

Lecture Notes in Computer Science 4215
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

David W. Embley Antoni Olivé
Sudha Ram (Eds.)

Conceptual
Modeling – ER 2006

25th International Conference on Conceptual Modeling
Tucson, AZ, USA, November 6-9, 2006
Proceedings

13

Volume Editors

David W. Embley
Brigham Young University, Department of Computer Science
Provo, UT 84602, USA
E-mail: embley@cs.byu.edu

Antoni Olivé
Universitat Politècnica Catalunya
Campus Nord, Omega, 131, 08034 Barcelona, Catalonia, Spain
E-mail: olive@lsi.upc.edu

Sudha Ram
University of Arizona, Eller College of Management
Department of MIS, Tucson, AZ 85721, USA
E-mail: ram@eller.arizona.edu

Library of Congress Control Number: 2006934203

CR Subject Classification (1998): H.2, H.4, F.4.1, I.2.4, H.1, J.1, D.2, C.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-47224-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-47224-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11901181 06/3142 5 4 3 2 1 0

Preface

Conceptual modeling has long been recognized as the primary means to enable soft-
ware development in information systems and data engineering. Nowadays, concep-
tual modeling has become fundamental to any domain in which organizations have
to cope with complex, real-world systems. Conceptual modeling fosters communica-
tion between information systems developers and end-users, and it has become a key
mechanism for understanding and representing computing systems and environments
of all kinds, including the new e-applications and the information systems that support
them.

The International Conference on Conceptual Modeling provides the premiere fo-
rum for presenting and discussing current research and applications in which the ma-
jor emphasis is on conceptual modeling. Topics of interest span the entire spectrum of
conceptual modeling including research and practice in areas such as theories of con-
cepts and ontologies underlying conceptual modeling, methods and tools for develop-
ing and communicating conceptual models, and techniques for transforming concep-
tual models into effective implementations. Moreover, new areas of conceptual model-
ing broaden its application to include interdependencies with knowledge-based, logi-
cal, linguistic, and philosophical theories and approaches. The conference also makes
major strides in fostering collaboration and exchange between academia and industry.

In this year’s conference, research papers focused on XML, Web services, business
modeling, conceptual modeling applied to human-computer interaction, quality in
conceptual modeling, conceptual modeling applied to interoperability, requirements
modeling, reasoning, the Semantic Web, and metadata management. The call for
papers attracted 158 research papers, whose authors represent 27 different countries.
The Program Committee accepted 37, for an acceptance rate of 23.4%. The authors
of accepted papers come from 19 different countries.

This year, the conference celebrated its silver anniversary. In honor of 25 years of
successful conferences, its founder, Peter Chen, gave the opening keynote address.
The conference also featured two additional keynote addresses, 37 research papers,
six industrial presentations, seven workshops (with a total of 42 additional research
papers), five demos/posters, two panel sessions, and four tutorials.

We appreciate the hard work of the Program Committee and the external referees,
who generously spent their time and energy reviewing submitted papers. Almost all of
the 474 reviews for the 158 research papers were received, amazingly leaving only a
handful for the PC chairs to do. We thank the authors who wrote high-quality re-
search papers, and the many others who participated in the workshops, tutorials, pan-
els, poster and demo sessions, industrial presentations, and keynote presentations. We
also wish to express our sincere appreciation for the sponsorships obtained
by Mohan Tanniru and Mike Grieves. Our Publicity Chair and Webmaster Huimin did
a wonderful job of keeping the Web site updated promptly and publicizing the con-
ference. Thanks are also due to Akhilesh Bajaj and Ramesh Venkataraman for orga-
nizing the demos and posters, and Len Seligman and Arnie Rosenthal for the industry

 Preface VI

track presentations. We thank John Roddick, who diligently took care of organizing
the tutorials, Keng Siau and Uday Kulkarni for selecting the panels, and Bernhard
Thalheim for acting as the ER Steering Committee liaison. Thanks are also due to the
doctoral students from the University of Arizona who helped with various arrange-
ments for the conference. Finally, our heartfelt thanks to Anji Seigel for taking care of
registration, all local arrangements, and a myriad of other details without which the
conference would not have been successful.

November 2006 David W. Embley
 Antoni Olive

 Sudha Ram

ER 2006 Conference Organization

Honorary Conference Chair

Peter Chen Louisiana State University, USA

General Conference Co-chairs

Sudha Ram University of Arizona, USA
Mohan R. Tanniru University of Arizona, USA

Scientific Program Co-chairs

David W. Embley Brigham Young University, USA
Antoni Olivé Universitat Politècnica de Catalunya, Spain

Panels Co-chairs

Uday Kulkarni Arizona State University, USA
Keng Siau University of Nebraska,Lincoln, USA

Industrial Co-chairs

Arnie Rosenthal Mitre Corporation, USA
Len Seligman Mitre Corporation, USA

Tutorial and Workshop Chair

John Roddick Flinders University, Australia

Demos and Posters Co-chairs

Akhilesh Bajaj University of Tulsa, USA
Ramesh Venkataraman Indiana University, USA

Steering Committee Liaison

Bernhard Thalheim, Christian-Albrechts-Universität zu Kiel, Germany

Publicity Chair and Webmaster

Huimin (Min) Zhao University of Wisconsin-Milwaukee, USA

Local Arrangements and Registration

Anji Siegel University of Arizona, USA

 Organization VIII

Program Committee

Alberto H. F. Laender Federal University of Minas Gerais, Brazil
Altigran S. da Silva Universidade do Amazonas, Brazil
Arne Solvberg Norwegian Institute of Technology, Norway
Barbara Pernici Politecnico di Milano, Italy
Bernhard Thalheim University of Kiel, Germany
Bogdan Czejdo Loyola University New Orleans, USA
Brian Henderson-Sellers University of Technology, Sydney, Australia
Carlos Heuser Universidade Federal do Rio Grande do Sul, Brazil
Christian S. Jensen Aalborg University, Denmark
Christine Parent University of Lausanne, Switzerland
Colette Rolland University Paris 1 Panthéon-Sorbonne, France
Daniel Schwabe PUC-Rio, Brazil
Debabrata Dey University of Washington, USA
Diego Calvanese Free University of Bozen-Bolzano, Italy
Dirk Draheim Free University of Berlin, Germany
Dongwon Lee The Pennsylvania State University, USA
Ee-Peng Lim Nanyang Technological University, Singapore
Elisa Bertino Purdue University, USA
Elisabeth Metais CEDRIC-CNAM of Paris, France
Ernest Teniente Universitat Politècnica de Catalunya, Spain
Esperanza Marcos Rey Juan Carlos University, Spain
Gill Dobbie University of Auckland, New Zealand
Heinrich C. Mayr University of Klagenfurt, Austria
Il-Yeol Song Drexel University, USA
Jan L.G. Dietz Delft University of Technology, The Netherlands
Jean-Luc Hainaut University of Namur, Belgium
Jeffrey Parsons Memorial University of Newfoundland, Canada
Johann Eder University of Vienna, Austria
John Krogstie NTNU and SINTEF, Norway
John Mylopoulos University of Toronto, Canada
Karen C. Davis University of Cincinnati, USA
Klaus-Dieter Schewe Massey University, New Zealand
Kyu-Young Whang KAIST, Korea
Li Xu University of Arizona South, USA
Ling Liu Georgia Institute of Technology, USA
Lois Delcambre Portland State University, USA
Maria E Orlowska The University of Queensland, Australia
Mario Piattini Universidad de Castilla-La Mancha, Spain
Mengchi Liu Carleton University, Canada
Michael Rosemann Queensland University of Technology, Australia
Motoshi Saeki Tokyo Institute of Technology, Japan
Naveen Prakash JayPee University of Information Technology, India
Nicola Guarino ISTC-CNR, Italy
Oscar Diaz University of the Basque Country, Spain
Oscar Pastor Technical University of Valencia, Spain

 Organization IX

Paolo Atzeni Università Roma Tre, Italy
Paul Johannesson KTH, Sweden
Peretz Shoval Ben-Gurion University, Israel
Peri Loucopoulos The University of Manchester, UK
Peter Scheuermann Northwestern University, USA
Piero Fraternali Politecnico di Milano, Italy
Qing Li City University of Hong Kong, China
Roel Wieringa University of Twente Netherlands
Roger Chiang University of Cincinnati, USA
Salvatore T. March Vanderbilt University, USA
Sandeep Purao Penn State University, USA
S.C. Cheung The Hong Kong University of Sci. and Technology, China
Sham Navathe Georgia Institute of Technology, USA
Shawn Bowers University of California, Davis, USA
Shuigeng Zhou Fudan University, China
Silvana Castano University of Milan, Italy
Sonia Bergamaschi Università di Modena e Reggio Emilia, Italy
Stefan Conrad University of Düsseldorf, Germany
Stefano Ceri Politécnico di Milano, Italy
Stefano Spaccapietra Ecole Polytechnique Fédérale Lausanne, Switzerland
Stephen Clyde Utah State University, USA
Stephen W. Liddle Brigham Young University, USA
Takao Miura Hosei University Japan
Terry Halpin Neumont University, USA
Tetsuo Tamai The University of Tokyo, Japan
Ting-Peng Liang National Sun Yat-sen University, Taiwan
Tony Morgan Northface University, USA
Veda C. Storey Georgia State University, USA
Vijay Khatri Indiana University, USA
Wai Yin Mok University of Alabama in Huntsville, USA
Wilfred Ng The Hong Kong University of Sci. and Technology, China
Yair Wand The University of British Columbia, Canada
Yanchun Zhang Victoria University, Australia
Yasushi Kiyoki Keio University, Japan

External Referees

Alexei Tretiakov Chang Xu
Alfio Ferrara Chong Wang
André Prisco Vargas Christian Kluge
Andrea Calí Christopher Popfinger
Andreas Wombacher Chunyang Ye
Asem Omari Cristian Pérez de Laborda
Baoping Lin Daniel Mellado
Birger Andersson Devis Bianchini
Byron Choi Dolors Costal
César J. Acuña Domenico Beneventano

 Organization X

Emanuele Bottazzi Masayoshi Aritsugi
Englebert Vincent Maurice van Keulen
Fabio Porto Maurizio Vincini
Felix Garcia Michaël Petit
Flavio Ferrarotti Michele Melchiori
Francesco Guerra Ming-Jun Xiao
George Abraham Mireille Samia
Hans Mulder Mirko Orsini
Heymans Patrick Nam Youn Choi
Hui Ma Nuno Valero Ribeiro
James Goldman Ornsiri Thonggoom
Jan Hoogervorst Pascal van Eck
Jan Recker Raimundas Matulevi ius
João Cavalcanti Renata de Matos Galante
Johanna Vompras Ryan Liu
Johannes Maria Zaha Saval Germain
John Horner Sebastian Link
Jonathan Goldstein Sergio Mergen
José María Cavero Shermann S. M. Chan
Juan A. Pereira Stefano Montanelli
Jun Miyazaki Sven Hartmann
Karl Wiggisser Tetsuji Satoh
Ki-Jung Lee Thomas Weishäupl
Laura Po Toshiyuki Amagasa
Le Quang Hieu Valeria de Castro
Marco Brambilla Xiaoling Wang
Marek Lehmann Yanan Hao
Maria Bergholtz Yangfan He
Maria Luisa Damiani Yihong Ding
Martin Op 't Land Yunan Chen

Organized By

Eller College of Management at The University of Arizona

Sponsored By

The ER Institute

In Cooperation With

ACM SIGMIS
ACM SIGMOD

Table of Contents

Keynote Papers

Suggested Research Directions for a New Frontier – Active Conceptual
Modeling . 1

Peter P. Chen

From Conceptual Modeling to Requirements Engineering 5
Colette Rolland

Web Services

A Context Model for Semantic Mediation in Web Services
Composition . 12

Michael Mrissa, Chirine Ghedira, Djamal Benslimane,
Zakaria Maamar

Modeling Service Compatibility with Pi-calculus for Choreography 26
Shuiguang Deng, Zhaohui Wu, Mengchu Zhou, Ying Li, Jian Wu

The DeltaGrid Abstract Execution Model: Service Composition
and Process Interference Handling . 40

Yang Xiao, Susan D. Urban, Ning Liao

Quality in Conceptual Modeling

Evaluating Quality of Conceptual Models Based on User Perceptions 54
Ann Maes, Geert Poels

Representation Theory Versus Workflow Patterns – The Case
of BPMN . 68

Jan Recker, Petia Wohed, Michael Rosemann

Use Case Modeling and Refinement: A Quality-Based Approach 84
Samira Si-said Cherfi, Jacky Akoka, Isabelle Comyn-Wattiau

Aspects of Conceptual Modeling

Ontology with Likeliness and Typicality of Objects in Concepts 98
Ching-man Au Yeung, Ho-fung Leung

XII Table of Contents

In Defense of a Trope-Based Ontology for Conceptual Modeling:
An Example with the Foundations of Attributes, Weak Entities
and Datatypes . 112

Giancarlo Guizzardi, Claudio Masolo, Stefano Borgo

Explicitly Representing Superimposed Information in a Conceptual
Model . 126

Sudarshan Murthy, Lois Delcambre, David Maier

Modeling Advanced Applications

Preference Functional Dependencies for Managing Choices 140
Wilfred Ng

Modeling Visibility in Hierarchical Systems . 155
Debmalya Biswas, K. Vidyasankar

A Model for Anticipatory Event Detection . 168
Qi He, Kuiyu Chang, Ee-Peng Lim

XML

A Framework for Integrating XML Transformations 182
Ce Dong, James Bailey

Oxone: A Scalable Solution for Detecting Superior Quality Deltas
on Ordered Large XML Documents . 196

Erwin Leonardi, Sourav S. Bhowmick

Schema-Mediated Exchange of Temporal XML Data 212
Curtis Dyreson, Richard T. Snodgrass, Faiz Currim, Sabah Currim

A Quantitative Summary of XML Structures . 228
Zi Lin, Bingsheng He, Byron Choi

Semantic Web

Database to Semantic Web Mapping Using RDF Query Languages 241
Cristian Pérez de Laborda, Stefan Conrad

Representing Transitive Propagation in OWL . 255
Julian Seidenberg, Alan Rector

Table of Contents XIII

On Generating Content and Structural Annotated Websites
Using Conceptual Modeling . 267

Sven Casteleyn, Peter Plessers, Olga De Troyer

Requirements Modeling

A More Expressive Softgoal Conceptualization for Quality Requirements
Analysis . 281

Ivan J. Jureta, Stéphane Faulkner, Pierre-Yves Schobbens

Conceptualizing the Co-evolution of Organizations and Information
Systems: An Agent-Oriented Perspective . 296

Ning Su, John Mylopoulos

Towards a Theory of Genericity Based on Government and Binding 311
Alexander Bienemann, Klaus-Dieter Schewe, Bernhard Thalheim

Aspects of Interoperability

Concept Modeling by the Masses: Folksonomy Structure
and Interoperability . 325

Csaba Veres

Method Chunks for Interoperability . 339
Jolita Ralyté, Per Backlund, Harald Kühn, Manfred A. Jeusfeld

Domain Analysis for Supporting Commercial Off-the-Shelf Components
Selection . 354

Claudia Ayala, Xavier Franch

Metadata Management

A Formal Framework for Reasoning on Metadata Based on CWM 371
Xiaofei Zhao, Zhiqiu Huang

A Set of QVT Relations to Assure the Correctness of Data Warehouses
by Using Multidimensional Normal Forms . 385

Jose-Norberto Mazón, Juan Trujillo, Jens Lechtenbörger

Design and Use of ER Repositories: Methodologies and Experiences
in eGovernment Initiatives . 399

Carlo Batini, Daniele Barone, Manuel F. Garasi,
Gianluigi Viscusi

XIV Table of Contents

Human-Computer Interaction

Notes for the Conceptual Design of Interfaces . 413
Simone Santini

The User Interface Is the Conceptual Model . 424
James F. Terwilliger, Lois M.L. Delcambre, Judith Logan

Towards a Holistic Conceptual Modelling-Based Software Development
Process . 437

Sergio España, José Ignacio Panach, Inés Pederiva, Óscar Pastor

Business Modeling

A Multi-perspective Framework for Organizational Patterns 451
Enzo Colombo, John Mylopoulos

Deriving Concepts for Modeling Business Actions . 468
Peter Rittgen

Towards a Reference Ontology for Business Models . 482
Birger Andersson, Maria Bergholtz, Ananda Edirisuriya,
Tharaka Ilayperuma, Paul Johannesson, Jaap Gordijn,
Bertrand Grégoire, Michael Schmitt, Eric Dubois, Sven Abels,
Axel Hahn, Benkt Wangler, Hans Weigand

Reasoning

Reasoning on UML Class Diagrams with OCL Constraints 497
Anna Queralt, Ernest Teniente

On the Use of Association Redefinition in UML Class Diagrams 513
Dolors Costal, Cristina Gómez

Optimising Abstract Object-Oriented Database Schemas 528
Joachim Biskup, Ralf Menzel

Panels

Experimental Research on Conceptual Modeling: What Should We Be
Doing and Why? . 544

Geert Poels, Andrew Burton-Jones, Andrew Gemino,
Jeffrey Parsons, V. Ramesh

Table of Contents XV

Eliciting Data Semantics Via Top-Down and Bottom-Up Approaches:
Challenges and Opportunities . 548

Lois Delcambre, Vijay Khatri, Yair Wand, Barbara Williams,
Carson Woo, Mark Zozulia

Industrial Track

The ADO.NET Entity Framework: Making the Conceptual Level
Real . 552

José A. Blakeley, S. Muralidhar, Anil Nori

XMeta Repository and Services . 566
Lee Scheffler

IBM Industry Models: Experience, Management and Challenges 567
Pat G. O’Sullivan, Dan Wolfson

Community Semantics for Ultra-Scale Information Management 568
Scott Renner

Managing Data in High Throughput Laboratories: An Experience
Report from Proteomics . 569

Thodoros Topaloglou

Policy Models for Data Sharing . 581
Ken Smith

Demos and Posters

Protocol Analysis for Exploring the Role of Application Domain
in Conceptual Schema Understanding . 583

Vijay Khatri, Iris Vessey

Auto-completion of Underspecified SQL Queries . 584
Terrence Mason, Ramon Lawrence

iQL: A Query Language for the Instance-Based Data Model 585
Jeffrey Parsons, Jianmin Su

Designing Under the Influence of Speech Acts: A Strategy
for Composing Enterprise Integration Solutions . 586

Karthikeyan Umapathy, Sandeep Purao

XVI Table of Contents

Geometry of Concepts . 587
Olga Brazhnik

Author Index . 589

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 1 – 4, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Suggested Research Directions for a
New Frontier – Active Conceptual Modeling

Peter P. Chen1

Computer Science Department, Louisiana State University
Baton Rouge, LA 70803, U.S.A

pchen@lsu.edu

Abstract. This paper discusses several research directions and challenges of a
new frontier of research: active conceptual modeling. It suggests how the
Entity-Relationship (ER) model may be extended to satisfy some of the needs
of a new set of emerging user needs and applications.

Keywords: Conceptual Modeling, active conceptual modeling, the Entity-
Relationship model.

1 Introduction

The conventional/traditional conceptual modeling concentrates on modeling the
“static” views (i.e., the snapshots) of the world. Even though the static conceptual
models have been used successfully in the past and will continue to do well in the
foreseeable future, there is a need for make the conceptual model “active” to handle a
new set of user needs and applications.

2 The Needs for Active Conceptual Modeling

There are growing needs of traceability for the evolving and changing world state.
There are also increasing needs for understanding relationships among changes,
which may have significance to current world state (e.g. terrorist training could have
been changed since the 9-11 attack). In other words, one of the major needs today is
an “advanced conceptual model” which may be useful in analyzing surprises, crises,
and unconventional events (such as unconventional attacks). Some notable recent
surprised incidents and events that forced us to look back the past events and changes
in the world to look for clues and reasons include the following:

• The September-11 Attack of the World Trade Centers and Pentagon
• The tsunami disaster in Southeast Asia and East Africa
• The hurricane Katrina disaster.

There is a need to develop an “active conceptual Model,” which will allow for
continual learning and provide traceable lessons learned from past experiences,

1 In the academic year of 2006-7, the author is a visiting professor at MIT, e-mail: pchen@mit.edu .

Home page of the author: www.csc.lsu.edu/~chen .

2 P.P. Chen

including surprises. The active conceptual model may also be potentially useful for
predicting future actions.

3 Problems of Existing Methodologies/Technologies

The existing methodologies (including the static conceptual models) and technologies
have been proven to be very useful in the past and will continue to be so for certain
applications in the foreseeable future. However, they may need to be modified in
order to handle fast time-varying and time-dependent changes in world states. In
particular, there are several areas that the existing technologies and methodologies
need to be modified or extended:

• Current databases/knowledge-bases usually do not support information and
schema changes or historical information because they usually only model
the snapshots of the part of the world of interest

• Current state-of-art techniques focus on pre-defined entities of interest and
their static relationships

• Virtually no constructs in the exiting conceptual models are available for
modeling changes of the entity behaviors (e.g. terrorist profiles) and the
dynamic and time-varying relationships among them

• Using the constructs of the existing conceptual models, it is very difficult to
model a wide spectrum of situations resulting from different degrees of
importance of the relationships due to different perspectives

• The Schemas of the current data models are difficult to be changed
dynamically.

4 A Starting Point for Active Conceptual Modeling

After three decades of efforts of many researchers and practitioners, the conventional
(static) conceptual modeling methodologies and techniques based on the Entity-
Relationship (ER) model and its extensions [1-8] have being practiced daily by
hundreds of thousands of professionals and developers all over the world. Now, the
time is right to start a major research and development effort in active conceptual
modeling. However, there are many challenging research problems which need good
solutions such as:

• Time/Space: How can we model the “time” and “space”?
• Scenario: How can we describe a scenario?
• Players: Who were involved and what roles did they play?
• Cause/Effect: What is the best way to describe the cause-effect relationship?
• Event/Activity: Do we need different symbols (icons) to represent event and

activity? How can we relate events with activities?

From the User/Operation Perspectives, the static ER Model needs to be extended
in the following directions:

• Represent a given snapshot of the world/database by a mathematical model
• Compute the difference between the snapshots

 Suggested Research Directions for a New Frontier – Active Conceptual Modeling 3

• Represent the difference between snapshots by a “delta” model
• Identify relationships in the “delta” model and additional attributes
• Create a database for learning purposes
• Users can query this database to study the status of the world state with

respect to the changes and their relationships

Some of these issues have been studied in the past, but we need coherent and
integrated solutions!

Active conceptual modeling is a continual process of describing all aspects of the
open world, its activities, and its changes under different perspectives, based on our
knowledge and understanding. For any given time, the model can be viewed as a
multilevel and multi-perspective high-level abstraction of reality. How to develop
a conceptual model that can have these kinds of features and capabilities (and in a
consistent and coherent way) is a great challenge!

5 Conclusion

Static conceptual models have been used successfully for at least the past 3 decades.
For a set of new and emerging user needs and applications, we need an “active
conceptual model.” We have discussed the weaknesses of the existing static
conceptual models, methodologies, and technologies in handling some of the new and
emerging applications and suggested several directions to extend the Entity-
Relationship (ER) model to make it an “active conceptual model.” We have raised
some difficult research issues and questions that need clean solutions so that the
active conceptual modeling can be moved from the research stage to the development
stage, and then to the practice stage. We hope the R&D community will be able to
develop and perfect the active conceptual modeling methodologies and techniques
quickly so that we can realize the benefits [9] of the active conceptual modeling in the
not too distant future.

Acknowledgments. The author would like to express his thanks to Leah Wong and
Doug Lange of U.S. Navy SPAWAR SSC San Diego for their ideas and for
organizing a discussion workshop on Active Conceptual Modeling for Learning in
their facility in May 2006. The research of the author was supported in part by National
Science Foundation grant: ITR-IIS-0326387 and AFOSR grant: FA9550-05-1-0454.

References

1. Chen, Peter P., The Entity-Relationship Model: Toward a Unified View of Data, ACM
Transactions on Database Systems, Vol. 1, No.1, (March 1976), pp. 9-36.

2. Proceedings of Conceptual Modeling (ER) Conferences, www.conceputalmodeling.org .
3. Lois M. L. Delcambre, Christian Kop, Heinrich C. Mayr, John Mylopoulos, Oscar Pastor

(Eds.): Conceptual Modeling - ER 2005, 24th International Conference on Conceptual
Modeling, Klagenfurt, Austria, October 24-28, 2005, Proceedings. Lecture Notes in
Computer Science 3716, Springer 2005, ISBN 3-540-29389-2.

4 P.P. Chen

4. Jacky Akoka, Stephen W. Liddle, Il-Yeol Song, Michela Bertolotto, Isabelle Comyn-
Wattiau, Samira Si-Said Cherfi, Willem-Jan van den Heuvel, Bernhard Thalheim, Manuel
Kolp, Paolo Bresciani, Juan Trujillo, Christian Kop, Heinrich C. Mayr (Eds.): Perspectives
in Conceptual Modeling, ER 2005 Workshops AOIS, BP-UML, CoMoGIS, eCOMO, and
QoIS, Klagenfurt, Austria, October 24-28, 2005, Proceedings. Lecture Notes in Computer
Science 3770, Springer 2005, ISBN 3-540-29395-7.

5. Paolo Atzeni, Wesley W. Chu, Hongjun Lu, Shuigeng Zhou, Tok Wang Ling (Eds.):
Conceptual Modeling - ER 2004, 23rd International Conference on Conceptual Modeling,
Shanghai, China, November 2004, Proceedings. Lecture Notes in Computer Science 3288,
Springer 2004, ISBN 3-540-23723-2.

6. Il-Yeol Song, Stephen W. Liddle, Tok Wang Ling, Peter Scheuermann (Eds.): Conceptual
Modeling - ER 2003, 22nd International Conference on Conceptual Modeling, Chicago, IL,
USA, October 13-16, 2003, Proceedings. Lecture Notes in Computer Science 2813,
Springer 2003, ISBN 3-540-20299-4.

7. Stefano Spaccapietra, Salvatore T. March, Yashiko Kambayashi (Eds.): Conceptual
Modeling - ER 2002, 21st International Conference on Conceptual Modeling, Tampere,
Finland, October 7-11, 2002, Proceedings. Lecture Notes in Computer Science 2503,
Springer 2002, ISBN 3-540-44277-4.

8. Hideko S. Kunii, Sushil Jajodia, Arne Sølvberg (Eds.): Conceptual Modeling - ER 2001,
20th International Conference on Conceptual Modeling, Yokohama, Japan, November 27-
30, 2001, Proceedings. Lecture Notes in Computer Science 2224, Springer 2001, ISBN 3-
540-42866-6

9. Chen, Peter P. and Leah Wong, A Proposed Preliminary Framework for Conceptual
Modeling of Learning from Surprises, Proc. 2005 International Conference on Artificial
Intelligence, Las Vegas, June 27-30, 2005.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 5 – 11, 2006.
© Springer-Verlag Berlin Heidelberg 2006

From Conceptual Modeling to Requirements Engineering

Colette Rolland

Université Paris1 Panthéon Sorbonne
90 Rue de Tolbiac,

75013 Paris Cedex 13
rolland@univ-paris1.fr

Motivation for the Theme of the Talk

A number of studies show [1][2][3][4] that systems fail due to an inadequate or
insufficient understanding of the requirements they seek to address. Further, the
amount of effort needed to fix these systems has been found to be very high [5]. To
correct this situation, it is necessary to address the issue of requirements elicitation,
validation, and specification in a relatively more focussed manner. The expectation is
that as a result of this, more acceptable systems will be developed in the future. The
field of requirements engineering has emerged to meet this expectation.

The traditional way of engineering information systems is through conceptual
modelling which produces a specification of the system to be developed. This
specification concentrates on what the system should do, that is, on its functionality.
Such a specification acts as a prescription for system construction.

Of the assumptions on which conceptual modelling is based, we find three very
important ones :

• System requirements are highly stable, i.e., they do not change with time. As a
consequence the conceptualised system is itself stable.

• System requirements are given. Users have just to be questioned about their
requirements. Thus, the interesting problem is that of specifying the system to meet
these requirements. System analysts are the right persons to do it.

• Validation of system requirements can be done with reference to system
functionality. In other words, the conceptual schema is the appropriate support for
communicating, negotiating and reaching an agreement with users and system
stakeholders.

It became clear in the past decade that these assumptions do not hold any longer
[6]. Due to economic pressure and emergence of new technologies, organisations
change much faster than before. As a consequence, expectations from information
systems also change much faster which, in turn, implies that requirements are no
longer stable. Understanding and recording the effect of business changes on
requirements is considered as an important issue for the success of an information
system development project [7]. It is also known that requirements change even as the
system is being developed. Since requirements change, it is no longer possible to treat
them as given. Rather, it is necessary to determine new requirements for legacy
systems and to carry requirements models through the entire systems life cycle.
Further the central role of system analysts is taken over by a consortium of
stakeholders who bring their specific view points on what the system should do [8].

6 C. Rolland

Finally, requirements validation must now be rooted in organisational change rather
than in system functionality : if requirements models are to be validated then, this
validation must be with reference to organisational needs rather than system
functionality [9]. It is only then that computer based systems will be able to adapt to
changing organisational needs [10].

In tackling these problems, the area of requirements engineering tries to go beyond
the functionality based view of conceptual modelling. We highlight here two
dimensions along which this attempt is made :

• Requirements engineering extends the ‘what is done by the system’ approach with
the ‘why is the system like this’ view. This why question is answered in terms of
organisational objectives and their impact on information systems supporting the
organisation. In other words, information systems are seen as fulfilling a certain
purpose in an organisation and requirements engineering helps in the
conceptualisation of these purposeful systems. This has two implications (a)
elicitation and validation of the requirements of a system is done with respect to
their purpose in organisations and (b) only organisationally purposeful systems are
conceptualised.

• Requirements engineering does not deal with the functionality of a system. Rather,
it assumes that the potential users of the system provide useful and realistic view
points about the system to be developed. Therefore, a detailed exploration of the
various ways in which the system might be used and the activities it shall carry out
is performed. This can be done, for example, by looking at typical interactions that
are expected to occur with the system. This exploration leads to the identification
of ‘normal’ and ‘exceptional’ activities whose integration models the full system
behaviour. In this sense, the determination of what the system must do is an
interesting question in requirements engineering.

To deliver the foregoing, requirements engineering must find ways to support the
conceptualisation of purposeful systems. This implies a movement in the engineering
approaches towards the ‘whys’ of the system To-Be. As Ross and Schoman [11]
stated in their seminal paper “requirements definition must say why a system is
needed, based on current and foreseen conditions, which may be internal operations
or external market. It must say what a system features will serve and satisfy this
context”. In this movement from the ‘whats’ to the ‘whys’, it becomes mandatory to
consider multiple view points of the various stakeholders, to explore alternative
design choices and reason about them so as to make conceptual decisions on the basis
of rationale arguments in favour and against the different alternatives. Recording
these shall help to deal with changing requirements.

Content of the Talk

The talk will focus on the above issue of conceptualising purposeful systems.

(a) It first argues that the goal concept is central to resolve this issue and shall
demonstrate how goal driven approaches can contribute by supporting requirements
engineering activities such as requirements elicitation, specification, validation,
modification, structuring and negotiation.

 From Conceptual Modeling to Requirements Engineering 7

In the view of requirements engineering being proposed here, we consider that
requirements come from two sources, users and the domain environment. The first
source provides informal statements of goals and users’ intentions expressed in
natural language. The second source provides requirements reflecting real world facts
and constraints on the designed system implied by laws of physics independently of
any user’s need or wish. Hence requirements may be divided into two sub-types :
1. user-defined requirements which arise from people in the organisation and reflect

their goals, intentions and wishes,
2. domain-imposed requirements which are facts of nature and reflect domain laws.

This implies that the Universe of Discourse has to be partitioned into two, the
usage world and the subject world [12]. The usage world describes the tasks,
procedures, interactions etc. performed by agents and how systems are used to do
work. It can be looked upon as containing the objectives that are to be met in the
organisation and which are achieved by the activities carried out by agents. Therefore
it describes the activity of agents and how this activity leads to useful work.

The second part of the Universe of Discourse, the subject world, contains
knowledge of the real world domain about which the proposed system has to provide
information. It contains real world objects which are to be represented in the
conceptual schema.

There is a third world, the system world which is the world of system specifications
in which the requirements arising from the two worlds must be addressed. The system
world holds the modelled entities, processes, and events of the subject and usage
worlds as well as the mapping from these conceptual specifications to the design and
implementation levels of the software system. All these worlds are interrelated as
shown in Figure 1. User-defined requirements (sub-type 1 above) are captured by the
intentional relationship. Domain-imposed requirements (sub-type 2 above) are
captured by the representation relationship.

The usage world provides the rationale for building a system. The purpose of
developing an information system is to be found outside the system itself, in the
enterprise, or in other words, in the context in which the system will function. The

Subject
World

System
World

Usage
World

Intentional relationship

Representation relationship

System
Environment

Fig. 1. Relationships between the worlds of usage, subject and system

8 C. Rolland

social relationship between the usage and system world addresses the issue of the
system purpose and relates the system to the goals and objectives of the organisation.
This relationship explains why the system is developed. Modelling this establishes the
conceptual link between the envisaged system and its changing environment. This
suggests an augmentation of conceptual modelling to deal with the description of the
context in which the system will function. In the area of requirements engineering,
goal-driven approaches have been developed which directly model organisational
objectives and relate them to system functions. These approaches address the
semiotic, social link between the usage and the system world.

The talk will then elaborate on goal modeling and reasoning with goals [13] in
order to demonstrate the various roles of goals in conceptualizing purposeful systems:

• Goal modeling proved to be an effective way to elicit requirements
[14][15][16][17][18][19][20]. The assumption of goal-based requirements
elicitation is that the rationale for developing a system is found outside the system
itself, in the enterprise [21] in which the system shall function.

• RE assumes that the envisioned system might function and interact with its
environment in many different ways. Alternative goal refinement proved helpful in
the systematic exploration of system choices [15][21][22][23].

• Requirements completeness is a major RE issue. Yue [24] was probably the first to
argue that goals provide a criterion for requirements completeness: the
requirements specification is complete if the requirements are sufficient to achieve
the goal they refine.

• Goals provide a means to ensure requirements pre-traceability [7][25][26]. They
establish a conceptual link between the system and its environment, thus
facilitating the propagation of organizational changes into the system functionality.
This link provides the rationale for requirements [11][15][27][28][29] and
facilitates the explanation and justification of requirements to the stakeholders.

• Stakeholders provide useful and realistic viewpoints about the system To-Be.
Negotiation techniques have been developed to help choosing the prevalent one
[30][31]. Prioritization techniques aim at providing means to compare the different
viewpoints on the basis of costs and value [32][33]. Multiple viewpoints are
inherently associated to conflicts [34] and goals have been recognized to help in
the detection of conflicts and their resolution [35][36][37][38].

(b) In the rest of the talk, we will consider new challenges raised by emerging
conditions of system development leading to variability in requirements engineering
capture and customisation in the requirements engineering process. Variability is
imposed by the multi-purpose nature of information systems of today. The talk will
use a particular goal model called goal/strategy map to illustrate how a goal model
can make variability explicit and support goal-based reasoning to help in selecting the
right variant for the project at hand.

Goal modeling approaches have been conceived with the traditional software
system life cycle in mind: high strategic goals are captured to elicit software
requirements and build the software functionality that fulfils these requirements.
However, in recent years, development ‘from scratch’ became the exception and a new
context in which software systems are developed has emerged. Whereas earlier, a
system met the purpose of a single organization and of a single set of customers, a

 From Conceptual Modeling to Requirements Engineering 9

system of today must be conceived in a larger perspective, to meet the purpose of
several organizations and to be adaptable to different usage situations/customer sets.
The former is typical of an ERP-like development situation whereas the latter is the
concern of product-line development [39], [40] and adaptable software [24]. In the
software community, this leads to the notion of software variability which is defined as
the ability of a software system to be changed, customized or configured to a specific
context [41]. Whereas the software community studies variability as a design problem
and concentrates on implementation issues [39], [40], [42], we believe like Halmans
[43] that capturing variability at the goal level is essential to meet the multi-purpose
nature of new software systems.

Our position is that variability implies a move from systems with a mono-facetted
purpose to those with a multi-facetted purpose. Whereas the former concentrates on
goal discovery, the multi-facetted nature of a purpose extends it to consider the many
different ways of goal achievement. For example, for the goal Purchase Material,
earlier it would be enough to know that an organization achieves this goal by
forecasting material need. Thus, Purchase material was mono-facetted: it had exactly
one strategy for its achievement. However, in the new context, it is necessary to
introduce other strategies as well, say the Reorder Point strategy for purchasing
material. Purchase Material now is multi-facetted, it has many strategies for goal
achievement. These two strategies, among others, are made available, for example, in
the SAP Materials Management module[44].

The foregoing points to the need to balance goal-orientation with the introduction
of strategies for goal achievement. This is the essence of goal/strategy maps.

A goal/strategy map, or map for short, is a graph, with nodes as intentions and
strategies as edges. An edge entering a node identifies a strategy that can be used for
achieving the intention of the node. The map therefore, shows which intentions can be
achieved by which strategies once a preceding intention has been achieved. Evidently,
the map is capable of expressing goals and their achievement in a declarative manner.

The talk will introduce the concept of a map [45], illustrate it with an ERP system
example and discuss how the model meets the aforementioned challenges. Thereby,
we consider the customization process implied by multi-purpose systems and discuss
the way it can be handled with maps [46].

References

1. Standish Group (1995), Chaos. Standish Group Internal Report.
2. European Software Institute (1996), European User Survey Analysis, Report USV_EUR

2.1, ESPITI Project.
3. McGraw K., Harbison K. (1997), User Centered Requirements, The Scenario-Based

Engineering Process. Lawrence Erlbaum Associates Publishers.
4. META Group (2003) Research on Requirements Realization and Relevance, report
5. Johnson J. (1995), Chaos : the Dollar Drain of IT project Failures. Application

Development Trends, pp.41-47.
6. Hammer, T. F., Huffman, L. L. and Rosenberg, L. H., (1998) Doing requirements right the

first time, Crosstalk - The Journal of Defense Software Engineering, December, pp.20-25.

10 C. Rolland

7. Ramesh, B. and Jarke, M. (2001) Toward Reference Models for Requirements
Traceability, IEEE Transactions on Software Engineering, 27(1), pp. 58-93.

8. Finkelstein A., Kramer J., Goedicke M. (1990), ViewPoint Oriented Software
Development, Proc. Conf Le Génie Logiciel et ses Applications, Toulouse, p 337-351.

9. Bleistein S., Cox K. and Verner J. (2006), Validating Strategic Alignment of
Organisational IT Requirements using Goal Modeling and Problem Diagrams, Journal of
Systems and Software, 79 (3), pp.362-378.

10. A. Etien, C. Salinesi, (2005) Managing Requirements in a Co-evolution Context,
Proceedings of the IEEE International Conference on Requirements Engineering, Paris,
France, pp. 125-134

11. Ross D.T., Schoman K.E. (1977), Structured Analysis for Requirements Definition. IEEE
Transactions on Software Engineering, 3(1), pp.6-15.

12. Jarke, M., and Pohl, K., (1993), Establishing Visions in Context: Towards a Model of
Requirements Processes, Proc. 12th Intl. Conf. Information Systems, Orlando.

13. Rolland C., Salinesi C. (2005), Modeling goals and reasoning with them, Chap9 of the
book « Engineering and Managing Requirements », A. Aurum and C. Wohlin (eds),
Springer Verlag Pub, TBP 2005.

14. Potts, C., Takahashi, K., and Antòn , A. I. (1994), Inquiry-based requirements analysis.
IEEE Software 11(2), pp. 21-32.

15. Rolland, C., Souveyet, C., and Ben Achour, C. (1998), Guiding goal modelling using
scenarios. IEEE Transactions on Software Engineering, Special Issue on Scenario
Management, 24(12), pp. 1055-1071.

16. Dardenne, A., Lamsweerde, A. v., and Fickas, S., (1993), Goal-directed Requirements
Acquisition, Science of Computer Programming, 20, Elsevier, pp.3-50.

17. Dubois, E., Yu, E., and Pettot, M.(1998), From early to late formal requirements: a
process-control case study. Proc. IWSSD’98 – 9th International Workshop on software
Specification and design. .IEEE CS Press, pp. 34-42.

18. Anton A. I., Potts C., TakahanshiK. (1994), Inquiry Based Requirements Analysis, IEEE
Conference on Requirements Engineering.

19. Kaindl, H. (2000), A design process based on a model combining scenarios with goals and
functions, IEEE Trans. on Systems, Man and Cybernetic, 30(5), pp. 537-551.

20. Lamsweerde, A.v.(2001), Goal-oriented requirements engineering: a guided tour. RE’01
International Joint Conference on Requirements Engineering, Toronto, IEEE, pp.249-263.

21. Loucopoulos P. (1994), The f3 (from fuzzy to formal) view on requirements engineering.
Ingénierie des systèmes d’information, Vol. 2 N° 6, pp. 639-655.

22. Rolland, C., Grosz, G., and Kla, R. (1999), Experience with goal-scenario coupling. in
requirements engineering, Proceedings of the Fourth IEEE International Symposium on
Requirements Engineering, Limerik, Ireland, pp. 74-84.

23. Hui B., Liaskos S., and Mylopoulos J. (2003), Requirements Analysis for Customizable
Software: A Goals-Skills-Preferences Framework. IEEE Conference on Requirements
Engineering, Monterey Bay, USA, pp.117-126.

24. Yue, K., (1987), What does it mean to say that a specification is complete?, Proc. IWSSD-
4. Four International Workshop on Software Specification and Design, Monterrey, USA.

25. Ramesh, B., Powers, T., Stubbs, C., and Edwards, M.(1995), Implementing requirements
traceability: a case study, in Proceedings of the 2nd Symposium on Requirements
Engineering (RE’95), UK, pp89-95.

26. Pohl K.(1996), Process centred requirements engineering, J. Wiley and Sons Ltd.

 From Conceptual Modeling to Requirements Engineering 11

27. Bubenko, J., Rolland, C., Loucopoulos, P., De Antonellis V.(1994), Facilitating ‘fuzzy to
formal’ requirements modelling. IEEE 1st Conference on Requirements Engineering,
ICRE’94 pp. 154-158.

28. Sommerville, I., and Sawyer, P.(1997), Requirements engineering. Worldwide Series in
Computer Science, Wiley.

29. Mostow, J. (1985), Towards better models of the design process. AI Magazine, Vol. 6, pp.
44-57.

30. Hoh P. (2002) Multi-Criteria Preference Analysis for Systematic Requirements
Negotiation 26th Annual International Computer Software and Applications Conference,
Oxford, England pp. 887

31. Boehm, B. Bose, P. Horowitz, E. Ming-June Lee, (1994) Software requirements as
negotiated win conditions, 1rst International Conference on Requirements Engineering,
USA, pp. 74-83.

32. Karlsson, J., Olsson, S., Ryan, K. (1997), Improved Practical Support for Large-scale
Requirements Prioritizing, Journal of Requirements Engineering, Springer-Verlag, pp.51-60.

33. Moisiadis F. (2002) The Fundamentals of Prioritising Requirements Systems Engineering,
Test & Evaluation Conference, Sydney, Australia.

34. Nuseibeh B., Kramer J., and Finkelstein A. (1994), A framework for expressing the
relationships between multiple views in requirements specification. In IEEE Transactions
on Software Engineering, volume 20, pp. 760-773.

35. Lamsweerde, A. v., and Letier, E., (2000), Handling obstacles in goal-oriented
requirements engineering. IEEE Transactions on Software Engineering, Special Issue on
Exception Handling, 26(10), pp. 978-1005.

36. Robinson W. N., Volcov S., (1996) Conflict Oriented Requirements Restructuring,
Working Paper CIS-96-15.

37. Robinson, W.N., Volkov, S., (1998) Supporting the Negotiation Life-Cycle, ACM,
Communications of the ACM, pp. 95-102.

38. S. M. Easterbrook (1994) Resolving Requirements Conflicts with Computer-Supported
Negotiation. In M. Jirotka & J. Goguen (eds) Requirements Engineering: Social and
Technical Issues, London: Academic Press, pp41-65.

39. Svahnberg (2001) On the notion of variability in Software Product Lines. Working
IEEE/IFIP Conference on Software architecture, pp. 45-54.

40. Bosch (2001), Variability issues in Software Product Lines. 4th International Workshop on
Product Family Engineering (PEE-4), Bilbao, Spain, pp. 13-21

41. Van Gurp J., (2000), Variability in Software Systems, the key to Software Reuse. Licentiate
Thesis, University of Groningen, Sweden

42. Bachmann (2001) Managing variability in software architecture. ACM Press, NY, USA.
43. Halmans J. (2003), Communicating the variability of a software product family to

customers. Software and System Modeling, Springer-Verlag.
44. Rolland C., Prakash N. (2000), Bridging the gap between Organizational needs and ERP

functionality. Requirements Engineering journal 5.
45. Rolland C., Salinesi C., Etien A. (2004) Eliciting Gaps in Requirements Change.

Requirements Engineering Journal, Vol. 9, pp1-15.
46. Rolland C. (2005), Modeling Multi-facetted Purposes of Artifact, SOMET Int. Conference,

Tokyo, Ios Press.

A Context Model for Semantic Mediation in
Web Services Composition

Michael Mrissa1, Chirine Ghedira1, Djamal Benslimane1, and Zakaria Maamar2

1 Université Claude Bernard Lyon 1, Villeurbanne, France
firstname.lastname@liris.cnrs.fr

2 Zayed University, Dubai, United Arab Emirates
zakaria.maamar@zu.ac.ae

Abstract. This paper presents a context-driven approach that aims at
supporting semantic mediation between composed Web services. Despite
the widespread adoption of Web services by the IT community, innova-
tive solutions are needed in order to overcome the challenging issue that
relates to the semantic disparity of exchanged data. Indeed, there is a
lack of means for interpreting these data according to the contextual re-
quirements of each Web service. The context-driven approach suggests
two steps. The first step consists of developing a model for anchoring
context to data flowing between Web services. In the second step, we
use this model to support the semantic mediation between Web services
engaged in a composition.

1 Introduction

In the field of service-oriented computing, Web services are now widely used
to connect business processes. The suitability of Web services for composition
allows answering complex users’ needs. Composition involves interacting Web
services to provide value-added business processes. However, efficient description
and management of semantics of data are major requirements to the success of
system interoperability. Particularly, composition requires understanding the se-
mantics of the data exchanged between Web services. The Web services protocol
stack (SOAP [1], WSDL [2], and UDDI [3]) achieves application level interop-
erability, but does not satisfy the requirements of semantic exchange. Recent
initiatives propose languages and frameworks (e.g., OWL-S [4], WSMO [5], and
WSDL-S [6]) that use ontologies1 for adding explicit semantic descriptions to
Web services, which are now referred to as semantic Web services.

However, these initiatives towards semantic Web services do not take into
consideration the context of exchanged data. By context, we mean the collection
of implicit assumptions that are required to obtain accurate data interpretation.
We advocate that a semantic concept should be interpreted differently, depend-
ing on the context it relates to. In the domain of Web services composition,
context interpretation generally remains ignored, due to lack of explicit con-
text descriptions. As a consequence, the adaptation of Web services to context
1 An ontology is defined as a shared description of a domain knowledge in [7].

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 12–25, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Context Model for Semantic Mediation in Web Services Composition 13

changes is still performed manually, which reduces their availability and relia-
bility. Explicit context description and management are required to meet the
challenges of automatic semantic interpretation and data flow handling during
Web services composition.

In this paper, we aim at presenting a context-based approach for semantic
reconciliation of Web services engaged in a composition. To this end, we de-
velop a model that supports explicit description of context, before deploying
runtime mediation mechanisms between Web services, based on the contextual
annotation of WSDL input and output message parts.

This paper is organized as follows. Section 2 suggests a motivating example to
back the value-added of data context management to Web services composition.
Section 3 presents a context-based model for Web services, supported by the
definition of semantic object, prior to discussing the integration of this model
into the Web services protocol stack. Section 4 presents a context- and rule-based
mediation architecture for Web services composition. Section 5 overviews related
work on mediation and semantics for Web services and context representation.
Finally, Section 6 concludes the paper and sets guidelines for future work.

2 Motivating Example

We demonstrate with a simple booking example how context impacts the inter-
pretation of data flow between Web services. The example concerns a trip to
Japan. A rate-based attractive hotel provides a Web service for bookings. To
judge the affordability of this hotel for an European passenger, the following
composition occurs: hotel booking WS1 calculates charges based on the number
of booked nights, and banking WS2 manages account payment.

From a technical perspective, WS1 sends “price-yen” parameter and WS2
receives “price-euros” parameter. Both parameters are WSDL message parts.
Although different type systems can be used, we consider for illustration pur-
poses that “price-yen” and “price-euros” parameters are in XML Schema type
system [8], and are of type “double”. These details show low-level data compati-
bility between Web services. In addition, “price-yen” and “price-euros” parame-
ters both have particular semantics. WS1 delivers a value in Yens, whereas WS2
expects a value in Euros, and both bind to a “price” semantic concept avail-
able in a common ontology. Existing approaches to semantic description and
mediation of Web services, to overview in Section 5, explicitly describe the cor-
respondence between parameters for conversion requirements. Such approaches
refer to shared ontologies to address structural and semantic heterogeneities.

Now, let us inject context into these parameters. WS1 binds to “Japanese Ho-
tel Booking” context, in which charges have a scale factor of 1000, prices do not
include Value-Added Tax (VAT), dates for conversion rates are in Japanese for-
mat (yyyy.mm.dd). WS2 binds to “French Banking” context, where charges have
a scale factor of 1, prices include VAT, and dates for conversion rates are in French
format (dd.mm.yyyy). This shows context heterogeneity exists too, so an agree-
ment on the value interpretation must be reached through context reconciliation.

14 M. Mrissa et al.

Composing Web services involves dealing with many different contexts, and
enabling significant interactions requires dynamic and complex transformations
to adapt data to these contexts. In a semantic composition, context heterogene-
ity is resolved in an ad-hoc way at the receiver Web-service level, if at all. This
reduces Web services adaptability and overloads them with solving context het-
erogeneities. To conduct context-aware composition, the context of data must
be explicitly described and a mediation mechanism must handle data flow. Our
proposal is to annotate WSDL so that messages parts are propelled to the level
of semantic objects, which are described in the following.

3 A Context-Based Model for Web Services

As aforementioned, we propose a model that describes the underlying semantics
of data flow between Web services. This model takes advantage of the notion of
semantic object given in [9], and focuses on context description for data exchange
in Web services composition. In this section, we define the two fundamental
elements of our model: semantic object and context. Afterwards, we discuss how
semantic conversion is performed between semantic objects using conversion
functions. Finally, we define the notion of semantic and absolute comparison
between semantic objects.

3.1 Semantic Object

In the domain of semantic Web services, concern separation between data ground-
ing and data abstract-view is required. Listing 1.1 illustrates this separation with
an OWL-S Web service input description:

� �
< !−− Abstract de sc r ip t ion −−>

<proc e s s : I npu t rd f : ID=" InputLanguage ">
<process :parameterType rd f : da ta type="& xsd ;# anyURI">

&th i s ;#SupportedLanguage
</ proce ss :paramete rType>
< r d f s : l a b e l>Input Language</ r d f s : l a b e l>

</ p roc e s s : I npu t>

< !−− Grounding de sc r ip t ion−−>
<grounding:WsdlInputMessageMap>

<grounding:owlsParameter r d f : r e s ou r c e="# InputLanguage "/>
<grounding:wsdlMessagePart rd f : da ta type="& xsd ;# anyURI">

&groundingWSDL;#inputLanguage
</ grounding:wsdlMessagePart>

</grounding:WsdlInputMessageMap>� �
Listing 1.1. OWL-S Input Description Snippet

The abstract view binds the data to a conceptual description generally using
an ontology language like OWL [10]. The grounding view describes the physical
representation of data which generally follows XML Schema [8]. This separation
allows different physical representations of the same concept, and strengthens

A Context Model for Semantic Mediation in Web Services Composition 15

the role of ontologies in the abstract representation of data semantics. In the rest
of this paper, we refer to concept c as an individual, or fact, defined in a domain
ontology. The notion of individual is detailed in the OWL recommendation [10].

Following a similar separation of abstract and grounding descriptions, we
define a semantic object as a data object, i.e., a value v that is an instance of
type t with “enough” meta-data for automatic interpretation. This meta-data
includes a concept c, which describes the real world phenomena that the data
object refers to, and a context C represented as a tree of meta-attributes. A
semantic object SemObj is a 4-tuple represented as follows:

SemObj =< c, v, t, C >,

where c is the concept that the semantic object SemObj adheres to, value v ∈
Dom(t) is the physical representation of v according to the domain of represen-
tation Dom of type t, and C specifies the context of SemObj. This context is
a tree of semantic objects called modifiers. Such representation of an initial se-
mantic object with additional semantic objects makes our context-based model
self-describing. A formal definition of a context C is:

C = {< c1, v1, t1, C1 >, . . . , < ck, vn, tn, Cn >}, n ∈ IN ,

where < ci, vi, ti, Ci >, 1 ≤ i ≤ n, are modifiers that describe different semantic
aspects of SemObj. Modifiers may also have a context, described in Ci, so it is
possible to use recursive descriptions and to represent context in a tree.

3.2 Static and Dynamic Modifiers

On the basis of the definition presented above, we introduce the notion of static
and dynamic modifiers. Values of static modifiers have to be explicitly specified,
whereas values of dynamic modifiers can be determined by a function from the
values of other (static or dynamic) modifiers. In Fig. 1, “date format” modifier is
dynamic; its value can be inferred from the value of the “country” modifier. The
relation of inference can be described as a rule, such as “If country is France, then
date format is dd.mm.yyyy”. Similar rules should be used for other countries.
Further details on how rules support the proposed mediation architecture are
given in Section 4. Formally, being given a modifier S and a context Ctxt such
that S =< c, v, t, C >∈ Ctxt, then S is dynamic iff:

∀v ∈ S, ∃f : {Dom(t) × . . . × Dom(t)} �→ Dom(t) ∧ ∃{S1, . . . Si, . . . , Sn},
s.t. Si =< ci, vi, ti, Ci >∈ Ctxt ∧ Si �= S ∧ f(v1, . . . , vi, . . . , vn) = v.

Figure 1 shows a semantic object to be forwarded to banking Web service of
Section 2. ns:price attribute refers to the concept of price described in a domain
ontology, 55.00 is the value of type xsd:double flowing between the Web services.
Context attribute is a list of modifiers that permit explicit interpretation of the
inital semantic object. Here, the semantic object is in Euro, has a scale factor of 1,
and includes a VAT of 19.6%. Additional parts of the context further describe
the Currency modifier.

16 M. Mrissa et al.

OWL Concept

Scale Factor = 1 Currency = EUR

Date = 15.05.2005

Date format = dd.mm.yyyy

VATIncluded = true

Country = FranceVATRate = 19.6

< ns:price, 55.00, xsd:double, Context >

Value Type

Context

Static
Modifier

ValueDynamic
Modifier

Value

Fig. 1. Sample of a semantic object

3.3 Semantic Conversion of Semantic Objects

Adding context to data allows an explicit representation of the semantics of these
data. Therefore, different semantic objects may describe the same information
although they have different data and contexts. For example, let us have two
simple semantic objects:

S1 =< Price, 1, float, (currency = Euro) >
S2 =< Price, 6.55957, float, (currency = French Francs) >

It is straightforward to note that S1 and S2 describe the same information (they
are equal), because the exchange rate from French Francs to Euros is fixed at
6.55957 Francs for 1 Euro. Thus, a conversion function is required to change S1
into French Francs or S2 into Euros and show that S1 and S2 are equals.

Conversion functions enable mediation between semantic objects. They have
several properties such as total, lossless, and order-preserving [11]. A total con-
version function converts to and from any value of its domain of definition,
e.g., distance unit conversion functions. An example of non-total conversion is
precision conversion. Indeed, a precision conversion function can convert the
value 1.25762 into a value with only one decimal of precision (1.2), but it cannot
convert this result back to a better precision. In addition, a function is loss-
less if it can be applied several times on the same object without any loss of
information. A function that compresses data files is lossless because the orig-
inal content can later be extracted. However, a function that converts a BMP
image into the JPEG format is lossy (loss due to image compression). A func-
tion is order-preserving when two semantic objects, once converted, conserve the
order they had before. Temperature conversion functions between Celsius and
Fahrenheit scales are order-preserving.

We distinguish two categories of conversion functions. Context and type con-
version functions. Context conversion functions are related to the values that

A Context Model for Semantic Mediation in Web Services Composition 17

modifiers take. They change the interpretation of a semantic object and its
value as well. They are stored as rules and may involve online access to other
data sources. For example, currency rate conversion functions may call online
currency rates providers for up-to-date rates. Type conversion functions only
change the type t of semantic object (e.g., String2Float, Double2Integer). Such
functions depend on the type system that is used to physically represent the
semantic object. They can be part of a library associated with the type system,
and are not prone to frequent changes.

3.4 Semantic Comparability of Semantic Objects

Since semantic objects can be converted into particular types and contexts, we
introduce the notion of semantic comparability between semantic objects. Com-
paring semantic objects is a prerequisite to the semantic mediation to be intro-
duced in Section 4. First, we consider two semantic objects S1 =< c, v1, t1, C1 >
and S2 =< c, v2, t2, C2 > that refer to the same concept c. Let us have a relation
φ (such as ‘<’, ‘>’ or ‘=’), a context C (called target context), and a type t (called
target type). Let us assume a conversion function cvt(value, type, context) that
consists of concatenating several conversions. This function converts v1 and v2
into type t and context C, such as v′1 = cvt(v1, t, C) and v′2 = cvt(v2, t, C). We
state that S1 and S2 are semantically comparable with regard to type t and
context C if v′1 and v′2 satisfy the relation v′1 φ v′2. Therefore, if φ is the equality
relation ‘=’ we verify the equality of S1 and S2.

Second, we show that semantic objects that do not refer to the same concept,
can still be compared relatively to the semantic aspects they have in common.
For example, let us compare S1 and S2 such as:

S1 =< ns : measurePrice,10.00, float, (currency = euro, measureUnit = kg) >
S2 =< ns : unitaryPrice, 15.00, float, (currency = euro, scaleFactor = 1) >

The first concept is the price of a measure in kilograms. The second concept is
the unitary price that supports different scale factors. If v1 and v2 are compared
according to context C = (currency = euro) and type t = float, v1 < v2
is established. This example illustrates the possibility to perform a restricted
comparison of these semantic objects although they refer to different concepts.
We conclude that the semantic comparability of two semantic objects depends
on the target context and the possibility of casting object types.

3.5 Absolute Comparability of Semantic Objects

Another aspect that turns out relevant for semantic mediation is the absolute
comparison of semantic objects. It is reached when the semantic objects always
verify a relation over a target context for all the possible values of the modifiers
of this context. Let us consider two semantic objects Sa and Sb. Let be a relation
φ (such as ’<’, ’>’ or ’=’), a target context C = {S1, . . . , Sn} and a target type t.
Let us consider a conversion function cvt(value, type, context) that concatenates
several conversions and converts va and vb into type t and context C, such as

18 M. Mrissa et al.

v′a = cvt(va, t, C) and v′b = cvt(vb, t, C). Then, we define Sa and Sb as absolutely
comparable relatively to t and C if v′a φ v′b is verified, for all the possible values
that the modifiers of C can take.

3.6 Context Integration into the Web Services Model

The context-based model described above meets the requirements for describ-
ing message parts of Web services as semantic objects. The concept of semantic
object is intensionally described in a domain ontology, while context is extension-
ally described using additional meta-attributes. In addition, this model clearly
distinguishes the data type t from the conceptual reference C of the semantic
object. Then, existing mediation approaches to discuss in Section 5 can seam-
lessly adhere to our context representation. However, this model raises several
questions about its integration into the Web services protocol stack.

Following Bornhövd’s view [9], we advocate that a context description is al-
ways a subset of all the meaningful aspects of a concept, which are potentially
infinite. However, Web service providers should be free to decide which subset
of possible aspects is relevant to their application. Therefore, the vocabulary for
context description cannot be added into the domain ontology. In such case the
size of the latter would grow along with providers’ needs. In effect, describing
context as part of the domain ontology would require a specific subconcept for
each possible combination of modifiers of a domain concept.

To overcome this problem, context ontologies are separated from domain on-
tologies so that they do not surcharge the latter. Context ontologies describe
all the modifiers that Web service providers associate to a concept. Therefore, a
context ontology is available for each concept of a domain ontology. Such context
ontology should be extended according to Web service providers’ requirements.
In the following, we assume that Web service providers refer to the same context
ontology when annotating Web services. Thus, our illustrative example relies on
a single context ontology to put forward the importance of context.

As context ontologies provide shared vocabularies to specify structural and
semantic representations of context, there is a need to extensionally specify con-
text values into the descriptions of Web services. We propose a different solution
for static and dynamic modifiers. In effect, values of static modifiers have to
be specified to clarify the meaning of data. At the contrary, values of dynamic
modifiers can be inferred from other parts of the semantic object. Therefore, we
insert the description of static modifiers into WSDL, so that our approach is
compliant with the standard Web services protocol stack. Descriptions of static
modifiers provide the means for calculation of dynamic modifiers at runtime,
using appropriate rules.

The use of context ontologies and WSDL annotations helps providers make
explicit the context of data. It provides a scalable solution to integrate context
into the Web service model. Also, it enables semantic mediation of data during
the execution of a composition. In the next section, we present our solution for
annotating descriptions of composed Web services, in order to make contextual

A Context Model for Semantic Mediation in Web Services Composition 19

Port

+name

Service

+name

Binding

+name

PortType

+name

port

0..*

Operation

+name

+parameterOrder

operation

0..*

Message

+name

Part

+name

+element

+type

input
output
fault

part

0..*

Definition

+name

+targetNameSpace

service

0..*

type

binding

0..*

Extensible Element

binding

portType

0..*
 context

 0..*

ContextAttribute

+context: QName []

0..1
0..1

0..1

message

0..*

Fig. 2. Context in WSDL metamodel

information available at the execution stage of composition, before describing a
service- and rule-based solution for context mediation.

4 Context Management for Web Services

4.1 Annotating WSDL with Context

The use of the model described previously requires enriching the description of
Web services with context, by annotating WSDL message parts, so that they
can be described as semantic objects.

In WSDL descriptions, <message> elements describe data exchanged for an
operation. Each message consists of one or more <part> elements. We also refer
to <part> elements as “parameters” in the rest of this paper. Each parameter has
<name> and <type> attributes, and allows additional attributes. Our annotation
takes advantage of such extension proposed in the WSDL specification [2], so
that annotated WSDL operates seamlessly with classical and annotation-aware
clients. To keep the paper self-contained, we overview a simplified structure of
the WSDL metamodel including the annotation in Fig. 2.

We annotate <part> elements with a context attribute that describes the
names and values of static modifiers using a list of qualified names. The first
qualified name of the list specifies the ontology concept of the value (c). Addi-
tional elements refer to instances of static modifiers described in a context on-
tology. Listing 1.2 shows the proposed extension and corresponding namespaces
in a WSDL file.

Relying on this annotation, a value v and its data type t described in WSDL
are enhanced with the concept c and the modifiers necessary to define the context
C, thus forming a semantic object < c, v, t, C >. To complete the context C,
rules help infer the values of dynamic modifiers at runtime. This offers several
advantages: rules are easily modifiable, making this solution adaptable to changes

20 M. Mrissa et al.

in the underlying semantics. Also, often-changing values of modifiers could not be
statically stored, so using rules simplifies the annotation to WSDL. Furthermore,
rules separate application logic from the rest of the system, so updating rules does
not require rewriting application code. In the following, we detail our context
mediation architecture, that integrates into composition as a Web service, and
show its interactions with a rule-based inference engine.

� �
<?xml version=" 1.0 " encoding=" UTF -8 "?>
<wsd l : d e f i n i t i o n s targetNamespace=" http: // localhost .../ EuroBanking . jws "

. . .
xmlns : c txt=" http: // www710. univ - lyon1 . fr /~ mmrissa / context / context . xsd "
xmlns : c txt1=" http: // domain. ontology . org / Price . owl "
xmlns : c txt2=" http: // context . ontology . org / context / PriceContext . owl \# ">
. . .

<wsdl :message name=" checkPriceReq ">
<wsd l : pa r t name=" price " type=" xsd:double "
c t x t : c o n t e x t=" ctxt1:Price ctxt2:France
ctxt2:VATIncluded ctxt2:ScaleFactorOne "/>

</wsdl :message>
. . .

<wsdl :portType name=" EuroBanking ">
<wsd l : ope ra t i on name=" checkPrice " parameterOrder=" price ">
<wsd l : i npu t name=" checkPriceReq " message=" impl:checkPriceReq "/>
<wsdl :output name=" checkPriceResp " message=" impl:checkPriceResp "/>

</ wsd l : ope ra t i on>
</wsdl :portType>

. . .
</ w s d l : d e f i n i t i o n s>� �

Listing 1.2. Annotated WSDL Snippet

4.2 Context Integration and Mediation

Regarding the integration of context management capabilities into composition,
we adopt a decoupled approach and deploy the context mediation functionality as
a Web service. This solution presents three main advantages. First, the mediator
Web service can be triggered via its WSDL interface by any remote composition,
so it remains independent from composition languages and engines. Second, from
composition point of view, it is straightforward to handle context. Composition
designers invoke the mediation Web service between every two composed Web
services. Third, data mediation is performed at runtime, so the operation of
conversion is not statically stored. Instead, conversion rules dynamically infer the
conversion between contexts. However, the scope of the mediator Web service
is limited to data types specified in its WSDL description. To work out this
problem, we generate at design time adapted WSDL description for accessing
the mediator Web service.

The role of the mediator Web service is to convert data from the context of
the Web service it originates (called source context) into the context of the Web
service it is being sent to (called target context). With each exchanged message
part, the mediator Web service carries out the following operations:

1. builds and populates source and target contexts using annotated data, on-
tologies and rules in order to determine context modifiers and their values;

A Context Model for Semantic Mediation in Web Services Composition 21

2. examines heterogeneities between these contexts and establishes how data
are converted using rules;

3. converts data to target context, or generates an error message if the conver-
sion is not possible, and sends results to the appropriate target.

The mediator Web service includes five internal components. The context
reader extracts context extensibility attributes from WSDL descriptions. Two
repositories for context and domain ontologies respectively identify context struc-
tures and domain concepts. The rule engine infers the values of dynamic mod-
ifiers and performs data conversion. It communicates with the rule repository
that stores the rules for inferring the operations of data conversion and the values
of dynamic modifiers.

Composition process

Hotel Booking
Web Service

"price"
float

Euro-Banking
Web Service

Output Input

Context Context1 2

"price"
float

Domain
ontologies

Context
ontologies

Rules
Repository

Mediation
Web service

Web Service interface

Context reader
from WSDL

Mediation core
component

Rule-based
engine

1

2 3

4

Fig. 3. Detailed View of the Mediator Web service

Figure 3 shows how the mediator Web service performs in the composition of
Sect. 2. The numbers in this figure illustrate the chronology of operations that
goes along the following description:

1. The mediator Web service generates an in-memory model of both WSDL de-
scriptions and extracts context annotation for each message part concerned
with the mediation process, in order to build contexts of parameters.

2. It identifies the first qualified name of each annotation as the concept of
the parameter. Then, it checks that the concepts of both parameters match,
i.e., that they verify a subsumption or equivalence relation. This is a simple
approach to semantic matching but additional capacities can be integrated
into the mediator. For a good survey on semantic integration techniques, see
Noy’s work [12].

3. It accesses the context ontology related to the domain concept matched,
and gathers all its relative properties, as well as all its sub properties (i.e.

22 M. Mrissa et al.

properties of its sub concepts in the context ontology) into a list of modifiers.
With the following WSDL annotation attributes, the mediator affects values
to static modifiers. Then, the values of dynamic modifiers are inferred by
the rule engine, to build the context description.

4. First, the mediator determines the target context. It corresponds to the
context of the banking Web service WS2 in the example of Sect 2. For each
modifier of the target context, the rule engine applies appropriate conversion
to the data transmitted, so that the value of the source modifier matches the
target context. If the value of the modifier is not convertible to the target
context, an exception is thrown, and the mediator Web service returns a
fault message. If the value of a modifier is missing, a general rule may affect
a default value to this modifier. For example, a rule could set a default scale
factor of 1 for prices. If such a rule is absent too, an exception is thrown, and
the mediator Web service returns a fault message. If the mediation process
is correctly performed, the data is converted into the target context and
transmitted to the next Web service.

To operate properly, the rule engine connects to a rule repository. We assume
that conversion rules are appropriately maintained, to benefit from advantages
of decoupling business logic from the application2. For instance, considering our
example in Section 2, being given V the values of parameters and SF their scale
factors, the rule for managing scale factor modifiers should be stored in the rule
repository as follows:

Vtarget = Vsource∗SFsource

SFtarget

So, at execution time, the rule engine receives as input: “scalefactor”, 1000, 1
and the value v to convert, and performs the conversion to get the appropriate
scale factor.

4.3 Implementation

A prototype has been developed as a proof-of-concept of the feasibility of this
architecture under the JavaTM NetBeans environment. Figure 4 shows a snap-
shot of our graphical user interface to read/write context annotations from/to
WSDL files. This tool enables providers or advanced users to annotate WSDL
files with context, so it is possible to compose them with context-aware mediator
Web services. We also developed a mediator Web service, that reads context an-
notation from WSDL files and converts data received from its source context to
a target context. Our implementation performs at-runtime context mediation,
enabling meaningful execution of composition. In the example of this paper, not
only the “price” concepts match, but data is transformed at-runtime, to comply
with the different scale factors, heterogeneous date formats (that allow getting
up-to-date conversion rates between currencies), and different VAT rates (that
also are not always included in the price), described in the context ontology.

2 Sample rules available at http://www710.univ-lyon1.fr/∼mmrissa/conversion.drl.

A Context Model for Semantic Mediation in Web Services Composition 23

Fig. 4. Screenshot of the WSDL extension editor

Our current composition example is hosted in an Apache Tomcat container
(http://tomcat.apache.org/). We also use Jena 2 (http://jena.sourceforge.net/)
API and a Drools (http://www.drools.org/) rule engine, to access and ma-
nipulate OWL ontologies, infer modifier values and perform data conversion.
Our prototype includes domain and context ontologies designed with Protégé
(http://protege.stanford.edu/) for describing the “price” concept and context3.

5 Related Work

This section presents different initiatives that relate to the semantic and me-
diation aspects of Web services, and to previous work on context description.
These related works helped us build ideas, and backed our approach as they are
important references of the domain.

Firstly, Semantic Web services constitute an active domain of research. Most
approaches rely on ontologies to express the semantics of a domain, however,
inserting semantics into Web Services involves using description languages like
OWL-S [4], or extending syntactic standards with semantic features (WSDL-
S) [6]. OWL-S is a subset of the OWL (ex-DAML) ontology language. It is a
general ontology for building semantic Web services, and it was designed to be
coupled with standard description formats like WSDL. Inspired from OWL-S,
several research projects have been developed, such as ODESWS [13] that mod-
els Web services using problem-solving methods. From the DERI laboratory,
WSMO [5] is a formal language and ontology that describes varied aspects of
semantic Web services. It supports the development and description of seman-
tic Web services and enables mediation as a service, so that it allows maximal
decoupling between component Web services. With WSDL-S, Miller et al. anno-
tate WSDL with several extensions related to operations and messages [6]. These
extensions refer to concepts of domain models to specify semantics of messages,
but also preconditions and effects of operations.
3 Available at http://www710.univ-lyon1.fr/∼mmrissa/price.owl and http://www710.

univ-lyon1.fr/∼mmrissa/PriceContext.owl

24 M. Mrissa et al.

Secondly, mediation between Web services is a hot topic and receives a lot
of attention from the research community. Many mediation approaches rely on
the concept of mediator for solving data heterogeneities between participants
of an interaction. Cabral and Domingue [14] provide a broker-based mediation
framework for composing semantic Web services. Their approach follows WSMO
conceptual framework [5] that recommends strongly decoupled, service-based
mediation. Williams et al. [15] use agents to perform semantic mediation between
input and output parameters of Web services by encapsulating the composition
into an agent, that controls the developpement of the operation. Spencer et
al. [16] present a rule-based approach to semantically match outputs and inputs
of Web services. An inference engine analyzes OWL-S descriptions and generates
multiple data transformation rules using a description-logic reasoning system.

Thirdly, the use of context has been studied in several domains, in order to
improve the adaptability of software applications to different views on infor-
mation [17]. Some approaches provides formalisms for context representation.
In the domain of database interoperability, the Context Interchange approach,
firstly introduced by Sciore et al. [11], is based on the notion of semantic value.
It has proved to be a highly scalable, extensible and adaptable approach to se-
mantic reconciliation of data. Goh [18] and Firat [19] presented implementations
and extensions to this approach. Then, Bornhövd [9] adapted this model to the
description of semi-structured data.

While mediation and semantic description of Web services in a composition
are very active research fields, to the best of our knowledge, none of these works
actually consider the use of explicit context description to solve semantic het-
erogeneities of data in Web services composition.

6 Conclusion

In this paper, we presented an approach to support the semantic mediation of
data exchanged between Web services engaged in a composition. To this end,
we first developed a model that leverages data to the level of semantic object,
then annotated WSDL descriptions with semantic metadata for capturing con-
textual information, and finally proposed a context- and rule-based mediation
mechanism for Web services composition.

Our future work revolves around different aspects. We envision to automati-
cally integrate mediator Web services into the composition at-runtime, to alle-
viate the task of composition designers. Also, further study of ontology-based
solutions for describing multiples context representations is required. Lastly, we
plan to consider the possibility for successful context-based mediation as a cri-
teria of the selection step to improve the selection of Web services.

References

1. Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H.F.,
Thatte, S., Winer, D.: Simple object access protocol (SOAP) 1.1. Technical report,
The World Wide Web Consortium (W3C) (2000)

A Context Model for Semantic Mediation in Web Services Composition 25

2. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL) 1.1, W3C Note. Technical report, The World Wide
Web Consortium (W3C) (2001)

3. UDDI: Universal Description, Discovery, and Integration of Business for the Web.
(2001) URL: http://www.uddi.org.

4. Martin, D.L., Paolucci, M., McIlraith, S.A., Burstein, M.H., McDermott, D.V.,
McGuinness, D.L., Parsia, B., Payne, T.R., Sabou, M., Solanki, M., Srinivasan,
N., Sycara, K.P.: Bringing Semantics to Web Services: The OWL-S Approach.
In Cardoso, J., Sheth, A.P., eds.: SWSWPC. Volume 3387 of Lecture Notes in
Computer Science., Springer (2004) 26–42

5. Arroyo, S., Stollberg, M.: WSMO Primer. WSMO Deliverable D3.1, DERI Working
Draft. Technical report, WSMO (2004) http://www.wsmo.org/2004/d3/d3.1/.

6. Miller, J., Verma, K., Rajasekaran, P., Sheth, A., Aggarwal, R., Sivashan-
mugam, K.: WSDL-S: Adding Semantics to WSDL - White Pa-
per. Technical report, Large Scale Distributed Information Systems (2004)
http://lsdis.cs.uga.edu/library/download/wsdl-s.pdf.

7. Gruber, T.: What is an ontology? http://www-ksl.stanford.edu/kst/what-is-an-
ontology.html (2000)

8. W3C: XML Schema Part 2: Datatypes Second Edition. Technical report, W3C
(2004) http://www.w3.org/TR/xmlschema-2/.

9. Bornhövd, C.: Semantic metadata for the integration of web-based data for elec-
tronic commerce. In: Int’l Workshop on E-Commerce and Web-based Information
Systems (WECWIS), Santa Clara, CA. (1999) 137–145

10. Schreiber, G., Dean, M.: Owl web ontology language reference.
http://www.w3.org/TR/2004/REC-owl-ref-20040210/ (2004)

11. Sciore, E., Siegel, M., Rosenthal, A.: Using semantic values to facilitate interop-
erability among heterogeneous information systems. ACM Trans. Database Syst.
19(2) (1994) 254–290

12. Noy, N.F.: Semantic integration: a survey of ontology-based approaches. SIGMOD
Rec. 33(4) (2004) 65–70

13. Corcho, Ó., Gómez-Pérez, A., Fernández-López, M., Lama, M.: ODE-SWS: A
Semantic Web Service Development Environment. In Cruz, I.F., Kashyap, V.,
Decker, S., Eckstein, R., eds.: SWDB. (2003) 203–216

14. Cabral, L., Domingue, J.: Mediation of Semantic Web Services in IRS-III. In:
First International Workshop on Mediation in Semantic Web Services (MEDIATE
2005), Amsterdam, The Netherlands. (December 12th 2005)

15. Williams, A.B., Padmanabhan, A., Blake, M.B.: Experimentation with local con-
sensus ontologies with implications for automated service composition. IEEE
Trans. Knowl. Data Eng. 17(7) (2005) 969–981

16. Spencer, B., Liu, S.: Inferring data transformation rules to integrate semantic web
services. In McIlraith, S.A., Plexousakis, D., van Harmelen, F., eds.: International
Semantic Web Conference. Volume 3298 of Lecture Notes in Computer Science.,
Springer (2004) 456–470

17. Kwan, M.M., Balasubramanian, P.: Knowledgescope: managing knowledge in con-
text. Decis. Support Syst. 35(4) (2003) 467–486

18. Goh, C.H., Bressan, S., Madnick, S.E., Siegel, M.: Context interchange: New fea-
tures and formalisms for the intelligent integration of information. ACM Trans.
Inf. Syst. 17(3) (1999) 270–293

19. Firat, A.: Information Integration Using Contextual Knowledge and Ontology
Merging. PhD thesis, Massachusetts Institute of Technology, Sloan School of Man-
agement (2003)

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 26 – 39, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Modeling Service Compatibility with Pi-calculus
for Choreography

Shuiguang Deng1, Zhaohui Wu1, Mengchu Zhou2, Ying Li1, and Jian Wu1

1 College of Computer Science, Zhejiang University, Hangzhou 310027, China
2 Department of Electrical and Computer Engineering, New Jersey Institute of Technology,

NJ 07102, USA
{dengsg, wzh, cnliying, wujian2000}@zju.edu.cn,

zhou@njit.edu

Abstract. Service choreography has become an emerging and promising tech-
nology to design and build complex cross-enterprise business applications. Dy-
namic composition of services on the fly requires mechanisms for ensuring that
the component services in the composition are compatible with each other.
Current service composition languages provide notations for describing the in-
teractions among component services. However, they focus only on the com-
patibility at the syntax and semantic level in an informal way, yet ignoring the
dynamic behavior within services. This paper emphasizes the importance of the
behavior in the compatibility verification between services and utilizes the

-calculus to model the service behavior and the interaction in a formal way.
Based on the formalization, it proposes a method based on the operational se-
mantics of the -calculus to automate the verification of compatibility between
two services and presents an algorithm to measure the compatibility degree
quantitatively.

1 Introduction

Web service is emerging as the infrastructure for service-oriented architectures
(SOA). It is increasingly gaining acceptance as an important method to facilitate ap-
plication-to-application interactions within and across enterprises [1]. More and more
enterprises are rushing to employ web services to encapsulate their business in order
to accelerate the cooperation with their partners.

In general, performing complex tasks or doing cross-enterprise businesses requires
a number of web services to work together. For example, to accomplish a purchase, it
needs the collaboration of seller, shipping and bank service. Thus, service choreogra-
phy has become one of the hottest topics in the service research area. It aims at com-
bining different services and making these services work compatibly with each other
to provide value-added functions. Many methods and prototypes are proposed to
implement service choreography [2]. Moreover, several proposals such as BPEL [3]
and WS-CDL [4] have been used to describe the process of collaboration among dif-
ferent services. However, they concern only the syntax or semantic compatibility
among services. For example, they all emphasize that the message numbers and types
transferred between services must be compatible.

 Modeling Service Compatibility with Pi-calculus for Choreography 27

As agreed by many researchers, a web service should include not only the static
properties, such as interfaces, message numbers and types, but also the dynamic be-
havior, i.e., the supported message exchange sequences namely conversations called
in such literatures as [1][7]. The static compatibility including the syntax and seman-
tic compatibility is essential to be checked, but a more challenging problem is to
check the dynamic compatibility of the service behavior. Consider two services, one
for vendors and the other for customers. The former waits for payment before sending
the product while the latter insists on cash on delivery. In this case, even they are
syntactically and semantically compatible, the collaboration between them will lead to
a deadlock as they do not negotiate well in the message exchange protocol. Thus, the
dynamic behavior of web services must be taken into account when analyzing the
compatibility between web services.

This paper focuses on reasoning about the behavior compatibility of web services
automatically in service choreography. In order to automate the compatibility verifi-
cation, it proposes a formal way to model the service behavior and the service interac-
tion using -calculus. Based on the formal representation, it introduces a method to
check whether two services are compatible with each other. It also aims at measuring
the compatibility degree between services in a quantitative way.

The remainder of this paper is organized as follows. Section 2 gives a brief intro-
duction to -calculus and then presents how to use it to model service behavior and
interaction. Section 3 introduces a method to check whether two services are com-
patible automatically and an algorithm to calculate the compatibility degree between
two services. Section 4 discusses the related work. Finally, Section 5 draws the con-
clusion and outlines some further research activities.

2 Formalizing Service Behavior and Interaction

-calculus is proposed by Robin Milner to describe and analyze a concurrent mobile
system. Mobile systems are made up of components which communicate and change
their structure as a result of interaction. A service composition is actually a concurrent
system composed of several distributed and autonomous services, where services
interact with others by sending and receiving messages. Hence, it is intuitive to adopt

-calculus to model the service behavior and the interaction within service choreo-
graphies. Another reason for its use is that it has a series of algebraic theories, such as
bisimularity and congrugence, and a number of related tools provided by many re-
searchers to help analyzing service behavior and interaction. To introduce the

-calculus in detail is beyond the scope of this paper. We only illustrate some of its
necessary parts to be used later. Further details can be found in [5].

2.1 The -Calculus

There are two core concepts in -calculus: processes and names. A -calculus process
is an entity which communicates with other processes by the use of names. A name is
a collective term for existing concepts like channels, pointers, and identifiers. Each
name has a scope and can be unbound (global) or bound to a specific process. The
scope of a bound name can be dynamically expanded or reduced during the lifetime
of the system by communicating names between processes.

28 S. Deng et al.

Syntax: The -calculus consists of an infinite set of names ranged over by , ,...,a b z ,
which function as all of communication channels, variables and data values. A

-calculus process can be defined as one of the following forms:

(1) 0 The Nil-process: an empty process, which performs no action.

(2) .a x P< > Output prefix: the process sends out x over the channel a and then

behaves like P.

(3) .a x P< > Input prefix: the process waits to read a value from the channel a.

After receiving the value u, the process continues as P but with the newly

received name u replacing x, denoted as { / }P u x

(4) .Pτ Silent prefix: the process can evolve to P without any actions.

(5) P Q+ Sum: the process can enact either P or Q.

(6) |P Q Parallel Composition: the process represents the combined behavior of

P and Q running in parallel. P and Q can act independently, and may also

communicate if one performs an output and the other an input along the

same port.

(7) ()va P Restriction: the process behaves like P but the name a is local, mean-

ing that the name cannot be used for communication with other processes.

(8) if x y then P= Match: the process behaves as P if x and y are the same

name, and otherwise it does nothing.

Operational Semantics: it is used to describe the possible evolution of a process;
more precisely, it defines a transition relation 'P Pα⎯⎯→ meaning intuitively that “P
can evolve to 'P in one step through action ” (where is the emission of a message,
the reception of a message or a action). This relation is defined by the set of rules
below, which give a precise meaning to each operator.

(1) : { , ,)}
.

PREFIX x y x y
P Pα α τ

α
− ∈ < > < >

⎯⎯→
 (2)

'
:

'

P P
SUM

P Q P

α

α
⎯⎯→

+ ⎯⎯→

(3)
'

: () ()
| ' |

P P
PAR bn fn Q

P Q P Q

α

α α⎯⎯→ ∩ = ∅
⎯⎯→

(4)
' '

:
| '{ / } | '

a x a uP P Q Q
COM

P Q P u x Qτ

< > < >⎯⎯⎯→ ⎯⎯⎯→
⎯⎯→

For instance, the PREFIX rule states that .Pα can always evolve to P by performing
, and the COM rule states that if P can evolve to 'P by receiving a message from the

channel a while Q can evolve to 'Q by sending a message from the same channel,

and |P Q evolve to '{ / } | 'P u x Q after an inner synchronization action (denoted as

τ). A process involving a choice can evolve following one of the processes of the
choice.

 Modeling Service Compatibility with Pi-calculus for Choreography 29

Structure Congrugence: it is used to identify the processes that obviously represent
the same thing.

(1) | 0P p≡ (2) | |P Q Q P≡ (3) | (|) (|) |P Q R P Q R≡

(4) 0P p+ ≡ (5) P Q Q P+ ≡ + (6) () ()P Q R P Q R+ + ≡ + +

2.2 Modeling Service Behavior and Interaction with -Calculus

The service behavior refers to the dynamic properties of a service including the state
transitions and its supported actions and message exchange sequences. Consider the
following example. Note that, here we concern only the behavior of the service while
ignore other syntax and semantic aspects.

Figure 1 illustrates a vendor service that has two PortTypes named PT1 and PT2,
respectively and interacts with other services through five operations Op1-5. Op1,
Op4 and Op5 are one-way-type operations which get input messages named purchase
order (PO), cash pay (CP) and bank transfer pay (BTP), respectively. The incoming
message of PO triggers the service to start. Op2 and Op3 are the notification-type
operations, each of which sends out a message named delivery (DEL) and Refusal
(REF), respectively. The logic of the service is described as follows: it expects to
receive a PO message at the initial state. On a PO message coming, it sends out the
delivery if the stock is enough; otherwise, it sends back a refusal message and ends
the service. In the former case, it waits for receiving either a cash pay or bank transfer
pay message after sending out the delivery. After that, the service terminates.

Fig. 1. A vendor service

The behavior of the service in Fig. 1 includes two aspects. From the outside of the ser-
vice, it refers to the actions of receiving messages and sending messages through opera-
tions. From the inside of the service, it refers to the state transitions. Using the -calculus
to model the behavior of a service, we can define the whole service as a -calculus proc-
ess, in which the operations of the service are channels used to communicate with other

30 S. Deng et al.

processes. In WSDL (Web Service Definition Language), there are four types of opera-
tion, i.e., one-way, request-response, solicit-response and notification, as shown in Table
1. We use the -calculus to model each of them.

Table 1. Model Service Operation with -calculus

Service
Operation Type

Operation Example -calculus Process
 Expression

one-way
" "

" "/
/

operation name a
input message m

operation

< = >
< = >

< >
 a m< >

request-response

" "
" "/

" "/
/

operation name a
input message m
output message n

operation

< = >
< = >
< = >

< >
 .a m a n< > < >

solicit-response

" "
" "/
" "/

/

operation name a
output message m
input message n

operation

< = >
< = >
< = >

< >
 .a m a n< > < >

notification
" "

" "/
/

operation name a
output message m

operation

< = >
< = >

< >
 a m< >

According to Table 1, we can model the vendor service as the following -calculus
process which uses the channels Op1-5 to communicate with other processes.

1 .(2 .(4 5) 3)VP Op PO Op DEL Op CP Op BTP Op REF= < > < > < > + < > + < > (1)

After modeling services as -calculus processes, we can model the interaction be-
tween services as the combination of processes. Fig. 2 illustrates a scenario where one
customer service interacts with the vendor service.

Customer

PT2

PT1
Op1

Op2

B

C

PO

DEL

CP
Op4

Op3

D

REF

Vendor

B

A
PT1

PO

PT2
Op4

Op5

REF

C

DEL
Op3

noStock=no
noStock=yes

CP

D

BTP

Op1

Op2

A

Fig. 2. Interaction between a vendor service and a customer service

 Modeling Service Compatibility with Pi-calculus for Choreography 31

The client service sends out a purchasing order and waits for a delivery or refusal
message from the vendor service. If a refusal message comes, the client service ends;
otherwise, it sends out a cash pay message to the vendor service and goes to an end.
The customer service can be modeled as the following -calculus process.

1 .(2 . 4 3)CP Op PO Op DEL Op CP Op REF= < > < > < > + < > (2)

The interaction between the two services can be modeled as the following combi-
nation of the -calculus processes (1) and (2), which means that the interaction be-
tween them is the result of the communication carried out between the two processes.

