order of enabled actions is prioritised. We have: A � B =̂ A �
¬gA→ B, where the highest priority belongs to the leftmost action in the composition;
thus, the leftmost enabled action is always chosen for execution.

Synchronous composition. For modelling locally synchronous components in a GALS
system, we use a synchronous composition of actions that is defined by:

A1 ∨A2=̂ |[var uA1, uA2; gA1 ∨ gA2 → uA1, uA2 := wA1, wA2

; [; 1 ≤ i ≤ 2 : Ai[uAi/wAi] � skip]

;wA1, wA2 := uA1, uA2]|
(synchronous composition)

where only enabled actions are executed. The enabledness of an action Ai is evaluated
based on its guard gAi. Those actions that are disabled at the time of execution per-
form the skip action. The variable substitution resolves possible read-write conflicts by
storing the write variables (wA1 ∩ wA2 = ∅) onto local, internal variables uA1 and
uA2. The actions write on the local variables and after all the actions are executed the
write variables are updated. Thus, there is no possibility for read-write conflicts during
operation.

Procedures. Body P of a procedure p: p(val x; res y) : P , is in general any atomic ac-
tion A, possibly with some auxiliary local variables w initialised to w0 every time the
procedure is called. The action A accesses the global and local variables g and l of the
host/enclosing system and the formal parameters x and y. Hence, the body P can be
generally defined by: P =̂ |[var w; init w := w0;A(g, l, w, x, y)]|. If there are no local
variables, the begin-end brackets |[]| can be removed all together: |[A(g, l, x, y)]| =

740 T. Westerlund and J. Plosila

A.sttime
A

A.ft

dmax

∆(A) = A.ft−A.st

d′dmin

Fig. 1. Illustration of a non-deterministic delay predicate dAnd

A(g, l, x, y). If there are neither local variables nor parameters, the action A only ac-
cesses the global and local variables of the host system, then the procedure p can be
written as: proc p : A(g, l).

2.2 Timed Action

The computation of conventional Action Systems does not take time, a reaction is in-
stantaneous – and therefore atomic in any possible sense. Atomicity means that only pre-
and post-states of actions are observable, and when they are chosen for execution they
cannot be interrupted by external counterparts. This is due to its software tailored back-
ground. In modelling digital VLSI systems it is important to know the time consumed by
actions, because the operation speed is determined by the delay of those actions. There-
fore, in Timed Action Systems we take the view that every computation takes time. This
approach is also justified by the atomicity of actions and the fact that a state of the system
can be observed after each execution of actions. It should be observed that the complexity
of a timed action is not restricted, and thus the operation time is not bounded either.

The time domain T = R≥0 is dense and continuous, and the lapse of time is modelled
by postponing the update of the write variables. The time when the computation is
commenced is set in the initialisation of the system, but it is of no importance as only
the relative ordering of timed actions is important.

Delay models. A delay of a timed action, say A, is determined by a predicate dA. In
this section we introduce the two most commonly used delay predicates: a deterministic
dAn and non-deterministic dAnd delay predicates for which we have the following
abbreviations A�d� and A�dmin, dmax�, respectively. They are defined by:

dAd =̂ d′ = d (delay (deterministic))

dAnd =̂ dmin ≤ d′ ≤ dmax (delay (bounded, non-deterministic))

where d′ is a variable of type T and d, dmin and dmax are numerical values of type T.

Timed action. A timed action A is defined by:

A�dA� =̂ (Af � Ak) � As � Pt (timed action)

where we can identify three operational segments: commence, end and time. The com-
mence segment contains the start action As whose execution initiates the operation of
timed action, and the operation is terminated in the end segment which consists of the

Time Aware Modelling and Analysis of Multiclocked VLSI Systems 741

finish action Af and the kill action Ak. The one which will be executed depends on
the enabledness of the timed action. The time is advanced in the time segment after the
execution of the start action by executing the time propagation action Pt. This execu-
tion sequence ensures that all the enabled timed actions will be executed before time is
advanced. A timed action whose operation is performed, but its write variables are not
yet updated, is considered a scheduled timed action.

The use of the kill action Ak is twofold: (1) It prevents a timed action being dead-
locked, when it is disabled during the delay. This kind of situation may arise when
several timed actions are enabled and executed at the same time, and, moreover, they
are modelled to disable each other. The result of the described behaviour is that only
the winning action (chosen non-deterministically) may proceed, whereupon other timed
actions are disabled forever; (2) It models an inertial delay. The inertial delay model
absorbs all incoming pulses that are shorter than a circuit component’s delay is. Real
circuit components have always some inertia in their operation due to presence of ca-
pacitance, resistance and inductance.

Let us next introduce the timed action components in detail. Thereafter, the compo-
sition of timed actions and the time propagation action will be introduced. Timed action
components are defined by:

As =̂ ¬bA ∧ gA→ stateA := (wA, gt, gt+ d′.dA)

;A[stateA.wA/wA]; bA := T ;
(timed action (start)) (1)

Af =̂ bA ∧ gA ∧ (gt = stateA.ft)→ bA := F

;wA := stateA.wA;
(timed action (finish)) (2)

Ak =̂ bA ∧ ¬gA→ bA := F ; (timed action (kill)) (3)

where boolean variable bA sequences the operation into operation and write parts; gA
is the guard of the timed action; stateA stores the new state of the action. It is of
type: type state : record(wA; st, ft : T), where wA is the write variables of A, st
a start time and ft a finish time. The start time is set to the global time gt and the
finish time is obtained by adding the value of a delay to the global time. Observe that
stateA.ft actually stores the time when the write variable is scheduled to be updated
by Aw assuming that it remains enabled during the delay, that is, the kill action Ak is
disabled the mentioned time period.

The composition of timed actions Ai is:

composition of timed actions Ai =̂ (timed action composition)

[� 1 ≤ i ≤ n : (Af,i � Ak,i)] (finish the operation of scheduled timed action(s))

� [� 1 ≤ i ≤ n : As,i] (commence the operation of enabled timed action(s))

� Pt (progress time)

where n is the number of actions. Observe that time propagation action Pt is shared
amongst the timed actions. It sets the global time to the nearest scheduled finish time.
It is defined by:

742 T. Westerlund and J. Plosila

Pt=̂ [� 1 ≤ i ≤ n : min[i] → gt := stateAi.ft] (time propagation action)

where the guard min[i] is given as:

min[i]=̂ (stateAi.ft > gt) ∧
(
∀j : 1 ≤ j ≤ n : j �= i :

stateAj.ft > gt⇒ stateAi.ft ≤ stateAj.ft
) (guard min)

It explores the values of finish times stateAi.f t of scheduled timed actions. It evaluates
to true if a finish time stateAi.f t of a timed action Ai is greater than gt (a requirement
for a timed action being a scheduled timed action) and no other scheduled timed actions’
finish time stateAj .f t is smaller than it is. In other words, it chooses the smallest
scheduled finish time greater that the global time gt, which then becomes a new global
time in Pt.

Weakest precondition of a timed action. The weakest precondition defines the total
correctness of an action with respect to its pre- and postcondition. The weakest pre-
condition of a timed action divides into two parts depending on its enabledness during
execution: (a) a timed action is enabled throughout its operation allowing write variables
to be updated after the specified delay and (b) a timed action becomes disabled during
execution preventing the update of the write variables and enabling the timed action for
further executions. That is, it behaves as the skip action. The weakest precondition of a
timed action is:

wp((A�dA�),Q) =wp(A,Q[stateA.st, stateA.ft, stateA.ft/A.st,A.ft, gt])

∧ (¬gA⇒ wp(skip,Q)) (wp of a timed action)

2.3 Timed Action System

Let us commence the introduction of Timed Action System by first showing its form,
and then introducing its elements and computation model.

A timed action system A has a form:
sys A (imp pI ; exp pE;)(g;) ::
|[delays dAi, dp, dpE;

proc p�dp�(x) : (P); pE�dpE�(e) : (PE);
var l;
actions Ai�dAi� : (aAi);
init g, l := g0, l0;
exec do composition of timed actions Ai od]|

where aAi is any kind of the defined atomic actions generated by the syntax given
previously, Ai its symbolic name and dAi its delay. In the above system we can iden-
tify three main sections: interface, declarative and iteration. The interface part declares
those variables, g, that are visible outside the action system boundaries, and thus ac-
cessible by other action systems. It also introduces interface procedures that are either
imported (hence, introduced by some other timed action system) (pI) or introduced and

Time Aware Modelling and Analysis of Multiclocked VLSI Systems 743

Progress time

Commence the opera-
tion of timed actions

Finish the operation
of scheduled timed
actions

Wait input from environment

[true]

[false]∨k
i=1 gAs,i

∨k
i=1 gAi

delayed

T
em

porary
In

operation

(Af,i �Ak,i)�As,i �Pt

(Af,i �Ak,i)�As,i �Pt (Af ,i �Ak,i)�As,i �Pt

[false]

[true]
(1)(2)

Fig. 2. A computation model of a timed action system

exported (pE) by the system. If an action system does not have any interface variables
or procedures, it is a closed action system, otherwise it is an open action system. The
declarative part introduces delay definitions, the local variables l, local p and exported
pE procedures, and, furthermore, actions that perform operations on local and global
variables. Finally, the iteration section, the do-od loop of the system, contains the com-
position of the actions defined in the declarative part.

2.4 Modelling the Behaviour of a Digital VLSI Circuit

Let us have two timed action systems A and Env whose local variables and actions
are distinct and the latter is the environment of the former. Consider the parallel com-
position of these systems, denoted by A ‖ Env. The parallel composition is defined
to be another action system whose global and local identifiers (variables and actions)
consist of the identifiers of component systems and whose exec clause has the form:
do [� 1 ≤ i ≤ n : Ai] � E od, where Ai and E are actions of the systemsA and Env,
respectively. The constituent systems communicate via their shared interface variables.
The definition of the parallel composition is used inversely in system derivation to de-
compose a system description into a composition of smaller separate systems or internal
subsystems. In modelling the behaviour of a digital VLSI circuitA and its environment
Env, it is assumed that there is always one enabled timed action. In other words, the
system must satisfy the following invariant: ∨n

i=1gAi ∨ gE.

744 T. Westerlund and J. Plosila

Computation model. (Fig. 2) The computation of a timed action system is commenced
in an initialisation in which the variables (both local and global) are set to predefined
values. In the iteration part, the exec section, actions are sequentially selected for exe-
cution based on the composition and enabledness of the start actions As,i. After all the
enabled start actions are executed, the global time gt is set to nearest scheduled finish
time in the time propagation action Pt. Then, either finish Af,i or kill Ak,i action of
those scheduled timed actions whose delay is consumed are executed. This is repeated
as long as there are either enabled (1) or scheduled (2) timed actions. However, if there
are no such timed actions, the timed action system is considered temporary delayed.
The computation resumes execution when some other timed action systems enables an
action via the interface variables or calls an exported procedure.

Weak fairness. The conventional Action Systems formalism does not contain any fair-
ness assumptions. However, to describe the behaviour of a digital VLSI circuits accu-
rately, enabled actions are executed in a weakly fair manner in [18]. In other words,
it is not possible to infinitely select some timed action Ai for execution, if there are
some other action Aj , which remains enabled simultaneously with Ai. In Timed Action
Systems, however, the weak fairness assumption is unnecessary due to the timed action
model that ensures the execution of all the enabled timed actions.

3 Temporality

In this section we introduce delay calculation rules for the Timed Action Systems for-
malism, and, furthermore, we define constraints with which the operation of timed ac-
tion can be restricted, not only logically but also temporally.