(,)

|

1 .(2 .(4 5) 3)

| 1 .(2 . 4 3)

Interaction Vendor Custom

V C

P
P P

Op PO Op DEL Op CP Op BTP Op REF

Op PO Op DEL Op CP Op REF

=
= < > < > < > + < > + < >

< > < > < > + < >

 (3)

3 Reasoning About Service Compatibility

Once we have formalized the service behaviors and the interactions with the
-calculus processes, we can reason about the compatibility between services for-

mally. In this section, we introduce an automatic method to check whether two ser-
vices are compatible with each other, and then propose an algorithm to measure the
compatibility degree between two services.

3.1 Check Compatibility Between Two Services

Considering the aforementioned scenario, the customer service is completely com-
patible with the vendor service. There are two different message exchange sequences
between them and each of the sequence can eventually lead to an end of the commu-
nication. For the first case, after receiving a purchase order from the customer service,
the vendor service emits a refusal message due to the shortage of stock and comes to
an end. The customer receives the refusal message and also terminates. This interac-
tion leads to a failure business. For the second case, after receiving a purchase order,
the vendor service sends a delivery message to the customer due to the enough stock
and waits for a payment message before continuing. On receiving the delivery mes-
sage, the customer service sends a cash-pay message, which will be accepted by the
vendor service. After that, the communication terminates and leads to a successful
business. Both of the two message exchange sequences indicate that each service has
the ability to accept all the messages emitted by another and the communication be-
tween them can always terminate. Thus, the vendor service and the customer service
are completely compatible with each other.

When we say two services are compatible, it means that there is at least one message
exchange sequence between the two services, with which the communication of the two
services can eventually come to an end. After modeling vendor and customer services
as -calculus processes, the compatibility verification can be carried out formally
and automatically. It is intuitive that to check whether the two services are compatible

32 S. Deng et al.

with each other, we only need to check whether the -calculus process (3) can evolve to
the Nil-process after finite actions. According to the operational semantics of the

-calculus process, we obtain two possible transitions of the process (3). Note that, we
label each transition step with the message transferred between the two processes.

(,)

|

1 .(2 .(4 5) 3)

| 1 .(2 . 4 3)
(2 .(4 5) 3)

| (2 . 4 3)
0 | 0

Interaction Vendor Customer

V C

PO

REF

P
P P

Op PO Op DEL Op CP Op BTP Op REF

Op PO Op DEL Op CP Op REF

Op DEL Op CP Op BTP Op REF

Op DEL Op CP Op REF

=
= < > < > < > + < > + < >

< > < > < > + < >
⎯⎯→ < > < > + < > + < >

< > < > + < >
⎯⎯⎯→ = 0

 (4)

(,)

|

1 .(2 .(4 5) 3)

| 1 .(2 . 4 3)
(2 .(4 5) 3)

| (2 . 4 3)
(4

Interaction Vendor Customer

V C

PO

DEL

P
P P

Op PO Op DEL Op CP Op BTP Op REF

Op PO Op DEL Op CP Op REF

Op DEL Op CP Op BTP Op REF

Op DEL Op CP Op REF
Op

=
= < > < > < > + < > + < >

< > < > < > + < >
⎯⎯→ < > < > + < > + < >

< > < > + < >
⎯⎯⎯→ 5)

| 4
0 | 0 0CP

CP Op BTP

Op CP

< > + < >
< >

⎯⎯→ =

 (5)

The transition sequence (4) is in accordance with the first message exchange se-
quence (PO.REF) mentioned above, while sequence (5) is in accordance with the
second one (PO.DEL.CP). Since each transition sequence of the parallel composition
terminates at a Nil-process, it indicates that both two processes can come to an end
after some message receiving and sending actions. Thus the two services are compati-
ble with each other.

Fig. 3. Interaction between a vendor service and a new customer service

 Modeling Service Compatibility with Pi-calculus for Choreography 33

Consider another scenario shown in Fig. 3, where a new customer service interacts
with the aforementioned vendor service. The new customer service sends a purchase
order and then waits for a delivery from the vendor service. On receiving a delivery, it
sends a cash pay message or a bank transfer pay message. The behavior of the new
customer service is modeled as the following -calculus process (6).

1 . 2 .(4 5)NCP Op PO Op DEL Op CP Op BTP= < > < > < > + < > (6)

In fact, the new custom service is not always compatible with the vendor service.
This depends on whether the stock of the vendor service is enough to satisfy the pur-
chase order emitted from the new customer. If the stock is not enough, the vendor
sends out a refusal message to the customer. However, the customer service can only
accept a delivery message at the time and it is incapable of accepting the refusal mes-
sage. Thus the interaction between the two services goes to a deadlock in this case.
But if the stock is enough, the interaction between the two services can terminate
normally. This indicates that the two services are partially compatible. For this sce-
nario, we also check whether the parallel composition of the two -calculus processes
(1) and (6) can reach the Nil-process after finite communicating actions.

As the transition sequence (7) shows, the parallel composition can lead to an end
with two different message exchange sequences (PO.DEL.CP and PO.DEL.BTP). But
sequence (8) leads the communication of the two services to a deadlock. This scenario
shows that if two services are partially compatible, there is always at least one transi-
tion sequence with which the communication between the two services can terminate.
From the analysis of the two scenarios above, we reach the following conclusion.

(,)

|

1 .(2 .(4 5) 3)
| 1 . 2 .(4 5)

(2 .(4 5) 3)
| (2 .(4 5)

Interaction Vendor NewCustomer

V NC

PO

DEL

P
P P

Op PO Op DEL Op CP Op BTP Op REF

Op PO Op DEL Op CP Op BTP

Op DEL Op CP Op BTP Op REF

Op DEL Op CP Op BTP

=
= < > < > < > + < > + < >

< > < > < > + < >
⎯⎯→ < > < > + < > + < >

< > < > + < >
⎯⎯ → 4 5 | 4 5

0 | 0 0CP or BTP

Op CP Op BTP Op CP Op BTP⎯ < > + < > < > + < >
⎯⎯⎯⎯→ =

 (7)

(,)

|

1 .(2 .(4 5) 3)

| 1 . 2 .(4 5)
(2 .(4 5) 3)

| (2 .(4 5)

Interaction Vendor NewCustomer

V NC

PO

REF

P
P P

Op PO Op DEL Op CP Op BTP Op REF

Op PO Op DEL Op CP Op BTP

Op DEL Op CP Op BTP Op REF

Op DEL Op CP Op BTP

=
= < > < > < > + < > + < >

< > < > < > + < >
⎯⎯→ < > < > + < > + < >

< > < > + < >
⎯⎯ →⎯

 (8)

Theorem 1. Let PA and PB are the -calculus processes for two services A and B,
respectively. A and B are compatible in collaboration iff:

 | 0A BP P , where means ()*τ⎯⎯→ , i.e., zero or more τ transitions (9)

34 S. Deng et al.

Proof: (I): If two services A and B are compatible, according to the compatible con-
cept, it means that there is at least one message exchange sequence s, with which the
communication of the two services can eventually come to an end. Thus the parallel
composition of the two -calculus processes |A BP P can evolve to the Nil-process
under such a a transition sequence which is in accordance with s; (II) if the condition
(9) is to be held, it indicates that there exist at least one transition sequence under
which the communication between PA and PB can terminate. Due to the fact that a
transition sequence represents a message exchange sequence, the two services end
with a successful interaction under this message exchange sequence. Thus the two
services are compatible.

To check whether two services are compatible, we only need to check whether
condition (9) is satisfied. In fact, it can be done using many -calculus related tools,
such as MWB (Mobility Workbench) [18] automatically. Thus, we can use -calculus
tools to automatically check whether two services are compatible with each other
after modeling services into -calculus processes.

3.2 Compatibility Degree Between Two Services

As two pairs of services mentioned in the aforementioned scenarios show, although
they are compatible, the compatibility degree is not the same. The first pair of ser-
vices is completely compatible, while the second is partially compatible. It is desired
to have a method that can measure the compatibility degree between services.

Let PA and PB are the -calculus processes for two services A and B, respectively.
The compatibility degree can be measured through computing the ratio of the success-
ful transition sequences to all the transition sequences in |A BP P . A successful transi-

tion sequence is such a transition sequence that leads the parallel composition to the
Nil-process. We import two notations (|)A BP Pξ and (|)A BP Pς to represent the num-

ber of transition sequences and that of successful transition sequences, respectively.
The compatibility degree, denoted as (,)A Bψ , between two services A and B is cal-

culated according to the following formula.

 (,) (|) (|)A B A BA B P P P Pψ ς ξ= (10)

The formula implies that 0 (,) 1A Bψ≤ ≤ . In order to calculate the compatibility
degree between two services automatically, we propose a method to compute

(|)A BP Pξ and (|)A BP Pς . The values of (|)A BP Pξ means the number of ways two
services can follow to interact with each other. If we can change the parallel compo-
sition |A BP P into the combination of several sub-processes using the sum operations,
we can easily get the value of (|)A BP Pξ . In fact, the expansion law of the -calculus
can help us to do so. It is used to change the parallel-process into the sum-process
equivalently. And each of the sub-processes in a sum-process represents a possible
transition sequence.

Expansion Law: Let
1 1([]) | ... | []) \n nP P f P f L= , with 1n ≥ , where \L means the names

in set L are restricted names and if is a renaming function. Then

 Modeling Service Compatibility with Pi-calculus for Choreography 35

{
}

{
}1 2

1 1

1 1

1 2

().([] | ... | '[] | ... | []) \ :

', ()

.([] | ... | '[] | ... | '[]... | []) \ :

', ', () (),

i i i n n

i i i

i i j j n n
l l

i i j j i j

P f P f P f P f L

P P f L L

P f P f P f P f L

P P P P f l f l i j

α
α

α
τ

=
⎯⎯→ ∉ ∪

+
⎯⎯→ ⎯⎯→ = <

Considering the parallel composition in the first scenario, according to the expan-
sion law, we transform |V CP P as follows. Note that we label each τ transition with
the message transferred between the two processes. The channels Op1, Op2, Op3 and
Op4 are restricted channels, i.e., { 1, 2, 3, 4}L Op Op Op Op= , because they are used to
communicate between Pv and PC only.

|

(1 .(2 .(4 5) 3)

| 1 .(2 . 4 3)) \
.(2 .(4 5) 3

| 2 . 4 3) \

(. .((4 5) | 4

V C

PO

PO DEL

P P

Op PO Op DEL Op CP Op BTP Op REF

Op PO Op DEL Op CP Op REF L

Op DEL Op CP Op BTP Op REF

Op DEL Op CP Op REF L

Op CP Op BTP Op CP

τ

τ τ

= < > < > < > + < > + < >
< > < > < > + < >

= < > < > + < > + < >
< > < > + < >

= < > + < > <) .) \

. . . . 5 . 4 .
PO REF

PO DEL CP PO DEL PO REF

L

Op BTP Op CP

τ τ
τ τ τ τ τ τ τ

> +
= + < > < > +

(11)

The result of transformation (11) has two Nil-processes and one non-Nil-process at
last. Note that we must omit such a sub-process that starts with an input prefix while
counting the number of transition sequences in the last sum-process. The reason is
that the input prefix is a passive action, which cannot trigger the sub-process to start.
So the transition represented by the sub-process does not exist indeed. Thus, the sub-
process . . 5 . 4PO DEL Op BTP Op CPτ τ < > < > is ignored. From the message flow labeled on
each τ transition, we obtain two transition sequences PO.DEL.CP and PO.REF,
each of which is a successful transition sequence. Thus, we have (,) 2 / 2 1S Cψ = = .
For the second scenario, we get the transformation (12), where

{ 1, 2, 4, 5}L Op Op Op Op= .

|

(1 .(2 .(4 5) 3)

| 1 . 2 .(4 5)) \

.((2 .(4 5) 3)

| 2 .(4 5)) \

.(.((4 5) | (

V NC

PO

PO DEL

P P

Op PO Op DEL Op CP Op BTP Op REF

Op PO Op DEL Op CP Op BTP L

Op DEL Op CP Op BTP Op REF

Op DEL Op CP Op BTP L

Op CP Op BTP

τ

τ τ

= < > < > < > + < > + < >
< > < > < > + < >

= < > < > + < > + < >
< > < > + < >

= < > + < > 4 5))

3 . 2 .(4 5)) \
(. . . .

. 3 . 2 .(4 5)) \
PO DEL CP PO DEL BTP

PO

Op CP Op BTP

Op REF Op DEL Op CP Op BTP L

Op REF Op DEL Op CP Op BTP L

τ τ τ τ τ τ
τ

< > + < >
+ < > < > < > + < >

= +
+ < > < > < > + < >

 (12)

The last sum-process has two Nil-processes and a non-Nil-process. Thus, we get
(,) 2 / 3S NCψ = . The non-Nil-process in (12) represents such a transition sequence,

in which a REF message is sent out on channel Op3 but not accepted. This can help
us to judge when the two services cannot interact successfully.

36 S. Deng et al.

As another example, two -calculus processes are
1 21 2MP Op M Op M= < > + < > and

1 31 3NP Op M Op M= < > + < > ,
1 2 1 3| (1 2) | (1 3)M NP P Op M Op M Op M Op M= < > + < > < > + < > and

the transformation is as follows, where { 1}L Op= .

1

1 2 1 3

2 1 3

3 1 2

|

(1 2) | (1 3) \
(2 .(1 3)

3 .(1 2)) \

M N

M

P P

Op M Op M Op M Op M L
Op M Op M Op M

Op M Op M Op M L

τ
= < > + < > < > + < >
= + < > < > + < >

+ < > < > + < >

 (13)

Thus, there are three sub-processes in the last sum-process. However, the two sub-
processes

2 1 32 .(1 3)Op M Op M Op M< > < > + < > and
3 1 23 .(1 2)Op M Op M Op M< > < > + < > both

start with an input prefix. Thus there is only one possible transition sequence in the
composition. Hence (,) 1/1 1M Nψ = = .

According to the above analysis, we design the following algorithm to compute the
compatibility degree between two services represented by -calculus processes. From
the 3rd to 8th line, it determines the set of restricted names for the parallel composition
of two processes. In fact, A BL CN CN= ∩ . From the 11th to 18th line, it calculates

(|)A BP Pξ and (|)A BP Pς . Using the expansion law to transform the parallel process
into the sum-process is the key of the algorithm.

: - -
:

: (,)
:

: | ;
: ;
: , ;
:

A B

A B

A B A B

ALGORITHM Calculate Compatibility Degree
INPUT two calculus processes P and P of two services A and B
OUTPUT A B
METHOD
1 Set P P P
2 Set L
3 Set CN and CN as the sets of channel names in P and P respectivley
4 For

π
ψ

φ

−

=
=

:
: ;
:
:
: (|) \
: - ,

: -
: 0
: (|)

A

B

A B

i
i

i

i

A B

each channel name cn CN
5 If cn CN Then
6 put element cn into L
7 End If
8 End For
9 P P P L
10 transform P into the sum process according to Expansion Law thus

P P

11 For each sub process P in P
12 If P Then
13 P Pξ

∈
∈

=

=

=
= (|) 1;

: (|) (|) 1;
:
: (|) (|) 1;
:
:
: (,) (|) (|) ;

A B

A B A B

i

A B A B

A B A B

P P
14 P P P P
15 Else If P starts with an output prefix Then
16 P P P P
17 End If
18 End For
19 Return A B P P P P

ξ
ς ς

ξ ξ

ψ ς ξ

+
= +

= +

=

 Modeling Service Compatibility with Pi-calculus for Choreography 37

4 Related Work

There have been some published papers that discuss similarity and compatibility at
different levels of abstractions of service specifications [6-11]. Due to the limited
space, here we only introduce such work that adopted a formal method to the analysis.
This includes the use of the Petri Net, Automata, Finite State Machine, Labeled Tran-
sition System and CCS.

Martens [6] represents a web service as a workflow module including a local proc-
ess and a serial of interfaces. Petri Nets are selected to model workflow modules and
compositions. Based on this formalization, the compatibility between two workflow
modules can be checked by the verification of weak soundness of the composition.
This work allows to reason about service compatibility very well. However, using
Petri nets to model processes requires a much higher computational and space com-
plexity. In particular, the reachability and liveness problems are non-polynomial.

Fu et al. [7] propose a top-down approach based on Guarded Mealy Automata to
analyze the composition of web services and applies model-checking techniques to
verify the conversation between two services. This approach can effectively guarantee
the correctness of web services composition, but assumes that service links among
peers are predetermined and established before the interaction starts. Thus, this ap-
proach cannot be used when the interactions are changing dynamically.

Wombacher et al. [8] extend Determined Finite State Automata by logical expres-
sions associated to states to model web service behavior. By explicating message
sequence and required messages such descriptions allow for more precise matches
than the current approaches limited to matching individual messages only. However,
the work is lack of quantitative analysis on business match.

Foster et al. [9] make use of Finite State Machine to model web service choreogra-
phy and assigns semantics to the distributed process interactions. But this method is
mainly for the process verification, the internal behavior of each service is not taken
into account.

Bordeaux et al. [10] use Labeled Transition System to formalize the behavior of
web services and give several definitions of compatibility at different levels. Thus
compatibility checking can be automated to a large extent. However, the compatibility
definitions are too strict that the service substitutability is not context-aware.

Brogi et al. [11] regard service compatibility as the essential reasoning tasks on
service interface descriptions and use a process algebra approach to formalize one of
the proposed choreography proposals. They show the benefits that can be obtained
from such formalization, namely the definition of compatibility and replaceablity tests
between services. This method belongs to the same category as our method. However,
they discuss the test of compatibility in an informal way and focus on a very specific
representation only.

Compared with the above formal methods, the main benefit of using -calculus in
this work to formalize the behavior and interaction of services is its expressiveness,
which is adequate to specify composition due to its compositionality property. More-
over, its texture representation is more adequate to describe real-size problems, as
well as to reason on them [15].

38 S. Deng et al.

5 Conclusion and Future Work

Determining the compatibility between Web services plays a critical role in support-
ing dynamic discovery and collaboration of Web services in the inherently heteroge-
neous web environment [12]. It is becoming well-admitted that the use of formal
methods is worthy as an abstract way to deal with web service and then to tackle
several issues raised in web services.

As a step toward the vision of dynamic composition of services on the fly, this pa-
per proposes a formal approach to unambiguously model service behavior and inter-
action in service choreography using -calculus. The resulting formal and unambigu-
ous characterization of -calculus processes is useful for the precise understanding of
services and interactions, as well as enabling further research on automated verifica-
tion of compatibility. Based on the formalizations, it proposes a method to verify
service compatibility. Many existent tools can help us to do the verification automati-
cally. This paper also gives an algorithm to measure the compatibility degree of two
services. To the best of our knowledge, this is the first attempt to calculate compati-
bility degree based on service behavior in quantity. Using this algorithm, we can not
only compute the value of compatibility degree, but also know when two services are
not compatible with each other. This is very helpful for us to dynamically compose
services and bind services according to the run-time information of the choreo-
graphies without introducing some flaws into the service choreography. Moreover,
our compatibility checking method can help us to find replaceable services according
to run-time information dynamically that can ensure that the execution of service
choreography be successful.

We are currently developing a service composition framework-DartFlow [16], which
as a sub-project of DartGrid (http://ccnt.zju.edu.cn/projects/dartgrid) [17] is a frame-
work for service composition in the grid environment. It aims at providing a convenient
and efficient way for the cooperation of different services from the Intelligent Transpor-
tation System (ITS) domain. We are going to implement the compatibility verification
method and compatibility degree calculation algorithm in DartFlow to help us dynami-
cally compose services and correctly replace services in choreographies.

Acknowledgement

This work is supported by Zhejiang Provincial Natural Science Foundation of China
(NO. Y105463).

References

[1] B. Benatallah, F. Casati, and F. Toumani. Web Service Conversation Modeling: A Cor-
nerstone for E-Business Automation. IEEE Internet Computing, 8(1), p46-54, 2004.

[2] S. Dustdar, W. Schreiner. A survey on web services composition, International Journal of
Web and Grid Services, 1(1):1-30, 2005.

[3] BEA Systems, IBM, Microsoft, SAP, Siebel Systems: Business Process Execution Lan-
guage for Web Services Version 1.1., 2003.

 Modeling Service Compatibility with Pi-calculus for Choreography 39

[4] W3C. The Web Services Choreography Description Language (WS-CDL) Version 1.0,
World Wide Web Consortium, available at http://www.w3.org/TR/ws-cdl-10/, 2005.

[5] R. Milner. A Calculus of Communicating Systems, Lecture Notes in Computer Science,
volume 92, Springer-Verlag, 1980.

[6] A. Martens. On compatibility of web services. Petri Net Newsletter, 65, 2003.
[7] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Services, 13th Interna-

tional World Wide Web Conference (WWW), 2004.
[8] A. Wombacher, P. Fankhauser, B. Mahleko and Erich Neuhold. Matchmaking for Busi-

ness Processes based on Choreographies. International Journal of Web Services Research,
1(4), p14-32, 2004.

[9] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Compatibility verification for web service
choreography. In Proc. International Conference on Web Service (ICWS), 2004.

[10] L. Bordeaux, G. Salaun, D. Berardi, M. Mecella. When Are Two Web Services
Compatible? In Proc. of the 5th VLDB International Workshop on Technologies for e-
Services (VLDB-TES), 2004.

[11] A. Brogi, C. Canal, E. Pimentel, A. Vallecillo. Formalizing Web Service Choreographies.
In Proc. Of First International Workshop on Web Services and Formal Methods (WS-
MF), 2004.

[12] Y. Li and H. V. Jagadish. Compatibility determination in web services. In Proc. of ICEC
eGovernment Services WS, 2003.

[13] V. De Antonellis, M. Melchiori, B. Pernici, and P. Plebani. A methodology for e-service
substitutability in a virtual district environment. In Proc. of Conference on Advanced In-
formation Systems Engineering (CAISE), 2003.

[14] H. Overdick, F. Puhlmann, and M. Weske. Towards a Formal Model for Agile Service
Discovery and Integration. In Proc. of the Workshop on Dynamic Web Processes
(ICSOC-DWP), 2005

[15] L. Bordeaux and G. Salaün. Using Process Algebra for Web Services: Early Results and
Perspectives. In the Proc. of the 5th VLDB Workshop on Technologies for E-Services
(VLDB-TES), 2004.

[16] S. Deng, Z. Wu, et al. Management of Serviceflow in a Flexible Way. In Proc. of the 5th
International Conference on Web Information Systems Engineering (WISE), 2004.

[17] Z. Wu, S. Tang, S. Deng. DartGrid II: A Semantic Grid Platform for ITS. IEEE Intelli-
gent Systems, 20(3), p12-15, 2005.

[18] B. Victor, F. Moller. The Mobility Workbench - A Tool for the pi-Calculus. In the Proc.
of the 6th International Conference on Computer Aided Verification (CAV), 1994.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 40 – 53, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The DeltaGrid Abstract Execution Model: Service
Composition and Process Interference Handling

Yang Xiao, Susan D. Urban, and Ning Liao

Department of Computer Science and Engineering
Arizona State University

PO Box 878809 Tempe, AZ, 85287-8809 USA
{yang.xiao, susan.urban}@asu.edu

Abstract. This paper introduces the DeltaGrid abstract execution model as a
foundation for building a semantically robust execution environment for con-
current processes executing over Delta-Enabled Grid Services (DEGS). A
DEGS is a Grid Service with an enhanced capability to capture incremental data
changes, known as deltas, associated with service execution in the context of
global processes. The abstract model contains a service composition model that
provides multi-level protection against service execution failure, thus maximiz-
ing the forward recovery of a process. The model also contains a process recov-
ery model to handle the possible impact caused by failure recovery of a process
on other concurrently executing processes using data dependencies derived
from a global execution history and using user-defined correctness criteria. This
paper presents the abstract execution model and demonstrates its use. We also
outline future directions for incorporating application exception handling and
build a simulation framework for the DeltaGrid system.

1 Introduction

In a service-based architecture [17], the correctness of processes composed of distrib-
uted Web/Grid services is a concern due to the challenges introduced by the loosely
coupled, autonomous, and heterogeneous nature of the execution environment. Com-
positional serializability [16] is too strong of a correctness criterion for concurrent
processes since individual service invocations are autonomous and commit before the
process completes. As a result, process execution does not ensure isolation of the data
items accessed by individual services, allowing dirty reads and writes to occur.

From an application point of view, dirty reads and writes do not necessarily indicate
an incorrect execution, and a relaxed form of correctness dependent on application
semantics can produce better throughput and performance. User-defined correctness of
a process can be specified as in related work with advanced transaction models [5] and
transactional workflows [20], using concepts such as compensation to semantically
undo a process. But even when one process determines that it needs to execute com-
pensating procedures, data changes introduced by compensation of a process might
affect other concurrently executing processes that have either read or written data
that have been produced by the failed process. We refer to this situation as process

 The DeltaGrid Abstract Execution Model 41

interference. A robust service composition model should recover a failed process and
effectively handle process interference based on application semantics.

This research is defining an abstract execution model for establishing user-defined
correctness in a service composition environment. The research is conducted in the
context of the DeltaGrid project, which focuses on building a semantically-robust
execution environment for processes that execute over Grid Services. The abstract
execution model, however, is general enough for use in a Web Service composition
environment. Distributed services in the DeltaGrid, referred to as Delta-Enabled Grid
Services (DEGS) [4], are extended with the capability of recording incremental data
changes, known as deltas. Deltas provide the basis for backward recovery of an opera-
tion (DE-rollback) and tracking data dependencies among concurrent processes.

The focus of this paper is on the specification of the DeltaGrid abstract execution
model, which is composed of a service composition model and a process recovery
model. The service composition model provides multi-level protection against service
execution failure and maximizes the success of a process execution using compensa-
tion, DE-rollback, and contingency. The process recovery model defines a global
execution history for distributed process execution, based on which read and write
dependencies can be analyzed to evaluate the applicability of DE-rollback and process
interference.

The rest of this paper is organized as follows. After outlining related work in Sec-
tion 2, the paper provides an overview of the DeltaGrid system in Section 3 where the
DeltaGrid abstract model has been applied. Section 4 gives an overview of the Delta-
Grid abstract execution model. Section 5 presents the service composition model and
Section 6 presents the process recovery model. The paper concludes in Section 7 with
a summary and discussion of future research.

2 Related Work

Advanced transaction models have been studied to support higher concurrency for
long running transactions composed of subtransactions. Sagas [7] can be backward
recovered by compensating each task in reverse order. The flexible transaction model
[22] executes an alternative path when the original path fails. The backward recovery
of a failed transaction causes cascaded rollback or compensation of other transactions
that are read or write dependent on the failed transaction. The recent work in [12]
removes transactions that are dependent on tainted data produced by a flawed transac-
tion, using multi-version data to track read and write dependencies in a database sys-
tem. These models cannot well support a service composition environment where
dirty reads and writes do not necessarily indicate incorrect execution. As a result,
application-dependent correctness criteria should be used.

Research projects in the transactional workflow area have adopted compensation
as a backward recovery technique [6, 8, 19] and explored the handling of data de-
pendencies among workflows [8, 19]. The ConTract model [19] compensates a proc-
ess when a step failure occurs using an approach similar to sagas, and handles data
dependencies through pre-/post- condition specification integrated into a workflow
script. Forward recovery is not supported in ConTract. WAMO [6] supports backward
and forward recovery, but process interference is not considered. CREW [8] requires

42 Y. Xiao, S.D. Urban, and N. Liao

a static specification on the equivalence of data items across workflows to track data
dependencies. Our research maximizes the forward recovery of a process by a multi-
level specification of contingency and compensation. More importantly, we build a
global execution history based on which process data dependencies can be analyzed to
support application-dependent correctness criteria for handling process interference.

Currently most exception handling work in service composition environments fo-
cuses on transaction model implementation and the use of active rules. Open nested
transactions over Web Services are supported in [14], contingency is applied to for-
ward recover a composite service in [18], and WS-Transaction [2] defines processes
as either Atomic Transactions with ACID properties or Business Activities with com-
pensation capabilities. Rule-based approaches are used to handle service exceptions
independent of application logic, such as service availability, selection, and enactment
[15, 22], or search for substitute services when an application exception occurs [11].
Our research is among the first to address process interference caused by backward
recovery of a service execution failure, and establishes user-defined correctness crite-
ria based on data dependency tracking in a service composition environment.

3 Overview of the DeltaGrid System

The DeltaGrid system, focusing on the semantically robust execution of composite
services, provides an execution environment and test bed for the abstract execution
model described in this paper. As the fundamental building block, a Delta-Enabled
Grid Service (DEGS) is a Grid Service that has been enhanced with an interface to
access the deltas that are associated with service execution in the context of globally
executing processes [4]. Deltas can be used to undo the effect of a service execution
through Delta-Enabled rollback (DE-rollback). Deltas, in the context of the data de-
pendencies captured in the global process history, can also be used to analyze process
interference, determining the effect that the failure recovery of one process can have
on other concurrently executing processes.

The GridPML [13] is a process modeling language for the composition of Grid
Services in the DeltaGrid system. The GridPML is an XML-based language that sup-
ports basic control flow constructs adopted from Web Service composition languages
such as BPEL [3] and BPML [1] with features for invoking Grid Services [21]. The
GridPML is used in our research to experiment with process execution history capture
and has also partially implemented the service composition model [10].

4 The DeltaGrid Abstract Execution Model

The DeltaGrid abstract execution model is composed of 1) the service composition
model that defines the hierarchical service composition structure and entity execution
semantics, and 2) the process recovery model that tracks process data dependency and
handles process interference through active rules.

Table 1 defines the execution entities of the service composition model, with the
hierarchical entity composition structure presented in Fig. 1. Operation represents a
service invocation and is the basic entity in the composition structure. Compensation is

 The DeltaGrid Abstract Execution Model 43

an operation intended for backward recovery and contingency is an operation for for-
ward recovery. An atomic group contains an operation, an optional compensation, and an
optional contingency. A composite group may contain multiple atomic groups or compos-
ite groups that execute sequentially or in parallel. A composite group can have its own
compensation and contingency as optional elements. A process is defined to be a top-
level composite group. The only execution entity not shown in Fig. 1 is the DE-
rollback entity. DE-rollback is a system-initiated operation that uses the deltas to
reverse an operation execution.

Table 1. Execution Entities

Entity Name Definition
Operation A DEGS service invocation, denoted as opij
Compensation

An operation that is used to undo the effect of a commited opera-
tion, denoted as copij

Contingency An operation that is used as an alternative of a failed operation
(opij), denoted as topij

DE-rollback An action of undoing the effect of an operation by reversing the
data values that have been changed by the operation to their
before images, denoted as dopij

Atomic Group An execution entity that is composed of a primary operation
(opij), an optional compensation (copij), and an optional contin-
gency operation (topij), denoted as agij = <opij [, copij] [,topij]>

Composite Group An execution entity that is composed of multiple atomic groups
or other composite groups. A composite group can also have an
optional compensation and an optional contingency, denoted as
cgik = <agij

+ [,cgil
+] [,copik] [,topik])>

Process A top level composite group

Fig. 1. The Service Composition Structure

44 Y. Xiao, S.D. Urban, and N. Liao

Fig. 2 shows an abstract view of a sample process definition. A process p1 is the top
level composite group cg0. p1 is composed of two composite groups cg1 and cg2, and an
atomic group ag6. Similarly, cg1 and cg2 are composite groups that contain atomic
groups. Each atomic/composite group can have an optional compensation plan and/or
contingency plan, e.g. cg1 has compensation cg1.cop and contingency cg1.top operations.
Operation execution failure can occur on an operation at any level of nesting.

The purpose of the service composition model is to automatically resolve operation
execution failure using compensation, contingency, and DE-rollback at different com-
position levels. The next section defines the execution semantics of each entity and
addresses operation execution failure handling under various execution scenarios.

Fig. 2. An Abstract Process Definition

5 Execution Semantics of the Service Composition Model

This section presents the execution semantics of each execution entity and addresses
how to resolve operation execution failure. Section 5.1 introduces the DEGS opera-
tion execution semantics. Section 5.2 presents the execution semantics of atomic
groups. Section 5.3 elaborates on composite group execution semantics.

5.1 DEGS Operation Execution Semantics

Before presenting the execution semantics of a DEGS operation, this section first
defines a DEGS operation and its recoverability.

Definition 1. DEGS operation. A DEGS operation opij is a six-element tuple, denoted
as opij = <I, O, S, R, P, degsID>, where I is the set of inputs, O is the set of outputs, S is
the execution state, R is the pre-commit recoverability, P is the post-commit recover-
ability, and degsID is a unique identifier of the DEGS where opij is executed.

Since a DEGS is an autonomous entity, the DeltaGrid system assumes a DEGS guar-
antees its correctness through proper concurrency control, exposing serializablity or
another functionally equivalent correctness criterion to the service composition envi-
ronment. A DEGS can provide different transaction semantics, supporting an opera-
tion as an atomic or non-atomic execution unit. If a runtime failure occurs, an atomic

 The DeltaGrid Abstract Execution Model 45

operation can automatically roll back. A non-atomic operation stays in a failed state
since a service provider is incapable of performing rollback. With the delta capture
capability, a DEGS can reverse the effect of an operation through DE-rollback. An
operation can have different backward recovery capabilities depending on when the
operation needs to be recovered.

Definition 2. Pre-commit recoverability. Pre-commit recoverability specifies how an
operation can be recovered when an execution failure occurs before the operation
completes.

Definition 3. Post-commit recoverability. Post-commit recoverability specifies how
an operation’s effect can be (semantically) undone after it successfully terminates.

Table 2 presents an operation’s pre-commit and post-commit recoverability options.

Table 2. Operation Recoverability Options

Recoverabil-
ity Type

Option Meaning

Automatic
rollback

The failed service execution can be automatically
rolled back by a service provider

Pre-commit

DE-rollback The failed operation can be undone by executing
DE-rollback

Reversible
(DE-rollback)

A completed operation can be undone by reversing
the data values that have been modified by the
operation execution

Compensatable A completed operation can be semantically undone
by executing another operation.

Post-commit

Dismissible A completed operation does not need any cleanup
activities

Fig. 3 compares the execution semantics of a regular service operation shown in (a)
with a DEGS operation shown in (b). An operation has four states: {active, successful,
failed, aborted}. An operation enters the active state when it is invoked. If the execution
successfully terminates, the operation enters a successful state, otherwise it enters a
failed state. An atomic operation can automatically roll back to enter an aborted state.
An advantage of DEGS is the use of DE-rollback to undo the effect of a failed opera-
tion, thus eliminating the failed state as an operation termination state. However, as a
post-commit recovery method, DE-rollback can only be executed under valid process
interleaving situations defined as semantic conditions for DE-rollback in Section 6.1.

Definition 4. Delta. A delta is a six-element tuple, denoted as (oID, a, Vold, Vnew, tsn,
opij), representing an incremental value change on an attribute of an object generated
by execution of a DEGS operation. A delta contains an object identifier (oID) indicat-
ing the changed object, an attribute name (a) indicating the changed attribute, the old
value of the attribute (Vold) before the execution of the operation, the new value of the
attribute (Vnew) created by the operation, a timestamp (tsn), and the identifier of the
operation (opij) that has created this delta.

46 Y. Xiao, S.D. Urban, and N. Liao

Definition 5. Runtime context. The runtime context of an operation is a five-element
tuple, denoted as r(opij) = <tss, tse, I, O, S>. The runtime context of opij contains a start
time (tss), end time (tse), input (I), output (O), and state (S). Similarly, the runtime
context of a process r(pi) = <tss, tse, I, O, S>.

Definition 6. Operation execution history. An operation execution history H(opij) is a
four-element tuple, denoted as H(opij) = <tss, tse, opij, r(opij)>. tss and tse are the start
and end time of opij’s execution. opij a time-ordered sequence of deltas that are gen-
erated by execution of opij, denoted as opij = [(oIDA, a, Vold, Vnew, ts1, opij), …,

(oIDB, b, Vold, Vnew, tsx, opij), … , (oIDD, d, Vold, Vnew, tsn, opij)] (tss< ts1< tsx< tsn<
tse). r(opij) is the runtime context of opij.

Fig. 3. DEGS Operation Execution Semantics

5.2 Atomic Group (AG) Execution Semantics

An atomic group (ag) maximizes the success of an operation execution by providing a
contingency plan. If necessary, an ag can be semantically undone by post-commit
recovery activity such as DE-rollback or compensation.

active

operation abortedag successful

ag aborted

invoke

operation
fails

operation
succeeds

contingency fails
contingency

succeeds

Fig. 4. Atomic Group Execution Semantics

active

successful failed aborted

Atomic:
automatic rollback

(a) A Regular Service Operation State Diagram

Non-atomic

invoke

succeed fail

active

successful failed aborted

Atomic:
automatic rollback

(b) A DEGS Service Operation State Diagram

invoke

succeed fail

Semi-atomic:
DE- rollback

 The DeltaGrid Abstract Execution Model 47

Fig.4 describes the execution semantics of an ag. An ag has four states: {active, op-
eration aborted, ag successful, ag aborted}. The termination states are {ag successful, ag
aborted}. An ag enters the active state if the primary operation is invoked. If the pri-
mary operation successfully terminates, the ag enters the ag successful state. Otherwise
the ag enters the operation aborted state, where contingency will be executed. If the
contingency succeeds, the ag enters the ag successful state. Otherwise, the contingency
itself is aborted, which leads the ag to the ag aborted state. Compensation and DE-
rollback as post-commit recovery techniques for an atomic group are addressed in the
context of a composite group execution in the next section.

5.3 Composite Group (CG) Execution Semantics

Before presenting the execution semantics of a composite group, this section first
introduces concepts that are related to a composite group. This research has extended
shallow/deep compensation originally defined in [9] to be used for a composite group.

Definition 7. Critical. An atomic/composite group is critical if its successful execu-
tion is mandatory for the enclosing composite group. The execution failure of a non-
critical group will not impact the state of the enclosing composite group, and the
composite group can continue execution. When an execution failure occurs, contin-
gency must be executed for critical groups. Contingency is not necessary for a non-
critical group. A group is critical by default.

In Fig.2, if ag4 fails, cg2 will continue its execution with ag5 since ag4 is non-critical.

Definition 8. Shallow compensation. Shallow compensation of a composite group
invokes the composite group’s compensation.

Definition 9. Deep compensation. Deep compensation of a composition group in-
vokes post-commit recovery activity (DE-rollback or compensation) of each critical
subgroup.

Shallow compensation is invoked when a composite group successfully terminates
but needs a semantic undo due to another operation’s execution failure. For example,
in Fig. 2, if ag6 fails, shallow compensation of cg1 will be executed. When shallow
compensation is not specified, a deep compensation is performed. For example, cg2’s
deep compensation will be invoked when ag6 fails since cg2 does not have shallow
compensation. A deep compensation can also be performed for a composite group cg
when cg has a subgroup failure before cg completes. The service composition model
currently assumes a compensation always succeeds. The model will be extended to
handle compensation failure by provision of system-enforced recovery action.

The state of a composite group (cg) is determined by the combined state of the
composing subgroups (sgi), which are either atomic groups or other composite groups.
A cg has states: {active, cg successful, sgi aborted, cg aborted, cg deep compensated}. To
simplify the state diagram, cg extended abort is introduced to refer to cg aborted or cg
deep compensated. The termination states are: {cg successful, cg extended abort}.

Fig. 5(a) presents the execution semantics of a composite group composed of only
atomic groups. A cg remains active during a subgroup’s execution. If all the subgroups
terminate successfully, a cg enters the cg successful state. If a subgroup agi fails, the cg
enters the agi aborted state. If agi is the first subgroup of cg, cg enters the cg aborted

48 Y. Xiao, S.D. Urban, and N. Liao

state. Otherwise all of the previously executed subgroups (ag1..i-1) will be post-commit
recovered, leading cg to the cg deep compensated state. From the cg extended abort
state, cg’s contingency can be executed to enter the cg successful state. If cg’s contin-
gency fails, cg remains in the cg extended abort state.

Fig. 5(b) presents the execution semantics of a composite group (cg) that is com-
posed of subgroups sgi that can be either atomic groups or composite groups. If any
subgroup sgi fails, sgi enters the sgi extended abort state, according to the state transi-
tion described in Fig. 4 (if sgi is an atomic subgroup) and in Fig. 5(a) (if sgi is a com-
posite subgroup). Other state transitions are the same as defined in Fig. 5(a).

In Fig.2, if ag5 fails, cg2’s contingency gets executed since ag4 is non-critical. If ag6
fails, cg2 is deep compensated by executing ag5’s compensation since ag4 is non-
critical and needs no compensation. cg1 is shallow compensated by executing cg1.cop.

6 The Process Recovery Model

The service composition model has elaborated on how backward recovery (DE-
rollback/compensation) and forward recovery (contingency) are applied at different
composition levels to maximize the successful execution of a process. After a back-
ward recovery, the data changes introduced by backward recovery of a failed process
pf potentially cause a read dependent process pr or a write dependent process pw, to be
recovered accordingly. Under certain semantic conditions, however, processes such as
pr and pw may be able to continue running. The process recovery model addresses the
applicability of DE-rollback and the handling of process interference based on data
dependencies extracted from the global execution history through active rules.

This section presents the process recovery model. Section 6.1 defines process exe-
cution history and read/write dependency. Section 6.1 also presents the semantic

active

cg successful

agi active

cg contingency
fails

agi contingency
fails

all agi

succeeds

i = 1
cg contingency

succeeds

cg deep compensatedcg aborted

cg extended abort

ag1..i-1 (i>1) post-
commit recovery

succeeds

(a) a composite group
composed of atomic subgroups

active

cg successful

sgi active

invoke

sgi contingency
fails

all sgi

succeeds

i = 1

cg contingency
succeeds

cg extended abort

sg1..i-1 (i>1) post-
commit recovery

succeeds

(b) a composite group composed of atomic
subgroups and composite subgroups

cg deep compensatedcg aborted

cg contingency
fails

agi aborted

invoke

sgi extended
 abort

Fig. 5. Composite Group Execution Semantics

 The DeltaGrid Abstract Execution Model 49

condition for DE-rollback. Section 6.2 presents process interference rule specifica-
tion, and demonstrates its use through an online shopping application.

6.1 Global Execution History and Process Dependency

The global execution history is the foundation for analyzing data dependencies.

Definition 10. Global execution history. A global execution history GH is an integra-
tion of individual operation execution histories within a time frame, denoted as GH =
<tss, tse, g, gr>, where:

- tss and tse form the time frame of the GH.
- g is a time-ordered sequence of deltas generated by distributed operation execu-

tion, denoted as g = [(oIDA, a, Vold, Vnew, ts1, opij),…, (oIDB, b, Vold, Vnew, tsx, opkl),…,
(oIDD, d, Vold, Vnew, tsn, opwz)](tss < ts1 < tsx < tsn < tse).

- gr is the global execution context, which is a time-ordered sequence of runtime
context information for operations and processes that occur within the time frame of
the global execution history. The global execution context is denoted as gr = [r(en)|
(en=opij or en=pi) and (tss< r(en).tss< r(en).tse< tse)], where en represents an execution
entity (either an operation opij or a process pi). From gr, we can get a time-ordered
sequence of system invocation events, denoted as E = [e(opij), …, e(opwk), …]. E can
be used to identify potential read dependencies among processes.

Data dependencies are defined based on information captured in the GH.

Definition 11. Write dependency. A write dependency exists if a process pi, writes a
data item x that has been written by another process pj before pj completes (i j).

Definition 12. Process-level write dependent set. A process pj’s write dependent set is
a set of all the processes that are write dependent on pj, denoted as wdp(pj).

Definition 13. Operation-level write dependency. An operation-level write depend-
ency exists if an operation opik of process pi writes data that has been written by
another operation opjl of process pj. An operation-level write dependency can exist
between two operations within the same process (i = j).

Definition 14. Operation-level write dependent set. An operation opjl’s operational-
level write dependent set is a set of all the operations that are write dependent on opjl,
denoted as wdop(opjl).

Definition 15. Read dependency. A read dependency exists if a process pi, reads a
data item x that has been written by another process pj before pj completes (i j).

Definition 16. Read dependent set. A process pj’s read dependent set contains all the
processes that are read dependent on pj, denoted as rdp(pj).

Write dependency can be analyzed from the global execution history GH. Suppose
two operations have modified the same data item A. In GH, we observe g = […,

(oIDA, a, Vold, Vnew, ts1, opij), …, (oIDA, a, Vold, Vnew, tsx, opkl), …] (ts1 < tsx). g indicates
that at operation level, opkl is write dependent on opij, denoted as opkl wdop(opij). At
process level, if k i, pk is write dependent on pi, denoted as pk wdp(pi).

50 Y. Xiao, S.D. Urban, and N. Liao

Definition 17. DE-rollback. DE-rollback of an operation opik is the action of undoing
the effect of opik by reversing the data values that have been modified by opik to their
before images, denoted as dopik.

Due to the existence of write dependency, the semantic condition of opik’s DE-
rollback is: a) opik’s write dependent set is empty wdop(opik) = , or b) opik’s write de-
pendent set contains only operations from the same process wdop(opik) = {opil} and the
DE-rollback condition holds for each opil. The semantic condition conforms to the
traditional notion of recoverability where dirty reads and dirty writes are not allowed.

GH can also reveal potential read dependencies through runtime context. An opera-
tion opik is potentially read dependent on another operation opjl if: 1) opik and opjl exe-
cute on the same DEGS, denoted as opik.degsID = opjl.degsID, and 2) opik starts after
opjl’s invocation, denoted as r(opik).tss >= r(opjl).tss, or opik starts before opjl’s invocation
and ends after opjl’s invocation, denoted as r(opik).tss< r(opjl).tss and r(opik).tse> r(opjl).tss.

Assume opij is compensated. In GH, we observe an event sequence E = […, e(opij),
e(opkm), e(opxy), e(copij)]. E shows that opkm is invoked after opij, thus opkm is potentially
read dependent on opij. At process level, if k i and pk is active, pk is potentially read
dependent on pi. A terminated process is not considered for process interference since
a completed process should not be affected by ongoing changes.

Write dependencies and potential read dependencies are resolved through the use
of process interference rules as defined in the next subsection.

6.3 Process Interference Rules

Process interference rules are active rules specifying how data change caused by of a
process (DE-rollback or compensation) can possibly affect other active processes.
This section outlines our initial phase of process interference rule specification which
will be formally defined as part of future work. Fig. 6 shows that a process interfer-
ence rule contains four parts: event, define, condition and action.

Event: backward recovery event & event filter
Define: variable declaration
Condition: process interference evaluation
Action: recovery command list

Fig. 6. Process Interference Rule Specification

Event contains a backward recovery event and an event filter. A backward recovery event
is a DE-rollback e(dopij) or a compensation of an operation e(copij) or process e(cpi).
Compensation of a process cpi involves compensation or DE-rollback of the process’s
operations. The event filter retrieves write and potential read dependent processes.
Define declares variables to support condition evaluation and action invocation using
the global execution history interfaces. Condition is a Boolean expression evaluating
process interference based on application semantics. Action is a list of recovery com-
mands, including backward recovery of a process (bkRecover(pi)), and re-execution of
an operation (re-execute(opij)) or a process (re-execute(pi)).

 The DeltaGrid Abstract Execution Model 51

The global execution history exposes three types of interfaces: 1) wdp(pi, dependent-
ProcessName) returns a set of active process instances of a given name (dependent-
ProcessName) that are write dependent on pi, 2) rdp(pi, dependentProcessName) returns a
set of active process instances of given name (dependentProcessName) that are poten-
tially read dependent on pi, and 3) (pi, className) returns deltas with a given class
name (className) that are generated by pi.

The rest of the section demonstrates the use of process interference rules using an
online shopping application with processes composed of DEGSs. The process place-
ClientOrder places client orders, decreases the inventory quantity, and possibly in-
creases a backorder quantity. The process replenishInventory increases the inventory
quantity when vendor orders are received and possibly decreases the backorder quan-
tity. Several process instances could be running at the same time.

Write dependency scenario: Failure of a replenishInventory process could cause a
write dependent placeClientOrder process to be compensated (since the items ordered
may not actually be available). However, compensation of a placeClientOrder process
would not affect a write dependent replenishInventory or returnClientOrder process.

Fig. 7 shows a process interference rule specifying that if a replenishInventory proc-
ess (pri) is compensated, a placeClientOrder process with an inventory item that has
been supplied by pri must be compensated and re-executed. In Fig. 7:

- e(cpri) represents the compensation of process replenishInventory.
- wdp(pri, “placeClientOrder”) returns a set of instances of process placeClientOrder that

are write dependent on process pri. The event filter wdp(pri, “placeClientOrder”)
verifies the existence of a placeClientOrder process that is write dependent on pri.

- Process pw declares pw as a process instance. pw wdp(pri, “placeClientOrder”) re-
stricts that pw must be a placeClientOrder process that is write dependent on pri.

- (cpri, “InventoryItem”) retrieves deltas of class InventoryItem that are generated by
the compensation of pri. Similarly, (pw, “InventoryItem”) retrieves deltas of class In-
ventoryItem that are generated by pw. Condition (cpri, “InventoryItem”) (pw, “Inven-
toryItem”) evaluates if the cpri and pw process the same inventory item.

- bkRecover(pw) is a recovery command to backward recover pw, based on pw’s com-
position structure and recoverability. re-execute(pw) is a command to re-execute pw.

Event: e(cpri) & wdp(pri, “placeClientOrder”)
Define: Process pw (pw wdp(pri, ”placeClientOrder”))
Condition: (cpri, “InventoryItem”) (pw, “InventoryItem”)
Action: bkRecover(pw);
 re-execute(pw);

Fig. 7. A Sample Process Interference Rule Handling Write Dependency

As a summary, after recovery of a failed process, process interference must be
identified. However write/read dependent processes may or may not need to be recov-
ered, depending on the application semantics defined by a process interference rule.

52 Y. Xiao, S.D. Urban, and N. Liao

7 Summary and Future Directions

This paper has presented an abstract execution model as the foundation for building a
semantically robust execution environment for distributed processes over Delta-
Enabled Grid services. We are developing the DeltaGrid system to support the ab-
stract model. We have implemented several major architectural components such as
DEGS [4], the GridPML [10, 13], and a process history capture system (PHCS) [21]
as a logging mechanism for distributed processes. The PHCS fully implements the
global execution history interfaces to evaluate the applicability of DE-rollback and
process interference.

This research contributes towards establishing a semantically robust execution
model for distributed processes executing over autonomous, heterogeneous resources.
A unique aspect of this research is the provision for multi-level protection against
service execution failure, and handling process interference based on application-
dependent correctness criterion integrated with data dependency tracking through a
global execution history.

Our future direction is to provide a complete support of application-dependent
correctness criterion by refining the definition of process interference rules and incor-
porating application exceptions rules in the process recovery model. We are building
a simulation framework for the DeltaGrid system to demonstrate the concepts defined
in the abstract model in a distributed service composition environment.

References

1. Business Process Modeling Language, http://www.bpmi.org/specifications.esp, 2002.
2. Specification: Web Services Transaction (WS-Transaction), http://www-106.ibm.com/ de-

veloperworks/webservices/library/ws-transpec/, 2002.
3. Specification: Business Process Execution Language for Web Services Version 1.1,

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/, 2003.
4. Blake, L., Design and Implementation of Delta-Enabled Grid Services, MS Thesis, Dept.

of Comp. Sci. and Eng., Arizona State Univ., (2005).
5. de By, R., Klas, W., Veijalainen, J., Transaction Management Support for Cooperative

Applications. 1998: Kluwer Academic Publishers.
6. Eder, J., Liebhart, W., "The Workflow Activity Model WAMO," Proc. of the 3rd Int. Con-

ference on Cooperative Information Systems (CoopIs), 1995.
7. Garcia-Molina, H., Salem, K., "Sagas," Proc. of the ACM SIGMOD Int. Conference on

Management of Data, 1987.
8. Kamath, M., Ramamritham, K., "Failure Handling and Coordinated Execution of Concur-

rent Workflows," Proc. of the IEEE Int. Conference on Data Engineering, 1998.
9. Laymann, F., "Supporting Business Transactions via Partial Backward Recovery in Work-

flow Management," Proc. of the GI-Fachtagung für Datenbanksysteme in Business, Tech-
nologie und Web (BTW'95), 1995.

10. Liao, N., The Extened GridPML Design and Implementation, MCS Project Report, Dept.
of Comp. Sci. and Eng., Arizona State Univ., (2005).

11. Lin, F., Chang, H., "B2B E-commerce and Enterprise Integration: The Development and
Evaluation of Exception Handling Mechanisms for Order Fulfillment Process Based on
BPEL4WS," Proc. of the 7th IEEE Int. Conference on Electronic commerce, 2005.

 The DeltaGrid Abstract Execution Model 53

12. Lomet, D., Vagena, Z., Barga, R., "Recovery from "Bad" User Transactions," Proc. of the
ACM SIGMOD Int. Conference on Management of Data, 2006.

13. Ma, H., Urban, S. D., Xiao, Y., and Dietrich, S. W., "GridPML: A Process Modeling Lan-
guage and Process History Capture System for Grid Service Composition," Proc. of the
IEEE Int. Conference on e-Business Engineering, 2005.

14. Mikalsen, T., Tai, S., Rouvellou, I., "Transactional Attitudes: Reliable Composition of
Autonomous Web Services," Proc. of the Workshop on Dependable Middleware-based
Systems (WDMS), part of the Int. Conference on Dependable Systems and Networks
(DSN), 2002.

15. Shi, Y., Zhang, L., Shi. B., "Exception Handling of workflow for Web services," Proc. of
the 4th Int. Conference on Computer and Information Technology, 2004.

16. Singh, M.P., Huhns, M. N., Service-Oriented Computing. 2005: Wiley.
17. Business Service Grid: Manage Web Services and Grid Services with Service Domain

Technology, http://www-128.ibm.com/developerworks/ibm/library/gr-servicegrid/, 2003.
18. Tartanoglu, F., Issarny, V., Romanovsky, A., Levy, N., "Dependability in the Web Ser-

vices Architecture," Proc. of the Architecting Dependable Systems, LNCS 2677, 2003.
19. Wachter, H., Reuter, A., "The ConTract Model," in Database Transaction Models for Ad-

vanced Applications, A. Elmagarmid, Editor. 1992.
20. Worah, D., Sheth, A., "Transactions in Transactional Workflows," in Advanced Transac-

tion Models and Architectures, S. Jajodia, and Kershberg,L., Editor, Springer.
21. Xiao, Y., Urban, S. D., Dietrich, S., "A Process History Capture System for Analysis of

Data Dependencies in Concurrent Process Execution," Proc. of the 2nd Int. Workshop on
Data Engineering Issues in E-Commerce and Services, 2006.

22. Zeng, L., Lei, H., Jeng, J., Chung, J., Benatallah, B., "Policy-Driven Exception-
Management for Composite Web Services," Proc. of the 7th IEEE Int. Conference on E-
Commerce Technology, 2005.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 54 – 67, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Evaluating Quality of Conceptual Models Based on User
Perceptions

Ann Maes and Geert Poels

Faculty of Economics and Business Administration,
Ghent University, Hoveniersberg 24, 9000 Ghent, Belgium
a.maes@ugent.be, geert.poels@ugent.be

Abstract. This paper presents the development of a user evaluations based
quality model for conceptual modeling applying the model of DeLone and
McLean [6] for evaluating information systems in general. Given the growing
awareness about the importance of high-quality conceptual models, it is surpris-
ing that there is no practical evaluation framework that considers the quality of
conceptual models from a user’s perspective. Human factors research in con-
ceptual modeling is still scarce and the perception of quality by model users has
been largely ignored. A first research goal is therefore to determine what the
appropriate dimensions are for evaluating conceptual models from a user’s
perspective. Secondly, we investigate the relationships between these dimen-
sions. Furthermore, we present the results of two experiments with 187 and 124
business students respectively, designed to test the proposed model and the
generated hypotheses. The results largely support the developed model and
have implications for both theory and practice of quality evaluation of concep-
tual models.

1 Introduction

Conceptual modeling (CM) plays an important role in information systems develop-
ment (ISD) projects. Before implementing an information system (IS), a conceptual
model of a real world system is developed to enhance the communication about the
problem domain between designers, analysts and users. The importance of high-
quality conceptual models cannot be overemphasized because they facilitate early de-
tection and correction of errors in ISD projects. However, generally agreed quality
measures still have to be developed [19]. We address this need by building a theoreti-
cal model that will support empirical evaluation of CM quality. This includes the
evaluation of distinct models generated by the same modeling language as well as the
quality assessment of models generated using different modeling languages. Given
the call of [32] to focus future CM research more on the use of models for User-
Analyst communication (as opposed to Analyst-Developer communication), we look
at CM quality from an end user’s perspective.

The remainder of the paper is as follows. First, we elaborate on the framework of
Lindland et al. [17], which defines quality in a CM context. The next section also in-
troduces the IS success model of DeLone and McLean [6], which provides a theoreti-
cal basis for our evaluation framework. Subsequently, the user evaluations based

 Evaluating Quality of Conceptual Models Based on User Perceptions 55

quality model and the derived hypotheses are formulated. In the following section we
describe the design of two experiments that aimed at testing the developed model.
Next, the analysis of the collected data is discussed. We conclude with a short discus-
sion of the contributions so far and an outline of future research directions.

2 Background

2.1 Understanding Quality of Conceptual Models

The Lindland et al.’s [17] framework suggests that a systematic evaluation of quality
considers a model’s syntax (how well does the model adhere to the rules of the mod-
eling language?), semantics (how well does the model reflect the reality modeled?)
and pragmatics (how well is the model understood and used?). In practice, syntactic
quality issues in CM seem to be well controlled [23]. Therefore, the main evaluation
effort is directed towards semantic and pragmatic quality.

Several instruments have been proposed for evaluating model pragmatics. For in-
stance, when comparing alternative CM techniques or practices, resultant models
have been compared with respect to how well they are understood by users. In ex-
perimental settings, measures used for comparison include comprehension task accu-
racy and completion time [31]. In addition, user perceptions of model pragmatics
have been measured with instruments for ease of use, usefulness and user information
satisfaction [4,13].

The semantic quality of a model is more difficult to evaluate as it is hard to know,
externalize and agree upon reality. When evaluating semantic quality, users can only
refer to their perception of reality, which is obtained through observing the ‘real’ focal
domain of the modeling efforts. Krogstie et al. [16], therefore, extended the Lindland et
al. framework with a fourth quality type, namely perceived semantic quality, which is
described as the correspondence between the information that users think the model
contains and the information that users think the model should contain, based upon
their knowledge of the problem domain. Nevertheless, user perceptions of a conceptual
model’s semantic quality have been less empirically investigated than perceptions re-
lated to model pragmatics. Most studies have quantified the degree of semantic quality
with respect to some reference theory or modeling benchmark, e.g. the Bunge-Wand-
Weber (BWW) representational model, a reference model (like the SAP reference
models) or an enterprise domain ontology, as a substitute for the ‘real’ domain [12].
These studies ignore the user beliefs of how well the model helps understanding the
underlying reality. Even if a generally agreed reference theory or modeling benchmark
could be established, it is still the user’s perception of semantic quality, rather than a
theoretically verified quality, that will largely determine whether benefits result from
using a high-quality conceptual model during the ISD project. Therefore an empirical
approach that recognizes possible differences in user perceptions of semantic quality is
needed to complement more theoretically-oriented evaluation studies.

Consequently, our model is focused on the different user perceptions of CM qual-
ity since it is the user’s perception of quality that will determine the effectiveness of
the conceptual model to communicate IS requirements within the ISD project.

56 A. Maes and G. Poels

2.2 IS Success Models

For information systems, several evaluation frameworks that recognize subjective
user perceptions have been proposed. Consequently, we found an appropriate basis
for our model in the form of DeLone and McLean’s [6] model of Information Sys-
tems Success.

Using the communications research of [30] DeLone and McLean (henceforth
D&M) identify six interrelated dimensions of IS Success (figure 1): system quality,
information quality, use, user satisfaction, individual impact and organizational im-
pact. The D&M model specifies that system quality and information quality affect
both use and user satisfaction, which are direct antecedents of individual impact. This
will in turn have an impact on the organizational performance. Furthermore, D&M
expect a two-way causal relationship between use and user satisfaction [6].

Organizational
Impact

Use

Individual
impact

Information
quality

User
Satisfaction

System
Quality

Fig. 1. DeLone and McLean's Model of IS Success ([6], Figure 2, p.87)

Empirical tests of the D&M model mostly supported the model and its relation-
ships [7]. Seddon [26] criticizes the D&M model on combining process and causal
explanations of IS success, which leads to confusing interpretations. Consequently, he
[26] proposed a respecified model of IS success where the original D&M model is
split into two variance sub-models (one model to predict use as a behavior and one
model to assess IS success). In the IS success sub-model (figure 2), [26] retains sys-
tem quality and information quality and claims their causal impact to two frequently
used perceptual measures of the benefits of system use, perceived usefulness and user
satisfaction. Additionally, it is postulated that perceived usefulness influences user
satisfaction. Besides these perceptual measures of net benefits of system use, other net

Fig. 2. Respecified model of IS Success [26]

 Evaluating Quality of Conceptual Models Based on User Perceptions 57

benefits to individuals, organizations and society are represented in the model by
means of the net benefits construct. These are supposed to have a direct causal con-
nection with the perceptual measures.

3 Proposed Model

Seddon’s respecified D&M IS success model, which acknowledges quality as an an-
tecedent to system success, is used to guide the development of our user evaluations
model for CM quality. We argue that there are clear parallels between the perceptual
constructs of Seddon’s model and perceptual conceptual model quality constructs.

3.1 Perceived Semantic Quality as Information Quality

Information Quality (IQ) concerns the quality of the information the system produces.
Users assess the value of the information with respect to four IQ core dimensions :
accuracy, completeness, currency and format [21]. This evaluation of the different in-
formation characteristics from a user’s perspective is fairly subjective and relative to
the specific context and task at hand [21].

According to [6], IQ represents a success measure at the semantic level of informa-
tion in Shannon and Weaver‘s communication theory. The semantic level concerns how
well the intended meaning is being conveyed to and interpreted by the receiver. Simi-
larly as information systems, conceptual models are used to assist people in performing
a particular task based on the information conveyed by the model. Users assess how
well the model serves its stated purpose. If the purpose is to develop a common under-
standing of the problem domain, then users will evaluate the quality of the model with
respect to this purpose. As a consequence, users will evaluate the conceptual model
based on the quality of the information conveyed by the model. This information should
be accurate, complete, up to date and presented in a format that advances users’ under-
standing of the underlying reality when performing a certain task.

In terms of the Lindland et al. [17] framework, the IQ of a conceptual model corre-
sponds to its semantic quality. Users will perceive the semantic quality of the model
as how valid and complete it is with respect to (their perception of) the problem
domain. Validity means that all information conveyed by the model is correct and
relevant to the problem whereas completeness entails that the model contains all in-
formation about the domain that is considered correct and relevant [17]. Conse-
quently, quality properties for conceptual models mapped by [17] onto their semantic
quality construct include correctness, completeness and consistency.

These parallels justify the reformulation of IQ construct by the Perceived Semantic
Quality (PSQ) construct when applying the respecified D&M IS success model to
conceptual models.

3.2 Perceived Ease of Use as System Quality

Like IQ is concerned with the output produced by the IS, system quality (SQ) consid-
ers desired characteristics of the system that produces the output such as the consis-
tency of the user interface, ease of use, documentation, … [26]. The perception of
system quality is formed through interaction with the system when users complete a

58 A. Maes and G. Poels

specific task. Contrary to their IQ dimensions, the SQ dimensions of [21] are not im-
mediately applicable to the CM context. However, SQ has several times been repre-
sented by “ease of use”, which refers to the “user friendliness” of the system [25,27].
Ease of use is defined as “the degree to which a person believes that using a particular
system would be free of effort” ([5], p. 320).

When users “interact” with a conceptual model, they will evaluate how well the
model serves its goal in terms of semantic quality but also in terms of its pragmatic
quality (i.e. how well do they understand what is modeled and how easy is it to ac-
quire this understanding?). As mentioned before, one frequently used pragmatic qual-
ity measure for CM is Perceived Ease Of Use (PEOU), which has a similar meaning
as in the IS research context. So in our evaluation model, the PEOU construct instan-
tiates the SQ construct of the respecified D&M model.

3.3 Perceived Usefulness (PU)

Seddon [26] replaced use by “Perceived Usefulness” since it is not use but the bene-
fits from use (e.g. usefulness) that determine whether an IS is successful. He defines
Perceived Usefulness (PU) as “the degree to which a person believes that using a par-
ticular system has enhanced his or her job performance” (adapted from [5], p320).
Users evaluate the IS with respect to its usefulness after using the IS for a certain task.

Usefulness appears to be also a valuable evaluation aspect in a CM context. After
task completion, users will judge how well the model helps to ‘better’ understand
what is modeled. In terms of the Lindland et al. [17] framework this is captured by the
pragmatic quality. ‘Better’ model understanding can mean two things from a user’s
perspective: the understanding is more efficient (i.e. requiring less effort, which is re-
flected in the PEOU measure) or it is more effective (i.e. more accurate). Hence, users
will evaluate the effectiveness or usefulness of the model, which will amongst others
shape their overall quality judgment. The usefulness of conceptual models has been
measured using a PU measure based on the validated instrument of [5]. This results in
the third construct for our evaluation framework for CM.

3.4 User Satisfaction (US)

Seddon ([26], p. 246) defines US as “a subjective evaluation of the various conse-
quences evaluated on a pleasant-unpleasant continuum”. US is the most general per-
ceptual measure of IS Success and is focused on overall satisfaction and effectiveness
[27]. The US construct of [26] is concerned with users’ overall level of satisfaction
and does not include indirect measures like IQ and SQ. A measure to assess overall
US directly has been constructed by [28].

“Satisfaction with Use” is also applicable to the CM context. A general evaluation
towards the use of a conceptual model can be measured in terms of how satisfied us-
ers are with the model with respect to its purpose. An adaptation of the US measure of
[28] has been employed in empirical comparisons of conceptual models (e.g. [10]).
As such, it seems justified to include US in our CM evaluation framework.

3.5 Research Model

The adoption of Seddon’s model to a CM context leads to the selection of four related
but distinct evaluation aspects (PSQ, PEOU, PU, US) for our evaluation framework

 Evaluating Quality of Conceptual Models Based on User Perceptions 59

(figure 3). A number of relationships between these variables can be deducted. Just as
SQ and IQ are independent of each other and based on their specific meaning, we ar-
gue that for conceptual models PSQ and PEOU are not related. These two evaluation
aspects are likely to have an influence on US. User satisfaction is a more general con-
cept and results from summing all the benefits [27]. A conceptual model that users
perceive as easy to use will leave the user more “satisfied” about the model used. Pre-
vious research has suggested that higher perceived semantic quality may result in
higher user satisfaction [9]. User satisfaction is, however, also determined by percep-
tions of usefulness. The better the model supports the information needs of the user
performing the comprehension task, the more satisfied the user will likely be. This
forms the basis for the causal relationships 1, 2 and 3 in figure 3:

• H1: Increases in PEOU will cause increases in US
• H2: Increases in PSQ will cause increases in US
• H3: Increases in PU will cause increases in US

Furthermore, evidence can be gained that PU is influenced by perceptions of ease
of use and semantic quality. If two conceptual models have the same information con-
tent, the model user will find the one that is easier to use or understand more useful.
Apart from evaluating the pragmatic quality of a conceptual model, users also form a
perception of its semantic quality. It is plausible that this perception affects the user’s
perception of usefulness. If users believe that the model is invalid and/or incorrect
with respect to the problem domain, they are likely to develop a less favorable percep-
tion of the model’s usefulness. Of course, user perceptions of usefulness may be af-
fected by other factors than perceived semantic quality and perceived ease of use but
what we wish to investigate is the extent to which perceived usefulness is affected by
these variables. Consequently, we derive the last two causal relations :

• H4: Increases in PSQ will cause increases in PU
• H5: Increases in PEOU will cause increases in PU

PSQ

PEOU

US

PU

H1

H2

H5

H4
H3

Fig. 3. User Evaluations Based Quality Model for Conceptual modeling

4 Research Method

To test the research model we conducted two experiments. The first experiment (E1)
took place in november 2004 while the second experiment (E2) was conducted in

60 A. Maes and G. Poels

november 2005. Since both experiments are similar we will present the design toget-
her but will comment on any possible differences between them.

4.1 Participants

The experiments required participants to comprehend a number of business domain
models (in Entity-Relationship (ER) diagram format) for an example commercial
company. The participants were 187 (E1) and 124 (E2) business students enrolled in a
Management Information Systems (MIS) course. The groups of business students par-
ticipating in the studies approximate representative samples of the target population of
business professionals. The advantage of student participants is that they form a ho-
mogeneous group with respect to their educational background and working experi-
ence, which would not be the case if business professionals were used. Moreover, the
experimental tasks did not require high levels of industrial experience, so given the
recommendations in [1] experiments with students can be justified.

Acquiring CM skills and in particular being able to understand models developed
by analysts, is essential for business students. Apart from studying the semantics of
the ER Model, the students in the MIS course were shown examples of and learned to
read ER diagrams of various domains (e.g. university personnel management, hospital
operations) with the purpose of understanding the domain information conveyed by
the diagrams.

4.2 Experimental Objects and Tasks

The experiments were conducted after the CM module of the course. In the experi-
ments, each participant received one of several alternative ER diagrams depicting a
structural and data view of some part of the business. Using this diagram, the partici-
pant had to answer a number of questions assessing the understanding of the part of
the business modeled (based solely on the information conveyed by the diagram). The
participants of E1 worked with a conceptual model of an integrated sales and acquisi-
tion process of a fictitiuos company selling surf-boards, while the model in E2 repre-
sented the hiring of consulting services.

The experimental task of the first experiment consisted of a series of questions in-
cluding model comprehension questions and information retrieval questions. The
main purpose of the questions was to force the participants to work with the diagram
received and allow them to form a judgment with .respect to the diagram’s pragmatic
and semantic quality. In the second experiment, the task consisted of answering ques-
tions that required the participants to derive or verify the policies that govern the
modelled process. As the diagram was the only information source available for ans-
wering the questions, participants were ‘forced’ to make an effort to understand the
diagram.

All used questions were adapted from previously validated questionnaires (e.g. [2,
13]). Though tailored to the particular case used in the experiments, comprehension
questions of the kind we used are the conventional instrument for measuring how well
users understand the information conveyed by a conceptual model [22].

 Evaluating Quality of Conceptual Models Based on User Perceptions 61

4.3 Operational Procedures

The two experiments were organized as class room exercises. The students were in-
formed beforehand that the exercise was part of a research study and that additional
data in the form of questionnaires would be collected. However, no information was
given with respect to the research question (to avoid experimenter bias).

Participation was strictly voluntary. In order to increase the motivation to participa-
te (and perform well), the students were explained that a similar exercise could be part
of the final course exam and feedback on the performance was promised. Furthermo-
re, in E1 optional course credits could be earned, while in E2 four prizes (i-Pod Shuf-
fles and Nanos) were distributed to the best performers.

When students entered class, they received a sheet containing instructions and as-
king for their name. Next, they were given the diagram and the list of questions they
had to solve. After finishing the comprehension task, they received a questionnaire
measuring their perceptions and satisfaction towards the task just accomplished.

4.4 Measures

In order to evaluate the PSQ, PEOU, PU and US constructs, measures are needed. A
literature search revealed the existence of validated measures for the PSQ, PEOU, PU
and US constructs within the CM context. The general measurement items for each
of the four constructs are shown in Table 1. These items were rephrased for the two

Table 1. Measures for PEOU, PU, US and PSQ constructs of user evaluation model

PEOU1 It was easy for me to understand
what the conceptual schema was
trying to model.

PU1 Overall, I think the conceptual schema
would be an improvement to a textual
description of business process.

PEOU2 Using the conceptual schema
was often frustrating.

PU2 Overall, I found the conceptual schema
useful for understanding the process
modelled.

PEOU3 Overall, the conceptual schema
was easy to use.

PU3 Overall, I think the conceptual schema
improves my performance when under-
standing the process modelled.

PEOU4 Learning how to read the concep-
tual schema was easy.

PSQ1 The conceptual schema represents the
business process correctly.

US1 The conceptual schema ade-
quately met the information
needs that I was asked to support.

PSQ2 The conceptual schema is a realistic rep-
resentation of the business process

US2 The conceptual schema was not
efficient in providing the infor-
mation I needed.

PSQ3 The conceptual schema contains contra-
dicting elements

US3 The conceptual schema was ef-
fective in providing the informa-
tion I needed.

PSQ4 All the elements in the conceptual
schema are relevant for the representation
of the business process

US4 Overall, I am satisfied with the
conceptual schema for providing
the information I needed.

PSQ5 The conceptual schema gives a complete
representation of the business process

62 A. Maes and G. Poels

experiments into more specific item statements according to the represented business
domain. For each item statement a 7-point Likert scale with response options ranging
from ‘strongly disagree’ to ‘strongly agree’ was offered.

The PSQ measure was developed by [24]. Measurement items were generated from
a definition of semantic quality derived from two theoretical CM quality frameworks,
i.e. the semiotics-based quality definitions of [17] and the Bunge-Wand-Weber ontol-
ogy-based quality definitions of [29]. The proposed items were refined until conver-
gent and divergent validity was deemed satisfactory. The five items of the purified
PSQ measure are shown in Table 1. The PEOU items were proposed by [13] and are
adapted from Moore and Benbasat’s [20] PEOU measure for IT innovations. PU can
be measured using Moody’s [18] PU measure for method adoption (which is based on
[5]) for use in the CM context. Finally, a US instrument is found in Seddon and Yip’s
[28] overall User Information Satisfaction measure and has been reworded by [10] for
measuring satisfaction with conceptual model use.

5 Research Findings

Partial Least Squares (PLS) is an appropriate statistical analysis method for this study
based on the properties of the data at hand. PLS offers an alternative for incorporating
formative (causal) as well as reflective (effect) indicators in one model [8]1. Although
PLS estimates both factor loadings (i.e. measurement model) and structural paths (i.e.
structural model) simultaneously we follow a two-step approach [15] in evaluating
PLS models. First, the measurement model is evaluated to assess construct validity.
Then, the hypothesized structural model of relationships between the four constructs
is tested (hypotheses testing).

5.1 Assessing Construct Validity

In our measurement model PEOU, PU and US are, as in previous research, operation-
alized as reflective constructs. On the other hand, the five elements of PSQ are con-
ceptualized as formative indicators, as PSQ results from the assessment of specific
elements of semantic quality. This is consistent with the conceptual definition of [17]
in which several semantic quality dimensions (e.g. correctness, completeness) have
independent impacts on (or cause) the higher-order construct of semantic quality. For
instance, a conceptual model can be complete with respect to the problem domain,
and at the same time contain incorrect or irrelevant facts. Also, if an improvement in
the correctness of the model is perceived by the model users, then PSQ will be higher,
even if the completeness of the model has not changed.

1 Predominantly, we think of indicators as effects of the underlying concept [3]. A change in

the latent variable will result in a change in all indicators (reflective measurement perspec-
tive). An alternative perspective is based on the use of formative (causal) indicators. Here, it
are the indicators ''that are assumed to cause a latent variable'' ([3], p. 65). Since the latent
variable is formed by its indicators, a change in the latent variable is not necessarily accom-
panied by a change in all indicators. If any one of the indicators changes, then the latent vari-
able will also change.

 Evaluating Quality of Conceptual Models Based on User Perceptions 63

Reflective Indicators: The adequacy of the reflective measurement model (i.e. for
PEOU, PU and US) is assessed by examining the individual item reliabilities and
evaluating the convergent and discriminant validity of the measures. The results of the
measurement model are presented in Table 2.

First, individual item reliabilities were assessed by examining the factor loadings
of all items on their respective constructs. Only items with factor loadings of at least
0.50 are considered very significant and should be retained in the final measurement
model [14] which is the case for all items of PEOU, PU and US. Next, the convergent
validity of the different constructs was examined by computing the composite reliabil-
ities (ICR), using the internal consistency measure developed by [11] which is similar
to Cronbach’s alpha. In this study composite reliability of every construct in the final
measurement model was higher than 0.7, the suggested value by [11] for measures to
be deemed reliable (see also Table 2).

Table 2. Assessment of reflective construct measures (measurement model)

Item Loading ICR AVE
 E1 E2 E1 E2 E1 E2

PEOU1 0.79 0.82
PEOU2 0.70 0.45
PEOU3 0.85 0.88
PEOU4 0.63 0.79

0.834 0.832 0.560 0,565

PU1 0.75 0.83
PU2 0.88 0.90
PU3 0.85 0.83

0.866 0.888 0.684 0,726

US1 0.74 0.65
US2 0.83 0.88
US3 0.87 0.83
US4 0.87 0.88

0.895 0.885 0.681 0,660

Additionally, convergent validity was investigated through the average extracted
variances of the constructs (AVE). AVE is the average variance shared between a
construct and its items. AVE should be higher than 0.5, meaning that at least 50 per-
cent of measurement variance is captured by the construct [11]. The AVE of all the
constructs in the measurement model were above 0.5 (Table 2).

Finally, the AVE was used for discriminant validity assessment as suggested by
[11]. The test requires that the correlation between any two constructs be smaller than
the average of the two root-squared AVEs meaning that the variance shared between
any two constructs is less than the AVE by the constructs. For our reflective con-
structs there was no correlation between any two latent constructs larger than or even
equal to the square root AVE of these two constructs. Consequently, discriminant va-
lidity was supported and confidence was gained that all reflective constructs in the
model were indeed measuring different concepts.

Formative indicators: Because of the formative structure of the PSQ construct, tradi-
tional validity assessments can not be used. Observed correlations among the con-
struct’s measures may not be meaningful [8] and as a consequence, assessment of

64 A. Maes and G. Poels

item reliability and convergent validity become irrelevant [15]. For the formative con-
struct only the indicator coefficients that significantly differ from zero will be re-
tained. As discussed above, semantic quality dimensions are used as indicators of
PSQ. Indicator coefficients which are not significantly different from zero, can not be
considered valid. Such indicators contain information perceived redundant by the re-
spondents, or have high correlations with other indicators or are perceived irrelevant
for the particular construct and should therefore be excluded from the model [8].

PLS analysis indicated that not all PSQ indicators have a coefficient significantly
different from zero. These indicators should be deleted from the model before the
structural model can be tested.

In the analysis of the first experiment, the PSQ4 (t=0.44), and PSQ5(t=0.43) indi-
cators are not significantly related to the PSQ construct. On the other hand, the PLS
analysis indicates that PSQ judgement is caused by PSQ2 (t=3.51), PSQ3 (t=4.24)
and PSQ1 (t=2.21). These three PSQ elements are retained to test the hypotheses.

The construct validity assessment of the PSQ construct in the second experiment
largely supports the findings of above. Here, again some PSQ indicators must be re-
moved before testing the structural model. As in the previous assessment, not all indi-
cator coefficients significantly differ from zero. Again, PSQ4 (t=0.00) and PSQ5
(t=0.01) are not significantly related to PSQ. Furthermore, also PSQ1 (t=0.49) will be
removed when evaluating the structural model. The other two PSQ elements, PSQ2
(t=5.04) and PSQ3 (t=1.97), are relevant formative indicators of PSQ.

5.2 Hypotheses Testing

After the validity assessment of the four constructs, the structural model was tested to
assess the hypothesized relationships in the proposed user evaluations based quality
model (see Figure 3). Table 3 presents the structural path diagrams for the two con-
ducted experiments with the statistically significant path coefficients and the total
variance explained (R²).

An examination of these results reveals that the variance explained of PU and US
ranges from 0.42 to 0.69 and that all of the paths were statistically at least significant

Table 3. Results of research model for the two experiments (E1 &E2)

indicates significant paths : *** P< 0.001 ** P < 0.01 * P < 0.05

0.249**

0.573***

0.516***

PEOU
PU

R² 0.473

US

R² 0.694
PSQ 0.211**

0.198*

(E2)

0.205*

0.558***

0.295**

PEOU
PU

R² 0.420

US

R² 0.454
PSQ 0.333***

0.168*

(E1)

 Evaluating Quality of Conceptual Models Based on User Perceptions 65

at the 0.05 level and as such confirm the hypothesized relationships between the four
evaluation dimensions for conceptual models. The results indicate that PSQ, as was
hypothesized, had a significant direct effect on US. We also found support for the re-
lation between PSQ and PU, though this effect was not as strong than with US. More
importantly in explaining PU seems PEOU since there was a highly significant and
strong effect of PEOU on PU in both experiments. Together PSQ and PEOU ex-
plained 42% and 47% respectively of the variance of the PU variable. Finally, we
could as in previous research also confirm the direct effects of PEOU on US and of
PU on US which were more or less of equal importance. These two variables were
able to explain 45% and 69% respectively of the variance of the US variable.

6 Conclusion

The research contributions of this paper are twofold: first, a new quality model and
measurement instrument has been developed that is solely based on conceptual model
end-user evaluations. Second, we demonstrated relationships between different qual-
ity perceptions, in particular between semantic and pragmatic quality perceptions, and
also between these perceptions and the overall user satisfaction with the conceptual
model. These contributions have both research and practical significance. From a re-
search point of view, the evaluation model and instrument can serve in studies inves-
tigating the mechanisms that lead to successful CM applications. Such studies may
provide insight in how to develop better conceptual models, as well as how to make
sure that model end-users perceive model quality improvements.

When applied in CM practice, the proposed evaluation model (including measure-
ment instrument) can be used as a quality assurance tool to evaluate and compare the
quality of alternative conceptual models, as perceived by model end-users. As our re-
search shows, user perceptions of model quality are an important determinant of the
users' satisfaction with the conceptual model. Obtaining user satisfaction is important,
given the conceptual model's role as a communication vehicle for information system
requirements between analysts and future system end-users. The user evaluations
based quality model may therefore supplement other (and maybe more objective)
quality assurance/improvement tools, that are not directly aimed at evaluating user
perceptions. Unless users perceive model quality improvements, they will not affect
the users' satisfaction with the model and thus are not likely to contribute to a more
successful user-analyst communication. Our evaluation model allows verifying
whether model users perceive the intended effects of quality improvements actions.

Our research can be extended and improved in a number of ways. First, although
the conducted experiments support the hypothesized relations of the user evaluations
based quality model for CM, it is clear that the proposed model is only preliminary
and needs further testing, validation and possibly reformulation to draw final conclu-
sions and enhance external validity. More theoretical and empirical research is re-
quired to explore the relationships between the semantic and pragmatic quality meas-
ures of our model further. Furthermore, the conducted experiments were classroom
experiments employing students as participants, small-scale business models (in ER
format) as study objects, and relatively simple tasks to be performed. Future research
might employ other tasks and models or take the form of field studies so the model is

66 A. Maes and G. Poels

tested in different settings. Finally, the proposed model only includes perceptual
measures of CM quality. Future research could extend the model with other variables
of interest like theoretically established notions of semantic quality, performance-
based variables of user comprehension and other model-usage factors. This should
contribute to the establishment of a comprehensive model for the overall quality as-
sessment of conceptual models.

References

1. Basili, V., Shull, F. and Lanubile, F. (1999). Building Knowledge through Families of Ex-
periments. IEEE Transactions on Software Engineering. 25(4), 456-473.

2. Bodart, F., A. Patel, M. Sim, and R. Weber (2001). Should Optional Properties Be Used in
Conceptual Modelling? A Theory and Three Empirical Tests. Information Systems Re-
search, 12, 4 (December), 384-405.

3. Bollen, K. (1989). Structural Equations with Latent Variables, John Wiley & Sons, NY.
4. Burton-Jones, A. and Weber, R. (1999). Understanding Relationships with Attributes in

Entity-Relationship Diagrams. Proc. of the 20th International Conference on Information
Systems, 214-228.

5. Davis, F. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of
Information Technology. MIS Quarterly, 13(3), 319-339.

6. DeLone, W.H. and McLean, E.R. (1992). Information Systems Success: The Quest for the
dependent variable. Information Systems Journal, 3(1), 60-95.

7. DeLone, W.H. and McLean, E.R. (2003). The DeLone and McLean model of information
systems success: A ten-year update. Journal of Management Information Systems, 19(4),
9–30.

8. Diamantopoulos, A. and Winklhofer H.M. (2001). Index Construction with Formative In-
dicators: An Alternative to Scale Development. Journal of Marketing Research, 38(2),
269-277.

9. Dunn, C.L. and Grabski, S.V. (2000). Perceived semantic expressiveness of accounting
systems and task accuracy effects. International Journal of Accounting Information Sys-
tems, 1(2), 79-87.

10. Dunn, C.L. and Grabski, S.V. (2001). An investigation of localization as an element of
cognitive fit in accounting model representations. Decision Science, 32(1), 55-94.

11. Fornell, C. and Larcker, D.F. (1981). Evaluating Structural Equation Models with unob-
servable variables and measurement error. Journal of marketing research 18(1), 39-50

12. Gemino, A and Wand, Y. (2003) Foundations for Empirical Comparisons of Conceptual
Modeling Techniques. In D. Batra, J. Parsons, and E. Ramesh (eds.), Proc. of the Second
Annual Symposium on Research in Systems Analysis and Design, Miami, Florida.

13. Gemino, A. and Wand, Y. (2005). Complexity and Clarity in Conceptual Modeling: Com-
parison of Mandatory and Optional Properties. Data and Knowledge Engineering, 55(3),
301-328.

14. Hair, J.F., Anderson R.E. and Tatham R.L. (1987). Multivariate Data Analysis, 2nd ed.
15. Hulland, John (1999). Use of Partial Least Squares (PLS) in strategic management re-

search: A review of four recent studies. Strategic Management Journal, 20(2), 195-204.
16. Krogstie, J., Lindland, O.I., Sindre, G. (1995). Defining quality aspects for conceptual

models. In E. D. Falkenberg, W. Hesse, and A. Olive (eds.), Proc. of the 3rd IFIP8.1
Working Conference on Information Systems. Marburg, Germany, 216-231.

 Evaluating Quality of Conceptual Models Based on User Perceptions 67

17. Lindland, O.I., Sindre, G., Sølvberg, A. (1994). Understanding Quality in Conceptual
Modeling. IEEE Software, 11(2), 42-49.

18. Moody, D.L (2001). Dealing with Complexity: A practical Method for representing Large
Entity Relationship Models, Doctoral Dissertation, University of Melbourne .

19. Moody, D.L. (2005). Theoretical and Practical Issues in Evaluating the Quality of Concep-
tual Models: Current state and Future directions. Data and Knowledge Engineering, 55(3),
243-276.

20. Moore, G.C. and Benbasat I. (1991). Development of an Instrument to Measure the Per-
ceptions of Adopting and Information Technology Innovation. Information Systems Re-
search 2(3), 192-222.

21. Nelson, R. R., Todd, P. A., Wixom, B. H. (2005). Antecedents of Information and System
Quality: An Empirical Examination Within the Context of Data Warehousing. Journal of
Management Information Systems, 21(4), 199-235.

22. Parsons J. and Cole L. (2005). What do the pictures mean? Guidelines for the experimental
evaluation of representation fidelity in diagrammatical conceptual modeling techniques.
Data & Knowledge Engineering, 55(3), 327-342.

23. Poels, G., Nelson, J., Genero, M. ,Piattini, M. (2003). Quality in Conceptual Modeling.
New Research Directions. Lecture Notes in Computer Science 2784, 243-250.

24. Poels, G., Maes, A., Gailly, F., Paemeleire, R., (2005). Measuring the Perceived Semantic
Quality of Information Models. Lecture Notes in Computer Science, 3770, 376-385.

25. Rai, A., Lang, S.S., Welker, R.B. (2002). Assessing the validity of IS success models: An
empirical test and theoretical analysis. Information Systems Research, 13(1), 50-69.

26. Seddon, P. (1997). A Respecification and Extension of the DeLone and McLean Model of
IS Success. Information Systems Research, 8(3), 240-253.

27. Seddon, P. and Kiew, M.-Y.(1994). A partial test and development of the DeLone and
McLean model of IS success. In J.I. DeGross, S.L. Huff, and M.C Munro (eds,). Proceed-
ings of the International Conference on Information Systems. Atlanta. 99-110.

28. Seddon, P. and Yip, S.-K. (1992). An Empirical Evaluation of User Information Satisfac-
tion (UIS) Measures for Use with General Ledger Accounting Software. Journal of Infor-
mation Systems, 6(1), 75-92.

29. Shanks, G., Tansley, E., Weber, R. (2003). Using ontology to validate conceptual models.
Communications of the ACM, 46(10), 85-89.

30. Shannon, C.E. and Weaver, W. (1949). The Mathematical theory of Communication. Uni-
versity of Illinois Press, Urbana.

31. Siau, K., Wand, Y., Benbasat, I. (1997). The Relative Importance of Structural Constraints
and Surface Semantics in Information Modeling. Information Systems, 22(2/3), 155-170.

32. Topi, H. and Ramesh, V. (2002). Human Factors Research on Data Modeling: A Review
of Prior Research, An Extended Framework and Future Research Directions. Journal of
Database Management, 13(2), 3-19.

Representation Theory Versus Workflow
Patterns – The Case of BPMN

Jan Recker1, Petia Wohed2, and Michael Rosemann1

1 Queensland University of Technology
126 Margaret Street, Brisbane QLD 4000, Australia

{j.recker, m.rosemann}@qut.edu.au
2 Stockholm University/The Royal Institute of Technology

Forum 100, 164 40 Kista, Sweden
petia@dsv.su.se

Abstract. Selecting an appropriate process modeling language forms
an important task within business process management projects. A wide
range of process modeling languages has been developed over the last
decades, leading to an obvious need for rigorous theory to assist in the
evaluation and comparison of the capabilities of these languages. While
academic progress in the area of process modeling language evaluation
has been made on at least two premises, Representation Theory and
Workflow Patterns, it remains unclear how these frameworks relate to
each other. We use a generic framework for language evaluation to es-
tablish similarities and differences between these acknowledged reference
frameworks and discuss how and to what extent they complement respec-
tively substitute each other. Our line of investigation follows the case of
the popular BPMN modeling language, whose evaluation from the per-
spectives of Representation Theory and Workflow Patterns is reconciled
in this paper.

1 Introduction

Improving and managing business processes continues to be on the top of the
agenda for chief executives [1]. This strong momentum has, over time, led to the
development of a wide range of solutions and approaches for Business Process
Management. One prominent example in this context is the increased popular-
ity of business process modeling [2]. Recently, ”yet another” process modeling
language has entered the BPM domain, the Business Process Modeling Notation
(BPMN) [3]. The conformity with emerging Web Services standards, its reason-
ably intuitive notation and the promise of becoming an official process modeling
industry standard, have boosted the popularity of BPMN. The attention that
BPMN has been receiving since its first release, however, had at the time of
release not been balanced by a critical analysis of its actual and perceived ca-
pabilities. Quite contrary indeed, the proliferation of arbitrary approaches to
process modeling has led to a need for rigorous theory to assist in the evalua-
tion and comparison of process modeling languages. Van der Aalst [4] points out

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 68–83, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Representation Theory Versus Workflow Patterns – The Case of BPMN 69

that many of the available ’standards’ for process and workflow specification lack
critical evaluation. Along similar lines, Moody [5] states a concern about lacking
evaluation research with respect to the conceptual modeling of the dynamics of
information systems. In fact, the large selection of currently available process
modeling languages stands in sharp contrast to the paucity of evaluation frame-
works that can be used for the task of evaluating and comparing those modeling
languages. However, while there is un-fortunately not one single framework that
facilitates a comprehensive analysis of all facets of a process modeling language
(e.g., expressive power, consistency and correctness of its meta model, perceived
intuitiveness of its notation, available tool sup-port), reasonably mature research
has emerged over the last decade with a focus on the representational capabil-
ities and expressive power of modeling languages. In academia two examples,
Representation Theory [6,7,8] and the Workflow Patterns Framework [9,10,11],
have emerged as well-established evaluation frameworks in the field of process
modeling. What remains unclear, however, is how these frameworks relate to
each other. Are they complementary in their approaches and are their results
comparable? What types of insights into expressive power and shortcomings of a
process modeling language can be obtained from them? These and related ques-
tions can be traced back to Moody’s [5] argument that a proliferation of different
quality measurement proposals is counterproductive to research progress; in fact,
the existence of multiple competing proposals is a sign of an immature research
field. What is needed is a reconciliation and synthesis of available proposals in
order to establish consensus on a common understanding of conceptual model-
ing quality [5, p. 258]. Taking together the ongoing proliferation of prospective
standard languages for process modeling and the need for a reconciliation of
quality frameworks, our paper seeks to contribute to the body of knowledge on
at least two premises. First, we apply a framework for language evaluation to
both Representation Theory and Workflow Patterns Framework in order to es-
tablish commonalities and differences between these two quality proposals. As a
second contribution we use the example of the most recent and prominent can-
didate for a process modeling standard, BPMN, as a language that is evaluated
by both frameworks; thereby we are able to reconcile the analyses of BPMN and
give a comprehensive picture of its capabilities and shortcomings.

We proceed as follows. First we briefly introduce our selected example, BPMN,
and discuss studies related to our research (section 2). We then establish a frame-
work for language evaluation and apply it to the frameworks in question (sec-
tion 3). Section 4 presents and discusses our reconciliation of the frameworks,
and also gives a synthesis of the analyses of BPMN. We close in section 5 by
summarizing our work and outlining future research opportunities.

2 Background and Related Work

2.1 Overview of the Process

In the remainder of this paper we will refer to previous analyses of the Busi-
ness Process Modeling Notation (BPMN) as examples for our elaborations. In

70 J. Recker, P. Wohed, and M. Rosemann

this section we briefly introduce BPMN in order to give the reader sufficient
background for understanding our subsequent argumentations.

BPMN was developed by the Business Process Management Initiative and
adopted by OMG for standardization purposes in February 2006 [3]. The devel-
opment of BPMN stemmed from the demand for a graphical notation that com-
plements the BPEL4WS standard for executable business processes. Although
this gives BPMN a technical focus, it has been the intention of the BPMN de-
signers to develop a modeling technique that can be applied for typical business
modeling activities as well. The complete BPMN specification defines thirty-
eight language constructs plus attributes, grouped into four basic categories of
elements, viz., Flow Objects, Connecting Objects, Swimlanes and Artefacts. Flow
Objects, such as events, activities and gateways, are the most basic elements used
to create Business Process Diagrams (BPDs). Connecting Objects are used to
inter-connect Flow Objects through different types of arrows. Swimlanes are used
to group activities into separate categories for different functional capabilities
or responsibilities (e.g., different roles or organizational departments). Finally,
Artefacts may be added to a diagram where deemed appropriate in order to
display further related information such as processed data or other comments.
Refer to the specification [3] for further information on BPMN.

2.2 Related Work

Work related to our study can broadly be differentiated into (a) research on the
evaluation of process modeling languages in general and of BPMN in particu-
lar, and (b) research on the comparison of evaluation techniques for conceptual
models. We briefly recapitulate such related work in this section and will, where
appropriate, refer to it in the later sections of this paper.

In the area of evaluation of process modeling languages, only little research
has tried to compare process modeling languages based on an established the-
oretical model. The most prominent example for an evaluation framework that
has deductively been derived from established theory is the Bunge-Wand-Weber
(BWW) representation model [6,7,8] that forms the core of Representation The-
ory. The BWW representation model, which will be discussed in more detail in
section 3.1 of this paper, has a strong track record in the area of process mod-
eling, for instance in the evaluation of Petri Nets, EPCs, BPMN, ebXML and
others. A comprehensive annotated overview is given in [12].

A second example of a theoretical sound quality proposal is the Workflow
Patterns framework [9,10,11], which will also be considered in more detail in this
paper later on. Since its establishment, the framework that has inductively been
derived from observable practice in workflow management has been widely used
both as a benchmark for analysis and comparison of languages. A comprehensive
annotated overview is given in [13].

Besides these two established proposals it is worthwhile to mention the semi-
otic quality framework [14], which is a well-discussed framework for evaluating
the quality of conceptual models in general. However, it has so far only sparingly
been applied to the domain of process modeling [15]. Research related directly

Representation Theory Versus Workflow Patterns – The Case of BPMN 71

to the evaluation of BPMN is still limited due to the recency of its release.
The semiotic quality framework [14] has been used to evaluate BPMN with re-
spect to the criteria domain appropriateness, participant language knowledge
appropriateness, knowledge externalizability appropriateness, comprehensibility
appropriateness, and technical actor interpretation appropriateness analytically
[16] and empirically [17]. Both studies conclude that BPMN particularly excels
in terms of comprehensibility appropriateness due to its construct specializa-
tions and type aggregations, is overall well-suited for the domain of business
process modeling but achieves rather modest results in domain appropriateness.
In preparation for this study, the Workflow Patterns framework was used to
evaluate BPMN [13]. The results from this evaluation show that BPMN per-
forms well in terms of capturing the control flow and handling data in a process
but is limited in expressing resources and the work distribution of activities
among them. Also, in preparation for this study, was BPMN analyzed as per
Representation Theory [18]. The analysis proposed, and empirically confirmed,
shortcomings related to organizational modeling due to unclear specifications of
the Pool and Lane constructs. Also, representational shortcomings were found,
amongst others, in the specification of business rules. Both analyses will be fur-
ther discussed in section 4 of this paper.

Regarding related work on comparing evaluation techniques, Siau and Rossi
[19] provide a classification of evaluation approaches for modeling methods and
differentiate multiple proposals into analytical and empirical approaches. They
discuss analyses based on the BWW model, however, an evaluation based on
workflow pat-terns does not fit into their classification scheme. We see a reason
for this in the scope of Siau and Rossi’s study, which focused modeling meth-
ods rather than modeling languages. Similarly, Recker [20] proposes a comparison
framework that comprises the facets model perception, evaluation perception and
quality perception, in order to assess the suitability of modeling language evalu-
ation approaches in various research contexts. He argues that the suitability of
any evaluation approach is determined by the conformity of its underlying epis-
temological viewpoints to the overall presuppositions of the research context.

3 Evaluating Process Modeling Languages -
A Theoretical Perspective

3.1 Framework for Language Evaluation

Before we compare Representation Theory and the Workflow Patterns frame-
work it is necessary to appreciate the theoretical analysis model that underlies
research on language evaluation. The purpose of the current section is to define
a framework for language evaluation under which existing approaches can be
subsumed.

In order to establish this framework we draw on the generally acknowledge
objective of conceptual modeling, which is to build a representation of a selected
domain of interest for the purpose of understanding and communication among

72 J. Recker, P. Wohed, and M. Rosemann

stakeholders in the process of requirements engineering for Information Systems
analysis and design [21]. These stakeholders are confronted with the need to
represent the requirements in a conceptual form, viz., an underlying conceptual
structure is needed on which conceptual models can be based [22]. As such under-
lying conceptual structures are dependant on, inter alia, modeling purpose and
the preferences of the involved modeling participants, they cannot be equated
for anyone. They merely denote potentially valid modeling references that hold
true in certain but not all modeling contexts. The overall lack of such underlying
conceptual structures for conceptual modeling motivated research on reference
frameworks for conceptual models in given domains, against which modeling
languages can be assessed as to their compliance with the framework, leading to
statements about the ’goodness’ of the resulting model in light of the selected
framework. Fig. 1 explicates these relations.

Reference framework

C
on

ce
pt

ua
liz

ed
by

Represented
in A

B

C

DMulti-
Choice

Multi-
Merge

Resulting model

Ob-
ject

Con-
nector

Arrow

Modeling language

E
xp

re
ss

ed
in

Evaluated
with

Domain

Fig. 1. Relations between domain, reference framework, modeling language and model

According to Fig. 1, a modeling reference framework, such as the BWW repre-
sentation model or the Workflow Patterns framework, can be used as a heuristic
specification of the domain to be modeled. As an example, the Workflow Patterns
framework conceptualizes the domain of processes in form of atomic chunks of
workflow semantics, differentiated in the perspectives of control flow, data and
resources. In order to assess whether a given modeling language is ’good’ with
respect to its capability to represent relevant aspects of the domain, the reference
framework serves as a theoretical benchmark in the evaluation and comparison
of available modeling languages. The assumption of this type of research is that
capabilities and shortcomings of a conceptual modeling language in light of the
reference framework in use ultimately affect the quality of the model produced.

Representation Theory Versus Workflow Patterns – The Case of BPMN 73

Taking these elaborations into account, the process of evaluating modeling
languages against a reference framework consists of a pair wise bi-directional
mapping between the constructs specified in the reference framework against
the constructs specified in the modeling language. For example, the Workflow
Patterns framework assesses which of the specified patterns can be expressed
by a given language. The basic assumption is that any deviation from a 1-1
relationship between the corresponding constructs in the reference framework
and the modeling language leads to situations of deficiency and/or ambiguity in
the use of the language, thereby potentially diminishing the quality of the model
produced.

Formally, the relationships between what can be represented (constructs of
the modeling language) and what is represented (constructs of the reference
framework as a heuristic for the domain being modeled) can be specified as
follows (see Fig. 2)1.

Legend

Set of semantics prescribed in the Reference FrameworkRF

RF

ML

Set of semantics expressible in the Modeling LanguageML

1:0

1:1

Chunk of semantics prescribed in the Reference Framework

Chunk of semantics expressible in the Modeling Language
0:1

1:n

n:1

Fig. 2. Framework for language evaluation

– Equivalence: The construct prescribed by the reference framework can un-
equivocally be mapped to one and only one construct of the modeling lan-
guage (1:1 mapping).

– Deficiency: The construct prescribed by the reference framework cannot be
mapped to any construct of the modeling language (1:0 mapping).

– Indistinguishability: The construct prescribed by the reference framework
can be mapped to more than one construct of the modeling language (1:n
mapping).

1 Note that the framework for language evaluation presented here draws on previ-
ous work in related disciplines. Weber [23], for instance uses a similar albeit not
identical framework to explain the two situations of ontological completeness and
clarity of a language. Guizzardi [24] argues along similar lines in the context of
structural specifications. Gurr [25] uses similar mapping relations to analyze dia-
grammatic communication. We do not claim to supersede the works of these authors
but merely build upon their works to explain in general the research type of language
evaluation.

74 J. Recker, P. Wohed, and M. Rosemann

– Equivocality: More than one construct prescribed by the reference framework
can be mapped to one and the same construct of the modeling language
(n:1 mapping).

– Overplus: Not one construct prescribed by the reference framework can be
mapped to the construct of the modeling language (0:1 mapping).

Having defined hypothetical relationships that may occur in a pair wise bi-
directional mapping between a reference framework and a given modeling lan-
guage we can now turn to existing frameworks in the research field of process
modeling in order to investigate which of these potential constellations are cov-
ered in the respective evaluation approach. For the purpose of this study we
selected the Bunge-Wand-Weber representation model, which forms the core of
Representation Theory, and the Workflow Patterns framework as indications for
available reference frameworks in the domain of process modeling. Subsequently,
we will briefly introduce both approaches.

3.2 Frameworks for the Evaluation of Process Modeling Languages

The Bunge-Wand-Weber Representation Model. The development of the
representation model that is known as the Bunge-Wand-Weber model stemmed
from the observation that, in their essence, computerized information systems
are representations of real world systems. Wand and Weber [6,7,8] suggest that
in order to help define and build information systems that faithfully represent
real world systems, models of information systems and thus their underlying
modeling language must contain the necessary representations of real world con-
structs including their properties and interactions. The BWW representation
model contains four clusters of constructs that are deemed necessary to faith-
fully model information systems: things including properties and types of things;
states assumed by things; events and transformations occurring on things; and
systems structured around things [23,12]. The BWW model defines a theory of
representation that has been developed deductively from philosophical research,
in particular an ontology defined by Bunge [26].

The BWW model allows for the evaluation of modeling languages with respect
to their capabilities to provide complete and clear descriptions of the IS domain
being modeled [23]. Referring to the five types of relations specified above (see
Fig. 2, the completeness of a description can be measured by the degree of con-
struct deficit, i.e., deficiency. The clarity of a description can be measured by
the degrees of construct overload, i.e., equivocality, construct redundancy, i.e.,
indistinguishability, and construct excess, i.e., overplus. Although implicitly be-
ing measured by the extent of deficiency, we were not able to locate any previous
analysis based on the BWW model that explicitly documented equivalence of a
modeling language.

The Workflow Patterns Framework. The development of the Workflow
Patterns framework was triggered by a bottom-up analysis and comparison of

Representation Theory Versus Workflow Patterns – The Case of BPMN 75

workflow management software. Provided during 2000 and 2001, this analysis
included the evaluation of 15 workflow management systems, with focus being
given to their underlying modeling languages. The goal was to bring insights into
the expressive power of the underlying languages and hence outline similarities
and differences between the analyzed systems. During the work 20 control-flow
patterns [9] were inductively derived. These patterns in the control-flow con-
text denote atomic chunks of behavior capturing some specific process control
requirements. The identified patterns span from simple to complex control-flow
scenarios and provide a taxonomy for the control-flow perspective of processes.

Recently, the Workflow Patterns framework was extended to also cover pat-
tern constructs for the data and the resource perspectives of workflows. While
the control-flow perspective focuses extensively on the ordering of the activities
within a process, the data perspective focuses on the data representation and
handling in process-aware information systems. The resource perspective fur-
ther complements the approach with focusing on describing the various ways
in which work is distributed amongst and managed by the resources associated
with a business process. In 2005, a set of 43 resource patterns [10] and a set of 40
data patterns [11] were added to the framework. All control-flow, resource and
data pattern constructs are grouped into various clusters.

Referring back to the five types of relations specified above (see Fig. 2, eval-
uations using the Workflow Patterns framework focus on the identification of
potential representations within a given modeling language for each of the pat-
terns (i.e., on identification of equivalence). The non-identification of a repre-
sentation for a pattern denotes a deficiency of the language. The identification
of alternative representations of a pattern denotes indistinguishability. Previous
analyses based on this framework have not explicitly taken into consideration
the constellations of overplus and equivocality. While the performed analysis can
be used to partially reveal some equivocality, it is not sufficient to identify and
reason about overplus.

4 Reconciling the Evaluation Frameworks - The Case of
BPMN

Based on the elaborations in section 3.1 we argue that it is possible to pair
wise compare the findings obtained from analyses using Representation Theory
and Workflow Patterns by using the framework for language evaluation defined
in Fig. 2. In preparation for this study we analyzed BPMN against the BWW
model [18] and the Workflow Patterns framework [13]. In the following we recon-
cile these analyses in order to extract similarities and differences in the reference
frameworks. This allows us to address both objectives of this paper, viz., de-
livering a comprehensive evaluation of the capabilities of BPMN and studying
to what extent the two frameworks under observation complement respectively
substitute each other.

76 J. Recker, P. Wohed, and M. Rosemann

4.1 Evaluation Frameworks Synthesis

In previous studies we have used the frameworks in questions to evaluate BPMN
individually. Due to space restrictions we cannot outline the individual analyses
here but refer to our previous studies described in [18] and [13]. We fitted the
results of these analyses into Table 1, structured in accordance to the framework
for language evaluation (see Fig. 2)2. Subsequently we pair wise compare the
findings derived from each analysis for each of the five mapping relations.

In conducting the pair wise comparison two researchers first individually cross-
evaluated the findings from each analysis, then met to defend their evaluation.
A second, joint draft of the pair wise comparison was then presented to, and
discussed with, a third member of the research team. By reaching a consensus
over the third, joint draft of the comparison we feel that we have displayed
sufficient reliability and validity of our evaluation.

Equivalence. From Table 1 it can be observed that from a Representation
Theory perspective, there is not a single language construct in BPMN that is
unambiguously and unequivocally specified. While this finding per se is prob-
lematic as the usage of any given construct potentially causes confusion in the
interpretation of the resulting model (for empirical support for this proposition
refer, for instance, to [18]), the Workflow Patterns framework shows that the
atomic constructs provided in BPMN can nevertheless be arranged in a mean-
ingful, unambiguous manner to arrange a series of control-flow, data and resource
patterns. This indicates that it may not be sufficient to analyze languages solely
on a construct level, but it is moreover required to assess the modeling context
in which the language constructs are used to compose ”chunks” of model seman-
tics. In this regard, the Workflow Patterns framework appears to be an extension
in the level of analysis of Representation Theory as it transcends the construct
level by specifically taking into consideration the capability of a language to
compose atomic language constructs to sets of preconceived domain semantics
such as control-flow patterns.

Deficiency. Table 1 strongly suggests a lack of capability of BPMN to model
state-related aspects of business processes. Both analyses reveal that BPMN
is limited in modeling states assumed by things [18] and state-based patterns
[13], respectively. Here, the two frameworks complement each other and to-
gether make a strong case for a potential revision and extension of the BPMN
specification in order to advance its capability of modeling state-related
semantics.
2 For the Workflow Patterns-based evaluation, note that CP7, CP9 and CP17 have

partial representations, i.e., they present solutions that are not general enough to
hold for all potential scenarios but may be used in some cases. Also note that, for
the cluster equivocality, the differences between the solutions are captured though
advanced attribute settings. The attribute settings can indeed be graphically cap-
tured through text annotations, however, such text annotations lie in our opinion
outside the graphical notation of a language.

Representation Theory Versus Workflow Patterns – The Case of BPMN 77

Table 1. Comparison of analysis results. Extracted from [13] and [18], respectively

1:1 Mapping

Equivalence

Workflow Patterns

1:0 Mapping

Deficiency

1:n Mapping

Indistinguishability

n:1 Mapping

Equivocality

0:1 Mapping

Overplus

Relation

The following Workflow Patterns can unequivocally be
expressed in BPMN:
CP1, CP11-14, CP19;
RP11, RP14, RP19, RP36, RP39, RP42;
DP1, DP2, DP5, DP10i, DP10ii, DP11i, DP11ii, DP15-18,
DP27, DP28, DP31, DP34, DP36, DP38-40

There is no construct in the BWW model that can
unequivocally be mapped to a single BPMN construct.

Representation Theory

The are no representations in BPMN for the following
Workflow Patterns:
CP7, CP9, CP15, CP17, CP18;
RP3-10, RP12, RP13, RP15-18, RP20-35, RP37, RP38,
RP40, RP41, RP43;
DP3, DP4, DP6, DP7, DP8, DP12-14, DP19-26, DP29,
DP30, DP32, DP33, DP35, DP37

There are no representations in BPMN for the following
BWW constructs:
State, Stable State, Unstable State, Conceivable State
Space, State Law, Lawful State Space, Conceivable Event
Space, Lawful Event Space, History, Property (in
particular, hereditary, emergent, intrinsic, mutual: non-
binding, mutual: binding, attributes).

The following Workflow Patterns have multiple
representations in BPMN:
CP2-6, CP10, CP16, CP20;
RP1, RP2;
DP9

The following BWW constructs have multiple
representations in BPMN:
Thing, Property (in general), Class, Event, External Event,
Internal Event, Well-defined Event, Poorly-defined Event,
Transformation, Lawful Transformation (including Stability
Condition, Corrective Action), Acts On, Coupling, System,
System Decomposition, System Composition, System
Environment, Subsystem, Level Structure.

The following Workflow Patterns have the same graphical
representations in BPMN:
CP4 and CP6;
CP9, CP12, CP13 and CP14

The following BPMN constructs represent many BWW
constructs:
Lane (Thing, Class, Kind, System, System Decomposition,
System Composition, System Environment, Subsystem,
Level Structure); Pool (Thing, Class, System, System
Decomposition, System Composition, System
Environment, Subsystem, Level Structure); Message Flow
(Acts On, Coupling); Start Event (Internal Event, External
Event); Intermediate Event (Internal Event, External
Event); End Event (Internal Event, External Event); Error
(Internal Event, External Event); Cancel (Internal Event,
External Event); Compensation (Internal Event, External
Event);

Workflow Patterns analysis does not lead to statements
about a possible overplus of patterns, which a language
may be able to represent but which are not included in the
framework.

The following BPMN constructs do not map to any BWW
construct:
Link, Off-Page Connector, Gateway Types, Association
Flow, Text Annotation, Group, Activity, Looping, Multiple
Instances, Normal Flow, Event (super type), Gateway
(super type)

Another interesting deficiency of BPMN is the lack of means to describe some
of the data patterns. In particular, data interaction to and from multiple in-
stances tasks (DP12 and DP13) cannot comprehensively be described, which
is mostly credited to a lack of attributes in the specification of the language
constructs. This finding aligns with the BWW-based finding that BPMN lacks
mechanisms to describe properties, especially property types that emerge or are
mutual due to couplings of things, or those that characterize a component thing
of a composite thing (hereditary).

Furthermore, the Workflow Pattern analysis reveals deficiency in BPMN’s
support for the majority of the resource patterns. This finding can also be sup-
ported by the BWW-based analysis that found that the constructs in BPMN
dedicated to modeling an organizational perspective, viz., Lane and Pool, are
considerably unclear in their specification (see next paragraph). Hence it ap-
pears that a language specification containing unclear definitions on a construct
level lead to deficiencies in composing these constructs to meaningful sets of
constructs.

78 J. Recker, P. Wohed, and M. Rosemann

Indistinguishability. The Workflow Pattern-based evaluation reveals that
while BPMN is capable of expressing all basic control-flow patterns (CP1-5),
it contains multiple representations for them, thereby potentially causing con-
fusion as to which representation for a pattern is most appropriate in a given
scenario. This aligns with the finding in [18] that BPMN contains a reasonably
high degree of construct overload. Especially, in terms of modeling essential con-
cepts of process modeling, such as things, events and transformation, it appears
that BPMN is considerably overloaded. This complements the finding that the
modeling of the most basic workflow patterns is doubled and thereby unneces-
sarily complex.

The BWW-based analysis furthermore reveals that the Lane and Pool con-
structs are extensively overloaded, allowing for representation of various domain
aspects (in the case of the Lane construct for example things, classes of things,
systems, kinds of things etc.). This complements the statement from the analysis
in [13] that the resource patterns RP1 and RP2 use the same graphical notation,
relying mostly on Lanes and Pools, for representing two different patterns.

Equivocality. The notion of equivocality reveals an interesting facet in the
comparison of the two reference frameworks. The findings from the two frame-
works do not seem to match with each other. As an example, the control flow
patterns 9, 12, 13 and 14 were found to use the same graphical notation, with the
differences between the solutions for these patterns only readable from the at-
tribute settings. These solutions rely on the Multiple Instances construct, which
the BWW-based analysis classified as overplus. On the other hand, the BWW-
based analysis proposes that the different event types in BPMN are redundant.
This finding, however, is not supported by the Workflow Pattern-based analysis.
It is interesting to note that our own empirical findings related to the BWW-
based analysis have, in fact, led to the conclusion that BPMN’s differentiation
of event constructs has been perceived as very helpful for modeling by BPMN
users [18].

Overplus. The perspective of language overplus denotes yet another interest-
ing comparison aspect. It proposes that the Workflow Patterns framework can
be used as a means of reasoning for explaining why a particular language con-
tains some constructs that, from a Representation Theory perspective, seem to
be unnecessary for capturing domain semantics. In particular, throughout the
whole process modeling domain, control flow mechanisms such as logical con-
nectors, selectors, gateways and the like are repeatedly proposed as overplus as
they do not map to any construct of the BWW model [12]. However, the Work-
flow Patterns framework suggests that these constructs nevertheless are central
to modeling control-flow, based on the understanding that these mechanisms
essentially support the notion of being ”in between” states or activities [9].

It must be stated that the Workflow Patterns framework so far has not
been used to identify potential overplus of workflow patterns that may be sup-
ported in a given language. However, in principle it is possible to apply overplus

Representation Theory Versus Workflow Patterns – The Case of BPMN 79

analysis to the framework for a limited number of language construct involved in
a model chunk. It may even be worthwhile investigating how language constructs
that the BWW representation model considers as overplus may, in composition,
constitute patterns of workflows that have not yet been identified. In this re-
gard the BWW analysis appears to extend the scope of the Workflow Patterns
analysis.

4.2 Synopsis

While in the previous section we used the case of BPMN to discuss the com-
plementary and/or substitutive nature of the two reference frameworks under
observation, in this section we seek to establish similarities and differences be-
tween statements derivable from the analyses of process modeling languages
based on different reference framework in a more general fashion.

Fig. 3 presents a simple set model that illustrates potential relationships be-
tween two reference frameworks (Representation Theory BWW and Workflow
Patterns WP) and the modeling language under observation (BPMN)3. Note
that in the following we will abstract from the specific relationship types (1:1,
1:0, 0:1, 1:m, m:1) that may occur in a mapping.

7

5 6

2 3

1

4

BWW

BPMN

WP

Domain specification as per BWW representation model

Domain specification as per Workflow Patterns
framework

A BPMN model of the domain

Subsets

Main sets

Property 1 2 3 4 5 6 7

Is described in the
BWW model

Is described in the
WP model

Can be expressed in
BPMN

Is not described in
the BWW model

Is not described in
the WP model

Cannot be
expressed in BPMN

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

BPMN

WP

BWW

Fig. 3. Set model showing relationships between reference frameworks and modeling
language

From Fig. 3 it can be observed that seven hypothetical constellations may in
principle occur.

– A set of constructs is provided by both of the reference frameworks and it
is found that the modeling language is able to express this set of constructs
(subset 1).

3 We use these indications merely to illustrate our point. The approach itself is in prin-
ciple applicable to any given combination of two (or even more) reference frameworks
and a modeling language.

80 J. Recker, P. Wohed, and M. Rosemann

– A set of constructs is provided by only one of the reference frameworks and
it is found that the modeling language is able to express this set of constructs
(subsets 2 and 3, respectively).

– A set of constructs is provided by both of the reference frameworks and it is
found that the modeling language is not able to express this set of constructs
(subset 4).

– A set of constructs is provided by only one of the reference frameworks and
it is found that the modeling language is not able to express this set of
constructs (subsets 5 and 6, respectively).

– A set of constructs is not provided by any of the reference frameworks but it
is found that the modeling language is able to express this set of constructs
(subset 7).

Besides the fact that the set model given in Fig. 3 allows for the specifica-
tion of a ranking of constellations that may occur in the evaluation of modeling
languages (e.g., a mapping to subset 1 is of higher relevance than a mapping
to subset 3), it also allows us to conclude about the comparison and assessment
of modeling languages and reference frameworks in general. As shown, language
evaluation by means of reference frameworks has two facets. On the one side, ref-
erence frameworks provide a filtering lens that facilitates insights into potential
issues with a modeling language. On the other side, any evaluation is restricted
to that lens, only exploring potential issues of a language in light of the selected
framework. A comparative assessment of such reference frameworks using the
case of a single language then can have multiple facets.

It can be used to strengthen the findings obtained from an individual evalu-
ation by identifying complementary statements derived from the analyses. For
instance, the finding that BPMN lacks support for the majority of control-flow
patterns in the cluster state-based patterns (CP16-18) aligns with the finding
that BPMN lacks means for representing states assumed by things (subset 1
in Fig. 3). It can, on the other hand, also be used to identify facets of a given
reference framework that extend the scope of another, thereby increasing the
focus of an evaluation and overcoming the restricting filter of a single frame-
work. As an example, while the BWW-based evaluation of BPMN shows that
BPMN does not contain a single construct that is unambiguously equivalent to
any construct of the BWW model, the Workflow Patterns-based analysis reveals
that the (potentially ambiguous) atomic BPMN constructs can be arranged to
a set of constructs that, as a set, unequivocally equals a number of workflow
patterns (subset 3 in Fig. 3). Or, the BWW-based evaluation classifies BPMN
connector types as an overplus unnecessary to model IS domains. The Workflow
Patterns-based analysis on the other hand suggests that the connector types are
in fact essential for the description of control-flow convergence and divergence.
However, as subset 7 in Fig. 3 indicates, there may be aspects of a modeling
language that are not found to map to any aspect of any of the reference frame-
work used. This scenario can lead to two findings. On first sight, such aspects
of a modeling language may in fact unnecessary, ambiguous and/or potentially
confusing for modeling the given domain and their usage should therefore be

Representation Theory Versus Workflow Patterns – The Case of BPMN 81

avoided or at least better specified. On the other hand, such a finding may also
contribute to the further development of the selected theoretical bases as it in-
dicates that the reference frameworks in use potentially lack relevance or scope
for the given domain and thus should be refined or extended. For instance, in
an earlier study we discussed the potential lack of relevance of the BWW model
for the domain of process modeling [12]. In the case of the Workflow Patterns
framework it can by no means be guaranteed that the identified set of patterns
is complete.

This brief discussion indicates a need for researchers to carefully observe and
scrutinize the findings they derive from their evaluations with respect to the
extent to which their findings are rooted in an actual shortcoming of the artifact
being evaluated or in a limitation of the selected theoretical reference frame-
work(s) used for the evaluation.

5 Contributions and Future Research

This paper presented the first comprehensive study that compares evaluation
frameworks for process modeling languages based on an analysis of the principles
of language evaluation.

We do not consider this research complete. In particular, we look to further
extend our assessment of evaluation frameworks to incorporate other levels of
analysis such as the ones identified in [20]. In particular, we seek to use the
principles of presupposition analysis in order to establish differences between
evaluation approaches that are imposed by underlying paradigms, for instance
in terms of methodology (inductive vs. deductive) or epistemology (construc-
tionist vs. realist). Also, we seek to further populate our set model given in
Fig.̃reffigthree by comparatively assessing the findings from the evaluations of
other process modeling languages such as BPEL4WS (evaluated in [27] and [28],
respectively).

In spite of some limitations of our study, e.g., we have not obtained an empir-
ical perspective towards our evaluation and we have not fully taken into consid-
eration the differences in terms of analysis granularity (atomic notation elements
versus compositions of notation elements), we see first evidence for the usefulness
of our approach. Our research hopefully motivates practitioners and researchers
to converge (rather than diverge) their use of theoretical bases for process mod-
eling. A combination of the principles of both Representation Theory (for the
specification of the language constructs) and the Workflow Patterns framework
(for the specification of the relationships of language constructs to form meaning-
ful composites) may ultimately lead to the design of process modeling languages
that not only provide complete and clear descriptions of real-world domains but
also provide sophisticated support for advanced workflow concepts.

We further see potential of generalizing our research to related domains. While
our comparative assessment was restricted to process modeling languages and
reference frameworks for process modeling languages, we spent considerable ef-
fort on defining a generic analysis level that allows for wider uptake. For instance,

82 J. Recker, P. Wohed, and M. Rosemann

our research might motivate other researchers to conduct a similar study on ref-
erence frameworks for data or object-oriented modeling languages.

Acknowledgement. The authors would like to express their gratitude towards
the fruitful contributions of Marta Indulska and Peter Green from the University
of Queensland to the evaluation of BPMN by means of Representation Theory.

References

1. Group, G.: Delivering ITs Contribution: The 2005 CIO Agenda. Gartner EXP
Premier Reports January2005, Gartner, Inc (2005)

2. Davies, I., Green, P., Rosemann, M., Indulska, M., Gallo, S.: How do Practitioners
Use Conceptual Modeling in Practice? Data & Knowledge Engineering 58 (2006)
358–380

3. BPMI.org, OMG: Business Process Modeling Notation Specification. Final
Adopted Specification (2006)

4. van der Aalst, W.M.P.: Don’t Go with the Flow: Web Services Composition Stan-
dards Exposed. IEEE Intelligent Systems 18 (2003) 72–76

5. Moody, D.L.: Theoretical and Practical Issues in Evaluating the Quality of Concep-
tual Models: Current State and Future Directions. Data & Knowledge Engineering
15 (2005) 243–276

6. Wand, Y., Weber, R.: An Ontological Model of an Information System. IEEE
Transactions on Software Engineering 16 (1990) 1282–1292

7. Wand, Y., Weber, R.: On the Ontological Expressiveness of Information Systems
Analysis and Design Grammars. Journal of Information Systems 3 (1993) 217–237

8. Wand, Y., Weber, R.: On the Deep Structure of Information Systems. Information
Systems Journal 5 (1995) 203–223

9. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14 (2003) 5–51

10. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow
Resource Patterns: Identification, Representation and Tool Support. In Pastor,
O., Falcao e Cunha, J., eds.: Advanced Information Systems Engineering - CAiSE
2005. Volume 3520 of Lecture Notes in Computer Science. Springer, Porto, Portugal
(2005) 216–232

11. Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow
Data Patterns: Identification, Representation and Tool Support. In Delcambre,
L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, O., eds.: Conceptual Mod-
eling - ER 2005. Volume 3716 of Lecture Notes in Computer Science. Springer,
Klagenfurt, Austria (2005) 353–368

12. Rosemann, M., Recker, J., Indulska, M., Green, P.: A Study of the Evolution of
the Representational Capabilities of Process Modeling Grammars. In Dubois, E.,
Pohl, K., eds.: Advanced Information Systems Engineering - CAiSE 2006. Volume
4001 of Lecture Notes in Computer Science. Springer, Luxembourg, Grand-Duchy
of Luxembourg (2006) 447–461

13. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M., Russell, N.:
On the Suitability of BPMN for Business Process Modelling. In: 4th International
Conference on Business Process Management, Vienna, Austria, Springer (2006)
forthcoming

Representation Theory Versus Workflow Patterns – The Case of BPMN 83

14. Lindland, O.I., Sindre, G., Sølvberg, A.: Understanding Quality in Conceptual
Modeling. IEEE Software 11 (1994) 42–49

15. Krogstie, J., Sindre, G., Jørgensen, H.D.: Process Models Representing Knowl-
edge for Action: a Revised Quality Framework. European Journal of Information
Systems 15 (2006) 91–102

16. Wahl, T., Sindre, G.: An Analytical Evaluation of BPMN Using a Semiotic Quality
Framework. In Castro, J., Teniente, E., eds.: CAiSE’05 Workshops. Volume 1.
FEUP, Porto, Portugal (2005) 533–544

17. Nysetvold, A.G., Krogstie, J.: Assessing Business Process Modeling Languages
Using a Generic Quality Framework. In Castro, J., Teniente, E., eds.: CAiSE’05
Workshops. Volume 1. FEUP, Porto (2005) 545–556

18. Recker, J., Indulska, M., Rosemann, M., Green, P.: How Good is BPMN Really?
Insights from Theory and Practice. In Ljungberg, J., Andersson, M., eds.: 14th
European Conference on Information Systems, Goeteborg, Sweden (2006)

19. Siau, K., Rossi, M.: Evaluation of Information Modeling Methods – A Review. In
Dolk, D., ed.: 31st Hawaii International Conference on System Sciences, Big Island,
Hawaii, Computer Society Press (1998) 314–322

20. Recker, J.: Evaluation of Conceptual Modeling Languages. An Epistemological Dis-
cussion. In Romano, N.C., ed.: 11th Americas Conference on Information Systems,
Omaha, Nebraska, Association for Information Systems (2005) 329–337

21. Siau, K.: Informational and Computational Equivalence in Comparing Information
Modeling Methods. Journal of Database Management 15 (2004) 73–86

22. Floyd, C.: A Comparative Evaluation of System Development Methods. In Olle,
T.W., Sol, H.G., Verrijn-Stuart, A.A., eds.: Information System Design Methodolo-
gies: Improving the Practice. North-Holland, Amsterdam, The Netherlands (1986)
19–54

23. Weber, R.: Ontological Foundations of Information Systems. Coopers & Lybrand
and the Accounting Association of Australia and New Zealand, Melbourne, Aus-
tralia (1997)

24. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. Volume
015 of Telematica Instituut Fundamental Research Series. Telematica Instituut,
Enschede, The Netherlands (2005)

25. Gurr, C.A.: Effective Diagrammatic Communication: Syntactic, Semantic and
Pragmatic Issues. Journal of Visual Languages and Computing 10 (1999) 317–
342

26. Bunge, M.A.: Treatise on Basic Philosophy Volume 3: Ontology I - The Furniture
of the World. Kluwer Academic Publishers, Dordrecht, The Netherlands (1977)

27. Green, P., Rosemann, M., Indulska, M., Manning, C.: Candidate Interoperabil-
ity Standards: An Ontological Overlap Analysis. Technical report, University of
Queensland (2004)

28. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Analysis
of Web Services Composition Languages: The Case of BPEL4WS. In Song, I.Y.,
Liddle, S.W., Ling, T.W., Scheuermann, P., eds.: Conceptual Modeling - ER 2003.
Volume 2813 of Lecture Notes in Computer Science. Springer, Chicago, Illinois
(2003) 200–215

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 84 – 97, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Use Case Modeling and Refinement:
A Quality-Based Approach

Samira Si-said Cherfi1, Jacky Akoka2, and Isabelle Comyn-Wattiau3

1 CEDRIC-CNAM, 292 Rue Saint Martin, F-75141 Paris Cedex 03
2 CEDRIC-CNAM and INT

3 CEDRIC-CNAM and ESSEC
sisaid@cnam.fr, akoka@cnam.fr, wattiau@cnam.fr

Abstract. In this paper, we propose a quality-based use case refinement
approach. It consists of a step by step refinement process that combines quality
metrics with use case transformation rules. We propose several quality metrics,
based on complexity concepts, aimed at measuring the complexity of use cases.
Starting from an initial use case, we apply successively a set of transformation
rules and measure the resulting use case based on the quality metrics. Our
approach is embedded in a general framework allowing us to guide software
designers by the mean of quality metrics.

Keywords: use case modelling, modularization, complexity, quality criteria.

1 Introduction

The principle of non-separation-of-concerns asserts that software development should
not be decomposed in such a way that the quality “concern” is solved as a separate
process from the design and development process. We believe that associating quality
concerns with design aspects could play an important role in the successful
implementation of the system. In this paper, we propose a quality-based approach for
use case design and refinement. We present an extension to UML use case meta-
model incorporating quality criteria. The refinement process is based on quality
measurements using a set of decomposition and restructuring rules applied to the
initial use case diagram as well as a set of quality metrics. This refinement process,
based on guidelines principles, can be partially automated.
 This paper is structured as follows. Section 2 gives an overview of quality measure-
ments in information systems. Section 3 describes our quality driven approach. It
gives guidelines for the systematic refinement of use case diagrams. Section 4 is
devoted to the definition of quality metrics derived from entropy and cohesion
concepts. In Section 5, we define and motivate the decomposition and restructuring
rules proposed to the designer in order to improve the use case quality values. The
illustration of our approach on an example is described in Section 6. Finally, the last
section presents some concluding remarks and an overview of future work.

 Use Case Modeling and Refinement: A Quality-Based Approach 85

2 A Brief State of the Art

Quality assessment aims at three different objectives leading to three main streams: 1)
Helping in predicting effort in software projects, 2) Estimating maintenance effort and
guiding design choices in order to decrease maintenance cost, 3) Evaluating design
components such as UML class diagrams, UML use cases, etc. in order to provide the
designer with quality indicators.

In the first stream, cost models are defined to help in predicting human resources
and time needed for a software project. COCOMO and Function Point (FP) Analysis
are the most popular effort prediction models. In the context of object-oriented (OO)
systems, specific cost models such as Class Point have been defined. This FP-like
approach, based on the number of external methods and the number of services
requested, defines the complexity level of a class, hence allowing the project manager
to estimate the initial size estimation [1]. In [2] authors have experimented common
cost modeling techniques on a large set of projects in order to evaluate the
generalizability of these techniques. They conclude that ordinary least-squares
regression is sufficient to help predicting development effort. The Use Case Point
approach is a FP-like approach based on use case analysis to predict effort [3].

In the second stream, quality measures are used to estimate maintenance costs.
They can be used to choose between different design alternatives. For example,
several coupling criteria were proposed to predict fault-proneness. Intuitively, the
more objects and/or classes are coupled, the more maintenance will be necessary. A
large survey was conducted in [4] in order to compare different coupling measures.
Large empirical studies have been conducted in order to assess the predictive
properties of these measures. However, their conclusions are not easy to interpret due
to the quality attributes definition. Arisholm et al. [5] go beyond these coupling
measures by defining and assessing dynamic coupling metrics. They argue that static
coupling measurement is not adequate since it does not take into account
polymorphism and dynamic binding. They suggest to predict this coupling using
interaction diagrams. Entropy is another criterion used for estimating maintenance
effort. Based on the principle that systems which undergo frequent change tend
toward disorder, entropy is a measure of disorder used in all branches of science.
Several papers define metrics based on the entropy concept and experiment it in the
OO context [6]. [7] defines quantitative subclassing criteria and an algorithm allowing
the designer to minimize the entropy by a correct subclassing. Dependencies are a
generic concept for OO design quality metrics proposed in [8]. Dependencies between
parts of design are not desired since each single change has heavy impact.

In the third stream, numerous approaches deal with quality based design and
development. They define quality criteria relevant to conceptual schema evaluation.
Authors in [9] have presented a set of automatically computed metrics for evaluating
ER diagram complexity. We have defined a framework allowing the designer to
choose between several UML diagrams based on quality criteria. These criteria are
automatically computed and inserted in a CASE tool [10].

In each stream, many metrics have been defined. A survey of OO metrics can be
found in [11]. Baig [12] compares cohesion and coupling metrics. His experiments
conclude that not all cohesion and coupling measures are correlated. Quality criteria
are also applied to requirements engineering [13]. To the best of our knowledge, no

86 S. Si-said Cherfi, J. Akoka, and I. Comyn-Wattiau

previous approach deals with use case quality measurement aiming at improving
design. Let us mention [14] which compares use case diagrams to deal with non-
functional requirements. Authors in [15] have developed a method and a tool for
refactoring use case models. However, no quality measure is mentioned. The rest of
this paper is devoted to the description of a quality based approach for use case design
and refinement.

3 A Quality Based Approach for Use Case Refinement

Software metrics are used to assess several software quality attributes (complexity,
coupling, cohesion etc.). They provide designers with assistance during the
development process. In this section, we describe an approach where quality
measurement is used as a mean to assess and improve use case models during the
development process. The improvement is quality-directed and is performed by a set
of decomposing and restructuring rules in order to increase use case modularity.

3.1 A Use Case Meta-Model

This section describes a UML use case meta-model, derived from CWM [16], and
adapted in order to meet our requirements. UML suggests describing use case content
using textual expression. The organization of this content could be guided using
templates. However, our approach requires a more formal and structured use case
definition. Hence, the textual form is not convenient. Many authors proposed
extensions to the use case semantics to make it more precise. [17] identifies four
dimensions to use case descriptions: purpose, content, plurality, and structure. Each
of these dimensions has an enumerated domain value. Amyot et al. [18] proposed an
extension of the UML with UCM (Use Case Maps [19]) semantics for reactive
systems modeling. Regnell et al. [20] proposed a use case extension for requirements
engineering and Rui et al. [21] proposed an adaptation of this meta-model for use case
refactoring. In order to meet robustness properties, our approach requires formally
structured use cases. Therefore, we propose the following use case meta-model
extension as a mean to provide a precise vocabulary. We use the CWM UML meta-
model as a starting point. We do not redefine concepts but we enrich the meta-model
with new concepts. Fig.1 presents our extended use case meta-model. Grey boxes
represent the new concepts added to the CWM proposal. A use case has three
components, namely a structure, a behavior and a quality value: i) A structure
describes the static content of a use case. It is composed of a set of action descriptions
locally defined within the use case and a set of relationships (extend and include
relationships). An action has a name and a textual description. The latter defines the
goal to be achieved by the action execution. ii) A behavior describes the dynamics of
the use case. It is composed of a set of scenarios. A scenario is a sequence of use case
actions performed to yield an observable result. It is defined as a use case instance. iii)
A quality value is a value resulting from the computation of quality metrics applied
to use case structure and behavior characteristics. The quality metrics are not part of
the UML meta-model extension. They are presented in Section 3.2. Due to space
limitations, the formal meta-model on which our approach relies is not described.

 Use Case Modeling and Refinement: A Quality-Based Approach 87

scenario

Behaviour

0..1

1..n

Extension Point

Action

1..n

1..n

1..n

1..n

Quality value
based on

extend

0..n

1..n1..n

Use case

1
0..10..1

+addition

+extended

include

+extension

+including

Structure

1..n1..n

1

0..n

uses

0..10..10..n0..n
1

0..n

1..n

0..1

1

Fig. 1. Extension of the UML use case meta-model

3.2 The Quality-Based Approach

Our approach is based on an incremental process performing use case diagrams
improvement. It is composed of a set of refinement actions that are successively and
iteratively executed (Fig 2). The central concept underlying the refinement process is
the modularity applied to the use case construct. Modularity respects the separation-
of-concerns principle. According to this principle, software should be decomposed in
such a way that different “concerns” of the problem are solved in well-separated
modules or parts of the software. Indeed, modular systems 1) are easier to maintain as
changes are likely to be applied to limited sub systems and not to propagate through
the rest of the system, 2) are easier to upgrade by adding or replacing modules
without affecting deeply the other parts, 3) are more reliable since easier to validate
by testing parts of systems and not entire systems, 4) could be implemented
incrementally and even implemented through reusable components. As use case
modeling is widely adopted as a starting point in object-oriented projects, we believe
that their modularity impacts heavily the modularity of the final system.

The input of the refinement process is an initial use case diagram elaborated by
the designer. The improvement process is designer directed: the approach is presented
as a set of decomposition and restructuring rules and a set of quality measurement
metrics, available to the designer. The approach provides him/her with the quality
measurements determining whether the transformation improves or not the quality
of the use case model specification. He/she can further decide whether he/she applies
the transformation. We have adopted this loose guidance since we believe that
absolute quality values have no readable semantics. The computed quality value is
useful only if the designer can compare it with other quality values in similar
contexts. Therefore, we recommend to iteratively and alternatively apply “quality
measurement” and “use case refinement” activities. In the two following sections, we
describe the quality measurement and the use case refinement activities. In this paper
we concentrate on two quality metrics, namely entropy and lack of cohesion described
below.

88 S. Si-said Cherfi, J. Akoka, and I. Comyn-Wattiau

User requirements
description

Use Case
Model

Construct an
initial Use

Case Model

Perform quality
measurements

Apply
refinement rules

Quality
values

Quality Measurement Use Case Refinement

User requirements
description

Use Case
Model

Construct an
initial Use

Case Model

Perform quality
measurements

Apply
refinement rules

Quality
values

Quality Measurement Use Case Refinement

Fig. 2. The quality-driven process

4 Use Case Quality Metrics

We define below a set of metrics for use case quality assessment and improvement.
Our contribution is twofold. First, we provide a formal definition of the metrics thus
facilitating their evaluation. Second, we link them to quality criteria that support use
case improvement. The objective of our use case refinement is to decrease their
complexity and consequently decrease the complexity of the whole system. We
believe that decreasing complexity improves systems quality. The concept of
modularity is defined by G. Booch as “the property of a system that has been
decomposed into a set of cohesive and loosely coupled modules”. He argued that
complex systems constructed from scratch never work. Hence, lack of modularity
leads to more complexity. Our guidance approach for use case refinement approach is
based on complexity measurement [22, 23, 3]. Complexity measurement is a relevant
technique for use case quality evaluation since it provides information on the effort
needed to understand, specify and implement a use case. Based on the literature, we
have selected and analyzed OO metrics dealing with complexity and we have adapted
the two more relevant ones in our context. They are based respectively on entropy and
cohesion concepts.

4.1 Use Case Entropy Metric

In this section, we define and apply an entropy-based metric.

4.1.1 Entropy Measurement
The concept of entropy has first been introduced in information theory by Shannon
[24]. A measure of the information contained in an outcome is given by:

{ })(log)(2 ii xpxI −=

Where p{xi} is the probability of xi. The entropy of an information source X with an
alphabet A={x1, x2,.., xn} and probability distribution Px={p1, p2,.., pn } is defined as:

=

−=
n

i
iii ppxH

1
2)(log)(

 Use Case Modeling and Refinement: A Quality-Based Approach 89

 This means that the entropy of an information source grows with the uncertainty of
the source outcome. Within the context of object-oriented systems analysis and
design, entropy has been adopted as a measure of complexity [25]. Harisson proposed
to compute code entropy in procedural programs using empirical distribution of
operators (reserved words, function calls, etc.). Bansiya et al. [26] propose to use
“name strings” (user defined names for classes, data declarations, methods and
parameters in class definitions) as information source in the measure of class entropy
at a design level. They define a Class Design Entropy (CDE) metric as follows:

−=
1

1
121)(log)(

n

ii NfNfCDE

Where n1 is the number of unique string names, N1 is the total number of non-unique
string names, and fi the frequency of occurrence of the ith string name.

4.1.2 Definition of Use Case Entropy Metric
As our concern is use case modularization throughout their restructuring, we are
interested in use case complexity. Hence, we propose a use case entropy metric.
 Let <UC, A, S> be a use case definition, where UC is a use case name, A= {a1,
a2,.., an} a set of actions describing the structure of the use case and S={ s1, s2,.., sm} a
set of scenarios describing the instances of UC. As the overall use case behavior is
described by its related scenarios, and as scenarios are defined upon use case actions,
the amount of information conveyed by each action ai grows when the probability of
using this action grows i.e. its occurrence within use case scenarios. According to the
entropy theory, the amount of information Ii contained in ai with an occurrence
probability pi is:

)(log)(2 ii paI −=

 We define the probability pi of an action ai as its frequency within use case
scenarios. It is defined as follows:

Nnp ii =

where ni is the number of ai occurrences and N the total number of use case actions
occurrences.
 [25] proved that information is additive. Thus information contained in two actions
is the sum of information held individually by each action. Therefore the entropy of a
use case is defined as the average value of information held by each of its actions:

)log(_
1

2
=

−=
n

i
ii ppEUC

where n is the number of actions within a use case.
 Note that when n increases, entropy increases. This implies that a larger number of
actions describing a use case makes it more complex. Note also that our objective is
to use the entropy measures in order to compare two versions of the same use case
specification within the iterative refinement process.

To illustrate this metric, let us consider a use case representing the “withdraw
cash” problem for the ATM system cash dispenser (Table 1).

90 S. Si-said Cherfi, J. Akoka, and I. Comyn-Wattiau

 Table 1. Example of use case description

scenario
Action

S1 S2 S3 S4 S5 S6

a1: Card validation X X X X X X
a2: Code validation X X X X X
a3: Amount validation X X X X
a4: Eject card X X X X X
a5: Dispense cash X X X
a6: Print receipt X
a7: Disclaim cash X
a8: Disclaim card X X

Table 1 expresses the six following
cash withdrawal scenarios:

 S1:withdraw cash with receipt,
 S2:withdraw cash without
receipt,
 S3:cash not taken after a few
seconds,
 S4:card not taken after a few
seconds,
 S5:card is not valid,
 S6:code validation failed

The amount of information conveyed by action a1 = 6/27 as it occurs 6 times and
the sum of all actions occurrences is 27. As a consequence, the value of entropy for
the whole “withdraw cash” use case is 2.77

4.2 Lack of Cohesion Measurement

We define below the cohesion concept and its application in the refinement process.

4.2.1 Lack of Cohesion Concept
Cohesion is defined as an attribute characterizing modules and describing the extent
to which the individual module components are needed to perform the same task [27].
Thus the cohesion of a component is high if it implements a single logical function. In
order to obtain an inverse measure of cohesion, [28] define the concept of Lack of
Cohesion in Methods (LCOM). This metric is based on sharing of instance variables.
It is defined as the number of pairs of methods in the class using no instance variables
in common. Several versions of this metrics have been defined in the literature. [29]
proposed another version:

()mmA
a

LCOM
n

j
j −−=

=
1)(

1
*

1

μ

where n is the number of attributes, a is the number of instance variables, m is the
number of methods, μ(Aj) is the measure which yields 0 if each method in the class
references all attributes, and 1 if each method in a class references only one single
attribute. A class is said to be the most cohesive (LCOM*=1, i.e. LCOM* is minimal)
when all of its methods use all of its attributes.

4.2.2 Definition of Use Case Lack of Cohesion Metric
As an adaptation of Henderson-Sellers’s LCOM metric, let us consider a use case UC
as a module with a set of variables constituted by its associated actions A= {a1, a2,..,
an}, and S={s1, s2,.., sm} a set of scenarios describing the instances of UC. Intuitively,
the cohesion of a use case reflects the degree of cohesion between the functionalities
that the use case supports. If we apply the μ function as it is defined at the class level
by Henderson-Sellers, we consider that for a given action ai, μ(ai) = 1 if ai is required
for all scenarios and 0 otherwise. However, this is too restrictive for use cases since

 Use Case Modeling and Refinement: A Quality-Based Approach 91

we should accept use case definitions with alternate and exception courses. For this
reason we redefine the μ function as follows.

μ(ai,sj) holds 1 if the scenario sj requires action ai, and 0
otherwise.

In this case, the lack of cohesion of a given scenario is defined as:

μ(ai,sj) =1 if m = 1 and μ(ai,sj) =
()m

msjai
n

n

i

−

−
=

1

),(
1

1

μ
 if m 1

The Use Case Lack of Cohesion (UC_LC) metric is then defined as the average value
of the Lack of Cohesion of all the scenarios:

if m=1 then UC_LC=1; else ()mmmsa
n

LCUC
n

i

m

j
ji −−=

= =
1),(

1
_

1 1

μ

where ai is an action, sj is a scenario, m is the number of scenarios and n the number
of actions. Note that if all scenarios require all actions, UC_LC equals 1 and thus
respects the definition given by LCOM*. If we consider the example given in Table 1,
the value of UC_LC is 1.09. Based on the entropy and the lack of cohesion metrics
defined on use cases, our approach allows the designer to refine use cases using the
decomposition and restructuring rules described below.

5 Use Case Refinement

Use case refinement activity is based on a set of predefined decomposition and
restructuring rules that the designer can apply to a use case model. The objective is to
decrease use case model complexity. Object oriented approaches propose three
principles to deal with complexity: decomposition, abstraction and hierarchy:

− Our approach provides the designer with a set of restructuring rules that
decompose use cases into smaller and more cohesive ones.

− We rely on our definition of use case entropy which promotes use cases having a
tight correlation with user requirements to construct the right abstraction.

− We propose some rules to organize use cases into hierarchies.

We present below our refinement rules. The refinement process encompasses two
major phases namely use case decomposition and use case restructuring.

5.1 Use Case Decomposition Rules

The decomposition rules objective is to decrease use case complexity and to increase
its cohesion. The principle is to extract a set of functionalities from use case
description. These functionalities are described in the scenarios. The following rules
are triggered by the refinement process which relies on the quality values in order to
propose the adequate decomposition, as explained below.

92 S. Si-said Cherfi, J. Akoka, and I. Comyn-Wattiau

R1: Having a use case <UC;A;S> specified by the set of actions A={a1,..,an} and a
set of scenarios S={s1,..,sm}. Let’s assume s S, and s implying a set of actions
{ai,..,aj} A, and {ak,..,ap} {ai,..,aj} having no occurrence in S-{s} (i.e.{ak,..,ap}
occurs exclusively in s).
Decomposing UC according to s produces two use cases UCa and UCb standing
respectively for <UCa;{a1,..,an}-{ak,..,ap};S-{s}> and <UCb;{ai,..,aj};{s}>

 To illustrate this rule, let us consider again the “withdraw cash” use case defined by
<“withdraw cash” ; {a1,..,a8};{S1,..,S6}>. Let us suppose also that we want to
decompose “withdraw cash” according to S3. This will produce two use cases UC1
and UC2 where UC1 stands for <UC1;{a1,a2,a3,a4,a5,a6,a8}; {S1,S2,S4,S5,S6}>
and UC2 stands for <UC2;{a1,a2,a3,a4,a5,a7}; {S3}>. Note that UC1 and UC2
contain redundant actions. This will be addressed by the restructuring rules described
below. The second rule is the generalization of rule R1:

R2: Having a use case <UC;A;S> specified by the set of actions A={a1,..,an} and
the set of scenarios S={s1,..,sm}. Let’s assume S1 S, and S1 contains p scenarios
implying respectively t sets of actions A’1, A’2,…, A’t and {ak,..ap} {ai,..,aj}
and having no occurrence in S-S1.
Decomposing UC according to S1 produces two use cases UCa and UCb where
UCa stands for <UCa; {a1,..,an}-{ak,..,ap};S-S1} and Ucb stands for < UCb; A’1

A’2 … A’t}; S1 >

For example if we decompose “withdraw cash” according to {S3,S4} we will
obtain two use cases UC3 and UC4 where UC3 stands for <UC3;{a1,a2,a3, a4,
a5,a6,a8}; {S1,S2,S5,S6}> and UC4 stands for <UC4;{a1,a2,a3,a4,a7,a8}; {S3,S4}>

5.2 Use Case Restructuring Rules

The restructuring performed by the following rules aims to achieve minimality in the
requirements model specification. A model is said to be minimal when every aspect
of the requirements appears only once. In other words, non-minimality is due to a lack
of factorization.

R3: Having two use cases <UC1;A={a1,..,an},S={s1,..sm}> and
<UC2;B={b1,..,bk},T={t1,..,tp}>.
If {ai,..,aj} A B and {ai,..,aj} occurring in all scenarios s1,..sm, t1,..,tp Then
{UC1, UC2} is equivalent to {UCa,UCb,UCc,R} where UCa stands for <UCa;
{a1,..,an}-{ai,..,aj}, S-S1> where S1 is a set of scenarios from S defined only on
{ai,..,aj}, and UCb stands for <UCb;{b1,..,bk}- {ai,..,aj}, T-T1> where T1 is a set of
scenarios from T defined only on {ai,..,aj}, and UCc stands for <UCc;{ai,..,aj},
S1 T1> and R = {Ra, Rb} where Ra (resp. Rb) is an “include” relationship from
UCa to UCc (resp. UCb to UCc)

Applying this rule on the result of rule R1 ({UC1,UC2}) will produce:

<UC1’;{a2,a3,a4,a5,a6,a8};{S1,S2,S4,S5,S6}>
<UC2’;{a2,a3,a4,a5,a7};{S3}> and <UC3;{a1}>
and UC1’ includes UC3 and UC2’ includes UC3.

 Use Case Modeling and Refinement: A Quality-Based Approach 93

Since UC3 has no associated scenario, it can be used only throughout other
scenarios.

R4: Having two use cases <UC1; A={a1,..,an},S={s1,..sm}> and
<UC2;B={b1,..,bk},T={t1,..,tp}>.
If {ai,..,aj} A B and {ai,..,aj} occurring in a set of scenarios V where V S T
Then {UC1, UC2} is equivalent to {UCa,UCb,UCc,R} where UCa stands for <UCa;
{a1,..,an}-{ai,..,aj}, S-S1> where S1 is a set of scenarios from S defined only on
{ai,..,aj}, UCb stands for <UCb; ={b1,..,bk}- {ai,..,aj}, T-T1> where T1 is a set of
scenarios from T defined only on {ai,..,aj},UCc stands for <UCc; {ai,..,aj}, S1 T1>,
R ={Ra, Rb} where Ra (resp. Rb) is an “extend” relationship from UCc to UCa (resp.
UCc to UCb)

As an illustration, let us consider the following use cases obtained after applying R2:

<UC3;{a1,a2,a3,a4,a5,a6,a8}; {S1,S2,S5,S6}>, and
<UC4;{a1,a2,a3,a4,a7,a8}; {S3,S4}>

Let us now apply R4, we will obtain:
<UCa;{a1,a2,a3,a4,a6},{S1,S2,S5,S6}>
<UCb;{a1,a2,a3,a4,a7},{S3,S4}> and <UCc;{a5,a8}, {}>

Note again that UCc has no associated scenario, thus meaning that it could be used
only throughout other scenarios. This also means that UCc lacks coherence and will
probably be decomposed after a new iteration of the decomposition rules.

The last restructuring rule deals with inheritance among use cases. This rule could
be applied when a use case is similar to another use case apart a variant. In such a
situation the two use cases are related to each other by an inheritance relationship.

R5: Having two use cases <UC1; A={a1,..,an},S={s1,..sm}> and <UC2;
B={b1,..,bk}, T={t1,..,tp}>.
If B A and T S Then {UC1 ; UC2} is equivalent to {UC1, UC2’, R} where R is
an inheritance relationship directed from UC2’ to UC1 and UC2’ stands for
<UC2’;{b1,..,bk}-(A B),T}>.

6 Applying the Approach: On Line Bookstore Case Study

In order to illustrate our quality driven approach, we use an online bookstore web
application allowing registered and unregistered customers to i) Browse the book
catalogue organized into categories, ii) Search for a given book using several search
criteria (title, author, keywords, etc.), iii) Select books and add them to a shopping
cart that could be transformed into an order. To order books, customers must log in,
using a user-id and a password. Other functionalities such as accessing recent orders,
modifying account’s data, etc., are also available through the registered access.

6.1 Initial Use Case Diagram Construction

An initial use case model is established by the designer. For lack of space we consider
only the ”use registered access” use case summarized in Table 2.

94 S. Si-said Cherfi, J. Akoka, and I. Comyn-Wattiau

Table 2. “Use registered access” structure and behavior summary

use case actions SC SC SC SC SC S
a)login X X X X X X

b)create order X X X

c)select shipping method X X X

d)create account X X

e)display account details X X

f)access recent orders X X

g)display order details X X X X X

h)cancel order X X

 The lines (use case actions) exhibit the activities performed by the system. The
columns describe the system functions. They are scenarios described as flows of
actions. For example SC1 expresses the following flow of actions:

1. the customer chooses to create an order
2. the system asks for identification
3. the customer enters login and password
4. the system verifies login and password
5. the system creates a candidate order

6. the system asks for a shipping method
7. the customer enters a shipping method
8. the customer asks to see order details
9. the system displays order details
10. the customer validates the order
11. the system creates a validated order

 In the current version, this is performed manually. We are working on a semi
automated process enabling extraction of flows of actions from scenario descriptions.

6.2 Initial Use Case Model Quality Measurement

We compute the values of use case entropy and Lack of Cohesion, by applying UC-E
and UC-LC metrics. The overall values obtained are UC_E =2.86 and UC_LC =1.01

We suggest a new iteration in order to check whether these quality values can be
improved.

6.3 Applying Use Case Decomposition

In order to apply use case decomposition rules we need the values of the scenario
Lack of Cohesion given in Table 3. Based on this table, we assert that scenarios SC5
and SC6 having the highest Lack of Cohesion values and thus contribute more than
the others. Therefore, we propose to decompose the initial use case according to
{SC5, SC6}.

Table 3. Scenarios Lack of Cohesion values

use case scenarios SC1 SC2 SC3 SC4 SC5 SC6
Scenario lack of cohesion 1.05 1.1 1.07 1.1 1.125 1.125

 Use Case Modeling and Refinement: A Quality-Based Approach 95

 By applying the decomposition rule R2, we generate two new use cases namely
UC1 and UC2 sketched in Table 4 and Table 5 below.

Table 4. Use case UC1description Table 5. Use caseUC2 description

actions SC1 SC2 SC3 SC4
a) X X X X
b) X X X
c) X X X
d) X
e) X
f) X
g) X X X X
h) X X

actions SC1 SC2 SC3 SC4
a) X X X X
b) X X X
c) X X X
d) X
e) X
f) X
g) X X X X
h) X X

actions SC5 SC6
a) X X
d) X
e) X
f) X
g) X

actions SC5 SC6
a) X X
d) X
e) X
f) X
g) X

6.4 Applying Use Case Restructuring Rules

We will now apply restructuring rules on the use cases obtained at the end of the
decomposition phase. Note that both R3 and R4 could apply in this case.

Table 6. Use case UC1 after R3 and R4 Table 8. Use case UC2 after applying R3 and R4

actions SC1 SC2 SC3 SC4
a) X X X X
b) X X X
c) X X X
d) X
e) X
f) X
g) X X X X
h) X X

actions SC1 SC2 SC3 SC4
a) X X X X
b) X X X
c) X X X
d) X
e) X
f) X
g) X X X X
h) X X

actions SC5 SC6
a) X X
d) X
e) X
f) X
g) X

actions SC5 SC6
a) X X
d) X
e) X
f) X
g) X

Table 7. New use case generated by R3 Table 9. New use case created by applying R3 and
R4 on UC2 and UC1

actions
a)
actions
a) actions

SC6

a) X
d) X
e) X

actions
SC6

a) X
d) X
e) X

We obtain the use cases sketched in Tables 6, 7, 8 and 9. After refinement, we can

associate relevant names for the resulting use cases: Table 6: “order books”, Table 7:
“login”; Table 8: “track recent orders”; Table 9: “register”. The result is sketched in
Fig. 3 as a UML use case diagram. The quality values computed for the use cases of
Fig. 3 are summarized in Table 10. The last three use cases have a minimal value for
Lack of Cohesion. The entropy value difference is due to the number of actions that
impact complexity (entropy).

Note that the use case “order books” could be refined to increase its quality. A
further iteration of the process would lead to UC_LC=1 and to UC_E=1. For space
considerations, we do not describe this iteration. Finally, let us note that the case

96 S. Si-said Cherfi, J. Akoka, and I. Comyn-Wattiau

login

track recent orders

<<include>>

register

order books

<<include>>

<<extend>>

<<extend>>

Fig. 3. “use registered access” use case
refinement after one iteration

 Table 10. Quality values after refinement

Order
books

Track
recent
orders

Register Login

UC_E 1.58 1 0 1
UC_LC 1.16 1 1 1

study aims mainly at illustrating the approach on a readable example. The interest of
the refinement process is more significant if we consider large scale uses cases.

7 Conclusion and Future Work

In this paper, we describe a quality based approach allowing designers to improve an
initial design model. It is mainly built on a use case meta-model extension providing a
relevant basis suited for use case refinement. It proposes an incremental process for
use case diagram improvement. It is a quality driven process performing iteratively
use case diagram refinement according to quality measurement. Designers can apply
on demand decomposition and restructuring rules. Some steps can be performed in a
semi-automatic way. Our approach is applied to an example. An important next step
is to extend the existing prototype to enable visualization of the use case diagrams at
each step. In addition, a CASE tool supporting our approach is planned, enabling a
large scale empirical validation. Further work will be done on use case quality
measurement, especially enlarging use case quality metrics, such as correctness as
well as enriching the decomposition and restructuring rule set.

Acknowledgements. We would like to sincerely thank the anonymous referees for
the useful comments.

References

1. G. Costagliola, F. Ferrucci, G. Tortora, G. Vitiello, Class Point: An Approach for the Size
Estimation of Object-Oriented Systems, IEEE Transactions on Software Engineering,
31(1), 2005.

2. L. Briand, T. Langley, I. Wieczorek, A Replicated Assessment and Comparison of
Common Software Cost Modeling Techniques, International Software Engineering
Network Technical Report ISERN-99-15.

3. S. Kusumoto, F. Matukawa, K. Inoue, S. Hanabusa, .Y. Maegawa: Estimating Effort by
Use Case Points: Method, Tool and Case Study, In 10th IEEE International Symposium on
Software Metrics (METRICS'04).

4. L. Briand, J. Daly, J. Wüst, A Unified Framework for Coupling Measurement in OO
Systems, ISERN-96-14.

5. E. Arisholm, L. Briand, A. Foyen, Dynamic Coupling Measurement for OO Software,
IEEE Transactions on Software Engineering, 30(8), 2004.

 Use Case Modeling and Refinement: A Quality-Based Approach 97

6. A. Chatzigeorgiou, G. Stephanides, Entropy as a Measure of Object-Oriented Design
Quality, (BCI'2003), Thessaloniki, Greece.

7. J. Dvorak, Conceptual Entropy and Its Effect on Class Hierarchies, IEEE Computer, June
1994.

8. R. Martin, OO Design Quality Metrics – An Analysis of Dependencies, http://
www.objectmentor.com/resources/articles/oodmetrc.pdf

9. Metrics for Software Conceptual Models, edited by Marcela Genero, Mario Piattini &
Coral Calero, Imperial College Press, January 2005.

10. S. Si-Saïd, J. Akoka, I. Comyn-Wattiau, Conceptual Modeling Quality - From EER to
UML Schemas Evaluation, Proceedings of ER2002, Tampere (Finland).

11. K. El Emam, Object-Oriented Metrics: A Review of Theory and Practice, NRC-CNRC
44190, National Research Council Canada.

12. I. Baig, Measuring Cohesion and Coupling of OO Systems, Master Thesis, School of
Engineering, Ronneby, Sweden, 2004.

13. M. Azuma, Applying ISO/IEC 9126-1 Quality Model to Quality Requirements
Engineering on Critical Software, Proceedings of the Third International Workshop on
Requirements for High Assurance Systems (RHAS 2004).

14. H. Kaiya, A. Osada, K. Kaijiri, Identifying Stakeholders and Their Preferences about NFR
by Comparing Use Case Diagrams of Several Existing Systems, 12th IEEE International
Requirements Engineering Conference (RE’04), 2004.

15. W. Yu, J. Li, G. Butler, Refactoring Use Case Models on Episodes, Proceedings of the
19th International Conference on Automated Software Engineering (ASE04).

16. www.omg.org
17. A. Cockburn: Writing Effective Use Cases, Addison-Wesley, 2001
18. D. Amyot, Mussbacher, G., On the Extension of UML with Use Case Maps Concepts.

<<UML>>2000,. LNCS 1939, 16-31.
19. R.J.A. Buhr, R.S. Casselman, Use Case Maps for Object-Oriented Systems, Prentice Hall,

1999.
20. B. Regnell, P. Beremark, O. Eklundh, A Market-Driven Requirements Engineering

Process Results from an Industrial Process Improvement Programme, CEIRE´98 - Journal
of Requirements Engineering, Vol. 3, no. 2, pp 121-129, 1998.

21. K. Rui ,G. Butler, Refactoring use case models: the metamodel. In Proc. Twenty-sixth
Australasian computer science conference on Conference in research and practice in
information technology, pages 301–308. Australian Computer Society, Inc., 2003.

22. B. Henderson-Sellers, D. Zowghi , T. Klemola , S. Parasuram: Sizing Use Cases: How to
Create a Standard Metrical Approach, In Proceesding of the 8th International Conference
on Object-Oriented. Information Systems, OOIS 2002, Montpellier, France, September 2-
5, 2002.

23. B. Anda, H. Dreiem, D. Sjøberg, M. Jørgensen Estimating Software Development Effort
Based on Use Cases - Experiences from Industry, I, In Proceedings of (UML2001),
Toronto, Canada, October 1-5, 2001

24. C. Shannon A mathematical theory of communication, Bell System Technical Journal.
25. W. Harisson An entropy base measure of software complexity, IEEE Transaction on

Software Engineering, 1992, 18(11):1025-1029.
26. J. Bansiya, C. Davis, and L. Etzkorn. An entropy-based complexity measure for object-

oriented designs. Theory and Practice of Object Systems, 5, 1999.
27. Norman E. Fenton, Shari Lawrence Pfleeger, “Software Metrics: A Rigorous and

PracticalApproach”, PWS Publishing Company, 1998.
28. S. Chidamber and C. Kemerer, “A metrics suite for OO design”, IEEE Trans. Software

Eng.,20 (1994) 476–493.
29. Henderson-Sellers, B. (1996). Object-Oriented Metrics measures of Complexity. Prentice

Hall.

Ontology with Likeliness and Typicality of
Objects in Concepts

Ching-man Au Yeung and Ho-fung Leung

Department of Computer Science and Engineering
The Chinese University of Hong Kong

Shatin, Hong Kong
{cmauyeun, lhf}@cse.cuhk.edu.hk

Abstract. Ontologies play an indispensable role in the Semantic Web
by specifying the definitions of concepts and individual objects. However,
most of the existing methods for constructing ontologies can only specify
concepts as crisp sets. However, we cannot avoid encountering concepts
that are without clear boundaries, or even vague in meanings. Therefore,
existing ontology models are unable to cope with many real cases effec-
tively. With respect to a certain category, certain objects are considered
as more representative or typical. Cognitive psychologists explain this by
the prototype theory of concepts. This notion should also be taken into
account to improve conceptual modeling. While there has been different
research attempting to handle vague concepts with fuzzy set theory, for-
mal methods for measuring typicality of objects are still insufficient. We
propose a cognitive model of concepts for ontologies, which handles both
likeliness (fuzzy membership grade) and typicality of individuals. We
also discuss the nature and differences between likeliness and typicality.
This model not only enhances the effectiveness of conceptual modeling,
but also brings the results of reasoning closer to human thinking. We
believe that this research is beneficial to future research on ontological
engineering in the Semantic Web.

1 Introduction

Ontology [14] is becoming increasingly important and is identified as it plays
an important role in enabling information retrieval, information exchange and
agent communications [5]. It is also expected to provide semantics to resources
on the Web in the emerging Semantic Web [2]. Ontology is usually defined as
an explicit specification of conceptualization [13]. Currently, there are several
standards for specifying an ontology, such as OWL (Web Ontology Language)
[20]. One problem of the existing approaches is that ontologies cannot handle
concepts which are vague or without clear boundaries, because concepts in these
ontologies are represented as crisp sets of individuals.

However, it is obvious that many concepts we encounter are vague and have
no clear boundaries, such as “hot”, “tall” and “far”. In addition, cognitive psy-
chologists also suggest another type of uncertainty in judging membership of
objects, which is called “typicality” [24,25]. Typicality reflects how typical or

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 98–111, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Ontology with Likeliness and Typicality of Objects in Concepts 99

representative an individual is with respect to a concept [18]. For example, to
most English-speaking people, robins are more typical birds than penguins [24].
In this paper, we explain that fuzzy membership grade, which reflects the vary-
ing degree of certainty of an individual’s membership in concepts (we give this
kind of measure the name of likeliness), and typicality, which reflects the repre-
sentativeness of an individual with respect to a concept, are two different kinds
of measure. When asked whether a penguin is a bird, no one will doubt that
the answer is positive, and there is no fuzziness involved. However, many people
tend to think that penguin is a less typical bird when compared to other birds,
this is the psychological effect that typicality measures.

In this paper, we argue that both likeliness and typicality should be modeled
in an ontology to give a clearer picture of an object’s membership as well as
representativeness with respect to a concept. Modeling typicality in ontology
allows reasoning to be more realistic and closer to human thinking. Existing on-
tology models do not have the mechanisms to determine likeliness and typicality
of objects in concepts, and are therefore not able to provide the best and most
accurate answers to human users in the reasoning process. With likeliness and
typicality, ontologies are able to determine how likely or how typical an object
is, and present these results in a way that is more compatible to the expectation
of human users. Therefore, we propose a model of concept for constructing on-
tologies, which is inspired by the Prototype Theory in cognitive psychology, to
handle both likeliness and typicality of individual objects.

This paper is structured as follows. Section 2 gives background on ontology
and the Prototype Theory in cognitive psychology. Related works are presented
in Section 3. Section 4 provides a detail description of the new model of concepts.
Section 5 gives an example to illustrate how the model can be used. A discussion
of the properties of the model is given in section 6. Finally section 7 mentions
future work and concludes the paper.

2 Preliminaries

2.1 Ontology

Ontology is originally a philosophical discipline which deals with the study of
being and existence. The term is borrowed to computer science and defined as an
explicit specification of conceptualization [13], which specify the set of concepts
that will be used in a particular system as a basis for communication or sharing of
information. In particular, ontology is an important component in the Semantic
Web [2].

An ontology generally consists of a taxonomy of concepts, a set of relations,
a set of individuals (representing real objects), and possibly a set of inference
rules for discovering of implicit knowledge [2]. In this paper, we formally define
an ontology O as a four-tuple O = (C, P, I, R), where C is a set of concepts, P
is a set of properties, I is a set of data instances, representing real objects in
the domain of interest, and lastly R is a set of rules, propositions or axioms that
specify the relations between concepts and properties.

100 C.-m. Au Yeung and H.-f. Leung

Research on ontology is not limited to the specification or construction of on-
tology, other aspects such as ontology matching [3,33], ontology learning [10,27]
and using ontology to assist information retrieval [15,22] are also the foci of on-
tology researchers. The thorough review paper by Ding [5,6] can be referred to
for a more detailed discussion of ontology development.

2.2 The Prototype Theory

One of the major areas of research in cognitive psychology is how concepts and
categories are represented in the human mind [9]. Until the 1970s, the general
view of concept held commonly among psychologists suggested that concepts
are defined by singly necessary and jointly sufficient properties. This view is
now referred to as the classical view [28]. Instances of concepts must meet a set
of pre-defined conditions in order to be considered as a member of a concept.

Although the classical view sounds reasonable and intuitive, it has contra-
dicted many empirical findings. Rosch found that people judged different mem-
bers of a category as varying in representativeness [23,25]. For example, people
consider a robin as a better example of bird than others such as ostrich, even
though these are all classified as birds. These findings have motivated the de-
velopment of the Prototype Theory of concepts [24]. According to this theory, a
concept is represented by a prototype (an abstraction of the concept) in human
mind. The prototype of a concept consists of all the salient properties, which
are properties that appear frequently in instances classified to this concept. The
properties defining the prototype are not limited to necessary properties but also
non-necessary ones. This is to model the fact that people use both necessary and
non-necessary properties to judge the representativeness of an instance.

The theory explains the existence of varying representativeness of instances
by the similarity between the instances and the concept prototype, and use the
term typicality to refer to the degree of representativeness. It has been found that
typicality of an instance can be determined by the number of properties that
match between the instance and the prototype. For example, since most birds can
fly, the property “can-fly” will probably appear in the prototype of the concept
“Bird”. Hence, birds that can fly will be judged as more typical than those that
cannot. Moreover, further studies also suggest that properties in the prototype
may not be of equal importance [25]. Some of the properties are considered
more significant or important to the concept while others are considered less
important. Thus, properties are weighted according to their importance in the
prototype of a concept.

2.3 Likeliness and Typicality of Objects in Concepts

When one learns that concepts have a graded structure (individuals have dif-
ferent membership grades in a concept), one tends to think of fuzzy set theory
[34] when they try to model vagueness and uncertainty of concepts, because the
theory is a well-known generalization of crisp sets with a characteristic function
assigning membership grades to individuals. However, there are in fact differ-
ences between likeliness grades and typicality value.

Ontology with Likeliness and Typicality of Objects in Concepts 101

Armstrong, Gleitman and Gleitman [1] point out that typicality effects oc-
cur even in some concepts such as odd number, which has clear boundaries and
definitions. They suggest that one should distinguish membership from prototyp-
icality (typicality). Kamp and Partee [18] also address the distinction between
the two, and use ce to represent the degree of membership in the extension of
a concept (e stands for goodness of example), and cp to represent the degree of
typicality (p stands for prototypicality). While ce measures whether or not and
to what degree an instance is classified to a concept, cp measures how represen-
tative or typical is an instance in a concept. It seems that typicality is rather a
psychological measure than an objective decision of an individual’s membership,
because typicality effect is observed even in well-defined concepts.

From a logical perspective, it can also be seen that fuzzy set theory does
not capture the essence of the Prototype Theory. As suggested in [24,25], non-
necessary properties are involved in determining typicality of instances. Instances
that do not possess some of these properties are judged as less typical, but are
not judged as non-member. Fuzzy set theory, though a generalization of crisp
sets, still requires an element to attain membership greater than zero in each
conjuncts in order to attain an overall non-zero membership grade.

In summary, while fuzzy set theory is necessary to model concepts which are
vague and has no clear or well-defined boundaries, we need a new mechanism if
we want to model typicality of objects in concepts.

3 Related Works

Currently, ontologies are constructed by defining concepts and properties using
one of the ontology languages. The concepts in these ontologies are interpreted
as crisp sets. An individual is either considered as an instance of a concept or it
is not. As the theoretical counterpart of ontologies, Description Logics are also
restricted to handle crisp concepts [8].

A number of research works apply fuzzy set theory to enhance ontologies. For
example, Cross and Cross [4] present fuzzy ontologies to facilitate the retrieval
of multilingual documents. Parry [21] introduces fuzzy set theory into ontologies
by adding degrees of membership to indicate how likely each term is found in
certain locations. Widyantoro and Yen [32] devise a method to construct a fuzzy
ontology automatically from a corpus and use the notion of fuzzy narrower term
relation to assist querying in a personalized search engine. These works mainly
use fuzzy set theory to deal with uncertainty within a taxonomy or a hierarchy
of terms, which is less related to definition of concepts and properties.

On the other hand, there are also different works which concern extending
Description Logics, the theoretical counterpart of ontologies, to handle fuzziness
and uncertainty in concepts. For example, Koller [19] proposes a probabilistic
version of Description Logics. On the other hand, Straccia [29,30] combines fuzzy
set theory and Description Logics and introduces fuzzy ALC, in which concepts
are interpreted as fuzzy sets. Straccia also develops a reasoning procedure and
an algorithm for deciding satisfiability in fuzzy ALC. Others further extend the

102 C.-m. Au Yeung and H.-f. Leung

expressiveness of fuzzy Description Logics such as by introducing fuzzy hedges,
such as “very” and “quite”, as concept modifiers [17].

There are also projects which try to model typicality. For example, [7] de-
scribes a frame-based object-centered representation (O.C.R) which incorpo-
rates fuzzy set theory to model concepts. The frame slots include information of
the typical range of values. With a similar approach, [31] presents an ontology
model which represents semantic information about concepts more explicitly.
It introduces three characterizations of properties, namely attribute behaviour
over time, modality and prototypicality. The model is able to specify whether
the value of a property of a concept is typical. However, the framework does not
provide mechanisms for calculating an individual object’s typicality in a concept.

Most of the works do not directly address the problem of modeling typicality of
instances. The introduction of fuzzy set theory allows handling of fuzzy concepts
such as “tall” and “expensive”. These concepts can be represented by a fuzzy set
with an appropriate membership function. However, when we consider common
concepts such as birds, fishes and furniture, we cannot simply use fuzzy set to
model typicality. This is because typicality depends on the properties possessed
by the objects, and fuzzy set does not provide the appropriate mechanism to
determine typicality.

4 Fuzzy Ontology with Likeliness and Typicality

It is clear that the problems that previous works tried to solve by introducing
fuzzy set theory into ontologies are quite different from the psychological effect
described in the Prototype Theory. Therefore, we are motivated to develop a
better model for ontologies which can handle both likeliness grade and typicality
of individuals. To handle likeliness, we extend the traditional model of ontologies
by using fuzzy set theory. We further extend such model by constructing concept
prototypes for the calculation of typicality of individuals.

4.1 Concepts and Properties

An ontology is expected to give a formal specification of different concepts in a
particular domain. Hence, although we use ideas of the Prototype Theory, we
still treat each concept as characterized by a set of necessary properties. This
model will be extended to handle both likeliness and typicality. The properties
serve as the requirements for being considered as an instance of a concept. A
weight is associated with each property in a concept to indicate the importance
of that property. For individuals, each of them possesses a set of properties and
a value is also associated with each property to indicate the degree to which the
individual possesses the property.

Definition 1. A concept x ∈ C is a fuzzy subset of I, with a membership
function μx assigning each instance a ∈ I a membership grade in this concept.

To formally represent concepts and properties, we propose two mathematical
notations. Firstly, a characteristic vector of a concept is defined as a vector of

Ontology with Likeliness and Typicality of Objects in Concepts 103

real number in the range of 0 to 1, in which each element corresponds to the
weight of a different property.

Definition 2. A characteristic vector cx of a concept x is a vector of real
numbers,

cx = (cx,1, cx,2, ..., cx,n), 0 ≤ cx,i ≤ 1

where n is the total number of properties.

For an individual, a value of 1 of an element in the characteristic vector means
that the property is essential to the concept, while a value of 0 means that the
property is not required. Secondly, we define property vector of an individual as
a vector of real number in the range of 0 to 1, in which each element corresponds
to the degree to which the individual possesses a property.

Definition 3. The property vector pa of an individual a is a vector of real
numbers,

pa = (pa,1, pa,2, ..., pa,n), 0 ≤ pa,i ≤ 1

where n is the total number of properties.

Concepts in an ontology are generally arranged in a hierarchy such as in OWL
[20], and subsumption of concepts are determined by examining whether the set
of properties of one concept is a subset of that of another. In this model, we
generalize this idea and subsumption of concepts can be determined by com-
paring the weights in the characteristic vector. For a concept to be considered
as subsumed by another concept, it should be characterized at least by all the
properties of the latter, and with higher weights for each of these properties.

Definition 4. For two concepts x and y, x is said to be subsumed by y, denoted
by x � y, if and only if cx,i ≥ cy,i for all i = 1, 2, ..., n.

This definition implies two situations that one concept x can be considered as
a sub-concept of another concept y. In the first case, two concepts are defined
by the same set of properties, but x weights some properties higher than y
does. In the second case, x has a larger set of defining properties than y. Both
situations are intuitive, because a sub-concept should impose more requirements
of properties on an individual than its super-concept.

In addition, we define the notion of sub-concepts, super-concepts, defining
properties and possession of properties as follows.

Definition 5. If x � y, then x is said to be a sub-concept of y, and y is said
to be a super-concept of x.

Definition 6. The set of properties Px that includes all properties having a
weight greater than zero in the characteristic vector of a concept x is said to be
the set of defining properties of x, or x is said to be defined by the set Px.

Definition 7. The set of properties Pa that includes all properties having a
degree greater than zero in the property vector of an individual a is said to be
the set of properties possessed by a.