3.1 Delay Calculus

Let us start by defining a semantics to calculate delays of timed actions and their com-
positions. Given a timed action A we write ∆(A) to calculate the set of possible delays
for the system. Rules of the delay calculation are defined recursively as follows:

∆(A) ::= d′.dA = A.ft− A.st (action delay) (4)

|∆(A1;A2) = ∆(A1) +∆(A2) (sequential delay) (5)

|∆(p→ A) = ∆([p];A) = ∆(p) +∆(A) (guarded action delay) (6)

|∆(A1 � A2) = {∆(A1),∆(A2)} (alternative delay) (7)

|∆(A1 � A2) = {∆(A1),∆(A2)} (alternative delay) (8)

|∆(A1 ∨A2) = Max(∆(A1),∆(A2)) (synchronous delay) (9)

|∆(|[var x := x0; A]|) = ∆(A) (block delay) (10)

|∆(do A od) =
∑

0
i=k∆(A) (iterative delay) (11)

where (4) defines a timed action delay. The delay is also defined using the start and
finish times of a timed action; (5) sums the delays of sequentially executed timed ac-
tions; (6) defines a delay for a guarded timed action. It consists of the predicate delay

Time Aware Modelling and Analysis of Multiclocked VLSI Systems 745

and the action delay based on the definition of a guarded action; (7) and (8) gives a
set of delays each of which reflect an alternative delay path. To extract either the best
or worst case propagation delay, one may use the Min or Max functions, respectively.
For example, in critical timing path analysis one utilise the Max function to observe
the slowest path from input to output; In (9) a delay is the maximum delay of the syn-
chronous timed actions because the slowest action (the largest delay) of the composition
defines the overall performance of a synchronous VLSI component; (10) defines a de-
lay for a block of timed actions; Finally, in (11) is defined the delay for the iterative
composition. It equals the sum of the delays of those timed actions which are executed
in k iterations. The definition is justified by the weakest precondition of the iterative
composition given earlier. It states that after k selections of an action the do-od loop
will terminate properly.

Using the above delay calculation rules we are able to define a static delay for a
system. In the static delay analysis the expected timing information of the system is
computed without requiring simulations. The static delay analysis returns a set of delays
each of which corresponds a possible computation path. From the obtained set, it is
possible to calculate, for example, the worst case delay for the circuit under analysis
using the Max function or the best case delay using the Min function.

Delay definitions. The basis for delay definitions is that one must be able to calculate
a delay information for every timed action used in a timed action system’s iteration
section. In other words, in the declarative section a timed action may or may not have a
specific delay information.

System delay. As stated earlier we assume that there is always at least one enabled
action in a system. Therefore, when one is computing a delay for a system (and its envi-
ronment), only computation paths are considered. This approach facilitates the timing
analysis, and, furthermore, it provides sufficient information of the system. In deter-
mining computation paths for a circuit it is required to have information of the logical
behaviour of the circuit. That is, it is required to know how timed actions interact with
each other. A computation path from action A to action B, denoted by A #→ B, is a
sequence of immediate successors which leads from A to B. An immediate successor
is an action that is enabled by its predecessor in the path where no loops are allowed. A
computation path delay between timed actions A and B is defined by:

∆(∗A �→ B∗) ::= B.ft− A.st (computation path delay)

where, the symbol ∗ indicates, by its position, whether the delay of an action is included
into the computation path delay or not. In the above rule both delays are included. For
excluding either or both of the delays we have: ∆(∗A #→ ∗B)=̂∆(∗A #→ B∗) −
∆(B) = B.st − A.st, ∆(A∗ #→ B∗)=̂∆(∗A #→ B∗) − ∆(A) = B.ft − A.ft,
∆(A∗ #→ ∗B)=̂∆(∗A #→ B∗) −∆(B) −∆(A) = B.st − A.ft. Without specifying
actions or interface signals for a timed action system, ∆(A), we obtain a set of delays
each of which corresponds one computation path. Let us next have an exemplification
of the delay definitions as well as the above defined delay calculus for timed action and
timed action systems.

746 T. Westerlund and J. Plosila

m
em

or
y

el
em

en
t

A2A1

B2�dB2�

B1�dB1�

BA�dA�

datain

m
em

or
y

el
em

en
t

S

dataout

clk

path 1

path 2

path 3

Fig. 3. Delay paths of the timed action systems S

Example 1. Consider the following timed action system S:

sys S (datain, dataout : data;) ::
|[delays dA, dB1, dB2;

var l;
actions A1 : (aA1); A2 : (aA2);

A�dA� : (A1;A2);
B1�dB1� : (aB1); B2�dB2� : (aB2);
B : (B1 � B2);

init l := l0;
exec do A ∨ B od]|

where we have six timed actions, two of which are utilised in the iteration loop. The
timed actions A1 and A2, of which the timed action A is composed of, do not have a
delay information. However, as stated earlier we need or must be able to calculate delay
information only for those actions that are used in the iteration loop, and therefore it is
adequate to have A�dA� (path 1 in Fig. 3). The timed action B, on the other hand, does
not have a specific delay, although, it is used in the iteration loop. Its delay is obtained
using (7): dB = {dB1, dB2} (paths 2 and 3 in Fig. 3, respectively). Because of the
synchronous composition it is not required to model the clock signal clk (depicted in
Fig. 3)in the above system.

Using the delay calculus we are able to calculate the clock cycle time for the above
system by observing the composition in the execution loop of the system. We have:
∆(A∨B) = ∆(A∨(B1 �B2)) = Max(∆(A), ∆(B1 �B2)) = Max(dA, {dB1, dB2})
= Max(dA, dB1, dB2). That is, the delay of the synchronous composition is the max-
imum of the three delays, which, based on the definition of the synchronous composi-
tion, is the delay information used by timed action model.

The calculation of a system delay, as defined earlier, requires information of the
logical behaviour of the system. In other words, one needs to know the operation se-
quence of the actions, the computation path. In Fig. 3 is represented one possible circuit
construct for the given system S as the model itself does not provide detailed infor-
mation of how timed actions A and B interact with each other. Thus, based on Fig.
3 we have the following computation path: A #→ B, and a computation path delay
∆(∗A #→ B∗) = 2 ∗Max(dA, dB1, dB2).
End of example.

Time Aware Modelling and Analysis of Multiclocked VLSI Systems 747

Snd
await pcall p

S�dS� p�dp� R�dR� Rec

Fig. 4. Snd and Rec communicate directly with each other

Procedure delay. Let us next define a delay for a procedure p. We have:

∆(p) ::= ∆(P) = ∆(A) (procedure delay)

That is, the delay of a procedure p is a delay of its body P , which, on the other hand, is
in general any atomic action A as stated in the procedure definition. We call this delay
also a static delay. The name comes from the use of procedures in communication
modelling. The static part of the communication delay is known a priori and it is not
affected by external counterparts.

Procedure based communication delay. The procedure based communication [19]
uses remote procedures to model communication channels between action systems, see
Fig. 4. Consider the timed action systems Snd and Rec whose internal activities are
denoted with actions S�dS� =̂ (S1; call p(lS);S2) and R�dR� =̂ (R1; await p;R2),
where p is an interface procedure defined in and exported by the receiver (Rec), and
imported and called by the sender (Snd), with the variables lS (sender’s local vari-
ables) as actual value parameters. The body P of p�dp� can be any atomic action
writing onto the variables lR (receiver’s local variables). In Action Systems (untimed
and timed ones) systems are combined using parallel composition. In parallel com-
position of action systems, the exec clause of the composed system Snd ‖ Rec has
the form: do S � R od. The construct S � R, where S calls p (call command)
and R awaits such a call (await command), is regarded as a single atomic action SR,
defined by: SR=̂ (S1;R1;P [lS/x];R2;S2). Hence, communication is based on shar-
ing an action in which data is atomically passed from Snd to Rec by executing the
body P of the procedure p hiding the details of the communication into the proce-
dure call. A static delay for the above presented procedure based communication is
therefore:

∆comm ::= ∆(SR) = ∆(S) +∆(p) +∆(R) (communication delay)

That is, the communication delay is a sum of its components’ delays: the delay of the
calling timed action ∆(S) , the delay of the communication procedure ∆(p) and the
delay of the called timed action ∆(R).

748 T. Westerlund and J. Plosila

time
A1

A2

(a) A1 equals A2

time
A1

A2

(b) A1 contains A2

time A2

A1

(c) A1 overlaps A2

time A2

A1

(d) A1 starts before A2

time A2

A1

(e) A1 ends after A2

time
A1

A2

(f) A1 precedes A2

time
A1

A2

(g) A1 meets A2

time
A1

A2

(h) A1 starts with A2

A2

A1

time
(i) A1 ends with A2

Fig. 5. Temporal relations in a graphical form

3.2 Constraints

In this section we give a new, revised form of the constraint [26] with which we are able
to restrict the temporal and functional operation of a timed action system. A constraint
is an expression according to which involved timed actions are obliged to operate. That
is, a constraint defines a condition whose strict adherence is mandatory; violation of
such a condition results an unpredictable computation. In other words, the violation
of a constraint denotes a useless computation. In text we use a symbol � to denote a
constraint. Formally it behaves as an assert statement. We have:

�{B} =

{
abort, when B = false

skip, when B = true
(constraint)

where B is a predicate (boolean condition). An assert statement behaves as a skip
statement if B holds but otherwise it behaves like abort. In other words, if constraints
are satisfied they operate as empty statements that do not change the state at all. On
the other hand, if a constraint is not satisfied, it is a never terminating statement, which
hence does not establish any postconditions causing an abnormal termination of the
system.

Relative ordering. Being able to define relative ordering of actions is useful in de-
signing VLSI systems. Relative timing defines the ordering of operations in the time
domain. Relative timing is not a novel idea, and it is widely used in databooks and
applied in several studies, see for example [22, 13, 17]. We define the relative timing
constraints (see Fig. 5) applying the temporal interval notation introduced in [1]. We
define:

Time Aware Modelling and Analysis of Multiclocked VLSI Systems 749

A1 starts before A2 =̂ A1.st < A2.st (starts before) (12)

A1 ends after A2 =̂ A2.ft < A1.ft (ends after) (13)

A1 precedes A2 =̂ A1.ft < A2.st (precedes) (14)

A1 meets A2 =̂ A1.ft = A2.st (meets) (15)

A1 starts with A2 =̂ A1.st = A2.st (starts with) (16)

A1 ends with A2 =̂ A1.ft = A2.ft (ends with) (17)

where Ai.st and Ai.f t are the start and finish times of a timed action, respectively. In
(15), for example, the time constraint defines that the execution of A2 must be started
at the same time point in which A1 finished its execution. Observe, that those relative
orderings that define overlapping operations denotes parallel operation of timed actions,
too.

The above relative orderings are called elementary relative orderings. Relative or-
derings composed of these orderings are called composite relative orderings. We have,
for example, equals, contains and overlaps, which are defined by:

A1 equals A2 =̂ (A1 starts with A2) ∧ (A1 ends with A2) (equals)

A1 contains A2 =̂ (A1 starts before A2) ∧ (A1 ends after A2) (contains)

A1 overlaps A2 =̂ (A2.st < A1.ft) ∧ (A1 starts before A2)

∧ (A2 ends after A1)
(overlaps)

where the overlaps is defined with two elementary relative orderings in addition to time
points because defining the overlaps only with the elementary relative orderings does
not guarantee the intended temporal behaviour of the composite relative ordering as
depicted in Fig. 5(c).

The abstraction level in which the above temporal relations are used is of no impor-
tance. Let us next give a low-level circuit example of the use of relative orderings after
which an example at a higher abstraction level.

Example 2. Assume that we have two signals a and b and that the rising transition (↑)
of a must always happen before than that of b. The timed actions that determines the
transition are: A�dA� : a ∧ v → v := F ; and B�dB� : b ∧ w → w := F ;, where the
boolean variables v and w disables the actions after the rising transition as otherwise the
actions are enabled, and therefore executed, whenever a and b were true. To guarantee
that the circuit always fulfils this requirement we specify the following time constraint
using a relative ordering precedes: �{A precedes B} =̂ {A.st < B.st}.
End of example.

Example 3. Let us consider the timed actions A�dA�, B1�dB1� and B2�dB2� given
in Fig. 3 composed with synchronous operator ∨ as earlier: P :

(
A ∨ (B1 � B2)

)
,

where P is a processing action. To confirm that the operation of the timed actions A,
B1 and B2 is performed within the clock cycle time, we define: �{P ends after A},

750 T. Westerlund and J. Plosila

time

dA′

A.st

A

{T} {F}d

dA

�{A, d}

Fig. 6. A timed action A satisfying {T} and dissatisfying {F} a deadline

�{P ends after B} and �{P ends after B2}. That is, the operation of the timed ac-
tions must finish their operation before memory elements are updated. The defined con-
straints also reflect the requirements of register-transfer level design where the sampled
signal must be stable prior to rising clock signal. Observe, however, that from the log-
ical point of view, the synchronous composition ensures the correct operation, these
constraint are essential in back-annotation to formally validate the real timing values
that are obtained from a synthesised design [25].
End of example.

Deadlines. Let us then revise the deadline [25] that defines the maximum time a timed
action is allowed to consume in its operation. A deadline (�) defines a time point upon
which the operation of involved timed actions are obliged to finish their operation. Ap-
plying the time constraint definitions we define:

�{E, d}=̂ �{TE ≤ d} (deadline)

where TE is a time expression that evaluates to a time value (T). Time expressions are
composed of mathematical operations, e.g. + and −.

Example 4. A deadline for a timed action is defined by: �{A, d} =̂ �{∆(A) ≤ d},
shown in Fig. 6, where the correct execution is marked with {T }. The dashed line
denotes a false computation, marked with {F}, as the computation of the timed action
ends after the deadline constraint. The shaded area denotes the false computation area.
End of example.

4 Modelling Multiclocked VLSI Systems

Thus far we have mainly concentrated on our formal, time aware modelling language.
In this section we utilise the formalism in modelling a multiclocked VLSI system, to be
exact, a globally asynchronous, locally synchronous (GALS) system. We chose GALS
based systems due to their non-trivial structure as well as both asynchronous and syn-
chronous systems can be seen a special cases of a GALS architecture. In GALS design
we have locally synchronous islands whose clocks are independent of each other. The
communication between these independent synchronous modules is commonly imple-
mented using asynchronous wrappers, see for example [16, 28, 9, 6]. The wrapper based
design supports highly modular design structure making it attractive to be used with IP
(intellectual property) blocks that are provided with several industrial vendors. Hence,
we adopted the wrapper based design paradigm to our GALS model.

Time Aware Modelling and Analysis of Multiclocked VLSI Systems 751

dout din
PA�dPA� PB�dPB�

call p(dout) await pWA�dWA� WB�dWB�

MA MB

p�dI�

Fig. 7. Wrapped sender and receiver communicating directly with each other

4.1 GALS Concept

Consider two closed synchronous modules, say MA and MB , both of which have a
clock of their own independent of each other. The action systems have the form:
sys MA () ::
|[delays dPA;

var lA;
actions Ai : (aAi);

PA�dPA� : (A1 ∨ . . . ∨An);
init lA := l0A;
exec do PA od]|

sys MB () ::
|[delays dPB ;

var lB ;
actions Bj : (aBj);

PB�dPB� : (B1 ∨ . . . ∨ Bm);
init lB := l0B ;
exec do PB od]|

where the operation of the above systems is performed synchronously in the processing
actions PA and PB . The delay of these synchronous actions are dPA and dPB , re-
spectively. The given delay defines also the clock cycle time of the processing actions.
Observe that as we only define the delay information for the synchronous composi-
tion, we have: PA�dPA� : (A1 ∨ . . . ∨ An) ≡ PA : (A1�dPA� ∨ . . . ∨ An�dPA�) and
PB�dPB� : (B1∨. . .∨Bm) ≡ PB : (B1�dPB�∨. . .∨Bm�dPB�) giving us dPA ≡ dAi

and dPB ≡ dBj . That is, we have equal delays for all the synchronously composed
timed actions.

Placing the modules into the same SoC design requires that special attention is paid
on their communication due to the different clock periods. Based on the assumption that
the clock periods are not allowed to be changed, the communication scheme between
the modules have to be defined with care. Possible difficulties that may be created by
the different clock periods in communication are, for example, synchronisation prob-
lems such as lost and duplication of data. Therefore, we utilise the earlier introduced
procedure based communication that ensures the data integrity during communication.
The action systems becomes (see Fig. 7):
sys MA (imp pC ;) ::
|[delays dWA, dPA;

var lA;
actions Ai : (aAi);

PA�dPA� : (A1 ∨ . . . ∨An);
WA�dWA� : (S1; call pC(lA);S2);

init lA := l0A;
exec do WA � PA od]|

sys MB (exp pC ;) ::
|[delays dWB, dPB , dI ;

var lB ;
proc pC�dI�(val x) : (P);
actions Bj : (aBj);

PB�dPB� : (B1 ∨ . . . ∨ Bm);
WB�dWB� : (R1; await pC ;R2);

init lB := l0B ;
exec do WB � PB od]|

752 T. Westerlund and J. Plosila

where the system MB introduces and exports the communication procedure pC , and
the system MA imports the procedure. The communication procedure is called and
awaited in special actions, called wrapper actions (WA and WB). These actions hide the
communication details from the processing actions allowing one to design the commu-
nication apart from the functionality; thus, enabling the use of existing IP components.

Observe that the direction of data is not identified in the procedure based commu-
nication: to or from the callee. The type of the communication channel is identified in
the definition of a procedure. In our abstract GALS model we have used push channel
between the components: pC(val x) : P , where the direction of data is identified by the
val specifier. A pull channel is defined using res specifier; we have: p(res x) : P .

The parallel composition of these two systems, denoted byMA ‖ MB , is:

sys MA ‖ MB () ::
|[delays dWA, dWB, dI, dAi, dBj ;

var lA ∪ lB ;
proc pC�dI�(val x) : (P);
actions Ai : (aAi); Bj : (aBj);

PA�dPA� : (A1 ∨ . . . ∨ An);
WA�dWA� : (S1; call pC(lA);S2);
PB�dPB� : (B1 ∨ . . . ∨Bm);
WB�dWB� : (R1; await pC ;R2);

init lA ∪ lB := l0A ∪ l0B ;
exec do (WA � PA) � (WB � PB) od]|

where it is required that the local variables are distinct: lA∩lB = ∅. The local identifiers
(procedures, variables, actions) are the identifiers of the component action systems.

4.2 Communication

Let us consider the iteration loop in more detail by writing the operators based on their
definitions and using the definition of the procedure based communication. The iteration
loop of the above system is regarded as the following composition:

do (WA � PA) � (WB � PB) od =do WAB � (PA � PB) od

=do WAB � ¬gWAB → (PA � PB) od

By opening the prioritised composition it is clearly seen that when the communication
between the processing units is initiated, the calling action disables itself and the other
processing action due to use of prioritised composition: ¬gWAB becomes false. This
naturally prevents all activities in the processing actions until the data is safely trans-
ferred by successful operation of the composed wrapper action WAB ensuring the data
integrity during communication activities.

4.3 Delay Calculations

Let us next analyse the delay characteristics of the above presented GALS system and
its synthetic, but possible, operation sequences. Let us first determine the clock cycle
time for the synchronous modulesMA andMB . We have:

Time Aware Modelling and Analysis of Multiclocked VLSI Systems 753

∆(PA) = dPA (clock cycle time ofMA)

∆(PB) = dPB (clock cycle time ofMB)

where the clock cycle time equals the delay of the processing actions.
Then we consider the delay of the systems. We have, assuming the pipelined opera-

tion (similar the one shown in Fig. 3) for the systemsMA andMB with three (n = 3)
and two (m = 2) pipeline stages in the system, respectively. The computation path
without the wrapper actions and the communication delay between the systems are:

∆(∗A1 �→ A3∗) =∆(A1) +∆(A2) +∆(A3) (computation path delay of PA)

∆(∗B1 �→ B2∗) =∆(B1) +∆(B2) (computation path delay of PB)

∆comm =∆(WAB) = ∆(WA) +∆(pC) +∆(WB) (communication delay)

Datapath delay. Let us compute a datapath delay, for example, a dataflow application in
which the two presented synchronous modules are sequentially connected. Examples of
such applications are FIR filter (3 sequentially connected modules in [29]), digital down
conversion (DDC)(5 modules in [15]) and WLAN baseband processor (transmitter side
composed of 3 modules in [14]). For our datapath we obtain the following delay:

∆(∗A1 �→ B2∗) =∆(A1) +∆(A2) +∆(A3) (computation path delay of PA)

+∆(WA) +∆(pC) +∆(WB) (communication delay)

+∆(B1) +∆(B2) (computation path delay of PB)

Equal clock cycle times. Let us first assume that the synchronous modules have equal
clock cycle times, that is, we have: dPA = dPB . We obtain an execution sequence
shown in Fig. 8(a): E : (PA, PB);WAB ; (PA, PB); (PA, PB); . . ., where the timed ac-
tions in parentheses are started at the same time instant (PA.st = PB.st). Observe that
the order in which the processing units appear in the parenthesis is of no importance
due to their parallel operation. The action WAB , on the other hand, is executed individ-
ually due to prioritised composition allowing safe transformation of data items. For the
sequence with equal clock cycle times (Fig. 8(a)) we obtain the following delays for the
systemsMA andMB , denoted by ∆(SeqMA) and ∆(SeqMB):

∆(SeqMA) . . .+ dPA + dWAB + dPA + dPA + . . .+dWAB + . . . (iteration delay ofMA)

∆(SeqMB) . . .+ dPB + dWAB + dPB +dPB +. . .+ dWAB + . . . (iteration delay ofMB)

where dP = dPA = dPB ; thus, we have: ∆(SeqMA) = ∆(SeqMB).

Unequal clock cycle times. With unequal clock cycle times, for example dPA < dPB ,
we obtain the action sequence: E : (PA, PB);WAB ; (PA, PB);PA;PB; . . ., as shown
in Fig. 8(b). The number of execution rounds of the processing unit PA with respect to
PB depends on their operation speed. We have:

754 T. Westerlund and J. Plosila

PB

WAB

PA

time

(a) dPA = dPB

time
PB

WAB

PA

(b) dPA < dPB

Fig. 8. Communication activity with equal (a) and unequal (b) clock cycle times

∆(SeqMA) = . . .+ dPA + d(idle) + dWAB + dPA + dPA + . . . (iteration delay ofMA)

∆(SeqMB) = . . .+ dPB + dWAB + dPB + dPB + . . . (iteration delay ofMB)

where d(idle) denotes the time that PA must wait for the commence of communication.