104 C.-m. Au Yeung and H.-f. Leung

4.2 Likeliness of an Individual in a Concept

The first type of uncertainty we want to address is fuzzy membership grade
of individuals. We call this degree of membership likeliness. The measure of
likeliness of an individual determines whether or not and to what degree an
individual is classified to a concept according to the defining properties.

Definition 8. In an ontology O = (C, P, I, R), likeliness of an individual ob-
ject a in a concept x is determined by a function which returns the degree to
which a is considered as an instance of x: λx : I −→ [0, 1].

To determine the likeliness of an individual in a concept, a membership function
is required. While it is possible to have different functions for likeliness, we argue
that likeliness should satisfy the following axioms.

Axiom 1. An individual a has a degree of likeliness of 1 in a concept x if and
only if cx,i > 0 → pa,i = 1 for all i = 1, 2, ..., n.

Axiom 2. An individual a has a degree of likeliness of 0 in a concept x if and
only if cx,i > 0 and pa,i = 0 for some i ∈ [1, n].

Axiom 3. For a concept x, and two individuals a and b, if for some j such that
cx,j > 0, pa,j > pb,j and pa,i = pb,i for all i �= j, then λx(a) > λx(b).

Axiom 4. For two concepts x and y, and an individual a, if for some j such
that cx,j ≥ cy,j > 0, 1 > pa,j > 0, cx,i = cy,i, pa,i > 0 for all i �= j, then
λy(a) ≥ λx(a).

Axiom 5. For two concepts x and y, and an individual a, if for some j such
that cx,j ≥ cy,j > 0, pa,j = 1, cx,i = cy,i, and pa,i > 0 for all i �= j, then
λy(a) = λx(a).

Axioms 1 and 2 state the boundary conditions for the degree of likeliness. An
individual must possess all the properties with non-zero weight in the character-
istic vector in order to be an instance of the concept. To have a likeliness of one,
the degree of a property in the property vector should be one whenever that is a
defining property of the concept. On the other hand, if the individual does not
possess one or more of the defining properties, its likeliness will be zero.

Axioms 3 to 5 state how the degree of likeliness is varied when degrees of
possession and property weights change. If one individual possesses a property
that the concept assumes non-zero weight to a degree higher than another in-
dividual does, then the former will attain a higher degree of likeliness than the
latter. This is justified by the fact that the first individual satisfies the require-
ment to a higher degree. Axiom 4 states that an individual should achieve a
higher degree of likeliness in a concept that places lower weights on properties
that the individual possesses than another concept that places higher weights on
the properties. This axiom is justified because when a property is given higher
weight, it is considered as more important and thus there is a more strict require-
ment on an individual, and therefore the likeliness of an individual is lowered.

Ontology with Likeliness and Typicality of Objects in Concepts 105

Lastly, an exception is described in Axiom 5, which is when the degree of the
property in question in the property vector is equal to 1. In this case, since the
individual already possesses the property to a full extent, it does not matter
how important a property is to the definition of the concept, hence it makes no
differences between the degree of likeliness of the individual in the two concepts.

Here, we present a possible function that can be used as the membership
function of a concept to determine the degree of likeliness of an individual.

λx(a) = min
i
{li} (1)

where

li =

⎧⎨
⎩

pa,i + (1− cx,i)× (1− pa,i) if cx,i > 0, pa,i > 0
0 if cx,i > 0, pa,i = 0
1 if cx,i = 0

Since pa,i is in the range of [0,1], λx(a) is also in the range of [0,1]. The idea of
this function is to scale the degrees (pa,i’s) in the property vector of an individual
by using the property weights (cx,i’s) in the characteristic vector of the concept.
The function of likeliness can be used as the membership function of a concept to
determine the extent to which an individual object is considered as an instance
of a concept: μx(a) = λx(a).

4.3 Prototype Vector and Typicality

As suggested by cognitive psychologists [24,18], typicality is a measure of how
representative or typical is an individual in a particular concept. Typicality is
measured based on the number of properties shared by most of the individuals
of the concept, which usually include non-necessary properties of a concept [28].
In other words, the characteristic vector alone is not enough to handle typical-
ity because it only contains information of necessary properties of a concept.
Therefore, we introduce here a new notation called prototype vector.

As typicality of an individual is determined by its similarity to the prototype of
a concept [25], we need to first construct a prototype for the concept. According
to [28], properties in the prototype “are salient ones that have a substantial
probability of occurring in instances of the concept”, in other words, weights
of the properties in the prototype depend on the saliency of the properties in
the instances. In this model, we construct the prototype of a concept based on
this idea. However, we rely on weights of properties in the sub-concepts instead
of using the saliency of properties. The reason is twofold. Firstly, information
is probably be stored in a distributive manner and instances may be scattered
in different ontologies. If the weights are dependent on the instances, then the
prototypes in different ontologies will tend to be different to a large extent.
Moreover, weights of properties in the sub-concepts indicate the importance of
the properties, which imply that representative objects will possess properties
of higher weights. This also gives us information of the saliency of properties.
Therefore, we define the prototype of a concept as follows.

106 C.-m. Au Yeung and H.-f. Leung

Definition 9. The prototype vector tx of a concept x is a vector of real num-
bers, tx = (tx,1, tx,2, ..., tx,n), 0 ≤ tx,i ≤ 1, and is determined by the following
equation:

tx =
1
|S|

∑
s∈S∪{x}

cs (2)

where S is the set of sub-concepts of x as determined by Definition 4.

Typicality is determined by a “weighted feature (property) sum” [28], which
means that typicality is reflected by the summation of the weights of the prop-
erties that the individual possesses. In our model, this involves first matching
the properties in the prototype vector of a concept and the property vector of
an individual. We denote the typicality function of a concept by τx:

Definition 10. For an ontology O = (C, P, I, R), typicality of an individual
object a in a concept x is determined by a function which returns the degree
to a is considered as a typical instance of x according to the prototype of x:
τx : I −→ [0, 1].

In general, typicality is a function of the prototype vector of the concept and
the property vector of the object. We formulate the following axioms which a
function for typicality should follows.

Axiom 6. An individual a has a degree of typicality of 1 in a concept x if and
only if tx,i > 0 → pa,i = 1 for i = 1, 2, ..., n.

Axiom 7. An individual a has a degree of typicality of 0 in a concept x if and
only if tx,i > 0 → pa,i = 0 for i = 1, 2, ..., n.

Axiom 8. For a concept x, and two individuals a and b, if for some j such that
tx,j > 0, pa,j > pb,j ≥ 0 and pa,i = pb,i for all i �= j, then τx(a) > τx(b).

Axiom 9. For two concepts x and y, and an individual a, if for some j such
that tx,j > ty,j > 0, pa,j > 0 and tx,i = ty,i for all i �= j, then τy(a) > τx(a).

Axioms 6 and 7 specify the boundary cases of typicality. According to the Pro-
totype Theory [28], there are two major issues in determining the typicality of
an individual in a concept: (1) an individual does not need to possess all the
properties in the prototype, and (2) an individual is considered as more typical
if it has more properties of the concept prototype. Hence, an individual’s typ-
icality will only be zero when it does not possess any of the properties in the
prototype.

Axiom 8 states the influence of degrees in the property vector on typicality.
If two individuals possessing the same set of properties, and one possesses the
properties which appear in the prototype to a higher degree than the other,
then the former will attain a higher typicality than the latter. Moreover, if the
first individual possesses more properties in the prototype than the other, the

Ontology with Likeliness and Typicality of Objects in Concepts 107

former individual should attain a higher typicality. This axiom is justified to be
in line with the Prototype Theory because in both cases the former individual
is considered as more similar to the concept prototype.

The last axiom states that an individual should achieve a higher degree of
typicality in a concept that places less weights on properties that the individual
possesses than another concept that places more weights on the properties. This
is justified because when a property is given more weights, it is more important in
the prototype, thus an individual will attain lower typicality in such concept than
in another concept which does not consider that property to be that important.

Similar to the discussion on likeliness, we present a possible function for cal-
culating an individual’s typicality in a concept. The typicality of an individual
a of a concept x, denoted by τx(a) is given by:

τx(a) =
pa · tx∑n
i=1 tx,i

(3)

5 Illustrating Example

To illustrate how the proposed model of concepts can measure both likeliness
and typicality of objects in concepts, and to provide a more formal and detail
demonstration, we present the following example which involves an ontology of
birds. 1 Firstly, we assume the following properties in the ontology.

A Animal B Has-Wings C Has-Feathers D Can-Fly
E Eat-Seed F Has-Curved-Beak G Can-Sing H Can-Run

We then assume that the following concept are defined using the above prop-
erties in the ontology.

Bird : [A]1 [B]1 [C]1
Sparrow : [A]1 [B]1 [C]1 [D]1 [E]0.8

Parrot : [A]1 [B]1 [C]1 [D]1 [F]1
Robin : [A]1 [B]1 [C]1 [D]1 [G]0.8

Ostrich : [A]1 [B]1 [C]1 [H]0.9

The above statements define the five concepts (Bird, Sparrow, Parrot, Robin
and Ostrich) by using the eight properties listed above. For examples, the concept
Bird is defined by three properties, namely is-an-animal, has-wings and has-
feathers. The numbers written immediately next to each property is the weight
of that property. Since there are a total of eight properties, the characteristic
vectors of the concepts and the property vectors of the individuals contain eight
elements, presumably in the order listed above.

1 This ontology is only for illustration and is not meant to be a precise definition of
the birds.

108 C.-m. Au Yeung and H.-f. Leung

Furthermore, we assume that we have two individuals, a sparrow s and an
ostrich o, in the ontology representing two real birds. Let the property vectors
of the two individuals be

ps = (1, 1, 1, 0.9, 1, 0, 0, 0), po = (1, 1, 1, 0, 0, 0, 0, 0.8).

The property vector of the individual s indicates that s possesses properties A,
B, C and E to a degree of 1 and property D to a degree of 0.9, and that of the
individual o indicates that o possesses properties A, B, C to a degree of 1 and
property H to a degree of 0.8. With these information, it is possible to calculate
the likeliness and typicality of both individuals. Firstly, we have to obtain the
characteristic vectors of the concepts Sparrow and Ostrich.

cSparrow = (1, 1, 1, 1, 0.8, 0, 0, 0), cOstrich = (1, 1, 1, 0, 0, 0, 0, 0.8).

Using equation (1), we can then calculate the degree of likeliness of s in the
concept Sparrow and that of o in the concept of Ostrich:

λSparrow(s) = min(1, 1, 1, 0.9, 1, 1, 1, 1) = 0.9
λOstrich(o) = min(1, 1, 1, 1, 1, 1, 1, 0.82) = 0.82

In addition, since both individuals possess all the required properties in the
concept Bird, it is obvious that their degrees of likeliness in the concept Bird are
both equal to 1: λBird(s) = 1, λBird(o) = 1.

The degrees of typicality of the two individuals in the concept Bird can be
obtained by using the typicality function. Firstly, from the characteristic vectors
of the four sub-concepts, the prototype vector of Bird can be obtained by using
equation (2):

tBird = (1, 1, 1, 0.75, 0.25, 0.25, 0.25, 0.225)

Using this prototype vector of the concept Bird, we can obtain the degrees of
typicality of s and o by applying the typicality function (4):

τBird(s) = 0.836, τBird(o) = 0.673.

Hence, judging from the typicality of the two individuals, the result suggests
that the sparrow s is a more typical bird than the ostrich o.

6 Discussions

6.1 Comparing Likeliness and Typicality

Likeliness is used to model the measure ce mentioned by Kamp and Partee [18],
which deals with whether or not and to what extent an individual is classified
to a particular concept. Typicality, on the other hand, models the measure cp,
which measures how representative or typical is an individual in a particular
concept. As mentioned before, typicality is a less logical and more psychological

Ontology with Likeliness and Typicality of Objects in Concepts 109

measure, because it involves judgement based not only on the necessary and
sufficient properties, but involves also non-necessary properties as influenced by
its sub-concepts and instances.

Consider the example of birds mentioned in the previous section. Once an
individual satisfies the requirements of a concept, it attains a positive value in
likeliness. Therefore the two individuals s and o both attain a degree of 1 in
likeliness in the concept Bird. And it is true that they are classified as birds
and no one will object to this. However, psychologically, people tend to think of
certain birds as more typical. The measure of typicality reflects this phenomenon.
As the result of the example suggests, a sparrow is a more typical bird than an
ostrich. This is due to the fact that most birds (concepts) in the ontology are
defined by the property can-fly. As this is a very common property in birds,
birds that do not possess this property are likely to be considered as atypical.
This result also agrees with findings in cognitive psychology, which suggests that
atypical examples are those that are not similar to the prototype of the concept.

From this example, we can see that an individual may attain high degree
of likeliness as it fulfils the requirements of the concept, yet still attain a low
degree of typicality because it is not similar to the prototype of the concept. The
following property summarize this characteristic of the model.

Property 1. Assume that two individuals a and b, with their property vectors pa

and pb, have the same degree of likeliness in a concept x, i.e. λx(a) = λx(b). Let
Pt be the set of properties which assume non-zero weights in the prototype vector
of x. If some properties in Pt is weighted higher in pa than in pb while other
properties are weighted the same in both vectors, then we have τx(a) > τx(b).

6.2 Choosing Between Likeliness and Typicality

Since likeliness and typicality concern different aspects in concepts and catego-
rization, it is also worth to discuss which of the two we should use under different
situations. Basically, likeliness is an extension of the traditional way of modeling
concepts as crisp sets. As we move on to model vague concepts or concepts with-
out clear boundaries, likeliness provides a measure which more clearly reflects
the degree to which the data instances in the ontology are classified to these con-
cepts. For example, we may be interested in “senior employees who have worked
in the company for a long period of time”, “flowers with large petals and red in
color”, or “restaurants that are close to the railway station and not expensive”.
All these concepts – long period of time, large, red, close, expensive – imply that
likeliness is essential in giving us an account of how each data instance in the
ontology satisfies these requirements.

On the other hand, typicality provides an alternative mechanism to sort the
individuals in a way that is closer to human thinking and psychological belief.
Consider again the example of birds, since every individual birds will be classified
as birds, it is not possible to sort or rank the individuals by their degrees of
likeliness in the concept Bird. However, we may sort the individuals based on
their typicality ratings, and such order will be similar to what a human user
would expect to see. Take searching in the Semantic Web as an example, when

110 C.-m. Au Yeung and H.-f. Leung

a user searches for birds, it will be a very good idea to present first the data
instances that are thought to be more representative or typical. It is also possible
that such idea can be further extend to handle more complex concepts.

7 Conclusions and Future Work

We presented a novel model of concepts for the construction of ontologies. The
model allows both measures of likeliness and typicality of objects in a concept
to be represented. We also discuss the nature and differences between likeliness
and typicality. A set of axioms which the likeliness function and the typicality
function should satisfy is proposed. The model extends traditional ontologies by
using fuzzy sets and ideas from cognitive psychology, it provides a mechanism
of defining concepts by properties with different weights, and provides a formal
method to handle concept prototypes and typicality of objects.

We note that constructing an ontology requires substantial effort, and one
challenge of the proposed model is that determining the weights of the properties
in the concepts puts extra burden on constructing an ontology. One of our future
research directions is to investigate how property weights can be determined
more efficiently. For instance, [16] proposes a method for constructing Bayesian
networks by combining knowledge from domain expert and information from
a small data collection. Similar method may be useful in ontology learning. In
addition, the model has much potential in being further developed in different
aspects. One of these aspects is context sensitivity. It is mentioned that context is
an important issue in knowledge representation [12,11]. Cognitive psychologists
also point out that typicality is context-dependent [26]. Hence, we will further
investigate how context sensitivity can be incorporated into our ontology model.

References

1. S. L. Armstrong, L. R. Gleitman, and H. Gleitman. What some concepts might
not be. Cognition, 13(3):263–308, 1983.

2. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Sci. Am., 284(5):34–
43, 2001.

3. V. Cross. Uncertainty in the automation of ontology matching. In 4th International
Symposium on Uncertainty Modelling and Analysis, 2003.

4. V. Cross and C. R. Voss. Fuzzy ontologies for multilingual document exploitation.
In Proceedings of the 1999 Conference of NAFIPS, pages 392–397, 1999.

5. Ying Ding and Schubert Foo. Ontology research and development part 1 – a review
of ontology generation. Journal of Information Science, 28(2), 2002.

6. Ying Ding and Schubert Foo. Research and development: Part 2 – a review of
ontology mapping and evolving. Journal of Information Science, 28(4), 2002.

7. D. Dubois, H. Prade, and J. P. Rossazza. Vagueness, typicality, and uncertainty
in class hierarchies. International Journal of Intelligent Systems, 6:167–183, 1991.

8. Franz Baader et al., editor. The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press, 2003.

9. Kathleen M. Galotti. Cognitive Psychology In and Out of the Laboratory. Belmont,
CA: Wadsworth, third edition, 2004.

Ontology with Likeliness and Typicality of Objects in Concepts 111

10. Asunción Gómez-Pérez and David Manzano-Macho. An overview of methods and
tools for ontology learning from texts. Knowl. Eng. Rev., 19(3):187–212, 2004.

11. D. Grossi, F. Dignum, and J-J. Ch. Meyer. Contextual taxonomies. In Proceed-
ings of Fifth Internationanal Workshop on Computational Logic in Multi-Agent
Systems, 2004.

12. D. Grossi, F. Dignum, and J-J. Ch. Meyer. Context in categorization. In Workshop
on Context Representation and Reasoning, 2005.

13. Thomas R. Gruber. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2):199–220, 1993.

14. Nicola Guarino. Formal ontology and information system. In Proceedings of the
Formal Ontology and Information System, 1998.

15. R. Guha, R. McCool, and E. Miller. Semantic search. In WWW ’03: Proceedings
of the 12th int. conf. on World Wide Web, pages 700–709, 2003.

16. E. M. Helsper, L. C. van der Gaag, A. J. Feelders, W. L. A. Loeffen, P. L. Gee-
nen, and A. R. W. Elbers. Bringing order into bayesian-network construction. In
Proceedings of Third International Conference on Knowledge Capture, 2005.

17. Steffen Hölldobler, Tran Dinh Khang, and Hans-Peter Störr. A fuzzy description
logic with hedges as concept modifiers. In IPMU, 2004.

18. H. Kamp and B. Partee. Prototype theory and compositionality. Cognition, 57:129–
191, 1995.

19. D. Koller, A. Levy, and A. Pfeffer. P-classic: A tractable probabilistic description
logic. In Proceedings of the 14th National Conference on AI, pages 390–397, 1997.

20. Deborah L. McGuinness and Frank van Harmelen. OWL web ontology language
overview. http://www.w3.org/TR/owl-features/, 2004.

21. David Parry. A fuzzy ontology for medical document retrieval. In CRPIT, pages
121–126, 2004.

22. C. Rocha, D. Schwabe, and M. de Aragao. A hybrid approach for searching in the
semantic web. In WWW’04, pages 374–383, 2004.

23. E. H. Rosch. On the internal structure of perceptual and semantic categories. In
T. E. More, editor, Cognitive Development and the Acquisition of Language. New
York: Academic Press, 1973.

24. E. H. Rosch. Cognitive represerntations of semantic categories. Journal of Exp.
Psy., 104:192–233, 1975.

25. Eleanor Rosch and Carolyn B. Mervis. Family resemblances: Studies in the internal
structural of categories. Cognitive Psychology, 7:573–605, 1975.

26. E. M. Roth and E. J. Shoben. The effect of context on the structure of categories.
Cognitive Psychology, 15:346–378, 1983.

27. Mehrnoush Shamsfard and Ahmad Abdollahzadeh Barforoush. Learning ontologies
from natural language texts. Int. J. Hum.-Comput. Stud., 60(1):17–63, 2004.

28. E. E. Smith and D. L. Medin. Categories and Concepts. Harvard University Press,
1981.

29. Umberto Straccia. A fuzzy description logic. In AAAI, pages 594–599, 1998.
30. Umberto Straccia. Reasoning within fuzzy description logics. Journal of Artificial

Intelligence Research, 14:137–166, 2001.
31. V. Tamma and T.J.M. Bench-Capon. An ontology model to facilitate knowledge

sharing in multi-agent systems. Knowledge Engineering Review, 17(1):41–60, 2002.
32. D. H. Widyantot and J. Yen. Using fuzzy ontology for query refinement in a

personalized abstract search engine. In Proceedings of IFSA and NAFIPS, 2001.
33. Floris Wiesman and Nico Roos. Domain independent learning of ontology map-

pings. In AAMAS, pages 846–853, 2004.
34. L.A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 112 – 125, 2006.
© Springer-Verlag Berlin Heidelberg 2006

In Defense of a Trope-Based Ontology for Conceptual
Modeling: An Example with the Foundations of

Attributes, Weak Entities and Datatypes

Giancarlo Guizzardi1,2, Claudio Masolo1, and Stefano Borgo1

1 Laboratory for Applied Ontology (ISTC-CNR), Trento, Italy
{guizzardi, masolo, borgo}@loa-cnr.it

2 Computer Science Department,
Federal University of Espirito Santo,

Vitoria-ES, Brazil

Abstract. In recent years, there has been a growing interest in approaches that
employ foundational ontologies as theoretical tools for analyzing and improving
conceptual modeling languages. However, some of these approaches do not al-
ways make explicit their ontological commitments. This leads to situations
where criticisms resulting from the specific ontological choices made by a par-
ticular approach are generalized to the enterprise of ontology as a whole. In this
paper we discuss an example of such a case involving the BWW approach.
First, we make explicit the ontological commitments underlying that approach
by relating it to other possible philosophical alternatives. Second, we construct
an ontological theory which commits to a different philosophical position.
Third, we show how the ontology proposed here can be used to provide real-
world semantics and sound modeling guidelines for the modeling constructs of
Attributes, Weak Entities and Datatypes. Finally, we compare the ontology pro-
posed here with BWW, thus demonstrating its benefits.

1 Introduction

In recent years, there has been a growing interest in the use of foundational ontologies
for: (i) evaluating conceptual modeling languages; (ii) developing guidelines for their
use; (iii) providing real-world semantics for their modeling constructs (e.g., [5,7,18]).

A well-known example of a foundational ontology in the conceptual model-
ing/information systems area is the Bunge-Wand-Weber (BWW) ontology proposed by
Wand and Weber in a series of articles (e.g., [5,20]) on the basis of the original meta-
physical theory developed by Bunge in [2]. Recently, this ontology has received a
number of criticisms in the literature, mainly due to the contrast between the model-
ing rules proposed by the BWW ontology, on one side, and what is prescribed by
linguistic and cognitive studies as well as empirical sessions with practitioners, on the
other (e.g., [8,15,16]). One of the strong points of disagreement between BWW and
these approaches is the BWW-rule that states that intrinsic properties (roughly attrib-
utes) and associations should never be modeled as entity types in an ontologically
correct conceptual model.

 In Defense of a Trope-Based Ontology for Conceptual Modeling 113

 In a series of papers, Veres and colleagues (e.g., [8,15,16]) offer a detailed analysis
and criticism of the general assumptions of the BWW approach. More specifically, in
[16], they provide empirical evidence to support a case against the BWW treatment of
associations. The danger in many of these criticisms is that they are formulated as
general criticisms to ontology, not as specific criticisms to BWW. In other words,
criticisms which are consequent of specific choices made in that ontology are general-
ized to the whole enterprise of ontological foundations for conceptual modeling.
However, in the case of Veres et al., the criticisms cannot be against ontology per se,
since the authors themselves state that they “describe an ontology of conceptual struc-
ture” or “psychologically motivated ontology” for the same purpose.

The purpose of this article is three fold. First, we want make explicit some onto-
logical choices made by the BWW approach, and to show that the specific theory of
universals underlying this approach is only one among many other philosophically
correct theories. Second, we want to propose an alternative foundational theory, and
to show how it can be used to provide an ontological interpretation for some concep-
tual modeling fundamental constructs. In particular, we want to create an ontology
that countenances the existence of property instances, and a derived approach for
conceptual modeling that accepts the representation of both attributes and associations
as classes. Third, we intend to demonstrate that a trope-based ontology such as the
one proposed here leads to better results as a foundational theory for conceptual mod-
eling from philosophical, cognitive and practical points of view.

In section 2, we discuss different theories of universals and make explicit the
BWW choices regarding these theories. In section 3, we propose a trope-based ontol-
ogy, which is used in section 4 to provide ontological semantics for the conceptual
modeling constructs of attribute, weak entity and datatype. In section 5, we compare
the results of section 4 with the approach proposed in [5] that uses the BWW ontology
as a foundation for UML as a conceptual modeling language. Section 6 presents some
final considerations.

2 Universals, Tropes and Properties

Properties, their interpretation and nature have been discussed at length in the western
philosophical tradition giving rise to subtle distinctions and disparate characteriza-
tions. Here, we introduce and discuss two general views, namely universalism and
trope theory, and a third position that merges both universals and tropes. The discus-
sion of these theories requires a terminological clarification so our first goal is to
introduce a few concepts.

We use the term particular to refer to entities that have no instances, that is, enti-
ties that cannot be predicated of others; for instance the Tour Eiffel or the Mars
planet. Contrast this notion with the notion of universal which, on the contrary, char-
acterizes any entity that can have instances, e.g. the color Red or the car model Ferrari
250 GTO. Roughly, the properties (and the relations) used in a language are generally
taken to correspond to universals since they are attributed to other entities. The notion
of class is generally taken as a formal counterpart of the notion of universal. How-
ever, this may be misleading. By universal we mean a characterizing qualification of
entities like “a Ferrari 250 GTO”, i.e., a property that an entity may satisfy. The

114 G. Guizzardi, C. Masolo, and S. Borgo

corresponding class is the collection of entities that satisfy that property. Another
important notion we need to include is the notion of trope. Intuitively, a trope is an
instance of a property (i.e., the instance of an objectified property) of a specific entity:
the redness of John’s T-shirt is a trope that inheres to John’s T-shirt (the host).

Both John’s T-shirt and the redness of John’s T-shirt are particulars. However, they
are particulars of very different natures. Tropes are particulars which can only exist in
other individuals, i.e., they are existentially dependent on other individuals in the way,
for instance, the color of an apple a depends on a, and the electric charge of a conduc-
tor c depends on c. In contrast, particulars such as John, the apple a, and the conduc-
tor c do not inhere in other individuals and, hence, are not existentially dependent
entities in this sense. In this article, we give the name Object to the latter type of par-
ticular.

This brief and rough discussion of objects, universals, classes and tropes tells us
that these concepts correspond to different categories of entities. However, which of
these entities as well as the relations between them which are countenanced in one’s
ontology depend very much on one’s philosophical position w.r.t. the so-called Prob-
lem of Universals [1,7]. This problem can be summarized as follows: We know that
proper names (e.g., Noam Chomsky or Spot) refer to individual entities, but what do
general terms (or universal properties) refer to (if anything at all)? We classify objects
as being of the same type (e.g., person) and use the same predicate or general term
(e.g., red) to different objects. What exactly is the same in different objects that justify
their belonging to the same category?

Figure 1 illustrates three different representations of the fact: “the particulars a and
b share the property being red”. Universalism claims that a and b both instantiate (I)
the being red (Red) universal, i.e. the universal being red is a spatiotemporal inde-
pendent entity which is somehow wholly present in both a and b (fig.1-left). The trope
theory denies the existence of universals as repeatable entities, and considers only
tropes and classes of tropes. An important feature that characterizes all tropes is that
they can only exist in other individuals, named their bearers. A formal relation of
inherence symbolized as i(x,y) is defined to hold between a trope x and its bearer y.
Inherence is an irreflexive, asymmetric and intransitive type of existential dependence
relation. Moreover, it satisfies the non-migration principle [7]. This means that it is
not possible for a trope p to inhere in two different individuals a and b. In other
words, if we have two particulars a (a red apple) and b (a red car), and two tropes ared
(particular redness of a) and bred (particular redness of b), we consider ared and bred to

be different individuals, although perhaps qualitatively indistinguishable. What does it
mean then to say that a and b have the same color? Due to the non-migration princi-
ple, sameness here cannot refer to strict (numerical) identity, but only to a qualitative
one (i.e., equivalence in a certain respect). In standard Trope theory, a relation of
resemblance (≈) is defined between tropes. Hence, tropes can resemble each other to a
certain degree and, as in the example above, if they are qualitatively indistinguishable,
we say that they exactly resemble each other. This way, Trope theory does not have to
commit to the existence of universals as a separate category of abstract entities, since
equivalence classes of resembling tropes are enough for predication: a and b have the
common property of being red because there are two red tropes ared and bred both be-
longing (∈) to the red class (|red|≈) of tropes that inhere in a and b, respectively. If on
the one hand by accepting tropes one does not have to accept universals, on the other

 In Defense of a Trope-Based Ontology for Conceptual Modeling 115

hand, these two theories are not incompatible and, actually, they can be merged: a and
b have the property being red because the ared trope and the bred trope both are in-
stances of the universal Red. In this case, universals exist but they are instantiated
only by tropes.

Fig. 1. Different philosophical positions on Universals

2.1 Making Explicit the Ontological Position Behind BWW

In BWW, we have a fundamental dichotomy between the notions of substantial indi-
vidual (or thing) and substantial property. A thing is defined as a substantial individ-
ual with all its substantial properties: “a thing is what is the totality of its substantial
properties” [2, p.111]. Despite of apparently equating a thing which the sum of its
properties, Bunge himself does not embraces a type of universalism named the Bundle
of Universals theory. In fact, he explicitly rejects this theory and, instead, holds an-
other (universalist) position that can be better identified with the substance-attribute
view [1].

In short, in the former type of theory, particulars are taken as bundles of universals,
i.e., as aggregates of properties which themselves are repeatable abstract entities. An
exemplar theory of this type was proposed by Russel in [12]. For details on this the-
ory as well as for a discussion on the many problems related to it one should refer to
[1]. In fact, among the universalist theories, [1] considers the bundle theory of univer-
sals to be the weakest one from a philosophical point of view. The substance-attribute
view makes an explicit distinction between a thing and the properties that the thing
has. As a consequence, the theory countenances the existence for every individual of a
propertyless substratum or bare particular. The notion of substratum is strongly asso-
ciated with the British empiricist philosopher John Locke [1] and due to its mysteri-
ous nature it has been the target of strong criticism throughout history. Nonetheless,
Bunge claims that as a “theoretical fiction” it solves some of the philosophical prob-
lems existing in the bundle of universals theories [2, p.57]. Hence, for Bunge a thing
is a bare particular endowed by all its substantial properties, i.e., he commits to the
substance-attribute sort of universalism and, as consequence, denies the existence of
particularized properties.

In principle, it seems that a thing in BWW could be directly associated to the con-
cept of object in a trope-based theory (figs. 1.center and 1.right). However, there are
some important differences between the two. Whilst a BWW-thing can be thought as
a substratum instantiating a number of properties (as repeatable abstract entities),
objects in a trope-based approach are particulars that bear other particularized proper-
ties, or to borrow Simons’ phrase, “particulars in particular clothing”[14]. Thus, in a
trope-theoretical approach, one does not have to make any ontological commitment

116 G. Guizzardi, C. Masolo, and S. Borgo

w.r.t. the nature of the substratum. In particular, if necessary, one can dispense with a
substratum of a mysterious nature. An example of such a view is the one of Simons’
Nuclear Theory (ibid.). This approach has the benefits of the substance-attribute view,
without having to accept its problems, since the nucleus is akin to a substratum, only
not a mysterious one. In BWW, the mysterious substratum cannot be eliminated with-
out putting the theory into a Bundle of Universals group. We claim that this flexibility
is an advantage of an ontology in which tropes are countenanced.

According to Bunge, only things possess properties. As a consequence, a property
cannot have properties, i.e., there are no higher-order properties. This dictum leads to
the following BWW modeling principle: entity types in a conceptual model of a do-
main should only be used to represent substantial universals [5]. This principle pro-
scribes the representation of types whose instances are particularized properties, in-
cluding relations. This claim is not only perceived as counterintuitive by conceptual
modeling practitioners (as shown by [8,16]), but it is also controversial from a meta-
physical point of view. For instance, Armstrong [1], who as much as Bunge embraces
scientific realism as a theory of universals, claims that higher-order properties are
necessary to represent the concept of a law. For Armstrong, a law such as Newton’s F
= MA describes a second-order relation between the three universals involved.
Strangely enough, Bunge also defines the concept of a Law (quite a central notion is
his approach) as a relation between properties, which makes it a second-order relation
[2, p.77]. The view that there are, in fact, material higher-order universals is also
shared by other approaches (e.g., [4]). Even simple higher-order relations between
universals such as “Redness is more like Orange than it is like yellow” cannot be dealt
with in the current version of the BWW framework. In contrast, in a trope-based ap-
proach, if one wants to dispense with higher-order properties of this kind, this relation
can be expressed in terms of first-order inexact resemblance relations between tropes.
In fact, in such an approach, traditional properties of properties such as the hue of a
certain color or the graveness of a certain symptom can be modeled in terms of first-
order inherence relations between tropes (see fig.4).

If one subscribes to Bunge’s theory, however, there is a much stronger reason to
argue against the representation of non-substantial universals as types: since Bunge
denies the existence of particularized properties, one could simply state that proper-
ties should not be represented as entity types because they should not be allowed to
have instances. However, it is important to emphasize that to accept the claims: (c1)
there are instances of properties, as well as (c2) properties can have properties does
not amount to an ontologically incorrect position. The claims (c1) and (c2) are only
incompatible with the very specific ontological choices made for the BWW frame-
work. As mentioned above, even if one embraces universalism, (c2) can be accepted.
Moreover, the denial of (c1) puts BWW in a singular position among the foundational
ontologies developed in the realm of computer science (e.g., [4, 7, 9, 13]). As pointed
out by [13], there is solid evidence for (c1) in the literature. On the one hand, in the
analysis of the content of perception, particularized properties such as colors, sounds,
runs, laughter and singings are the immediate objects of everyday perception. On the
other hand, the idea of tropes as truthmakers underlies a standard event-based ap-
proach to natural language semantics, as initiated by [3] and [11].

 In Defense of a Trope-Based Ontology for Conceptual Modeling 117

3 A Trope-Based Ontology

Figure 2 illustrates the main categories that constitute the ontology proposed in this
article. The category of particulars comprises both Objects and Tropes. The relation
of inherence is defined between tropes and other particulars, which are not necessarily
objects. In other words, we admit that tropes can inhere in other tropes. We also con-
sider the categories of object kind and trope kind as two possible sorts of kinds. We
use the term kind here in a broader sense than the term universal, without necessarily
committing to the existence of universals, i.e., without choosing a priori between
position (b) or (c) in figure 1. A kind thus can be considered here simply as something
(i) which can be predicated of other entities and (ii) that can potentially be represented
in language by predicative terms. We also use the relation :: of classification between
particulars and kinds. Likewise, classification can be interpreted as instantiation or
membership depending on the ontological commitment which is made.

Entity

Particular Kind

ObjectTrope Object Kind Trope Kind

Quality

Quality Structure

Quality Kind

* 1

classified by >

1

1..*

< associated with

Quale

1 1..*

< memberOf

*

1..*

< qualeOf
Mode KindMode

1..*

1

inheres in >

Set

Fig. 2. The Categories composing a simple trope-based ontology

 Object Kinds classify objects and Trope Kinds classify tropes. Examples of object
kinds include Apple, Person and Ferrari 250 GTO. Examples of trope kinds include
Color, Electric Charge and Headache. This distinction is also present in Aristotle’s
original differentiation between what is said of a subject (de subjecto dici), denoting
classification and what is exemplified in a subject (in subjecto est), denoting inher-
ence. Thus, the linguistic difference between the two meanings of the copula “is”
reflects an ontological one. For example, the ontological interpretation of the sentence
“Jane is a Woman” is that the object Jane is classified by the object kind Woman.
However, when saying that “Jane is tall” or “Jane is laughing” we mean that Jane
exemplifies the trope kind Tall or Laugh, by virtue of her specific height or laugh.

Here, we capture the intension of a kind by means of an axiomatic specification,
i.e., a set of axioms that may involve a number of other kinds representing its essen-
tial features. A particular form of such a specification of a kind U is called an elemen-
tary specification (ES). An ES of a kind U consists of a number of trope kinds
T1,…,Tn and the inherence relation which attaches instances from the Ti to instances of
U, expressed by the following schema:))),(::(...::(1 atiTtttKaa iiinin ∧∃→∀ ∧ ≤

.The

relation between a kind U and the trope kinds in its elementary specification is one of
characterization: A kind U is characterized by a trope kind T iff every instance of K
exemplifies T, i.e., iff ∀x (x::U → ∃y y::T ∧ i(y,x)).

118 G. Guizzardi, C. Masolo, and S. Borgo

 An attempt to model the relation between properties and their representation in
human cognitive structures is presented in the theory of conceptual spaces introduced
in [6]. The theory is based on the notion of quality dimension. The idea is that for
several perceivable or conceivable trope kinds there is an associated quality dimen-
sion in human cognition. For example, height and mass are associated with one-
dimensional structures with a zero point isomorphic to the half-line of nonnegative
numbers. Other properties such as color and taste are represented by multi-
dimensional structures.

Gardenfors [6] distinguishes between integral and separable quality dimensions:
“certain quality dimensions are integral in the sense that one cannot assign an object a
value on one dimension without giving it a value on the other. For example, an object
cannot be given a hue without giving it a brightness value (…) Dimensions that are
not integral are said to be separable, as for example the size and hue dimensions.” He
then defines a quality domain as “a set of integral dimensions that are separable from
all other dimensions” and a conceptual space as a “collection of one or more
domains” (ibid.). Finally, he defends that the notion of conceptual space should be
understood literally, i.e., quality domains are endowed with certain geometrical struc-
tures (topological or ordering structures) that constrain the relations between its
constituting dimensions. In his framework, the perception or conception of a trope can
be represented as a point in a quality domain. This point is named here a quale [9].

An example of a quality domain is the set of integral dimensions related to color
perception. A color quality c of an apple a takes it value in a three-dimensional color
domain constituted of the dimensions hue, saturation and brightness. The geometric
structure of this space (the color splinter [6]) constrains the relation between some of
these dimensions. In particular, saturation and brightness are not totally independent,
since the possible variation of saturation decreases as brightness approaches the ex-
treme points of black and white, i.e., for almost black or almost white, there can be
very little variation in saturation. A similar constraint could be postulated for the
relation between saturation and hue. When saturation is very low, all hues become
similarly approximate to grey.

We adopt in this work the term quality structures to refer to quality dimensions and
quality domains, and we define the formal relation of association between quality
structure and a trope kind. Additionally, we use the terms quality kinds for those trope
kinds that are associated with a quality domain, and the term quality for a trope classi-
fied under a quality kind. We also assume that quality structures are always associated
with a unique quality kind, i.e., a quality structure associated with the kind Weight
cannot be associated with the kind Color.

Following [9], we take that whenever a quality kind Q is related to a quality
domain D, then for every individual quality x::Q there are indirect qualities inhering
in x for every quality dimension associated with D. For instance, for every particular
quality c instance of Color there are quality individuals h, s, b which are instances of
quality kinds Hue, Saturation and Brightness, respectively, and that inhere in c. The
qualities h, s, b are named indirect qualities of c’s bearer. Qualities such as h, s, b are
named simple qualities, i.e., qualities which do not bear other qualities. In contrast, a
quality such as c, is named a complex quality. Since the qualities of a complex quality
x::Q correspond to the quality dimensions of the quality domain associated with Q,
then we have that no two distinct qualities inhering a complex quality can be of the

 In Defense of a Trope-Based Ontology for Conceptual Modeling 119

same type. For the same reason, since there are not multidimensional quality dimen-
sions, we have that complex qualities can only bear simple qualities. Moreover, we
use predicate ql(x,y) to represent the formal relation between a quality individual y
and its quale x.

Finally, we make a distinction between qualities and another sort of trope named
here modes. Modes are tropes whose kinds are not directly related to quality struc-
tures. Gardenfors [6] makes the following distinction between what he calls concepts
and properties: “Properties…form as special case of concepts. I define this distinction
by saying that a property is based on single domain, while a concept may be based on
several domains”. We claim that only trope kinds that are conceptualized w.r.t. a
single domain, i.e., quality kinds, correspond to properties in Gardenfors sense. How-
ever, there are trope kinds that as much as object kinds can be conceptualized in terms
of multiple separable quality dimensions. Examples include beliefs, desires, inten-
tions, perceptions, symptoms, skills, among many others. Like objects, modes can
bear other tropes, and each of these tropes can refer to separable quality dimensions.
However, since they are tropes, differently from objects, modes are necessarily exis-
tentially dependent of some particular.

4 A Foundation for Attributes, Weak Entities and Datatypes

Suppose that we have an object kind Apple whose elementary specification contains
the trope kind Weight. Thus, for an instance a of Apple there is an instance w of the
quality kind Weight inhering in a, i.e., ∀a (a::Apple → ∃w (w::Weight ∧ i(w,a))).

Associated with the quality kind Weight we have a quality dimension WeightDim
and, hence, for every instance w of Weight there is a quale c denoting a particular
weight value, i.e., a point in the weight quality dimension such that ql(c,w) holds. We
take here the weight quality domain to be a one-dimensional structure isomorphic to
the half-line of non-negative numbers, which can be represented by a set. The map-
ping between a substantial a and its weight quale can then be represented by the func-
tion: weight: Ext(Apple) → WeightDim such that weight(x) = y | ∃z z::Weight ∧
i(z,x) ∧ ql(y,z), and Ext(Apple) represents the set extension of the kind Apple.

In general, let K be a (object or trope) kind and let Q1,…,Qn be a number of quality
kinds. Let E be an elementary specification characterizing the kind U: ∀x (x::U →

∃q1,…,qn ∧ ≤ni
(qi::Qi ∧ i(qi,x))). If Di is a quality domain directly associated with Qi,

we can define the function Qi: Ext(U) → Di (named an attribute function for quality
universal Qi) such that for every x::U we have that Qi(x)= y | y ∈ Di ∧ ∃q::Qi ∧ i(q,x)
∧ ql(y,q).

Let us suppose for now a situation in which every Qi present in the elementary
specification of a kind U is a simple quality kind i.e., Qi is associated to a one-
dimensional quality domain. In this simplest case, the quality kinds appearing in the
elementary specification of U can be represented in a conceptual model via their cor-
responding attribute functions and associated quality dimensions in the following
manner: [Principle 1: Every attribute function derived from the elementary specifica-
tion of the kind U may be represented as an attribute of the class CU (representation of
the kind U) in a conceptual model; every quality dimension which is the co-domain of

120 G. Guizzardi, C. Masolo, and S. Borgo

one of these functions may be represented as data types of the corresponding attrib-
utes in this conceptual model. Finally, relations constraining and informing the ge-
ometry of a quality dimension may be represented as constraints in the corresponding
data type].

In UML “a data type is a special kind of classifier, similar to a class, whose in-
stances are values (not objects)... A value does not have an identity, so two occur-
rences of the same value cannot be differentiated” [10, p.95]. A direct representation
of Apple’s elementary specification in UML according to principle 1 maps the attrib-
ute function weight: Ext(Apple)→WeightDim to an attribute weight with data type
WeightValue in class Apple (figures 3.a-b).

weight:WeightDim

«kind»
Apple hue:HueDim

saturation:SatDim
brightness:BrightDim

«datatype»
ColorDomain

*

color

1

ColoredObject

weight:WeightDim

«kind»
Apple «kind»

Car

hue:HueDim
saturation:SatDim
brightness:BrightDim

«quality»
Color

1 1

«characterization»

Fig. 3. (a, left) - Representing Quality Universals and Indirect Qualities; (b) Representing
Qualia in a Multi-Dimensional Quality Domain

 Suppose now that we have the following extension of the elementary specification
of the kind Apple: ∀a (a::Apple → ∃c∃w (c::Color ∧ i(c,a)) ∧ (w::Weight ∧
i(w,a))). In order to model the relation between the quality c (color) and its quale,
there are other issues to consider. As previously mentioned, the Color quality kind can
be associated with a tri-dimensional quality structure composed of quality dimensions
hue, saturation and brightness. These dimensions can be considered to be indirect
quality kinds exemplified in an apple a, i.e., there are quality individuals h, s, b which
are instances of quality universals Hue, Saturation and Brightness, respectively, that
inhere in the color quality c (which in turn inheres in object a). The elementary speci-
fication of quality universal Color could then be specified as follows: ∀c (c::Color →
∃h∃s∃b (h::Hue ∧ i(h,c)) ∧ (s::Saturation ∧ i(s,c)) ∧ (b::Brightness ∧ i(b,c))). In
this case, we can derive the following attribute functions from the features in this
specification: hue: Ext(Color) → HueDim; saturation: Ext(Color) → SatDim;
brightness: Ext(Color) → BrightDim. Together these functions map each quality of
a color c to its corresponding quality dimension. One possibility for modeling this
situation is a direct application of principle 1 to the Color kind specification. In this
alternative, depicted in figure 3.a, the UML class Color directly represents the quality
universal color and, its attribute functions hue, saturation and brightness.

Another modeling alternative is to use directly the construct of a data type to repre-
sent a quality domain and its constituent quality dimensions (figure 3.b). That is, we
can define the quality domain associated with the universal Color as the set Color-
Domain ⊂ HueDim × SatDim × BrightDim. Then, we can define the following
attribute function for the object kind Apple: color: Ext(Apple) → ColorDomain
such that color(x) = { h,s,b ∈ ColorDomain | ∃c::Color i(c,x) ∧ (h = hue(c)) ∧ (s =
saturation(c)) ∧ (b = brightness(c))} where hue, saturation and brightness are the
attribute functions previously defined. In figure 3.b, we use the UML construct of a

 In Defense of a Trope-Based Ontology for Conceptual Modeling 121

structured datatype to model the ColorDomain. In this representation, the datatype
fields hue, saturation, brightness are placeholders for the coordinates of each of the
(integral) quality dimensions forming the color domain. In this way the “instances”
(members) of ColorDomain are quale vectors x,y,z where x ∈ HueDim, y ∈ SatDim
and z ∈ BrightDim. The navigable end name color in the association between Apple
and ColorDomain represents the attribute function color described above.

The two forms of representation exemplified in figures 3.a and 3.b do not convey
the same information, which we highlight by the use of different stereotypes. In figure
3.a, color instances are one-sidedly existentially dependent on the particulars they are
related to via an inherence relation. These instances are genuine individuals with a
definite numerical identity. In contrast, the members of the ColorDomain are pure
values that represent points in a quality domain. These values can qualify a number of
different objects but they exist independently of them in the sense that a color tuple is
a part of quality domain even if no object “has that color”.

Both representations are warranted in the sense that ontologically consistent inter-
pretations can be found in both cases. Notwithstanding, we believe that some guide-
lines could be anticipated regarding which alternative should be pragmatically more
suitable in different cases. In situations in which the tropes of a trope all take their
values (qualia) in a single quality domain, the latter alternative (shown in figure 3.b)
should be preferred due to its compatibility with the modeling tradition in conceptual
modeling and knowledge representation. This is the case with quality kinds. Addi-
tionally, since the conceptualization of these tropes depends on the combined appre-
ciation of all their quality dimensions, we claim that they should be mapped in an
integral way to a quale vector in the corresponding n-dimensional quality domain.

In the sequel, we observe the following principle between quality domains and their
representation in terms of data types: [Principle 2: Every quality dimension D directly
associated to a quality kind Q may be represented as a datatype DT in a conceptual
model; Relations constraining and informing the geometry of a quality dimension D
may be represented as operators in the corresponding datatype DT. A collection of
integral dimension D1… Dn (represented by data types DT1… DTn) constituting a qual-
ity domain QD can be grouped in structured datatype W representing quality domain
QD. In this case, every quality dimension Di of QD may be represented by a field of W
of type DTi. Moreover, the relations between the dimensions Di of QD may be repre-
sented by constraints relating the fields of data type W].

Principle 2 is a generalization of principle 1 in order to account for quality do-
mains. In summary, every quality kind Q that is associated to a quality domain in an
elementary specification of kind U can be represented in a conceptual model via at-
tribute functions mapping instances of U to quale vectors in the n-dimensional do-
main associated with Q. The n-dimensional domains should be represented in a con-
ceptual model as an n-valued structured data type.

Now, let us consider a case where one of the trope kinds M that characterizes a
kind U in its elementary specification is a mode kind. We defend here that these are
the cases in which we want to explicitly represent a trope kind in a conceptual model.
An example of such a situation is depicted in Figure 4, which models the relation
between a Hospital, its Patients, and a number of symptoms reported by these pa-
tients. Suppose that an individual patient John is suffering from headache and influ-
enza. John’s headache and influenza are modes inhering in John. Even if another

122 G. Guizzardi, C. Masolo, and S. Borgo

patient, for example Paul, has a headache that is qualitatively indistinguishable from
that of John’s, John’s headache and Paul’s headache are two different particulars.
Instances of Symptoms can bear tropes themselves (such as duration and graveness)
and can participate in relations of, for example, causation or precedence.

In figure 4, the mode kind Symptom is represented by a class construct decorated
with the «mode» stereotype. The formal relation of «characterization» between Symp-
tom and Patient is mapped to the inherence relation in the instance level, representing
the existential dependence of a Symptom on a Patient. In other words, for an instance
s of Symptom there must be a specific instance p of Patient associated with s, and in
every situation that s exists p must exist and the inherence relation between the two
must hold. A mode kind such as Symptom in figure 4 can be seen as the ontological
counterpart of the concept of Weak entities types in EER diagrams, which has been
lost in the UML unification process [17].

Patient MedicalUnit

1..* 1..*

treatedIn
«mode»

Symptom

1..* 1«characterization»

d:DayValue
m:MonthValue
y:YearValue

«datatype»
DateDomain *

startDate

1
preceeding

*
preceeded *

Fig. 4. Representing Object and Mode Kinds and Quality Structures

 To summarize this section we can provide the following procedure to represent in
conceptual modeling the elementary specification of kinds and their associated trope
kinds and quality structures: Take an object kind U with its associated elementary
specification E. For every trope kind Q characterizing U do: (1) If Q is a simple qual-
ity kind then principle 1 can be applied; (2) If Q is a complex quality kind then prin-
ciple 2 can be applied; (3) If Q is a mode kind then it should be explicitly represented
and should be related to U in a model via a characterization relation. Moreover, this
procedure can be re-applied to the elementary specification of each trope kind Q in E.

5 A Comparison with the BWW Approach

One of the most defended principles of the BWW approach is the one that states that
“properties cannot have properties”. So, a question that comes to the mind is: how
would one model in the BWW approach situations such as the ones depicted in fig-
ures 3 and 4? Take for example, the model in figure 3. In [5], Color is one of the ex-
amples used for a property. However, if both Color and Hue (Saturation, Brightness)
are properties, how can this conceptualization be modeled in an approach that pro-
scribes the representation of properties of properties?

According to [5], in BWW, the intrinsic (as opposed to relational) properties of a
thing must be modeled as attributes of the type instantiated by that thing. Since, only
substantial types can have attributes, we have that intrinsic properties must be mod-
eled as attributes of substantial types. Thus, a solution to the problem mentioned
above is to consider Hue, Saturation and Brightness to be direct properties of Apple,
not of Color. The latter, in turn, is then considered to be a conjunction of these three
properties, i.e., to instantiate a specific super-determinate shade of red is to instantiate

 In Defense of a Trope-Based Ontology for Conceptual Modeling 123

the specific values of Hue, Saturation and Brightness that compose this color. How-
ever, in order to be complete, such a solution must also account for the constraints
that restrict the possible values that these three dimensions together can assume.

In BWW, a type is represented by a model named a functional schema. A func-
tional schema comprises a finite sequence of functions F = F1..Fn , such that each
function Fi (named an attribute) represents a property shared by the members of the
type described by the functional schema. For every attribute Fi there is a co-domain Vi
of values. Bunge defines a function F(t) as the state function of the thing, such that
F(t’)= F1(t’)..Fn(t’) is said to represent the state of a thing at time t’. The set
V1×…×Vn is termed the state space of a thing. Now, there are certain sorts of types
named Natural Kinds whose instances have properties which are lawfully related. For
these types, it is not the case that the coordinates of the state vectors representing their
properties can vary freely. The subset of V1×…×Vn constrained by the laws of that
type being described is named by Bunge the lawful state space of a thing. In other
words, the lawful state space associated with a natural kind defines all possible states
that instances of that kind can assume.

Compared to the approach advocated in this article, we claim that the solution just
discussed has two drawbacks. First, as exemplified in figure 3.a, the constraints relat-
ing the properties of Hue, Saturation and Brightness are not intrinsic to the type Apple
but to the geometry of the Color quality structure and, thus, are reflected in all colored
objects. Moreover, these properties form a closure set w.r.t. to mutual dependence
and, thus, define a quality domain. In other words, these properties are integral and
one “cannot assign an object a value on one dimension without giving it a value on
the other”. For these reasons, we claim that the proposal advanced here of explicit
representation of quality domains as datatypes provides the following modeling bene-
fits: (i) a further degree of structuring on lawful state spaces by acknowledging that
the co-domains V of attribute functions can also be multidimensional. In fact, this
allows for the representation of richer conceptual structures such as the one modeled
in figure 5 in which the same Color trope can be measured (take its value) in alterna-
tive quality domains; (ii) a structured datatype representing a quality domain can
reinforce (via its constructor method) that its tuples will always have values for all its
integral dimensions, and only values which obey the constraints imposed by the ge-
ometry of that domain; (iii) it also allows for a potential reuse of specifications of
multidimensional value co-domains. In this example, once the constraints represent-
ing the geometry of the color domain are captured in the specification of the Color-
Domain datatype, this specification can be consistently re-used for all colored objects.

The second problem with the solution previously discussed can be defined as fol-
lows. If Hue, Saturation and Brightness and its relating constraints are represented in
the specification of all types whose instances are colored objects, then by the BWW
definition of a natural kind, we can define a natural kind whose instances are all
particulars that exemplify the lawfully related properties of Hue, Saturation and
Brightness. This allegedly natural kind would be analogous to the type ColoredObject
depicted in figure 3.a. However, the typical notion of natural kinds in philosophy
implies that [7]: (i) they are rigid designators, i.e. that they classify necessarily (in the
modal sense) their instances; (ii) that they afford the best inductive generalizations,

124 G. Guizzardi, C. Masolo, and S. Borgo

i.e., that knowing that a particular x is of a kind A also imply knowing that x has all
essential properties which are common to instances of A; (iii) that they are associated
with a criterion of individuation. These characteristics (i-iii) can all be found in Apple
but none of them in ColoredObject.

Apple
«quality»

Color
1 1

«characterization»
«Datatype»

ColorDomain

hue:HueValue
saturation:SaturationValue
brightness:BrightnessValue

«Datatype»
HSBColorDomain

r:RedValue
g:GreeValue
b:BlueValue

«Datatype»
RGBColorDomain

1 1

equivalentValue

*

/color {union}

1..*

*

hsbColor

1

*

rgbColor 1

Fig. 5. Explicitly representing quality universals and quality spaces

 Let us now consider the case depicted in figure 4. Here, once more, the trope kind
symptom can be modeled by having its properties ascribed directly to the type Patient.
However, take the property of graveness. “Being grave” is not a property of a particu-
lar Patient but a property of a symptom of that patient. Suppose that graveness can be
valued in a range 0-5. It is still possible to represent the values in this range as differ-
ent sets of values of other attributes of symptom, but the introduction of a graveness-
space is conceptually clearer. The latter is only possible with a reification of symp-
tom, as illustrated in figure 4 using tropes.

A similar case regards the expression of relations between tropes as the relation of
precedence (but also causality) between symptoms depicted in figure 4. According to
this model, a symptom such as headache or fever can be caused by another one, for
example, influenza. However, differently from the cases mentioned above, these rela-
tions cannot be described in general terms; they are indeed relations between in-
stances of these properties. To put it differently, it is John’s fever which has been
caused by his influenza of a certain graveness. Paul’s fever in turn has been caused by
his pneumonia.

6 Final Considerations

Despite the perceived usefulness of ontologically well-founded principles and tools
for the practice of conceptual modeling, a number of recent results have pointed out
the incongruence between what is prescribed by the BWW ontology, on one side, and
what is indicated by cognitive and linguistically motivated theories, as well as empiri-
cal results of experiments with conceptual modeling practitioners, on the other. The
position defended in this paper is in line with some of these criticisms to the BWW
ontology. In particular, we reject the BWW-rule that in conceptual modeling only
substantial universals should be represented as classes. However, as we have pointed
out, it is a mistake to generalize these criticisms to the enterprise of ontology-based

 In Defense of a Trope-Based Ontology for Conceptual Modeling 125

conceptual modeling as a whole. As we have shown in the paper, the modeling prin-
ciples advocated by the BWW framework are a consequence of the very particular
type of ontological theory sponsored by its proponents, and their ontological view is
only one among many other alternatives.

Furthermore, in this paper we have proposed an alternative ontology which has
been used as a foundation for the conceptual modeling primitives of attribute,
datatype and weak entities. The ontology presented here is only a fragment of a larger
theory which has been extended elsewhere to account for other modeling constructs,
such as, classifiers (kinds. roles, phases, mixins), association, part-whole relations,
among others [7]. In particular, as demonstrated there, when relational properties are
considered, a trope-based approach such as this one not only escapes the criticisms
pointed out in [8,15,16], but it also brings a number of additional benefits from a
modeling point of view.

References

1. Armstrong, D.M. ‘Universals: An Opinionated Introduction’, Westview Press, 1989.
2. Bunge M.: Treatise on Basic Philosophy. Vol. 3. Ontology I. The Furniture of the World.

D. Reidel Publishing, New York, 1977.
3. Davidson, D. ‘The Logical Form of Action Sentences’, Essays on Actions and Events, Ox-

ford University Press, 1980.
4. Degen, W., Heller B., Herre H., Smith, B. GOL: ‘Towards an axiomatized upper level on-

tology’. Proc. of FOIS’01, Maine, USA, ACM Press, 2001.
5. Evermann J., Wand Y.: Towards ontologically based semantics for UML constructs, Pro-

ceedings of ER 2001, pages 354–367. Springer-Verlag, 2001.
6. Gärdenfors, P. ‘Conceptual Spaces: the Geometry of Thought’, MIT Press, USA, 2000.
7. Guizzardi, G. ‘Ontological Foundations for Structural Conceptual Models’, PhD Thesis,

University of Twente, The Netherlands, 2005.
8. Hitchman, S. “An interpretive study of how practitioners use entity-relationship modeling

in a ternary relationship situation”,Communications of the Association for Information
Systems, 2003, 11, 451-485.

9. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A. ‘Ontology Library’,
WonderWeb Deliverable D18, 2003.

10. Object Management Group, ‘UML 2.0 Superstructure Specification’, ptc/03-08-02, 2003.
11. Parsons, T. ‘Events in the Semantics of English: A Study in Subatomic Semantics’. Cam-

bridge/MA: MIT Press, 1990.
12. Russel, B. ‘Human Knowledge, its Scopes and Limits’, Allen and Unwin, 1948.
13. Schneider, L. ‘Formalised Elementary Formal Ontology’, ISIB-CNR Technical Report

03/2002, [online: http://www.loa-cnr.it/Publications.html], 2002.
14. Simons, P. Particular in Particular Clothing: Three Trope theories of Substance’, Philoso-

phy and Phenomenological Research, 54, 553-576, 1994.
15. Veres, C.; Hitchman, S, ‘Using Psychology to Understand Conceptual Modeling’, 10th

European Conference on Information Systems (ECIS 2002), Poland.
16. Veres, C.; Mansson, G., ‘Cognition and Modeling: Foundations for Research and Prac-

tice’, Journal of Information Technology Theory and Application, v.7, n.1, 93-10, 2005.
17. Vigna, S. ‘ERW: The Manual’, [online: http://erw.dsi.unimi.it/ERW/index.html], 2004.
18. Wand Y.,Storey V.C., Weber R.: An ontological analysis of the relationship construct in con-

ceptual modeling. ACM Transactions on Database Systems, 24(4):494–528, December 1999.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 126 – 139, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Explicitly Representing Superimposed Information in a
Conceptual Model

Sudarshan Murthy, Lois Delcambre, and David Maier

Department of Computer Science, Portland State University
PO Box 751 Portland, OR 97207 USA

{smurthy, lmd, maier}@cs.pdx.edu
http://sparce.cs.pdx.edu

Abstract. Superimposed information (SI) refers to new information such as an-
notations and summaries overlaid on fragments of existing base information
(BI) such as web pages and PDF documents. Each BI fragment is referenced
using an encapsulated address called a mark. Based on the widespread applica-
bility of SI and wide range of superimposed applications (SAs) that can be
built, we consider here how to represent marks explicitly in a conceptual model
for an SA. The goal of this work is to facilitate the development of SAs by
making it easy to model SI (including the marks) and to exploit the middleware
and query capability that we have developed for managing marks and interact-
ing with the base applications. The contribution of this paper is a general-
purpose framework to make marks explicit in a conceptual (ER) model. We
present conventions to associate marks with entities, attributes, and relation-
ships; and to represent that an attribute’s value is the same as the excerpt ob-
tained from a mark. We also provide procedures to automatically convert ER
schemas expressed using our conventions to relational schemas, and show how
a resulting relational schema supports SQL queries over the combination of SI,
the associated marks and the excerpts associated with the marks.

1 Introduction

Over the last decade, our research group has been developing the notion of superim-
posed information (SI) consisting of information placed over arbitrary base informa-
tion sources to support new applications and new purposes [11]. SI can be repre-
sented in any data model appropriate for the superimposed application (SA). The key
feature of SI is that it can contain marks [7], which are encapsulated addresses to bits
of base information at fine granularity as demonstrated in Figure 1, in addition to data
that is defined and created directly in the superimposed layer. The mark is an explicit
construct that crosses from one layer of information to another. The superimposed
layer contains the SI, including marks, and the base layer consists of all documents
that can be referenced, using marks, from the SI. Each referenced base information
source can use a distinct data model and schema; to date, we have relied on existing
base applications (BAs) to manage and manipulate the base information.

Our first SA is a superimposed scratchpad tool [14], called Sidepad (earlier called
RIDPad and SLIMPad), that uses a simple hierarchical model in the superimposed
layer that can reference selections in a number of base source types including

 Explicitly Representing Superimposed Information in a Conceptual Model 127

Microsoft® Word, PowerPoint®, Excel®, PDF, XML, HTML, and several audio and
video formats. Figure 1 shows a Sidepad document instance with five items: Query
Optimizer, Goal, Model, Definition, and SchemaSQL. An item has a name
(shown underlined in Figure 1), a comment, and an encapsulated mark to a selection
in a base document. For example, the item Goal contains a mark into a selection in a
PDF document. The boxes labeled Garlic and Schematic Heterogeneity are
groups of items. The result of activating the PDF selection that the Goal item refer-
ences is shown on the right side in Figure 1.

Mark

Su
pe

ri
m

po
se

d
la

ye
r

Ba
se

 la
ye

r

Superimposed application: Sidepad Base application: Adobe Acrobat

Fig. 1. Superimposed information (left) created using Sidepad, a superimposed application. The
Goal item in the Sidepad document has an associated mark that encapsulates the address of the
PDF excerpt shown on the right side of the figure. A mark is activated in Sidepad by double-
clicking on an item.

To aid SA implementation, we have developed the middleware architecture called
the Superimposed Pluggable Architecture for Contexts and Excerpts [14] (SPARCE)
that manages mark descriptors in an XML repository. SPARCE assigns each mark a
unique ID represented as a string. SAs need to incorporate only mark IDs in their SI.
To operate on a mark (for example, to activate it), an SA passes a mark ID to
SPARCE to obtain a mark object at run time.

SPARCE relies on plug-ins for base applications to create marks and uses wrappers
called context agents to interact with underlying base applications to activate marks
and to retrieve content or excerpts from marks. We have used SPARCE and the
context agents to materialize and query bi-level information (an SI source, with its
associated marks and their respective excerpts) and to transform it into alternative
representations [13]. For example, Figure 2 shows a portion of the Sidepad document
of Figure 1 transformed into an HTML document via XML. The text labeled ‘Com-
ment’ is the descriptive text associated with an item. The text labeled ‘Excerpt’ is the
text excerpt retrieved from the mark encapsulated in the corresponding item.

Several other SAs have been developed, including a Superimposed Schematics
Browser [3] with an Entity-Relationship (ER) model in the superimposed layer that
provides structured browsing of underlying document content. In general, SI allows
bits of information, at small granularity, from a wide variety of base information
sources to be selected, integrated, elaborated, structured, and mixed with arbitrary
additional information in an SA.

128 S. Murthy, L. Delcambre, and D. Maier

Over the last decade, we have seen increasing interest in SI in general, and in par-
ticular in the SAs we have developed. Some of our research partners have also begun
using SPARCE to build new SAs (for example, see http://si.dlib.vt.edu). Our experi-
ence in designing SI has highlighted the need to model SI beyond what is possible in
traditional modeling frameworks such as ER. Since the mark abstraction, by design,
explicitly crosses from one information source to another, we seek to model marks
explicitly at the conceptual level. Specifically, we seek to identify the modeling con-
structs with which marks may be associated, and to capture the semantics of such
associations. We present in this paper a set of patterns for representing marks, in a
flexible and expressive manner, in the ER model. The framework of patterns makes it
easy to exploit SPARCE and it enables bi-level querying using SQL. The patterns
allow an SA developer to:

• associate marks with entities, attributes, and relationships,
• impose cardinality and other constraints when associating marks with model

constructs, and
• assign the excerpt obtained from a mark as the value of an attribute.

We also describe procedures to automatically translate an ER schema that uses this
framework of patterns into an equivalent relational database schema.

Fig. 2. Sidepad document of Figure 1 transformed to an HTML document

We assume that the SA developer cannot alter the information model of any base ap-
plication, and that the developer incorporates selected aspects of base information into
the SI model (using marks). The SA developer need not be aware of the underlying
information model in the base source; the mark abstraction encapsulates the references to
the selected base information element of interest. The set of patterns to represent marks
and the examples we present demonstrate the ability to superimpose new models over
existing information in combination with modeling SI for a particular SA.

Our approach to modeling SI and incorporating parts of base information models is
different from the approach to information integration in systems such as MIX and

 Explicitly Representing Superimposed Information in a Conceptual Model 129

Garlic [2, 4] which require the schema of integrated sources to be described a priori.
Our approach does not alter base information or replicate it, and there is no need to
describe the schema of any base source.

The rest of this paper is organized as follows. In Section 2 we introduce an SA for
browsing information related to desktop computers with an associated superimposed
ER schema. Section 3 introduces our enhanced ER framework with examples from
the SA introduced in Section 2. Section 4 presents our procedures for generating a
relational schema for an arbitrary enhanced ER schema. Bi-level queries expressed in
SQL are presented in Section 5. The paper concludes with a discussion of related
work in Section 6, and conclusions and future work in Section 7.

2 The Superimposed System-Information Browser

Our latest superimposed application, the Superimposed System-Information Browser
(SSIB), allows users to browse information such as operating system (OS) updates,
and application and OS events for a collection of computers. System administrators
can use this application to browse information resident on networked computers for
diagnostic purposes.

Superimposed OS Update History for a computer

XML Updates Catalog

Fig. 3. Operating-System Update information displayed in SSIB on the left, with a mark into an
XML document on the right

 Figure 3 shows OS-Update information displayed in SSIB. The window with the
caption ‘Windows Update History (C2)’ displays a table structure superimposed on
OS update information for computer C2. The highlighted row shows the details of one
OS update applied on that computer, excerpted from a set of marks. For example, the
title of this update is retrieved using a mark into a shared catalog of available updates
(called the Updates Catalog) stored on the network, shown on the right side of Figure
3. Though not shown in the figure, the highlighted row also contains support details
such as a reason for the update and the cause of the underlying problem that necessi-
tated the update. These details are retrieved using marks into support pages on the
web. Table 1 describes these and other sources that SSIB uses to display system in-
formation. SSIB uses SPARCE to interact with appropriate base applications.

130 S. Murthy, L. Delcambre, and D. Maier

Table 1. Base sources that SSIB consults

Info. Kind Doc.
Type Location Description

Event log MS Excel Distributed Records OS and application events, typically one
event per row. Obtained using the Event Log Viewer
built into MS Windows.

Error
reports

MS Word Distributed Records OS and application errors. Obtained using
the System Information Viewer built into MS Office;
reformatted for demo purposes.

Update log Text Distributed Contains one line per OS update applied. Not all
available updates might be applied on a computer.

Updates
Catalog

XML Network,
shared

Contains one Update element per available update
(see Figure 1).

Support
details

HTML Web Describes symptoms, cause, and resolution related to
a problem along with a list of affected applications.
Typically one page per update. Available from
Microsoft Support.

 Superimposing information in this setting provides several benefits. It integrates
disparate and distributed information without replication. It also allows structured
querying over base information of varying structures. For example, an administrator
can ask to see a timeline of errors on computer C2 since the last update related to
Microsoft Outlook® was applied on that computer. Answering this query requires
looking up the support pages to discover which updates apply to Outlook, choosing
the last such update on computer C2, and looking up error reports on computer C2
that occurred after that update. The query returns the date, time, and description of
relevant errors. Figure 4 shows an ER schema (drawn using a UML-like syntax) for
SSIB. We have shown in bold the names of the schema elements that have associated
marks.

Relates to

Observation
ObsDateTime
Text
User

OSUpdate
Title
Description
Reason

Computer
Name

Relates to

Applied on

Logged on

Error
ErrDateTime
Source
Description
Notes

Occurs on

Application
Name

Applies toRuns on

UpdDateTime

Event

EvDateTime
Kind
Source
Description

Fig. 4. An ER schema for SSIB. Names in bold indicate constructs with associated marks. All
relationships are many-to-many; all entities have a key attribute named ID (not shown).

 Explicitly Representing Superimposed Information in a Conceptual Model 131

The representation of marks in an ER model raises several questions. Can a mark
be associated with an attribute? How many marks can be associated with a given
entity, relationship, or attribute? Is the excerpt for a mark associated with an attribute
treated as the value for the attribute? We present next a series of patterns that allow
these kinds of details to be specified.

3 Representing Marks in ER

Our framework for representing marks explicitly in superimposed ER schemas is
based on a general framework for relationship patterns [12] (recurring problems,
solutions, or needs in establishing data relationships). We define an entity Mark to
model the mark abstraction. It has a key attribute named ID. (We omit describing its
other attributes for brevity.) We show the use of marks in the ER schema using rela-
tionships involving the Mark entity. We define a relationship pattern for each type of
schema element with which marks can be associated: entity, entity attribute, relation-
ship, and relationship attribute. Finally, deriving attribute values from the text excerpt
of a mark forms another pattern.

The patterns we define have the following informal signature: <pattern>:<type>
(<parameters>), where <pattern> is the name of the pattern, <type> is the name of
the relationship type as chosen by the developer, and <parameters> indicate attribute
names, when they are needed by the pattern. All relationship patterns we define in
this section relate entities of the Mark type to entities of non-Mark (that is, regular)
types. We call such regular entity types in an SI ER model SI entity types. Regular
ER relationships are allowed among regular SI entities, as usual. The examples we
use in this section and the next section are based on the ER schema in Figure 4.

3.1 Associating Marks with Entities

The EMark pattern associates marks with regular entities. Figure 5(a) shows the use of
this pattern where a mark is associated with an Event entity. EMark is the name of the
relationship pattern, EventDetail is the relationship type. Note that Logged on is a
regular ER relationship type.

Signature: EMark:<type>. A relationship of EMark pattern has no parameters.
Semantics: The EMark pattern associates marks with entire entities, not with any

particular set of entity-attributes. Instead, the developer interprets this association. For
example, the developer might incorporate the excerpt extracted from the mark in the
user interface.

Constraints: The developer can choose the cardinality constraints on EMark rela-
tionships. The schema in Figure 5(a) restricts the cardinality of EventDetail to 1 be-
cause each event has just one associated mark in the SSIB application.

3.2 Associating Marks with Entity Attributes

The AMark pattern associates marks with attributes of an entity. Figure 5(b) shows two
relationship types that associate marks with attributes. The relationship type Error

132 S. Murthy, L. Delcambre, and D. Maier

(a)

(b)

(c)

Fig. 5. (a) Associating marks with an entity (b) Associating marks with entity attributes (c)
Deriving an entity attribute’s value from a mark’s excerpt

Details associates the attribute Description with a mark. The relationship type Er-
rorTime associates the attribute ErrDateTime with a mark. Occurs on is a regular ER
relationship type.

Signature: AMark:<type>(a1, a2, …, an), where a1, a2, …, an (n>0) are distinct at-
tributes of an SI entity.

Semantics: All attributes specified are associated with the same mark (or the same
set of marks if cardinality is greater than one). Associating a mark with an attribute
does not mean its value is obtained using the mark. Rather, it allows an SA to access
and display the excerpt of the associated mark(s), e.g., as a “tool tip” displayed upon
mouse rollover, in addition to having an attribute value stored in the superimposed
layer. An SA might also use the associated mark for navigation to the base layer.

Constraints: An AMark relationship type is always a binary relationship between
an SI entity type and the Mark entity type. At least one attribute must be listed; the
AMark pattern also allows for a single mark or a set of marks to be associated with
several attributes. The SSIB schema in Figure 5(b) restricts the cardinality of rela-
tionships ErrorDateTime and ErrorDetails to exactly one mark.

3.3 Deriving Attribute Values from Excerpts

We define the pattern AExcerpt to derive an attribute’s value from the excerpt of a
mark. Figure 5(c) shows a relationship type in the AExcerpt pattern to set the value of
the attribute Description as the excerpt of a mark.

Kind
Source
Description

EMark:EventDetail
Computer

Name

Mark

ID

EvDateTimeLogged on

1

Event

Mark

ID

OSUpdate
Title
Description
Reason

AExcerpt:UpdateDesc(Description)

Occurs on Computer

Name
Mark

ID

Error

ErrDateTime
Source
Description
Notes

AMark:ErrorDetails(Description)

AMark:ErrorTime(ErrDateTime)

1

1

1

 Explicitly Representing Superimposed Information in a Conceptual Model 133

Signature: AExcerpt:<type>(a), where a is an attribute of an SI entity.
Semantics: The value of the attribute associated with a mark using this pattern is a

function of the text excerpt obtained from the mark. We assume appropriate type
conversion is provided by an excerpt function that retrieves the excerpt from a
mark. The context agents SPARCE uses to interact with base applications implement
the excerpt function.

Constraints: Like an AMark relationship type, an AExcerpt relationship type is al-
ways binary: between an SI entity type and the Mark entity type. The attribute in an
AExcerpt relationship type can be associated with at most one mark (because we as-
sume that attributes in the ER model are single-valued).

3.4 Associating Marks with Relationships

We use the RMark pattern to associate marks with relationships. Figure 6(a) shows a
relationship type of this pattern associating zero or more marks with relationships of
type Applies to. We first aggregate the relationship type Applies to (indicated by a
dashed rectangle around the relationship type [15]) to clarify that marks are associated
with a relationship. We use the term anchored relationship [3] to refer to the relation-
ship with which marks are associated. In Figure 6(a), the relationship Applies to is
anchored.

(a)

(b)

Fig. 6. (a) Associating marks with a relationship (b) Associating marks with a relationship
attribute

UpdDateTime

RAMark:UpdateLog(UpdDateTime)

Computer

Name

OSUpdate

Title

Description

Reason
Applied on

Mark

ID

RMark:Application

Application

Name

Computer

Name

OSUpdate

Title
Description
Reason

Applies to AppliedOn

Mark

ID

1

134 S. Murthy, L. Delcambre, and D. Maier

Signature: RMark:<type>. A relationship of RMark pattern has no parameters.
Semantics: The RMark pattern associates marks with entire relationships.
Constraints: A relationship of any type may be anchored. There are no constraints

on the degree of the anchored relationship type, but an RMark relationship itself is
always binary (that is, it relates an aggregated relationship type with the Mark entity
type). There are no constraints on the cardinality of either relationship type. Both
relationship types may define attributes.

3.5 Associating Marks with Relationship Attributes

The RAMark pattern associates marks with attributes of a relationship. Figure 6(b)
shows a relationship type that associates marks with the attribute UpdDateTime of an
Applies to relationship. We aggregate the anchored relationship type Applied on to
clarify that marks are associated with a relationship’s attribute.

Signature: RAMark:<type>(a1, a2, an), where a1, a2, …, an (n>0) are distinct attrib-
utes of a relationship.

Semantics and Constraints: The RAMark pattern imposes the same constraints as
the RMark pattern. The semantics of the RAMark pattern are similar to that of the
AMark pattern.

4 Generating Relational Schemas

We now define procedures to convert relationship types defined using the patterns
described in Section 3 to relational schemas. We assume the Mark entity type is repre-
sented as the relation Mark with key attribute ID. We convert relationship types of
patterns EMark and AMark to the relational model using the procedure defined by El-
masri and Navathe [8] (called the traditional procedure in the rest of this section).
Figure 7(a) shows the SQL-DDL statement generated as a result of converting the
Event entity type and the EventDetail relationship type of Figure 5(a). Figure 7(b)
shows the DDL statement generated as a result of converting the Error entity type and
the AMark relationship types of Figure 5(b).

We convert relationship types of pattern AExcerpt in two steps. First, we convert
the relationship type and the related entity types using the traditional procedure and
remove fields that correspond to attributes whose values will be text excerpts. This
step generates a DDL statement for a stored relation. Next we define a view over this
stored relation to expose the text excerpts and the values of attributes not involved in
the AExcerpt relationship type.

Figures 7(c) and 7(d) show the DDL definitions generated for the AExcerpt rela-
tionship type of Figure 5(c). The attribute AExcerpt_Desc in the stored relation
represents the mark whose excerpt is the description of an OS Update. The traditional
conversion procedure would include an attribute Description in the stored relation,
but our conversion procedure removes that attribute. The view definition (Figure 7(d))
includes a call to a function excerpt to retrieve the text excerpt from the mark. We
implement this function as a user-defined function, a facility typically available in
RDBMSs. The user-defined function invokes the function excerpt of the appropriate
SPARCE context agent.

 Explicitly Representing Superimposed Information in a Conceptual Model 135

CREATE TABLE Event
(ID Integer NOT NULL PRIMARY KEY,
 EvDateTime Timestamp,
 Kind CHAR(5),
 Source VARCHAR(25),
 Description VARCHAR(255),
 Emark_EventDetail Integer
REFERENCES Mark(ID))

CREATE TABLE Error
(ID Integer NOT NULL PRIMARY KEY,
 ErrDateTime Timestamp,
 AMark_Error_DT Integer

REFERENCES Mark(ID),
 Source VARCHAR(25),
 Description VARCHAR(255),
 AMark_Error_Desc Integer
 REFERENCES Mark(ID),
 Notes VARCHAR(255))

(a) (b)
CREATE TABLE Stored_OSUpdate
(ID Integer NOT NULL PRIMARY KEY,
 Title VARCHAR(100),
 AExcerpt_Desc Integer
REFERENCES Mark(ID),

 Reason VARCHAR(255))

CREATE VIEW OSUpdate
(ID, Title, Description, Reason)
 AS
 SELECT ID, Title,
 excerpt(AExcerpt_Desc), Reason
 FROM Stored_OSUpdate

(c) (d)

Fig. 7. Example relational schemas for (a) EMark (b) AMark; (c) Stored relation for AExcerpt
(d) View definition for AExcerpt

To convert a relationship type of pattern RMark, we first convert the anchored rela-

tionship type using an appropriate procedure: that relationship could be a regular ER
relationship between SI entities, or it could be a relationship of any of the five pat-
terns described in Section 3. For example, we use the traditional procedure to convert
the relationship type Applies To in Figure 6(a). If more than one mark is allowed for
an RMark relationship, we create a new relation and perform the following actions.

1. Add the key attributes of the relation that captures the anchored relationship type;
define the attributes as a foreign key.

2. Add a foreign key attribute that references the attribute Mark.ID.
3. Add attributes of the RMark relationship.
4. Define the primary key as the set of foreign key attributes.

If the RMark relationship can have at most one mark, we perform only Actions 2
and 3 but with the relation that corresponds to the anchored relationship type.

Figure 8(a) shows the DDL definitions generated for the RMark relationship type of
Figure 6(a). The relation Stored_OSUpdate referenced in the definitions is shown in
Figure 7(c). The relation AppliesTo captures the AppliesTo relationship type (gener-
ated using the traditional procedure). The relation RMark_Application captures the
RMark relationship type. This relation is required because the example schema allows
many marks to be associated with each Applies To relationship.

Converting RAMark relationship types is similar to converting RMark relationship
types. Figure 8(b) shows the schema generated for the RAMark relationship type of
Figure 6(b). The relation AppliedOn captures the Applied On relationship type (gen-
erated using the traditional procedure). An additional relation is not needed to capture
the RAMark relationship type because the example schema allows at most one mark to
be associated with each Applied On relationship.

136 S. Murthy, L. Delcambre, and D. Maier

CREATE TABLE Application
(ID Integer NOT NULL PRIMARY KEY, Name
 VARCHAR(256))
CREATE TABLE AppliesTo
(UID Integer REFERENCES Stored_OSUpdate(ID),
 AID Integer REFERENCES Application(ID),
 PRIMARY KEY (UID, AID))
CREATE TABLE RMark_Application
(UID Integer REFERENCES Stored_OSUpdate(ID),
 AID Integer REFERENCES Application(ID),
 RMarkID Integer REFERENCES Mark(ID),
 PRIMARY KEY (UID, AID, RMarkID))

(a)
CREATE TABLE Computer
(ID Integer NOT NULL PRIMARY KEY, Name VARCHAR(256))

CREATE TABLE AppliedOn
(UID Integer REFERENCES Stored_OSUpdate(ID),
 CID Integer REFERENCES Computer(ID),
 UpdDateTime As Timestamp,
 RAMark_UpdateLog Integer REFERENCES Mark(ID), PRIMARY KEY (UID, CID))

(b)

Fig. 8. Relational schemas for (a) RMark relationship type and (b) RAMark relationship type

5 Bi-level Querying

We now demonstrate the ability to express bi-level queries over the relational schema
automatically generated from the conceptual schema expressed using our framework.
The example queries we show demonstrate the ability to express structured queries
over combined SI and base information, though base information might be heteroge-
neous, possibly not even in a database, and distributed.

Query 1: List all updates related to security.

SELECT * FROM OSUpdate WHERE Description LIKE 'Security%'

The descriptions of OS Updates are automatically obtained from the base layer
when the view OSUpdate is built, because the view definition includes calls to the
user-defined function excerpt (see Figure 7(d)).

Query 2: List errors related to the application MS Word (see Figure 7(b)).

SELECT ErrDateTime, Source, Description, Notes
FROM Error
WHERE excerpt(AMark_Error_Desc) LIKE '%word.exe%'

This query uses the function excerpt at query-execution time to get the text ex-
cerpt from the mark associated with the Description attribute. It returns the stored
attribute values if the excerpt retrieved contains the string 'word.exe'.

The explicit use of the function excerpt is avoided (as in Query 1) if the De-
scription attribute is conceptually modeled using the AExcerpt pattern instead of
the AMark pattern.

Query 3: Show a timeline of errors on computer C2 since the last update related to
MS Outlook was applied on that computer. (A query we first presented in Section 2.)

 Explicitly Representing Superimposed Information in a Conceptual Model 137

Assuming the relation OccursOn represents the relationship type Occurs On, the
required SQL query would be as follows:

SELECT ErrDateTime, Description
FROM Error JOIN OccursOn JOIN Computer C
WHERE C.Name = 'C2' AND ErrDateTime > ANY (
 SELECT MAX(UpdDateTime)
 FROM OSUpdate JOIN AppliesTo JOIN Application A
 JOIN AppliedOn
 WHERE C.ID = AppliedOn.CID AND A.Name LIKE '%Outlook%'
)

This query returns the date, time, and description of errors as it is stored in the rela-
tion Error. Instead, one could use the function excerpt to retrieve those values
from the base layer. Again, if these attributes are modeled using the AExcerpt pattern,
the query shown (as is) would automatically return excerpts from the base layer.

6 Related Work

A superimposed schematic [3], our first SA with an ER-like schema, supports naviga-
tion through base documents, based on the superimposed ER model. Each entity and
relationship in the superimposed schematic can be anchored but only with at most one
mark. Relationships are restricted to be binary and to have no attributes. Marks asso-
ciated with an attribute are always assumed to take their value from the corresponding
excerpt. Our approach here generalizes the model used for superimposed schematics
by removing the limitations on cardinality, allowing relationship attributes, and by
allowing marks to be associated with attributes. We also allow the SA developer to
choose whether or not the excerpt is to be used as the attribute value of the attribute(s)
with which the mark is associated.

Marks associated with ER schema elements are similar to the “hinges” of Feyer
and Thalheim [9]. In their model, a hinge relates concepts in the “association dimen-
sion” of a schema. Marks represented using the AExcerpt pattern could be seen as
“cooperation hinges” as they enable cooperative views; marks of other patterns could
be seen as “full hinges” as they only establish references from the SI layer to the base
layer. Conceptually, marks are “mono-directional hinges” in the latter case, but as
shown in Query 2 in Section 5, an SA can explicitly invoke functions in context
agents to obtain context information back from the base layer.

The hypertext modeling community has considered modeling structure, navigation
and presentation aspects of hypertext. The work presented in this paper can be related
to structure sub-models that Casanova and others [5] have described. The mark ab-
straction and its use to reference base selections from SI is similar to the concept of
anchors and links that Garzotto and others [10] have described.

The framework presented in this paper extends the ER model. Many other re-
searchers have extended the ER model to make it more expressive. For example,
Elmasri and Navathe [8] have extended it to support generalization and specialization;
Tanaka and others [16] have extended it to capture application semantics; Cysneiros
and others [6] have extended it to capture non-functional requirements; and Thalheim
[17] and others have done extensive work defining and formalizing the Higher-Order

138 S. Murthy, L. Delcambre, and D. Maier

Entity Relationship (HERM) model for database design. But, to the best of our
knowledge, none of these efforts consider extensions to support marks in SI.

UML associations can model EMark relationship types. And UML Derived Attrib-
utes in conjunction with invariants specified in the Object Constraint Language [1]
can model AMark and AExcerpt relationship types, but they are not as concise as our
solution for ER.

7 Conclusions and Future Work

We have presented a framework to explicitly represent marks in ER schemas using a
set of conventions to augment the semantics of existing ER model constructs. A su-
perimposed application that uses an ER schema with these conventions can easily
access the excerpt (and associated context) for mark; can invoke base applications to
navigate to marks, as desired; and can readily express SQL queries over an SI source
and all of the associated, marked base information. Using SQL as the bi-level query
language is appropriate for SI expressed in an ER model.

Currently, we use a single entity type Mark to represent marks. We would like to
investigate the potential for additional typing of marks, according to either the base
type or domain-specific types. Domain-specific types can abstract over base types, yet
support additional semantics (and additional behavior) specific to a domain. For ex-
ample, marks into patent applications can be defined as a domain-specific type, such
as claim, regardless of the format (such as HTML or PDF) of the patent documents.
We also plan to explore the introduction of marks into other conceptual models and
development of additional means to query and navigate SI and its associated BI.

References

1. UML 2.0 OCL Specification. 2005. Object Management Group, Inc.
2. Baru, C., Gupta, A., Ludäscher, B., Marciano, R., Papakonstantinou, Y., Velikhov, P.,

Chu, V. XML-Based Information Mediation with MIX. In proceedings of SIGMOD 1999.
1999. Philadelphia, PA. p. 597-599.

3. Bowers, S., Delcambre, L., Maier, D. Superimposed Schematics: Introducing E-R Struc-
ture for In-Situ Information Selections. In proceedings of ER 2002. 2002. Tampere,
Finland. p. 90–104.

4. Carey, M.J., Haas, L.M., Schwarz, P.M., Arya, M., Cody, W.F., Fagin, R., Flickner, M.,
Luniewski, A.W., Niblack, W., Petkovic, D., Thomas, J., Williams, J.H., Wimmers, E.L.
Towards heterogeneous multimedia information systems: The Garlic approach. 1994.

5. Casanova, M.A., Tucherman, L., Lima, M.J.D., Netto, J.L.R., Rodriguez, N.R., Soares,
L.F.G. The Nested Context Model for Hyperdocuments. In proceedings of Hypertext
1991. 1991. San Antonio, Texas. p. 193-201.

6. Cysneiros, L.M., Leite, J.C., Neto, J.M. A Framework for Integrating Non-Functional Re-
quirements into Conceptual Models. In Requirements Engineering. 2001. 6(2). p. 97-115

7. Delcambre, L., Maier, D., Bowers, S., Weaver, M., Deng, L., Gorman, P., Ash, J., Lavelle,
M., Lyman, J. Bundles in Captivity: An Application of Superimposed Information. In pro-
ceedings of ICDE 2001. 2001. Heidelberg, Germany. p. 111-120.