4.4 Constraints

Above we analysed the temporal operation of the described GALS system. We showed
how to calculate delays for the processing units as well as for the communication with
equal and unequal clock cycle times. Let use next consider both the logical and temporal
constraints of the GALS model.

Logical constraints. From the logical point of view the synchronous composition itself
guarantees that all the timed actions perform their operation within the given limits. In
addition, the prioritised composition used in the wrapper based computation ensures
that sent data items are transferred safely and correctly.

Temporal constraints. From the time point of view the operation of the synchronously
coupled timed actions can be ensured by defining the following deadlines: �i{Ai, dPA}
and �j{Bj, dPB}. That is, the time elapsed by the timed actions Ai and Bi are not
allowed to exceed the clock cycle time. Moreover, to define relation between the syn-
chronously coupled timed actions Ai, Bj and the synchronous timed actions PA and
PB , respectively, we confine that all the timed actions finish their operation before the
active clock edge: �i{PA ends after Ai} and �j{PB ends after Bj}. The defined con-
straints can be used in the validation process as well as in the back-annotation of timing
information to ensure the correct temporal operation of the system under development.

5 Conclusions

We presented a formal, time aware modelling environment for multiclocked VLSI sys-
tems. We gave an elaborate definition of the timed formalism, Timed Action Systems,
for which we defined different delay types. We presented a delay calculus framework for
our timed formalism, and, furthermore, we presented constraints with which to confine
temporal as well as logical behaviour of VLSI systems. These constraints terminate the
operation of the system if violated due to unpredictable result of computation in such a
case. The future studies will include the utilisation of the constraints in modelling ro-
bust fault-tolerant designs and also the possibility to model constraint whose violation

Time Aware Modelling and Analysis of Multiclocked VLSI Systems 755

is not critical for the system’s operation; although, the result of computation might not
be predictable. This includes the investigation of decreasing usefulness of computation
as time elapses after its violation. The decline of the value of usefulness as used in
soft constraints in real-time system modelling is of no use in VLSI system design, and
therefore not considered in this paper. However, in the future studies concerning em-
bedded system modelling where both software and hardware point of view are equally
important, soft constraints shall be addressed. In addition, the revised deadlines bound
the maximum allowable operation time of timed actions. The introduced constraints are
essential in the validation of the multiclocked VLSI systems, not only logically but also
with respect to given temporal constraints.

We illustrated the defined time aware formalism and its delay calculus by modelling
a GALS systems. In our GALS model the integrity of data during communication ac-
tivities is ensured using the procedure based communication and the prioritisation of
actions. The prioritisation disables the processing units while the communication activ-
ities are in operation; thus, new data cannot be written until the old one is transferred.
The application showed the usability of our formalism in designing such systems, and,
furthermore, as both self-timed and synchronous systems can be seen as special cases
of GALS systems our approach is also applicable to model those systems as well. The
scope of this paper was the introduction of the formal, time aware modelling and analy-
sis framework, and therefore the synthesis problem from an abstract specification down
to implementable model is not discussed.

Acknowledgements. Tomi Westerlund gratefully acknowledges financial support for
this work from the Nokia foundation.

References

[1] J. F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM, 26(11):832–
843, 1983.

[2] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

[3] R.-J. Back and K. Sere. From modular systems to action systems. In Proc. of Formal
Methods Europe ’94, Spain, October 1994. Lecture notes in comp. sci., Springer-Verlag.

[4] G. Berry and G. Gonthier. The Esterel synchronous programming language: Design, se-
mantics, implementation. Science of Computer Programming, 19(2):87–152, 1992.

[5] G. Berry and E. Sentovich. Multiclock Esterel. In Correct Hardware Design and Verifica-
tion Methods, volume 2144/2000, pages 110–125. LNCS, 2001.

[6] D. S. Bormann and P. Y. Cheung. Asynchronous wrapper for heterogeneous systems. In
Computer Design: VLSI in Computers and Processors, pages 307–314, 1997.

[7] D. M. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD thesis, Stand-
ford University, 1984.

[8] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall International, 1976.
[9] R. Dobkin, R. Ginosar, and C. Sotiriou. Data synchronisation issues in gals socs. In

International Conference on Asynchronous Circuits and Systems, pages 170–179, 2004.
[10] P. L. Guernic, T. Gautier, M. L. Borgne, and C. L. Maire. Programming real-time applica-

tions with SIGNAL. Proceedings of the IEEE, 79(9):1321–1335, September 1991.

756 T. Westerlund and J. Plosila

[11] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-flow program-
ming language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320, September 1991.

[12] J. He and K. J. Turner. Specifying hardware timing with ET-LOTOS. In Correct Hardware
Design and Verification Methods, volume 2144/2000, pages 161–166. LNCS, 2001.

[13] H. Kim, P. A. Beerel, and K. Stevens. Relative timing based verification of timed circuits
and systems. In Proceedings of the Eighth International Symposium on Asynchronous
Circuits and Systems, pages 115 – 124, April 2002.

[14] M. Krstic, E. Grass, and C. Stahl. Request-driven gals technique for wireless communica-
tion system. In Proceedings of the 11th IEEE International Symposium on Asynchronous
Circuits and Systems, pages 76–85. IEEE, March 2005.

[15] J. Mekie, S. Chakraborty, G. Venkatarami, P. Thiagarajan, and D. Sharma. Interface de-
sign for rationally clocked gals systems. In Proceedings of the 12th IEEE International
Symposium on Asynchronous Circuits and Systems, pages 160–171. IEEE, March 2006.

[16] J. Muttersbach, T. Villiger, and W. Fichtner. Practical design of globally-asynchronous
locally-synchronous systems. In Advanced Research in Asynchronous Circuits and Sys-
tems, pages 52 – 59, 2000.

[17] R. Negulescu and A. Peeters. Verification of speed-dependences in single-rail handshake
circuits. In Advanced Research in Asynchronous Circuits and Systems, pages 159–170,
1998.

[18] J. Plosila. Self-Timed Circuit Design - The Action System Approach. PhD thesis, University
of Turku, 1999.

[19] J. Plosila, P. Liljeberg, and J. Isoaho. Modelling and refinement of an on-chip commu-
nication architecture. In Formal Methods and Software Engineering: 7th International
Conference on Formal Engineering Methods, volume 3785/2005, pages 219–234. LNCS,
2005.

[20] B. Rajan and R. Shyamasundar. Multiclock Esterel: a reactive framework for asynchronous
design. In Parallel and Distributed Processing Symposium, pages 201–209, 2000.

[21] E. Sekerinski and K. Sere. A theory of prioritizing composition. The Computer Journal,
39(8):701–712, 1996. The British Computer Society. Oxford University Press.

[22] K. Stevens, R. Ginosar, and S. Rotem. Relative timing. In IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, pages 129 – 140, Feb 2003.

[23] K. J. Turner and R. O. Sinnott. DILL: Specifying digital logic in LOTOS. In Proc. Formal
Description Techniques VI, pages 71–86. North-Holland, 1994.

[24] T. Westerlund and J. Plosila. Formal timing model for hardware components. In Proceed-
ings of the 22nd NORCHIP Conference, pages 293–296, Norway, Nov 2004.

[25] T. Westerlund and J. Plosila. Back-annotation of timing information into a formal hardware
model: A case study. In International Symposium on Signals, Circuits, and Systems - ISSCS
2005, pages 625–628, Romania, July 2005.

[26] T. Westerlund and J. Plosila. Formal modelling of synchronous hardware components for
system-on-chip. In International Symposium on System-On-Chip, pages 116–119, Finland,
Nov 2005.

[27] T. Westerlund and J. Plosila. Time aware system refinement. In REFINE 2006 Workshop,
page To appear, Septemper 2006.

[28] S. Zhuang, J. Carlsson, and L. Wanhammar. A design approach for gals based systems-on-
chip. In Solid-State and Integrated Circuits Technology, pages 1368 – 1371, 2004.

[29] S. Zhuang, J. Carlsson, and L. Wanhammar. A design approach for gals based systems-
on-chip. In 7th Internation Conference on Solid-State and Integrated Circuits Technology,
volume 2, pages 1368–1371, October 2004.

SALT—Structured Assertion Language for
Temporal Logic

Andreas Bauer, Martin Leucker�, and Jonathan Streit

Institut für Informatik, Technische Universität München
{baueran, leucker, streit}@informatik.tu-muenchen.de

Abstract. This paper presents Salt. Salt is a general purpose speci-
fication and assertion language developed for creating concise temporal
specifications to be used in industrial verification environments. It incor-
porates ideas of existing approaches, such as specification patterns, but
also provides nested scopes, exceptions, support for regular expressions
and real-time. The latter is needed in particular for verification tasks
to do with reactive systems imposing strict execution times and dead-
lines. However, unlike other formalisms used for temporal specification of
properties, Salt does not target a specific domain. The paper details on
the design rationale, syntax and semantics of Salt in terms of a trans-
lation to temporal (real-time) logic, as well as on the realisation in form
of a compiler. Our results will show that the higher level of abstraction
introduced with Salt does not deprave the efficiency of the subsequent
verification tools—rather, on the contrary.

1 Introduction

Temporal logics, such as linear time temporal logic (LTL)[Pnu77], are speci-
fication formalisms suited to express desired properties of a set of traces and
come with a rigorous semantics. Yet more importantly, automatic verification
techniques, such as model checking[CGP99], are successfully used to verify such
specifications over finite-state system models.

However, despite obvious advantages over semi-formal or even informal no-
tations, temporal logic is often completely disregarded in (industrial) practice.
Instead, a considerable amount of verification related questions are answered
only partially by means of testing and simulation—with well-known drawbacks,
namely that testing alone can never show the absence of bugs, but merely their
presence if at all (cf.[DDH72]). Temporal logic, on the other hand, is still widely
considered to be a vehicle for specially skilled verification engineers, if not even
an academic toy.

We argue that this point-of-view is misleading. We do, however, admit that,
for example, LTL’s syntax—together with the typical reduction to a minimal set
of operators which is done in most research papers—makes it additionally hard
for formulating concise and correct specifications, even for specialists.
� Part of this work was done during the author’s stay in Stanford, USA, and supported

by ARO DAAD 19-03-1-0197.

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 757–775, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

758 A. Bauer, M. Leucker, and J. Streit

For example, consider the simple requirement “s precedes p after q”, which is
formulated in LTL by Dwyer et al.[DAC99] as (�¬q)∨♦(q ∧ (¬p W s)). At first
sight, this looks correct: “either q never holds or, when q becomes true, there
is no p before an s”. Nevertheless, the formula contains a very subtle error: it
states that eventually q ∧ (¬p W s) holds, but does not require it to be the
first occurrence of q. The sequence qpqs satisfies the formula, although it is
clear that it should not. Consequently, the correct formula would be (�¬q) ∨
¬q U (q ∧ (¬p W s)). Avoiding this kind of mistake in specifications altogether
is practically impossible. LTL’s minimalistic set of operators, however, forces its
users to build complex, error-prone formulas for even very simple requirements
as can be seen above.

Despite this, it is very unlikely that a completely different specification
formalism—of whatever kind—would stand a chance to compete with LTL for
at least two different reasons: 1. LTL has a well-accepted precise semantics, 2.
powerful model checking tools and runtime verification approaches based on LTL
exist already.

Contribution. In this paper, we remedy LTL’s and timed LTL’s (short: TLTL
[RS97, D’S03]) weaknesses for industrial specifications by introducing the spec-
ification and assertion language Salt, which is an acronym for Structured As-
sertion Language for Temporal Logic (see also http://salt.in.tum.de/).

To programmers, Salt looks a lot like a programming language, while still
being translatable to LTL, or—in case real-time operators are used—to TLTL.
As such, Salt is also suitable as a front end to already existing model check-
ing and runtime verification tools. Furthermore, a precise semantics of Salt is
given in terms of translation rules, which are realised in an accompanying Salt
compiler prototype.

More importantly, being closer to a general purpose (programming) language,
Salt is—as the examples throughout the paper will show—more intuitive to use
and understand than standard LTL. For example, besides LTL’s temporal op-
erators, Salt provides sophisticated scoping rules, support for (limited) regular
expressions, exceptions, iterators, counting quantifiers, and user-defined macros.

In other words, using Salt, users are able to specify properties on a higher
level of abstraction than with many other formalisms, such as standard LTL.

While compiling a high level programming language to a low level represen-
tation often has a negative impact in terms of efficiency, we will show that LTL
(resp. TLTL) formulas resulting from Salt specifications tend to be rather com-
pact when compared to their manually-written counterparts in LTL; one reason
lies in that humans tend to choose the most readable formula among equivalent
ones, while our compiler can optimise purely for the size of a formula.

However, plain LTL’s limited flexibility in real-world scenarios has also been
noted by other users (see Section 2). For instance, for the hardware domain,
Sugar/PSL [BBDE+01] has been designed as a high level specification language
aimed as a “syntactic sugaring” for temporal logic.

Dwyer et al. [DAC99] have analysed real-world specifications to identify typi-
cal patterns for property specifications, similar to design patterns encountered in

SALT—Structured Assertion Language for Temporal Logic 759

software engineering [GHJV94]. Using patterns allows even inexperienced users
to reuse expert knowledge.

Salt takes over some of the ideas present in PSL and is heavily inspired by
the pattern approach. However, Salt is a language and patterns are turned into
operators of the language. Furthermore, the additional concepts listed above, like
macro definitions, counting quantifiers etc., round off the specification language
and push Salt ahead of existing approaches.

Salt’s language reference, a compiler, an interactive web interface, as well as
further example specifications written in Salt are available from the web site
(http://salt.in.tum.de/).

Outline. Section 2 describes the context of Salt by means of already existing
and mostly domain-specific approaches, as well as a classification of Salt with
respect to its underlying semantics and expressiveness. Then, in Section 3, we
take a detailed look at the language itself and highlight its main features. We
discuss Salt’s formal semantics in Section In Section 5, we will show that Salt
specifications can be efficiently compiled to standard temporal (real-time) logics,
often resulting in even more compact representations. Section 6 concludes the
paper.

2 Classification

In the following, we detail on the context of Salt in terms of related work as
well as in terms of its underlying semantics and expressiveness.

2.1 Existing Approaches

Sugar/PSL. Sugar/PSL (Property Specification Language) [BBDE+01] is a
high level specification language tailored for hardware design, originally aimed
as a “syntactic sugaring” of the branching time logic CTL. Sugar 2.0 is based
on a linear view of time while keeping branching time as an optional extension
and is currently undergoing standardisation by the IEEE under the name PSL
[FMW05].

The PSL specification language is structured into boolean, temporal, verifi-
cation, and modelling layers. The boolean layer provides operators for propo-
sitional logic, while the operators of the temporal layer are used to combine
propositional formulas to temporal ones. The verification layer allows to define
what the verification tool is expected to do with the specified properties (e. g.,
check that a property holds, assume that a property holds, etc.). The modelling
layer, in turn, is used to model the input to the design or external hardware.

PSL provides a rich set of operators for reasoning over boolean conditions
(e. g., bit-vector operations) and for regular expressions. A so-called clocking
operator allows to state that an expression is evaluated only in cycles where its
clocking condition holds. PSL comes with an abort operator that can be used
to model resets: it evaluates a pending expression to false on the occurrence

760 A. Bauer, M. Leucker, and J. Streit

of an exceptional (abort) condition. Furthermore, PSL allows the use of macro
directives similar to those of the C preprocessor. Parameterised properties can be
instantiated for a set of concrete values. However, PSL does not contain temporal
past operators which can be rather intuitive to use as well as make specifications
more succinct (cf. [Mar03]), and no real-time constraints used frequently for
modelling and verifying properties of reactive systems imposing strict execution
times and deadlines, such as embedded systems.

PSL is often directly used as input to a verification tool, both for formal
verification and for generating checks that are executed by a simulation tool.
The latter corresponds to a runtime analysis of a simulated hardware design.
However, PSL is specific to the hardware domain and a translation into LTL is
possible only for a subset of PSL [TS05]. Therefore it cannot be easily used with
existing LTL-based verification tools.

PSL’s goals are orthogonal to the Salt approach. With Salt, we wanted
to go further in terms of abstracting from LTL’s syntax and thus providing a
more convenient-to-use language. On the other hand, Salt is not dedicated to
either model checking, runtime verification, or strictly to the hardware domain.
As such, Salt does not impose its own verification and modelling layer.

SpecPatterns. The Salt approach was also influenced by work of Dwyer et
al., in which various real-world specifications have been analysed [DAC99]. Fre-
quently used patterns have been identified and a pattern system for property
specifications, similar to the design patterns in software engineering [GHJV94]
has been elaborated. A pattern provides a solution to a reoccurring problem, of-
ten including notes about its advantages, drawbacks, and alternatives. As such
it enables inexperienced users to reuse expert knowledge.

Basically, the patterns of Dwyer et al. consist of requirements, such as “ab-
sence” (i. e., a condition is false) or “response” (i. e., an event triggers another
one), that can be expressed under different scopes, like “globally”, “before an
event r”, “after an event q”, or “between two events r and q”. The specifica-
tion pattern approach has been adopted by the Bandera Specification Language
[CDHR01] and a compiler that translates such specifications into LTL is part of
the Bandera system.

Dwyer et al. convincingly argue that scopes are needed in many real-world
specifications. However, specification patterns as defined by Dwyer et al. suffer
from the fact that they cannot be nested: only propositional formulas may be
used as their parameters. In other words, adding a new requirement to the
pattern system means having to manually write an LTL formula for each scope.

Others. The previous two approaches are not the only specification languages
tailored for domain specific tasks. For instance, the ForSpec Temporal Logic
(FTL) [AFF+02] is a specification language developed at Intel, and is based
on a linear view of time, aimed for the formal verification of hardware circuits.
Much like Sugar/PSL, ForSpec provides regular and clocked expressions as well
as accept and reject operators for modelling resets. However, ForSpec does not
contain real-time operators, only limited support for references to the past, and
cannot be completely translated to LTL.

SALT—Structured Assertion Language for Temporal Logic 761

EAGLE [BGHS04] is a temporal logic with a small but flexible set of prim-
itives. The logic is based on recursive parameterised equations with fix-point
semantics and merely three temporal operators: next-time, previous-time, and
concatenation. Using these primitives, one can construct the operators known
from various other formalisms, such as LTL or regular expressions. While EA-
GLE allows the specification of real-time constraints, it lacks most high level con-
structs such as nested scopes, exceptions, counting quantifiers currently present
in Salt.

Duration calculus [CHR91] and similar interval temporal logics overcome some
of the limitations of LTL that we mentioned. These logics can naturally encode
past operators, scoping, regular expressions, and counting. However, it is unclear
how to translate specifications in these frameworks to LTL such that standard
model checking and runtime verification tools based on LTL can be employed.

2.2 Expressiveness

Clearly, existing approaches have shaped various practical considerations in the
design rationale of the language Salt. However, from a purely theoretical point-
of-view, Salt’s features are more oriented towards the varying expressiveness of
the supported logics.

Salt currently supports translation into propositional logics, LTL, as well as
TLTL, a natural extension of LTL for the formulation of real-time constraints
[RS97]. D’Souza has shown [D’S03] that TLTL corresponds exactly to the first-
order fragment of monadic second order logic interpreted over timed words. This
resembles the correspondence of LTL and first-order logic over words, shown by
Kamp [Kam68]. However, LTL is strictly less expressive than second-order logic
over words, which is expressively equivalent to ω-regular expressions. This im-
plies that full support of regular expressions is not possible when LTL properties
are in question (see Figure 1).

LTL PastLTL

Prop. Logic

TLTL

FO

FOec
MSOec

MSO

RExp

RExp(*)

Fig. 1. Relationships between propositional, first-order, and temporal logics

For practitioners, regular expressions are an established formalism, often used
to specify custom search-patterns. Therefore, Salt provides support for simpli-
fied regular expressions that do not go beyond star-free languages (where “star”
refers to the Kleene operator) and that can be efficiently translated into LTL.

762 A. Bauer, M. Leucker, and J. Streit

The design of the language Salt also follows a strictly layered approach (see
Section 3), in that the language supports specifications that can be translated
into either formalism depicted in Figure 1. More so, by reflecting and differen-
tiating between the different levels of expressiveness in the language, Salt is
extensible to support other logics in the future as well.

3 Features of the SALT Language

A Salt specification contains one or many assertions that together formulate the
requirements associated with a system under scrutiny. Each assertion is trans-
lated into a separate LTL /TLTL formula, which can then be used in, say, a model
checker or a runtime verification framework. Salt uses mainly textual operators,
so that the frequently used LTL formula �(p→ ♦q) would be written as

assert always (p implies eventually q).

Basically, the Salt language consists of the following three layers, each cov-
ering different aspects of the specification:

– The propositional layer provides the atomic, boolean propositions as well as
the well-known boolean operators.

– The temporal layer encapsulates the main features of the Salt language
for specifying temporal system properties. The layer is divided into a future
fragment and a symmetrical past fragment.

– The timed layer adds real-time constraints to the language. It is equally
divided into a future and a past fragment, similar to the temporal layer.

Within each layer, macros and parameterised expressions can be defined and
instantiated by iteration operators, enlarging the expressiveness of each layer
into the orthogonal dimension of functions.

Depending on which layers are used for specification, the Salt compiler gen-
erates either LTL or TLTL formulas (resp. with or without past operators). For
instance, if only operators from the propositional layer are used, the resulting
formulas are purely propositional formulas. If only operators from the temporal
and the propositional layer are used, the resulting formulas are LTL formulas,
whereas if the timed layer is used, the resulting formulas are TLTL formulas.

3.1 Propositional Layer

Atomic propositions. Boolean propositions are the atomic elements from
which Salt expressions are built. They usually resemble variables, signals, or
complete expressions of the system under scrutiny. Salt is parameterised with
respect to the propositional layer: any term that evaluates to either true or false
can be used as atomic proposition. This allows, for example, propositions to be
Java expressions when used for runtime verification of Java programs, or, sim-
ple bit-vectors when Salt is used as front end to verification tools like SMV
[McM92].

SALT—Structured Assertion Language for Temporal Logic 763

Usually, every identifier that is used in the specification and that was not
defined as a macro or a formal parameter is treated as an atomic proposition,
which means that it appears in the output as it has been written in the speci-
fication. Additionally, arbitrary strings can be used as atomic propositions. For
example,

assert always "state!=ERROR"

is a valid Salt specification and results in the output (here, in SMV syntax)

LTLSPEC G state!=ERROR.

However, the Salt compiler can also be called with a customized parser pro-
vided as a command line parameter, which is then used to perform additional
checks on the syntactic structure of the propositions thus, making the use of
structured propositions more reliable.

Boolean operators. The well-known set of boolean operators ¬, ∧, ∨, → and
↔ can be used in Salt both as symbols (!, &, |, ->, <->), or as textual operators
(not, and, or, implies, equals).