 Explicitly Representing Superimposed Information in a Conceptual Model 139

8. Elmasri, R., Navathe, S.B. Fundamentals of Database Systems. 4th ed. 2003: Addison-
Wesley. ISBN: 0321122267.

9. Feyer, T., Thalheim, B. Many-Dimensional Schema Modeling. In proceedings of Proceed-
ings of the 6th East European Conference on Advances in Databases and Information Sys-
tems. 2002. p. 305-318.

10. Garzotto, F., Mainetti, L., Paolini, P. HDM2: Extending the E-R Approach to Hypermedia
Application Design. In proceedings of ER '93. 1993. Arlington, Texas. p. 178-189.

11. Maier, D., Delcambre, L. Superimposed Information for the Internet. In proceedings of
WebDB 1999. 1999. Philadelphia, PA. p. 1-9.

12. Murthy, S., Maier, D. A Framework for Relationship Pattern Languages. Unpublished.
2005. Portland State University. http://sparce.cs.pdx.edu/pubs/relationshipPatternLanguages.pdf.

13. Murthy, S., Maier, D., Delcambre, L. Querying Bi-level Information. In proceedings of 7th
International Workshop on the Web and Databases. 2004. Paris, France. p. 7-12.

14. Murthy, S., Maier, D., Delcambre, L., Bowers, S. Putting Integrated Information in Con-
text: Superimposing Conceptual Models with SPARCE. In proceedings of First Asia-
Pacific Conference of Conceptual Modeling. 2004. Dunedin, New Zealand. p. 71-80.

15. Ramakrishnan, R., Gehrke, J. Database Management Systems. Third ed. 2003: McGraw
Hill. ISBN: 0072465638.

16. Tanaka, A.K., Navathe, S.B., Chakravarthy, S., Karlapalem, K. ER-R: An Enhanced ER
Model with Situation-Action Rules to Capture Application Semantics. In proceedings of
10th International Conference on Entity-Relationship Approach (ER'91). 1991. San Mateo,
California. p. 59-75.

17. Thalheim, B. Entity-Relationship Modeling, Foundations of Database Technology. 2004:
Springer. ISBN: 3540654704.

Preference Functional Dependencies for
Managing Choices�

Wilfred Ng

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

Hong Kong
wilfred@cse.ust.hk

Abstract. The notion of user preference in database modeling has re-
cently received much attention in advanced applications, such as person-
alization of e-services, since it captures the human wishes on querying
and managing data. The paradigm of preference-driven choices in the
real world requires new semantic constraints in modelling. In this paper,
we assume preference constraints can be defined over data domains and
thus the assumption gives rise to preference relations as a special case of
ordered relations over schemas consisting of the preference, preference-
dependent and preference-independent attributes. We demonstrate that
Lexicographically Ordered Functional Dependencies (LOFDs) can be
employed to maintain the consistency of preference semantics embed-
ded in preference database, since prioritized multiple preferences can be
represented. We thus define a useful semantic constraint in terms of a set
of LOFDs, called Preference Functional Dependencies (PFDs), in order
to capture the semantics of the preference ranked data. We exhibit a
sound and complete axiom system for PFDs, whose implication problem
is shown to be decidable in polynomial-time. We also confirm the exis-
tence of Armstrong preference relations for PFDs, a fundamental result
related to the practical use of PFDs in database design.

1 Introduction

Preference is natural in real world. When searching for items to be purchased
over the internet, customer wishes and preferences are important, since they
relate to managing of goods and developing selling tactics of a business corpo-
ration. It is a frustrating experience if one encounters many times some query
results like “no match” or “sorry, try again with some other choices”. The tradi-
tional constraints like functional dependencies model an exact world where the
semantics capture the hard fact only, rather than the constraints specified by a
list of user preferences. We share the same idea with [5,6] that the fundamental
nature of different preferences in the form of “I like A better than B” can be
modelled by a set of orderings defined over data.
� This work is partially supported by RGC CERG under grant number

HKUST6185/03E.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 140–154, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Preference Functional Dependencies for Managing Choices 141

We assume here that the data domains of the relational data model are linearly
ordered and call the extended model the ordered relational model [11,12]. Within
the model, we have formalised the notion of Lexicographically Ordered Functional
Dependencies (LOFDs) being satisfied in an ordered database and tackled their
implication problem in [10]. The semantics of LOFDs are defined by means of the
lexicographical orderings on the domains associated with the involved attributes,
which resemble the way that words are arranged in a dictionary. For example,
the LOFD 〈POST RANK, WORKING Y EARS〉 � SALARY can capture
the preference constraint that in a company the higher salary is preferably given
for those employees who are in higher post rank, or if they are at the same rank
but are more experienced. Here there are two preferences are involved, namely,
POST RANK and WORKING Y EARS; the former preference is considered
more important than the latter. The left-hand side attributes capture the notion
of prioritized preference (cf. Definition 6 in [5]), i.e. POST RANK is consid-
ered more important than WORKING Y EARS and WORKING Y EARS is
respected only where POST RANK is the same.

In this paper we apply LOFDs in the context of preference relations and
view preference relations as a special class of ordered relations. The underlying
idea is that preference is inherent to the ordering relationship between the data
projected onto the preference (e.g. POST RANK and WORKING Y EARS)
and preference-dependent (e.g. SALARY) attributes is important to the de-
sign of preference databases. We classify the attributes in a preference relation
schema according to their preference nature into three categories of the prefer-
ence, preference-dependent and preference-independent attributes. Such a classifi-
cation of attributes allows us to express the semantics of a Preference Functional
Dependency (PFD) in terms of the satisfaction of a corresponding set of LOFDs
in a relation, each of them with its left-hand side restricted to a sequence of
prioritized preference attributes and its right-hand side restricted to a single
preference-dependent attribute in the canonical form.

A PFD is a semantic constraint that arises naturally from preference relations,
since most preference data is dependent on preference in a monotonic man-
ner. For example, the PFD 〈PRICE, CATEGORY, POWER, MILEAGE〉
→
MIDDLE CLASS states the fact that when some middle class customers
choose a second-hand car in a market, the complex preference can be priori-
tized in terms of the sequence of selling price, category, engine power, and used
mileage. Note that the order of the attributes here may not follow the alphabeti-
cal or numerical order. For example, the engine power preference may be defined
as {3500cc <p 1500cc <p 3000cc <p 2000cc}, where <p captures the meaning of
“is preferable to”.

The main result of this paper is fundamental. We establish a simple, sound
and complete axiom system for PFDs and show that the implication problem
for PFDs is decidable in polynomial-time. This result is significant because it
implies that, in principle, by using our established system all possible PFDs
being logically implied by a given set of PFDs can be effectively generated in
polynomial-time. The simplicity of the system for PFDs is also important from

142 W. Ng

the point of view of usability, since it provides different categories of database
users with impetus for accepting and applying PFDs in preference data mod-
elling. In addition, the axiom system provides us with a basis to find a more
efficient algorithm for solving the implication problem of PFDs.

In order to incorporate PFDs into preference database design, we tackle the
problem whether Armstrong relations exist for PFDs. The importance of Arm-
strong relations for FDs in the process of database design is well-recognised in
conventional database design [9,2]. In our case, Armstrong preference relations
exist and can also be served as example relations in the design process. They
help the database designers to gain a better insight of PFDs needed in modelling
the preference data in an enterprise.

The rest of the paper is organised as follows. In Section 2 we review some
related work. In Section 3 we clarify the notion of the extension of linear order
to the Cartesian product of linearly ordered sets and then define the ordered
relational model. In Section 4 we present the chase rules for LOFDs and, using
an extended notion of tableaux for LOFDs, show that the chase is sound and
complete for LOFDs. In Section 5 we illustrate the uses of LOFDs and formally
define PFDs in preference relations. A sound and complete axiom system is then
presented for PFDs. We also show that Armstrong relations exist for PFDs. In
Section 6 we give our concluding remarks.

2 Related Work

There are a number of different approaches for defining constraints as a funda-
mental component in databases. Functional Dependencies (FDs) [2] are essen-
tially the kinds of equality generating dependencies. It is worth mentioning that
in [3,4] the axiom system for partial order dependencies is co-NP, which limits
the usability of such kind of order comparison dependencies. However, we impose
a preference partial order to override a linearly ordered domain whenever there
is a conflict and thus, the linear order assumption simplify most of the complex
results.

Comparing to the body of work on data dependencies in databases in literature
[2,7,8], we believe that our definition of PFDs are a novel constraint that is
useful in preference relations for three main reasons. First, in our data model
we consider the fundamental feature that linear ordering is an integral part of
simple preference domains from which to derive complex preferences in a relation
in a straightforward manner. Second, a PFD captures the semantics of ordering
relationships that arises naturally from the interaction between preference and
preference-dependent data. Third, the concept of PFDs is founded on the formal
notion of lexicographical ordering on preference domains, which paves the way
to develop more advanced preference constraints.

Soft constraints in the form of numerical preferences have been used in many
database and information retrieval applications [1,8]. Basically, the usual nu-
merical order are used for ranking preference items. For example, in the area of
full-text searching [1,13], where keywords can be understood as implicit score

Preference Functional Dependencies for Managing Choices 143

preferences indicating their relevance. The combining function for ranking is
typically some scalar product taking the cosine function commonly used in the
vector space model from information retrieval [13]. Preferences are receiving at-
tention as DBMSs need to provide better information service. Preference SQL
[6] has been extended by a “preferring” clause that allows user to specify soft
constraints reflecting complex preferences.

3 The Ordered Relational Model

We assume throughout that sequences consist only distinct attributes. For any
two sequences X and Y , X ∼ Y denotes the fact that X and Y have the same
elements. XY denotes the concatenation of X and Y , where XY = X(Y −X).
A prefix of X , denoted by pre(X), is a sequence of the form 〈A1, . . . , Am1〉,
where X = 〈A1, . . . , Am〉 and 1 ≤ m1 ≤ m. A shuffle of X and Y , denoted
by shu(X, Y), is defined as a sequence of the form 〈C1, . . . , Cm+n〉, where there
exists two subsequences of attributes 〈Ci1 , . . . , Cim〉 = X and 〈Cj1 , . . . , Cjn〉 =
Y , and the order of the attributes in X and Y is preserved in shu(X, Y).

As usual a linear ordering ≤ on a set S is a binary relation on S which satisfies
the conditions of reflexivity, anti-symmetry, transitivity and linearity. A linearly
ordered set (or simply an ordered set) is a structure 〈S,≤〉. We assume the usual
predicates, = and <, still applies to ordered sets. We let D1, . . . , Dn be n ordered
sets, t be an element in the Cartesian product S = D1×· · ·×Dn, and t[i] be the
ith coordinate of t. We now define lexicographical ordering in order to capture
the semantics of data.

Definition 1. (Lexicographical Ordering) Let t1, t2 ∈ S. A lexicographical
ordering on S is a linear ordering ≤lex

S (or simply ≤S whenever it is clear from
the context) such that t1 ≤S t2 if either (1) there exists k with 1 ≤ k ≤ n such
that t1[k] <Dk

t2[k], and for all 1 ≤ i < k, t1[i] = t2[i], or (2) for all 1 ≤ i ≤ n,
t1[i] = t2[i].

Lexicographical ordering is a fundamental property of many primitive data types,
for example the alphabetical ordering over the domain of characters. It is easy to
see that the preference of “the earlier the better” can be modelled as an ordering
of the domain DATE, which is called a chronological ordering.

Let D be a countably infinite set of constant values and ≤D be an ordering on
D. We assume that all attributes share the same domain D. A relation schema
R = {A1, . . . , Am}, is a non-empty finite subset of a countably infinite set of
attributes U . A database schema R is a non-empty finite set of relation schemas.
A tuple t over R is a member of Dm and t[Ai] denotes the ith coordinate of t,
i.e. the projection of t onto the attribute Ai. A relation r defined over R is a
finite set of tuples over R. An database over R = {R1, . . . , Rn} is a finite set of
relations d = {r1, . . . , rn} where by convention ri is a relation over Ri.

We also make two assumptions in our model.
First, given a data domain, D = {a, b, c}, there is a background ordering (linear

ordering) such as alphabetical ordering or numerical ordering on the domains

144 W. Ng

associated with the attributes present in the underlying schema. In this case we
have the background ordering {a <bg b <bg c} over D.

Second, apart from the standard ordering assumption, according to the pref-
erence (modelled as a set of irreflexive and transitive ordered pairs) such as
P = {c <p a, c <p b} used in an application, we can declare one or more
preference orderings which override the default standard ordering. A preference
ordering is also a linear ordering formed by imposing all the preference on the
background ordering. For example, if the background ordering of ≤bg is used,
then the preference ordering arising from P is given by {c <p a <p b} in which
(a <p b) �∈ P is derived from a <bg b.

These two assumptions are found to be useful in many database applications.
The second assumption simplify some technical complications in our subsequent
discussion, since all comparison is defined. From the application view point,
in most cases we also need to present the ranked (i.e. linearly ordered) result
according to user preferences. (Readers may refer to [11,12] for more detailed
discussion of various notions of orderings in our model and their applications.)

4 Lexicographically Ordered Functional Dependencies

In this section, we present lexicographically ordered functional dependency and
a chase procedure to maintain its consistency over an ordered relation.

The semantics of a Lexicographically Ordered Functional Dependency (LOFD)
with two or more attributes on either the left- or right-hand side is defined ac-
cording to lexicographical orderings on the Cartesian product of the underlying
domains of the attributes in the LOFD.

Definition 2. (Lexicographically Ordered Functional Dependency) A
lexicographically ordered functional dependency (or simply an LOFD) over a re-
lation schema R, is a statement of the form R : X � Y (or simply X � Y
whenever R is understood from the context), X, Y ⊆ R are sequences of at-
tributes and X �= ∅. An LOFD, X � Y , is satisfied in a relation r over R,
denoted by r |= X � Y , if for all t1, t2 ∈ r, t1[X] ≤lex

X t2[X] implies that
t1[Y] ≤lex

Y t2[Y].

We denote min(a, b) and max(a, b) the minimum and maximum of the values a
and b, respectively. For any two distinct tuples t1, t2 ∈ r and some A ∈ R, the
equate of t1 and t2 on A, denoted as equate(t1[A], t2[A]), is defined by replacing
both t1[A] and t2[A] by min(t1[A], t2[A]); the swap of t1 and t2 on A, denoted as
swap(t1[A], t2[A]), is defined by replacing t1[A] by min(t1[A], t2[A]) and t2[A] by
max(t1[A], t2[A]). We now extend the classical chase defined over conventional
relations with respect to FDs [2] to ordered relations with respect to LOFDs.

Definition 3. (Chase Rules for LOFDs) Let t1 and t2 be two tuples in r
such that t1[X] ≤lex

X t2[X] but t1[Y] �≤lex
Y t2[Y], A be the first attribute in X

such that t1[A] �= t2[A], if such an attribute exists, and B be the first attribute
in Y such that t1[B] �= t2[B], then the chase rules for the LOFD X � Y is
defined by the following two rules:

Preference Functional Dependencies for Managing Choices 145

1. Equate rule: if t1[X] = t2[X] but t1[B] �= t2[B], then equate(t1[B], t2[B]);
2. Swap rule: if t1[A] < t2[A] but t2[B] < t1[B], then swap(t1[B], t2[B]), or if

t2[A] < t1[A] but t1[B] < t2[B], then swap(t1[A], t2[A]).

The said chase rules cater for all of the possible cases when there are two tuples
in a relation violating X � Y (see [10] for details). We now give the pseudo-code
of an algorithm designated CHASE(r,F), which applies the chase rules given
in Definition 3 to R for as long as possible, and returns the resulting relation r
over R.

Algorithm 1 (CHASE(r, F))
1. begin
2. Result := r = 〈t1, . . . , tn〉 ;
3. Tmp:= ∅;
4. while Tmp �= Result do
5. Tmp := Result;
6. if ∃X � Y ∈ F, ∃ tp, tq ∈ Result such that tp[X] ≤lex

X tq[X]
but tp[Y] �≤lex

Y tq[Y]
7. then apply the appropriate chase rule to Result with

t1 = tmin(p,q) and t2 = tmax(p,q);
8. end while
9. return Result;
10. end.

It is easy to verify that CHASE(r,F) in Algorithm 1 satisfies F, which can be
computed in preference polynomial in the sizes of r and F. In order to provide
a proof procedure for LOFDs, we need to define the notion of ordered variable
domains as follows. The variable domain of a relation schema R, denoted by
vdom(R), is the finite set {l1, . . . , lm, h1, . . . , hm}, where m = | R |. The
variables li and hi with i ∈ {1, . . . , m} are called low ordered variables and high
ordered variables, whose ordering is given by li < hi.

Definition 4. (Template Relations for an LOFD) Let f be the LOFD
X � Y over R with | X |= n and | R |= m. We use two shorthand symbols, ui

and vi, to represent one of the following three cases: (1) ui = li and vi = li, (2)
ui = li and vi = hi, or (3) ui = hi and vi = li. A template relation (or simply a
template) with respect to f , denoted as rf , is a relation consisting of two tuples,
t1 and t2, whose underlying domain is vdom(R), such that it is equal to either
Γ0 or Γk shown in Figure 1 , where pre(X) = 〈x1, . . . , xk〉 for 1 ≤ k ≤ n.

We remark that in Definition 4, the symbols ui and vi represent three possibilities
of combinations of li and hi; it is easy to verify that the order of the upper bound
of the number of templates is O(3m), where m is the number of attributes in R.
Note that m is usually small for a relation schema in practice. We will also show

146 W. Ng

Γ0 =
X R − X

t1 l1 · · · ln un+1 · · · um

t2 l1 · · · ln vn+1 · · · vm

Γk =
x1 · · · xk−1 xk R − pre(X)

t1 l1 · · · lk−1 lk uk+1 · · · um

t2 l1 · · · lk−1 hk vk+1 · · · vm

Fig. 1. Template relations for an LOFD

in Theorem 3 that the complexity of chasing all the templates can be greatly
reduced when the templates are applied for PFDs.

A template can be viewed as a relation instance consisting of two tuples
by mapping values in D to ordered variables. We define tableaux, denoted by
Γf , to be the set of all template relations in Definition 4. The tableaux in our
case is different from that for FDs, which requires just a single template for
FDs (see Theorem 4.2 in [2]). The chase of Γf , denoted as CHASE(Γf , F),
is defined by CHASE(Γf , F) = {CHASE(rf , F) | rf ∈ Γf}. CHASE(Γf , F)
satisfies X � Y , denoted by CHASE(Γf , F) |= X � Y , if for all rf ∈ Γf ,
CHASE(rf , F) |= X � Y . Furthermore, CHASE(Γf , F) satisfies F, denoted
by CHASE(Γf , F) |= F, if for all X � Y ∈ F, CHASE(Γf , F) |= X � Y .
We now re-state the main theorem for LOFDs (c.f. see the proof of Theorem 9,
page 550 in [10]), which shows that the chase procedure is a decidable, sound
and complete inference algorithm for LOFDs.

Theorem 1. Let F be a set of LOFDs over R and f be a LOFD X � Y . Then
CHASE(Γf , F) |= f if and only if F |= f . �

5 Applications of LOFDs in Preference Relations

In this section we discuss the applications of LOFDs in preference relations.
We define a novel constraint called Preference Functional Dependencies (PFDs)
and establish a corresponding set of axiom system that tackle the implication
problem of PFDs.

We adopt a natural view of a user preference, which is perceived as being a
declaration of a set of irreflexive and transitive ordered pairs specified by users
[5,6]. The specification includes non-numerical and numerical ranking methods.
This view affords us a general way to define preference as a sequence of ordered
domains of preference related attributes (or simply preference domains) and
further classify preference domains into simple and complex ones.

Definition 5. (Simple and Complex Preference Domains) A preference
domain is said to be simple if its data elements (i.e. preference items) are atomic,
meaning that the elements in such a domain are indivisible as far as the DBMS
is concerned. A complex preference domain is defined as a sequence of more than
one simple preference domain. The ordering of a complex preference domain is
defined according to the lexicographical ordering on the Cartesian product of
the involved simple preference domains.

Some examples of commonly used simple preference domains related to second
handed cars are PRICE RANGE = {(1000− 2000) < (2001 − 3000) < · · · <

Preference Functional Dependencies for Managing Choices 147

(9001− 10000)} and ENGINE POWER = {1500cc < · · · < 3000cc}. We can
also make use I(n) = {1, . . . , n} as simple domains to construct a complex pref-
erence domain, which provides a convenient way to model a complex preference
system as well as to define an arbitrary preference granularity (cf. the formation
of complex preference in [6]).

We assume that there is a partition on the countably infinite set of attributes U ,
which forms the three distinguished classes of the preference (PE), the preference-
dependent (PD), and the preference-independent (PI) attributes. Under this clas-
sification, preference is specified by choosing only the attribute names defined
in PE. Furthermore, we are able to differentiate the data elements that repre-
sent preference (such as PRICE RANGE or ENGINE POWER), that are de-
pendent on preference (such as FAMILY CHOICE or BUSINESS CHOICE), and
that are invariant with respect to preference (such as PAYMENT METHOD or
SALES MANAGER).

Definition 6. (Preference Relation Schema and Preference Relation)
Let PE, PD and PI be three distinguished non-empty subsets of U such that
they are pairwise disjoint. A preference relational schema R is a schema which
satisfies R ⊆ PE ∪PD∪PI and R∩PE �= ∅. A preference relation is a relation
r over R. For simplicity in notation, we denote R∩PE = RPE , R∩PD = RPD

and R ∩ PI = RPI . We call r a PE relation when R = RPE .

The following example illustrates that LOFDs are employed to maintain the
consistency of the data elements in different preference domains.

Example 1. Suppose a customer preference relation is defined by the prefer-
ence attributes PRICE RANGE, ENGINE POWER and MILEAGE. The
following LOFD, 〈PRICE RANGE, ENGINE POWER, MILEAGE〉 �
Y OUTH CHOICE, asserts the preference specification defined by PRICE
RANGE, ENGINE POWER and MILEAGE, such that the rank of
Y OUTH CHOICE (the choice of young customers) increases with first the
price range and then the engine power and finally the car milage. In addition,
we use the PREFERRING clause in [5] to express the preference terms, which
essentially impose the preference order over their corresponding data domains
given by (1) LOWEST(price), (2) HIGHEST(power) and (3) mileage AROUND
30000km.

A preference relation which is described by the preference attributes
PRICE RANGE and ENGINE POWER, where Y OUTH CHOICE =I(5)
(i.e. 5 possible ranks are used for labelling the preference of the second-hand
cars) is used for defining the overall preference ranking, as shown in Figure 2.
Note that some attributes are abbreviated in the table due to width limit. The
attributes SALES MANAGER and PAY MENT METHOD are preference-
independent attributes.

For the choice from middle class customers, we may need to change the prefer-
ence terms, which give rise to a different consistent preference relation as shown
in Figure 3. The preference order is (1) price AROUND $4000-$5000, (2) HIGH-
EST(power) and (3) LOWEST(mileage).

148 W. Ng

Next, we define an interesting class of LOFDs, called Preference Functional
Dependencies (PFDs), to order to capture the ordering semantics between the
two sets of values projected onto the preference and preference-dependent at-
tributes. A PFD is essentially an LOFD that has a sequence of the preference
attributes in the left-hand side, constituting a simple or a compound prefer-
ence domain, and the preference-dependent attributes in the right-hand side,
capturing the semantics of preference-dependent data.

Finally, for the choice of pensioner customers, we may have another set of
preference terms and also need to impose the new LOFD, 〈PRICE RANGE,
MILEAGE, ENGINE POWER〉 � PENSIONER CHOICE, which give
rise to a different consistent preference relation shown in Figure 4. The preference
order is (1) LOWEST(price), (2) mileage BETWEEN 20000km AND 30000km,
and (3) power AROUND 2000cc.

PRICE ENGINE MILEAGE Y OUTH MANAGER PAY MENT

1001-2000 1500cc 20000km 1 Jane Installment
4001-5000 3000cc 30000km 2 Jane Installment
4001-5000 2000cc 20000km 3 Ken Installment
4001-5000 1500cc 10000km 4 Ken Installment
5001-6000 3000cc 10000km 5 Larry Installment

Fig. 2. An example showing 〈PRICE RANGE, ENGINE POWER, MILEAGE〉
� Y OUTH CHOICE in a second-hand car preference relation

PRICE ENGINE MILEAGE MIDDLE CLASS MANAGER PAY MENT

1001-2000 1500cc 20000km 5 Jane Installment
4001-5000 3000cc 30000km 1 Jane Installment
4001-5000 2000cc 20000km 2 Ken Installment
4001-5000 1500cc 10000km 3 Ken Installment
5001-6000 3000cc 10000km 4 Larry Installment

Fig. 3. An example showing 〈PRICE RANGE, ENGINE POWER, MILEAGE〉
� MIDDLECLASS CHOICE in a second-hand car preference relation

PRICE ENGINE MILEAGE PENSIONER MANAGER PAY MENT

1001-2000 1500cc 20000km 1 Jane Installment
4001-5000 3000cc 30000km 3 Jane Installment
4001-5000 2000cc 20000km 2 Ken Installment
4001-5000 1500cc 10000km 4 Ken Installment
5001-6000 3000cc 10000km 5 Larry Installment

Fig. 4. An example showing 〈PRICE RANGE, MILEAGE, ENGINE POWER〉
� PENSIONER CHOICE in a second-hand car preference relation

Preference Functional Dependencies for Managing Choices 149

Definition 7. (Preference Functional Dependency) A Preference Func-
tional Dependency (PFD) over a preference relation schema R, denoted as R :
T
→ X (or simply T
→ X whenever R is understood from the context),
T ⊆ RPE is a sequence of the preference attributes and X ⊆ RPD is a se-
quence of the preference-dependent attributes. A PFD, T
→ X , is satisfied in a
preference relation r over R, if and only if, for all A ∈ X , r |= T � A.

From now on, we use F ′ = {T
→ A | T
→ X ∈ F and A ∈ X} to represent the
set of unary PFDs corresponding to F. The following proposition immediately
follows from Definition 7, which justifies the equivalence in semantics between F
and F ′.

Proposition 1. r |= F if and only if r |= F ′. �

An axiom system A for F is a set of inference rules (or simply rules) that can
be used to derive PFDs from F over R. We denote by F � f the fact that f is
derivable from F by a specified axiom system [2,10].

Definition 8. (Inference Rules for PFDs) Let F be a set of PFDs over R
and T1, T2 be subsets of RPE . The inference rules for PFDs are defined as follows:

(PFD1) Shuffle: If F � T1
→ X and F � T2
→ X , then F � shu(T1, pre(T2))
→
X .

(PFD2) Left Expansion: If F � T1
→ X , then F � T1T2
→ X .
(PFD3) Decomposition: If F � T1
→ X , then F � T1
→ Y , where Y ⊆ X .
(PFD4) Union: If F � T1
→ X and F � T1
→ Y , then F � T1
→ XY .

We remark that the axiom system comprising these rules is minimal, since the
four rules given in Definition 8 are primitive. The reflexivity rule is not applica-
ble for PFDs, since the preference attributes exist only in the left-hand side of
LOFDs. We still need the following inference rule to deal with the sequences
of attributes in the right-hand side of LOFDs, which can be derived from the
inference rules PFD3 and PFD4.

Proposition 2. The following inference rule is sound.

(PFD5) Permutation: If F � T1
→ X , then F � T1
→ X ′, where X ∼ X ′. �

We now show in next theorem that the axiom system comprising the inference
rules in Definition 8 is sound and complete for PFDs, holding in preference
relations. The underlying idea in this proof is first to assume that a PFD T
→ A
cannot be inferred from the axiom system, and then to present a relation as
a counter-example in which all the PFDs of F ′ hold except T
→ A (c.f. see
Theorem 3.21 in [2]). The result is significant since it indicates that the axiom
system can be employed as a theorem-proving tool for PFDs.

Theorem 2. The axiom system comprising from PFD1 to PFD4 is sound and
complete for PFDs.

150 W. Ng

Proof. It is easy to show that the inference rules from PFD1 to PFD4 are
sound. We now establish the completeness by showing that if F ′ �� T
→ A, then
F ′ �|= T
→ A. Equivalently for the latter, it is sufficient to exhibit a relation as
a counter-example rc, such that rc |= F ′ but rc �|= T
→ A. Assuming that for
all Q ⊆ RPE , P is the largest prefix of T such that F ′ � PQ
→ A. Let us call
this the P-assumption. There are two cases to consider.

In the first case, we assume P = T . We consider the relation rc shown in Figure
5, where A ∈ RPD and Z = RPDRPI − A. Obviously, we have rc �|= T
→ A. It
remains to show that rc |= F ′. Assume to the contrary that rc �|= F ′. So ∃f ∈ F ′

such that rc �|= f . Let f = T ′
→ A′. By the construction of rc, we have T ′ ⊆ T
and A′ = A. By the P -assumption and PFD1, it follows that F ′ � PT ′
→ A. So
we have F ′ � P
→ A, which is a contradiction, since we derive T
→ A from F ′.

T RPE − T A Z

t1 0 · · · 0 0 · · · 0 0 0 · · · 0
t2 0 · · · 0 1 · · · 1 1 0 · · · 0

Fig. 5. A counter-example relation rc

used in the case of P = T

P B RPE − BP A Z

t1 0 · · · 0 1 0 · · · 0 0 0 · · · 0
t2 0 · · · 0 0 1 · · · 1 1 0 · · · 0

Fig. 6. A counter-example relation rc

used in the case of P �= T

In the second case, we assume P �= T . Let T = PBQ where B �∈ P and BQ ⊆
RPE . We construct the relation rc shown in Figure 6, in which rc �|= T
→ A.

We now show that rc |= F ′. Assuming to the contrary that ∃f ∈ F ′ such that
rc �|= f , where f = T ′
→ A′. By the construction of rc, we have A′ = A and the
following two possible cases concerning T ′.

(Case of T ′ ⊆ P). By PFD2, we expand f by attaching the attribute B on its
left-hand side. It follows that F ′ � T ′B
→ A. By the P -assumption and PFD1,
it follows that F ′ � PT ′BQ
→ A. So we have F ′ � PBQ
→ A. But PB is
the prefix of T and strictly contains P . This leads to a contradiction, since we
violate the P -assumption.

(Case of T ′ �⊆ P). Let T ′ = V BW where V ⊆ P and W ⊆ RPE . By the P -
assumption and PFD1, it follows that F ′ � PT ′
→ A. So we have F ′ � PBW
→
A. But PB is the prefix of T . This leads to the same contradiction, since we
violate the P -assumption. �

As we discussed in Section 3, the number of possible templates used in
CHASE(Γf , F) is O(3m). We now show that the complexity of applying the
chase for PFDs is much better than exponential-time. Let T = 〈B1, . . . , Bn〉 (i.e.
a sequence of n preference attributes for some positive integer n) and f = T
→ A.
For k ∈ {0, . . . , n}, we define the k-th reduced form of a given set of PFDs F
with respect to f by Δk(F) = {T ′
→ A ∈ F | T ′ ⊆ T } when k = 0, and
Δk(F) = {T ′
→ A ∈ F | T ′ = pre(WBkQ) such that W ⊆ {B1, . . . , Bk−1} and
Q ⊆ RPE} when n ≥ k > 0.

Theorem 3. Let F be a set of PFDs and f = T
→ A where | T |= n. Then
Δk(F) �= ∅ for all k ∈ {0, . . . , n} if and only if CHASE(Γf , F) |= T
→ A.

Preference Functional Dependencies for Managing Choices 151

Proof. (IF:) Let A ∈ RPD and Z = RPDRPI−A. From Definition 4, a template
rf in Γf can be equal to either Γ0 or Γk with n ≥ k > 0, which give rise to the
following two cases.

(k = 0). Consider the following template rf that is derived from Γ0.

rf =
T RPE − T A Z

t1 l1 · · · ln ln+1 · · · lp lp+1 lp+2 · · · lm
t2 l1 · · · ln hn+1 · · ·hp hp+1 lp+2 · · · lm

By the assumption of CHASE(Γf , F) |= T
→ A, it follows that
CHASE(rf , F) |= T
→ A. Clearly, there exists at least one application of a
chase rule in order to fix the violation of T
→ A in rf . From the construction of
rf , it can check that the only possible way to initialise the chase is to have some
T ′
→ A in F such that T ′ ⊆ T . So Δ0(F) �= ∅.

(n ≥ k > 0). Consider the following template rf derived from Γk, where
P = 〈B1, . . . , Bk−1〉.

rf =
P Bk RPE − PBk A Z

t1 l1 · · · lk−1 lk hk+1 · · ·hp hp+1 lp+2 · · · lm
t2 l1 · · · lk−1 hk lk+1 · · · lp lp+1 lp+2 · · · lm

Again, by the given assumption, it follows that CHASE(rf , F) |= T
→ A.
Thus, there exists at least one application of a chase rule in order to fix the
violation of T
→ A in rf . From the construction of rf , it can check that the only
possible way to initialise the chase is to have some T ′
→ A in F such that one of
the following conditions holds: (i) T ′ = W , (ii) T ′ = WBk, or (iii) T ′ = WBkQ,
where W ⊆ P and Q ⊆ RPE . It follows that T ′ = pre(WBkQ). So Δk(F) �= ∅.
(ONLY IF:) It follows from the antecedent that, for all k ∈ {0, . . . , n}, there
exists a PFD f ′ = T ′
→ A ∈ Δk in F such that f ′ is violated in the templates
derived from Γk. From Definition 4, there are two cases concerning the templates
in Γf to consider.

First, if a template rf is derived from Γ0, then we have t1[T] = t2[T] =
〈l1, . . . , ln〉 in rf , whose equality will not be changed by any chase rules. So we
have t1[A] = t2[A] = lp in CHASE(rf , F). It follows that CHASE(rf , F) |= f .
Second, if a template rf is derived from Γk where n ≥ k > 0, then we have
t1[PBk] = 〈l1, . . . , lk−1, lk〉 and t2[PBk] = 〈l1, . . . , lk−1, hk〉 in rf . The relative
ordering t1[PBk] <lex t2[PBk] will not be changed by any chase rules, since the
attributes in PBk exists in the left-hand side of an PFD. So we have t1[A] = lp
and t2[A] ∈ {lp, hp} in CHASE(rf , F). It follows that CHASE(rf , F) |= f .

The result thus follows, since f = T
→ A is satisfied in CHASE(Γf , F). �

We now formally state the result concerning the complexity of CHASE(Γf , F).
The next corollary follows from Algorithm 1 and Theorem 3.

Corollary 1. Let F be a set of PFDs over R and f be a PFD. Then
CHASE(Γf , F) can be computed in polynomial-time in the sizes of R and F.

152 W. Ng

Proof. Let f = T
→ A and T = | n |. It is easy to check that the decision of
whether Δk(F) being empty for a given k ∈ {0, . . . , n} depends linearly on the
number of PFDs in F. Consider that the maximum size of n is equal to | R |.
The result is then followed by Algorithm 1 and Theorem 3. �

In order to incorporate PFDs into preference database design, we now tackle the
problem whether Armstrong relations exist for PFDs. The importance of such
relations for standard FDs in the process of database design is well-recognised
[9,2]. Essentially, Armstrong relations can be served as example relations in the
design process. They help the designers to gain a better insight of the data
dependencies needed in modelling the data in an enterprise. We now give the
definition of Armstrong relations in the context of preference relations.

Definition 9. (Armstrong Preference Relation) Let F ∗ be the set of all
PFDs that are logically implied by a given set of PFDs F over R. An Armstrong
preference relation for F is a preference relation rArm over a preference schema
R such that rArm |= T
→ X if and only if T
→ X ∈ F ∗.

We will use poss(R) in Lemma 1 and Theorem 4 to represent the set of all PFDs
that can be defined over a schema R.

Lemma 1. Given preference relations r1 and r2 over R. Then there exists a
preference relation r3 over R such that F3 = F1 ∩ F2, where Fi = {f | ri |= f}
for i = 1, 2, 3.

Proof Sketch. We start by assuming that all the attributes share with a com-
mon (ordered) domain of integers. Let r1 = {t1, . . . , tm} and r2 = {s1, . . . , sn}
where 1 ≤ m, n. We define the active domain of a relation r over R by adom(r) =
{v | ∃A ∈ R, ∃t ∈ r such that t[A] = v}. We define the safe distance of two rela-
tions r1 and r2 over R by sdist(r1, r2) = max(adom(r1)) −min(adom(r2)) + 1.
Intuitively, sdist guarantees that the satisfaction of a PFD in a relation can be
preserved under the union operation. For each tuple si ∈ r2, we define t′i as fol-
lows: t′i[A] = si[A] + sdist(r1, r2) for each A ∈ R. We construct r3 = r1 ∪ r4,
where r4 = {t′1, . . . , t′n} being a preference relation over R. Then we can show that
F3 = F1 ∩ F2 by establishing the fact that F3 ⊆ F1 ∩ F2 and F3 ⊇ F1 ∩ F2. �

We now show that Armstrong preference relations exist. Our construction is
essentially to adapt the classical techniques in [9,2] for constructing Armstrong
relations in our context.

Theorem 4. Given a set of PFDs F over R. There exists an Armstrong prefer-
ence relation for F.

Proof. Let F ∗ = {f | F |= f} and F̄ = {f ∈ poss(R) | f �∈ F ∗}. We now
construct a preference relation rArm such that rArm |= f ′ if and only if f ′ ∈ F ∗.
For the “if” case we let f ∈ F̄ . We then have a preference relation rf |= F but
rf �|= f . Let Ff = {f | rf |= f}. By repeated application of Lemma 1 running for
all f ∈ F̄ , we have a relation rArm such that rArm |=

⋂
f∈F̄ Ff . Since F ∗ ⊆ Ff ,

we have F ∗ ⊆
⋂

f∈F̄ Ff . It thus follows that rArm |= F ∗. It remains to show the

Preference Functional Dependencies for Managing Choices 153

“only if” case. Let f �∈ F ∗. Then f ∈ F̄ . So there exists Ff such that f �∈ Ff . It
follows that f �∈

⋂
f∈F̄ Ff . Thus, rArm �|= f . �

6 Concluding Remarks

We consider preference handling in relations in order to express the daily and
business preferences in practice. Within the context of preference relations, we
discussed the applications of LOFDs in the areas of (1) maintaining the consis-
tency of preference data, and (2) capturing the semantics of the ordering rela-
tionship between preference and preference-dependent data. In order to establish
an in-depth study for the latter case, we defined PFDs in Definition 7 based on
the notions of LOFDs and ordered relations, and presented a sound and com-
plete axiom system for PFDs in Theorem 2. We showed in Theorem 3 that the
complexity of chasing the tableaux given in Definition 4 is equivalent to decide
whether all the reduced forms of a given set of PFDs are empty. As a result, the
complexity of the implication problem for PFDs is found to be polynomial-time
in the sizes of the relation schema and the given set of PFDs. We also showed
in Theorem 4 that Armstrong relations exist for PFDs, an important result for
incorporating PFDs into the process of database design in practice. We remark
that the issues related to the interaction between PFDs and FDs is an interesting
area to explore. For example, if r |= {T
→ X, T
→ Y }, then an equivalence class
s in a partition of r, whose tuples have the same value of t[T] for some t ∈ r,
satisfies the FD X → Y . In order to enhance the expressive power of our PFDs
we are considering to generalise PFDs to incorporate vagueness semantics [8]
in complex preference in the future work. Another more challenging issue is to
explore the possibilities of efficient evaluating preference SQL [5] by using PFDs.
The motivation is that, if PFDs can be applied to maintain a preference view of
data then it may help some commercial web sites to give a more effective and
efficient answer when facing a heavy load of preference SQL queries.

References

1. S. Amer-Yahia et al. Structure and Content Scoring for XML. In: Proc. of VLDB,
(2005).

2. P. Atzeni and V. De Antonellis. Relational Database Theory. Benjamin/ Cummings
Publishing Company, Inc., (1993).

3. S. Ginsburg and R. Hull. Order Dependency in the Relational Model. Theoretical
Computer Science 26(1-2), pp. 149-195, (1983).

4. S. Ginsburg and R. Hull. Sort Sets in the Relational Model. Journal of the Asso-
ciation for Computing Machinery 33(3), pp. 465-488, (1986).

5. W. Kießling and G. Köstler. Preference SQL - Design, Implementation, Experi-
ences. In: Proc. of VLDB, (2002).

6. W. Kießling and G. Köstler. Foundations of Preference in Database Systems. In:
Proc. of VLDB, (2002).

7. M. Levene and G. Loizou. A Guided Tour of Relational Databases and Beyond.
Springer-Verlag, London, (1999).

154 W. Ng

8. A. Lu and W. Ng. Vague sets or intuitionistic fuzzy sets for handling vague data:
Which one is better? Proc of ER 2005. LNCS Vol 3716, pp. 401–416,(2005).

9. H. Mannila and K-J Raiha. The Design of Relational Databases. Addison-Wesley,
(1992).

10. W. Ng. Ordered Functional Dependencies in Relational Databases. Information
Systems 24(7), pp. 535-554, (1999).

11. W. Ng and M. Levene. The Development of Ordered SQL Packages to Support
Data Warehousing. Journal of Database Management 12(4), pp. 27-49, (2001).

12. W. Ng. An Extension of the Relational Data Model to Incorporate Ordered Do-
mains. ACM Transactions on Database Systems 26(3), (2001).

13. Q. Tan et al. Applying Co-training to Clickthrough Data for Search Engine Adap-
tation. In: Proc. of DASFAA, LNCS Vol 2973, pp. 519-532, (2004).

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 155 – 167, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Modeling Visibility in Hierarchical Systems*

Debmalya Biswas1 and K. Vidyasankar2

1 IRISA-INRIA, Campus Universitaire de Beaulieu
Rennes, France 35042
dbiswas@irisa.fr

2 Dept. of Computer Science, Memorial University of Newfoundland
St. John’s, NL, Canada A1B 3X5

vidya@cs.mun.ca

Abstract. We consider hierarchical systems where nodes represent entities and
edges represent binary relationships among them. An example is a hierarchical
composition of Web services where the nodes denote services and edges repre-
sent the parent-child relationship of a service invoking another service. A
fundamental issue to address in such systems is, for two nodes X and Y in the
hierarchy whether X can see Y, that is, whether X has visibility over Y. In a
general setting, X seeing Y may depend on (i) X wishing to see Y, (ii) Y wish-
ing to be seen by X, and (iii) other nodes not objecting to X seeing Y. The
visibility could be with respect to certain attributes like operational details, exe-
cution logs, security related issues, etc. In this paper, we develop a generic con-
ceptual model to express visibility. We study two complementary notions:
sphere of visibility of a node X that includes all the nodes in the hierarchy that
X sees; and sphere of noticeability of X that includes all the nodes that see X.
We also identify the dual properties, coherence and correlation, that relate the
visibility and noticeability notions. We propose elegant methods of constructing
the spheres with these properties.

Keywords: Visibility, Noticeability, Hierarchical Systems, Hierarchical Web
Services Compositions, Coherence, Correlation.

1 Introduction

Hierarchical systems are prevalent everywhere. While hierarchical systems provide an
elegant mechanism to analyze the system functionality at different levels of abstrac-
tion, most of them allow interaction only between adjacent (parent-child) layers. Such
restricted means of communication are often not sufficient for real-life scenarios. For
example, in a supply chain management system, [1] states the need for visibility across
levels as follows: “The information required by downstream entities are mainly mate-
rial and capacity availability information from their suppliers. The information ac-
quired by an upstream entity is information about customer demand and orders. The
depth of information penetration can be specified in various degrees, e.g., isolated,

* Debmalya Biswas’s work is supported by the RNRT (French ministry of research) project

SWAN, decision No. 03 S 481. K Vidyasankar’s work is supported in part by the Natural
Sciences and Engineering Research Council of Canada Discovery Grant 3182.

156 D. Biswas and K. Vidyasankar

upward one tier, upward two tiers, downward one tier, downward two tiers, and so
forth”. Also, non-functional aspects such as transactions, monitoring, user-interaction,
etc. call for nodes having visibility over their ancestors, descendents and siblings. On
the other hand, allowing arbitrary interaction among the hierarchical entities, without
any restrictions, may not be an acceptable solution either. In a dynamic and heteroge-
neous environment, issues such as trust and autonomy force an entity to be selective in
the interactions it has with others. The situation is worse for large scale systems where
the number of involved entities may be in hundreds. We encountered the above issues
while studying hierarchical Web Services compositions [2]. However, we believe that
the proposed solutions are applicable for most hierarchical systems in general.

Thus, we need a model to capture the “visibility” aspect. For a pair of nodes X and
Y in the hierarchy, we would like to capture whether X can see Y, that is, whether X
has visibility over Y. In a general setting, X has visibility over Y if

− X wishes to see Y: X may be interested in Y due to functional or non-functional
requirements.

− Y does not have any objection to X seeing it: As mentioned earlier, security, pri-
vacy, confidentiality, etc. issues play an important role in determining the visibility
allowed by a provider.

− Remaining nodes in the hierarchy do not have any objections to X seeing Y: Contrac-
tual agreements between Y and another node Z may have a bearing on X seeing Y.

The requested visibility is usually with respect to some attribute of the nodes in the
hierarchy. Examples of possible attributes (in a Web Services context are) are: pro-
vider details (URI, physical address), service details (pre-conditions, input, output and
effects) and execution details (execution state, history). Roughly, provider details are
required to invoke an operation of the provider, service and execution details for non-
functional aspects such as recovery, monitoring, auditing, and other.

The main contribution of this paper is to propose a generic conceptual model to
express visibility. Towards this end, we introduce the complementary notions of (i)
Sphere of Visibility (SoV), and (ii) Sphere of Noticeability (SoN). For a node X, SoV
of X reflects X’s visibility over others, while SoN of X reflects the visibility others’
have over X. We also identify two dual properties, coherence and correlation, that
relate the visibility and noticeability notions. We propose elegant methods of con-
structing the spheres with these properties.

The rest of the paper is organized as follows: In section 2, we provide an informal
introduction to SoV with the help of an e-shopping scenario. The formal definitions of
SoV, coherence and correlation properties are given in Section 3. Section 4 introduces
SoN and the relationship between the visibility and noticeability notions. Section 5 is
dedicated to implementation details including algorithms to construct the SoV’s and
SoN’s of the nodes in a hierarchy. Section 6 discusses some related work and section
7 concludes the paper.

2 An Informal Introduction to SoV

The Sphere of Visibility (SoV) of a node X (SoVX) consists of nodes visible to X in
the hierarchy. The visibility is with respect to some attribute A such as provider,

 Modeling Visibility in Hierarchical Systems 157

service and execution details (discussed earlier). The visibilities of a provider corre-
sponding to different attributes are mutually exclusive, that is, a provider Y might
have visibility over X’s provider details only, service details only, execution details
only or any combination of the above. The visibility of each provider may be deter-
mined based on (a) the functional and non-functional requirements of the provider, (b)
security, privacy and anonymity characteristics of the providers, whose visibility is
sought, and (c) the global policies and constraints imposed by the environment.

For example, let us consider an e-shopping scenario (Fig. 1). A customer U orders
a few goods from a store S. S splits the order into two parts and sends them to suppli-
ers S-A and S-B. Supplier S-B uses supplier S-C to fulfil part of the order. S-A and S-
B use courier companies C-A and C-B respectively to ship the goods to the customer.
The store uses a financial service P for processing payment for the goods. This in-
volves charging a credit card, by the credit card company H, and awarding bonus air
miles, by another service B. The store also uses a monitor/auditor M to keep track of
the service execution.

Taking the attribute A as service details, the visibility of some of the providers
over other providers in the hierarchy of Fig. 1 are as follows. In the illustration of
visibility of X over Y, X is represented in double ovals, Y is represented in thick oval,
and the other nodes, if any, are represented in thin ovals.

Supplier

Courier

PaymentMonitorSupplier

S

S-B M P

U Customer

Store

Supplier S-A

C-A

Courier

S-C C-B

Charge credit
card

Process bonus
air miles

H B

Fig. 1. A hierarchical composition graph H corresponding to an e-shopping scenario

− The store S has visibility over its parent and all its children. It does not have visi-
bility over the next level descendents (Fig. 2a).

− The bonus air miles processing unit B has visibility over only the credit card com-
pany H and the customer U (Fig. 2b). It is only concerned with the customer’s
credit card number and the purchase amount without any need to know the context,
namely the goods purchased and the store. We call the visibilities of B over H and
U as weak visibilities (or weak references), whereas the visibilities of S over U,

158 D. Biswas and K. Vidyasankar

S-A, S-B, M and P, described above, are referred to as strong visibilities (or strong
references), meaning that the “structures” of the nodes S-A, S-B, M and P, relative
to S, in the hierarchy are also visible to S.

− The courier company C-A has strong visibility over supplier S-A and weak visibil-
ity over customer U (Fig. 2c).

− The (strong) visibility of the courier company C-B over S-B, S and U (Fig. 2d).
− The visibilities of U over S, S-A, H and B, are described in Fig. 2e. They have the

following characteristics: (a) The visibilities over S and S-A are strong, while the
last one (over B) is a weak visibility. (b) The third visibility is of “intermediate
strength”. We call this partially strong visibility (or reference). We interpret this as
U gets the service details of H directly (by weak reference to H), or from P (by
weak reference to P) which gets the details from H. (c) U does not have visibility
over the service details of P. Thus, U can get the service details of H from P, but
not the service details of P itself.

− Visibilities need not be symmetric. For example, S does not have visibility over C-
B (Fig. 2a), but C-B has visibility over S (Fig. 2d).

− Visibilities of the providers in the hierarchy need not be related. For example, U
has (weak) visibility over B (Fig. 2e), but U’s child S does not have visibility over
B (Fig. 2a).

3 Formal SoV

In the sphere of visibility of X, we identify the nodes visible to X and their “type” of
visibility. First, we introduce some terminology. We consider a hierarchy H as an
undirected tree. For any graph G, the set of nodes in G is denoted as V(G), and the set
of edges as E(G). For nodes X and Y in H, H[X,Y] denotes the sub-graph of H con-
sisting of the nodes and edges in the path from X to Y. Throughout this paper, we
refer to a generic visibility assignment V in H with respect to an attribute A. V con-
sists of a set of sub-graphs V[X,Y], for all pairs X, Y of nodes in H, defined as fol-
lows: V[X,Y] is either (i) a connected sub-graph of H[X,Y] that contains Y, or (ii) a
null graph, meaning that X does not have visibility over Y. V[X,Y] denotes the type
of visibility X has over Y. We assume that V[X,X], for every X, is the graph contain-
ing just the node X.

Definition. The Sphere of Visibility of a node X in hierarchy H, denoted SoVX, and
also as VX, is (VX, VSX), where VX is the set of nodes Y in V(H) for which V[X,Y] is
non-null, and VSX is the set of sub-graphs V[X,Y], for Y in VX.

A node in VX will be referred to as a node in SoVX also, and similarly, a sub-graph
V[X,Y] in VSX will be referred to as an element of SoVX also. We say that X has a
weak reference to any node Y that is visible to X. If V[X,Y] has some edges then we
say that X has a partial strong reference to Y. If V[X,Y] is H[X,Y], that is, it has all
the nodes and edges in the path from X to Y in H, then we say that X has a strong
reference to Y.

 Modeling Visibility in Hierarchical Systems 159

a)Visibility of S over U, S-A, S-B, M
and P

S-B

C-B

S-A

C-A

S

U

S-A

S

S-B

S

M

S

P

S B

B

U

b)Visibility of B over H
and U

U

C-A

c)Visibility of C-A over S-A
and U

S

S-B

C-B

S

U

S-B

C-B

d)Visibility of C-B over S-B, S and U

H

S

U

S

U U

B

U

P

S-A

e)Visibility of U over S, S-A, H and B

H

Fig. 2. SoV’s of some of the providers in hierarchy H of Fig. 1

In the following, we define two special properties of visibility assignments: coher-
ence and correlation. We first illustrate these properties with a strong reference
V[X,Y], in Fig. 3 and Fig. 4. Here, H[X,Y] = (X, Y3, Y2, Y1, Y) is the path from X to
Y through nodes Y3, Y2, and Y1.

− (Fig. 3) Coherence refers to the property that V[X,Y] is H[X,Y] implies (i)
V[X,Y1] is H[X,Y1], (ii) V[X,Y2] is H[X,Y2], and (iii) V[X,Y3] is H[X,Y3].

− (Fig. 4) Correlation refers to the property that V[X,Y] is H[X,Y] implies (i)
V[Y3,Y] is H[Y3,Y], (ii) V[Y2,Y] is H[Y2,Y], and (iii) V[Y1,Y] is H[Y1,Y].

160 D. Biswas and K. Vidyasankar

(a)

Y3

X

Y2

Y1

Y

(b)

Y3

X

Y2

Y1

(c)

Y3

X

Y2

(d)

Y3

X

Fig. 3. Coherence: (a) implies (b), (c) and (d)

Y3

X

Y2

Y1

(c)

Y1

Y (d) Y(b)

Y2

Y1

Y(a) Y

Y3

Y2

Y1

Fig. 4. Correlation: (a) implies (b), (c) and (d)

3.1 Coherence

Definition. A visibility assignment V is coherent if for each pair of nodes X and Z,
V[X,Z] is either (i) null or (ii) for every node Y in the path from X to Z in H, Y X
and Y Z, V[X,Z] H[X,Y] is a sub-graph of V[X,Y].

Fig. 5 describes several instances of V[X,Z] and V[X,Y] in coherent and non-coherent
visibility assignments. Informally, coherence means that the strength of visibility of X
over Y is at least as much as the strength used for visibility of X over Z: V[X,Z] inter-
section H[X,Y] refers to the strength of visibility of X over Y “used” for visibility
over Z, whereas V[X,Y] is simply the strength of visibility of X over Y; coherence
means the latter is at least as much as the former.

 Modeling Visibility in Hierarchical Systems 161

Coherent pairs

X1

X

X2

Y

Z

X1

X

X2

Y

X

X2

Y

Z

X1

X

X2

Y

X

Z

X1

X

X2

Y

Non-coherent pairs

X1

X

X2

Y

Z

X

X2

Y

X

Z

X1

X

X2

Y

Z

X

X2

Y

V[X,Y]
is null

Fig. 5. Coherent property illustration

3.2 Correlation

For a pair of nodes X and Y in the hierarchy H, on deleting the edges and the inter-
mediate nodes in the path from X to Y, we get one component containing X, one
component containing Y, and possibly some more components. We refer to the first
component as H[X;Y] and the second as H[Y;X].

Definition. A visibility assignment V is correlated if for every pair of nodes X and Y
in H, (i) for each Z in (VY H[X;Y]), (V[Y,Z] H[X;Y]) is a sub-graph of V[X,Z],
and (ii) for each W in (VX H[Y;X]), (V[X,W] H[Y;X]) is a sub-graph of
V[Y,W].

A diagrammatic representation of the first part of the correlation definition appears in
Fig. 6. There are two possibilities: (a) V[Y,Z] is H[Y,Z]. Then, V[X,Z] should be

162 D. Biswas and K. Vidyasankar

H[X,Z]. (b) V[Y,Z] is not H[Y,Z]. Let Z0 = Z, Z1, Z2, ..., Zm = X, be the nodes in the
path from Z to X (shown diagrammatically in Fig. 7). Then, V[Y,Z] consists of a sub-
path of this path, from Z to Zi for some i. The correlation condition states that V[X,Z]
must be at least as strong as V[Y,Z] intersection H[X,Z]. Thus, V[X,Z] must be
H[Z,Zj], for some j greater than or equal to i.

Y

H[X;Y]

VYVX

H[Y;X]

…
 X

.
Z

Fig. 6. Correlated SoV’s

Z0 = Z Z1 Zi Zm = X … Zj
 … … Y …

Fig. 7. Illustration of the path from X to Z

We note that coherence and correlation are orthogonal properties. Fig. 8 shows a
visibility assignment which is coherent but not correlational: X1 is visible to X4, but
not to its parent X3. Fig. 9 shows a visibility assignment which is correlated but not
coherent: V[X4,X1] intersection H[X4,X2] is not a sub-graph of V[X4,X2].

4 Sphere of Noticeability (SoN)

For a node X, the Sphere of Noticeability notion in intended to capture: (i) which
nodes have visibility over X; and (ii) what type of visibility they have of X. First we
define noticeability independent of, but in a way analogous to the definition of, visi-
bility. We refer to a general noticeability assignment N in H with respect to an attrib-
ute A. N consists of a set of sub-graphs N[X,Y], for all pairs X, Y of nodes in H,
defined as follows: N[X,Y] is either (i) a connected sub-graph of H[X,Y] that con-
tains X, or (ii) a null graph. N[X,Y] denotes the type of noticeability, that is, the type
of visibility Y has over X. In the last case, X is not noticed by Y. We assume that
N[X,X], for every X, is the graph containing just the node X. Note that since visibil-
ity and noticeability notions are complementary, V and N definitions are also com-
plementary. That is, for N that “corresponds to” a V, for X and Y, N[X,Y] is the
same as V[Y,X]. We use N[X,Y] most of the time in the definitions and discussions
in this section, though V[Y,X] could also be used instead.

 Modeling Visibility in Hierarchical Systems 163

H

X2

X1

X3 X3

X2 X2

X3X3

X4

X2

X1

X3

X4X4X4 X4

V[X3,X1]
 is null

V[X3,X2] V[X3,X4] V[X4,X1] V[X4,X2] V[X4,X3]

X3

Fig. 8. Illustration of coherent, but not correlated, SoV’s

H

X2

X1

X3 X3

X2 X2

X3

X4

X2

X1

X4 X4

X1

X2

X3

V[X3,X1] V[X3,X2] V[X3,X4]
is null

V[X4,X1] V[X4,X2] V[X4,X3]
is null

Fig. 9. Illustration of correlated, but not coherent, SoV’s

Definition. The Sphere of Noticeability of a node X in hierarchy H, denoted SoNX,
and also as NX, is (NX,NSX), where NX is the set of nodes Y in V(H) for which
N[X,Y] is non-null, and NSX is the set of sub-graphs N[X,Y], for Y in NX.

Note that, for a specific node X, SoVX is the set of V[X,Y]’s for different Y’s,
whereas SoNX is the set of V[Y,X]’s for different Y’s.

For provider U in Fig.1, NSU is illustrated in Fig. 10. In each figure, the node
whose SoN is illustrated is indicated by a rectangle enclosing the oval representing
the node.

An obvious application of SoN is for change management. For example, a provider
X notifying the providers, who have visibility over X, when there is some change in
the provider URI (provider details), metrics used to compute the service (service de-
tails), log format (execution details), etc. An interpretation of the relationship between

164 D. Biswas and K. Vidyasankar

S

U

N[U,S]

N[U,C-B]

S

U

S-B

N[U,S-C]

U

C-A

N[U,C-A]

U

H

N[U,H]

U

B

N[U,B]

S-C

S

U

S-B

C-B

Fig. 10. NSU for provider U in Fig. 1

SoV and SoN using the e-shopping scenario introduced earlier (Fig. 1) follows. For a
node X, SoVX can be considered as the nodes from which some information (input) is
expected. SoNX can be considered as the nodes to which some information is to be
sent. In both cases, the type of visibility reflects how the information may be received
or sent. For example (Fig. 1 and 2), for the air miles provider B, SoVB conveys that B
is expecting the credit charge information from H and the air miles account details
from U. On the other hand, SoNB may contain U, P and H, reflecting that B should
send confirmation of the air miles reward to U, P and H.

Coherence and correlation properties for noticeability assignments can be defined
analogous to those for visibility assignments.

Definition. A noticeability assignment N is coherent if for each pair of nodes X and
Z, N[X,Z] is either (i) null or (ii) for every node Y in the path from X to Z, Y X and
Y Z, N[X,Z] H[X,Y] is a sub-graph of N[X,Y].

SoNU, given in Fig. 10, is not coherent as N[U,C-B] intersection H[U,S-B] is not a
sub-graph of N[U,S-B] (which is null).

Definition: A noticeability assignment N is correlated if for every pair of nodes X
and Y in H, (i) for each Z in (NY H[X;Y]), (N[Y,Z] H[X;Y]) is a sub-graph of
N[X,Z], and (ii) for each W in (NX H[Y;X]), (N[X,W] H[Y;X]) is a sub-graph of
N[Y,W].

Again, there are two possibilities: (a) if N[Y,Z] is H[Y,Z] itself then N[X,Z] should
also be H[X,Z]. (b) Here also, let Z0 = Z, Z1, Z2, ..., Zm = X, be the nodes in the path
from Z to X (shown diagrammatically in Fig. 7). Then, in the case N[Y,Z] is not
H[Y,Z], it will be a connected sub-graph containing Y, H[Y,Zj], for j between 1 and
m. Then, the correlation condition states that N[X,Z] should also contain at least this
path. That is, if it is H[X, Zi], then i should be less than or equal to j.

Property. In a hierarchy H, a visibility assignment is coherent if and only if the corre-
sponding noticeability assignment is correlated, and vice versa.

 Modeling Visibility in Hierarchical Systems 165

Proof: First we consider the “only if” part. For nodes X and Y in H, we need to show
that (i) for each Z in (NY H[X;Y]), (N[Y,Z] H[X;Y]) is a sub-graph of N[X,Z],
and (ii) for each W in (NX H[Y;X]), (N[X,W] H[Y;X]) is a sub-graph of
N[Y,W]. Since N[Y,Z] is V[Z,Y], and N[X,Z] is V[Z,X], and by coherence of V,
(V[Z,Y] H[Z,X]) is a sub-graph of V[Z,X], the assertion (i) follows. Assertion (ii)
follows similarly. The rest of the proof is also similar.

5 Implementation

Consider a static hierarchy H where each node X in H has an initial set of visibility
requirements and noticeability restrictions. Note that the “initial” set of X only re-
flects the intended set, that is, visibility as X would like. By abuse of notation, we use
the spheres, Sphere of Intended Visibility of X (SoIVX) and Sphere of Intended
Noticeability of X (SoINX), to refer to X’s intended visibility and noticeability respec-
tively. SoIVX (SoINX) may not be the same as the final assigned VX (NX) due to nego-
tiations/conflicts between the SoIV’s and SoIN’s. For example, let us consider a path
from X1 to Xn in H. Let the nodes in the path be X1, X2, X3, ..., Xn. Suppose Xn is
in SoIVX1 but X1 is not in SoINXn. Given this, there are two options: (i) Xn’s restric-
tion cannot be overruled and so X1 cannot have visibility over Xn (SoIVX1 VX1),
and (ii) X1’s requirement has higher priority leading to negotiation of Xn’s restric-
tions and X1 finally having visibility over Xn (SoINXn NXn). Note that this argu-
ment applies to visibility of any strength.

In addition to the individual SoIV’s and SoIN’s, visibility may be restricted by the
SoIV’s and SoIN’s of other nodes in H, and desired coherence and correlation properties,
as well. Often (in a Web Services context), it is not the service provider itself but some
higher level logical entity or an agent acting on behalf of the provider which is responsi-
ble for regulating the visibility of a provider. For example (Fig. 1), let us assume that S-A
would like to have visibility over the courier companies (such as C-B) used by other
suppliers to find the cheapest option. On the same lines, S-B (a higher level provider)
might like to keep the details of its courier company C-B hidden due to competitive rea-
sons and should be in a position to reject S-A’s request for visibility over C-B.

We outline a simple scheme for adjusting SoV’s (and SoN’s) of the existing nodes
dynamically, each time a node Y is added to the hierarchy. We consider the changes
required at an existing node X due to the addition of Y. Let Y = Y0, Y1, Y2, ..., Yi, ...,
Yj, ..., Yk, ..., Yn, Yn+1 = X, be the nodes in the path from Y to X such that k > j > i
(shown diagrammatically in Fig. 11). We denote the path from X to Y as X-Y, the
path from X to Y1 as X-Y1, etc. We also denote V[X,Y] as Yj-Y, or V[X,Y] is null.
And, V[X,Y] is N[Y,X]. Note that Yj-Y and Y-Yj refer to the same path, that is, we
do not consider direction of the path.

Steps to define V[X,Y], that is, determining j in Yj-Y:

1. V[X,Y] could be null. In the following, we consider non-null options.
2. For coherent V, if V[X,Y1] is null, then V[X,Y] has to be Y-Y, that is, (weak refer-

ence to) just the node Y; otherwise, V[X,Y1] must be Yk-Y1, that is, j < k. This will
also give correlated N.

3. For correlated V, if V[Yn,Y] is null, then V[X,Y] must be null too; otherwise,
V[Yn,Y] must be Yk-Y, that is, j < k. This will also give coherent N.

166 D. Biswas and K. Vidyasankar

Y1 Yi

X = Yn+1

 … Yj
 … … Yn

 …

Y = Y0

Yk

Fig. 11. Illustration of the path from Y to X

Steps to define V[Y,X], that is, determining j in Yj-X:

1. V[Y,X] could be null. In the following, we consider non-null options.
2. For coherent V, if V[Y,Yn] is null, then V[Y,X] has to be X-X, that is, (weak refer-

ence to) just the node X; otherwise, V[Y,Yn] must be Yi-Yn, that is, i < j. This will
also give correlated N.

3. For correlated V, if V[Y1,X] is null, then V[Y,X] must be null too; otherwise,
V[Y1,X] must be Yi-X, that is, i < j. This will also give coherent N.

Such adjustments need to be made for every existing node X.

6 Related Works

The notion of spheres is based on the concept of Spheres of Control (SoC) [3]. A
Sphere of Control encapsulates entities sharing a similar set of properties or having a
dependency relation. The dependency relations considered in [3] are atomicity, com-
mitment, resource allocation, recovery, auditing, consistency, etc. SoV and SoN logi-
cally group the nodes (and their attributes) visible to another node in a hierarchy.
Also, [3] considers homogeneous and non-autonomous systems where visibility is not
an issue. Thus, our work can be considered as complementary to the work in [3] to
heterogeneous and autonomous systems. Later works have extended the initial con-
cept of SoC to Spheres of Atomicity [4] and Commitment [5]. [4] utilizes the proper-
ties of the processes (pivot, compensatable and retriable) in a Sphere of Atomicity to
determine if the sphere, as a whole, guarantees atomicity. [5] applies the concept of
SoC to Multi-Agent Systems (MAS) to structure agents based on their commitment
guarantees. However, the above works are not directly related to the work presented
in this paper and we mention them for the sake of completeness. No other work (that
we are aware of) has attempted to formalize the visibility aspect for hierarchical sys-
tems. Some of the works which have touched upon this aspect are the following. [6]
identifies real-life scenarios where there might be a need to deviate from the inheri-
tance of access rights upwards through the hierarchy in a role-based access control.
[7] discusses the visibility aspect with respect to the visibility of the results of a sub-
transaction in a nested transactional system. Basically, [7] advocates the provision to
be able to expose the results to a particular ancestor to improve performance. [8] pro-
poses a formal model based on -calculus to capture the behaviour of nested long
running transactions in a Web services context. Of particular interest are the different
modes of failure propagation: up-propagation, down-propagation, down-specific
propagation and non-propagation.

In a previous work [9], we had introduced the SoV concept with respect to hier-
archical Web Services compositions and shown its application in the context of

 Modeling Visibility in Hierarchical Systems 167

performing compensation under visibility constraints. However, [9] only considers
vertical visibility (that is, visibility over ancestors and descendents) as compared to
the more generalized notion of visibility in this paper (visibility over siblings, un-
cles, cousins, etc.). The notion of SoN and discussion with respect to the properties
(coherence and correlation) are novel contributions of this paper.

7 Conclusion

The main contribution of this paper starts with a formalization of the visibility notion.
The SoV definition is intuitive and encompasses “strong”, “weak” and a variety of par-
tially strong notions. The SoN definition follows naturally from that of SoV. We have
identified (i) the properties of coherence and correlation, which can be defined uni-
formly for both visibility and noticeability assignments, and (ii) how these properties
relate the two assignments in interesting ways. We have shown how the interrelation-
ship can be exploited in associating meaningful visibility characteristics to the nodes of
a hierarchy. It will be interesting to look for other nice visibility properties that can be
applied to all hierarchical systems or at least to special cases. From an implementation
perspective, we would also like to consider dynamic hierarchies (structure of the hierar-
chy itself may change). We are also considering its practical applications with respect to
non-functional aspects, such as, transactions, monitoring, security, etc.

Acknowledgments. We would like to thank the referees for their comments which
helped to improve the presentation.

References

[1] Fu-Ren Lin, Gek Woo Tan, and M.J. Shaw, “Modeling Supply-Chain Networks by a
Multi-Agent System”, In proceedings of the 31st Annual Hawaii International Conference
on System Science (HICSS), 1998, pp. 105-114.

[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, “Web Services: Concepts, Architecture
and Applications”, Springer Verlag 2004, ISBN: 3540440089.

[3] C. Davies, Jr, “Data processing spheres of control”, IBM Systems Journal, 17(2), 1978, pp.
179-198.

[4] Gustavo Alonso, and Claus Hagen, "Exception Handling in Workflow Management Sys-
tems", IEEE Transactions on Software Engineering, vol. 26, no. 10, Oct 00, pp. 943-958.

[5] Munindar P. Singh, and Pinar Yolum, “Commitment Machines”, Revised Papers from the
8th International Workshop on Intelligent Agents VIII, Aug 01, pp. 235-247.

[6] J. D. Moffet, “Control principles and role hierarchies”, In proceedings of the 3rd ACM
Workshop on Role-Based Access Control (RBAC), 1998, pp. 63-69.

[7] Qiming Chen, and U. Dayal, “A Transactional Nested Process Management System”, In pro-
ceedings of the 12th International Conference on Data Engineering (ICDE), 1996, pp. 566-573.

[8] Laura Bocchi, “Compositional Nested Long Running Transactions”, In proceedings of the
7th International Conference on Fundamental Approaches to Software Engineering
(FASE), 2004, LNCS 2984, pp. 194-208.

[9] D. Biswas, and K. Vidyasankar, “Spheres of Visibility”, In proceedings of the 3rd IEEE
European Conference on Web Services (ECOWS), 2005, pp. 2-13.

A Model for Anticipatory Event Detection

Qi He, Kuiyu Chang, and Ee-Peng Lim

School of Computer Engineering,
Nanyang Technological University, Singapore 639798, Singapore

qihe@pmail.ntu.edu.sg, kuiyu.chang@pmail.ntu.edu.sg, aseplim@ntu.edu.sg

Abstract. Event detection is a very important area of research that
discovers new events reported in a stream of text documents. Previ-
ous research in event detection has largely focused on finding the first
story and tracking the events of a specific topic. A topic is simply a set
of related events defined by user supplied keywords with no associated
semantics and little domain knowledge. We therefore introduce the An-
ticipatory Event Detection (AED) problem: given some user preferred
event transition in a topic, detect the occurence of the transition for the
stream of news covering the topic. We confine the events to come from
the same application domain, in particular, mergers and acquisitions.
Our experiments showed that classical cosine similarity method fails for
the AED task, whereas our conceptual model-based approach, through
the use of domain knowledge and named entity type assignments, seems
promising. We show experimentally that an AED voting classifier oper-
ating on a vector representation with name entities replaced by types
performed AED successfully.

1 Introduction

Anticipatory Event Detection (AED)[1] refers to the problem of detecting the
occurrence of a user-specified anticipatory event (AE). AED is a very hard prob-
lem since it requires a basic understanding of the AE semantics, which can vary
by event type. Current news alert systems such as Google News Alerts[2] typi-
cally produce abysmal results for AED. For example, the search terms “China
attacks Taiwan” (describing an AE that has not happened as of this writing)
will generate numerous false alarm articles from Google News Alerts.

One way to look at AED is to think of it as finding the transition between
two adjacent events in an event transition graph whose events are represented
by news articles covering the event transition graph before and after a particular
transition has consummated. Figure 1 shows an event transition graph with n
events and n−1 transitions for topici (e.g. eBay buys Skype). A user may only be
interested in receiving a notification when a particular transition has fired, and
not be bothered about the remaining transitions. If sufficient number of news
articles can be collected for each of the events, it would be theoretically possible
to detect any of the n− 1 transitions. In order to learn a particular transition, a
model will have to be trained to classify articles as occurring “before” or “after”

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 168–181, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Model for Anticipatory Event Detection 169

Fig. 1. Anticipatory event transition graph

the transition. For example, given transition1,2 in the event transition graph of
Figure 1, we would like to detect the first story of event2.

In this paper, we report new results on modeling the AED problem. To sim-
plify the problem, we assume that 1) the topic is constrained to a particular
domain, i.e. mergers and acquisitions, 2) the event transition graph is created
manually, 3) we only detect a single event transition within the event transition
graph.

2 Related Work

AED was previously proposed and tackled using a sentence classification approach
[1] for detecting final scores of basketball matches. Moreover, AED falls under the
broader family of problems collectively known as Topic Detection and Tracking
(TDT), which includes traditionally, New Event Detection (NED), Topic Tracking
(TT), and Retrospective Event Detection (RED), etc. TDT defines a evaluation
paradigmthat addresses event-based organization of broadcast news[3], with a sig-
nificant focus on NED and TT for news [4][5][6][7][3][8][9][10]. AED differs from
typical TDT tasks like NED/TT/REDprimarily in two ways: 1) AED is concerned
only with one particular user-predefined anticipatory event; 2) AED will return a
hit if and only if the user-anticipated transition has consummated for that speci-
fied event genre. For example, suppose NED or RED is set up to return alerts for
mergers and acquisitions events, then any news describing a new rumor or latest
developments related to acquisition could result in one or more NED/RED hits.
On the other hand, AED could be configured to return a hit if and only if a par-
ticular acquisition such as some company buying Skype is formally announced.

Morever, NED was shown empirically to be a very hard problem if only simple
vector space representation was used [6]. Yang et al.[8] reported a substantial
performance gain by first classifying news articles into different topics, followed
by applying 1NN to detect new events (NED). Kumaran et al.[10] applied text
classification techniques and extracted named entities, but for detecting all new
events of a particular category (using a model trained threshold) instead of
finding the transition of a user-specified AE. Unlike AED, non of the above uses
classification to detect new events.

170 Q. He, K. Chang, and E.-P. Lim

Closely related to AED is RED, another NED derivative. Li et al.[11] attempts
to identify events within a corpus of historical news articles with the help of
time, user feedback, and content information. It assumes that the news event
histogram of a particular event genre is Gaussian-distributed with each burst
denoting a new event. RED cannot be used to solve the AED problem since
it detects generic events, and requires multiple documents in order to form a
statistically significant peak.

While similarity-based approaches had made limited inroads in TDT, others
have tried incorporating domain knowledge to tackle the TDT problem[12][13].
Moreover, only a few existing work attempt to construct an event transition
graph[14], which is the prerequisite for representing transitions between events
in AED. Specific to news alerts, there has been previous work on presenting
news to users in a meaningful and efficient manner[15][16].

Nallapati et al.[16] used interdependencies between news events to build an
unsupervised relational structure similar to AED’s event transition graph, but
which was not used for AED. Another related work is Kleinberg’s model for
online change detection in data streams [17], which assumes that the points
(news articles) in the stream are independently emitted by some underlying
probability distribution; its goal is to detect any changes in distribution. Like
NED, it requires more than one document to identify a significant change.

3 AED Model

Our proposed AED system first retrieves a set of generic acquisition news ar-
ticles from Google News Alerts based on the user supplied list of domain spe-
cific keywords. The articles are then manually labelled as positive or negative
with respect to a single transition, and fed into a classifier for training. To test
this AED model, we manually created and labelled a separate and independent
dataset comprising seven acquisition topics. For each topic, we use the trained
generic AED classifer to detect the earliest news article published after the AE
(in this case the announcement of an acquistion) has consummated.

3.1 Anticipatory Event Representation

An AED user preference is defined as a single transition in the event transition
graph. In practice, topics of the same type (e.g. US Presidential elections) often
involve a typical set of event transitions (e.g. nomination of party’s Presiden-
tial candidates, nomination of party’s Vice-Presidential candidates, election of
party’s Presidential team, election of Presidential team). Thus, it is reasonable
to train an AED model using news about past-occurences of a similar nature.

Creating an event transition graph automatically based on arbitrary user spec-
ifications is extremely difficult. In our model, we assume that an event transition
graph is already available, along with generic articles representing the “pre” and
“post” states of a user preferred transition (preference). Our problem is thus
reduced to applying online AED to a live stream of news articles with the goal
of identifying the first story after a user-specified transition.

A Model for Anticipatory Event Detection 171

Figure 2 shows an example event transition graph describing typical states
shared by most company acquisition topics. Suppose a user is interested in the
event transition, transition2,3 from event2 (“In talk to acquire”) to event3 (“An-
nounce acquisition”). As there are usually multiple news articles associated with
the “Announce acquisition” event, AED will try to detect the first story among
these. The complete AED framework is shown in Figure 3.

Fig. 2. Event transition graph for the “acquisition” topic

Fig. 3. Online AED system framework

3.2 Named Entities and Text Classification in AED

Named Entities Analysis in AED. In news stories, named entities of dif-
ferent types help provide essential context information. For example, company
names involved in a merger and acquisition topic clearly helps to distinguish
a particular topic from other topics. However, within a specified topic, named
entities alone are not sufficient to determine an event transition boundary. As
a matter of fact, we found experimentally that verbs and their senses actually
carry more valuable information for determining a transition.

In our experiments, we use BBN’s Identifinder[18] to identify 24 types of
named entities, including Animal, Contact info, Disease, Event, Facility, Game,

172 Q. He, K. Chang, and E.-P. Lim

Geo-political entities, Language, Law, Location, Nationality, Organization, Per-
son, Plant, Product, Substance, Work of art, Date, Time, Cardinal, Money, Or-
dinal, Percentages, and Quantity. Extracted named entities are then replaced in
line by one of the 24 named entity types.

Classification Methods. We tried three different feature representation meth-
ods and one classifier combining strategy to train the AED classifier, as follows:

CONTENT : Entire news content as features.
TITLE : Title as features.
1SENT : First sentence as features.
VOTING : Majority voting on the above three classifier outputs.

The TITLE and 1SENT representations were inspired by the observation that
human experts can usually decide if a news is a hit simply based on its first
sentence and/or title. Moreover, the TITLE and 1SENT representation of a
news article may not always carry useful features, and the AED decision will have
to fall back to the CONTENT representation. For example, the first sentence
“Signature Control Systems is off to a busy start in early 2006” does not contain
features really relevant to the “acquisition” event transition. VOTING was thus
used as a simple and effective way to improve the overall accuracy.

3.3 Evaluation Methodology

Evaluating the AED Event Transition Classifier. We adopt the standard
information retrieval measures, precision, recall, and f1-score to evaluate the
performance of the various AED classifiers.

Evaluation of Anticipatory Event Transition Detection. Suppose we are
given a set of N news articles X = {x1, ..., xN} about a topic, and an event
transition graph E = {e1, ..., en} comprising n events. Each news xi is assigned
a publication date/time represented by t(xi) and an event type in E represented
by e(xi), the latter of which is also known as the true event of xi.

We assume that all news articles in X are sorted in time ascending order, i.e.
t(xi) ≤ t(xj) ∀i < j, and all events in E are sorted in time ascending order, i.e.
t(ei) ≤ t(ej) ∀i < j.

By applying our trained AED classifier on a news article xi, we obtained its
assigned event denoted by s′(xi). Given a transitionk−1,k (i.e. user preference),
the objective of AED is therefore to find the news article xm that satisfies:

xm = arg min {t(xi) | ∀xi where s′(xi) = ek}

To make the time comparison easier between the detected first story xm and the
event ek, we also define the true time of ek, t(ek), as follows:

t(ek) = min {t(xi) | ∀xi where e(xi) = ek}

Once the first story xm of the anticipatory event ek is determined by the AED
classifier, all subsequent news articles, xj , j = (m+1), . . . , N will be assigned to

A Model for Anticipatory Event Detection 173

event(s) ek post transitionk−1,k. Occasionally, the first story identified by AED
may be prematured, delayed, or undefined (never found). Accordingly, we define
four evaluation criteria as follows:

Accurate Alarm : t(xm) = t(ek). First story of ek found successfully.
Delayed Alarm : t(xm) > t(ek). First story found was too late.
False Alarm : t(xm) < t(ek). First story found was prematured.
Miss : t(xm) = undefined. No xi in X has s′(xi) = ek. AED fails

to even identify the event!

Fig. 4. An evaluation example for Transition Detection in AED

Figure 4 graphically depicts each of the four evaluation criteria for AED Tran-
sition Detection. In Section 5 we will use the same type of graph to illustrate
and analyze our experimental results. Specifically, we simply tally the total num-
ber of false alarms, delayed alarms, accurate alarms, and misses to evaluate the
AED performance on a given set of events. For news alerts, an accurate alarm is
the most desirable, followed by a delayed alarm. Otherwise, a miss is generally
preferred over a false alarm.

4 Testbed

Two datasets were created specifically for evaluating the AED problem. For
quality assurance purposes, each document in the two datasets was scrutinized
and annotated by at least two people.

4.1 Google Acquisition Dataset

In order to learn an anticipatory event transition such as transition2,3 in Figure
2, we manually created the generic Google Acquisition dataset. This dataset
contains 346 as-it-happens news articles returned by Google News Alerts using
the keywords “announce acquisition”, which corresponds to event3 in Figure 2,
during the two-month period from Dec 19, 2005 to Feb 19, 2006.

Each article in Google Acquisition is manually labelled as one of two possible
events, i.e. “pre” or “post” transition2,3. Unfortunately, some articles can appear

174 Q. He, K. Chang, and E.-P. Lim

ambiguous even to a human expert. One general rule-of-thumb is to label the
document based on overall context. For example, if the primary theme of an arti-
cle revolves around the announcement/agreement/completion of an acquisition,
we label it as post-transition2,3; otherwise, it is labelled as pre-transition2,3.
We note that the latter case could also include irrelevant documents completely
unrelated to acquisition.

To ensure consistency in labelling, a set of guidelines and rules was established,
based on which 178 documents were labelled as positive and 168 as negative,
which means that Google News Alerts returned 168 (48.6%) outright false alarms
for the subscribed keywords “announce acquisition”. This is a typical result from
a simplistic keyword-based news alert system.

4.2 Acquisition7 Dataset

We created another dataset, acquisition7, which covers seven recent acquisition
topics as the test data for our proposed online AED solution. Each acquisi-
tion news topic in acquisition7 is comprised of 20 news articles returned by
Google News, approximately half of each (10) were reported before and after
transition2,3. The major difference between this dataset and the Google Acqui-
sition dataset is that each document is not generic but instead tied to a specific
acquisition. Further, there are no irrelevant documents in this dataset; a docu-
ment occurs either before or after transition2,3 for a specific acquisition.

The 7 acquisition news topics are listed in Table 1, where t(e3) refers to the
true occurrence date for event3 in Figure 2. The annotation of Acquisition7
follows the same criteria as defined in Section 4.1.

Table 1. Make up of the Acquisition7 dataset

Acquisition Topics t(e3)
Adobe acquires Macromedia Apr 18, 2005
CNPC acquires PetroKazakhstan Oct 26, 2005
eBay acquires Skype Sep 12, 2005
Lenovo acquires IBM PC Division Dec 08, 2004
Oracle acquires PeopleSoft Dec 13, 2004
Oracle acquires Siebel Sep 12, 2005
SBC acquires AT&T Jan 31, 2005

5 Simulation Results

5.1 Experiment Setup

Lucene 1.4.3 was used to tokenize the news text content with stop word removal
to create the corresponding document-word vector. In order to preserve time-
sensitive past/present/future tenses of verbs, no stemming was done other than
the removal of a few articles.

A Model for Anticipatory Event Detection 175

We used a normalized (unit length) binary document vector representation
because we observed that co-occurrences of terms are far more important than
the raw term frequency and inverse document frequency for AED. The normal-
ized binary document-word vectors are than fed into SVM-light [19] for training
and classification. SVM cost factors[20] were used to offset the slight imbalance
in numbers between the positive and negative documents.

5.2 AED Via Cosine Similarity

As a baseline, we evaluated AED performance using simple cosine similarity on
the Acquisition7 dataset. Standard TFIDF document representation was used
with the following variations [10]: all terms (All Terms), all terms without named
entities (No NE), and name entities only (NE only).

Each incoming news article is compared to all existing news articles (assumed
to be negative or pre-transition) from all 7 topics. If the cosine similarity between
this news and its nearest neighbor falls below a threshold, the incoming news
is considered to have consummated the transition; otherwise it is classified as a
negative news.

The similarity approach generated largely false alarms and misses, except
for one accurate alarm, using various values of similarity threshold. Figure 5
shows the ratio of misses to false alarms for all 3 vector representations versus a
gradually increasing similarity threshold. From Figure 5, we observe that starting
from a low similarity threshold, the system was initially very strict (incoming
news must be significantly different, i.e. has low cosine similarity compared to all
existing news), resulting in high percentage of misses. As the similarity threshold
is gradually increased, the system was able to detect some news, but almost all
prematuredly as false-alarms, except for one accurate alarm detected by the “no
NE” representation. Our results clearly show that similarity based approaches,
which does not use a conceptual model, are too simplistic to detect a transition
leading to a user-desired AE.

5.3 AED Via Event-Conditioned Novelty Detection

Event-conditioned 1NN novelty detection [8], essentially a topic-constrained co-
sine similarity approach, first classifies a news into a known topic before applying
cosine similarity comparison between it and its nearest neighbor. To model this
approach, we applied cosine similarity AED to all news within the same topic
to obtain the results listed in Table 2. Clearly, event-conditioned novelty de-
tection failed the AED task miserably as it generated all but one false alarms.
This shows that even with topical constraints, similarity approaches still cannot
perform AED reliably.

5.4 Validating the Google Acquisition Dataset

In order to validate the generic transition2,3 trained model, we conducted two-
fold cross-validated experiments using the four text classification approaches of

176 Q. He, K. Chang, and E.-P. Lim

Fig. 5. AED using cosine similarity on Acquisition7 Dataset

Table 2. AED results on Acquisition7 using event-conditioned novelty detection

Alarms: Accurate Delayed False Miss
Adobe acquire Macromedia

√
CNPC acquires PetroKazakhstan

√
eBay acquires Skype

√
Lenovo acquires IBM PC Divison

√
Oracle acquires PeopleSoft

√
Oracle acquires Siebel

√
SBC acquires AT&T

√

Section 3.2 on the Google Acquisition dataset. The dataset is first split along the
timeline into two equal parts: 1) news articles dating from Dec 19, 2005 to Jan
19, 2006, and 2) news articles dating from Jan 20, 2006 to Feb 19, 2006. One
part was used for training with the other part used for testing and vice-versa.

From the test results summarized in Figure 6 and Table 3, we see that the
VOTING strategy is the overall best performer with the least number of false
alarms, while the CONTENT method gives a slightly higher recall at the expense
of almost twice as many false alarms. The main problem with the CONTENT
method is that it is easily affected by a few transition-alluding sentences in
negative documents, such as “Additionally, Magazine Acquisition announced that
Morgan Stanley Real Estate and Onex Real Estate will be partnering with Sawyer
Realty Holdings LLC (“Sawyer”) in the TCT acquisition”, which understandably
appears positive to a classifier. This is because the mere occurrence of the words
“acquisition” and “announced” is sufficient to trigger the trained model, which
uses a binary bag-of-words representation. The VOTING strategy thus combines
the best results from CONTENT, TITLE, and 1SEN methods.

Apart from deciding the best classification strategy, one other significance
of this experiment is that it increased the precision of Google’s returned news
alerts from 51.4% to 85.7%, a more than 33% improvement! All in all, the high
precision and recall figures confirmed that the Google Acquisition dataset is

A Model for Anticipatory Event Detection 177

Fig. 6. Average test results of the four text classifiers on Google Acquisition

Table 3. Average test results on Google Acquisition. Best results are shown in bold.

Average CONTENT TITLE 1SEN VOTING
False Alarms 22.5 15.5 17 13.5
Misses 9 24.5 15 10
Precision 0.7847 0.8110 0.8172 0.8571
Recall 0.9011 0.7308 0.8352 0.8901
F1 0.8389 0.7688 0.8261 0.8733

indeed suitable for modelling transition2,3 for subsequent AED evaluations in
Section 5.5.

5.5 AED Via Classification

In this section, we test the generic AED classifier trained by Google Acquisition
on the Acquisition7 dataset. Figure 7 shows the true transition2,3 boundaries for
each of the 7 Acquisition7 topics distributed along a timeline. Three AED out-
comes are shown in Figures 8-10. Note that once the “first” story of e3 has been
identified by AED, all subsequent news articles are labelled post-transition2,3.