Additionally, the conditional operators if-then and if-then-else can be
used, which appear similarly also in the ForSpec language. Conditional opera-
tors tend to make specifications easier to read, because if-then-else constructs
are familiar to programmers of almost every language. Using this operator, the
introductory example could be reformulated as

assert always (if p then eventually q).

More so, any such formula can be arbitrarily combined using the boolean con-
nectives.

3.2 Temporal Layer

The temporal layer consists of a future and a past fragment. Although past
operators do not add expressiveness [GPSS80], they can help to write formulas
that are easier to understand and more efficient for processing [Mar03].

In the following, we concentrate on the future fragment of Salt. The past
fragment is, however, completely symmetrical. Salt’s future operators are trans-
lated using only LTL future operators, and past operators are translated using
only LTL past operators. This leaves users the complete freedom as to whether
they do or do not want to have past operators in the result.

Standard LTL operators. Salt provides the common LTL operators U, W, R,
�, ♦ and ◦, written as until, until weak, releases, always, eventually, and
next. Thus, untimed Salt has the same expressiveness as LTL (see Section 2.2).

Extended operators. Similar to Sugar/PSL, Salt also provides a number of
extended operators that help express frequently used requirements.

764 A. Bauer, M. Leucker, and J. Streit

– never. The never operator is dual to always and requires that a formula
never holds. While this could of course be easily expressed with the stan-
dard LTL operators, using never can help to make specifications easier to
understand.

– Extended until. Salt provides an extended version of the LTL U operator.
The user can specify whether they want it to be exclusive (i. e., in ϕ U ψ,
ϕ has to hold until the moment ψ occurs) or inclusive (i. e., ϕ has to hold
until and during the moment ψ occurs) 1

They can also choose whether the end condition is required (i. e., must even-
tually occur), weak (i. e., may or may not occur), or optional (i. e., the ex-
pression is only considered if the end condition eventually occurs).
The until operator family of Sugar/PSL provides a similar choice between
inclusive/exclusive and weak/strong end conditions.

– Extended next. Instead of writing long chains of next operators, Salt users
can specify directly that they want a formula to hold at a certain step in the
future. It is also possible to use the extended next operator with an interval,
e. g., specifying that a formula has to hold at some time between 3 and 6
steps in the future. Note that this operator refers only to states at certain
positions in the sequence, not to real-time constraints.

Counting quantifiers. Salt provides two operators, occurring and holding,
that allow to specify that an event has to occur a certain number of times.
occurring deals with events that may last more than one step and are separated
by one or more steps in which the condition does not hold. holding considers
single steps in which a condition holds. Both operators can also be used with
an interval, e. g., expressing the fact that an event has to occur at most 2 times
in the future. To express this requirement manually in LTL, one would have to
write

¬p W (p W (¬p W (p W �¬p))).

The corresponding Salt specification is written as

assert occurring[<=2] p.

Exceptions. Salt includes the exception operators rejecton and accepton
that interrupt the evaluation of a formula upon occurrence of an abort condition.
rejecton evaluates a formula to false if the abort condition occurs and the
formula has not been accepted before. For example, monitoring a formula ♦ϕ
when there has been no occurrence of ϕ yet would evaluate to false. The dual
operator, accepton, evaluates a formula to true if it has not been rejected before.

1 This has nothing to do with strict or non-strict U: strictness refers to whether the
present state (i. e., the left end of the interval where ϕ is required to hold) is included
or not in the evaluation, while inclusive/exclusive defines whether ϕ has to hold in
the state where ψ occurs (i. e., the right end of the interval). Strict Salt operators
can be created by adding a preceding next-operator.

SALT—Structured Assertion Language for Temporal Logic 765

Exceptions can be useful, for example, when specifying a communication pro-
tocol that requires certain messages to be sent, but allows to abort the com-
munication at any time by sending a reset message. This would be expressed in
Salt as

assert (con_open and next (data until con_close))
accepton

reset .

Similar rejecton and accepton operators can be found in ForSpec and in
PSL. The formal semantics of LTL enriched with those two operators (called
Reset-LTL) is explored in detail elsewhere [ABKV03].

Scope operators. Many temporal specifications use requirements restricted
to a certain scope, i. e., they state that the requirement has to hold only before,
after, or between some events, and not on the whole sequence [DAC99]. This can
be expressed in Salt using the operators upto (or before), from (or after) and
between.

Figure 2 illustrates scopes. It should be clear from the figure that it is manda-
tory in Salt to specify whether the delimiting events are part of the interval
(i. e., inclusive) or not (i. e., exclusive).

Fig. 2. Scopes of upto, from and between

Furthermore, for scope operators, it has to be stated whether the occurrence of
the delimiting events is strictly required. For example, the following specification

assert p
between inclusive optional call ,

inclusive optional answer

766 A. Bauer, M. Leucker, and J. Streit

means that p has to hold within the interval delimited by call and answer,
provided such an interval exists. Without the keyword optional, such an interval
would be required and within this interval, p must occur.

Scopes have been identified by Dwyer et al. as an important issue in the specifi-
cation pattern system, and the Bandera language. However, their pattern system
is restricted to predefined requirements. It does not allow nested scopes, and by
default only certain combinations of inclusive/exclusive and required/optional
delimiters. Some—but by far not all—scopes can also be expressed in Sugar/PSL
using the next event and before operators. Salt’s distinguishing feature here
is that scope operators can be used with arbitrary formulas, even with nested
scope operators.

While it is possible to implement a translation of the from operator into LTL
relatively straightforward (see Section 4), the upto operator proves to be more
difficult, as can be seen in the following example.

A specification always ϕ upto b expresses that ϕ must always hold until
the occurrence of the end condition b. A näıve translation into LTL would be
ϕ W b. This is in order for a purely propositional ϕ, but might be wrong when
temporal operators are used: Consider for example ϕ := p− > (eventuallys)
yielding the formula (p → ♦s)Wb, intending to say “p should be followed by s
before b”. The sequence pbs is a model for the latter formula, although s occurs
after the end condition b, which clearly violates our intuitions. To meet our intu-
ition, the negated end condition b has to be inserted into the U and ◦ statements
of ϕ in various places, e. g., like this: (p→ (¬b U (¬b∧s))) W b. Dwyer et al. de-
scribe this procedure in the notes of their specification pattern system [DAC99].
It is however a tedious and highly error-prone task if undertaken manually.

Salt supports automatic translation by internally defining a stop operator.
Using stop , the above example can be formulated as ((p → ♦s) stop b)Wb
with stop b expressing that (p → ♦s) shall not take into account states after
the occurrence of b. It is then transformed into an LTL expression in a similar
way as the rejecton and accepton operators. Details can be found in Section 4.

Regular expressions. Regular expressions are well-known to many program-
mers. They provide a convenient way to express complex patterns of events, and
appear also in many specification languages, e. g., such as Sugar/PSL. However,
arbitrary regular languages can be defined using regular expressions, while LTL
only allows to define so-called star-free languages. Thus, regular expressions have
to be restricted in Salt.

Salt regular expressions provide concatenation (;), union (|) and Kleene-star
operators (*), but no complement. The argument of the Kleene-star is required
to be a propositional formula. The advantage of this operator set—in contrast
to the usual operator set for star-free regular expressions, which contains con-
catenation, union and complement—is that it can be translated efficiently into
LTL. We agree with Sugar/PSL, which also provides regular expressions without
a complement operator, that many relevant properties can be expressed conve-
niently without it.

SALT—Structured Assertion Language for Temporal Logic 767

Additionally, Salt provides operators that do not increase the expressive-
ness of its regular expressions, but makes dealing with them more convenient
for users. The overlapping sequence operator : is inspired by Sugar/PSL and
states that one expression follows another one, overlapping in one step. The ?
and + operators (optional expression and repetition at least once) are common
extensions of regular expressions. The * operator extended with a range of nat-
ural numbers allows to specify that an expression has to hold at least, at most,
exactly, or in between n and m times.

Traditional regular expressions match finite sequences. A Salt regular expres-
sion holds on an (infinite) sequence if it matches a finite prefix of the sequence.

With the help of regular expressions, we can rewrite the example using ex-
ception operators as

assert /con_open; data*; con_close/ accepton reset.

3.3 Timed Layer

Salt contains a timed extension that allows the specification of real-time con-
straints. Timed operators are translated into TLTL [RS97, D’S03], a timed vari-
ant of LTL.

Timing constraints in Salt are expressed using the modifier timed[∼], which
can be used together with several untimed Salt operators in order to turn them
into timed operators. ∼ is one of <, <=, =, >=, > for next timed and either < or
<= for all other timed operators.

– next timed[∼ c] ϕ
states that the next occurrence of ϕ is within the time bounds ∼ c. This
corresponds to the operator �∼cϕ in TLTL.

– ϕ until timed[∼ c] ψ
states that ϕ is true until the next occurrence of ψ, and that this occurrence
of ψ is within the time bounds ∼ c. The extended variants of until can be
used as timed operators as well.

– always timed[∼ c] ϕ
states that ϕ must always be true within the time bounds ∼ c.

– never timed[∼ c] ϕ
states that ϕ must never be true within the time bounds ∼ c.

– eventually timed[∼ c] ϕ
states that ϕ must be true at some point within the time bounds ∼ c.

3.4 Macros and Parameterised Expressions

Salt allows user-defined sub-expressions as macros and to parameterise macros
and sub-expressions. Macros can be called in the same way as built-in Salt
operators. Within certain limits, this allows the user to extend the Salt language
using their own operators. For example, the following macro is called in infix
notation:

768 A. Bauer, M. Leucker, and J. Streit

define respondsto(x, y) := y implies eventually x
assert always

(reply respondsto request)

Iteration operators allow to instantiate a parameterised sub-expression or
macro with a list of values provided by the user. For example, the following
specification states that either a or !b or c must hold forever.

assert someof list [a, !b, c] as i in always i

Parameters defined in a macro or an iteration expression can also be used to
parameterise boolean variables, as in the following example, which states that
exactly one of the four variables, state 1, state 2, state 3 and state 4, must
be true.

assert exactlyoneof enumerate[1..4] as i in state_i

Macros can help to make a specification easier to understand, because compli-
cated sub-expressions can be transparently hidden from the user, and accessed
via an intuitive name that explains what the expression actually stands for.
Sub-expressions that are used several times have to be written down only once.

Up to an extent, support for user-defined macros and iteration over param-
eterised expressions is a part of many high-level specification languages, e. g.,
such as Sugar/PSL.

3.5 Example

Let us conclude this section by looking at a slightly longer example showing
most of Salt’s features. The following specification describes an elevator and is
partially based on an example presented by Dwyer et al. [DAC99]: On all three
floors in a building, calling the elevator at floor i implies that it may pass at
most two times at that floor without opening its doors, and that it must finally
open its doors at that floor within 60 seconds.

define max_twice_at_floor_before_open (i) :=
always (occurring[<=2] atfloor_i

between inclusive optional call_i ,
exclusive optional open_i)

define max_60s_before_open(i) :=
always (call_i implies

eventually timed [<=60.0] open_i)

assert allof enumerate[1..3] as floor in
max_twice_at_floor_before_open (floor)

and max_60s_before_open(floor)

Note that the modifiers optional in the between-statement make sure that
atfloor i is only checked provided call i occurs.

SALT—Structured Assertion Language for Temporal Logic 769

4 Semantics

Salt comes with a precisely defined semantics. As outlined in Section 2.2, Salt
can be translated into either LTL or TLTL; the latter only when timed operators
are used in a specification. Therefore, we define the semantics of Salt’s operators
by means of their corresponding LTL or respectively TLTL formulas.

More precisely, we define a translation function T to translate a valid Salt
specification ψ into a temporal logic formula T (ψ), and define that an infinite
word w over a finite alphabet of actions satisfies ψ iff w |= T (ψ) (using the
standard satisfaction relation |= defined for LTL /TLTL [MP95]).

For brevity, we exemplify the translation on a few selected operators only
and refer to the extensive language reference and manual available from Salt’s
homepage at http://salt.in.tum.de/ for the remaining cases.

In what follows, let ψ, ϕ, and ϕ′ denote Salt specifications. Many of Salt’s
operators can be considered as simple syntactic sugaring and are easily translated
to LTL. For example, T (ϕ or ϕ′)) is translated inductively to T (ϕ)∨T (ϕ′). The
operator never is then translated as T (never ϕ) = ¬♦T (ϕ), whereas a weak
inclusive until as in ϕ1 untilinclweak ϕ2 is then defined, for instance, as

T (ϕ1 untilinclweak ϕ2) = T (ϕ1) W (T (ϕ1) ∧ T (ϕ2)).

However, not all Salt operators translate in such a straightforward inductive
manner, since their translation depends on what is defined by the according sub-
formulas occurring in a given expression. To guide the translation process for
such operators, we have introduced an artificial or helper operator, stop, which
is inductively defined as follows:

T (b stopexcl s) = b

T ((¬ϕ) stopexcl s) = ¬T (ϕ stopexcl s)

T ((ϕ ∧ ψ) stopexcl s) = T (ϕ stopexcl s) ∧ T (ψ stopexcl s)

T ((ϕ ∨ ψ) stopexcl s) = T (ϕ stopexcl s) ∨ T (ψ stopexcl s)

T ((ϕ U ψ) stopexcl s) = (¬s ∧ T (ϕ stopexcl s)) U (¬s ∧ T (ψ stopexcl s))

T ((ϕ W ψ) stopexcl s) = T (ϕ stopexcl s) W (s ∨ T (ψ stopexcl s))

T ((◦ϕ) stopexcl s) = ◦(¬s ∧ T (ϕ stopexcl s))

T ((◦W ϕ) stopexcl s) = ◦(s ∨ T (ϕ stopexcl s))

T ((�ϕ) stopexcl s) = T (ϕ stopexcl s) W s

T ((♦ϕ) stopexcl s) = (¬s) U (¬s ∧ T (ϕ stopexcl s))

where b denotes an atomic proposition from the action alphabet and s an arbi-
trary formula, possibly atomic also.

Thus, stop selects certain aspects of a formula, and in ψ ≡ ϕ1 stop ϕ2,
intuitively asserts that the validity of ψ does not depend on events occurring
after ϕ2 has occurred. Again, for brevity, we consider only the exclusive variant of

770 A. Bauer, M. Leucker, and J. Streit

stop and only for the future fragment of Salt. The past fragment and inclusive
semantics, however, are each symmetrical.

The more complicated scope operator upto, which was discussed earlier in
Section 3.2, and whose translation depends on stop, is then defined as:

T (ϕ upto excl req b) =
if T (ϕ) = �ψ: (ψ stopexcl b) U b
if T (ϕ) = ¬♦ψ: (¬ψ stopexcl b) U b
else: (♦b) ∧ (T (ϕ) stopexcl b)

T (ϕ upto excl opt b) =
if T (ϕ) = ♦ψ: ¬((¬ψ stopexcl b) U b)
else: (♦b)→ (T (ϕ) stopexcl b)

T (ϕ upto excl weak b) = (T (ϕ) stopexcl b)

T (req ϕ upto excl req b) =
if T (ϕ) = �ψ: ¬b ∧ ((ψ stopexcl b) U b)
if T (ϕ) = ¬♦ψ: ¬b ∧ ((¬ψ stopexcl b) U b)
else: (♦b) ∧ ¬b ∧ (T (ϕ) stopexcl b)

T (req ϕ upto excl opt b) =
if T (ϕ) = ♦ψ: ¬((¬ψ stopexcl b) U b)
else: (♦b)→ (¬b ∧ (T (ϕ) stopexcl b))

T (req ϕ upto excl weak b) = ¬b ∧ (T (ϕ) stopexcl b)

T (weak ϕ upto excl req b) =
if T (ϕ) = �ψ: (ψ stopexcl b) U b
if T (ϕ) = ¬♦ψ: (¬ψ stopexcl b) U b
else: (♦b) ∧ (b ∨ (T (ϕ) stopexcl b))

T (weak ϕ upto excl opt b) =
if T (ϕ) = ♦ψ: b ∨ ¬((¬ψ stopexcl b) U b)
else: (♦b)→ (b ∨ (T (ϕ) stopexcl b))

T (weak ϕ upto excl weak b) = b ∨ (T (ϕ) stopexcl b)

T (ϕ upto incl req b) = (♦b) ∧ (T (ϕ) stopincl b)

T (ϕ upto incl opt b) = (♦b)→ (T (ϕ) stopincl b)

T (ϕ upto incl weak b) =
if T (ϕ) = �ψ: ¬(¬b U ¬(ψ stopincl b))
if T (ϕ) = ¬♦ψ: ¬(¬b U (ψ stopincl b))
else: (T (ϕ) stopincl b)

where, of course, stopexcl and stopincl are references to the exclusive and
inclusive variants of stop, respectively.

Similar translation schemes are defined for Salt’s exception operators, i. e.,
accepton and rejecton. Those and the remaining operators’ semantics are de-
tailed in the Salt language reference and manual.

SALT—Structured Assertion Language for Temporal Logic 771

5 Realisation and Results

We have implemented our concepts in terms of a compiler for the Salt lan-
guage. The compiler front end is currently implemented in Java, while its back
end, which also optimises specifications for size, is realised via the functional
programming language Haskell.

5.1 The SALT Compiler

Basically, the compiler’s input is a Salt specification and its output a temporal
logic formula. Like with programming languages, compilation of Salt is done
in several stages. First, user-defined macros, counting quantifiers and iteration
operators are expanded to expressions using only a core set of Salt operators.
Then, the Salt operators are replaced by expressions in the subset Salt--, which
contains the full expressiveness of LTL /TLTL as well as exception handling
and stop operators. The translation from Salt-- into LTL /TLTL is treated as
a separate step since it requires weaving the abort conditions into the whole
subexpression. The result is an LTL /TLTL formula in form of an abstract
syntax tree that is transformed easily into concrete syntax via a so-called printing
function. Currently, we provide printing functions for SMV [McM92] and SPIN
[Hol97] syntax, but the users can easily provide additional printing functions to
support their tool of choice.

The use of optimised, context-dependent translation patterns as well as a
final optimisation step performing local changes also help reducing the size of
the generated formulas.

5.2 Experimental Results

As the time required for model checking depends exponentially on the size of the
formula to check, efficiency was an important issue for the development of Salt
and its compiler. One might suspect that generated formulas are bigger and less
efficient to check than handwritten ones. But our experiments show that this is
not the case.

In order to quantify the efficiency of the Salt compiler, existing LTL formulas
were compared to the formulas generated by the compiler from a corresponding
Salt specification. This was done for two data sets: the specification pattern
system [DAC99] (50 specifications) and a collection of real-world example spec-
ifications, mostly from the Dwyer’s et al.’s survey data [DAC99] (26 specifica-
tions). The increase or decrease of the formula was measured using the following
parameters:

BA [Fri]: Number of states of the Büchi automaton (BA) generated using the
algorithm proposed by Fritz [Fri03], which is one of the best currently known.
This is probably the most significant parameter, as a BA is usually used for
model checking, and the duration of the verification process depends highly
on the size of this automaton.

772 A. Bauer, M. Leucker, and J. Streit

BA [Odd]: Number of states of the BA generated using the algorithm proposed
by Oddoux [GO01].

U: Number of U, R, � and ♦ in the formula.
X: Number of ◦ in the formula.
Boolean: Number of boolean leafs, i. e., variable references and constants. This

is a good parameter for estimating the length of the formula.

The results can be seen in Figure 3. The formulas generated by the Salt com-
piler contain a greater number of boolean leafs, but use less temporal operators
and, therefore, also yield a smaller BA. The error markers in the figure indicate
the simple standard error of the mean.

-30%

-25%

-20%

-15%

-10%

-5%

+0%

+5%

+10%

+15%

+20%

D
ec

re
as

e
/ I

n
cr

ea
se

BA [Fri] BA [Odd] U X Boolean

Specification Patterns

-30%

-25%

-20%

-15%

-10%

-5%

+0%

+5%

+10%

+15%

+20%

D
ec

re
as

e
/ I

n
cr

ea
se

BA [Fri] BA [Odd] U X Boolean

Example Specifications

Fig. 3. Size of generated formulas

Discussion. Using Salt for writing specifications does not deprave model check-
ing efficiency. On the contrary, one can observe that it often leads to more suc-
cinct formulas.

The reason for this result is that Salt performs a number of optimisations.
For instance, when translating a formula of the form ϕWψ, the compiler can
choose between the two equivalent expressions

¬(¬ψ U (¬ϕ ∧ ¬ψ)) and (ϕ U ψ) ∨�ϕ.

While the first expression duplicates ψ in the resulting formula, the second ex-
pression duplicates ϕ, and introduces a new temporal operator. In most cases,
the first expression, which is less intuitive for humans, yields better technical
results.

Another equivalence utilised by the compiler is: �(ϕ W ψ) ⇐⇒ �(ϕ ∨ ψ).
With ϕ W ψ being equivalent to (ϕ U ψ) ∨ �ϕ, the left hand side reads as
�((ϕ U ψ) ∨ �ϕ). When ϕ and ψ are propositions, this expression results in a
BA with four states (using the algorithm proposed by Fritz [Fri03]). �(ϕ ∨ ψ),
however, is translated into a BA with only a single state.

Of course, the benefit obtained from using the Salt approach is of no principle
nature: The rewriting of LTL formulas could be done without having Salt as a
high-level language. What is more, given an LTL-to-BA translator that produces

SALT—Structured Assertion Language for Temporal Logic 773

a minimal BA for the language defined by a given formula, no optimisations on
the formula level would be required, and such a translation function exists—
at least theoretically.2 Nevertheless, the high abstraction level realised by Salt
makes the mentioned optimisations easily possible, and produces BAs that are
smaller than without such optimisations—despite the fact that today’s LTL-to-
BA translators already perform many optimisations.

6 Conclusions

In this paper we presented Salt, a high-level extensible specification and as-
sertion language for temporal logic. It is designed for intuitive usage for both
verification experts as well as more practically oriented system engineers.

The development of Salt originates mainly from difficulties we faced in our
industrial cooperations, when trying to apply and transfer certain state-of-the-
art verification methods into industrial practice. But also within our academic
cooperations (see, e. g., [BKKS05]), we have learned that LTL is often difficult
to use for a typical software engineer.

Salt aims to ease some of these problems by introducing on the one hand
side a higher level of abstraction for the specification of temporal assertions. This
makes specifications easier to understand and more convenient to express for its
users. At the same time, Salt is designed to look and feel like a programming
language to be easily accessible to software engineers.

Our experimental results have shown that the higher level of abstraction does
not result in an efficiency penalty, as compiled specifications are often consider-
ably smaller than manually-written ones.