Table 4. AED results on Acquisition7 using the VOTING method

Alarms: Accurate Delayed False Miss
Adobe acquires Macromedia

√
CNPC acquires PetroKazakhstan

√
eBay acquires Skype

√
Lenova acquires IBM PC Division

√
Oracle acquires PeopleSoft

√
Oracle acquires Siebel

√
SBC acquires AT&T

√

Table 4 gives a summary of the overall performances, which shows that AED
based on the VOTING method generated 4 accurate alarms, 1 delayed alarm,
2 false alarms, and 0 misses. This means that the model trained by Google
Acquisition was able to cover the main characteristics of all 7 acquisition topics.

178 Q. He, K. Chang, and E.-P. Lim

Fig. 7. transition2,3 boundaries in Acquisition7

Fig. 8. Online AED of “eBay acquires Skype” found an accurate alarm, t(xm) = t(e3)

Moreover, comparing this result with that of the CONTENT method as shown
in Table 5, we found that the AED evaluation for Acquisition7 dataset is incon-
sistent with the two-fold cross-validation results for Google Acquisition dataset
with respect to false alarms. In Google Acquisition, the VOTING method reduces
false alarms, with the CONTENT method yielding the highest recall. The sit-
uation is completely reversed for Acquisition7. Based on the analysis in Section
5.4, we are inclined to trust the evaluation results for Google Acquisition better
because the inconsistencies could simply be caused by the relatively small size
of the Acquisition7 dataset.

A Model for Anticipatory Event Detection 179

Fig. 9. Online AED of “Oracle acquires PeopleSoft” found a false alarm, t(xm) < t(e3)

Fig. 10. Online AED of “SBC acquires AT&T” found a delayed alarm, t(xm) > t(e3)

Table 5. AED results on Acquisition7 using the CONTENT method

Alarms: Accurate Delayed False Miss
Adobe acquires Macromedia

√
CNPC acquires PetroKazakhstan

√
eBay acquires Skype

√
Lenovo acquires IBM PC Division

√
Oracle acquires PeopleSoft

√
Oracle acquires Siebel

√
SBC acquires AT&T

√

Nevertheless, in spite of the above inconsistencies, AED results achieved by
both the VOTING and CONTENT methods were leaps and bounds ahead of
the cosine similarity results (Figures 5) and event-conditioned novelty detection
results (Table 2). This is actually a very encouraging outcome for a preliminary
investigation into AED, and thus provides strong support and credibility to our
AED model and solution.

6 Conclusion

We have made five main contributions in this paper: 1) we formally defined and
formulated a conceptual model for the AED problem and identified its associated

180 Q. He, K. Chang, and E.-P. Lim

research issues, 2) proposed a new way of applying named entities for AED, 3)
proposed a principled way to assemble generic training data for learning one AE
transition, using the user’s AE preferences, 4) verified the feasibility of AED in
practice for one restricted domain, 5) compared our method with two classical
cosine similarity methods. The encouraging results in this paper showed AED
to be applicable in practice, thus paving the way for future work.

We have made a number of simplifying assumptions in this study: 1) we as-
sumed that an event transition graph matching the user’s query is available,
based on some domain knowledge, 2) we only detect a single transition, among
many other possible transitions in the graph, and we claim the transition corre-
sponds to the user specified list of keywords (i.e. user preferences), 3) we con-
strained our testbed to a particular genre of AE, that of mergers and acquisi-
tions. One possible future AED research focus is simply the relaxation of these
assumptions, which will involve significant challenges.

Naturally, the holy grail of AED is to detect any number of AE transitions
of arbitrary genres. This is akin to having a live assistant constantly scanning
newsfeed monitoring a set of AEs. Surely, current state-of-the-art technologies
will not be able to attain this in the foreseeable future. However, we could still
improve AED by incorporating additional information such as frequency/time
of documents/words and user feedback. We hope to eventually come up with an
effective and practical AED system, perhaps initially for some restricted domain,
and which overcomes limitations of existing systems like Google News Alerts.

References

1. He, Q., Chang, K., Lim, E.P.: Anticipatory event detection via sentence classifica-
tion. In: IEEE SMC Conf. (2006) to appear

2. Google: (Google news alerts, http://www.google.com/alerts.)
3. Allan, J.: Topic Detection and Tracking. Event-based Information Organization.

Kluwer Academic Publishers (2002)
4. Allan, J., Jin, H., Rajman, M., Wayne, C., Gildea, D., Lavrenko, V., Hoberman, R.,

Caputo., D.: Topic-based novelty detection: Final report. In: DARPA Broadcast
News Transcription and Understanding Workshop. (1999)

5. Jin, H., Schwartz, R., Sista, S., Walls, F.: Topic tracking for radio, tv broadcast,
and newswire. In: DARPA Broadcast News Workshop. (1999) 199–204

6. Allan, J., Lavrenko, V., Jin, H.: First story detection in tdt is hard. In: 9th ACM
CIKM Conf. (2000) 374–381

7. Stokes, N., Carthy, J.: Combining semantic and syntactic document classifiers to
improve first story detection. In: 24th ACM SIGIR Conf. (2001) 424–425

8. Yang, Y., Zhang, J., Carbonell, J., Jin, C.: Topic-conditioned novelty detection.
In: 8th ACM SIGKDD Conf. (2002) 688–693

9. Brants, T., Chen, F., Farahat, A.: A system for new event detection. In: 26th
ACM SIGIR Conf. (2003) 330–337

10. Kumaran, G., Allan, J.: Text classification and named entities for new event
detection. In: 27th ACM SIGIR Conf. (2004) 297–304

11. Li, Z., Wang, B., Li, M., Ma, W.Y.: A probabilistic model for retrospective news
event detection. In: 28th ACM SIGIR Conf. (2005) 106 – 113

A Model for Anticipatory Event Detection 181

12. Fukumoto, F., Suzuki, Y.: Event tracking based on domain dependency. In: 23rd
ACM SIGIR Conf. (2000) 57–64

13. Maguitman, A., Leake, D., Reichherzer, T., Menczer, F.: Dynamic extraction topic
descriptors and discriminators: towards automatic context-based topic search. In:
13th ACM CIKM Conf. (2004) 463 – 472

14. Mei, Q., Zhai, C.: Discovering evolutionary theme patterns from text: an explo-
ration of temporal text mining. In: 11th ACM SIGKDD Conf. (2005) 198–207

15. Allan, J., Wade, C., Bolivar, A.: Retrieval and novelty detection at the sentence
level. In: 26th ACM SIGIR Conf. (2003) 314–321

16. Nallapati, R., Feng, A., Peng, F., Allan, J.: Event threading within news topics.
In: 13th ACM CIKM Conf. (2004) 446–453

17. Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. In: 30th
VLDB Conf. (2004)

18. Bikel, D.M., Schwartz, R., Weischedel, R.M.: An algorithm that learns what’s in
a name. In: Machine Learning. (1999) 34(1–3):211C231

19. Joachims, T.: (Svm-light, http://svmlight.joachims.org/)
20. Morik, K., Brockhausen, P., Joachims, T.: Combining statistical learning with a

knowledge-based approach - a case study in intensive care monitoring. In: 16th
ICML Conf. (1999) 268–277

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 182 – 195, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Framework for Integrating XML Transformations

Ce Dong and James Bailey

NICTA Victoria Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, VIC 3010, Australia
{cdong, jbailey}@csse.unimelb.edu.au

Abstract. XML is the de facto standard for representing and exchanging data
on the World Wide Web and XSLT is a primary language for XML transforma-
tion. Integration of XML data is an increasingly important problem and many
methods have been developed. In this paper, we study the related and more dif-
ficult problem of how to integrate XSLT programs. Program integration can be
particularly important for server-side XSLT applications, where it is necessary
to generate a global XSLT program, that is a combination of some initial XSLT
programs and which is required to operate over a newly integrated XML data-
base. This global program should inherit as much functionality from the initial
XSLT programs as possible, since designing a brand new global XSLT pro-
gram from scratch could be expensive, slow and error prone, especially when
the initial XSLT programs are large or/and complicated. However, it is a chal-
lenging task to develop methods to support XSLT integration. Difficulties such
as template identification, unmapped template processing and template equiva-
lence all need to be resolved. In this paper, we propose a framework for semi-
automatic integration of XSLT programs. Our method makes use of static
analysis techniques for XSLT and consists of four key steps: i) Pattern Speciali-
zation, ii) Template Translation, iii) Lost Template Processing and iv) Program
Integration. We are not aware of any previous work that deals with integrating
XML transformations.

1 Introduction

XML [6] is rapidly emerging as a dominant standard for data representation and ex-
change on the Web [11]. The eXtensible Stylesheet Language Transformations
(XSLT) standard [8, 26] is a primary language for transforming, reorganizing, query-
ing and formatting XML data. In particular, server-side XSLT [23] is an extremely
popular technology for processing and presenting results in response to user queries
issued to a server side XML database. An XSLT program consists of a set of tem-
plates. Execution of the program is by recursive application of individual templates to
the source XML document.

The availability of large amounts of homogeneous Web databases necessitates
XML integration [5, 7, 12, 15, 20, 22, 27, 29], e.g. when two organizations which
have similar XML information databases are amalgamated. Such XML integration is

 A Framework for Integrating XML Transformations 183

typically DTD-directed, that is, the integration task is constrained by a predefined
DTD, to which the target XML document is required to conform [11]. A set of map-
ping rules between the initial DTDs and the global DTD must be provided.

However, when databases are amalgamated, it is not just static information which
needs to be combined. XML repositories will often have associated dynamic aspects
as well, such as XSLT programs or stylesheets, that have been designed to transform
or present the XML information. When repositories are combined, so too must be the
dynamic aspects. In other words, we require a new (global) XSLT program to access
the integrated XML database. It is likely that this program will be required to inherit
much of the functionality that was present in the initial XSLT programs, which oper-
ated over the original XML repositories.

Different from the language XQuery [4], an XSLT program consists of templates,
which can be regarded as the basic program unit for building the global XSLT pro-
gram during integration. Also, different from static XML data or schema integration
[5, 7, 12, 15, 20, 22, 27, 29], XSLT integration is additionally challenging, because it
must deal with the dynamic aspects. Some difficulties are faced: 1) A specific XSLT
template might match, by means of selection patterns, multiple XML elements. This
can cause confusion when mapping the template from the initial XSLT program to the
global XSLT program, using the element mapping rules. 2) Two initial templates
(from different initial programs) which match the same XML element, will need to be
combined together within the global XSLT program. However, it is difficult to iden-
tify the conflicts and relationships (equivalence, containment and intersection) be-
tween their functionalities, when generating the global template body. 3) Some initial
templates might not be mapped to and included in the global XSLT program, based
on the element mapping rules. However, their absence might strongly affect the exe-
cution result and thus they must be properly combined within the global XSLT pro-
gram. 4) Some templates contain functionality which is valid for an initial XSLT
program, but which is no longer useful or even invalid for the global XSLT program.
This needs to be detected and reconciled.

The integration framework proposed in this paper has four main components: 1)
Pattern Specialization is used to specialize the template selection patterns and con-
struction patterns and consequently lessen element reference ambiguity; 2) Template
Translation is used to translate template selection patterns and construction patterns to
conform to the global DTD; 3) Lost Template Processing is used to process the tem-
plates which match XML elements not existing in the mapping rule list; 4) Program
Integration is used to generate the global XSLT program and mark any problematic
templates for further consideration by the program designer.

The problem of XSLT integration is a new and challenging research issue. We are
not aware of any other similar work that addresses this topic.

The remainder of this paper is organized as follows. We first review some basic
concepts in section 2. Then, in section 3 we introduce XML integration approaches
and related terminology. Next, in section 4, we propose the XSLT integration frame-
work step by step. Related work is surveyed in section 5 and finally in section 6, we
conclude our research and give the discussion of future work.

184 C. Dong and J. Bailey

2 Background

We begin by briefly reviewing some concepts regarding DTDs, XSLT and XPath,
assuming the reader already has basic knowledge in these areas.

2.1 DTDs and DTD-Graph

An XML DTD [6, 19] provides a structural specification for a class of XML docu-
ments and is used for validating the correctness of XML data. Based on the DTD, we
can create a data structure to summarize the hierarchical information within a DTD,
called the DTD-Graph. It is a rooted, node-labeled graph, where each node represents
either an element or an attribute from the DTD and the edges indicate element nest-
ing. The DTD-Graph developed in our previous work [10] is similar to the Dataguide
structure described by Goldman and Widom in 1997[13]. It is an important data struc-
ture used to validate the XPath expressions (selection patterns and construction pat-
terns) of XSLT programs during XSLT integration.

2.2 XSLT and Functionality Blocks

XSLT is a recursive XML transformation language [8, 16, 17, 18]. An XSLT program
can be thought of as an ordered collection of templates. Each template has an associ-
ated pattern (selection pattern) and contains a nested set of construction rules. A tem-
plate processes XML-tree [8] nodes that match the selection pattern and constructs
output according to the construction rules [23].

An XSLT program is also an XML document, with a corresponding tree structure,
having a 'root element' node of <xsl:stylesheet> that has <xsl:template> child nodes.
We refer to the sub-trees which are children of the <xsl:template> nodes as “func-
tionality blocks”.

2.3 XPath

The primary purpose of XPath is to address parts of an XML document using path
expressions. It also provides basic facilities for manipulation of strings, numbers and
booleans.[28]. A location path is an XPath expression which selects a set of nodes
relative to the context node. If we remove ‘predicate(s)’ from the location path, we
can get an XPath expression consisting of ‘axes’, ‘steps’ and ‘/’, called a distin-
guished XPath [2] expression. The selection patterns and construction patterns in an
XSLT program are expressed using XPath. Selection patterns can only use the axes
of ‘child’ and ‘attribute’, whereas construction patterns may be full XPath expres-
sions. XPath expressions starting with ‘/’ or ‘//’ are called absolute XPath expres-
sions. Otherwise (e.g. starting with ‘.’ or ‘node name’), they are called relative XPath
expressions. Simple XPath (similar to [2]) is a fragment of XPath which disallows the
use of any ‘function’, ‘predicate’ and ‘axes’ other than ‘child’, ‘self’, and ‘descen-
dant-or-self’. Oppositely, XPath expressions which contain ‘functions’ or ‘predicates’
or ‘axes’ other than those above, we will term rich XPath. Our XSLT integration
framework can deal with simple XPath expressions automatically and handles rich
XPath expressions via human interaction (to be discussed in section 4).

 A Framework for Integrating XML Transformations 185

We further define full-absolute XPath expressions to be those starting with ‘/’, fol-
lowed by a sequence of node names separated by ‘/’ (e.g. ‘/a/b/c/d’). We define full-
relative XPath expressions to be those starting with ‘./’ or ‘node name’, followed by
a sequence of node names separated by ‘/’ (e.g. ‘./b/c/d’ and ‘b/c/d’). These concepts
are important for supporting the descriptions of the XSLT integration framework in
section 4.3 and 4.4.

2.4 The Template and Association Graph (TAG) of an XSLT Program

XSLT syntactic structure gives rise to calling relationships between templates [14, 17].
In our previous work [10], we designed a Template and Association Graph (TAG),
which is a rooted node-labeled directed graph used to describe the calling relationships
between XSLT templates. The TAG can be used to analyze an XSLT program and
help to find bugs in XSLT program design [10]. In this paper, we use the TAG to
eliminate unreachable templates, missing templates and invalid calling relationships
[10], that are generated as ‘side-effects’ during the XSLT integration process.

2.5 Server-Side XSLT

Server-side XSLT [23] is a popular solution for data exchange and querying on the
Web. It is often deployed in e-commerce, e-publishing and information services ap-
plications. Transforming the content on the server has advantages such as providing
convenience for business logic design and code reuse, cheaper data access and secu-
rity and smaller client downloads [18]. XSLT integration is more meaningful for
server-side XSLT (as opposed to client side XSLT), since a global XSLT program
must be constructed after the server XML databases are merged.

3 XML Integration

Suppose we have XML databases associated with a server-side XSLT system. There
are then two major different approaches which can be used for XML integration [3,
22, 24]. One is virtual integration, where no physically integrated XML needs to be
built. Specifically, virtual integration publishes a global XML schema (e.g. a DTD)
which is ‘integrated’ from the initial distributed XML database schemas. A user query
over the global schema passed to the system is then re-written into distributed queries
(i.e. parameters to distributed XSLT programs) to access the distributed XML data-
bases (initial XMLs). A combined result is returned to the user. Another kind of XML
integration is called instance integration, since a global XML is physically built. Spe-
cifically, based on a predefined global XML schema, the data of the initial XMLs is
merged into the global XML. A user query based on the global DTD is evaluated
directly over the integrated XML database. Our XSLT integration framework is de-
signed to integrate the initial XSLT programs according to instance based integrated
XML. Hereafter, when we refer XML integration, this should be understood to mean
instance based XML integration. In the following definitions, Doc_XML1 and
Doc_XML2 denote the initial XMLs and Doc_XML3 denotes the global XML.

186 C. Dong and J. Bailey

• Mapping rule: A pair containing an initial element and a global element. It indi-
cates that the initial element describes the same object as the global element. The
XML elements are expressed using full-absolute XPath expressions. For example,
(‘/a/b/c’, ‘/X/Y/Z’) denotes that the ‘c’ node of parent node ‘b’ and grand parent
node ‘a’ under the ‘root’ in the initial XML is mapped to the ‘Z’ node of parent
node ‘Y’ and grand parent node ‘X’ under the ‘root’. XML integration refers to
two sets of mapping rules: i) MAP1 contains all the mapping rules from
Doc_XML1 to Doc_XML3, ii) MAP2 contains all the mapping rules from
Doc_XML2 to Doc_XML3.

• Name Change: This term refers the situation when the name of element of an
initial XML element is mapped to a different name in the global XML, based on
the mapping rules (e.g. initial element ‘c’ is mapped to global element ‘Z’).

• Structure Change: This term is used to refer the situation when a parent-child
relationship between elements in the initial XML doesn’t exist between their
mapped elements in the global XML, based on the mapping rules.

• Lost Element: This term is used to refer to an element in an initial XML document
which doesn’t have a corresponding (mapped) element in the global XML docu-
ment, according to the mapping rules.

4 XSLT Integration

XSLT program integration concerns not only schema mapping, but also comparisons
between template selection patterns and the relationships between template bodies
(functionality). We now define some terminology that will be useful when we discuss
comparison of templates.

Definition_1: Potentially Conflicting Template Pair is used to refer a pair of XSLT
templates, each from different initial XSLT programs that are awaiting integration,
and which have the same distinguished XPath selection pattern.

Definition_2: Rich Template is used to refer to templates whose selection pattern
or/and construction pattern(s) are rich XPath expressions.

We also have some restrictions and assumptions on our model.

• The initial XSLT programs are well-formed and valid (error free).
• The output of the XSLT transformations is HTML or XML (the most popular

cases used in XSLT transformations).
• The template(s) for the ‘root’ (‘/’) and ‘root element’ must exist (XSLT pro-

gram traverses the XML-tree from the top).

For simplicity, in this paper, the DTD-Graphs of Doc_XML1, Doc_XML2 and
Doc_XML3 are denoted by DG1, DG2 and DG3 respectively. XSL1, XSL2 and
XSL3 denote two initial XSLT programs and the global XSLT program respectively.
Their corresponding Template and Association Graphs are denoted by TAG1, TAG2

and TAG3 respectively. <T m=’selection pattern’> denotes XSLT element
<xsl:template match=’selction pattern’> and denotes
<xsl:apply-templates select=’construction pattern’>.

 A Framework for Integrating XML Transformations 187

4.1 Overview of XSLT Integration

Our framework addresses the XSLT integration task in four principal steps.

Step_1: Pattern Specialization: The system converts all selection patterns and ab-
solute construction patterns into full-absolute XPath and specializes the relative con-
struction patterns containing ‘*’ and/or ‘//’ into full-relative XPath expressions. Hu-
man interaction is required for processing ‘rich’ templates.

Step_2: Template Translation: This step translates all XPath expressions that con-
formed to the initial DTD-Graphs (DG1 and DG2) into corresponding XPath expres-
sions conforming to the global DTD-Graph (DG3), based on mapping rules (MAP1
and MAP2). Human interaction is also required to handle some special situations of
element mapping.

Step_3: Lost Template Processing: This follows the template translation step and
invokes special processing for templates or construction statements which refer to lost
elements. Human interaction is asked before applying the default processes.

Step_4: Program Integration: The pre-processed initial XSLT programs are inte-
grated into the global XSLT program XSL3, by means of integration algorithms.
Human interaction is required for rich templates and static analysis.

Finally, all problematic templates in XSL3 are detected and marked based on
TAG3, which can then be used as support for program further revision.

We use human interaction as a supplement to our XSLT integration framework. A
completely automatic method is clearly impossible, due to the undecidable nature of
much of the analysis required. This is also in line with the requirement of human
interaction for static and schema integration [5, 7, 12, 15, 20, 22, 27, 29]. The overall
aim of our framework though, is to alleviate the burden on the designer as much as
possible, presenting them with a clear set of choices which need to be made. Fur-
thermore, different methods and static analysis techniques can be ‘plugged in’ to the
framework, according to their availability.

4.2 XSLT Integration Example

An XSLT integration example is provided here to help explain our method. It in-
cludes i) two synthetic initial server-side XSLT programs (XSL1 and XSL2), ii) the
corresponding DTD-Graphs (DG1 and DG2) and iii) the corresponding mapping rules
(MAP1 and MAP2). The scenario is based on integration between two XML em-
ployee information databases. We omit the XMLs, since it is the structure of the data
which determines the XSLT integration workflow, not the data values.

Firstly, the initial DTD-Graphs (DG1 and DG2) and the global DTD-Graph (DG3)
are shown in figures 1 (a), (b) and (c) respectively.

Secondly, the sets of mapping rules of MAP1 (map from DG1 to DG3) and MAP2
(map from DG2 to DG3) are listed respectively in tables 1 and table 2. For example,
the second row of table 1 shows that DTD-Graph node ‘/Factory/Name’ of DG1 is
mapped as node ‘/Factory/FN’ in the global DTD-Graph). From figure 1 and tables 1
and table 2 we can see that the underlying XML integration covers scenarios of ‘name
change’, ‘structure change’ and ‘lost element’.

188 C. Dong and J. Bailey

Thirdly, we show the initial XSLT programs to be integrated (i.e. XSL1 and
XSL2). Their functionality is for retrieving and displaying the information about
factory employees. Due to the space restrictions, we only show fragments of the pro-
grams (figures 2 (a) and (b)).

Fig. 1. DTD-Graphs of Doc_XML1, Doc_XML2 and Doc_XML3

Table 1. The fragment of mapping rules between
DG1 and DG3

('/Factory ', '/Factory ')

('/Factory /Name' , '/Factory /FN')

('/Factory /Department', '/Factory/Department')

('/Factory /Department/DN', '/Factory/Department/DN')

('/Factory /Department/Employ ees/Employ ees', ' /Factory /Department/Employ ees/Employ ees')

('/Factory /Department/Employ ees/Employ ees/Employ ee', '/Factory /Department/Employees/Employ ees/Employ ee ')

('/Factory /Department/Employ ees/Employ ee/Name', '/Factory/Department/Employ ees/Employee/PN')

…

Table 2. The fragment of mapping rules
between DG2 and DG3

('/FactoryInfo', '/Factory ')

('/FactoryInfo/Introduction' , ' ')

('/FactoryInfo/People', '/Factory/Department/Employ ees')

('/FactoryInfo/People/Person', '/Factory /Department/Employees/Employ ee')

('/FactoryInfo/People/Person/WorkIn', ' /Factory /Department/Employees/Employ ee/WorkIn')

('/FactoryInfo/People/Person/WorkIn/Factory ', '/Factory /Name')

('/FactoryInfo/People/Person/WorkIn/Unit', '/Factory /Department/DN')

. . .

Next, based on the example shown above, we explain the details of our XSLT inte-
gration framework step by step.

4.3 Pattern Specialization

Selection patterns in XSLT can be either full-absolute or non-full-absolute XPath ex-
pressions. A full-absolute XPath expression uniquely identifies a DTD-Graph node (i.e.
the mapping relationship between a full-absolute XPath expression and a DTD-Graph
node is 1 to 1), while a non-full-absolute XPath expression may identify multiple

 A Framework for Integrating XML Transformations 189

Fig. 2. Fragments of the initial XSLT programs to be integrated

DTD-Graph nodes (i.e. the mapping relationship between a non-full-absolute XPath
expression and a DTD-Graph node is 1 to N (N>=1)). Thus, when a template selection
pattern is a non-full-absolute XPath expression, we might not sure which mapping rules
should be chosen for translating the corresponding template from the initial DTD based
XSLT program into the global DTD based XSLT program (step_2) and, consequently,
can not continue the integration step to build global XSLT XSL3 (step_4). For example,
consider the XSL1 fragment shown in figure 2 (a). The selection pattern of template
<T m=’Name’> can refer to the node of ‘/Factory/Name’ and also the node of
‘/Factory/Department/Employees/Employee/Name’ according to DG1 (show in figure 1
(a)). It is not clear whether ‘Name’ should be mapped to ‘/Factory/FN’ or to
‘/Factory/Department/Employees/Employee/PN’ according to MAP1 (shown in table
1), during the translation from the initial structure (DG1) to the global structure (DG3).
Wrong translation can result in an integrated XSLT program which deviates from the
original intentions of the initial XSLT program designers.

We choose to handle this ambiguity using a direct approach, which specialises the
non-full-absolute selection patterns in XSL1 and XSL2 into full-absolute XPath ex-
pressions. This is called pattern specialization. In the case of a single template selec-
tion pattern matching multiple DTD-Graph nodes, we create new templates, one for
each possible corresponding full-absolute selection pattern, and we then delete the
original template. Let’s examine the example of <T m=‘Name’> again - the template
will be replaced by two new templates: <T m=‘/Factory/Name’> and <T
m=‘/Factory/Department/Employees/Employee/Name’>, each with the same body as
the original <T m=‘Name’>.

For the same reason and in the same way as for selection pattern specialization, e
specialize construction patterns if i) they are absolute XPath expressions but not full-
absolute XPath expression or ii) they are relative XPath expressions, but not full-
relative XPath expressions. In the former case, the construction patterns are specialised
into full-absolute XPath expressions and, in the latter case, the construction patterns are
specialised into the full-relative XPath expressions. When a construction pattern indi-
cates multiple nodes of DG1 (or DG2), we create a new construction statement for

190 C. Dong and J. Bailey

each specialized construction pattern and delete the original construction statement.
For example, the construction statement of template <T m= ‘Fac-
toryInfo’> in XSL2 (‘.//Person’ is a non-full-relative XPath expression) is specialized
to (‘./People/Person’ is a full-relative XPath expression).

Figure 3 shows the fragments of the output of pattern specialization process,
named XSL1_S and XSL2_S. We omit showing the detailed programs here due to
the space restrictions.

Fig. 3. Fragments of the XSLT programs output after pattern specialization

This kind of automatic resolution is not feasible for rich templates and human in-
teraction is needed to guide the process. Specifically, the designer is asked by the
system to give a new XPath expression based on the global DTD, to replace the
XPath expression based on the initial DTD. Then, these templates with new selection
pattern(s) and/or construction pattern(s) will be marked and the subsequent processing
steps of template translation and lost template processing need not be applied.

Pattern specialization is a direct way to determine accurately the DTD-Graph node to
which the selection pattern refers. However, it might generate some redundant templates
which could cause unreachable template(s), missing template(s) and invalid template
calling relationship(s) because i) the ‘new’ template selection pattern may not be har-
monious with its inner construction pattern (invalid template calling relationship); ii) the
created template which uses the ‘new’ full-absolute selection pattern might never be
called by another construction statement during XSLT execution (unreachable tem-
plate); iii) The newly created construction pattern might call a non existent template
(missing template). These possible ‘side-effects’ can be detected and eliminated by
using Template Association Graph (TAG) [10].

 A Framework for Integrating XML Transformations 191

4.4 Template Translation

After pattern specialization, XPath expressions next need to be translated so that they
use the vocabulary of the global DTD (DG3).

Let’s see an example. The mapping rule at row 4 of table 2 shows that XPath expres-
sion ’/FactoryInfo/People/Person’ over the initial schema is mapped to the XPath ex-
pression ’/Factory/Department/Employees/Employee’ over the global schema. Thus, the
corresponding template <T m=’/FactoryInfo/People/Person’> in XSL2_S (figure 3)
will be translated into <T m=’/Factory/Department/Employees/Employee’>.

Similar to the selection patterns, the construction patterns also need to be trans-
lated. The construction pattern using a full-absolute XPath expression can be
translated based on the mapping rules directly. A construction pattern that uses a full-
relative XPath expression implies a relationship between the nodes located by the
selection and construction patterns in that template. E.g. suppose nodes ‘a’ and ‘b’ are
in an ancestor-descendant relationship in one of the initial DTD-Graphs. Suppose the
nodes that each maps to in the global DTD-Graph are ‘A’ and ‘B’. We then have two
situations: 1) ‘B’ is a ‘descendant’ or ‘sibling’ or ‘preceding’ node of ‘A’; 2) ‘B’ is an
‘ancestor’ of ‘A’. In the former case, our method translates the initial construction
pattern automatically into a full-relative XPath expression of the context node. In the
latter case, human interaction is required to build the new template manually. Specifi-
cally, if ‘B’ is the ‘descendant’ node of ‘A’, the construction pattern is translated to
the full-relative XPath expression based on the context node ‘A’. For example, the
ancestor-descendant relationship between the selection pattern of <T m= ‘Factory-
Info’> and the construction pattern of in XSL2_S (figure
3) based on DG2 (figure 1 (b)) is preserved in their mapped nodes ‘/Factory’ and
‘/Factory/Department/Employees/Employee’ based on DG3 (figure 1 (c) and table 2).
So, is translated as <A s=‘Department/ Employ-
ees/Employee’>. If ‘B’ is ‘sibling’ or ‘preceding’ node of ‘A’, and if there exists node
‘C’, the closest common ancestor node of both ‘A’ and ‘B’ in the global DTD-Graph,
the translated construction pattern is an XPath expression which starts with ‘ances-
tor::C’, followed by the full path from ‘C’ to ‘B’. For example, in XSL2_S (figure 3
(b)), template <T m=‘WorkIn’> contains a construction statement and
node ‘WorkIn’ is the parent node of ‘Unit’ in DG2. Based on MAP2, they are mapped
to ‘WorkIn’ and ‘DN’ in DG3 and ‘DN’ is the ‘preceding’ node of ‘WorkIn’ node.
Thus, we find ‘Department’, the common and closest ancestor node of ‘DN’ and
‘WorkIn’, and then create the construction statement <A s=‘ancestor::Department/
DN’> during the template translation step.

However, if ‘B’ is the ancestor of ‘A’, human interaction is required to do the
translation, due to the high degree of change in structure. The designer is asked to i)
provide the new XPath expression(s) for the selection pattern or construction pat-
tern(s) or both or; ii) provide a new template to replace the original one.

4.5 Lost Template Processing

During XSLT integration, there may be initial XSLT templates whose selection pat-
tern refers to XML elements which do not get mapped to any element in the global

192 C. Dong and J. Bailey

DTD. This causes a problem when translating this initial template into a global tem-
plate. The same problem happens for construction patterns too. Looking back at table
2 and figure 1 (b) of the XSLT integration example in section 4.2, the node indicated
by ‘/FactoryInfo/Introduction’ based on DG2 doesn’t have any mapped to node in
DG3. The corresponding template <T m=‘ FactoryInfo/Introduction’> has become a
lost template in XSL2_S as a result of doing the translation. We need to correct such
lost templates during the integration process.

We cannot simply delete the lost template or
construction statement, since i) the body of the
lost template might contain valuable data proc-
essing, or ii) the inner construction statement of
the lost template might be the only caller of
another existing template, and in this case, de-
leting the lost template will cause a new missing
template.

The integration system detects any lost tem-
plates and informs the designer, who then has

the task of deciding whether to delete the lost template, or whether to provide a new
XPath expression for its selection pattern and, consequently, confirm each element
inside this template (i.e provide a new construction pattern for that element or create a
new element to replace that element or just delete that element).

Some kinds of lost template cases (shown in figure 4) can be processed automati-
cally based on the integration framework. Looking at figure 4, (a) is an initial DTD-
Graph DG1, and (b) is a corresponding global DTD-Graph DG3. Nodes ‘a’, ‘b’, ‘d’,
‘e’, ‘f’, ‘g’ in DG1 are mapped to ‘A’, ‘B’, ‘D’, ‘E’, ‘F’, ‘G’ in DG3. Obviously, the
non-terminal element node ‘c’ is lost during the integration. Moreover, the children
nodes of ‘c’ (i.e. ‘e’ and ‘f’) are mapped to children nodes (‘E’ and ‘F’) of node ‘A’ in
DG3. This is a common situation for data structure mapping in XML integration and
indeed it is reasonable to expect that a parent element covers all concepts of its de-
scendant element. Suppose the template that locates the lost element node ‘c’ is <T
m=‘/a/c’>, lost template processing replaces the selection pattern ‘/a/c’ with its prefix
selection pattern ‘/a’, and then, <T m=‘/a’> is translated into <T m=‘A’> in XSL1_T
(or XSL2_T) if there is no <T m=‘A’> already existing in XSL1_T (or XSL2_T). If
<T m=‘A’> exists in XSL1_T (or XSL2_T), the system only translates the body of
<T m=’/a/c’> and appends it at the end of the existing template <T m=‘A’>. Based
on the example shown in figure 4, if template <T m=‘/a/c’> contains a construction
statement , it will be translated to and appended at the end of
template <T m=‘A’>.

The output XSLT programs, after the template translation and lost template proc-
essing steps have been performed, are termed as XSL1_T and XSL2_T (we omit
these two programs due to the restrictions of space).

4.6 Program Integration

Following the steps of pattern specialization, template translation and lost template
processing, our XSLT integration framework applies the program integration step to
generate the global XSLT XSL3, based on XSL1_T and XSL2_T.

Fig. 4. The example of mapping lost

 A Framework for Integrating XML Transformations 193

The templates among XSL1_T plus XSL2_T can be classified into two classes: i)
Unique templates, whose distinguished XPath selection pattern is unique among all
templates; ii) Potentially conflicting templates (recall Definition_1).

A unique template will be moved to XSL3 directly, without any modification,
since it is the only choice of template for a specific XML node or set of nodes.

For a potentially conflicting template pair, the framework (or designer) must make
its choice when generating the global template in XSL3. If one or both template(s) has
a ‘rich’ selection pattern or construction pattern, human interaction is required. The
designer needs to decide i) what new template needs to be generated for XSL3, ii)
what the template functionality should be.

The templates of potentially conflicting template pair that both use ‘simple’ XPath
expression(s) as selection pattern(s), can be integrated semi-automatically. We now
discuss how to deal with this case.

Suppose <T1> is a template in XSL1_T with body B1 and <T2> is a template in
XSL2_T with body B2 and <T1> and <T2> are a pair of potentially conflicting tem-
plates. Each body B is assumed to be a set of functionality blocks. There a number of
possible relationships between B1 and B2. Loosely speaking, these are: 1) B1=B2
(the two templates are guaranteed to give exactly the same result), 2) B1 ⊂ B2 or
B1 ⊃ B2 (the output of one template is subsumed by the output of the other),
3)B1 B2= (the templates are independent) 4) B1 B2 != (the output of the
templates may overlap).

Precisely determining the relationships between template bodies is undecidable.
We can develop tests based on syntactic criteria (e.g. do a pairwise comparison be-
tween the statements in each template body). This may be effective when the com-
ponents of template body are simple. More complex tests may be based on semantic
criteria�which concerns the data retrieved from XML source tree and ignores the
constant data (strings) and data format (the data order and display styles) of template
output. The work in [25] describes a technique where tests for template equivalence
are performed by translating the template logic into an XML query algebra [25] and
then judging if two templates yield the same result by applying the evaluation rules.
Different analysis techniques could also be used.

Based on the different relationships between the functionality (bodies) of the po-
tentially conflicting template pair, our integration approach builds the functionality of
the global template according to the rules described in table 3. Human interaction is
required in when the static analysis is too difficult or yields imprecise results.

Table 3. Building the new functionality of the global template

Relationship Process
B1= B2 B1 is chosen as the global functionality

B1 B2 B1 is recommended as the global functionality.

B1 B2 B2 is recommended as the global functionality.

 B1 B2= or B1 B2!= The designer is asked to decide.

⊂
⊃

Finally, the unreachable templates, missing templates and invalid template calling
relationships are marked (based on checking TAG3) as referential information for
possible further action and modification by the designer.

194 C. Dong and J. Bailey

5 Related Work

To the authors’ knowledge, no other work has been done on XSLT integration.
A number of integration systems have been developed for semi-structured data and

XML. One major kind of XML integration method is view/schema based XML inte-
gration (virtual integration) [21, 25]. Another major method is called instance based
XML integration [5, 7, 12, 27].

An XSLT template call-graph was described in [14] as part of a translation scheme
from XSLT to SQL.

Testing equivalence of XSLT templates is examined in [25]. This work presents a
powerful XML query algebra TAX and provides a collection of template equivalence
rules. Based on the approach, XSLT templates are automatically translated into TAX
and they are judged to be equivalent if they satisfy certain evaluation rules.

XPath analysis and XPath based XML query optimization have been considered in
a large number of papers [1, 9, 21]. Any such analysis techniques can in principle be
used within our framework.

6 Conclusions and Future Work

In this paper, we have proposed a novel framework for XSLT integration. Our ap-
proach is applicable for instance based XML integration methods, where server-side
XSLT applications are being used. It consists of four major parts: 1) Pattern Speciali-
zation, 2) Template Translation, 3) Lost Template Processing and 4) Program Integra-
tion. We believe this new framework can be a significant aid to the designer in inte-
gration scenarios. Importantly, our framework is extensible. A variety of analysis
techniques can be plugged in to provide enhanced precision.

As part of future work, we would like to investigate methods for handling further
XSLT syntax, such as the use of functions and other XPath axes automatically. We
also plan to investigate and extend our algorithm to provide more flexible mecha-
nisms for the designer, as part of the global template generation process.

Acknowledgement

This work is partially supported by National ICT Australia. National ICT Australia is
funded by the Australian Government’s Backing Australia’s Ability initiative, in part
through the Australian Research Council.

References

[1] S. Abiteboul and V. Vianu.: Regular path queries with constraints. In Proc.of 16th ACM
SIGACT-SIGMOD-SIGSTART Symposium on Principles of Database Systems,Tucson,
AZ, US (1997) 122-133

[2] J. Bailey, A. Poulovassilis, P. T. Wood.: An Event-Condition-Action Language for XML
Proc.Conf.WWW2002, Honolulu, Hawaii, USA (2002) 486-495

[3] E. Bertino and E, Ferrari.: XML and Data Integration. Internet Computing, IEEE (2001)

 A Framework for Integrating XML Transformations 195

[4] S. Boag et al.: XQuery 1.0: An XML Query Language W3C Candidate Recommendation
3 November 2005. http://www.w3.org/TR/xquery/

[5] P. Bohannon, S. Ganguly, H. Korth, P. Narayan, and P. Shenoy.: Optimizing view queries
in ROLEX to support navigable result tree. In VLDB, HongKong, China (2002) 119-130

[6] T. Bray, et al.: W3C Recommendation. Extensible Markup Language (XML) 1.0 (2000)
[7] M. J. Carey, D. Florescu, Z. G. Ives, Y. Liu, J. Shanshanmugsundaram, E. J. Shekita, and

S. N. Subramanian.: XPERANTO: Publishing object-relational data as XML. In Proc.of
WebDB (2000) 105-110

[8] J. Clark.: W3C Recommendation. XSL Transformations (XSLT) version 1.0 (1999)
[9] A. Deutsch and V. Tannen. Containment and integrity constraints for XPath. Proc. KRDB

2001, CEUR Workshop Proceedings 45 (2001)
[10] C. Dong and J. Bailey.: The static analysis of XSLT programs. In Proc.of The 15th Aus-

tralasian Database Conference, Vol.27, Pages 151-160, Dunedin, New Zealand (2004)
[11] W. Fan, Minos Garofalakis, Ming Xiong, Xibei Jia.: Composable XML integration

grammars. In Proc.of ACM CIKM, Washington, D.C., USA (2004) 2-11
[12] F. M. Fernandez, A. Morishima, and D. Suciu.: Efficient evaluation of XML middle ware

queries. In SIGMOD 2001.
[13] R. Goldman and J. Widom.: DataGuides: Enabling query formulation and optimization in

semi-structured database. Proc. Int’l Conf on VLDB, Athens, Greece (1997) 436-446
[14] S. Jain, R. Mahajan and D. Suciu.: Translating XSLT Programs to Efficient SQL Queries.

In Proc.of WWW 2002, 616-626
[15] Euna Jeong and Chun-Nan Hsu.: Induction of integrated view for XML data with hetero-

geneous DTDs. In Proc.of CIKM, Atlanta, Georgia, USA (2001) Pages: 151 – 158
[16] M. Kay.: Anatomy of an XSLT Processor. (2001)
[17] M. Kay.: Saxon XSLT Processor. http://saxon.sourceforge.net/
[18] C. Laird.: XSLT powers a new wave of web, 2002. http://www.linuxjournal.com/article/

5622
[19] D. Lee, W. Chu.: Comparative analysis of six XML schema languages. ACM SIGMOD

Record archive Volume 29, Issue 3. ACM Press, New York, NY, USA (2000) 76–87
[20] M. L. Lee, L. H. Yang, W. Hsu, X. Yang.: XClust: clustering XML schemas for effective

integration. In Proc.of CIKM (2002) 292-299
[21] Q. Li, B. Moon.: Indexing and querying XML data for regular path expressions. Proc.

Int’l Conf on VLDB, Roma, Italy (2001) 361-370
[22] http://dx.doi.org/10.1007/11603412_7H. Ma, K. Schewe, B. Thalheim, J. Zhao.:

View Integration and Cooperation in Databases, Data Warehouses and Web Information
Systems. Data Semantics IV (2005)

[23] S. Maneth and F. Neven.: Structured document transformations based on XSL. In Proc.of
DBPL'99, Kinloch Rannoch, Scottland (1999)

[24] K. Passi, L. Lane, S. Madria, B. Sakamuri, M. Mohania, S. Bhowmick.: A model for
XML schema integration. In Proc.of The third International Conference on E-Commerce
and Web Technologies, Aix-en-Provence, France (2002) 193 - 202

[25] A. Trombetta and D. Montesi.: Equivalences and optimizations in an expressive XSLT
fragment. In Proc.of IDEAS 2004, Coimbra, Portugal (2004) 171-180

[26] W3C. XSL transformations (XSLT) version 2.0. http://www.w3.org/TR/xslt20/.
[27] Wanxia Wei, Mengchi Liu, and Shijun Li.: Merging of XML documents. In 23rd Intena-

tional Conference on Conceptual Modelling, ShangHai, China, November 2004
[28] W3C.: XML Path Language(XPath) Recommendation. http://www.w3.org/TR/xpath.
[29] C. Yu, L. Popa.: Constraint-based XML query rewriting for data integration, In Proc.of The

2004 ACM SIGMOD international conferenc onference on management of data (2004).

OXONE: A Scalable Solution for Detecting Superior
Quality Deltas on Ordered Large XML Documents

Erwin Leonardi and Sourav S. Bhowmick

School of Computer Engineering, Nanyang Technological University, Singapore
{pk909134, assourav}@ntu.edu.sg

Abstract. Recently, a number of relational-based approaches for detecting the
changes to XML data have been proposed to address the scalability problem of
main memory-based approaches (e.g., X-Diff, XyDiff). These approaches store
the XML documents in the relational database and issue SQL queries (whenever
appropriate) to detect the changes. In this paper, we propose a relational-based
ordered XML change detection technique (called OXONE) that uses a schema-
conscious approach as the underlying storage strategy for XML data. Previous ef-
forts have focused on detecting changes to ordered XML in an schema-oblivious
storage environment. Although the schema-oblivious approach produces better
result quality compared to XyDiff (a main memory-based ordered XML change
detection approach), its performance degrade with increase in data size and is
slower than XyDiff for smaller data set. We propose a technique to overcome
these limitations. Our experimental results show that OXONE is up to 22 times
faster and more scalable than the relational-based schema-oblivious approach.
The performances of OXONE and XyDiff (C version) are comparable. However,
more importantly, our approach is more scalable compared to XyDiff for larger
datasets and has much superior the result quality of deltas than XyDiff.

1 Introduction

Detecting changes to XML data is an important research problem. Recently, a number
of main memory-based techniques for detecting the changes to XML data has been pro-
posed. XyDiff [1] is an approach for detecting the changes to ordered XML documents.
In an ordered XML, both the parent-child relationship and the left-to-right order among
siblings are important. Wang et al. proposed X-Diff [8] for computing the changes to
unordered XML documents. In unordered XML, the parent-child relationship is signif-
icant, while the left-to-right order among siblings is not important. All these algorithms
suffer from scalability problem as they fail to detect changes to large XML documents
due to lack of main memory.

In [3,4], we have addressed this scalability problem in the context of unordered
XML documents by leveraging on the relational technology. In this approach, given
the old and new versions of an XML document, we store both documents in a rela-
tional database. Next, we issue a set of SQL queries (wherever appropriate) to detect
the changes. Efficient and accurate change detection in such a relational environment
is largely determined by the underlying storage structure. Particularly, there are two
major approaches for storing XML documents in a relational database [7]. In schema-
conscious approach, a relational schema is created based on the DTD/schema of the

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 196–211, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

OXONE: A Scalable Solution 197

XML documents. In the schema-oblivious approach, a fixed schema used to store XML
documents is maintained. The basic idea is to capture the tree structure of an XML doc-
ument. This approach does not require existence of an XML schema/DTD. In [2,3], we
have used schema-oblivious approach to detect changes to both ordered and unordered
XML documents. Whereas, in [4], we proposed a schema-conscious driven approach
for detecting changes to unordered XML data.

In this paper, we present a relational-based approach, called OXONE1 (schema-
cOnscious XML-enabled Ordered chaNge dEtection), for detecting the changes to or-
dered XML data using a schema-conscious approach (Shared-Inlining [6] in our case).
Our effort is motivated by the following observations. First, a growing body of work
suggests that schema-conscious approaches perform better than majority of the schema-
oblivious approaches as far as XML query processing is concerned [7]. Second, our re-
cent effort for detecting changes to unordered XML data in [4] using schema-conscious
approach shows encouraging results. In particular, we have shown that the schema-
conscious driven approach is significantly more scalable and faster than not only X-Diff
[8] but also relational-based schema-oblivious approach such as XANDY [3].

At this point one may question the justification of this work as we have already ex-
plored the feasibility of using schema-conscious storage approach for detecting changes
to XML data. However, the work reported in this paper is important for the following
reasons. First, in [4] we have focused on change detection to unordered XML whereas
in this paper we focus on ordered XML data. Although some of the SQL queries intro-
duced in [4] can be used for detecting changes to ordered XML with minor modifica-
tions, as we shall see later, the very nature of ordered XML pose new challenges. For
instance, unlike unordered change detection, ordered XML change detection has addi-
tional move operation that needs to be detected accurately. Second, the characteristics
of schema-conscious approach raise certain challenges. Unlike schema-oblivious ap-
proaches, the underlying relational schema is DTD-dependent. Consequently, the chal-
lenge is to create a general framework for change detection so that the framework is
independent of the structural heterogeneity of various XML documents. Third, it has
been shown in [8] that XyDiff is significantly faster than X-Diff. However, the result
quality of XyDiff is significantly poorer compared to X-Diff [8]. In [2,3], we have shown
that it is possible to generate superior quality deltas for both ordered and unordered
XML change detection problem using relational-based approach. However, due to the
underlying storage strategy, the relational-based approach in [2] is significantly slower
than XyDiff and does not scale well with large data. Consequently, is it possible to de-
sign a relational-based ordered XML change detection system that is more scalable and
generates superior quality results, yet have response time which is at least comparable
to XyDiff if not better? In this paper, we propose OXONE to address these challenges.

In our approach, we first store two versions of an XML document, namely, T1 and T2,
in a relational database whose underlying storage scheme is based on modified Shared-
Inlining approach [6]. Then, OXONE can be used to detect the changes to T1 and T2 in a
bottom-up fashion. Our approach consists of two phases: finding best matching subtrees
phase and the change detection phase. The objective of the first phase is to find the most
similar subtrees in T1 and T2. In order to find the most similar subtrees, we need to

1 pronounced as “ozone”.

198 E. Leonardi and S.S. Bhowmick

Fig. 1. Two versions of XML documents

match subtrees in T1 to ones in T2. Note that a subtree in T1 can be matched to more
than one subtree in T2, and vice versa. In addition, we need to measure the similarity of
each matching by calculating the similarity score. The most similar matching subtrees
are called best matching subtrees. In our approach, we issue SQL queries (whenever
appropriate) to find the best matching subtrees. We shall elaborate on this phase in
Section 3. Having determined the best matching subtrees between T1 and T2, in the
second phase OXONE issues SQL queries (whenever appropriate) to detect different
types of changes. The types of changes that can be detected by OXONE are similar to
the one in [1]. The detected changes are stored in several relations. We shall elaborate
on this phase in Section 4.

We have implemented the prototype of OXONE on top Microsoft SQL Server 2000
using Java. We compared OXONE to XANDY–O [2], a published schema-oblivious or-
dered XML change detection system, and XyDiff [1]. Our results show that OXONE has
comparable response time with XyDiff for large XML documents. However, it is more
scalable and has superior result quality compared to XyDiff. Particularly, XyDiff fails
to detect changes to XML documents containing around 356,000 nodes or more. Also,
OXONE outperforms XANDY–O by up to 22 times and is more scalable. In addition,
for larger data sets, OXONE is up to 44 times faster than X-Diff [8]. X-Diff is unable
to detect the changes on XML documents that have more than 5000 nodes due to lack
of main memory. We shall elaborate on the experimental results in Section 5. Note that

<!ELEMENT univStaff (staff*)>

<!ELEMENT staff (name,rank, research)>

<!ELEMENT research (interest*)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT rank(#PCDATA)>

<!ELEMENT interest(#PCDATA)>

(b) DTD

(a) DTD Tree

Document (Doc_ID, Doc_Name)

UnivStaff (Doc_ID, ID)

Staff (Doc_ID, ID, PID, Name, Rank)

Research.Interest (Doc_ID, ID, PID, Val)

(c) Original Schema

Document (Doc_ID, Doc_Name)

UnivStaff (Doc_ID, ID)

Staff (Doc_ID, ID, LocalOrder, PID, Name, Rank, Research)

Interest (Doc_ID, ID, LocalOrder, PID, Val)

(d) Modified Schema

univStaff

staff

name rank research

interest

*

*

Fig. 2. DTD Tree, DTD, and Relational Schema

OXONE: A Scalable Solution 199

the framework discussed in this paper is only for XML documents whose schemas do
not contain recursive elements.

2 Background

In this section, we first define some terms that we shall use subsequently to facilitate
exposition. Then, we discuss how the Shared-Inlining schema is modified to support
ordered XML change detection. We use the two versions of XML document in Figure 1
as running example throughout the paper.

2.1 Terminology

Let T be a tree representation of an XML document D. The root node of T is denoted by
root(T). Let L(T) = {�1, �2, ..., �n} be a set of leaf nodes in XML tree T . The textual
content of a leaf node � is denoted by value(�). A set of internal nodes in T is denoted
by I(T), and i denotes an internal node, where i ∈ I. The name and level of node n
are denoted by name(n) and level(n), respectively. Then, path(n) denotes the path
from root(T) to node n. The parent node, child node, and ancestor node of node n are
denoted as parent(n), child(n), and ancestor(n), respectively. In ordered XML, the
left-to-right position of a node among its siblings is significant. Hence, pos(n) denotes
the left-to-right position of node n among its siblings if D is an ordered XML. Note
that we use T1 and T2 as depicted in Figures 1(a) and 1(b), respectively, as our running
example in the later discussion.

Let �1x ∈ L(T1) and �2y ∈ L(T2) be two leaf nodes in the first and second versions
of an XML tree respectively. Then, �1x and �2y are matching leaf nodes (denoted as
�1x ↔ �2y) if name(�1x) = name(�2y), level(�1x) = level(�2y), path(�1x) = path(�2y),
and value(�1x) = value(�2y). For example, leaf nodes �13 and �112 are matching leaf
nodes (�13 ↔ �112) because they satisfy the above conditions. Note that a leaf node in
T1 can be matched to more than one leaf node in T2, and vice versa. Leaf node �110 in
T2 can be matched to node �4, �10, and �16 in T1 as they satisfy the above conditions.
Note that if �1 and �2 are not matching leaf nodes, then they are denoted by �1 �↔ �2.

We classify the matching leaf nodes into two types, namely, fixed matching leaf
nodes and shifted matching leaf nodes. This classification is important in the context
of ordered change detection as if the left-to-right position among siblings of a node
is changed, then it is possible that this node is moved among its siblings. Formally, let
�1 ↔ �2. If pos(�1) = pos(�2), then �1 and �2 are fixed matching leaf nodes. Otherwise,
they are shifted matching leaf nodes. For example, leaf nodes �18 and �106 are fixed
matching leaf node as �18 ↔ �106 and pos(�18) = pos(�106). Leaf nodes �13 and �112
are shifted matching leaf node as �13 ↔ �112 and pos(�13) �= pos(�112).

Next, we define the notion of matching leaf node groups. Let G1 and G2 be two sets
of leaf nodes whose parent nodes are i1 and i2, respectively, where i1 ∈ I(T1) and
i2 ∈ I(T2). Then, G1 and G2 are matching leaf node groups (denoted as G1 ⇔ G2) iff
∃�x∃�y such that �x ↔ �y, where �x ∈ G1 and �y ∈ G2. For example, suppose G17 =
{�18} and G105 = {�106, �107} are two sets of leaf nodes in T1 and T2 whose parent
nodes are nodes 17 and 105, respectively. We observe that G17 ⇔ G105 as �18 ↔ �106,
�18 ∈ G17, and �106 ∈ G105.

200 E. Leonardi and S.S. Bhowmick

Next, we define matching subtrees. The root nodes of two matching subtrees are
called matching internal nodes. From a set of matching subtrees, we determine the most
similar subtrees to be best matching subtrees. Similar to X-Diff [8] and XyDiff [1], we
only match two subtrees at the same level. Formally, the matching subtrees are defined
as follows. Let t1 and t2 be two subtrees rooted at nodes i1 ∈ I(T1) and i2 ∈ I(T2),
respectively. Then, t1 and t2 are matching subtrees (denoted by t1 � t2) if name(i1) =
name(i2), level(i1) = level(i2), path(i1) = path(i2), and ∃p ∃q such that p ↔ q,
where i1 = ancestor(p), i2 = ancestor(q), p ∈ L(T1), and q ∈ L(T2). For instance,
the subtrees rooted at node 8 in T1 and node 108 in T2 are matching subtrees (t8 � t108)
as they have three matching leaf nodes (�9 ↔ �109, �10 ↔ �110, and �13 ↔ �112). If t1
and t2 are not matching subtrees, then they are denoted by t1 �� t2. We use the terms of
matching subtrees and matching internal nodes interchangeably.

Having found a set of matching subtrees, we need to measure the degree of similarity
between two matching subtrees. We now define a metric called similarity score to mea-
sure how similar two subtrees are. The similarity score � of two subtrees t1 and t2 that
are in T1 and T2, respectively, is as follows: �(t1, t2) = 2|A|+|B|

|t1|+|t2| where |t1| and |t2|
are the total numbers of leaf nodes in t1 and t2, respectively, |A| and |B| are numbers of
nodes of fixed and shifted matching leaf nodes in t1 and t2, respectively and A∩B = ∅.
For example, the similarity score of t8 in T1 and t108 in T2 is �(t8, t108) = 0.714. The
value of similarity score is between 0 and 1. Two subtrees are more similar if the sim-
ilarity score is higher. Based on the similarity score, we classify the subtrees into two
types as follows. If 0 < �(t1, t2) ≤ 1, then the subtrees are matching subtrees and they
have at least one matching leaf node. Otherwise, the subtrees are unmatching subtrees
and they do not have matching leaf nodes (�(t1, t2) = 0).

Next, based on the above concepts, the best matching subtrees are formally defined
as follows. Let T1 and T2 be two sets of subtrees that are in T1 and T2, respectively. Let
t ∈ T1 be a subtree and P ⊆ T2 be a set of subtrees. Also t and ti ∈ P are matching
subtrees ∀ 0 < i ≤ |P |. Then, t and ti are best matching subtrees (denoted by t � ti) iff
(�(t, ti) > �(t, tj)) ∀ 0 < j ≤ |P | and i �= j. For example, subtree t14 can be matched
to subtrees t102 and t108. Observe that �(t14, t102) = 0.571 and �(t14, t108) = 0.333.
Consequently, subtrees t14 and t102 are best matching subtrees (t14 � t102). Note that
if t1 and t2 are not best matching subtrees, then they are denoted by t1 �� t2.

2.2 Extension of Shared-Inlining Approach

Recall that the OXONE approach is based on the Shared-Inlining storage strategy. For
instance, given a DTD depicted in Figure 2(b), Shared-Inlining approach generates a
relational schema as depicted in Figure 2(c). In [6], Shared-Inlining approach does not
explicitly store the local order of nodes which is important in ordered XML documents.
As this information is critical for our change detection process, we need to extend the
relational schema generated by Shared-Inlining approach.

Before we discuss the extensions, let us present some notations that will be used in
later discussion. Given a DTD tree HU that is tree representation of DTD U , the nodes
in HU are classified as inlined and non-inlined nodes. An inlined node is one that is
not below “∗” or “+” node. There are two types of inlined nodes, namely, inlined leaf
nodes (denoted by I�) and inlined internal nodes (denoted by Ii). For example, consider

OXONE: A Scalable Solution 201

Input
 U : DTD of the XML documents
 Two versions of an XML document
 stored in RDBMS
Output
 the Matching table
 /* --- STEP 1 --- */
1 for all in U (U) do
2 tbName ; tempTb ;
3 findMatchingLeafNodesGroups(tbName, tempTb);
4 end for
 /* --- STEP 2 --- */
5 maxLevel = maximum level at which there is in U (U)
 /* bottom-up matching */
6 for lev = maxLevel down to 1 do
7 for all (U) at level lev do
8 childNode child();
9 tempMChild MchildNode;
10 tbName ; tempTb ;

 /* --- STEP 2.1 --- */
11 findMatchingInternalNodes(tbName, tempTb, tempMChild);
 /* --- STEP 2.2 --- */
12 maximizeScore();
13 end for
14 end for
 /* --- STEP 3 --- */
15 root is the root node of U
16 Queue Q {root}
17 while (Q is not empty) do
18 q = Q.get();
19 Q the child internal
 nodes of q in U;
20 nodeName name(q); tempTb rq;
21 parentNode parent(q);
22 parentNodeName name(parentNode);
23 attrName attribute(q);
24 retrieveMatching(nodeName, tempTb, parentNodeName, attrName);
25 end do

i

r M

∈i
i

i
r

i
M

x
ω

l

Fig. 3. The findBestMatchingSubtrees Algorithm

a DTD tree as depicted in Figure 2(a). An inlined node will be stored as an attribute
in the relation of its parent nodes. For example, the parent nodes of node name and
research are node staff. The information on nodes name and research is stored in the
Name attribute in the Staff table (Figure 2(c)). A non-inlined node is one that is
below “∗” or “+” node. There are also two types of non-inlined nodes, namely, non-
inlined leaf nodes (denoted by N�) and non-inlined internal nodes (denoted by Ni). An
non-inlined node will be stored in a separate relation. For example, nodes interest and
staff are a non-inlined leaf node and a non-inlined internal node whose information are
stored in the Interest and Staff tables (Figure 2(c)), respectively.

Let us now elaborate on the extensions of relational schema generated by Shared-
Inlining approach. We add the LocalOrder attribute to the corresponding relations of
non-inlined nodes. We store the information on inlined internal nodes as a BOOLEAN
attribute (e.g., research attribute) in its parent relation. The extended relational schema
is depicted in Figure 2(d). The PID in the figure refers to the parent node id.

3 Finding Best Matching Subtrees Phase

The findBestMatchingSubtrees algorithm is depicted in Figure 3. Note that “[param]”
in the SQL queries (Figures 4 and 7) used in the later discussion will be replaced the
parameter param defined in the algorithm. Also, due to space constraints, in our subse-
quent discussions we will not elaborate on queries and algorithms that are similar to the
ones discussed in [4]. Rather, we shall highlight the differences (if any).

3.1 Finding Matching Leaf Nodes Groups Phase

The findMatchingLeafNodesGroups algorithm for finding matching leaf nodes groups
works as follows. First, the findMatchingLeafNodesGroups algorithm determines the
fixed matching leaf nodes by using the SQL query in Figure 4(a). Lines 10–11 are used
to ensure that fixed matching leaf nodes have the same values and local orders. Next,
we determine the matching leaf nodes groups from a set of fixed matching leaf nodes.
The SQL query in Figure 4(b) is used to determine matching leaf nodes groups from a
set of fixed matching leaf nodes. The idea behind this SQL query is to group the fixed
matching leaf nodes by their PID1 and PID2 attributes (line 4, Figure 4(b)). Observe

202 E. Leonardi and S.S. Bhowmick

1 INSERT INTO FIXMLEAFNODES

2 SELECT

3 A1.ID AS ID1, A2.ID AS ID2,

4 A1.PID AS PID1,

5 A2.PID AS PID2

6 FROM [tbName] AS A1,

 [tbName] AS A2

7 WHERE

8 A1.DOC_ID = doc_id1 AND

9 A2.DOC_ID = doc_id2 AND

10 A1.VAL = A2.VAL AND

11 A1.LOCALORDER = A2.LOCALORDER

(a) Finding Fixed Matching Leaf Nodes

1 INSERT INTO FIXMGROUP

2 SELECT A.PID1, A.PID2,

 COUNT(*) AS COUNTER

3 FROM FIXMLEAFNODES AS A

4 GROUP BY A.PID1, A.PID2

(b) Finding the Matching Group
(Fixed)

1 INSERT INTO SHIFTMGROUP

2 SELECT A1.PID, A2.PID, COUNT(*) AS COUNTER

3 FROM [tbName] AS A1, [tbName] AS A2

4 WHERE A1.DOC_ID = doc_id1 AND

5 A2.DOC_ID = doc_id2 AND

6 A1.VAL = A2.VAL AND

7 NOT EXISTS

8 (SELECT B.ID1 FROM FIXMLEAFNODES AS B

9 WHERE B.ID1 = A1.ID) AND

10 NOT EXISTS

11 (SELECT B.ID2 FROM FIXMLEAFNODES AS B

12 WHERE B.ID2 = A2.ID)

13 GROUP BY A1.PID, A2.PID

(c) Finding the Matching Group (Shifted)

1 INSERT INTO [tempTb]

2 (SELECT doc_id1, doc_id2,

3 PID1, PID2, 0 AS COUNTER,

4 0 AS TOTAL, 0 AS SCORE,

5 0 AS FLAG

6 FROM FIXMGROUP

7 UNION

8 SELECT doc_id1, doc_id2,

9 PID1, PID2, 0 AS COUNTER,

10 0 AS TOTAL, 0 AS SCORE,

11 0 AS FLAG

12 FROM SHIFTMGROUP)

(d) Finding the Matching Groups

1 UPDATE [tempTb]

2 SET SCORE = COUNTER/TOTAL

3 WHERE DID1 = doc_id1 AND

4 DID2 = doc_id2

(g) Calculating Similarity Score

1 UPDATE [tempTb] AS M

2 SET TOTAL =

3 (SELECT COUNT(T.ID)

4 FROM [tbName] AS T

5 WHERE M.DID1 = T.DOC_ID AND

6 T.PID = M.PID1) +

7 (SELECT COUNT(T.ID)

8 FROM [tbName] AS T

9 WHERE M.DID2 = T.DOC_ID AND

10 T.PID = M.PID2)

11 WHERE DID1 = doc_id1 AND

12 DID2 = doc_id2

(e) Update Attribute “Total”

1 UPDATE [tempTb] AS M

2 SET COUNTER =

3 (SELECT VALUE(SUM(COUNTER), 0)*2

4 FROM FIXMGROUP AS T

5 WHERE T.PID1 = M.PID1 AND

6 T.PID2 = M.PID2)

7 +

8 (SELECT VALUE(SUM(COUNTER), 0)

9 FROM SHIFTMGROUP AS T

10 WHERE T.PID1 = M.PID1 AND

11 T.PID2 = M.PID2)

12 WHERE DID1 = doc_id1 AND DID2 = doc_id2

(f) Update Attribute “Counter”

Fig. 4. SQL Queries for Finding Matching Leaf Nodes

DID1 DID2

1 2

PID1 PID2 Counter Total Score

22 1 3 0.333

1 2 13 2 3 0.666

1 2 44 4 4 1.000

(a) M_Interest Table

DID1 DID2 PID1 PID2 Counter Total ScoreLO1 LO2ID1 ID2 Flag

0

0

0

1 2 11 2 8 0.250

1 2 11 5 7 0.714

1 2 11 4 7 0.571

1 2 21

2 2 22

3 1 13

01 2 11 2 6 0.3333 2 23

01 2 11 2 7 0.2864 3 34

01 2 11 8 8 1.0004 4 44

(b) M_Staff Table

DID1 DID2 PID1 PID2 Counter Total ScoreLO1 LO2ID1 ID2 Flag

01 2 nullnull 17 29 0.5861 1 11

(c) M_univStaff Table

DID1 DID2 PID1 PID2 ScoreLO1 LO2ID1 ID2

1 2 nullnull 0.5861 1 11

1 2 11 1.0004 4 44

1 2 11 0.714

1 2 11 0.571

2 2 22

3 1 13

Name

univStaff

staff

staff

staff

1 2 44 1.000null null nullnull

1 2 22 0.333

1 2 13 0.666

null null nullnull

null null nullnull

research

research

research

(d) Matching Table

Fig. 5. Temporary Matching Tables and the Matching Table

that the PID1 and PID2 attributes store the parent node id of fixed matching leaf nodes
in the old and new versions, respectively. The next step is to determine matching leaf
nodes groups from shifted matching leaf nodes. We use the SQL query in Figure 4(c).
Line 6 is to ensure that two matching leaf nodes have the same values. Lines 7–9 and
10–12 are used to filter out leaf nodes in the old version and new version, respectively,
that already have been matched when the algorithm finds the fixed matching leaf nodes.
Finally, the shifted matching leaf nodes are grouped by their PID1 and PID2 attributes.

At this point of time, we have two sets of matching leaf nodes groups, that is, one
from fixed matching leaf nodes and another from shifted matching leaf nodes. The next
step is to merge these sets of matching leaf nodes groups. Figure 4(d) depicts the SQL
query to merge two sets of matching leaf nodes groups. We only need to use “UNION”
operator (line 7) to merge these sets. The final step is to update the information of
matching leaf nodes groups. We update the values of the Total, Counter, and Score
attributes using the three SQL queries as depicted in Figures 4(e)–4(g). Suppose we
have two set of leaf nodes, G1 and G2, whose parent nodes are i1 and i2, respectively,
where G1 ⇔ G2. Then, the value of the Total attribute is equal to (|t1|+ |t2|), where |t1|

OXONE: A Scalable Solution 203

tempTb1 (DID1, DID2, PID1, PID2,
 Counter, Total, Score)

tempTb2 (DID1, DID2, ID1, ID2,
 LO1, LO2, PID1, PID2, Counter,
 Total, Score, Flag)

MATCHING (DID1, DID2, ID1, ID2,
 LO1, LO2, PID1, PID2, Score,
 Name)

(a) Temporary Matching Tables

(c) Attributes and Descriptions

Score Similarity score

Total Total number of nodes

Counter Number of matching nodes
Flag

Status for possible moved
nodes

Attributes Description

INS_INT (DID1, DID2, ID, LO, PID,
 Name)

DEL_INT (DID1, DID2, ID, LO, PID,
 Name)

INS_LEAF (DID1, DID2, ID, LO, PID,
 Name, Value)

DEL_LEAF (DID1, DID2, ID, LO,
 PID, Name, Value)

UPD_LEAF (DID1, DID2, ID1, ID2, LO1,
 LO2, PID1, PID2, Name, Value1, Value2)

(b) Delta Tables

MOVE_INT (DID1, DID2, ID1, ID2, LO1,
 LO2, PID1, PID2, Name)

MOVE_LEAF (DID1, DID2, ID1, ID2, LO1,
 LO2, PID1, PID2, Name, Value)

MOVE_LIST (DID1, DID2, ID1, ID2, LO1,
 LO2, PID1, PID2, Name, Type)

Attributes Description

DID1 Document id of the first version

DID2 Document id of the second version

PID Parent node id

PID1 Parent node id in the first version

PID2 Parent node id in the second version

ID Node id

ID1 Node id in the first version

ID2 Node id in the second version

Name Node name

Value Leaf node content

Value1 The old value of a leaf node

Value2
The new value of a leaf
node

LO Local order

LO1 Local order in the first version

LO2 Local order in the second version
Type

Node type of the moved
nodes among their siblings

Attributes Description

Fig. 6. Temporary and Delta Table Descriptions

and |t2| are the numbers of leaf nodes whose parent nodes are i1 and i2, respectively.
That is, lines 3–6 and lines 7–10 in Figure 4(e) are used to calculate the values of |t1|
and |t2|, respectively. The value of the Counter attribute is equal to (2|A|+ |B|), where
|A| and |B| are the numbers of fixed and shifted matching leaf nodes in G1 and G2,
respectively. Similarly, lines 3–6 and lines 8–12 in Figure 4(f) are used to calculate the
values of 2|A| and |B|, respectively. Finally, the value of the Score attribute is equal to
2|A|+|B|
|t1|+|t2| as defined in the preceding section.

The results of the findMatchingLeafNodesGroups algorithm are a temporary table
Mcx in which the information of matching groups of non-inlined leaf nodes cx are
stored. The schema of the Mcx table is the same as the one of the tempTb1 table as
depicted in Figure 6(a). The semantics of attributes of the tempTb1 table are depicted
in Figure 6(c). For instance, in our example, the “interest” node is a non-inlined leaf
nodes. The algorithm will generate the Minterest table as depicted in Figure 5(a).

3.2 Bottom-Up Matching Phase

The next step is to propagate the matchings in bottom-up fashion (lines 5–14, Figure 3).
First, the algorithm determines the highest level of the non-inlined internal nodes in
DTD U (line 5). Then, it starts to find best matching internal nodes in bottom-up fash-
ion. There are two sub steps, that is, finding matching internal nodes (line 11) and
determining best matching subtrees (line 12) by finding best matching configurations.

Finding Matching Internal Nodes. This phase is similar to the one discussed in [4].
Figure 7 depicts the SQL queries used to find matching internal nodes. Observe that
these SQL queries are similar to the ones in [4]. The only difference is that in OXONE

we include the LocalOrder attribute when we project the result of the SQL queries. The
details on how to replace “[moreConditions]” (line 11, Figure 7(b)) can be found
in [4]. The matching internal node iw is stored in a temporary matching table Miw ,
where iw ∈ Ni. The schema of the Miw table is the same as the one of the tempTb2
table as depicted in Figure 6(a). The semantics of attributes of the tempTb2 table are
depicted in Figure 6(c). For example, the matching “staff” node will be stored in the
Mstaff table (Figure 5(b)).

204 E. Leonardi and S.S. Bhowmick

(a) Finding Matching Internal Nodes (1)

1 INSERT INTO [tempTb]

2 SELECT

3 A1.DOC_ID AS DID1, A2.DOC_ID AS DID2,

4 A1.ID AS ID1, A2.ID AS ID2,

5 A1.LOCALORDER AS LO1, A2.LOCALORDER AS LO2,

6 A1.PID AS PID1, A1.PID AS PID2,

7 0 AS COUNTER, 0 AS TOTAL, 0 AS SCORE, 0 AS FLAG

8 FROM [tbName] AS A1, [tbName] AS A2

9 WHERE

10 A1.DOC_ID = doc_id1 AND A2.DOC_ID = doc_id2 AND

11 [moreConditions] AND

12 NOT EXISTS

13 (SELECT ID1, ID2 FROM [tempTb] AS B

14 WHERE B.DID1 = doc_id1 AND

15 B.DID2 = doc_id2 AND B.ID1 = A.ID1 AND B.ID2 = A.ID2)

16 GROUP BY A1.DOC_ID, A2.DOC_ID, A1.PID, A2.PID, A1.ID, A2.ID

(b) Finding Matching Internal Nodes (2)

1 INSERT INTO [tempTb]

2 SELECT

3 A1.DOC_ID AS DID1, A2.DOC_ID AS DID2,

4 A1.ID AS ID1, A2.ID AS ID2,

5 A1.LOCALORDER AS LO1, A2.LOCALORDER AS LO2,

6 A1.PID AS PID1, A2.PID AS PID2,

7 0 AS COUNTER, 0 AS TOTAL, 0 AS SCORE, 0 AS FLAG

8 FROM [tempMChild] AS A, [tbName] AS A1, [tbName] AS A2

9 WHERE

10 A.DID1 = doc_id1 AND A.DID2 = doc_id2 AND

11 A1.DOC_ID = doc_id1 AND A2.DOC_ID = doc_id2 AND

12 A1.ID = A.PID1 AND A2.ID = A.PID2 AND

13 NOT EXISTS

14 (SELECT ID1, ID2 FROM [tempTb] AS B

15 WHERE B.DID1 = doc_id1 AND B.DID2 = doc_id2 AND

16 B.ID1 = A.ID1 AND B.ID2 = A.ID2)

17 GROUP BY A1.DOC_ID, A2.DOC_ID, A1.PID, A2.PID, A1.ID, A2.ID

Fig. 7. SQL Queries for Finding Matching Internal Nodes

Finding Best Matching Internal Nodes. The task in this step is to find best match-
ing configurations that facilitate us to find best matching internal nodes. Recall that an
internal node in T1 can be matched to more than one internal nodes in T2, and vice
versa. The problem of finding best matching configuration is similar to the problem of
finding maximum weighted bipartite matching. In our implementation, we use the Hun-
garian method [5] that addresses the problem of finding maximum weighted bipartite
matching. The algorithm for finding best matching configurations is similar to the one
discussed in [4] except for the following differences. After we determine the best match-
ing configurations, the algorithm annotates the matching internal nodes whose parent
nodes are not used in the best matching configuration by setting the Flag attribute in the
Miw table to “1”. The annotations mean that these subtrees may be moved to different
parent nodes. Note that in [4] such matching nodes are directly deleted. Observe that we
also need to update the values of the Counter, Total, and Score attributes accordingly as
initially their values are equal to “0”.

3.3 Collecting Best Matching Internal Nodes Phase

The result of the previous step is the best matching internal nodes partitioned in sev-
eral relations. The objectives of this step are to merge/collect the best matching internal
nodes from different relations and to determine the best matching inlined internal nodes.
Observe that the moved subtree candidates are also in the temporary matching tables.
The values of the Flag attribute of moved subtree candidates in the temporary matching
tables are equal to “1”. The algorithm and SQL queries for collecting best matching in-
ternal nodes are similar to the ones presented in [4] except for the following difference.
In OXONE, we need to filter out the moved node candidates from being considered as
best matching internal nodes. They can be filtered out by adding a condition “FLAG =

DID1 DID2 PIDLOID Name

1 2 3 3 1

research

staff

1 2 null null 3

(a) INS_INT Table

DID1 DID2 PIDLOID Name

1 2 1 1 1

research

staff

1 2 null null 1

(b) DEL_INT Table

DID1 DID2 PIDLOID Name

1 2 null null 1

rank

name

1 2 null null 1

(d) DEL_LEAF Table

Value

Assoc Prof

Smith

1 2 1 1 1

interest

interest

1 2 2 2 1
Multimedia

Mining

Web Mining

1 2 3 3 2 interest Data Mining

DID1 DID2 PIDLOID Name

1 2 2 2 1

name

interest

1 2 null null 3

(c) INS_LEAF Table

Value

Steve

Information
Retrieval

1 2 null null 3

interest

rank

1 2 4 1 3
Semantic

Web

Asst Prof

DID1 DID2 PID1 PID2 Value1LO1 LO2ID1 ID2

1 2 13 Assoc Profnull null nullnull

Name

rank

Value2

Prof

(e) UPD_LEAF Table

#

#

#

#

rank1 2 null null 1 Prof 1 2 null null 3 rank Assoc Prof# #

Fig. 8. Delta Tables

OXONE: A Scalable Solution 205

1 INSERT INTO UPD_LEAF

2 SELECT DISTINCT doc_id1 AS DID1, doc_id2 AS DID2,

3 NULL AS ID1, NULL AS ID2, NULL AS LO1, NULL AS LO2,

4 I1.ID AS PID1, I2.ID AS PID2, '[nodeName]' AS NAME,

5 I1.[attrName] AS VALUE1, I2.[attrName] AS VALUE2

6 FROM [parentTbName] AS I1, [parentTbName] AS I2

7 WHERE

8 I1.DOC_ID = doc_id1 AND I2.DOC_ID = doc_id2 AND

9 I1.[attrName] IS NOT NULL AND I2.[attrName] IS NOT NULL AND

10 I1.[attrName] != I2.[attrName] AND

11 EXISTS

12 (SELECT * FROM MATCHING AS B

13 WHERE DID1 = doc_id1 AND DID2 = doc_id2 AND

14 B.NAME = '[parentNodeName]' AND

15 B.ID1 = I1.ID AND B.ID2 = I2.ID)

(a) Update of Inlined Leaf Nodes

1 INSERT INTO UPD_LEAF

2 SELECT DISTINCT doc_id1 AS DID1, doc_id2 AS DID2,

3 D.ID AS ID1, I.ID AS ID2, D.LO AS LO1,

4 I.LO AS LO2, D.PID AS PID, I.PID AS PID2,

5 D.NAME, D.VALUE AS VALUE1, I.VALUE AS VALUE2

6 FROM INS_LEAF AS I, DEL_LEAF AS D, MATCHING AS M

7 WHERE

8 I.DID1 = doc_id1 AND I.DID2 = doc_id2 AND

9 D.DID1 = doc_id1 AND D.DID2 = doc_id2 AND

10 M.DID1 = doc_id1 AND M.DID2 = doc_id2 AND

11 M.ID1 = D.PID AND M.ID2 = I.PID AND

12 M.NAME = '[parentNodeName]' AND

13 I.NAME = '[nodeName]' AND

14 D.NAME = '[nodeName]' AND

15 I.VALUE != D.VALUE AND I.LO = D.LO

(b) Update of Non-inlined Leaf Nodes

Fig. 9. SQL Queries for Detecting Updated Leaf Nodes

0” in the SQL queries. In addition, we need to include the LocalOrder attribute when
we project the result of the SQL queries. The best matching internal nodes are stored in
the MATCHING table. The semantics of the MATCHING table is depicted in Figure 6.
For example, given the MunivStaff and Mstaff tables (Figures 5(b) and 5(c), respec-
tively) and the relations containing the shredded XML documents, the MATCHING table
is depicted in Figure 5(d). The MATCHING table keeps the best matching internal nodes
of two XML documents that will be used to detect the changes (Phase 2).

4 Change Detection Phase

In this section, we discuss how the changes are detected by OXONE after the best match-
ing subtrees are determined. We detect the insertion, deletion, update, and move oper-
ations as highlighted in [1]. Note that we do not elaborate on the detection of inserted
and deleted nodes (subtrees) here as the SQL queries are similar to the ones presented
in [4]. The only difference is that in OXONE we include the “LocalOrder” attribute in
the projection of the result. The detected inserted and deleted internal nodes are stored
in the INS INT and DEL INT tables, respectively. Similarly, the detected inserted and
deleted leaf nodes are stored in the INS LEAF and DEL LEAF relations, respectively.
The semantics of these relations and corresponding examples (based on XML docu-
ments in Figure 1) are given in Figures 6 and 8, respectively. Note that the updated leaf
nodes are also detected during the detection of inserted and deleted nodes as they can
be decomposed into pairs of deleted and inserted leaf nodes. “[param]” in the SQL
queries (Figures 9 and 10) used in the later discussion will be replaced the parameter
param that is similar to the one defined in the findBestMatchingSubtrees algorithm.

4.1 Content Updates of Leaf Nodes

Intuitively, the updated leaf nodes are the leaf nodes that are available in both ver-
sions and have the same node names, but have different values, and their parent nodes
are best matching internal nodes. In OXONE, the updated leaf nodes are detected af-
ter the inserted and deleted leaf nodes are detected. We classify the update operations
of non-inlined leaf nodes into the absolute update operations and the relative update

206 E. Leonardi and S.S. Bhowmick

1 INSERT INTO MOVE_INT
2 SELECT
3 doc_id1 AS DID1, doc_id2 AS DID2,
4 M.ID1, M.ID2, M.LO1, M.LO2,
5 M.PID1, M.PID2, '[nodeName]' AS NAME
6 FROM INS_INT AS I, DEL_INT AS D, [tempTb] AS M
7 WHERE
8 I.DID1 = doc_id1 AND I.DID2 = doc_id2 AND
9 D.DID1 = doc_id1 AND D.DID2 = doc_id2 AND
10 M.DID1 = doc_id1 AND M.DID2 = doc_id2 AND
11 I.NAME = '[nodeName]' AND
12 D.NAME = '[nodeName]' AND
13 M.ID1 = D.ID AND M.ID2 = I.ID AND
14 M.FLAG = 1 AND M.SCORE >= 0.500

(a) Move To Different Parent Nodes (1)

1 INSERT INTO MOVE_INT
2 SELECT
3 doc_id1 AS DID1, doc_id2 AS DID2,
4 NULL AS ID1, NULL AS ID2, NULL AS LO1, NULL AS LO2,
5 M.ID1, M.ID2, '[nodeName]' AS NAME
6 FROM INS_INT AS I, DEL_INT AS D, [parentTempTb] AS M
7 WHERE
8 I.DID1 = doc_id1 AND I.DID2 = doc_id2 AND
9 D.DID1 = doc_id1 AND D.DID2 = doc_id2 AND
10 M.DID1 = doc_id1 AND M.DID2 = doc_id2 AND
11 I.NAME = '[nodeName]' AND
12 D.NAME = '[nodeName]' AND
13 M.ID1 = D.PID AND M.ID2 = I.PID AND
14 M.FLAG = 1 AND M.SCORE >= 0.500

(b) Move To Different Parent Nodes (2)

1 INSERT INTO MOVE_LEAF
2 SELECT
3 doc_id1 AS DID1, doc_id2 AS DID2, D.ID AS ID1,
4 I.ID AS ID2, D.LO AS LO1, I.LO AS LO2,
5 D.PID AS PID1, I.PID AS PID2, '[nodeName]' AS NAME,
6 D.VALUE AS VALUE
7 FROM INS_LEAF AS I, DEL_LEAF AS D, MOVE_INT AS M
8 WHERE
9 I.DID1 = doc_id1 AND I.DID2 = doc_id2 AND
10 D.DID1 = doc_id1 AND D.DID2 = doc_id2 AND
11 M.DID1 = doc_id1 AND M.DID2 = doc_id2 AND
12 I.NAME = '[nodeName]' AND D.NAME = '[nodeName]' AND
13 I.VALUE = D.VALUE AND
14 M.NAME = '[parentNodeName]' AND
15 M.ID1 = D.PID AND M.ID2 = I.PID

1 INSERT INTO MOVE_LEAF
2 SELECT
3 doc_id1 AS DID1, doc_id2 AS DID1,
4 D.ID AS ID1, I.ID AS ID2,
5 D.LO AS LO1, I.LO AS LO2, D.PID AS PID1,
6 I.PID AS PID2, D.NAME, D.VALUE
7 FROM DEL_LEAF AS D, INS_LEAF AS I
8 WHERE
9 D.DID1 = doc_id1 AND D.DID2 = doc_id2 AND
10 I.DID1 = doc_id1 AND I.DID2 = doc_id2 AND
11 D.VALUE = I.VALUE AND D.NAME = I.NAME

(d) Leaf Nodes: Move To Different Parent Nodes (2)(c) Leaf Nodes: Move To Different Parent Nodes (1)

Fig. 10. SQL Queries for Detecting Moved Nodes

operations. In the absolute update operation, only the content value of an updated leaf
node is changed, while its position among siblings remains the same. In relative update
operation, the content value and position among siblings of an updated leaf node are
changed. For inlined leaf nodes, we only have absolute update operations as they occur
once under the same parent nodes.

Inlined Leaf Nodes. The SQL query in Figure 9(a) is used to determine the updated
inlined leaf nodes. Lines 9–10 are used to ensure that the updated inlined leaf nodes are
available in both versions (line 9) and they have different values (line 10). Lines 11–15
are used to guarantee that the parent nodes of the updated inlined leaf nodes are best
matching internal nodes. The result of the SQL query depicted in Figure 9(a) is stored in
the UPD LEAF table. Its schema and semantics are depicted in Figures 6. Next, we need
to delete the corresponding tuples of the updated inlined leaf nodes in the DEL LEAF
and INS LEAF relations. This is because we have detected updated leaf nodes that are
previously detected as pairs of deleted and inserted leaf nodes.

Non-Inlined Leaf Nodes. To detect the absolute updated non-inlined leaf nodes, OX-
ONE executes the SQL query depicted in Figure 9(b). Observe that we join three tables,
namely, the DEL LEAF, INS LEAF, and MATCHING tables. Recall that an updated
leaf node can be decomposed as a pair of deleted and inserted leaf nodes. Line 13 is
used to guarantee that the parent nodes of the deleted and inserted leaf nodes are the
best matching internal nodes. The absolute updated leaf nodes must have the same node
name and the same local order, but different values (lines 13–15). The result of the SQL
query depicted in Figure 9(b) is stored in the UPD LEAF table. We also need to delete
the corresponding tuples of the updated non-inlined leaf nodes in the DEL LEAF and
INS LEAF relations.

Next, OXONE determines the relative updated non-inlined leaf nodes by executing
the SQL query depicted in Figure 9(b) after slight modifications as follows. We replace

OXONE: A Scalable Solution 207

“I.LO = D.LO” with “I.LO �= D.LO”. Recall that the relative updated leaf nodes
must have the same node name, but different values and local orders. Note that while
detecting relative updated non-inlined leaf nodes, the query may return incorrect results
in some situations as follows. First, there is more than one relative updated non-inlined
leaf node under the same parent nodes. Second, there are deletion/insertion and update
of non-inlined leaf nodes occurred under the same parent nodes. Therefore, we rectify
the results using the approach as discussed in [4]. The result of the SQL query depicted
in Figure 9(b) (after slight modification) is also stored in the UPD LEAF table. In our
example, the UPD LEAF table is depicted in Figure 8(e). The highlighted tuples in the
INS LEAF (Figure 8(c)) and DEL LEAF (Figure 8(d)) tables will be deleted as they are
the corresponding tuples of the updated leaf nodes.

4.2 Move Operation

The move operations are classified into move among siblings and move to different parent
nodes. The algorithm for detecting the movement of nodes among their siblings is similar
to the one presented in [2]. Hence, here we focus on move to different parent nodes.

A particular node that is moved to different parent node is detected as a pair of
deletion and insertion. Hence, we are able to determine the nodes that are moved to
different parent nodes by querying the DEL INT and INS INT tables (for moved in-
ternal nodes), and the DEL LEAF and INS LEAF tables (for moved leaf nodes). The
moved internal nodes (leaf nodes) are best matching internal nodes (matching leaf
nodes) whose parent nodes are not best matching internal nodes.

The SQL queries in Figures 10(a) and 10(b) are used to find the moved non-inlined
and inlined internal nodes that are moved to different parent nodes. Note that we only
consider the moved internal nodes that have similarity scores equal or greater than
“0.500”. Note that this “threshold” can be defined by users based on application re-
quirements. Otherwise, they are detected as pairs of deleted and inserted internal nodes.
If an internal node i is moved to different parents, then, intuitively, the subtree rooted at
node i is also moved. That is, we need to detect the moved leaf nodes that are the descen-
dants of the moved internal nodes. Figure 10(c) is used to find the moved non-inlined
leaf nodes that are the descendants of the moved internal nodes. To find the inlined ones,
we used the modified SQL query of the SQL query depicted in Figure 10(c). We replace
“ID1” and “ID2” in line 10 with “PID1” and “PID2” respectively. Note that we need
to delete the corresponding tuples of the moved nodes that are stored in the DEL INT,
INS INT, DEL LEAF, and INS LEAF tables. Observe that some leaf nodes can also
be moved to be the child nodes of different parent nodes. These moved leaf nodes are
not the descendants of the moved internal nodes. Figure 10(d) is used to find the moved
leaf nodes that are not the descendants of the moved internal nodes. Note that we also
need to delete the corresponding tuples of the moved leaf nodes that are stored in the
DEL LEAF, and INS LEAF tables.