We have integrated Salt into AutoFocus [HSSS96], a modelling and ver-
ification tool used within several industrial cooperations, and first reactions of
AutoFocus users are very promising.

Salt as presented in this paper is ready to use and we invite the reader to
explore it in-depth via its interactive web interface at http://salt.in.tum.de/.

References

[ABKV03] R. Armoni, D. Bustan, O. Kupferman, and M. Y. Vardi. Resets vs.
aborts in linear temporal logic. In International Conference on Tools
and Algorithms for Construction and Analysis of Systems, pages 65–80.
Springer, 2003.

[AFF+02] Roy Armoni, Limor Fix, Alon Flaisher, Rob Gerth, Boris Ginsburg,
Tomer Kanza, Avner Landver, Sela Mador-Haim, Eli Singerman, An-
dreas Tiemeyer, Moshe Y. Vardi, and Yael Zbar. The ForSpec temporal
logic: A new temporal property-specification language. In Tools and Al-
gorithms for Construction and Analysis of Systems, pages 296–211, 2002.

2 As the class of BAs is enumerable and language equivalence of two BAs decidable, it
is possible to enumerate the class of BAs ordered by size and take the first one that
is equivalent to the one to be minimised. Clearly, such an approach is not feasible
in practice—and feasible minimisation procedures are hard to achieve.

774 A. Bauer, M. Leucker, and J. Streit

[BBDE+01] Ilan Beer, Shoham Ben-David, Cindy Eisner, Dana Fisman, Anna
Gringauze, and Yoav Rodeh. The temporal logic Sugar. In Proceed-
ings of the 13th International Conference on Computer Aided Verification
(CAV), pages 363–367, London, UK, 2001. Springer.

[BGHS04] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime
verification. In Fifth International Conference on Verification, Model
Checking and Abstract Interpretation, 2004.

[BKKS05] J. Botaschanjan, L. Kof, C. Kühnel, and M. Spichkova. Towards Verified
Automotive Software. In ACM Press, editor, Proceedings of the 2nd
International ICSE Workshop on Automotive Software. ACM, New York,
May 2005.

[CDHR01] James Corbett, Matthew Dwyer, John Hatcliff, and Robby. Express-
ing checkable properties of dynamic systems: The Bandera specification
language. Technical Report 04, Kansas State University, Department of
Computing and Information Sciences, 2001.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Check-
ing. The MIT Press, Cambridge, Massachusetts, 1999.

[CHR91] Zhou ChaoChen, Tony Hoare, and Anders P. Ravn. A calculus of dura-
tions. Information Processing Letters, 40(5):269–276, 1991.

[DAC99] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns
in property specifications for finite-state verification. In Proceedings of
the 21st International Conference on Software Engineering, 1999.

[DDH72] O.J. Dahl, E.W. Dijkstra, and C.A.R. Hoare. Structured Programming.
Academic Press, London, 1972.

[D’S03] Deepak D’Souza. A logical characterisation of event clock automata.
International Journal of Foundations of Computer Science (IJFCS),
14(4):625–639, August 2003.

[FMW05] Harry Foster, Erisch Marschner, and Yaron Wolfsthal. IEEE 1850 PSL:
The next generation. In DVCon, 2005.

[Fri03] Carsten Fritz. Constructing Büchi automata from linear temporal logic
using simulation relations for alternating Büchi automata. In Oscar H.
Ibarra and Zhe Dang, editors, Implementation and Application of Au-
tomata. Eighth International Conference (CIAA), volume 2759 of Lec-
ture Notes in Computer Science, pages 35–48, Santa Barbara, CA, USA,
2003.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[GO01] Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata translation.
In Proceedings of the 13th International Conference on Computer Aided
Verification (CAV), pages 53–65, London, UK, 2001. Springer.

[GPSS80] Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the
temporal analysis of fairness. In Proceedings of the 7th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages (POPL),
pages 163–173, New York, NY, USA, 1980. ACM Press.

[Hol97] Gerard J. Holzmann. The model checker Spin. IEEE Trans. on Software
Engineering, 23:279–295, May 1997.

[HSSS96] Franz Huber, Bernhard Schatz, Alexander Schmidt, and Katharina Spies.
AutoFocus: A tool for distributed systems specification. In Proceedings
of Formal Techniques in Real-Time and Fault Tolerant Systems, pages
467–470. Springer, 1996.

SALT—Structured Assertion Language for Temporal Logic 775

[Kam68] Johan Anthony Willem Kamp. Tense Logic and the Theory of Linear
Order. PhD thesis, University of California, Los Angeles, 1968.

[Mar03] Nicolas Markey. Temporal logic with past is exponentially more succinct,
concurrency column. Bulletin of the EATCS, 79:122–128, 2003.

[McM92] K. L. McMillan. The SMV system, symbolic model checking - an ap-
proach. Technical Report CMU-CS-92-131, Carnegie Mellon University,
1992.

[MP95] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Sys-
tems. Springer, New York, 1995.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th
IEEE Symposium on the Foundations of Computer Science (FOCS-77),
pages 46–57, Providence, Rhode Island, October 31–November 2 1977.
IEEE Computer Society Press.

[RS97] Jean-François Raskin and Pierre-Yves Schobbens. State clock logic: A
decidable real-time logic. In Oded Maler, editor, HART, volume 1201 of
Lecture Notes in Computer Science, pages 33–47. Springer, 1997.

[TS05] T. Tuerk and K. Schneider. From PSL to LTL: A formal validation in
HOL. In Theorem Proving in Higher Order Logic (TPHOL), Lecture
Notes in Computer Science, Oxford, UK, 2005. Springer.

Author Index

Abreu, João 494
Abrial, Jean-Raymond 588
Affeldt, Reynald 400
Ansari, Sepand 478
Attiogbé, J. Christian 660

Bauer, Andreas 757
Beckert, Bernhard 55
Beuster, Gerd 55
Bhatnagar, Abhishek 606
Boyer, Marc 360
Butler, Michael 588

Cai, Chao 264
Carrington, David 568
Cavalcanti, Ana 697
Chen, Chunqing 74
Chen, Feng 717
Chen, Jessica 460
Courtiat, Jean-Pierre 360
Creager, Douglas A. 304

d’Amorim, Marcelo 549
de Saqui-Sannes, Pierre 360
Derrick, John 678
Dimovski, Aleksandar 529
Ding, Xiaoning 168
Dong, Jin Song 74, 226, 342
Dongol, Brijesh 284
Duan, Lihua 460

Emerson, Allen E. 94

Freitas, Leo 697
Futatsugi, Kokichi 114

Galloway, Andy 35

Hallerstede, Stefan 588
Hao, Ping 342
Hayes, Ian J. 380
He, Jifeng 246
Hu, Jun 206
Huang, Tao 168

Jacobs, Bart 420
Jin, Zhi 185

Kim, Soon-Kyeong 568
Kong, Weiqiang 114

Lazić, Ranko 529
Leavens, Gary T. 2
Leucker, Martin 757
Li, Jing 246
Li, Xuandong 206
Liu, Lin 185
Liu, Yang 226
Long, Quan 440
Lopes, Antónia 494

Marinov, Darko 549
Marti, Nicolas 400
McComb, Tim 621
McDermid, John 35
Meenakshi, B. 606
Meinicke, Larissa 380

Nakano, Masahiro 114
North, Siobhán 678
Nunes, Isabel 494

Ogata, Kazuhiro 114

Petre, Luigia 639
Piessens, Frank 420
Plosila, Juha 737
Pu, Geguang 246, 264

Qiu, Zongyan 264, 440

Reis, Lúıs S. 494
Roscoe, A.W. 324
Roy, Sudeepa 606

Sadani, Tarek 360
Schulte, Wolfram 420, 717
Sere, Kaisa 639
Simons, Tony 678
Simpson, Andrew C. 304

778 Author Index

Sirjani, Marjan 478
Smans, Jan 420
Sobeih, Ahmed 549
Streit, Jonathan 757
Sun, Jun 226, 342

Tasharofi, Samira 478
Tillmann, Nikolai 717
Trčka, Nikola 132
Trefler, Richard J. 94

Vasconcelos, Vasco 494
Voisin, Laurent 588

Wahl, Thomas 94
Waldén, Marina 639
Wang, Ji 149
Wang, Puwei 185
Wehrheim, Heike 514

Wei, Jun 168
Westerlund, Tomi 737
Wildman, Luke 621
Woodcock, Jim 697
Wu, Z. 324

Yang, Hongli 264
Yang, Xuejun 149
Yi, Xiaodong 149
Yonezawa, Akinori 400
Yu, Xiaofeng 206

Zhang, Tian 206
Zhang, Xian 226, 342
Zhang, Yan 206
Zhao, Xiangpeng 264, 440
Zheng, Guoliang 206
Zhou, Chaochen 1
Zhu, Huibiao 246

	Frontmatter
	Keynote Talks
	Program Verification Through Computer Algebra
	JML's Rich, Inherited Specifications for Behavioral Subtypes
	Three Perspectives in Formal Engineering

	Specification and Verification
	A Method for Formalizing, Analyzing, and Verifying Secure User Interfaces
	Applying Timed Interval Calculus to Simulink Diagrams
	Reducing Model Checking of the Few to the One
	Induction-Guided Falsification
	Verifying χ Models of Industrial Systems with {\sc Spin}
	Stateful Dynamic Partial-Order Reduction

	Internetware and Web-Based Systems
	User-Defined Atomicity Constraint: A More Flexible Transaction Model for Reliable Service Composition
	Environment Ontology-Based Capability Specification for Web Service Discovery
	Scenario-Based Component Behavior Derivation
	Verification of Computation Orchestration Via Timed Automata
	Towards the Semantics for Web Service Choreography Description Language
	Type Checking Choreography Description Language

	Concurrent, Communicating, Timing and Probabilistic Systems
	Formalising Progress Properties of Non-blocking Programs
	Towards a Fully Generic Theory of Data
	Verifying Statemate Statecharts Using CSP and FDR
	A Reasoning Method for Timed CSP Based on Constraint Solving
	Mapping RT-LOTOS Specifications into Time Petri Nets
	Reasoning Algebraically About Probabilistic Loops

	Object and Component Orientation
	Formal Verification of the Heap Manager of an Operating System Using Separation Logic
	A Statically Verifiable Programming Model for Concurrent Object-Oriented Programs
	Model Checking Dynamic UML Consistency

	Testing and Model Checking
	Conditions for Avoiding Controllability Problems in Distributed Testing
	Generating Test Cases for Constraint Automata by Genetic Symbiosis Algorithm
	Checking the Conformance of Java Classes Against Algebraic Specifications
	Incremental Slicing
	Assume-Guarantee Software Verification Based on Game Semantics
	Optimized Execution of Deterministic Blocks in Java PathFinder

	Tools
	A Tool for a Formal Pattern Modeling Language
	An Open Extensible Tool Environment for Event-B
	Tool for Translating Simulink Models into Input Language of a Model Checker

	Fault-Tolerance and Security
	Verifying Abstract Information Flow Properties in Fault Tolerant Security Devices
	A Language for Modeling Network Availability
	Multi-process Systems Analysis Using Event B: Application to Group Communication Systems

	Specification and Refinement
	Issues in Implementing a Model Checker for Z
	Taking Our Own Medicine: Applying the Refinement Calculus to State-Rich Refinement Model Checking
	Discovering Likely Method Specifications
	Time Aware Modelling and Analysis of Multiclocked VLSI Systems
	SALT---Structured Assertion Language for Temporal Logic

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