5 Performance Study

We have implemented OXONE entirely in Java. We use Microsoft SQL Server 2000
for storing XML documents before the changes are detected. The experiments were

208 E. Leonardi and S.S. Bhowmick

Dataset
Code

SIGMOD-01 331

Filesize
(KB)

13

SIGMOD-02 554 21

SIGMOD-03 890 34

SIGMOD-04 1,826 70

SIGMOD-05 2,718 104

SIGMOD-06 4,717 180

SIGMOD-07 8,794 337

SIGMOD-08 18,866 721

SIGMOD-09 37,725 1,444

SIGMOD-10 89,323 3,431

Dataset
Code Total

Filesize
(KB)

SIGMOD-11 172,754 6,635

SIGMOD-12 290,539 11,167

SIGMOD-13 355,921 13,688

SIGMOD-14 452,689 17,398

SIGMOD-15 620,223 23,816

73

117

187

389

567

983

1,801

3,883

7723

18,067

34,845

58,587

71,991

91,604

125,411

Internal258

427

703

1,437

2,151

3,734

6,993

14,983

30,002

71,256

137,909

231,952

283,930

361,085

494,812

Leaf

Number of NodesTotalInternal Leaf

Number of Nodes

Fig. 11. Data Sets

conducted on a Microsoft Windows XP Professional machine having Pentium 4 1.7 GHz
processor with 512 MB of memory. We used a set of synthetic XML data based on SIG-
MOD DTD (http://www.sigmod.org/record/). The characteristics of the data sets are de-
picted in Figure 11. The second versions of the XML documents are generated by using
our XML change generator. We compared the performance of OXONE to the Java ver-
sion of X-Diff [8] (downloaded from http://www.cs.wisc.edu/∼yuanwang/xdiff.html),
schema-oblivious relational-based approach for ordered XML change detection in [2]
(called XANDY–O), and C version of XyDiff [1] (downloaded from http://pauillac.inria.
fr/cdrom/www/xydiff/index-eng.htm). Note that despite our best efforts (including con-
tacting the authors), we could not get the Java version of XyDiff. The C version of Xy-
Diff was run in a Pentium 4 1.7 GHz processor with 512 MB of memory with Red Hat
Linux 9 operating system. Note that as the Java version is in general slower than the
C version, the execution times of XyDiff will differ by a constant factor in comparison
with X-Diff.

Execution Time vs Number of Nodes. In this set of experiments, we analyze the per-
formance of OXONE for different number of nodes. The percentages of change is set
to “9%”. Figure 12(a) depicts the performance of Phase 1 in our approaches. Ob-
serve that the performances of OXONE and XANDY–O are comparable up to data set
SIGMOD-05. For larger data set, OXONE outperforms XANDY–O (up to 20.5 times).
Note that the performance of XANDY–O is adversely affected with increase in num-
ber of nodes and for datasets larger than SIGMOD-12, XANDY–O fail to return results
in 100,000 seconds. Hence, we do not plot the result of XANDY–O for data sets larger
than SIGMOD-12. The performance of Phase 2 is depicted in Figure 12(b). In this case,
OXONE is faster than XANDY–O (up to 81.88 times).

Figure 12(c) depicts the overall performance of our approaches. XyDiff is up to 3.5
times faster than OXONE for the first three data sets. After that the performance of
XyDiff is comparable to the one of OXONE. However, our approach is more scalable
as XyDiff fails to detect the changes to data sets larger than SIGMOD-12 as its process
was killed by the Linux kernel. In addition, we believe that the Java version of XyDiff
will be much slower and less scalable than the C version and hence will adversely affect
the response time and scalability further. X-Diff, on the other hand, is only able to
detect the changes up to SIGMOD-06 due to lack of main memory. X-Diff outperforms
OXONE for the first three data sets (up to 8.15 times). For larger data sets, OXONE is up
to 43.7 times faster than X-Diff. Note that the performances of XANDY–O and OXONE

is slower than main memory-based approaches for smaller data sets as the database I/O
cost is more expensive. Also, overall OXONE is up to 22 times faster than XANDY–O.

OXONE: A Scalable Solution 209

(d) Result Quality Compared to XyDiff

0

1

2

3

4

5

0 3 6 9 12

Percentage of Changes (%)

R
es

ul
t

Q
ua

lit
y

OXONE
XANDY-O
XyDiff

11.25 8.17 6.625

0.0

1.0

2.0

3.0

4.0

5.0

0 5 10 15 20 25 30 35

Percentage of Change (%)

E
xe

cu
tio

n
 T

im
e

(s
)

OXONE XANDY-O
0.0

1.0

2.0

3.0

0 5 10 15 20 25 30 35

Percentage of Change (%)

E
xe

cu
ti

o
n

Ti
m

e
(s

)

OXONE

XANDY-O

0.0

2.0

4.0

6.0

8.0

0 5 10 15 20 25 30 35

Percentage of Change (%)

E
xe

cu
ti

on
 T

im
e

(s
)

OXONE
XANDY-O
X-Diff
XyDiff

(f) Phase 2: Detecting the Changes(e) Phase 1: Finding Best Matching Subtrees

(g) Overall Performance

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7

Data Sets

P
er

ce
ta

ng
e

o
f O

ve
ra

ll
P

er
fo

rm
an

ce

Insertion Deletion Update Move

(h) Different Types of Changes (9%)

0

20

40

60

80

1 2 3 4 5 6 7

Data Sets

P
er

ce
nt

ag
e

o
f

O
ve

ra
ll

P
er

fo
rm

an
ce

 (
%

)

Move Internal Nodes Move Leaf Nodes Move Among Siblings

(i) Move Operations (9%)

0.1

1

10

100

1000

10000

100000

100 1,000 10,000 100,000 1,000,000

Number of Nodes

E
xe

cu
ti

on
 T

im
e

(s
)

OXONE

XANDY-O

(a) Finding Best Matching Subtrees (9%)

0.1

1

10

100

1000

10000

100 1,000 10,000 100,000 1,000,000

Number of Nodes

E
xe

cu
tio

n
 T

im
e

(s
) OXONE

XANDY-O

(b) Detecting the Changes (9%) (c) Overall Performance (9%)

0.1

1

10

100

1000

10000

100000

100 1,000 10,000 100,000 1,000,000

Number of Nodes

E
xe

cu
tio

n
 T

im
e

(s
)

OXONE

XANDY-O

X-Diff

XyDiff

Fig. 12. Experimental Results

Result Quality. Next, we examine the result quality of OXONE, XANDY–O, and Xy-
Diff. The result quality is defined as the ratio between the number of edit operations
in the deltas detected by an approach and the one in the optimal deltas. Note that an
optimal delta consists of minimum number of edit operations [8]. Also, we do not show
the result quality of X-Diff as it is not designed for ordered change detection. We use
a small data set with 100 nodes and generate the second version with various percent-
ages of changes (2%–12%). Figure 12(d) depicts the result quality comparison results.
Observe that the result quality of OXONE and of XANDY–O are comparable. Also, the
result qualities of OXONE and XANDY–O are significantly better than that of XyDiff. In
XyDiff’s deltas, there are some unnecessary move operations, and, in some case, XyD-
iff mismatches the best matching subtrees. For instance, consider the example depicted
in Figure 13. The delta detected by OXONE contains delete(1) and update(10, “Asst
Prof”, “Assoc Prof”). However, the delta generated by XyDiff contains move(9, 1, 2)
(“move node 9 to the second child node of node 1”), delete(8), and delete(2) which is
semantically incorrect.

univStaff

staff

name rank research

interestTom Assoc
Prof

Data Mining XML Mining Indexing

interestinterest

staff

name rank research

interestJane Asst
Prof

Data Mining XML Mining Indexing

interest

univStaffT2T1
0

1

2 3

4

5 6 7

8

9

10

11

12 13 14

0

interest

staff

name rank research

interestJane Assoc
Prof

Data Mining XML Mining Indexing

interest

1

2

3

4

5 6 7

interest

Fig. 13. Result Quality: Example

210 E. Leonardi and S.S. Bhowmick

Execution Time vs Percentages of Changes. In this section, we shall observe the effects
of percentage of changes to the performances of XANDY–O, OXONE, and X-Diff. We
use “Sigmod-03” data set. Observe that the percentages of changes are equally dis-
tributed to different types of changes. Figure 12(e) depicts the performance of Phase 1
of XANDY–O and OXONE for different percentage of changes. The performances of
XANDY–O and OXONE are affected by percentages of changes. When the percent-
age of changes is increased by 1%, the performances of XANDY–O and OXONE be-
come, on average, 0.95% and 1.43% slower, respectively. The performances of Phase 2
of XANDY–O and OXONE for different percentages of changes are depicted in Fig-
ure 12(f). OXONE is up to 1.62 times faster than XANDY–O. Figure 12(g) shows the
overall performance of XANDY–O and OXONE for different percentages of changes.
We notice that XyDiff is up to 2.59 times faster than OXONE.

Different Types of Changes. In this set of experiments, we study the affect of differ-
ent types of changes on the running time. We used first seven data sets and set the
percentage of changes to 9%. Figure 12(h) depicts the proportion of execution times
of detecting insertion, deletion, update, and move operations. Observe that detecting
move operation takes up to 67.17% of the execution time of Phase 2. Figure 12(i) de-
picts the affect of different types of move operations on the running time. The execution
time of detecting moves among siblings is significant compared to the one for detecting
moved internal nodes and moved leaf nodes. It takes up to 55.68% of the execution
time of Phase 2. Let us elaborate on this further. In detecting move among siblings, we
compare the local order of each node. However, the local order can be changed due
to the insertions/deletions of sibling nodes. Hence, we need to ensure that such local
order changes are not considered in order to detect move among siblings correctly. The
adjustLocalOrder function that is similar to the one in [2] is used to simulate the in-
sertions/deletions of sibling nodes. Observe that an insertion/deletion of a sibling node
can change more than one local orders of its sibling nodes. Hence, when there is an
insertion/deletion of a sibling node, we need to adjust more than one local orders of
its sibling nodes. That is, the cost of the adjustLocalOrder function is increased as the
number of insertions/deletions is increased.

6 Conclusions and Future Work

In this paper, we present a relational-based approach (called OXONE) for detecting the
changes on ordered XML documents using a schema-conscious approach. This work
is motivated by the following observations. First, existing main memory-based ordered
XML change detection techniques (XyDiff) produce poorer quality deltas compared to
its unordered counterpart (X-Diff). Second, although existing relational-based ordered
change detection approach such as XANDY–O can produce superior quality results, its
performance is much slower than XyDiff and degrades significantly with increase in
number of nodes. To the best of our knowledge, OXONE is the first approach that ad-
dress these two limitations. Our experimental results show that OXONE is more scalable
than existing state-of-the-art approaches. It has comparable performance with XyDiff
and yet produce superior result quality. As parts of our future work, we would like to
extend our framework so that it can handle recursive DTDs.

OXONE: A Scalable Solution 211

References

1. G. COBENA, S. ABITEBOUL, A. MARIAN. Detecting Changes in XML Documents. In ICDE,
2002.

2. E. LEONARDI, S. S. BHOWMICK. XANDY: A Scalable Change Detection Technique for Or-
dered XML Documents Using Relational Databases. To appear in DKE Journal.

3. E. LEONARDI, S. S. BHOWMICK, S. MADRIA. XANDY: Detecting Changes on Large Un-
ordered XML Documents Using Relational Databases. In DASFAA, China, 2005.

4. E. LEONARDI, S. S. BHOWMICK. Detecting Changes on Unordered XML Documents Using
Relational Databases: A Schema-Conscious Approach. In CIKM, 2005.

5. C. PAPADIMITRIOU, K. STEIGLITZ. Combinatorial Optimization: Algorithms and Complex-
ity. Prentice-Hall, Englewood Cliffs, NJ, 1982.

6. J. SHANMUGASUNDARAM, K. TUFTE, C. ZHANG, G. HE, D. J. DEWITT, AND J. F.
NAUGHTON Relational Databases for Querying XML Documents: Limitations and Oppor-
tunities. The VLDB Journal, 1999.

7. H. LU, H. JIANG, J. X. XU, G. YU ET AL. What Makes the Differences: Benchmarking
XML Database Implementations. In ACM TOIT , 5(1), 2005.

8. Y. WANG, D. J. DEWITT, J. CAI. X-Diff: An Effective Change Detection Algorithm for
XML Documents. In ICDE, Bangalore, 2003.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 212 – 227, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Schema-Mediated Exchange of Temporal XML Data

Curtis Dyreson1, Richard T. Snodgrass2, Faiz Currim3, and Sabah Currim4

1 Washington State University, Pullman, WA
 cdyreson@eecs.wsu.edu

2 University of Arizona, Tucson, AZ
rts@cs.arizona.edu

3 University of Iowa, Iowa City, IA
 faiz-currim@uiowa.edu

4 University of Arizona, Tucson, AZ
scurrim@eller.arizona.edu

Abstract. When web servers publish data formatted in XML, only the current
state of the data is (generally) published. But data evolves over time as it is up-
dated. Capturing that evolution is vital to recovering past versions, tracking
changes, and evaluating temporal queries. This paper presents a system to build
a temporal data collection, which records the history of each published datum
rather than just its current state. The key to exchanging temporal data is provid-
ing a temporal schema to mediate the interaction between the publisher and the
reader. The schema describes how to construct a temporal data collection by
“gluing” individual states into an integrated history.

1 Introduction

An XML schema describes the structure of XML data. The schema is used by a pub-
lisher to format the data for publication and by a reader to validate acquired data and
add it to a data collection. Validation ensures that the data conforms to the formatting
rules for XML (is well-formed) and to the types, elements, and attributes defined in
the schema (is valid). A schema is also used as a guide in interpreting, editing and
querying the data. Several schema languages have been proposed for XML; among
them XML Schema is the most widely used.

Data formatted in XML is already available from many web servers. One example
of a data provider is the National Center for Biotechnology Information (NCBI). Us-
ers can search the NCBI databases to locate data on genes and proteins. The data can
then be downloaded in several formats, including as XML. In fact NCBI publishes
data in three XML schemas. However, NCBI like most XML publishers only pro-
vides the current snapshot of the data. A snapshot is the data that is available at a
single point in time, stripped of its historical context. But a data collection varies over
time as new data is inserted and existing data is revised. In general, scientists want to
know the provenance of their data: who, what, where, and when [3]; the evolution of
the data is an important part of that provenance. Though NCBI users can download
the current snapshot, they are unable to track and download changes to data. Obtain-
ing data in an historical context is useful in many applications. For instance, scientific

 Schema-Mediated Exchange of Temporal XML Data 213

insights gained by analyzing data often have to be revised when the data changes. To
help determine whether a reanalysis is needed, especially in a large data set where
manual comparison is infeasible, it is crucial to be able to ascertain whether data has
been added, modified, or deleted. One might want to look at coarse changes to an
entire XML document or track the evolution over time of specific elements.

Fig. 1 illustrates the process by which a user currently downloads data from a pub-
lisher like NCBI. A user requests the current snapshot, Dnow. The data is then added to
the reader’s data collection, DB, typically by overwriting a previously acquired ver-
sion of D in DB. A better strategy, not currently supported by NCBI, is to transmit
only the changes to the data, as shown in Fig. 2. A user requests a change summary of
updates to D from time t, when the user last acquired D, to now. The summary, which
is represented as “ D,” is used to update the local snapshot of D. A Service Data
Object (SDO) is one technology that supports change summaries [28]. In contrast,
Fig. 3 shows the process of acquiring temporal data. A user requests a thick slice of

NCBI

request Dnow

Dnow

overwrite D

snapshot D

Fig. 1. Download of the current snapshot

NCBI

request Dnow

update D

snapshot DD

Fig. 2. Download change summary, e.g., in an SDO

NCBI

request updates to D since time t

D[t,now]

extend history of D

temporal D

t

now

Fig. 3. A download of temporal data

data from time t, when the user last acquired D, to now. The slice as returned by the
server is represented as “ D[t,now].” The temporal data is then added to DB, extending
the history of D. Unlike the snapshot data in Fig. 1 and Fig. 2, temporal data records
the entire version history of every data item.

214 C. Dyreson et al.

Systems that support the publication of and subscription to temporal data need sev-
eral novel features.

• A data publisher has to add timestamps and other markup to indicate the life-
time of versions of the data.

• The temporal data produced by a publisher has to be amenable to automatic
processing on the reader’s side; for instance, the reader has to be able to
validate the temporal data and update a temporal data store.

• To conserve bandwidth the slice “ D[t-now]” should be compact. Ideally it
will be proportional in size to the changes to D since time t.

• It should be possible to validate the changes to a data collection, i.e.,
D[t-now]. Unfortunately an SDO’s change summary cannot be validated us-

ing the data’s schema, rather the changes must first be applied to the data,
which must then be entirely re-validated. It would be more desirable if it
were possible to validate a slice of temporal data in isolation from the rest of
the data collection.

• A publisher may have changed its schema since time t, so each step in the
process must account for changes to the schema as well.

All of the above features can be supported by using a temporal schema to mediate the
exchange of XML data.

This paper utilizes XSchema (Temporal XML Schema), which is an infrastructure
and suite of tools for constructing and validating XML data collections as both the
data [8] and schema [10] evolve, though in this paper we consider only the data evo-
lution aspects of XSchema. XSchema extends XML Schema with the ability to
define temporal element types.1 A temporal element type denotes that an element can
vary over time, describes how to associate elements in different snapshots, and pro-
vides constraints that broadly characterize how an element evolves. Biologists are
reticent to learn a new data model, or even a significant extension of a data model
with which they have just gotten comfortable. Similarly, they don't want to have to
acquire and learn how to use a new suite of tools that comes with the new data model.
Hence, an important goal in the development of XSchema was to maximally reuse
existing XML standards and technology. In XSchema, any element type can be de-
noted as a temporal element type by including a single, simple temporal annotation in
the type definition. So a XSchema document is just a conventional XML Schema
document with a few temporal annotations. The tools operate in most cases identically
to extant tools and in fact utilize those existing tools, such as conventional validating
parsers. In most cases, the scientists don't even need to care if their XML data is static
or temporal.

This paper is organized as follows. The next section motivates the differences be-
tween conventional (static) XML data and temporal XML data. We then discuss how
snapshots of a temporal data collection are glued to create items and versions. The
extensions to XML Schema to support temporal data are presented in Section 4.
Section 5 sketches the process of constructing a representational schema. The paper
concludes with a discussion of related work and a summary.

1 This use of “temporal element” is a generalization of “XML element,” and is not related to the

“temporal element” defined by Gadia [11].

 Schema-Mediated Exchange of Temporal XML Data 215

2 Example

Assume that data on the gene trypsin 4 (TRY4) is described in an XML data collec-
tion called gene.xml. The collection has information about gene function, which is
described using the Mouse Genome Institute ontology. On 2005-01-01 the function of
TRY4 was unknown as shown by the XML in Fig. 4. In subsequent months, new
scientific data about TRY4 became available. On 2005-02-14 it was learned that
TRY4 is involved in synthesizing the trypsinogen protein. The value of the “function”
attribute was updated creating a new version of the data, as shown in Fig. 5. On 2005-
03-06, the gene description became more specific, relating TRY4 to -cell receptors
so an additional “desc” element was inserted as shown in Fig. 6.

Researchers that prepared a paper on TRY4 in 2005-01 would like to learn of any
updates to the TRY4 data since that time, and in particular how the data has changed.
Certain changes will require a new analysis of their experiments. But the data in each
figure is the data at a single point in time. Instead of the current snapshot, the re-
searchers need the version history, which consists of the information in each version
of the data along with a timestamp indicating the version’s lifetime. The version his-
tory would describe how the knowledge about a particular gene has changed over
time. This is of particular interest since new genomic and proteomic data is being
constantly generated, and existing data is being revised and corrected. A version his-
tory would also aid in time-related analysis such as in tracking how a disease and its
symptoms evolve over time (e.g., in an epidemic like the avian flu).

 <gene name="TRY4">
 <desc>trypsin 4</desc>
 <ontology ref="MGI" function="unknown"/>
 </gene>

Fig. 4. gene.xml on 2005-01-01

 <gene name="TRY4">
 <desc>trypsin 4</desc>
 <ontology ref="MGI" function="synthesizes trypsinogen"/>
 </gene>

Fig. 5. TRY4 codes for a protein, as of 2005-02-14

 <gene name="TRY4">
 <desc>trypsin 4, beta-cell receptor</desc>
 <ontology ref="MGI" function="synthesizes trypsinogen"/>
 </gene>

Fig. 6. TRY4 is related to -cell receptors, as of 2005-03-06

Fig. 7 shows the temporal data that captures the history of the TRY4 data. The data
is largely a list of gene and ontology items. The concept of an item is a central contri-
bution of this paper. An item is an element that persists across individual snapshots.
Each item has an itemId attribute that uniquely numbers the item. There is one gene

216 C. Dyreson et al.

item in the data, and one ontology item. Each item is referenced by a temporal ele-
ment, which places it in the context in which it appears in a snapshot of the data. For
example, in Fig. 7 the element <ontologyTemporal> references the ontology item,
which indicates that a version of that item appears within the context of a <gene>
element for each snapshot in the range of the version’s timestamp.

 <dataTemporal>
 <data><geneTemporal itemRef="1"/></data>

 <geneItem itemId="1">

 <geneVersion><time start="2005-01-01" end="2005-03-05"/>
 <gene name="TRY4">
 <desc>trypsin 4</desc>
 <ontologyTemporal itemRef="2"/>
 </gene>

 </geneVersion>

 <geneVersion><time start="2005-03-06" end="now"/>
 <gene name="TRY4">
 <desc>trypsin 4, beta-cell receptor</desc>

 <ontologyTemporal itemRef="2"/>
 </gene>

 </geneVersion>

 </geneItem>

 <ontologyItem itemId="2">

 <ontologyVersion><time start="2005-01-01" end="2005-02-13"/>
 <ontology ref="MGI" function="unknown"/>
 </ontologyVersion>

 <ontologyVersion><time start="2005-02-14" end="now"/>
 <ontology ref="MGI" function="synthesizes trypsinogen"/>
 </ontologyVersion>

 </ontologyItem>

</dataTemporal>

Fig. 7. Temporal XML data

Whenever the item changes, a new version of the item is created. A change is de-
fined, roughly, as a difference in an element’s nontemporal content, exclusive of
changes to content within the element’s temporal subelements. Hence, the gene item
has two versions. The second version was created on 2005-03-06 when new text con-
tent was added to the nontemporal <desc> element. The timestamp for each version
indicates the version’s lifetime. The end time of the second version is “now” indicat-
ing that the version is current. The ontology item also has two versions, because an
attribute value was changed on 2005-02-14.

Note that the history of each item in a temporal data collection is more than just the
current snapshot. It records not only the current state of the data, but all previous
versions as well, and has timestamps to indicate when each version was current.
Hence, a temporal data collection is unlike an SDO or related technology that records
only a single snapshot and/or a summary of changes from the previous version.

 Schema-Mediated Exchange of Temporal XML Data 217

A second contribution of this paper is a description of how to construct the tempo-
ral data (Fig. 7) by gluing the data in individual snapshots (Fig. 4, Fig. 5, and Fig. 6).
The history in Fig. 7 captures the transaction time lifetime of each version [14].
Transaction time is the system time when the data was edited.2

A third contribution of this paper is explaining how to compactly represent in
XML the change across a number of versions. Though the temporal data shown in
Fig. 7 appears verbose in this small example, in general, it is actually compact in the
sense that each edit results in only a localized change to the data (basically, a new
version is created within an item). Fig. 8 shows the difference between the first and
second versions of the data. The difference is a new version of the ontology element.
The ability to represent the difference between two versions in isolation from the rest
of the data is useful in both data streaming and refreshing data from a remote source,
since the change is usually much smaller in size than the entire collection or even a
snapshot. Note that the value of the itemId attribute in Fig. 8 is local to the temporal
data being exchanged (the value of the attribute could be “23”).

 <dataTemporal>
 <ontologyItem itemId="1">

 <ontologyVersion><time start="2005-02-14" end="now"/>
 <ontology ref="MGI" function="synthesizes trypsinogen"/>
 </ontologyVersion>

 </ontologyItem>

 </dataTemmporal>

Fig. 8. The difference between two versions

A fourth contribution is the description of a process to construct a schema to vali-
date and interpret the temporal data. Although publishers can provide temporal data,
there must be some means of interpreting such data. Typically, the structure of pub-
lished data is described in an associated schema document. Assume that the file
gene.xsd contains the snapshot schema for gene.xml. The snapshot schema is
the schema for an individual version. The snapshot schema is a valuable guide for
editing and querying individual snapshots. The snapshot schema is given (in part) in
Fig. 9. Note that the schema describes the structure of the fragments shown in Fig. 4,
Fig. 5, and Fig. 6. Though the individual snapshots conform to the schema, the tempo-
ral data does not. So a snapshot schema such as gene.xsd cannot be used (directly)
to validate or interpret the temporal data of Fig. 7. Nor can the schema be used to
validate version differences, such as the fragment shown in Fig. 8. In our approach a
snapshot schema is annotated with additional information to create a temporal
schema. The temporal schema describes, at a logical level, which elements can vary
over time, and how those elements can change. Fig. 10 shows the temporal schema
for the running example. The temporal schema includes annotations for both the gene

2 Temporal data could also record the valid time versions (valid time is real world time) but for

simplicity we consider only one kind of time in this paper, i.e., the transaction and valid times
are the same (other relationships between valid and transaction time [16] can be easily mod-
eled in our framework).

218 C. Dyreson et al.

and ontology element type definitions. The annotations are shaded gray in the figure.
(Section 4 describes the annotations in detail.) We present the temporal schema here
to emphasize that XSchema is fully-upwards compatible with XML Schema; that is,
it extends but does not change XML Schema. A further advantage of our approach is
that the temporal schema can also be used to validate the differences between ver-
sions, such as the data in Fig. 8.

 <element name="gene">
 <complexType>
 <attribute name="name" type="text" use="required"/>
 <sequence>
 <element name="desc" type="string"/>
 <element ref="ontology" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="ontology">
 <complexType>
 <attribute name="ref" type="text"/>
 <attribute name="function" type="text"/>
 </complexType>
 </element>

Fig. 9. An extract from the gene data schema

 <element name="gene">
 <txs:temporal>
 <txs:ItemIdentifier>
 <txs:field path=”@name”/>
 </txs:ItemIdentifier>
 <txs:transactionTime kind=”state” contentVarying=”true”
 existenceVarying=”no gaps”/>
 </txs:temporal>

 definition of gene from the snapshot schema omitted for space
 </element>
 <element name="ontology">

 <txs:temporal>
 <txs:ItemIdentifier>
 <txs:field path=”../@name”/><txs:field path=”@function”/>
 </txs:ItemIdentifier>
 <txs:transactionTime kind=”state” contentVarying=”true”
 existenceVarying=”gaps allowed”/>
 </txs:temporal>

 definition of ontology from the snapshot schema omitted for space
 </element>

Fig. 10. An extract from a temporal schema

3 Items and Versions

This section briefly reviews concepts related to temporal data and then discusses how
to temporally associate elements in different snapshots to create temporal data.

 Schema-Mediated Exchange of Temporal XML Data 219

Let D be an XML document or data collection. D is typically modeled as an or-
dered tree, D = (E, V), where E is the set of edges and V is the set of nodes. Each edge
in E is of the form (v, w, n) where v is the parent, w, is the child, and n is an ordinal
representing the position of the child in the lexical ordering of the children. We will
refer to XML data acquired from a (non-temporal) document as a snapshot indicating
that it is the data at a single point in time.

Temporal data represents the history of a sequence of snapshots. Let DT be a tem-
poral data collection. The snapshot operation extracts a complete snapshot of DT at a
particular time. Timestamps are not represented in the snapshot. The snapshot opera-
tion is denoted as snap(t, DT) = D where D is the snapshot at time t of DT.

Note that we haven’t yet described the structure of temporal data, however it
should faithfully capture entire snapshots as stated in the following definition.

Definition [Snapshot reducibility]. Let DT be a temporal data collection. DT is said to
be snapshot reducible to the sequence of snapshots D1, …, Dn iff for each 1 k n,
Dk = snap(k, DT).

To create compact temporal data it is important to identify which elements persist
through changes to a data collection. We will sometimes refer to the process of asso-
ciating elements that persist across various snapshots as gluing the elements. When a
pair of elements is glued, an item is created. An item is an element that evolves over
time through various versions. Only temporal elements (that is, elements of a type that
has a temporal annotation as described further in Section 4) are candidates for gluing.

Determining which elements should be glued depends on two factors: the type of
the element, and the item identifier for the element’s type. The type of an element is
the element’s definition in the schema. We will denote the type of an element as T. An
element can be glued only to an element or item of the same type. An item identifier
is a list of XPath expressions (much like a key in XML Schema) so we first define
what it means to evaluate an XPath expression.

Definition [XPath evaluation]. Let Eval(x, E) denote the result of evaluating an XPath
expression E from a context node x. Given a list of XPath expressions, L = [E1, …,
Ek], then Eval(x, L) = [Eval(x, E1), …, Eval(x, Ek)].

Since an XPath expression evaluates to a list of values, Eval(x, L) evaluates to a list of
lists. An item identifier is a list of XPath expressions.

Definition [Item identifier]. An item identifier for a temporal type, T, is a list of
XPath expressions, LT, such that for each element x of type T , Eval(x, LT) names the
item to which x belongs.

Each item identifier is specified by a schema designer (elsewhere we sketch a method
for automatically constructing them [32]). Often an identifier will be the (snapshot)
key for the element type given in the schema [4]. But an item identifier may differ
from a snapshot key since the identifier should be a temporally-invariant key [22].

Example [Item identifiers]. As an example, a designer might specify the following
item identifiers for the temporal elements in Fig. 7.

• <gene> [@name]
• <ontology> [../@name, @function]

220 C. Dyreson et al.

The item identifier for a <gene> is the name of the gene, while the item identifier for
an <ontology> is the gene’s name (its parent’s item identifier) combined with the
gene’s function attribute value.

We will further restrict item identifiers to be unique within a snapshot, that is, at most
one element in each snapshot can belong to an item. Over time, elements that belong
to different snapshots will belong to the same item. Elements that are temporally
adjacent can be associated within an item as defined below.

Definition [Temporal adjacency]. Let x be an element of type T in snap(i, DT). Let y
be an element of type T in snap(j, DT). Finally let LT be the item identifier for elements
of type T. Then x is temporally adjacent to y if and only if Eval(x, LT) = Eval(y, LT)
and it is not the case that there exists an element z of type T in a snapshot between
(exclusive) the ith and jth snapshots such that Eval(z, LT) = Eval(x, LT).

When an item is temporally adjacent to an element in a new snapshot, the element
either creates a new version of the item or extends the lifetime of the latest version
within the item. So an item is a sequence of versions and associated timestamps. The
lifetime of each version is a set of maximal, disjoint time periods.

Definition [Item]. Let item(x) be the item named by Eval(x, LT) where x is of type T. Then
item(x) = [(v1, t1), …, (vn, tn)] where each vi is a version of x with lifetime ti (1 ≤ i ≤ n).

A version represents the content of an item in a snapshot. Basically, the version is a
copy of the subtree rooted at the item, and each branch in the copy terminates at a leaf
(attribute node, text node, etc.) or at the first element on that branch that is associated
with an item. The element is replaced in this version with an item reference.

Definition [Version]. Let item(x) be an item of type T in snapshot D=(E, V). Let (Ex,
Vx) be the subtree rooted at x in D. Then version(x, D) = (Ev, Vv) where

 Ev = {(av, bv, n) | (ax, bx, n) ∈ Ex ∧ (bx is an item bv is an item reference)
 ∧ (ax is an item av = x) ∧ (ax and bx are not items av = ax ∧ bv = bx)}

and Vv = {v | (v, _, _) ∈ Ex ∨ (_, v, _) ∈ Ex} ∪ {x}.

Example [Items]. Versions appear throughout the example of temporal data shown in
Fig. 7. The first version of the <gene> item is a copy of the <gene> element in Fig.
4, which is the first snapshot of the data. Note that the <ontology> element is an
item, so it has been replaced in Fig. 7 by an item reference whereas the <desc>
element is unchanged since it is not an item.

A lifetime of a version is computed separately. The lifetime is extended when “no
difference” is detected in the associated element. Differences are observed within the
context of the Document Object Model (DOM).

Definition [DOM equivalence]. A pair of item versions is DOM equivalent if the pair
meets all of the following conditions: they have the same number of children, same
element tag, same set of attributes (an attribute is a name, value pair), and same text
content, and for each child, the child is DOM equivalent to the corresponding child of
the other (in a lexical ordering of the children).

 Schema-Mediated Exchange of Temporal XML Data 221

As an aside, we observe that DOM equivalence in a temporal XML context is akin to
value equivalence in a temporal relational database context.

DOM equivalence is used to determine versions of an item, as follows.

Definition [Versioning]. Let item(x) = [(v1, t1), …, (vn,tn)]. Let item(y) in snapshot D
be temporally adjacent to item(x). Assume D is current during the period [t, t+k]
where t is later than any time in tn. If vn is DOM equivalent to version(y, D) then the
lifetime of vn is extended to be tn ∪ [t, t+k]. Otherwise, version vn+1, consisting of
version(y, D), is added to item(x). The lifetime of vn+1 is [t, t+k].

A version’s lifetime is extended when the version from the next snapshot (or a future
snapshot) is DOM equivalent (the lifetime can have gaps or holes, although having a
gap may violate a schema constraint as described in Section 4). A new version is
created when temporally adjacent elements in the same item are not DOM equivalent.

Example [Versions]. Fig. 11 depicts the items and versions in the example in Section 2.
An abstract representation of the DOM for each snapshot of the data is shown. The
items in the sequence of snapshots are connected within each gray shaded region. There
is one gene item and one ontology item. Each item has two versions. The transition
between versions is shown as a black rectangle on the gray connection arcs. The gene
item has a new version when the content of the <desc> element changes and the on-
tology item has a new version when its content is modified on 2005-02-14.

 gene

desc

text

ontology

text

gene

desc

texttext

gene

desc

text

ontology

text

ontology

2005-01-01 2005-03-062005-02-14

Fig. 11. Items and versions in the example

4 XML Schema Extensions

XSchema extends XML Schema with a single annotation to denote temporal element
types, but otherwise leaves XML Schema unchanged. The annotation is a
<txs:temporal> element that can appear in the content of any element type defi-
nition. The annotation denotes that elements of that type can be time-varying. The
txs namespace indicates that the annotation is part of XSchema. Within a
<txs:temporal> element there must appear an item identifier. Such an identifier
has the following general form.

 <txs:itemIdentifier
 <txs:field path="XPath expression"/>
 …
 <txs:field path="XPath expression"/>
 </txs:itemIdentifier>

222 C. Dyreson et al.

An item identifier is list of fields, each of which is a (relative) XPath path expression.
Temporal constraints are optional. The constraints are evaluated after an item is

glued. The constraints are separately specified for each kind of time, though in this
paper we focus only on transaction time. The constraint specification for a
<txs:transactionTime> element has the following general form.

 <txs:transactionTime
 txs:kind="state (default) | event"
 txs:contentVarying="false (default) | true"
 txs:existenceVarying="false | gaps allowed (default) | no gaps"/>

The kind attribute specifies whether the lifetime of an item has duration; a state
kind of annotation implies continuity, while an event signifies that the lifetime is a
single instant. The terminology is borrowed from temporal databases [14] where
events occur at a single instant in time (e.g., a wedding on July 14, 2005), whereas a
state occurs over a period of time (e.g., married from July 14, 2005 until now). The
contentVarying attribute is used to specify whether an item’s content must be
constant over time, or can vary. The existenceVarying attribute governs
whether the item can come and go in various snapshots. If the value of the attribute is
false, then the item must be in every snapshot (or never appear). If the existence is no
gaps, then once the item has been deleted from a snapshot, it cannot reappear in a
later snapshot. Otherwise, the item’s existence is unrestricted. Each attribute is op-
tional, as is the transaction time element. If the attribute is not specified, the indicated
default value applies.

Example [XSchema]. The biologists in our running example are interested primarily
in tracking two kinds of changes to the NCBI data: revisions of the gene itself and
revisions of the ontology elements. Since NCBI does not publish a temporal schema,
biologists must download individual snapshots and maintain a temporal data collec-
tion locally. Towards this end they create the temporal schema given in Fig. 10. The
gene and ontology element type definitions given in the snapshot NCBI schema are
annotated to indicate that they are temporal element types, and so a version history
will be kept for each element of those types. While genes can be both content and
existence varying, a gene’s existence is slightly constrained to disallow gaps since a
gene. The constraint specifies that in order for the data to be valid a gene cannot be
deleted and then (later) reinserted.

Currently, XSchema has a restricted set of temporal constraints. Richer classes of
temporal constraints have been proposed [7], but for simplicity and brevity we limit
the variety of constraints in the current system.

5 The Representational Schema

The representational schema is a conventional XML Schema document that is auto-
matically generated from a XSchema document. It is used to validate temporal data
using a conventional validating parser. This section describes how to weave the tem-
poral annotations into a snapshot schema to create the representational schema. The
representational schema is transitory; it is needed only for validation, and in fact need
never be seen by the user.

 Schema-Mediated Exchange of Temporal XML Data 223

An XML Schema specification can be viewed as a grammar. The grammar consists
of productions of the following form for each element type.

 S <s> </s>

In the above production, describes the content of elements of type S.
A temporal schema denotes that some of the element types are time-varying. To

construct a representational schema, several new productions are added to the schema
for each temporal element type; no productions are removed from the non-temporal
schema though some are modified. Since only elements can be temporal, this section
focuses on the element-related components of a schema. The construction process
consists of several steps. We’ll illustrate the process by describing what is done for a
single, representative temporal element type, S.

The first step is to add a production to indicate that the element type S is temporal.
The temporal production has following form:

 STemporal <sTemporal itemRef="m"/>

where <sTemporal> denotes a temporal element of type S and itemRef is a reference
to an item of type S. Next a production is added to define the S item type.

 SItem <sItem itemId="n"> SVersion+ </sItem>

An item has a unique itemId value, and consists of a list of versions. The third step
is to add a production to specify each version of type S. The production for a version
of an element of type S has the following form:

 SVersion <sVersion> S </sVersion>

where is the schema of the timestamp and S is the non-temporal definition of the
element’s type. The timestamp in a version records the lifetime of the version. We do
not impose a particular schema for a timestamp, rather we assume that the schema is
given separately and imported into the temporal document’s schema. Without loss of
generality we will assume that each timestamp has the following form.

 <time start="…" end="…"/>

The next step is to modify the context in which a temporal element appears. For
each temporal element type, S, that appears in the left-hand-side of a production,
replace S with STemporal. For example, assume that the schema has a production of the
following form:

 X <x> S </x>

where and describe arbitrary content before and after S, respectively. The produc-
tion is replaced by the following production.

 X <x> STemporal </x>

Only the element type is replaced, any other constraints on the element are kept (e.g.,
minoccurs and maxoccurs are unaffected).

This process is repeated for every temporal element type. The final step is to aug-
ment the root element type with an additional production that appends a list of items.
Let the root be an element of type R. Then the new root becomes the following.

 RTemporal <dataTemporal> R? XItem* </dataTemporal>

224 C. Dyreson et al.

where XItem is a list of item types. The production for XItem is given below, where
each Si

Item
 is one of k item types.

 XItem
 S1

Item | … | Sk
Item

An additional step is needed to recast constraints that appear in the original schema.
One such constraint is the uniqueness constraint imposed by a DTD identifier or XML
Schema key definition. Since the same identifiers and key values can appear in multi-
ple versions of an element, such values are no longer unique in a temporal document,
even though they are unique within each snapshot. In temporal relational databases,
the concept of a temporal key, which combines a snapshot key with a timestamp, has
been introduced. Temporal keys can be enforced by a temporal validating parser, but
not by a conventional parser. So constraints that impose uniqueness within a snapshot
must be relaxed or redefined as follows. The value of each id type attribute in a time-
varying element is rewritten to be a unique value; idRefs are similarly rewritten.
Finally, schema keys are rewritten to include itemIds and version start and end
times, creating a temporal key.

It is important to note that the production for the root of the temporal data specifies
that it is just a list of items. This enables temporal data to be incrementally validated,
which is critical in data streaming applications.

Example [Representational schema construction]. Let’s go through the construction
process with an example. Assume that the productions in the schema for the example
in Fig. 6 are given below.

 R <data> G+ </data>
 G <gene> D[N | text]* </gene>
 D <desc> text </desc>
 N <ontology ref="text"> text </ontology>

Next, assume that the <ontology> element type is temporally annotated, as in Fig.
10. The schema would be transformed as follows. First, productions are added for the
temporal elements.

 NTemporal <ontologyTemporal itemRef="m"/>
Next, productions are added for the items of temporal elements.

 NItem <ontologyItem itemId="n"> NVersion+ </ontologyItem>
Productions are then added for each version type, and for the timestamp(s) in each version.

 NVersion <ontologyVersion> N </ontologyVersion>
 <time start="…" end="…"/>

Next, the root is modified to include the new productions.
 RTemporal <dataTemporal>R? [GItem|NItem]* </dataTemporal>

6 Related Work

Temporal databases has been an area of intense study for the past 25 years [[29]],
with Oracle now perhaps having the most mature temporal support: transaction-time,
valid-time, and bitemporal tables, current modifications, and automatic support for
temporal referential integrity [[25]]. Concerning the representation of temporal data

 Schema-Mediated Exchange of Temporal XML Data 225

and documents on the web, Grandi has created a bibliography of previous work in this
area [13]. Marian et al. [20] discuss versioning to track the history of downloaded
documents. Chien, Tsotras and Zaniolo [5] have researched techniques for compactly
storing multiple versions of an evolving XML document. Buneman et al. [4] provide
another means to store a single copy of an element that occurs in many snapshots.
This paper differs from all of the above papers since our focus is on temporal schemas
and validation.

It is possible to capture transaction time information for documents through change
analysis, as discussed below. Cho and Garcia-Molina [6] provide evidence that some
web resources change frequently (though not specifically XML resources). Nguyen et
al. [23] describe how to detect changes in XML documents that are accessible via the
web [30]. Dyreson et al. [9] describe how a web server can capture some of the ver-
sions of a time-varying document. Yu and Popa provide an algorithm to convert either
a list of changes or just the original and altered schema to a (more semantic) evolution
mapping [31].

There are various XML schemas that have been proposed in the literature and in
the commercial arena. We chose to extend XML Schema because it is backed by the
W3C and supports most major features available in other XML schemas [19]. It
would be relatively straightforward to apply the concepts in this paper to develop time
support for other XML schema languages; less straightforward but possible would be
to apply our approach to other data models, such as UML [24]. As an example, we
have extended the Unifying Semantic Model, a conceptual model similar to the ER
Model, to utilize annotations [17] very similar to what we propose here.

Recently there has been interest in incremental validation of XML [2][26].
XSchema takes a orthogonal approach to incremental validation in so far as the

changes to documents can be validated in isolation.
Only one paper has previously addressed the issue of validating temporal data [8].

In previous work we developed the XSchema data model and architecture. In this
paper we extend the architecture with items and versions, and a different construction
process for the representational schema. Also, this paper directly extends XML
Schema, unlike our previous paper.

XSchema focuses on instance versioning (representing a time-varying XML in-
stance document) rather than schema versioning [12][27]. The schema describes which
aspects of an instance document change over time. But we assume that the schema
itself is fixed, with no element types, data types, or attributes being added to or re-
moved from the schema over time. In other work we consider schema versioning [10].

One final area of related work is intensional XML data (also termed dynamic XML
documents [1]), that is, parts of XML documents that consist of programs that gener-
ate data [21]. Incorporating intensional XML data is beyond the scope of this paper.

7 Conclusion

This paper presents XSchema, which extends XML Schema to support temporal
data. XSchema helps schema designers easily convert existing snapshot schemas to
temporal schemas for the construction, management, and validation of temporal data
and documents. A temporal schema is created by adding annotations to denote that

226 C. Dyreson et al.

some element types are temporal. Each annotation includes an item identifier, which
is used to glue elements, yielding an item. Each change in an item over time creates a
new version of the item. To validate a temporal document, a temporal schema is first
converted to a representational schema, which is a conventional XML Schema
document that describes how the temporal information is represented. The representa-
tional schema is carefully constructed to ensure every snapshot of the temporal docu-
ment conforms to the snapshot schema (which is the temporal schema without the
temporal annotations). A conventional validating parser is then used to validate the
temporal document against the representational schema. The temporal document is
also checked by a temporal constraint checker.

The architectural design of the infrastructure and even of the schema language it-
self is driven by the critical requirement from biologists, and indeed, from data users
generally, of upward compatibility, of data, of schemas, and even of tools and infra-
structure, in the support of time-varying data. This paper has demonstrated how a
schema for time-varying data can be extended very simply from a snapshot schema,
and then how the data manipulation, principally gluing and validation of such data
and schema, can be done, utilizing conventional, well-understood tools.

In future we plan to integrate XSchema with an XML-based editor. By incorporat-
ing XSchema, an editor should be able to provide improved revision control and a
change tracking feature. We have done this for an editor for the afore-mentioned
temporal USM conceptual model [18]; it turns out that the upward-compatibility of
the language design extends even to design support environment. Another broad area
of work is optimization and efficiency. Currently there is no separation of elements or
attributes based on the relative frequency of update. In the situation that some ele-
ments (for example) vary at a significantly different rate than other elements, it may
prove more efficient to split the schema into pieces such that elements with similar
“rates of change” are together [15].

References

[1] S. Abiteboul et al., “Dynamic XML Documents with Distribution and Replication,” in
SIGMOD, 2003. San Diego, CA. pp. 527-538.

[2] D. Barbosa et al., “Efficient Incremental Validation of XML Documents,” in ICDE, 2004.
Boston, MA, pp. 671-682.

[3] P. Buneman, S. Khanna, and W. C. Tan, “Why and Where: A Characterization of Data
Provenance,” in ICDT, 2001. pp. 316-330.

[4] P. Buneman et al., Keys for XML. Computer Networks, 2002. 39(5): 473-487.
[5] S. Chien, V. Tsotras, and C. Zaniolo, Efficient schemes for managing multiversion XML

documents. VLDB Journal, 2002. 11(4): pp. 332-353.
[6] J. Cho and H. Garcia-Molina, Estimating frequency of change. ACM Trans. on Internet

Technology, 2003. 3(3): pp. 256-290.
[7] J. Chomicki, Efficient Checking of Temporal Integrity Constraints Using Bounded His-

tory Encoding. ACM Transactions on Database Systems, 1995. 20(2): pp. 149-186.
[8] F. Currim et al., “A Tale of Two Schemas: Creating a Temporal XML Schema from a

Snapshot Schema with XSchema,” in EDBT. 2004, pp. 348-365.
[9] C. Dyreson, H.-L. Lin, and Y. Wang. “Managing Versions of Web Documents in a

Transaction-time Web Server,” in WWW, 2004. New York, NY. pp. 422-432.

 Schema-Mediated Exchange of Temporal XML Data 227

[10] C. Dyreson et al., “Validating Quicksand: Schema Versioning in XSchema,” in XSDM,
2006. Atlanta, GA, to appear.

[11] S. K. Gadia and J. H. Vaishnav. “A Query Language for a Homogeneous Temporal Data-
base,” in PODS. 1985, pp. 51-56.

[12] F. Grandi, “SVMgr: A Tool for the Management of Schema Versioning,” in ER, 2004,
pp. 860-861.

[13] F. Grandi, An Annotated Bibliography on Temporal and Evolution Aspects in the World-
WideWeb. 2003, TimeCenter Technical Report.

[14] C. S. Jensen and C. Dyreson (eds.), “The Consensus Glossary of Temporal Database
Concepts – Feb. 1998 Ver.,” in Temporal Databases, 1998. pp. 367-405.

[15] C. S. Jensen and R. T. Snodgrass, Semantics of Time-Varying Information. Information
Systems, 1996. 21(4): pp. 311-352.

[16] C. S. Jensen and R. T. Snodgrass, Temporal Specialization and Generalization. IEEE
Trans. on Knowledge and Data Engineering, 1994. 6(6): pp. 954-974.

[17] V. Khatri, S. Ram, and R. T. Snodgrass, Augmenting a Conceptual Model with Geospati-
otemporal Annotations. IEEE Transactions on Knowledge and Data Engineering, 2004.
16(11): pp. 1324-1338.

[18] V. Khatri, S. Ram, and R. T. Snodgrass, On Augmenting Database Design-Support Envi-
ronments to Capture the Geo-Spatio-Temporal Data Semantics. Information Systems,
2005: pp. 1-37.

[19] D. Lee and W. Chu, Comparative Analysis of Six XML Schema Languages. SIGMOD
Record, 2000. 29(3): pp. 76-87.

[20] A. Marian et al., “Change-Centric Management of Versions in an XML Warehouse,” in
VLDB, 2001. Roma, Italy, pp. 581-590.

[21] T. Milo et al., “Exchanging Intensional XML Data, ” in SIGMOD, 2003. San Diego, CA,
pp. 289-300.

[22] S. B. Navathe and R. Ahmed, Temporal Relational Model and a Query Language. Infor-
mation Sciences, 1989. 49(1): pp. 147-175.

[23] B. Nguyen et al., “Monitoring XML Data on the Web,” in SIGMOD. 2001. Santa Bar-
bara, CA, pp. 437-448.

[24] OMG, Unified Modeling Language (UML), v1.5. 2003.
[25] Oracle Corporation, Application Developer’s Guide – Workspace Manager, 10g Release

1, December 2003.
[26] Y. Papakonstantinou and V. Vianu, “Incremental Validation of XML Documents,” in

ICDT, 2003. Siena, Italy, pp. 47-63.
[27] J. Roddick, A Survey of Schema Versioning Issues for Database Systems. Information and

Software Technology, 1995. 37(7): pp. 383-393.
[28] Service Data Objects for Java Specification. http://www-128.ibm. com/dev-eloperworks/

webservices/library/specification/ws-sdo, current as of March 2006.
[29] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass, Temporal Da-

tabases: Theory, Design, and Implementation, Benjamin/Cummins Publishing Company,
1993

[30] L. Xyleme, A dynamic warehouse for XML Data of the Web. IEEE Data Engineering Bul-
letin, 2001. 24(2): p. 40-47.

[31] C. Yu and L. Popa, “Semantic Adaptation of Schema Mappings when Schemas Evolve,”
in VLDB, 2005. Trondheim, Norway, pp. 1006-1017.

[32] S. Zhang, C Dyreson, and R. T. Snodgrass. “Schema-Less, Semantics-Based Change De-
tection for XML Documents,” in WISE, 2004. Brisbane, pp. 279-290.

A Quantitative Summary of XML Structures

Zi Lin1, Bingsheng He2, and Byron Choi1

1 Nanyang Technological University
{linzi, kkchoi}@ntu.edu.sg

2 Hong Kong University of Science and Technology
saven@cs.ust.hk

Abstract. Statistical summaries in relational databases mainly focus
on the distribution of data values and have been found useful for var-
ious applications, such as query evaluation and data storage. As xml
has been widely used, e.g. for online data exchange, the need for (cor-
responding) statistical summaries in xml has been evident. While re-
lational techniques may be applicable to the data values in xml docu-
ments, novel techniques are requried for summarizing the structures of
xml documents. In this paper, we propose metrics for major structural
properties, in particular, nestings of entities and one-to-many relation-
ships, of XML documents. Our technique is different from the existing
ones in that we generate a quantitative summary of an xml structure.
By using our approach, we illustrate that some popular real-world and
synthetic xml benchmark datasets are indeed highly skewed and hardly
hierarchical and contain few recursions. We wish this preliminary find-
ing shreds insight on improving the design of xml benchmarking and
experimentations.

1 Introduction

eXtensible Markup Language (xml) is known to be a flexible [33] medium for
online data exchange. The flexibility of xml is mainly1 due to its capability of
representing nested entities and one-to-many relationships in a tree. In compar-
ison, the relational model is rigid and flat: neither nested entities nor one-to-
many relationships are allowed in a single relation. In addition, the simplicity
of the relational model has been one of its major strengths; implementations of
the relational model have also been widely tested in industrial-strength appli-
cations. While xml repositories have been emerging (e.g. [17,12,21]), there has
been an evident reservation on the advance from relational-based technology to
xml-based technology. The host of work on reusing relational database systems
for storing and querying xml (e.g. [31,30,11,3,14]) might reflect this standpoint.
However, intuitively, relational systems are preferable only when an xml docu-
ment is a mild generalization of relations. Otherwise, the impedance mismatch
between the tree model and the relational model can become problematic where
native xml/xml-based approaches should be adopted.
1 For simplicity, we do not focus on the rich set of scalar data types (e.g. integers) in

xml Schemas.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 228–240, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Quantitative Summary of XML Structures 229

In this paper, we define metrics for some structural properties of xml docu-
ments. We hope the metrics answer an informal question: Is an xml document
“tree-like” or “relational-like”? Similar to effective techniques widely used in
relational databases [24], we summarize xml structures using histograms and
tree/graph structures and generate a quantitative summary from these struc-
tures, i.e., our approach does not require dtds/xml Schemas. A goal of having
a quantitative summary is that it may provide xml researchers (i.e. human)
insights on xml documents. The advantage of quantitative approaches may be
summarized by Lord Kelvin’s remarks, “When you can measure what you are
speaking about, and express it in numbers, you know something about it; but
when you cannot express it in numbers, your knowledge is of a meager and un-
satisfactory kind; it may be the beginning of knowledge, but you have scarcely in
your thoughts advanced to the state of science.” As we shall see soon, we focus
on the properties that cannot be derived from dtds/xml Schemas. Specifically,
we examine two important structural properties of xml: (1) entity nestings and
(2) one-to-many relationships.

Knowing the structures of xml datasets, in practice, can be fruitful to xml re-
search, e.g. xml storage.For example, consider a simplified dblp dataset [17] shown
in Figure 1 and the book-author edges in the figure. For illustration purpose, as-
sume that book is an entity and author is another entity. The book-author edges rep-
resent the relationship between book and author. Since dblp is a real-worlddataset,
one may expect the distribution of the number of authors per book is a Gaussian
distribution. However, we discovered the skewness (see Section 3 for the definition
adopted) of this distribution is large. The result is shown in Figure 6. The x-axis
and y-axis are the number of authors of a book and the number of books with
x authors in dblp document, respectively. Similar highly skewed distributions of
inproceeding-author, proceeding-author and article-author are found. The im-
plication of this finding is that if one simply “inlines” three authors into a book

relation, such a book relation covers 97% of the books in dblp and the remain-
ing authors of the books can be stored in a small overflow relation. This storage
scheme allows retrieving the relationship between book and author by a projec-
tion on a book relation and a join between book and the small overflow relation, as
opposed to a join between all books and all authors. We shall discuss some more
research on xml storage in the related work section.

As a side product of our investigation, our metrics shred insights on some prop-
erties of synthetic xml datasets. For example, we report that the xmark dataset
comprises skewed distributions of structures whereas the xbench dataset con-
sists of mostly Gaussian or uniform distributions of structures. While no one has
asserted that xml structures are supposed to be uniform, there does not appear
obvious reasons for using highly skewed data for benchmarking either. Further-
more, xml algorithms, e.g. dtd validation in streaming xml [29] and updates
through xml views [5], for recursive xmls are more technically challenging than
their counterparts for non-recursive xmls. Unfortunately, [9] showed that real-
world dtds are often recursive. This paper reports, in quantitative terms, that
the recursive part, if any, of real-world xml documents is often tiny. Consider a

230 Z. Lin, B. He, and B. Choi

simplified xmark document shown in Figure 3 for example. The percentage of
root-to-leaf paths with recursive elements is only 9.3% of the total number of all
root-to-leaf paths in the xmark document. Hence, algorithms for non-recursive
xmls may often work in practice or “survive” in experimental evaluations; but
problems may occur occasionally.

The two main goals of this paper are (1) to define metrics for describing
structural properties of an xml document, in order to study the informal concept
of tree-ness of an xml document and (2) to survey a few popular xml repositories
using our metrics. Applications of our metrics to specific research problems,
e.g., XPath/XQuery selectivity estimation and xml compression, are beyond
the scope of this paper. For presentation simplicity, we omit the analysis on the
scalar data in xml documents.

Contributions. The main contributions of this paper are listed below:

– We present metrics for describing the nestings of entities and the number of
each kind of attributes of an entity in xml datasets;

– We apply the metrics on a few popular2 real-world and synthetic xml datasets
for experimentation, amongother uses.We reveal that thesedatasets arehighly
skewed and hardly hierarchical and contain few recursions.

Organization. The remainder of the paper is organized as follows. Section 2
presents the background of the computation of our metrics. Section 3 presents
each of our xml metrics in detail. We apply our metrics on a few popular real-
world and synthetic xml datasets in Section 4. Section 5 discusses the related
work on xml metrics and statistics. Conclusions and discussions on future works
are presented in Section 6.

2 Preliminaries

In this section, we present some background information for the subsequent
sections.

Prefix trees. The computation of our metrics of an xml document relies on
the construction of the prefix tree of the document. Specifically, we associate
histograms (structural information) to a prefix tree. A node in a prefix tree
represents a prefix occurred in a document. First, a node in a prefix tree is
associated with the support, sup, of the prefix in the document. Second, we
define a support ratio between each pair of parent-child nodes (A, B) in the
prefix tree, i.e., supB/supA, to estimate the possible location of one-to-many
relationships. There are three possible cases for the support ratio:

1. The support ratio is between 0 to 1. This implies B is probably A’s optional
child;

2. The support ratio is 1. This often implies a one-to-one relationship;
2 According to Google scholars system, http://scholar.google.com, March 2006, the

number of citations on these datasets is over 300.

A Quantitative Summary of XML Structures 231

book

title author

book

authorauthor authortitle

book

title author author

book

title author

book

title author

book

author author authortitle author

book

title author

book

title author author

book

title author

book

title author

dblp

Fig. 1. Simplified dblp document Tdblp

book

title author

dblp

[10]

[1]

[10]

[17]

*10

1 * 1.7

Fig. 2. Prefix tree of
Tdblp, Sdblp

xmark

itemitem item

quantity parlist

listitem

parlist parlist

listitemlistitemlistitemlistitem

...

... ...

... ...

...

Fig. 3. Simplified xmark document
Txmark

xmark

item

quantity parlist

parlist

listitem

*

*

*

Fig. 4. Prefix tree of
Txmark, Sxmark

3. The support ratio is greater than one. This indicates a one-to-many rela-
tionship. We regard the edges in this class as star edges.

There are exceptions for these implications. Consider a pathological document
in which one half of the A nodes do not have any B children and another half
of the A nodes have exactly two B children. The support ratio indicates a false
one-to-one relationship. However, such exceptions are rare, as we observed from
our datasets.

Consider a simplified dblp xml document shown in Figure 1 as an example.
Its prefix tree is shown in Figure 2. We show the support of a node in a square
bracket. Support ratios are placed next to the edges. We mark a star with an
asterisk sign. Similarly, we show the stars of the prefix tree of the simplified
xmark dataset (Figure 3) in Figure 4.

Finally, for each star edge (A, B), we build a histogram for the number of B
nodes of an A node.

Structural properties. In this paper, we focus on two major structural prop-
erties allowed by xml. These two properties can only be determined by the
document instances, not dtds/xml Schemas.

First, we study the nestings of entities in an xml document. In the absence
of user specifications, one could at best “estimate” entities in xml instances.
In this paper, we assume that a star edge is an indication of a one-to-many
relationship between two entities since such edges in the document instance
cannot be naturally represented by a single relation. A complication here is
that entities can be recursively defined in xml. Consider the xmark dataset as
an example. A parlist subtree may contain parlist subtrees. A survey [9] on
dtds shows that a large number of real-world dtds are recursive. We investigate
whether the xml documents are indeed recursive.

232 Z. Lin, B. He, and B. Choi

Second, we investigate the number of each kind of one-to-many relationship.
Such relationship can be modeled by A → B* in dtds, where A and B are two
element types. Obviously, the number of B nodes of an A node can only be
known from document instances. 3

Statistics used. Similar to the techniques developed for relational databases,
we use a few statistical terms to describe the histograms (or distributions) stored
in a prefix tree. Specifically, given a distribution, we compute its minimum, max-
imum, average and variance. Initially, we expect some structural distributions
of real-world xml datasets are normal, i.e. Gaussian. As mentioned in Intro-
duction, our benchmark xml datasets are hardly normal. We found that many
structural distributions are skewed. To understand the distribution, we adopt a
definition of the skewness of a distribution. These numbers form the basis of
our quantitative summary.

3 The Metrics

In this section, we present our metrics for xml structures. Then, we describe its
meaning and possible implications of each metric. For simplicity, we often refer
root-to-leaf paths to as (simple) paths.

Our metrics are listed below. When applicable, we compute the minimum,
maximum, variance and average of these metrics, which quantify the structure
of an xml document.

1. The number of paths;
2. The length of a path;
3. The number of star edges in the prefix tree;
4. The number of star edges of a path;
5. The number of recursive/non-recursive element types;
6. The number of recursive elements of a path;
7. The number of a particular kind of star edges of a node;
8. The skewness of the number of a particular kind of star edges of a node.

The first three metrics are some (arbitrary) basic counts of an xml document.
We shall discuss the next five metrics in more detail.

The number of star edges of a path. A path p in a document must also appear
in the prefix tree. We count the number of edges in p that have a star edge
correspondence in the prefix tree. The number of star edges in a path implies
the number of nested one-to-many relationship in a tree. The larger the number
of star edges is, the more the tree and a relation mismatch.

The number of recursive/non-recursive element types. This metric measures the
number of recursive and non-recursive element types in a document.
3 xml Schemas allow specifying the min- and max-occurrence constraints of a repe-

tition. However, these constraints do not accurately describe the multiplicities in a
conforming document instance.

A Quantitative Summary of XML Structures 233

The number of recursive elements of a path. This metric attempts to quantify
the recursiveness of an xml document to some extent. When elements can be
recursively defined, e.g. parlist is defined in terms of parlist, the star hierarchy
can only be known from the document. We define the number of recursive ele-
ments in a path p in a document T to be

∑
e∈R (the count of e in p - 1), where

R is the set of recursive element types in T . Algorithms for non-recursive xml
may not work on documents with a large number of recursive elements in paths.

The number of a particular kind of star edges of a node. This metric measures
the multiplicity of each kind of star edges of a node. Specifically, given a star
edge (A, B) in a prefix tree, this metric counts the number of B children of an
A node. The edges are often modeled by A → B* in dtds and a one-to-many
relationship between A and B in er diagrams.

The skewness of the number of a particular kind of star edges of a node. The
distributions of the number of a particular kind of star edges of a node, i.e. the
previous metric, of our xml benchmark datasets have a large variance. Hence, we
investigate the distribution of the numbers obtained by the previous metric. In
particular, we compute the skewness of the distributions, since data compression
algorithms often work effectively on skewed data. The skewness is defined as∑n

i=1(xi - x̄)3/(n-1)σ3, where n, xi, x̄ and σ are the size, an individual value,
the mean and the standard derivation of a distribution, respectively.

External construction of prefix trees. When the amount of memory avail-
able is larger than the size of the prefix tree S of the input document T and
the histogram N of star edges, one can easily compute S, the star edges and
Metrics 1, 2, 5 and 6 in one pass of T . Metrics 3 can then be derived from S
in the size of S. The remaining metrics are determined by a second pass of T
followed by a scan on S and N . The overall complexity for computing all metrics
is 2|T |+2|S|+|N |.

When the prefix tree S does not fit into memory, we apply a simple divide-
and-conquer method to construct S, while keeping the structure of depth first
traversal. We outline the construction method as follows. (1) We traverse the
document in depth first manner and maintain a root-to-current-node p as the
traversal proceeds. (2) We construct a tree Ti for each M consecutive edges
encountered during the traversal, where M is the amount of memory available.
Initially, Ti contains p only. The edges in p are annotated as edges in the previous
subtrees. The next M edges are added to Ti in a straightforward manner as in
the internal construction of the prefix tree. (3) For each Ti, we build its prefix
tree Si. We assume that each Si fit into memory comfortably. (4) We merge two
consecutive prefix trees, Si and Si+1, by traversing the two trees “in parallel”.
Note that during the merge, only two edges, and their associated histograms,
are needed to be stored in memory. The edges with annotations in Si+1 are
not merged as they already appeared in the previous subtrees. This operation
requires |Si| + |Si+1|. We obtain S of T by merging Sis iteratively. Once S
is constructed, even its size may be larger than the memory size, the metrics

234 Z. Lin, B. He, and B. Choi

can still be computed in two passes of S. The total number of scans on T for
computing all metrics is 1 + log(|T |/M).

4 A Survey on XML Benchmarks

In this section, we apply our metrics on a few popular xml datasets. The main
goal of this section is to illustrate how these metrics are useful to understand
xml datasets and the current state of experimentations conducted by the xml
community. Hence, we present, compare and visualize numbers obtained from
different xml datasets, as opposed to presenting individual summary of numbers.

XML benchmark datasets. We first describe our real-world datasets. dblp is
the xml version of dblp Computer Science bibliography datasets [17]. It contains
bibliography information of conference papers, articles, books, master and PhD
theses, etc. nasa is the dataset converted from legacy flat file format by nasa
xml project [21]. sp is a curated protein sequence database swissprot [12]. Next,
we describe the synthetic datasets used. We used two xml benchmark datasets,
namely xmark [28] and xbench [34], denoted as xk and xb, respectively. xmark
datasets contain synthetic auction transactions. The xmark generator [27] allows
users to vary the size of the generated dataset by providing a scaling factor. We
used a few scaling factors to generate our synthetic datasets. We noted that the
structural properties of these datasets remained roughly the same as the dataset
size varies. Hence, we report the results from xmark datasets with scaling factor
1. For xbench, we used the four example xbench datasets, namely tc/sd, tc/md,
dc/sd and dc/md, shipped with the data generator [32]. (tc, dc, sd and md
stand for text-centric, data-centric, single document and multiple documents,
respectively.) Note that [32] may also take templates, that describe the abstract
structure of the synthetic data, as an input of data generation. When xbench
produces multiple datasets, we concatenate them into a single dataset before
checking its structural properties.

Results. We apply the first two metrics on the xml datasets. We present the
numbers for these datasets in Table 1.

Table 1. Simple paths in the benchmark xml datasets

Dataset dblp nasa sp xk xb tc/sd xb tc/md xb dc/sd xb dc/md
of paths 7.5M 473K 2.0M 1.2M 250K 34K 158K 225

Minimum length 3 3 3 4 4 4 3 3
Maximum length 6 8 5 12 8 8 8 5
Average length 3.3 6.2 3.7 6.3 6.9 6.1 5.8 4.1

Variance 0.001 1.5 0.48 3.96 0.45 0.29 1.9 0.29

There has been a large body of work on storing xml as an edge table [14]
in relational databases. The number of joins required for evaluating an XPath

A Quantitative Summary of XML Structures 235

descendant step in the absence of xml indexes, is bounded by the depth of a
document. Table 1 shows that the longest path in the datasets surveyed is often
small. One non-trivial fact is that the variance of the length of simple paths of
our datasets is very small. Consider dblp as an example. While the length of
the longest simple path is 6, the variance of the length of paths is close to zero.
This indicates that the paths in dblp are “regular”. There is one exception: The
simple paths in xmark are often lengthy (12) and the variance of their length is
3.96. This shows the paths in xmark is rather complex.

To study the nestings of star edges, we apply the third and the fourth metrics
on the benchmark xml datasets. The number of star edges in the prefix tree of
dblp, nasa, sp, xk, xb tc/sd, xb tc/md, xb dc/sd and xb dc/md are 52, 26, 95,
314, 12, 13, 5 and 9, respectively. Except for dblp, swissprot and xmark, the
number of star edges in the prefix tree is far fewer than 50. Recall that a star can
be modeled by a one-to-many relationship in er diagrams. When a relation is
created to capture a one-to-many relationship, the number of relations required
is small [31]. Therefore, most of these xml datasets can be efficiently stored and
queried by using mature relational technology.

The number of star edges in a prefix tree is not sufficient for describing the
hierarchy of (or the nestings in) the datasets. We apply the fourth metric – the
number of star edges on paths – on the benchmark datasets. For the discussion
purpose, we present the breakdown of the numbers in Table 2.

Table 2. The number of star edges in simple paths of the benchmark xml datasets

Dataset dblp nasa sp xk xb tc/sd xb tc/md xb dc/sd xb dc/md

of paths w. 1 star 3.1M 22.5K 9 521K 713 143 59.4K 160K
of paths w. 2 stars 4.4M 102K 1.06M 452K 14K 2035 82.9K 65K
of paths w. 3 stars 226 227K 972K 176K 224K 2623 15.2K 0
of paths w. 4 stars 0 14.5K 0 57K 12K 24.5K 0 0
of paths w. 5 stars 0 108K 0 4.9K 0 4113 0 0
of paths w. 6 stars 0 0 0 0 0 341 0 0

The maximum number of star edges on paths is 6. Note also that the number
of stars on a path is at least one in practice. For example, consider the dblp

dataset again. The root node, dblp, of dblp has many book children and dblp-
book is a star edge. The breakdown shows that the number of star edges on paths
exhibits a Gaussian distribution. Also the average number of star edges on paths
is small. That is, these datasets can be considered as a mild generalization of
relations, not similar to a tall tree.

Then, we used the fifth metric to measure the number of recursive element
types in the xml benchmark datasets. These datasets, including the text centric
(tc) xbench datasets, contain only one or two recursive element types. The
recursive elements in dblp, nasa, xmark and xbench tc/md are (sub and sup),
(para), (listitem and parlist) and (subsec), respectively.

Next, we used the sixth metric to illustrate the recursions in the paths of
the benchmark datasets. The results are presented in Table 3. We found that

236 Z. Lin, B. He, and B. Choi

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

C
ou

nt

of a particular kind of star edges

subsec-p
authors-author
subsec-subsec

section-p
references-a_id

Fig. 5. The five distributions with the high-
est variance on the number of star edges
(Xbench tc/md)

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25

C
ou

nt

of a particular kind of star edges

book-cite
proceedings-editor

incollection-cite
incollection-author

book-author

Fig. 6. The five distributions with the high-
est variance on the number of star edges
(dblp)

although dtds may often be recursive, the recursions in the document instances
are often simple. The only fairly recursive xml datasets in our benchmark datasets
are xmark and xbench tc/md datasets. The number of recursions in the paths of
xmark is always 2 while that of xbench tc/md is mostly 1. Due to the simplicity
of the benchmark datasets, algorithms for non-recursive xml datasets may con-
tinue to work on these datasets. However, these datasets are insufficient to show
the benefits of algorithms for recursive xml datasets.

Table 3. The number of recursions in simple paths in xml benchmark datasets

Dataset dblp nasa sp xk xb tc/sd xb tc/md xb dc/sd xb dc/md

of paths w. 1 recursion 15 110 0 0 0 4113 0 0
of paths w. 2 recursions 0 0 0 112K 0 341 0 0

% of recursive paths 0% 0% 0% 9.3% 0% 13% 0% 0%

We applied the seventh metric on the xml benchmark datasets. We visualize
our results for discussion purposes. For each star edge (A, B) in the prefix tree,
we obtain a distribution – the number of B children of an A node. Except for
the datasets generated by xbench, such distributions of the datasets are highly
skewed. For example, we show five of such distributions with the highest variance
in xbench in Figure 5. The figure shows that xml structures in xbench appear
random or uniform. In comparison, as shown in Figure 6, such distributions in
dblp are highly skewed.

Another counter-intuitive finding is that while xmark is a synthetic dataset,
such distributions in xmark are highly skewed also, shown in Figure 7. The non-
zero variance of the distributions in xmark dataset is shown in Figure 8. The
x-axis is the value of variance of a distribution and the y-axis shows the number
of distributions with a particular variance. The figure shows that there are many
distributions with a large variance. In addition, a few distributions with a large
variance are found in dblp, nasa and swissprot datasets.

A Quantitative Summary of XML Structures 237

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 5 10 15 20 25 30

C
ou

nt

of a particular kind of star edges

open_auction-bidder
watches-watch
profile-interest

mailbox-mail
mailbox-mail (2)

Fig. 7. The five distributions with the
highest variance on the number of star
edges (Xmark)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 1 3 5 7 9 11 13 15

C
ou

nt

The variance of a distribution in XMark

Fig. 8. The variances of the distribution of
star edges in Xmark

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

S
ke

w
ne

ss

The distribution of each kind of star edges

DBLP
NASA

SWISSPROT

Fig. 9. Skewness of star edges in real-world
dataset variance

-2

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300 350

S
ke

w
ne

ss

The distribution of each kind of star edges

XMARK
XBENCH1
XBENCH2
XBENCH3
XBENCH4

Fig. 10. Skewness of star edges in synthetic
dataset

We then apply the next metric to check the skewness of distributions of xml
structures. The skewness of the distributions (with non-zero variance) of the real-
world and synthetic datasets are presented in Figure 9 and Figure 10, respec-
tively. Figure 9 shows that the number of skewed distributions (skewness > 1)
is significant. We sort the distributions according to their skewness. That is, the
x-axis is a canonical number of a distribution. The figure shows that the per-
centage of skewed distributions in dblp, nasa and swissprot are 82%, 100% and
94%, respectively. Datasets that are generated by xbench are not highly skewed
as it is illustrated with Figure 10. When one uses highly skewed datasets for
experimentations, the results are prone to be biased.

Summary and recommendations. While xmark and dblp datasets appear
popular in the xml research community, we found that the majority of these
xml datasets are mild generalization of relations - not “tree-like”. Furthermore,
these datasets are highly skewed. Except xbench tc/md, the other three xbench
datasets are also a mild generalization of relations. The xbench datasets are not
skewed. All the datasets are hardly hierarchical and contain a small number of

238 Z. Lin, B. He, and B. Choi

recursions. To conduct fair experiments on algorithms for recursive xml (e.g. [2]),
one needs to derive a highly recursive schema and datasets by using “xbench-
like” xml generator.

5 Related Work

There has been a host of work on xml summary structures for optimizing xml
query evaluation [19,20,16]. These approaches and ours are orthogonal: Their
approaches are graph-based whereas our approach focuses on producing quan-
titative summaries. There have also been works on deriving statistical sum-
maries of xml structures [7,23,15] for estimating selectivities of a query work-
load. [7] counts the number of simple paths in xml documents and determines
the correlation between paths for estimating the selectivity of a given query
workload. In comparison, our approach does not require query workloads as our
focus is not selectivity estimation. [23] proposes statistical synopses for xml for
path query selectivity estimation. Such synopses are designed for query proces-
sors, as opposed to offering a structural summary for human. Statix [15] builds
histograms on entities of an xml Schema and generates the optimal relational
storage of an xml document for a pariticular query workload. In comparison, our
approach does not require an xml Schema. We derive a prefix tree from an xml
document and use it as the “schema” of the xml document. While [15] stated
that some real-world xmls are highly skewed, our result is more comprehensive
and informative.

In addition to query evaluation, the structure of xml documents influences
the design of xml storage scheme. For example, since xml is flexible, heuristic
algorithms [11,3] has been proposed to mine the optimal storage for xml. The
storage subsequently affects query evaluations. Another stream of work is the
xml query algorithms [4,13,25,22,6] that assume a specific physical layout or xml
index structure. Although encouraging performances have been reported, it was
not clear how the performance of a system may change as the structure of docu-
ments changes. Recently, [26] proposes a microbenchmark for understanding the
strengths and weaknesses of an xml system. Compression can be understood as
a space-efficient storage. Existing xml compression techniques [18,6,10,8] utilize
properties of both scalar data and structures of an xml document. Since (real-
world) xml documents are often skewed, xml compressions have been shown
effective.

Finally, surveys on real-world dtds and xml Schemas are presented in [9]
and [1], respectively. However, nestings of entities and the number of occurrences
of star edges can only be computed from document instances.

6 Conclusions and Future Works

In this paper, we presented quantitative metrics for xml structures. We derived
statistics from a prefix tree of xml structures and used simple paths and star
edges as the basis of our metrics. These metrics are developed to answer our

A Quantitative Summary of XML Structures 239

informal question stated in Introduction: whether an xml structure is tree-like
or relational-like. We applied our metrics on a few popular xml datasets for
experimental evaluations, among others, for xml research. Our result is that
the structures of these xml documents are highly skewed, non-hierarchical and
mostly non-recursive. That is, the datasets are relational-like.

In the future, we will use our metrics to aid the design of our ongoing native
xml system [6,10].

Acknowledgements. We would like to thank Daxin Jiang for discussions on
statistics and databases and our colleagues in CAIS at NTU for providing techni-
cal discussions. This work is supported by CoE startup grant M58020002.601001.

References

1. G. J. Bex, F. Neven, and J. V. den Bussche. DTDs versus XML Schema: A Practical
Study. In WebDB, pages 79–84, 2004.

2. P. Bohannon, B. Choi, and W. Fan. Incremental evaluation of schema-directed
XML publishing. In SIGMOD, 2004.

3. P. Bohannon, J. Freire, P. Roy, and J. Simeon. From XML schema to relations: A
cost-based approach to XML storage. In ICDE, 2002.

4. P. A. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teubner.
MonetDB/XQuery: a fast XQuery processor powered by a relational engine. In
SIGMOD, pages 479–490, 2006.

5. V. P. Braganholo, S. B. Davidson, and C. A. Heuser. From XML view updates to
relational view updates: old solutions to a new problem. In VLDB, 2004.

6. P. Buneman, B. Choi, W. Fan, R. Hutchison, R. Mann, and S. Viglas. Vectorizing
and querying large xml repositories. In ICDE, pages 261–272, 2005.

7. Z. Chen, H. V. Jagadish, F. Korn, N. Koudas, S. Muthukrishnan, R. Ng, and
D. Srivastava. Counting twig matches in a tree. In ICDE, 2001.

8. J. Cheney. Compressing XML with multiplexed hierarchical PPM models. In Data
Compression Conference, 2001.

9. B. Choi. What are real DTDs like. In WebDB, pages 43–48, 2002.
10. B. Choi. Document decomposition for XML compression: A heuristic approach.

In DASFAA, pages 202–217, 2006.
11. A. Deutsch, M. F. Fernandez, and D. Suciu. Storing semistructured data with

STORED. In SIGMOD, pages 431–442. ACM Press, Jun. 1999.
12. ExPASy. Swiss-prot and TrEMBL. Available at http://www.expasy.ch/sprot/.
13. T. Fiebig, S. Helmer, C.-C. Kanne, G. Moerkotte, J. Neumann, R. Schiele, and

T. Westmann. Anatomy of a native XML base management system. VLDB Jour-
nal, 11(4):292–314, Dec. 2002.

14. D. Florescu and D. Kossmann. Storing and querying XML data using an RDMBS.
IEEE Data Engineering Bulletin, 22(3):27–34, 1999.

15. J. Freire, J. R. Haritsa, M. Ramanath, P. Roy, and J. Siméon. StatiX: making
XML count. In SIGMOD Conference, pages 181–191, 2002.

16. R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploiting local similarity for
efficient indexing of paths in graph structured data. In ICDE, 2002.

17. M. Ley. DBLP Bibliography. Available at http://www.informatik.uni-trier.
de/~ley/db/, Mar 2005.

240 Z. Lin, B. He, and B. Choi

18. H. Liefke and D. Suciu. XMILL: An efficient compressor for XML data. In SIG-
MOD, 2000.

19. J. McHugh and J. Widom. Query optimization for XML. In VLDB, 1999.
20. T. Milo and D. Suciu. Index structures for path expressions. In ICDT, 1999.
21. National Aeronautics and Space Administration. The NASA XML project. Avail-

able at http://xml.nasa.gov/xmlwg/index.htm.
22. S. Paparizos, S. Al-Khalifa, A. Chapman, H. V. Jagadish, L. V. S. Lakshmanan,

A. Nierman, J. M. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu.
TIMBER: A native system for querying XML. In SIGMOD, 2003.

23. N. Polyzotis and M. N. Garofalakis. Statistical synopses for graph-structured XML
databases. In SIGMOD, 2002.

24. V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita. Improved histograms
for selectivity estimation of range predicates. In SIGMOD, pages 294–305, 1996.

25. S. Prakash, S. S. Bhowmick, and S. K. Madria. Efficient recursive XML query
processing in relational database systems. In ER, pages 493–510, 2004.

26. K. Runapongsa, J. Patel, H. Jagadish, Y. Chen, and S. Al-Khalifa. The Michigan
benchmark: Towards XML query performance diagnostics, 2003.

27. A. Schmidt. XMark – an XML benchmakr project. Available at http://monetdb.
cwi.nl/xml/generator.html, 2003.

28. A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu, and R. Busse. XMark:
A benchmark for XML data management. In VLDB, pages 974–985, 2002.

29. L. Segoufin and V. Vianu. Validating streaming xml documents. In PODS, pages
53–64, 2002.

30. J. Shanmugasundaram, E. Shekita, and J. Kiernan. A general technique for
querying XML documents using a relational database system. SIGMOD Record,
30(3):20–26, 2001.

31. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F.
Naughton. Relational databases for querying XML documents: Limitations and
opportunities. VLDB Journal, pages 302–314, 1999.

32. ToXGene. The ToX XML generator. Available at http://www.cs.toronto.edu/
tox/toxgene/, 2005.

33. W3C. Extensible Markup Language (XML). Available at http://www.w3.org/
XML/.

34. B. B. Yao, M. T. Ozsu, and N. Khandelwal. XBench benchmark and performance
testing of XML DBMSs. In ICDE, pages 621–633, 2004.

Database to Semantic Web Mapping Using RDF
Query Languages

Cristian Pérez de Laborda and Stefan Conrad

Institute of Computer Science
Heinrich-Heine-Universität Düsseldorf

D-40225 Düsseldorf, Germany
{perezdel, conrad}@cs.uni-duesseldorf.de

Abstract. One of the main drawbacks of the Semantic Web is the lack
of semantically rich data, since most of the information is still stored
in relational databases. In this paper, we present an approach to map
legacy data stored in relational databases into the Semantic Web using
virtually any modern RDF query language, as long as it is closed within
RDF. Consequently, a Semantic Web developer does not need to learn
and adopt a new mapping language, but he may perform the mapping
task using his preferred RDF query language.

1 Motivation

Despite the vision of a Semantic Web [6] and many efforts helping to realize it,
the actual Semantic Web still lacks of enough semantic data. Most information
is still modeled and stored in relational databases and thus out of reach for
many Semantic Web applications. As a consequence, such applications need to
create a corresponding mapping between the relational and the semantic models
by themselves for being able to access relational data. Realizing this situation,
some efforts have arisen to straighten out this deplorable situation.

Most approaches translate relational data into a Semantic Web representation
using a proprietary mapping language (cf. Section 2). In [19] we have introduced
Relational.OWL, our technique to automatically transform relational data into
a machine processable and understandable representation (cf. Section 3.1). Nev-
ertheless, such a representation does not include real semantics, since it converts
the schema of a database automatically into an ontology and the data items
as its instances, i.e. the data is described as it was in the database. For many
Semantic Web applications, this is a reasonable technique, since they are able
to quickly access legacy data stored in a relational database using their own
built-in functionality. However, such a representation could be inappropriate, if
the data has to be processed for further reasoning tasks.

In this paper we present how to map relational data into the Semantic Web
using virtually any modern RDF query language, as long as the language is
closed within RDF, i.e. it returns valid RDF graphs as query results. For this
purpose, data and schema components of the original relational database are

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 241–254, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

242 C. Pérez de Laborda and S. Conrad

first translated automatically into their Semantic Web representation based on
Relational.OWL. Thereupon, they may either be processed or mapped directly
to a target ontology. To perform such a mapping task, a Semantic Web developer
does not need to learn and adopt a new mapping language, but he may perform
the mapping task using his preferred RDF query language.

The remainder of this paper is organized as follows. In the next Section we
discuss some related research. In Section 3 the foundations of this paper are de-
scribed. The relational database to Semantic Web mapping process is introduced
in Section 4 and evaluated in Section 5. Finally, we conclude in Section 6 with
a short discussion and some ideas for future work.

2 Related Work

Recently, some efforts arose in bringing together relational databases and the
Semantic Web. Nevertheless, most of these approaches do not use relational
databases as a data source, but to store RDF triples in tailored tables, exploting
the improved query performance of current relational databases (e.g. [13], [16],
or [11]). The main drawback of such approaches is, that the corresponding data
has to be available in RDF, i.e. their aim is not to convert legacy data into a
Semantic Web representation, but to give applications fast access to RDF triples.

Some approaches try to map legacy relational databases to the Semantic Web.
Bizer [7] for example, introduces a mapping from relational databases to RDF.
Unlike our approach which is based on existing query languages, this method
requires a specific mapping language, which, although it is based on RDF, still
has to be learned and adopted by the corresponding developers.

An et al. outline in [5] a further approach from tables to ontologies. Unlike
our technique, this approach maps database schemas directly into ontological
concepts, assuming that the required database was designed following several
ER design principles, e.g. the database is normalized and contains meaningful
table or column names.

Petrini and Risch introduce in [21] their technique to query relational data-
bases using RDF query languages, which is closely related to the approach pre-
sented in this paper. Nevertheless, it has some drawbacks. The mapping from
relational tables to the Semantic Web is defined within a custom made map-
ping table, where columns or tables are related to objects or attribute values.
As a result, the mappings between both worlds are always 1:1. Our mapping
technique is completely based on the Semantic Web and allows the mappings
to be as complex as a query language can be, i.e. we would even be able to use
aggregations, if they are supported by the query language used.

3 Foundations

In this section we present the foundations, this work is based on. First, we intro-
duce Relational.OWL, an approach to automatically transform relational data
and schema items into a Semantic Web representation. After this, we explain in

Database to Semantic Web Mapping Using RDF Query Languages 243

Section 3.2 the difficulties in querying the resulting RDF graphs using current
RDF query languages.

3.1 Relational.OWL

In [19] we introduced Relational.OWL, a data and schema representation, which
adopts Semantic Web techniques to the data and schema representation process
of (relational) databases. Contrary to other approaches where RDF is stored in
relational databases (e.g. [15]), Relational.OWL aims at bringing together the
representation of both, database data and schema components with a common
mediated language, based on the Resource Description Framework (RDF) and
the Web Ontology Language (OWL) [14]. In this section we give a short intro-
duction to the Relational.OWL representation technique, since it is essential for
a subsequent application to the mapping process presented in this paper.

The Relational.OWL Ontology. To describe the schema of a relational data-
base with the techniques provided by RDF and OWL, we have to define reference
OWL classes centrally, to which any document describing such a database can
refer. The abstract representation of classes like Table or Column becomes a
central part of the knowledge representation process realized within OWL. Ad-
ditionally, we have to specify possible relationships among these classes resulting
in an ontology, a relational database can easily be described with. We call this
central representation the Relational.OWL ontology. It contains abstract defin-
itions of relational databases D, tables T, columns C, primary keys P, foreign
keys F, and their corresponding relationships.

For each relational database RDBi, a Semantic Web correspondent ROWLi

(Si, Ii) is created, where Si is the schema and Ii the data instance representation.
Si will usually contain one subclass Di of D. Analogously, for each relation
R1, ...,Rm ∈ RDBi, a subclass T1, ..., Tm of T is created and included into Si.
The ∈ relationship between RDBi and Rj is then added using a corresponding
hasTable property within the Di class. The remaining components and their
relationships are transformed correspondingly.

A snippet of a database representation using Relational.OWL is provided in
Fig. 1. Its first element corresponds to a table containing residence information
of a business contact. In this case, the rdf:ID ADDRESS is equivalent to the table
name in the original database. Instead of exclusively using the table name as
an identifier, a complete URI pointing at this specific table can be specified
using an identifier, e.g. as in [17]. Each of the five columns is defined using a
owl:DatatypeProperty class, where all the properties required are specified.
The corresponding &dbs;Table and &dbs;Column objects are then linked using
a dbs:hasColumn property.

The primary key property of the table is represented using a
dbs:isIdentifiedBy property, whereas the dbs:PrimaryKey Object corre-
sponds to the actual primary key. Since the primary key itself may consist of
more than one column, they are specified with dbs:hasColumn entries. The sec-
ond element in Fig. 1 describes the ZIP column of the address table. It contains
string values with a maximum length of eight characters.

244 C. Pérez de Laborda and S. Conrad

<...>
<owl:Class rdf:ID="ADDRESS">
<rdf:type rdf:resource="&dbs;Table"/>
<dbs:hasColumn rdf:resource="#ADDRESS.ADDRESSID"/>
<dbs:hasColumn rdf:resource="#ADDRESS.STREET"/>
<dbs:hasColumn rdf:resource="#ADDRESS.ZIP"/>
<dbs:hasColumn rdf:resource="#ADDRESS.CITY"/>
<dbs:hasColumn rdf:resource="#ADDRESS.COUNTRYID"/>
<dbs:isIdentifiedBy>
<dbs:PrimaryKey>
<dbs:hasColumn rdf:resource="#ADDRESS.ADDRESSID"/>
</dbs:PrimaryKey>

</dbs:isIdentifiedBy>
</owl:Class>
<owl:DatatypeProperty rdf:ID="ADDRESS.ZIP">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#ADDRESS"/>
<rdfs:range rdf:resource="&xsd;string"/>
<dbs:length>8</dbs:length>
</owl:DatatypeProperty>
</ ...>

Fig. 1. Schema Representation

Data Representation. After having created a schema representation of a data-
base RDBi using OWL and our Relational.OWL ontology, we can regard this
representation itself as a novel ontology. With this tailored ontology-based rep-
resentation of the database schema, we are able to represent the data stored in
that specific database. As a result, data stored in a relational database can be
represented as instances of its own OWL schema.

In order to realize this kind of data representation process, we have to ensure
that all components involved (e.g. exchange partners) are able to process and
understand RDF and OWL, know the Relational.OWL ontology (or a seman-
tic equivalent), and have access to the OWL schema representation Si of the
database RDBi. As we have mentioned above, the Relational.OWL representa-
tion ROWLi of a relational database RDBi consists of two parts, the schema
ontology Si and its corresponding data instances Ii.

Using the schema Si as a novel ontology means to represent the data stored in
the database RDBi using a tailored data representation technique. As a result,
the data can be handled using common RDF/OWL techniques for data backups,
data exchanges, or any kind of data processing tasks within the Semantic Web.
A sample data set of a relational database is provided in Fig. 2.

A summary of all the classes and relationships among them, together with a
complete database representation can be found in [19].

3.2 Querying RDF Data

Despite the possibility to query RDF graphs in their XML representation using
XML query languages like XQuery [9], their possibilities to query the graph for
matching triples is rather rudimentary, ignoring the kind of information, which

Database to Semantic Web Mapping Using RDF Query Languages 245

<...>
<db:ADDRESS>
<db:ADDRESS.ADDRESSID>6824</db:ADDRESS.ADDRESSID>
<db:ADDRESS.STREET>Campus de Arrosadia</db:ADDRESS.STREET>
<db:ADDRESS.ZIP>31006</db:ADDRESS.ZIP>
<db:ADDRESS.CITY>Pamplona</db:ADDRESS.CITY>
<db:ADDRESS.COUNTRYID>152</db:ADDRESS.COUNTRYID>
</db:ADDRESS>
<db:COUNTRY>
<db:COUNTRY.COUNTRYID>152</db:COUNTRY.COUNTRYID>
<db:COUNTRY.NAME>Espa~na</db:COUNTRY.NAME>
</db:COUNTRY>
</...>

Fig. 2. Data Representation

can be revealed using reasoning mechanisms. In fact, all queries have to be
expressed as if they were treating real XML documents and not RDF graphs.

Hence, it soon became obvious, that tailored query languages for the Semantic
Web languages (e.g. RDF) were required. Naturally, most languages were based
on the SQL syntax in order to be easily understood and adopted by a broad
community. As we have shown in [18], these early languages like RDQL [24] have
one major drawback: they are not closed, i.e. the results of such queries are not
valid RDF triples, but a list of possible variable bindings. Hence, the query results
cannot be processed using ordinary reasoning mechanisms of normal Semantic
Web applications.

An RDF query language has to fulfill one main characteristic for being able to
describe a mapping between a relational database and the Semantic Web using
our Relational.OWL [19] technique: it has to be closed. Otherwise, the queries
used within the mapping process would not return valid RDF graphs but simple
variable bindings. Having chosen a closed query language, the expressiveness of
a mapping only depends on the query language itself.

In this paperweuse theupcomingquery languageSPARQL [22] as anRDFquery
language representative, since it will hopefully be recommended soon as a de facto
standard by the W3C. SPARQL is an extension of RDQL, eliminating many of its
drawbacks, like lack of expressiveness and completeness [18]. Despite its novelty,
the Jena Framework [2] already supports SPARQL using its ARQ extension.

Indeed, we have shown in [20], that the combination of SPARQL and Rela-
tional.OWL could replace existing interfaces for the access of relational data-
bases out of the Semantic Web. We successfully simulated the basic operations
{σ, π,∪,−,×} of the relational algebra and showed how to express a join oper-
ation with SPARQL. As we will see below, it can easily be deduced from the
cartesian product - just as it is done within the relational algebra.

Consider a sample database, which contains personal and contact information
of e.g. business partners and contains the following two relations:

Address(AddressID, Street, ZIP, City, CountryID) and
Country(CountryID, Name).

246 C. Pérez de Laborda and S. Conrad

A typical join operation between these two relations could be as follows:

σAddress.CountryID=Country.CountryID(r(Address) × r(Country)).

Since SPARQL does not provide the possibility to specify nested queries, we
have to express the (equi-)join operation using a combination of a cartesian
product and two selections (cf. [20]). A possible SPARQL query, which holds the
same constraints like the relational algebra expression above and thus may be
regarded as a correspondent to the (equi-)join operation of the relational algebra
can be found in Fig. 3. We again refer to [20] for a detailed and complete analysis
of the basic relational operation equivalents in SPARQL.

PREFIX rdf:[...]
PREFIX db :[...]
CONSTRUCT {?a ?b ?c;

?e ?f}
WHERE {{?a ?b ?c;

rdf:type db:ADDRESS} .
{?d ?e ?f;

rdf:type db:COUNTRY} .
{?a db:ADDRESS.COUNTRYID ?x} .
{?d db:COUNTRY.COUNTRYID ?x}}

Fig. 3. Sample SPARQL Query

Taking into account the possibility to query the legacy data formerly stored
in relational databases using a query language like SPARQL, we have achieved
a reasonable alternative for Semantic Web applications to access such relational
data. As a consequence, all kinds of legacy data stored in relational databases
become an integral part of the Semantic Web.

4 Relational to Semantic Mapping

Despite being processable by any application understanding RDF, the data ex-
tracted using Relational.OWL still lacks real semantic meaning. Indeed, the in-
formation originally stored in relational tables is represented within a table ob-
ject and not within an appropriate Semantic Web object, e.g. an http://www.w3.
org/2000/10/swap/pim/contact#Person object. This drawback has to be ac-
cepted in order to achieve an automatic transformation from relational databases
to the Semantic world.

Nevertheless, many applications still require the data to be represented as
real semantic objects, for being able to perform reasoning tasks or further data
processing. To meet the demands of such applications, a data mapping from the
relational to the required data representation is needed.

4.1 Requirements

Common approaches like [8] introduce a special mapping language, which has
to be understood and adopted by all administrators needing to perform a single

Database to Semantic Web Mapping Using RDF Query Languages 247

mapping from a relational database to the Semantic Web. Our technique goes
one step further and uses common RDF query languages for the mapping task.
The following requirements have to be kept, for being able to use such query
languages as a mapping language.

Relational.OWL: Contrary to a common mapping, where the relational data
is directly translated into the Semantic Web, our approach passes one ad-
ditional step. First, we represent the data stored in the original relational
database in a semantic-rich format, i.e. in RDF. This step is either done
exporting the complete data and schema sets into RDF using the Rela-
tional.OWL application [4] or using the virtual database representation pro-
vided by RDQuery [3]. Please note, that both data transformations methods
are processed automatically without any human intervention. Both tech-
niques result in a Semantic Web representation of the data and schema
components of the original relational database.

Closed Query Language: We are potentially able to perform a mapping using
any of the upcoming query languages, as long as it is closed within RDF and
contains a construct similar to the CONSTRUCT clause in SPARQL (cf. [22]).
Otherwise the resulting variable bindings would have to be translated again
into RDF. We have chosen SPARQL as a representative query language,
since it is easy to understand, its syntax is based on SQL, it is as powerful
as the relational algebra in its expressiveness (cf. [20]), and will hopefully
soon be recommended as a de facto standard by the W3C.

Target Ontology: Although theRelational.OWLrepresentation (cf. Section4.2)
of the database is processable by virtually any Semantic Web application, it
still lacks real semantics, since the data is represented as it was stored in the
relational database, i.e. stored in tables and columns. Since we want to assign
this data a real meaning, we require a target ontology, it can be mapped to.

4.2 Definitions

In this section we define the basic terms used for our relational database to
Semantic Web mapping approach. First, we introduce the semantic translation
of relational databases into the Semantic Web:

Definition 1 (Semantic Translation). The semantic translation ST (RDB,
ROWL) of a relational database RDB into its Relational.OWL representation
ROWL (see Definition 2 below) is an automatic translation process, where for
each RDB and its schema components, a Semantic Web correspondent is created
(cf. Section 3.1).

In this context, the Relational.OWL representation of a database is:

Definition 2 (Relational.OWL Representation). TheRelational.OWLrep-
resentation of a relational database is described by ROWL(S, I), where S is the
schema representation of the database as seen in Section 3.1 and I contains the
corresponding data instances of the schema components described with S.

248 C. Pérez de Laborda and S. Conrad

Having created a Relational.OWL representation of the corresponding database,
we are now able to perform a mapping:

Definition 3 (Mapping). A mapping M from a relational database to the
Semantic Web is a four-tuple M(RDB,ROWL, T O,Q), with RDB being the
source database, ROWL the Relational.OWL representation of RDB, T O the
target ontology, and Q the mapping query, expressed in a (closed) query language
QL.

Contrary to the Relational.OWL representation created with an automatic se-
mantic translation, a mapping has to be stated manually using a query Q. The
mapping is correct, iff querying ROWL with Q results in one ore multiple in-
stances of T O. Hence Q has to fulfill two main properties. First, it has to be
adequate in regard to ROWL, i.e. return the desired result and secondly, the
result has to be formatted as instances of T O.

4.3 Mapping Process

The complete relational data to RDF mapping process is illustrated in Fig. 4.
It consists of two main steps, which were already introduced in the previous
sections.

First, the Relational.OWL representation of the schema and the data com-
ponents of the original data source are generated. The schema representation
becomes thereby an instance of the Relational.OWL ontology. In turn, the data
items converted become instances of the schema ontology just created. This step
could either be performed using the Relational.OWL application [4], i.e. the
schema and data components are translated statically in a one-time process, or
using a virtual representation of that RDF model, e.g. with RDQuery [3]. The
advantage of the latter is obvious, since the data stock, on which the queries
are performed, is always up-to-date. This cannot be guaranteed using the Re-
lational.OWL application. Nevertheless, if the source database does not change
frequently, a static translation into the Relational.OWL representation could be
enough.

Having created the Relational.OWL representation of the relational database,
the second step including the actual mapping can be performed.

The RDF model just created may now be queried with an arbitrary RDF
query language. As long as the query language is closed, the resulting query
response is again within the Semantic Web, i.e. it is a valid RDF model or graph
and may then be processed by other Semantic Web applications using their own
built-in functionality for reasoning tasks.

Using the CONSTRUCT clause of a query language like SPARQL (cf. [22]), the
resulting data items can be inserted into an arbitrary RDF skeleton. This prop-
erty of the query language is vaguely comparable to an XSLT-Stylesheet [1]. If we
specify an adequate RDF skeleton, we can achieve the resulting RDF model to
correspond to an instance of the intended target ontology. The RDF skeleton in
the CONSTRUCT clause of the SPARQL query becomes hereby the pivotal part of
the actual mapping process. A sample mapping query is provided in Section 4.4.

Database to Semantic Web Mapping Using RDF Query Languages 249

Fig. 4. Mapping Process

4.4 Sample Mapping

In this section we present a sample relational data to RDF/OWL mapping using
SPARQL as our chosen mapping language, since it fulfills all of our requirements
and will hopefully be recommended as a de facto standard by the W3C soon.
Despite its novelty, SPARQL is already supported by the Jena Framework [2].

Consider a Semantic Web application developer, who requires access to the data
stored in the database introduced in Section 3.2. Since he assumes the database
schema to be quite stable, he decides to create a mapping from the relational data
model to Semantic Web objets based on the vCard ontology [12]. A possible map-
ping query, which gives Semantic Web applications the possibility to access the
data using its own built-in functionality and enables them to perform common
reasoning operations is given in Fig. 5.

After specifying the prefix definitions for vCard, rdf, and db in the PREFIX
clause, the skeleton of the resulting RDF objects is defined in the CONSTRUCT part
of the query. At first, a new anonymous node of type vCard:ADR is created. This
object contains the attributes vCard:Street, vCard:Locality, vCard:Pcode,
and vCard:Country and could easily be extended by further attributes either
specified in the vCard ontology or in other RDF-Schema files. The values cor-
responding to the given attributes are specified by free variables, bound in the
following WHERE clause.

The actual linkage to the original database is performed in the WHERE clause
of the SPARQL query, i.e. each of the free variables specified in the CONSTRUCT
clause is bound to a column of the original database. To be more precise, the
attributes are bound to the data instances I of the RDF representation ROWL
of the relational database. Please note, that the mapping specification is iden-
tical for a virtual RDF model like in RDQuery [3] or a static data representa-
tion, e.g. with the Relational.OWL application [4]. Being stored on two different

250 C. Pérez de Laborda and S. Conrad

PREFIX vCard:<http://www.w3.org/2001/vcard-rdf/3.0#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX db: <http://www.dbs.cs.uni-duesseldorf.de/RDF/address schema.owl#>
CONSTRUCT { :v rdf:type vCard:ADR;

vCard:Street ?street;
vCard:Locality ?locality;
vCard:Pcode ?pcode;
vCard:Country ?country}

WHERE {{?a rdf:type db:ADDRESS;
db:ADDRESS.ZIP ?pcode;
db:ADDRESS.STREET ?street;
db:ADDRESS.CITY ?locality;
db:ADDRESS.COUNTRYID ?x}.

{?d rdf:type db:COUNTRY;
db:COUNTRY.NAME ?country;
db:COUNTRY.COUNTRYID ?x}}

Fig. 5. Sample Mapping Query

tables (ADDRESS and COUNTRY), the required data is joined using the ?x vari-
able (cf. [20]).

Having created a suitable mapping from the Relational.OWL representation
of the database to the target vCard ontology, the resulting data can be processed
by any Semantic Web application as usual. In Fig. 6 a sample result set of the
mapping query provided in Fig. 5 is given.

4.5 Characteristics

The major characteristics of our relational database to RDF/OWL mapping
approach are discussed in this section.

Combination of Automatic and Manual Mappings: The mapping appr-
oach presented in this paper is suitable for most relational database scenar-
ios. If we have to handle with constantly changing database schemas, an
automatic mapping with Relational.OWL into the Semantic Web is the best
choice. Indeed, an automatic mapping with Relational.OWL does not add
real semantics to the RDF objects, but at least, the data is processable by
any Semantic Web application without having to update the mapping every
time the schema changes.

In many application areas, the risk of having to update the mapping is
either negligible or consciously taken into account, since data with real se-
mantics is required. For these cases, an additional, manual mapping from the
Relational.OWL representation to a target ontology would be appropriate.
This may easily be done using a suitable query language. Please note, that
all present relational database to Semantic Web approaches require the map-
ping to be updated, whenever the schema of the database changes, whereas
our technique provides an automatic fallback for such situations.

Mapping within the Semantic Web: The complete mapping process from
the relational database to RDF objects with real semantics is performed

Database to Semantic Web Mapping Using RDF Query Languages 251

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#" >

<rdf:Description rdf:nodeID="A0">
<vCard:Pcode>40225</vCard:Pcode>
<rdf:type rdf:resource="http://www.w3.org/2001/vcard-rdf/3.0#ADR"/>
<vCard:Street>Universitätsstr. 1</vCard:Street>
<vCard:Locality>Düsseldorf</vCard:Locality>
<vCard:Country>Deutschland</vCard:Country>

</rdf:Description>
<rdf:Description rdf:nodeID="A1">

<vCard:Pcode>31006</vCard:Pcode>
<rdf:type rdf:resource="http://www.w3.org/2001/vcard-rdf/3.0#ADR"/>
<vCard:Street>Campus de Arrosadia</vCard:Street>
<vCard:Locality>Pamplona</vCard:Locality>
<vCard:Country>Espa~na</vCard:Country>

</rdf:Description>
</rdf:RDF>

Fig. 6. Sample Mapping Result

using Semantic Web applications. As a result, two different mapping ar-
chitectures are possible. The first and most reliable possibility is, that such
mappings are processed by small wrapper applications providing the Seman-
tic Web applications with the required target data. Taking place within the
Semantic Web, the applications may nevertheless opt to create the mapping
by themselves using their own built-in functionality.

Well-known Mapping Language(s): One of the main advantages of our ap-
proach is, that it does not require a new mapping language to be adopted,
since it is completely based on current RDF/OWL-techniques. Contrary to
approaches like [7], Semantic Web application developers needing access to
data actually stored in relational databases do not have to learn yet another
mapping language, but are able to use their preferred RDF query language,
as long as it fulfills the requirements mentioned in Section 4.1.

5 Evaluation

We have evaluated the performance of our relational database to Semantic Web
approach using RDQuery [3]. It is a wrapper system, which enables Semantic
Web applications to access and query data actually stored in relational data-
bases using their own built-in functionality. RDQuery automatically translates
SPARQL and RDQL queries into SQL and is thus able to perform the rela-
tional to semantic mapping in one step. Providing an adequate mapping query,
the query is translated into SQL, the underlying relational database is queried,
and the results are returned in the required format. RDQuery is thereby able
to recognize the basic operations of the relational algebra within the SPARQL
query (cf. [20]) and to translate them into SQL. Hence, most of the workload,

252 C. Pérez de Laborda and S. Conrad

including join and projection operations, is not processed directly by RDQuery,
but passed to the underlying database with the generated SQL query.

Following the example shown in Section 4.4, we have created 18 different queries
which map relational data to the vCard ontology (cf. http://www.w3.org/
TR/vcard-rdf). We have categorized these queries into three different classes, de-
pending on their complexity referring to the relational algebra (i.e. selection,
projection, and join). Each of the categories contains six of the queries. We first
measured the time required by RDQuery to translate the queries into SQL and
then the time passed for the complete mapping process, including query trans-
lation, query execution via JDBC using a MySQL database, and the data trans-
lation back into RDF. The database, the queries were tested on is based on the
northwind database and contains eight tables with a total of about 3000 tuples.
Unlike the first measurement, the second depends on various factors, like network
or database performance, which can hardly be influenced by RDQuery. In Table
1, the average execution time of the query translations and mapping processes for
each mapping category is given.

Table 1. Average Execution Time for a SPARQL Mapping

Execution time [s]
SPARQL Query Query Translation mapping process
Selection 0.020 0.050
Projection 0.018 0.052
Join 0.023 0.067

The performance results show, that the execution time of both, the query
translations and the complete mapping process are barely measurable, lying
most of them far below 100 milliseconds. Even the more complex join operations
were translated and executed at an average of 67 milliseconds. Consequently,
our mapping relational data to Semantic Web approach enables applications to
access legacy data stored in relational databases in real-time, as if that data
would actually be part of the Semantic Web.

6 Discussion and Future Work

In this paper we have described how to map data from relational databases into
a real RDF representation using a Semantic Web query language. To use such
query languages for a mapping purpose, three main requirements have to be
met. First, the relational database (i.e. its schema and data components) has
to be described using the Relational.OWL ontology. This automatic semantic
representation of the relational database can then be queried using any RDF
query language. If the adopted query language is closed, the resulting RDF
graph can be specified to match the the target ontology, the original database
shall be mapped to.

Database to Semantic Web Mapping Using RDF Query Languages 253

The approach presented in this paper is based on mapping the Relational.OWL
representation of relational databases manually into Semantic Web objects with
real semantics.Weare thus planning to analyze,whether existing (semi-)automatic
schema and ontology matching approaches (cf. [10,23]) could provide reasonable
results in matching an existing relational schema to a target ontology.

The expressiveness within the mapping process depends directly from the
query language used, i.e. a more complex mapping cannot be stated with an
elementary query language. For instance, we showed in [20], that all the basic
operations of the relational algebra can be expressed with SPARQL. Neverthe-
less, its has some considerable limitations, since it does not support aggrega-
tions or nested queries. A further restriction concerns data manipulation or data
updates, which is still not supported by most RDF query languages. We are
currently analyzing, whether SPARQL could be extended to support such oper-
ations for enabling Semantic Web applications to manipulate the data actually
stored on the relational database.

References

1. XSL Transformations (XSLT). http://www.w3.org/TR/1999/REC-xslt-19991116,
1999.

2. Jena - A Semantic Web Framework for Java. http://jena.sourceforge.net/,
2006.

3. RDQuery. http://sourceforge.net/projects/rdquery/, 2006.
4. Relational.OWL. http://sourceforge.net/projects/relational-owl/, 2006.
5. Yuan An, Alexander Borgida, and John Mylopoulos. Inferring Complex Semantic

Mappings Between Relational Tables and Ontologies from Simple Correspondences.
In CoopIS, DOA, and ODBASE, OTM Confederated International Conferences,
Cyprus, Part II, volume 3761 of LNCS, pages 1152–1169. Springer, 2005.

6. Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, May 2001.

7. Christian Bizer. D2R MAP-A Database to RDF Mapping Language. In
WWW2003, The Twelfth International World Wide Web Conference, Budapest,
Hungary, 2003. poster presentation.

8. Christian Bizer and Andy Seaborne. D2RQ -Treating Non-RDF Databases as
Virtual RDF Graphs. In The Semantic Web - ISWC 2004: Third International
Semantic Web Conference, Hiroshima, Japan, 2004. poster presentation.

9. Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan
Robie, and Jérôme Siméon. XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/2005/CR-xquery-20051103/, 2005. W3C Candidate Rec-
ommendation.

10. AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Y. Halevy. Ontology
Matching: A Machine Learning Approach. In Steffen Staab and Rudi Studer,
editors, Handbook on Ontologies, International Handbooks on Information Systems,
pages 385–404. Springer, 2004.

11. Stephen Harris and Nigel Shadbolt. SPARQL Query Processing with Conventional
Relational Database Systems. In Web Information Systems Engineering - WISE
2005 Workshops, New York, NY, USA, Proceedings, volume 3807 of Lecture Notes
in Computer Science, pages 235–244. Springer, 2005.

254 C. Pérez de Laborda and S. Conrad

12. Renato Iannella. Representing vCard Objects in RDF/XML. http://www.w3.org/
TR/vcard-rdf, 2001. W3C Note.

13. Gregory Karvounarakis, Vassilis Christophides, Dimitris Plexousakis, and Sofia
Alexaki. Querying RDF Descriptions for Community Web Portals. In 17èmes
Journées Bases de Données Avancées, BDA’2001, Agadir, Maroc, pages 133–144,
2001.

14. Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Language
Overview. http://www.w3.org/TR/2004/REC-owl-features-20040210/, 2004.

15. Sergey Melnik. Storing RDF in a Relational Database. http://www-db.stanford.
edu/~melnik/rdf/db.html, 2001.

16. Zhengxiang Pan and Jeff Heflin. DLDB: Extending Relational Databases to Sup-
port Semantic Web Queries. In PSSS1 - Practical and Scalable Semantic Systems,
Proceedings of the First International Workshop on Practical and Scalable Seman-
tic Systems, volume 89 of CEUR Workshop Proceedings, 2003.

17. Cristian Pérez de Laborda and Stefan Conrad. A Semantic Web based Identifica-
tion Mechanism for Databases. In Proceedings of the 10th International Workshop
on Knowledge Representation meets Databases (KRDB 2003), Hamburg, Germany,
September 15-16, 2003, volume 79 of CEUR, pages 123–130. RWTH Aachen, 2003.

18. Cristian Pérez de Laborda and Stefan Conrad. Querying Relational Databases
with RDQL. In Rainer Eckstein and Robert Tolksdorf, editors, Berliner XML
Tage, pages 161–172, 2005.

19. Cristian Pérez de Laborda and Stefan Conrad. Relational.OWL - A Data and
Schema Representation Format Based on OWL. In Second Asia-Pacific Confer-
ence on Conceptual Modelling (APCCM2005), volume 43 of CRPIT, pages 89–96,
Newcastle, Australia, 2005. ACS.

20. Cristian Pérez de Laborda and Stefan Conrad. Bringing Relational Data into
the Semantic Web using SPARQL and Relational.OWL. In Semantic Web and
Databases, Third International Workshop, SWDB 2006, Co-located with ICDE,
Atlanta, USA, April 2006. IEEE Computer Society, 2006.

21. Johan Petrini and Tore Risch. Processing Queries over RDF views of Wrapped
Relational Databases. In 1st International Workshop on Wrapper Techniques for
Legacy Systems, WRAP 2004, Delft, Holland, 2004.

22. Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for
RDF. http://www.w3.org/TR/2006/WD-rdf-sparql-query-20060220/ , 2006.
W3C Working Draft.

23. Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema
matching. VLDB J., 10(4):334–350, 2001.

24. Andy Seaborne. RDQL - A Query Language for RDF. http://www.w3.org/
Submission/2004/SUBM-RDQL-20040109/, 2004.

Representing Transitive Propagation in OWL

Julian Seidenberg and Alan Rector

Medical Informatics Group
University of Manchester

United Kingdom
jms@cs.manchester.ac.uk, rector@cs.manchester.ac.uk

Abstract. Transitive propagation along properties can be modelled in
various ways in the OWL description logic. Doing so allows existing de-
scription logic reasoners based on the tableaux algorithm to make infer-
ences based on such transitive constructs. This is espectially useful for
medical knowledge bases, where such constructs are common.

This paper compares, contrasts and evaluates a variety of different
methods for simulating transitive propagation: property subsumption,
classic SEP triples and adapted SEP triples. These modelling techniques
remove the need to extending the OWL language with additional oper-
ators in order to express the transitive propagation. Other approaches
require an extended tableaux reasoner or first-order logic prover, as well
as a modification of the OWL standard.

The adapted SEP triples methodology is ultimately recommended as
the most reliable modelling technique.

1 Introduction

1.1 Transitivity

A transitive relation is a relation between three elements if it holds between
the first and second and it also holds between the second and third it must
necessarily hold between the first and third [1].

Transitivity is one of the three intrinsic properties of part/whole relations.
Winston calls this “a single sense of part” [2]: if the door is part of the car and
the door-handle is part of the door, then the door-handle is also part of the car.
If (A isPartOf B) and (B isPartOf C) then (A isPartOf C).

1.2 Transitive Propagation

However, the above does not necessarily hold true universally. Odell [3] points
out that there are many different kinds of composition. When we say “part of”
we often mean very different things. For example, “Iron isPartOf Car” implies
a material-object relation, i.e. the car object is made of the iron material, while
“Car isPartOf Traffic” implies a member-bunch relation, i.e. the car is a member
of the collection of things which make up the Traffic concept.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 255–266, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

256 J. Seidenberg and A. Rector

(Piston isPartOf Engine) � (Engine isPartOf Car) → (Piston isPartOf Car)

Fig. 1. Transitive relation because of similar semantics

(Piston isPartOf Car) � (Car isPartOf Traffic) � (Piston isPartOf Traffic)

Fig. 2. Non-transitive relation because of different semantics

While each specific type of part/whole relation is transitive along relations
with the same semantics, as illustrated in Figure 1, this does not necessarily
hold true across different types of relations, as shown in Figure 2.

However, as will be explained in the next section, in some cases, transitive
propagation (sometimes also called a role path, or propagates-via) along relations
with different semantics is desireable.

(Note: up to this point we referred to all relations as “partOf” in order to
illustrate transitivity. However, for the purpose of more clearly distinguishing
between relations with different semantics, we will proceed to name them more
descriptively.)

1.3 Related Work

Burn � ∃ isLocatedIn . T oe
Toe � ∃ isStructuralComponentOf . F oot

Fig. 3. Motivating example for transitive propagation in OWL

In the example in Figure 3, one would intuitively expect a knowledge base to
know that the Burn is located in the Foot, as well as the Toe (since the latter is
a part of the former). However, Horrocks and Patel-Schneider point out that the
description logic (DL) based Web Ontology Language (OWL) [4] currently does
not support this kind of inference. Their proposed solution is to extend OWL
with a rules language to, among other things, model transitive propagation [5].
Automated reasoning in such an extended OWL language requires a first-order
logic or hybrid prover system. Existing tableaux algorithm based reasoners do
not suffice. However, reasoning using such a system is provably undecidable [6].

Another solution, adopted by SNOMED [7] and GALEN [8] medical termi-
nologies, is to introduce an idiom for transitive propagation into the modelling
formalism. GALEN, for example, uses two special operators (“specialisedBy”
and “refinedAlong”) to express transitive propagation between roles [9].

In fact, the draft proposal for OWL 1.1 [10] proposes to extend the expressive
power of OWL DL from SHOIN to the SROIQ description logic [11], which,
among other things, allows for transitive propagation using, so called, property
chain inclusion axioms.

However, it may be some time until the OWL 1.1 standard is ratified and
implemented [12]. If and when this occurs it will be interesting to compare the

Representing Transitive Propagation in OWL 257

reasoning performance of that implementation of transitive propagation to that
of the various models which are currently available. The methods described in
this paper will then, at worst, be useful for purposes of backwards compatibility
and, at best, offer better performing, though less convenient, solution.

The following sections explain, compare, contrast and evaluate several ways
of modelling transitive propagation, all of which avoid the need to extend the
current OWL 1.0 language and are decidable using current reasoning tools.

2 Styles of Transitive Propagation

A specific illustrative example will be used throughout this paper to show the
different styles of modelling transitive propagation in OWL. Assuming the knowl-
edge base in Figure 4 is given:

Foot � ∃ isPartOf . Leg
Toe � ∃ isPartOf . F oot
Burn � ∃ isLocatedIn . T oe

LegInjury ≡ ∃ isLocatedIn . Leg

Fig. 4. Initial example ontology

The defined class in the last line of Figure 4 serves as a query. It should sub-
sume all possible injures to the Leg when the knowledge base is classified. That
is, once all implicit relationships in the ontology are made explicit, and assum-
ing transitive propagation is properly modeled, then Burn should be subsumed
under LegInjury.

2.1 Property Subsumption

One way of simulating transitive propagation is to use the property hierarchy
to assert one property as a subproperty of another. For example, if “isLocatedIn
propagatesVia isPartOf ”, then “isPartOf subsumes isLocatedIn”, where both
isLocatedIn and isPartOf are transitive properties. This is shown more formally
in Figure 5.

r ◦ s �̇ r ⇒ s � r (◦ indicates transitive propagation)
s ∈ R+ (R+ is the set of transitive property names)

Fig. 5. Simulating transitive propagation by using the property hierarchy

This method is easy to understand, simple to implement and, as will be shown
later in section 3, provides good performance. However, it also has numerous
disadvantages.

As pointed out by Rector in [13], a tangled ontology is very difficult to maintain.
Tangled ontologies have subsumption hierarchies with more than one superclass

258 J. Seidenberg and A. Rector

per class. The maintenance difficulty is equally applicable to a hierarchy of proper-
ties. Using property subsumption to simulate transitive propagation in ontologies
with large numbers of properties can therefore quickly lead to an unmaintainable
knowledge base. In such cases, the information about mutual propagtion among
properties is best kept externally and applied to ontology using a script. JOT [14],
for example, is well suited for this purpose.

Another disadvantage of this method is that its logical meaning is inaccu-
rate. Unexpected logical inferences are therefore sometimes possible. For ex-
ample, given the knowledge bases in Figure 4 and the property subsumption
method, as outlined above (isLocatedIn ◦ isPartOf �̇ isLocatedIn ⇒ isPartOf �
isLocatedIn), the query for LegInjury would result in both Burn and Toe. That
is, both concepts would be inferred as subclasses of LegInjury, since any isPartOf
relation is also an isLocatedIn relation.

Inferring Toe as a subclass of LegInjury is obviously not the intended meaning,
but may be acceptable in some cases. For example, further restricting the query
by adding more information, as shown in Figure 6, yields the expected result. The
property subsumption technique for transitive propagation certainly requires
careful analysis and should never be applied blindly.

Burn � Injury
Burn � ∃ isLocatedIn . T oe

LegInjury ≡ Injury �
∃ isLocatedIn . Leg

Fig. 6. Correctly behaving LegInjury query using property subsumption

2.2 Classic SEP Triples

Schulz and Hahn introduce the idea of SEP triples [15]. Their idea allows tran-
sitivity to be modeled explicitly. That is, SEP triples enable transitive relations
to be expressed in formalisms that do not include transitivity by explicitly distin-
guishing between the whole of a concept, parts of a concept and the disjunction of
the whole of a concept and its parts. Details of these triples may be found in [15].

An implementation of classic SEP triples requires extensive modification of
the ontology class hierarchy. Three separate classes need to be introduced for
every actual concept in the knowledge base. This results in a complex ontology
structure that is difficult to maintain. Furthermore, we do not know of any
algorithm for creating an ontology with SEP triples from a base ontology, given
a list of transitively propagating properties. The performance of classic SEP
triples was therefore not evaluated as part of this research. However, we presume
their performance is inferior to that of the adapted SEP triples methodology (see
below), since they do not take full advantage of OWL.

2.3 Adapted SEP Triples

Rector suggests an adapted SEP triples formalism [9] for use in description logics
with transitive properties such as OWL (SHOIN (D)) [16].

Representing Transitive Propagation in OWL 259

Similar to classic SEP triples, this methodology explicitly models transitive
propagation in the knowledge base. However, unlike Schulz and Hahn’s original
idea, adapted SEP triples take advantage of OWL’s ability to represent transitive
properties. This removes the need to model transitivity explicitly in the knowl-
edge base and therefore allows a much cleaner SEP triple-like representation to
be created.

isLocatedIn ∈ R (R is the set of all property names)
isPartOf ∈ R+ (R+ is the set of transitive properties)
R+ ⊆ R

LegInjury ≡ ∃ isLocatedIn .
Leg �

∃ isPartOf . Leg

Fig. 7. Adapted SEP triples query

Example. Reusing the example knowledge base from Figure 4 above and clas-
sifying it together with the the query in Figure 7, results in the the expected
inference: Burn is found to be a subclass of LegInjury.

Figure 8 shows how this adapted SEP triples mechanism works:
Toe, Foot and Leg are all concepts that are transitively part of each other, as

indicated by the solid, upwards arcing arrows. There is also the Burn concept lo-
cated in the Toe. Additionally, the model contains LegInjury, which is the defined
class from Figure 7 that captures all things located in the Leg, or any of its parts.

Since isPartOf is a transitive property, the Toe concept is also part of the
Leg concept. Therefore, anything located in the Toe (such as the Burn) matches
the second part of the definition of LegInjury. That is, it is located in something
which is part of the Leg. This results in Burn being inferred as a subclass of
LegInjury when the knowledge base is classified by a description logic reasoner,
as indicated by the dotted, straight, upwards pointing arrow.

Constraints and Assumptions. All knowledge bases used as examples in
this paper are assumed to be normalised [13]. Defined classes act as queries in
ontologies built using these principles. New subsumption relations are inferred
only for such classes. Therefore only the defined classes in such an ontology need
to be modified in order to create adapted SEP triples. However, in arbitrary
ontologies SEP triples need to be applied to all classes in order to achieve a
logically complete solution.

Transformations. Figure 9 shows the transformations that need to be applied
to the defined classes in a knowledge base in order to create adapted SEP triples.

The last transformation rule requires some explanation: a class transformed
in this way captures all classes that match the basic inverse restriction, while
also being restricted to some other class in the ontology (�) via the secondary
property (S), where that other class must also have the same basic restriction
as its superclass.

260 J. Seidenberg and A. Rector

Fig. 8. Adapted SEP triples in action

for: R ◦ S �̇ R (where S is a transitive property)

∃R . C ⇒ ∃R . (C � ∃S . C)

∀R . C ⇒ ∀R . (C � ∃S . C)

∃R−. C ⇒ (∃R−. C) � (∃S−. (∃R−. C))

∀R−. C ⇒ ∀R−. C
∃S−. � � ∀R−. C

Fig. 9. Transformations for creating adapted SEP triples

Handling Multiple Transitive Propagations. Chains of defined classes re-
quire special consideration as the rules in Figure 9 must be applied recursively.
That is: when one defined class references another defined class, the transformed
SEP triple restriction no longer matches the original definition. The original
defined class must therefore be transformed to match the newly transformed
definition of the second defined class. Chains of defined classes do not classify
correctly without this additional transformation.

Figure 11 gives an example of such a case: suppose we take the ontology from
Figure 8 and add a second SEP triple definition. If only the necessary and suffi-
cient condition on the FootComponent class (≡ ∃ isPartOf .(Foot�∃ isMultipleOf
.Foot)) is asserted, then the link from the FootComponent to the original Foot
concept does not hold and the SEP triple inference cannot take effect; i.e. the
Burn2 concept is not classified correctly. However, if an additional transforma-
tion is applied to LegInjury, resulting in the new definition of that class as shown
in Figure 10, then the link indicated by the striped curved upwards pointing ar-
row is captured and the correct inference results. That is: Burn2 is inferred as
being a kind of LegInjury.

Representing Transitive Propagation in OWL 261

isLocatedIn ∈ R
isPartOf ∈ R+

isMultipleOf ∈ R+

LegInjury ≡ ∃ isLocatedIn .
Leg �

∃ isPartOf .
Leg �

∃ isMultipleOf . Leg

Fig. 10. New query for adapted SEP triples with chained definitions

Fig. 11. Example of multiple transitive propagations

It should be noted that these kinds of chained universal restrictions may not
need to be taken into account when creating SEP triples, depending on the on-
tology in question. However, some medical ontologies (such as GALEN) contain
a substantial amounts of transitive propagation. A correct implementation is
crucial in these cases.

Rector neglects to mention the need for a recursive algorithm when originally
describing adapted SEP triples [9].

Discussion. Advantages of this modelling methodology are that it is logically
correct and therefore, unlike the property subsumption method, will not produce
any unexpected behaviour. It can also be applied selectively (unlike the potential
implementation in the SROIQ description logic [11] based on complex property

262 J. Seidenberg and A. Rector

chain inclusion axioms [12]), so some concepts in an ontology can use transitive
propagation, while others do not.

However, adapted SEP triples (unlike property subsumption) modify concept
semantic (though not as drastically as classic SEP triples do) and may therefore
be more difficult for a beginner to comprehend. They also require a somewhat
complicated recursive transformation algorithm when dealing with chained tran-
sitive propagation.

3 Evaluation

Description logic reasoners such as FaCT++ [17], RACER [18], or Pellet [19]
can be used to infer information that is implicit in an ontology [20].

3.1 Test Setup

Classification speed tests were carried out using the RACER 1.8 description logic
reasoning system [18] on a 2.8 Ghz Pentium 4 with 2.5 GB of RAM running
Windows XP. All tests were carried out utilizing the maximum memory possible
in 32-bit Java applications (1.5 GB). The figures quoted are the times spent
in actual reasoning. Data transfer latency is not shown. Tests were run for as
long as necessary. That is, classification failure is reported only if the reasoner
application crashed while attempting to classify a particular ontology.

3.2 Ontology Segment Test Sets

None of the description logic reasoners based on the tableaux algorithm men-
tioned above are currently able to classify the complete GALEN ontology. GA-
LEN is too large and complex for these reasoning systems. (Note: the original
classifier used for GALEN was based on different principles and did not suffer
from this particular limitation [21].)

The ontology segmentation algorithm described in [22] was therefore used
to create a test set of smaller, classifiable segments of the complete GALEN
ontology. This test set consisted of a total of 162 ontology extracts centred
around the Heart concept from the GALEN ontology [8]. Segments were chosen
so all the base-case extracts were tractable.

The GALEN ontology employs a rich property hierarchy with over 500 distinct
property types. The top-level of this hierarchy forms a meta-property structure.
Using this high-level grouping it was possible to selectively include and/or ex-
clude different ranges of properties in various segments. The following individual
meta-properties and their combinations were selected for evaluation:

– modifierAttribute: properties which can be used to modify a given class
such as “color” or “status”. These are sometimes also known as “value par-
titions” [23]. They are not likely to adversely effect tractability, since they
themselves do not contain further definitions.

Representing Transitive Propagation in OWL 263

– locativeAttribute: properties that link diseases to anatomical locations
that they are in some way related to.

– structuralAttribute: properties linking anatomical body structures to-
gether by physical composition.

– partitiveAttribute: properties that link classes based on processes, divi-
sions and other partitive relations

– functionalAttribute: properties that link classes by action or function.

(Note: a more detailed analysis of the GALEN property hierarchy may be
found in [24].)

The GALEN ontology was filtered using four individual meta-properties (loca-
tive, structural, partitive, functional) as well as four combinations of meta-
properties (functional + modifier, structural + modifier, partitive + functional
+ locative, structural + functional). These property sets were used to generate
a various ontology segments. Additionally, the depth of the link traversal algo-
rithm was limited in order to produce even more tightly constrained versions of
these ontologies. Segments were created with maximal depths for the recursive
ontology segmentation algorithm ranging from one to five, as well as without any
depth limit. Finally, different styles of transitive propagation, based upon rules
harvested from the original GALEN ontology, were applied to each extract (no
transitive propagation, property subsumption and adapted SEP triples). This
lead to a total of 144 test ontologies ((4 + 4)× 6× 3 = 144).

3.3 Test Evaluation

The following observations can be made from the tests shown in Figure 12:

– Classification performance for functional properties is similar regardless of
the method used. This is due to the relatively small amount of transitive
propagation in those extracts.

– Extracts transformed to employ SEP triples using locative properties take
an order of magnitude longer to classify than those using partitive segments.
This is in spite of the partitive extracts having more actual SEP triples (388
vs. 244 triples in the case of unlimited extract depth). One can therefore
conclude that classification speed is not directly correlated with the number
of triples, but is more complex of an issue. Indeed, in both cases, the property
subsumption technique performs very well.

– All the structural segments that employ property subsumption transforma-
tions crash the reasoner.

– The slowest classification performance in the test set results from an extract
combining the structural and functional properties. Both of these property
sets can be classified individually within about a second. However, the com-
bination performs up to one hundred times slower. A similar pattern can be
observed from the combination of partitive and functional properties.

– Extracts filtered using structural properties are unclassifiable when using the
property subsumption technique. However when functional properties and

264 J. Seidenberg and A. Rector

Fig. 12. Timing test results

Representing Transitive Propagation in OWL 265

structural properties are combined, this combination extract suddenly be-
comes tractable. However, classification performance suffers by almost three
orders of magnitude compared to functional properties on their own.

In summary: structual properties scale extremely badly for property subsump-
tion. Locative properties scale badly for SEP triples. SEP triples performance
is slower than property sumbsumption and far slower than classification with-
out transitive propagation. In rare cases, adding more information/complexity
causes previously intractable knowledge bases to become classifiable.

4 Discussion and Future Work

In this paper two techniques for modelling transitive propagation in the OWL
description logic have been described. Both allow an ontology engineer to express
simple rule-like constructs while avoiding the use of complex first-order logic rules
languages.

The property subsumption method of adding transitive propagation to an
ontology results in a tangled property hierarchy, which can create complex cy-
cles. These cycles can make classification completely intractable. This technique
is also logically inaccurate and can result in incorrect/unintended inferences.
However, performance is only slightly worse than the base-case.

Adapted SEP triples, on the other hand, add a large number of disjunctions in
the knowledge base, thereby increasing the number of possibilities a tableaux rea-
soning system must explore in order to classify the ontology [25]. This can result
in a significant increase in classification time. However, unlike the property sub-
sumption mechanism, the increase in complexity does not result in intractability
and is logically correct.

Adapted SEP triples are more difficult to implement and slower to classify,
but we nevertheless recommend their use, as they are a much safer and more
predictable modelling technique.

Future work includes evaluating the performance of a native tableaux algo-
rithm implementation of transitive propagation. This research will be carried out
if and when the SROIQ description logic [11] (which is due to underlie OWL
1.1) with its complex role inclusion axioms is implemented in a reasoning system.
When this occurs, backwards compatibility with legacy tools and applications
can be preserved, by using the methods outlined in this paper.

References

1. TheFreeDictionary.com: Transitivity definition (2004)
2. Winston, M., Chaffin, R., Herrmann, D.: A taxonomy of part-whole relations. In:

Cognitive Science. Volume 11. (1987) 417–444
3. Odell, J.J.: Six different kinds of composition. Journal of Object-Oriented Pro-

gramming 5(8) (1994) 10–15
4. Smith, M.K., Welty, C., McGuinness, D.L.: OWL web ontology language guide.

W3C Recommendation (10 February 2004)

266 J. Seidenberg and A. Rector

5. Horrocks, I., Patel-Schneider, P.F.: A proposal for an OWL rules language. In:
Proc. of the Thirteenth International World Wide Web Conference (WWW 2004),
ASCM (2004) 723–731

6. Horrocks, I., Patel-Schneider, P.F., Bechhofer, S., Tsarkov, D.: OWL rules: A pro-
posal and prototype implementation. Journal of Web Semantics 3(1) (2005) 23–40

7. Spackman, K.: Managing clinical terminology hierarchies using algorithmic calcu-
lation of subsumption: Experience with SNOMED-RT. Journal of the American
Medical Informatics Association Fall Symposium (2000)

8. Rector, A.L., Bechhofer, S., Goble, C., Horrocks, I., Nowlan, W.A., Solomon, W.D.:
The GRAIL concept modelling language for medical terminology. Artificial Intel-
ligence in Medicine 9(2) (1997) 139–171

9. Rector, A.: Analysis of propagation along transitive roles: Formalisation of the
GALEN experience with medical ontologies. In: DL 2002. (2002)

10. Patel-Schneider, P.: The OWL 1.1 Extension to the W3C OWL Web Ontology
Language (2005)

11. Horrocks, I., Kutz, O., Sattler, U.: The Even More Irresistible SROIQ. Technical
report, University of Manchester (2005)

12. Horrocks, I., Sattler, U.: Decidability of SHIQ with complex role inclusion axioms.
Artificial Intelligence 160(1–2) (2004) 79–104

13. Rector, A.L.: Normalisation of ontology implementations: Towards modularity,
re-use, and maintainability. In: EKAW Workshop on Ontologies for Multiagent
Systems. (2002)

14. Dameron, O.: JOT: a Scripting Environment for Creating and Managing Ontolo-
gies. In: 7th International Protégé Conference. (2004)

15. Schulz, S., Hahn, U., Romacher, M.: Part-Whole Reasoning in Medical Ontologies
Revisited: Introducing SEP Triplets into Classification-Based Description Logics.
In: AMIA Annual Fall Symposium, Hanley & Belfus (1998) 830–834

16. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. In: Journal of Web Semantics.
Volume 1. (2003) 7–26

17. Tsarkov, D., Horrocks, I.: Reasoner prototype: Implementing new reasoner with
datatypes support. WonderWeb Project Deliverable (2003)

18. Haarslev, V., Möller, R.: RACER System Description. In Gor, R., Leitsch, A., Nip-
kow, T., eds.: Automated Reasoning: First International Joint Conference. Volume
2083 / 2001., Springer-Verlag Heidelberg (2001) 701

19. Parsia, B., Sirin, E.: Pellet: An OWL DL reasoner. ISWC 2004 (2004) ISWC.
20. Lutz, C., Sattler, U., Tendera, L.: The complexity of finite model reasoning in

description logics. In: Automated Deduction, Springer-Verlag (2003) 60 – 74
21. Horrocks, I., Rector, A.L., Goble, C.A.: A Description Logic Based Schema for the

Classification of Medical Data. In: KRDB. (1996)
22. Seidenberg, J., Rector, A.: Web ontology segmentation: Analysis, classification and

use. In: 15th International World Wide Web Conference. (2006)
23. Drummond, N., Horridge, M., Wang, H., Rogers, J., Knublauch, H., Stevens, R.,

Wroe, C., Rector, A.: Designing User Interfaces to Minimise Common Errors in
Ontology Development: the CO-ODE and HyOntUse Projects. In Cox, S.J., ed.:
Proceedings of the UK e-Science All Hands Meeting. (2004)

24. Rogers, J., Rector, A.: GALEN’s model of parts and wholes: Experience and
comparisons. Proceedings of AMIA Symposium (2000) 714–8

25. Horrocks, I.: Optimisation techniques for expressive description logics. Technical
Report UMCS-97-2-1, University of Manchester, Department of Computer Science
(1997)

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 267 – 280, 2006.
© Springer-Verlag Berlin Heidelberg 2006

On Generating Content and Structural Annotated
Websites Using Conceptual Modeling

Sven Casteleyn, Peter Plessers, and Olga De Troyer

Vrije Universiteit Brussel
Pleinlaan 2, 1050 Elsene – Brussel

Belgium
{Sven.Casteleyn, Peter.Plessers, Olga.DeTroyer}@vub.ac.be

http://wise.vub.ac.be/

Abstract. An important milestone in the evolution of the Web is the Semantic
Web: a Web in which the semantics of the available content and functionality is
made explicit. Web design methods, originally aimed at offering a well-
structured, systematic approach to Web design, now face new opportunities and
challenges: Semantic Web technology can be used to make the semantics of the
conceptual design models explicit; however a major challenge is to (semi-)
automatically generate the semantic annotations, effectively enabling the Se-
mantic Web. In this paper, we describe how WSDM, a well-known Web de-
sign method, was adapted to use Semantic Web technology for its conceptual
modeling and how this can be exploited to generate semantically annotated
websites. We consider two types of semantic annotations: content-related anno-
tations and structural annotations. The first type allows to describe the seman-
tics of the content of the website, the latter are annotations that explicitly
describe the semantics of the different structural elements used in the website.

1 Introduction

Websites have evolved from a handful of statically linked pages into complex appli-
cations, serving a vast amount of rapidly changing information and functionality to a
highly diversified audience. Web design methods were conceived to help the Web
designer in coping with the complexity of designing and creating websites. Current
Web design methods offer conceptual modeling primitives for different design con-
cerns (i.e. most methods distinguish between data, navigation and presentation) com-
bined with a systematic development approach.

The latest developments in the field of the Web are related to the vision of the Se-
mantic Web. To allow making the semantics of the available Web content explicit,
several (Semantic Web) technologies were introduced (e.g., RDF, OWL). With the
arrival of the Semantic Web and its related technologies, new opportunities and chal-
lenges for Web design methods arose. A first opportunity lies in the use of Semantic
Web technologies internally in the Web design method. More in particular, the use of
ontologies allows to explicitly express the semantics of the different design models
(meta-models), as well as the semantics of the represented data. In addition, the use of
Semantic Web technology in combination with semantically rich conceptual modeling

268 S. Casteleyn, P. Plessers, and O. De Troyer

concepts allows the generation of semantically annotated websites: websites in which
the semantics of the content is made explicit by means of annotations. We call this
kind of annotations content-related annotations to distinguish them from a second
type of annotations, the so-called structural annotations. Indeed, it is also possible to
annotate a website so that not only the semantics of its content are made explicit, but
also the semantics of its structure. Dedicated ontologies describing the semantics of
structural elements for a particular use (e.g., the WAfA ontology [19] is dedicated to
assist visually impaired users while browsing) can be used to make the semantics of
the different structural elements (e.g., a navigation menu, a logo, an advertising ban-
ner) explicit. These structural annotations can be generated by exploiting the concep-
tual design information captured during the design process. The more semantically
rich design modeling concepts are used, the more of these semantically rich structural
annotations can be generated. These structural annotations can subsequently be ex-
ploited by external applications requiring specific knowledge on the website structure:
e.g., page transcoders (to transcode a webpage in a form more appropriate for screen
readers used by visually impaired users) or search engine indexers.

In this paper, we explain how WSDM [4], an existing Web design method, com-
bines Semantic Web technology and Conceptual modeling to allow the development of
websites that satisfy the needs of the Semantic Web (section 2). We discuss how the
adoption of Semantic Web technology is exploited to (semi-) automatically generate
content-related semantic annotations (section 3), and to fully-automatically generate
structural annotations (section 4). We also illustrate the benefits of structural annota-
tions with two useful applications: facilitate accessibility for visually impaired users,
and provide aid for search engines indexing websites. As the annotation process is
performed on a conceptual level and the actual annotations are generated, the approach
provides benefits over existing (manual) annotation approaches: (1) annotation is
automatic (for structural annotations) or semi-automatic (for content-related annota-
tions), (2) static as well as dynamic websites are supported, (3) changes in site structure
or presentation do not invalidate the annotations (in contrast to manual annotation
approaches) and (4) the generated annotations are more consistent. We discuss the
actual implementation of the annotation generation process in section 5. Section 6
discusses related work, and finally, section 7 gives conclusions.

2 WSDM Overview and Its Ontology

WSDM (Web Semantics Design Method), developed in 1998 [4], aimed to offer a
systematic, multi-phase approach to Web design. It makes a clear distinction between
the conceptual design and the implementation aspects. Each design phase focuses on
one specific aspect: requirements specification, task modeling, content and functional-
ity modeling, navigational design, presentation modeling and implementation.

With the emergence of the Semantic Web, WSDM has been adapted to support the
development of semantic websites, i.e. the method supports the semantic annotation
of content and structure. To achieve this, (1) an (OWL) ontology is used to formally
define the different WSDM design models, and (2) OWL is used as conceptual mod-
eling language for the content and the functionality. The OWL ontology, which for-
mally defines the different design models used in WSDM, is called the WSDM

 On Generating Content and Structural Annotated Websites 269

Ontology. The WSDM ontology can be compared to a set of meta-models. When
using the method, the WSDM ontology is populated and will contain the design mod-
els created by the designer for the website under development.

In the remainder of this section, an overview of WSDM is given (see figure 1), and
the different models are formally described using Description Logic syntax1 [1]2.

Fig. 1. WSDM Overview

Mission Statement Specification: In this first phase the mission statement of the
website is formulated. The intention is to identify the purpose of the website, the
topics and the target users. The mission statement is formulated in natural language.
The WSDM Ontology fragment describing the mission statement is as follows:

{MissionStatement (= 1 hasValue), ∀hasValue.String}.
Note that for the remainder of this section we will omit specification of datatype prop-
erties for reasons of clarity.

Audience Modeling: In this phase, the targeted users identified in the mission state-
ment, are classified into so called audience classes. An audience class is a group of
visitors that has the same information and functional requirements. An audience class
that has the same and more requirements than another audience class is defined as an
audience subclass. This results in an audience class hierarchy. For each audience class,
the characteristics of the members of the class and their usability requirements are for-
mulated. The output of this phase is the audience model consisting of the audience class
hierarchy, and the characteristics and requirements of each audience class. The WSDM
Ontology fragment describing the relevant concepts for the Audience Modeling phase
look as follows: {UsabilityRequirement Requirement, InformationRequirement

1 Description Logic is the formal underlying framework for OWL(-DL).
2 The full specification of the WSDM Ontology can be found at http://wise.vub.ac.be/ontolo-

gies/WSDMOntology.owl.

270 S. Casteleyn, P. Plessers, and O. De Troyer

 Requirement, FunctionalRequirement Requirement, ∃hasAudienceSubclass.

AudienceClass, ∀hasAudienceSubclass.AudienceClass, ∃hasRequirement.

AudienceClass, ∀hasRequirement.Requirement, ∃hasCharacteristic. Audi-

enceClass, ∀hasCharacteristic.Characteristic}.

Conceptual Design: In this phase, conceptual models are made starting from the
requirements formulated in the previous phase. The designer creates conceptual mod-
els for the content, functionality and structure of the website. The conceptual design
makes an abstraction from any implementation detail or target platform. The content
and functionality are modeled during the Task & Information Modeling sub phase; the
navigational structure is defined during the Navigational Design sub phase.

Information and functionality modeling is based on the requirements identified
during Audience Modeling. Tasks are defined for the different requirements. These
tasks are analyzed and modeled in detail using a slightly modified version of CTT
(Concurrent Task Trees) [5]. Tasks are decomposed (step by step) into a set of ele-
mentary subtasks, and temporal relations among them are indicated. The result is a
task model. For each elementary task, an object chunk is created to formally describe
the information and functionality needed to perform this task [5]. OWL is used as
conceptual modeling language for the object chunks. The output of the Task & Infor-
mation Modeling phase is a set of object chunks.

The relevant part of the WSDM Ontology describing object chunks is given next:

{∃isComposedOf. ObjectChunk, ∀ isComposedOf.(Class DatatypeProp-
erty ObjectProperty)}.

The goal of the Navigational Design is to define the conceptual structure of the
website and to model how the members of the different audience classes can navigate
through the website and perform their tasks (from a conceptual point of view). For
each audience class, a dedicated navigation structure, called navigation track, is de-
fined. A navigation track can be considered as a sub site containing all and only the
information and functionality needed by the members of the associated audience
class. Such a navigation track is composed of nodes (conceptual units of navigation)
and links (which connect nodes). Links may be parameterized. Note that during the
conceptual navigation design, no actual page structure is yet created. This is done
during implementation design (see next). The output of this phase is the navigational
model.

The WSDM Ontology fragment describing the relevant Navigation Design con-

cepts is as follows: {∃hasChunk. Node, ∀hasChunk.ObjectChunk, ∃has-

Source. Link, ∀ hasSource.Node, ∃hasTarget. Link, ∀hasTar-

get.Node, ∃hasCondition. Link, ∀hasCondition.Condition, ∃hasParameter.

 Link, ∀hasParameter.Parameter}.

Implementation Design: Here, the conceptual design models are complemented with
information required for the actual implementation: the distribution of nodes and links
on pages (Site Structure Design), presentation issues (Presentation Design) and logi-
cal data source (Logical Data Design).

 On Generating Content and Structural Annotated Websites 271

During Site Structure Design, the conceptual navigation structure of the website
is mapped onto pages, i.e. it is decided which nodes (with associated object chunks)
and links defined in the navigational model will be grouped onto Web pages. Differ-
ent site structures can be defined, targeting different devices, contexts or platforms.

The output of this phase is the site structure model. The WSDM Ontology frag-
ment describing the relevant Site Structure Design concepts is as follows:

{∃hasNode. Page, ∀hasNode.Node, Page ∃hasNode.Node}.
The goal of the Presentation Design is to describe the layout of the pages, i.e., po-

sitioning and style. First, page templates are designed. Different kinds of templates
may be needed, e.g., a homepage template, a title page template, leaf page templates.
WSDM provides several Template Concepts (e.g., ‘Footer’, ‘Header’, ‘Sidebar’) to
model page templates. For styles, Cascading Style Sheets are currently used. Next, it
is specified how the information and functionality (modeled by means of the object
chunks and grouped by means of nodes and assigned to a page) should be presented.
Therefore, WSDM offers several Presentation Concepts to model the layout and pres-
entation of a page. These Presentation Concepts vary from primitive ones (e.g.,
‘Grid’, ‘Row’, ‘MultimediaConcept’, ‘FormConcept’) to high-level concepts (e.g.,
‘Menu’, ‘Section’). Also during Page Design, the designer must decide on labels and
presentation styles for links. The output of this phase is the presentation model con-
sisting of a set of templates, and for each page defined in the site structure model a
page model.

The Logical Data Design is needed for data-intensive websites that maintain their
data in a data source. In this phase, this data source must be defined and the relation-
ship between the conceptual level (i.e. the object chunks) and the data source must be
expressed. This last issue is explained into more detail in the next section.

3 Content-Related Semantic Annotations

In this section, we describe how WSDM allows designing websites of which the con-
tent is semantically annotated. Important to our approach is that this is supported at a
conceptual level. The approach extends and refines our previous work as described in
[15]: multiple existing domain ontology can be used, if needed, an appropriate (appli-
cation) ontology can be extracted from the design, but most importantly, the use of
OWL facilitates easier specification of semantic annotations.

Conceptual Design
The goal of our approach is to generate a website of which the content is automati-
cally annotated with one or more domain ontologies which are related with the topics
covered by the website. Details about the actual generation process are given in sec-
tion 5. Here, we describe the principles of the approach and what must be done by the
designer to obtain a semantically annotated website. In practice, three different cases
may occur when designing a website:
1. No appropriate domain ontology exists or is available. A new ontology will be

created incrementally as a result of the creation of the object chunks, i.e. by inte-
grating all object chunks (see [6]). The object chunks are expressed as views on
this ontology. Note that there is no additional effort required from the designer.
Such an ontology is often called an application ontology.

272 S. Casteleyn, P. Plessers, and O. De Troyer

2. A single domain ontology exists that covers completely the domain of the website.
In this case, this ontology is taken as the basis for the conceptual design. The de-
signer needs to express the concepts and relations used in the object chunks in
terms of concepts from this domain ontology, e.g., by referring to an ontology con-
cept instead of defining a new one. In this way, the object chunks are defined as
views on this domain ontology.

3. Multiple domain ontologies are needed to cover the domain of the website. In this
case, the different domain ontologies must be aligned first. This is done by defin-
ing a so-called reference ontology and by defining mappings between the domain
ontologies and this reference ontology. Then, the concepts used in the object
chunks can be defined in term of the concepts of this reference ontology, and the
object chunks will be views on the reference ontology.

Fig. 2. General architecture illustrating the different mappings

Figure 2 shows an overview of the architecture covering these three cases. The dif-
ferent domain ontologies used are aligned by defining a mapping between the domain
ontologies and the reference ontology (called domain ontology mappings). This refer-
ence ontology can also be used to define additional concepts not present in the avail-
able domain ontologies but relevant for the application. Note that in the case of just
one domain ontology, the references ontology plays the role of this domain ontology
(possibly also augmented with additional concepts). In the case where there is no
domain ontology available, the reference ontology plays the role of application ontol-
ogy that is incrementally constructed. The second type of mappings, called object
chunk mappings, defines the object chunks as views on the reference ontology. A
view mechanism is required because the conceptualization as specified by a domain
ontology may not always exactly suit the requirements of the website. E.g., a domain
ontology may specify an address as composed of a street, number and city, but the
website may prefer to consider the address as a single entity (i.e. a single string).

To illustrate the different mappings, we give a small example. As in section 2, we
use Description Logic syntax, this time to describe object chunks, reference ontology
and domain ontologies. Suppose, a first (existing) domain ontology contains (besides

other axioms) the following axioms: {Man Person, Woman Person, ∀has-

MaternityLeave.{true, false}, ∃hasMatenityLeave. Woman, Woman (= 1 has-
MaternityLeave)} (Informally: ‘Man’ and ‘Woman’ are subtypes of ‘Person’, and for
a ‘Woman’ it is specified if she is on maternity leave or not). A second (existing)

 On Generating Content and Structural Annotated Websites 273

domain ontology describes a partly overlapping domain, and contains the following

axioms: { ∀hasSex.{M, F}, ∃hasSex. Person, ∃hasStreet. Person,

∀hasStreet.String, ∃hasCity. Person, ∀hasCity.String, ∃hasCountry.

Person, ∀hasPostalCountry.String} (a ‘Person’ is either male or female, speci-
fied by the ‘hasSex’ property, and a ‘Person’ has an address which is specified by the
‘hasStreet’, ‘hasCity’ and ‘hasCountry’ properties). To align these two domain on-
tologies, it is necessary to resolve the different ways of representing a person’s sex
(i.e. respectively by using subtypes, and by using a hasSex property) and furthermore
to merge the non-overlapping parts of both ontologies. Suppose this is done by con-
structing the following reference ontology:

{Man Person, Woman Person, ∀hasMaternityLeave.{true, false}, ∃hasMat-

enityLeave. Woman, ∃hasStreet. Person, ∀hasStreet.String, ∃hasCity.

 Person, ∀hasCity.String, ∃hasCountry. Person, ∀ hasCountry.String}

Then, the following domain ontology mappings express the relations between the
reference ontology and the two domain ontologies (trivial mappings are omitted):

Reference ontology Domain Ontology1 Domain Ontology2

Man Man Person WHERE hasSex = ‘M’

Woman Woman Person WHERE hasSex = ‘F’

hasMaternityLeave hasMaternityLeave -

Now assume that the Web designer wants to consider an ‘address’ as a single
string. This is expressed in the object chunk as follows: {Man Person, Woman

Person, ∃hasAddress. Person, ∀hasAddress.String} (‘Man’ and ‘Woman’
are subtypes of ‘Person’, and a ‘Person’ has an address specified as a single string).
Now, ‘hasAddress’ cannot refer in a one-to-one way to a concept in the reference
ontology. Instead, the following Object Chunk Mapping is needed (trivial one-to-one
mappings are again omitted). The ‘+’-sign indicates the concatenation of strings.

Object Chunk Reference ontology

hasAddress hasStreet + hasCity + hasCountry

Data Source Mapping
When the website is generated (from the models), the actual pages need to be filled
with data. The designer may decide to use a data source (e.g., a relational database) to
maintain the data. To be able to generate the actual pages a mapping is needed be-
tween the conceptual level (i.e. the object chunks) and this data source. The mapping
is defined between the reference ontology and the data source. E.g., in the case of a
relational database, the data source mapping indicates the tables and columns where
instances of concepts of the reference ontology can be found. Note that, similar as for
object chunk mappings and domain ontology mappings, no one-to-one mapping can
be assumed. For example, for a relational table ‘Person(ID, street, city, country, gen-
der, hasMaternityLeave), we have the following data source mappings:

274 S. Casteleyn, P. Plessers, and O. De Troyer

Reference ontology Data Source

hasMaternityLeave SELECT hasMaternityLeave FROM Person WHERE gender=’F’

Woman SELECT ID FROM Person WHERE gender=’F’

Man SELECT ID FROM Person WHERE gender=’M’

The different mappings will be used to generate the actual annotations (see section 5).
This approach is different from the usual annotation approaches that define mappings
with the ontology directly on the implementation level (see also section 6 on related
work). In our approach, the mappings are defined at the conceptual level. This has
several advantages. We mention the most important ones:

1. Implementation independent: the basis for the annotations is made on the concep-
tual level, and therefore the actual website annotations can be generated along
with different implementations.

2. Consistency of annotations: as concepts (in the object chunks) are linked to Ref-
erence Ontology concepts and only one link per concept is given, it is not possi-
ble (like in other annotation approaches) that the actual annotations (for different
instances) are not consistent.

3. Both static and dynamic websites supported: the implementation generation
process of WSDM (see section 5) does not distinguish between static and dy-
namic websites; annotations are effortlessly generated for both types of websites.

4 Structural Semantic Annotations

By exploiting the semantics of the modelling concepts (e.g., menu, header, node) used
in the different design models (and captured in the WSDM Ontology), useful annota-
tions concerning the structure of the website can be generated. This is realized by
defining a mapping between the WSDM Ontology concepts and an external ontology
describing the semantics of structural elements (tailored for a certain use). An exam-
ple of such an ontology is the WAfA ontology [19]. Subsequently, these mappings
can be used to annotate the actual website with concepts from this external ontology.
As the mappings are dependent on the ontology used, we will illustrate the approach
for two different ontologies: the WAfA ontology (developed to assist visually im-
paired users) and a (newly created) block-ontology (to assist search engines in more
accurately indexing a website). Evidently, it is possible to annotate one website using
multiple ontologies, each describing different types of structuring elements.

Structural Annotations to support Accessibility for Visually Impaired User
Currently, most visually impaired users rely on screen readers to access websites.
These screen readers sequentially read a page. This is not only time-consuming for
the user but in addition a lot of information that is conveyed by means of layout (e.g.,
white space, tables used for structuring) is lost. The Dante approach [19] allows anno-
tating Web pages using the WAfA ontology, which defines concepts that allow indi-
cating how objects on a page are presented and the role they fulfil in the presentation.
These annotations allow (external applications) to transcode Web pages in a form
more suitable for accessing pages using screen readers. However, currently it is a

 On Generating Content and Structural Annotated Websites 275

manual annotation process, and this is an effort that is too labour intensive to be us-
able in general. Moreover, the resulting annotations are typically sensitive to changes
in the websites content or structure (and re-annotation is required).

By defining a mapping between the modelling concepts in the WSDM ontology
and the concepts in the WAfA ontology, the WAfA annotations can be generated
automatically when developing a website using WSDM. Here we give the mapping
for two representative concepts. To describe the mapping rules, we use the following
notational convention: first, the WAfA concept is given in bold, followed by it’s
meaning (in italic). Where needed an informal explanation of the mapping rule is
given and finally a formal definition using Semantic Web Rule Language (SWRL)3
which is particularly suited to handle OWL specifications and makes automatic anno-
tation generation possible (see section 5). Some mapping rules between the WSDM
and WAfA-ontology are straightforward one-to-one mappings; others are more com-
plex and need to exploit the knowledge captured by means of several concepts, and/or
the relationships between them. Two examples follow:

• WAfA:TableOfContent: A list of available sections and a link to the beginning
of each section
 wsdm:NavigationTableOfContent(?i) WAfA:TableOfContent(?i)

4
• WAfA:DropDownLinkMenu: A DropDownLinkMenu is a menu that appears

below an item when the user clicks on it. A linkmenu corresponds to a
wsdm:Menu represented as a wsdm:List in WSDM. Furthermore, to denote it
is a dropdown menu, it should have an associated wsdm:Behaviour defined
with wsdm:Event ‘onClick’ and wsdm:Action ‘dropDown’. Each menu with
this behaviour is a DropDownLinkMenu in WSDM.

 wsdm:Menu(?i) ∧ wsdm:representedBy(?i, ?x) ∧ wsdm:List(?x) ∧
 wsdm:hasBehavior(?x, ?y) ∧ wsdm:Behavior(?y) ∧ wsdm:onEvent(?y,
 'on Click') ∧ wsdm:doAction(?y, 'dropDown')
 wafa:DropDownLinkMenu(?i)

Other mapping rules are defined in a similar manner. Currently, we have defined
mapping rules for 74% of the WAfA Ontology concepts (see [16]). Note that this
mapping is a once-only activity. Thereafter, it can be used to automatically generate
structural annotations for any website5.

Structural Annotations for Search Engine Support
To improve search results, search engines apply a technique called page segmentation
(see e.g. [3] for an overview). The aim of page segmentation is to distinguish mean-
ingful “blocks” (also called “passage”) in a Web page according to the logical struc-
ture, the presentation and the semantics of page objects. This information is subse-
quently exploited in page-rank and website indexing algorithms (e.g. [3, 10]). Exten-
sive research has been done in devising information retrieval algorithms that are able
to extract the relevant blocks from a given Web page. Unfortunately, as valuable
design knowledge about the structure and semantics of page objects is not available in

3 See http://www.daml.org/2003/11/swrl/.
4 Both ontologies were developed independently, which explains different names for similar

concepts.
5 Compare to manual annotation approaches, where each website needs be processed by hand.

276 S. Casteleyn, P. Plessers, and O. De Troyer

typical Web pages, output of these algorithms is unavoidably limited. Similar as in the
previous case, semantics concerning structure available in the WSDM design models
can be used to automatically generate semantic annotations describing the “blocks”
required to sophisticate search engine’s indexing algorithms. As no ontology describ-
ing these blocks and their relationships exists, we have created a prove-of-concept
block-ontology describing different semantic blocks (e.g., topics, sections, units) and
their relationships (both semantic, e.g., ‘isSubTopicOf’, and spatial, e.g., ‘below’).
Note that it would be possible to directly use the WSDM Ontology to make the anno-
tations. However, this would require knowledge of the WSDM Ontology by the page
segmentation algorithms. Two example mapping rules are:

• block:Section: A block representing a section in a Web page
 wsdm:Section(?i) block:Section(?i)

• block:SemanticBlock: A block representing a semantic unit (presented to-
gether). In WSDM, an object chunk represents (a unit of) information needed for
a single task. The wsdm:Grid representing a wsdm:ObjectChunk can be anno-
tated as a block:SemanticBlock:

 wsdm:Grid(?i) ∧ wsdm:representsChunk(?i, ?x) ∧
wsdm:ObjectChunk(?x) block:SemanticBlock(?i)

5 Implementation Generation Process

To generate the actual semantically annotated website, a transformation pipeline is
used. We will not explain the complete pipeline but instead focus on the generation of
the annotations. The pipeline takes all the models of the conceptual and the imple-
mentation design as inputs. The transformations to generate the implementation of the
website (without annotations) consists of four steps (T1, T2, T3 and T4 in Figure 3):

T2

T3

T4

T5

Pages

T1

T2

T3

T4

PagesPages
ConcreteStructural

Annotations

Object
Chunks

Navigation
Model

Site Structure
Model

Page
Models

Data Source
Mapping

T5

Content
Related

Annotations

Fig. 3. Implementation Generation Overview

• Model Integration (T1): integrates the different input models into one single
model. In principle, this transformation can be omitted, but it simplifies the fol-
lowing transformations.

 On Generating Content and Structural Annotated Websites 277

• Implementation Mapping (T2): the implementation platform is chosen (e.g.,
HTML, XHTML, WML), and the integrated model derived in T1 is transformed
towards the chosen platform. References to data (i.e., to instances in object
chunks) are not yet processed; this is done in the next transformation T3.

• Query Construction (T3): the references to instance values in the object chunks
are resolved and mapped onto queries on the data source. This is performed fully
automatically because the mappings from the object chunks to the reference on-
tology and from the reference ontology to the data source are available (see sec-
tion 5.1 for an example).

• Query Execution (T4): finally, the queries derived in T3 are processed, and the
actual pages are generated by inserting the data at the proper places. When the
query execution phase is performed offline, a static website is created; when it is
performed at runtime, a dynamic website is the result.

Generating Content-Related Annotations
The content of the website is annotated by means of the OWL reference ontology (see
section 3). Remember that the object chunks are defined as views (or conceptual que-
ries) on the reference ontology. In the query construction (T3), these conceptual que-
ries are transformed into executable queries using both the object chunk- and data
source mappings. We explain by means of a small example (based on the example of
section 3) how these mappings allow us to generate content-related annotations.

Fig. 4. Generating Content-Related Semantic Annotations

An overview of the content-related annotation generation process is illustrated in
figure 4. Consider a conceptual query expressing the address of men (1). Using the
object chunk mapping (OCM), this conceptual query on the original object chunk is
transformed into a conceptual query on the reference ontology (2). Using the data
source mapping (DSM), the resulting conceptual query is transformed into an executa-
ble (SQL) query (3) on the actual data source (here a relational database). The result of
this query is a set of instances, in the form of a table, of which an example tuple is
shown in (4). The data in this table is subsequently transformed into a set of instances
of the reference ontology using the inverse data source mapping (DSM-1) (5). Finally,
the address is presented as a single string (as was specified by the object chunk), using
the inverse object chunk mapping (OCM-1) (6). Note that, by inserting -tags
surrounding the individual attributes, we are still able to refer to the individual parts of

278 S. Casteleyn, P. Plessers, and O. De Troyer

the address string on the Web page, i.e. no semantic information present in the refer-
ence ontology is lost. Finally, we link the generated HTML code (given in (6)) and the
instantiation of reference ontology concepts together using XPointer expressions:
page.html#xpointer(id("1"))<=>refOnt#xpointer(id("23")/hasStreet)

Generating Structural Annotations
Taking as input the design models in the WSDM Ontology and the mapping between
the WSDM Ontology and an (external) ontology describing structural elements (e.g.,
the WAfA ontology), a transformation T5 can be added to the transformation pipeline
to generate the structural annotations. To illustrate the generation of structural annota-
tions, consider the example in which a (WSDM) menu with menu-items is transformed
to a bulleted list in HTML, including structural annotation denoting the presence of a
menu for accessibility purposes (using the WAfA ontology):

(1) Result after T1 (2) Result after T4
<ul id=“menu1”>
 <li id=”item1”>
 item 1

 <li id=”item2”>...

(3) Result after T5

<wsdm:Menu rdf:id=“menu1”>
 <wsdm:hasItem>
 <wsdm:MenuItem rdf:id=“item1”>
 <wsdm:Label>item 1</wsdm:Label>
 <wsdm:hasNavRef
 rdf:resource=”#ref1”/>
 </wsdm:MenuItem> </wsdm:hasItem>
 <wsdm:hasItem>
 <wsdm:MenuItem id=“item2”>
 ...
 </wsdm:MenuItem> </wsdm:hasItem>
 <wsdm:representedBy
 rdf:resource=”#bulletedList”/>
</wsdm:Menu>

http://.../wafa.owl#linkMenu
http://www.example.com/page.html
#xpointer(id(“menu1”))

Note how the unique ids, originating from the WSDMOntology instances, are
maintained through the transformation pipeline and reflected in the final code. In our
example, the bulleted list in (2) carries the same id as the high-level presentation con-
cept wsdm:Menu in (1), denoting that the (bulleted) list structure actually represents a
menu, and it is annotated with a WAfA:linkMenu concept.

A prototype implementation of the transformation pipeline was made using Seman-
tic Web technology: OWL for the WSDM Ontology and (instantiations of the) design
models and object chunks, XSLT to perform the transformation steps, and xPointer to
link annotations and actual implementation (i.e. HTML).

6 Related Work

When reviewing the literature concerning semantic annotations, we can mainly dis-
tinguish three different approaches: manual, (semi-)automatic, and Web engineering
approaches. The difference between manual and automatic approaches consists of the
fact that the former ones require a (manual) mapping between content and semantics,
while the latter attempt to extract the semantics automatically (e.g., using NLP tech-
niques). Examples of automatic approaches include Melita [2] and KMI annotation
framework [13]. Manual annotation approaches offer the user tool support to define
annotations for HTML documents. The first tool in this context was the SHOE
Knowledge Annotator [9], which only supports static Web pages. In course of time,

 On Generating Content and Structural Annotated Websites 279

other manual annotation tools arose: SMORE [18] (adding authoring support by using
an embedded HTML editor), Ont-O-Mat [8] (adding support for dynamic Web pages
by annotating database implementations).

Both manual and automatic approaches suffer some disadvantages. The adequacy
of automatically generated annotations is generally lower compared to manual ap-
proaches; the disadvantage of manual approaches is that the annotations are defined
on an implementation level (making them more vulnerable to changes) and require a
substantial effort from the designer after the website is already implemented.

Recently, research has also been focused on integrating semantic Web technology
into Web design methods. Examples of semantic Web design methods include SHDM
[14], Hera [7], OntoWeaver [12], OntoWebber [11]. These methods use ontology
languages (e.g., RDFS, OWL) as modeling language for their design models. This has
the advantage that existing ontologies can be used in the design process and that a
verification of the design models is feasible. Some of these approaches offer the pos-
sibility to make the data models internally constructed externally available (in the
form of RDFS or OWL). However, none of these approaches actually generates web-
sites that are annotated i.e., they rather offer the content (independently) in user- (e.g.,
HTML) and machine-readable form (e.g., RDF). Explicitly linking Web content with
ontologies that describe the semantics (semantic annotations) is required to support
for example content rating and filtering (see http://www.w3.org/TR/rdf-pics). These
methods also do not provide support for structural annotations.

The only known approach similar to the one described in this paper, is WEESA
[17]. However, WEESA is not a design method by itself, but can be used after the
design and for design methods that specify their design models in XML. It is able to
generate content-related semantic annotations by defining a mapping between the
XML schemas and existing ontologies. The disadvantage of WEESA is that it cannot
benefit from the Web design process itself, but instead needs to define the mapping
regardless if a domain ontology was used during the design process or not. As far as
we are aware of, no other Web design method generates structural annotations.

7 Conclusion

In this paper, we described how in the website design method WSDM Semantic Web
technology (OWL) and conceptual modeling is used to generate two types of seman-
tic annotations: content-related annotations and structural annotations. The use of
ontologies for the conceptual modeling of information and functionality during the
design process allows (semi-) automatically generation of content-related semantic
annotations. Three different situations are considered 1) no existing domain ontology
is available, 2) a single existing domain ontology can be used, and 3) multiple exist-
ing domain ontologies must be used. Next to content-related semantic annotations, we
also discussed structural semantic annotations: annotations which (semantically) de-
scribe the structure of the website. This type of annotations is generated exploiting the
semantics of the different design modeling concepts. The approach is illustrated for
two types of structural annotations and their usefulness has been pointed out.

The integrating of the annotation generation in the design process of a website, as
described here, has the following advantages over existing (post-website-deployment)

280 S. Casteleyn, P. Plessers, and O. De Troyer

annotation approaches: smaller effort required (i.e. content-related annotations are
semi-automatically generated, structural annotations fully automatically), robustness
(annotations are not invalidated when re-designing the website), higher consistency,
and support for dynamic websites.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Descrip-
tion Logic Handbook (2003)

2. Ciravegna, F., Dingli, A., Petrelli, D., Wilks, Y: User-System Cooperation in Document
Annotation based on Information Extraction. In Proc. of EKAW 02, Sigüenza Spain (2002)

3. Deng Cai, Shipeng Yu, Ji-Rong Wen, Wei-Ying Ma.: Block-based web search. ACM
SIGIR. (2004), pp. 456-463

4. De Troyer, O. and Leune, C.: WSDM: A User-Centered Design Method for Web Sites. In
Proceedings of the 7th WWW Conference, Elsevier, (1998), pp. 85-94

5. De Troyer, O., Casteleyn, S.: Modeling Complex Processes for Web Applications using
WSDM. In Proceedings of the 3rd Int. IWWOST workshop (2003)

6. De Troyer, O., Plessers, P., Casteleyn, S.: Conceptual View Integration for Audience
Driven Web Design. In CD-ROM Proc. of the WWW2003 Conference, Budapest Hungary
(2003)

7. Frasincar, F., Houben, G.-J.: Hypermedia presentation adaptation on the semantic web. In
Proceedings of AH 2002, LNCS, Springer (2002), pp. 133-142

8. Handschuh, S., Staab, S.: Authoring and annotation of web pages in CREAM. The 11th Int.
World Wide Web Conference (WWW2002), Honolulu Hawaii USA (2002)

9. Heflin, J., Hendler, J.: Searching the web with SHOE. Artificial Intelligence for Web
Search, Papers from the AAAI Workshop, WS-00-01, AAAI Press (2000), pp. 35-40

10. Jiang X.-M., Xue, G.-R., Song W.-G., Zeng, H.J., Chen, Z., Ma W.-Y.: Exploiting PageR-
ank at Different Block Level. In Proceedings of the WISE 2004, (2004), pp. 241-252

11. Jin, Y., Xu, S., Decker, S., Wiederhold, G.: OntoWebber: A Novel Approach for Manag-
ing Data on the Web. In Proceedings of ICDE (2002), pp. 488-489

12. Lei, Y., Motta, E., Domingue, J.: Modelling Data-Intensive Web Sites with OntoWeaver.
In proceedings of the International Workshop WISM2004, Riga Latvia (2004)

13. Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic Annotation, In-
dexing, and Retrieval. Elsevier's Journal of Web Semantics, Vol. 2, Issue (1) (2005)

14. Moura, S., Schwabe, D.: Interface Development for Hypermedia Applications in the Seman-
tic Web. In Proceedings of LA Web 2004, Ribeirão Preto, Brasil. IEEE CS Press (2004)

15. Plessers, P., De Troyer, O.: Annotation for the Semamtic Web during Website Develop-
ment, In Proceedings of the ICWE 2004 Conference, Munich Germany (2004), pp. 349-353

16. Plessers, P. Casteleyn, S., Yesilada, Y., De Troyer, O., Stevens, R., Harper, S., Goble, C.:
Accessibility: A Web Engineering Approach, In Proceedings of the 14th Int. World Wide
Web Conference, Chiba Japan (2005), pp. 353-362

17. Reif, G., Gall, H., Jazayeri, M.: WEESA - Web Engineering for Semantic Web Applica-
tions. In Proceedings of the 14th Int. World Wide Web Conference, Chiba Japan (2005)

18. Vargas-Vera, M., Motta, E., Domingue, J., Lanzoni, M., Stutt, A., Ciravegna, F.: MnM:
Ontology Driven Semi-Automatic and Automatic Support for Semantic Markup. In Proc.
of the 13th International Conference on Knowledge Engineering and Management (2002)

19. Yesilada, Y., Harper, S., Goble, G., Stevens, R. Screen Readers Cannot See. In ICWE
2004 Proceedings, (2004), pp 445-458

A More Expressive Softgoal Conceptualization
for Quality Requirements Analysis

Ivan J. Jureta1, Stéphane Faulkner1, and Pierre-Yves Schobbens2

1 Information Management Research Unit (IMRU), University of Namur,
8 Rempart de la Vierge, B-5000 Namur, Belgium

iju@info.fundp.ac.be, stephane.faulkner@fundp.ac.be
2 Institut d’Informatique, University of Namur,

8 Rempart de la Vierge, B-5000 Namur, Belgium
pys@info.fundp.ac.be

Abstract. Initial software quality requirements tend to be imprecise,
subjective, idealistic, and context-specific. An extended characterization
of the common Softgoal concept is proposed for representing and reason-
ing about such requirements during the early stages of the requirements
engineering process. The types of information often implicitly contained
in a Softgoal instance are highlighted to allow richer requirements to be
obtained. On the basis of the revisited conceptual foundations, guide-
lines are suggested as to the techniques that need to be present in re-
quirements modeling approaches that aim to employ the given Softgoal
conceptualization.

1 Dealing with Software Quality Requirements

Ensuring the quality of software has become a major issue in software engineering
research and practice since the 1970s [5]. As increasingly complex software plays
a critical role in business, comprehensive and precise methods and tools are
needed to create software products and services that are safe, dependable, and
efficient [26].

Software quality is defined by the International Organization for Standard-
ization [12] as the totality of features and characteristics of a software product
that bear on its ability to satisfy stated or implied needs. Ensuring the quality
of software therefore amounts to making sure that software behavior is in line
with stated and implied needs.

It is widely acknowledged that quality needs to be taken into account early
in the software development process [8,30,19]. Quality requires specifying stated
and implied needs. Approaches focusing on ensuring quality during the devel-
opment process by guiding functional requirements specification decisions by
quality considerations, so that the latter justify the former, are termed process-
oriented. In contrast, product-oriented approaches (e.g., [11,13]) evaluate the
quality of already developed software products, and are particularly relevant
for, e.g., component selection [2].

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 281–295, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

282 I.J. Jureta, S. Faulkner, and P.-Y. Schobbens

Although a large body of work deals with quality assurance in a process-
oriented manner, a non-negligible part of it relies on the usual Softgoal concept
for the representation and reasoning about quality-related requirements. In doing
so, procedural aspects of methods for dealing with quality during requirements
engineering (RE) activities have been considerably developed, while conceptual
foundations have not evolved in a notable manner. In particular, a more extensive
view on the conceptualization and formalisms for representing and using quality
requirements while taking into account their multi-facetted nature has not been
proposed yet. We need to deal with requirements that are not only implicit, but
also subjective, context-specific, imprecise, and ordered by preference.

The work presented in this paper is a step towards a more profound under-
standing of requirements that are expressed usually in requirements goal di-
agrams (such as, e.g., i* [32]) as instances of the Softgoal concept. Overall,
instances of the original Softgoal concept are seen as frequently containing infor-
mation that is, not only subjective and context-specific (as assumed in the orig-
inal definition), but also imprecise and involving preferences of the stakeholder
who suggested the requirements modeled as the given softgoal. It is therefore
suggested that the Softgoal is a multi-facetted concept that requires specialized
techniques for dealing with its additional facets. This paper thus proves use-
ful both in terms of advancing the understanding of a key concept in the RE
modeling field, and in arguing that additional considerations need be taken into
account when a RE method or framework that employs the Softgoal concept is
being constructed and applied. Finally, the reader will undoubtedly notice that
the discussion below is independent of a particular RE framework, which sup-
ports our arguments regarding the applicability of this discussion to many (at
least goal-oriented) RE methods.

The paper is organized as follows. Part of the literature on the treatment of
quality requirements, applicable to the discussion in this paper is first overviewed.
The bulk of the paper, which discusses and revisits the original Softgoal conceptu-
alization is then presented. A set of general guidelines on the characteristics of RE
methods aiming to employ the suggested conceptualization are presented. Finally,
conclusions are summarized and directions for future work are identified.

2 Related Work

To facilitate the discussion of related work, Table 1 gives a classification of
process-oriented approaches. Formal approaches rely on formal notations such
as temporal or fuzzy logic to specify nonfunctional requirements in a precise way,
while semi-formal provide structured notations (unrelated to mathematical logic)
that are used mainly to organize information about nonfunctional requirements.
Qualitative approaches traditionally evaluate the degree of quality requirements
satisfaction using subjective qualitative characterizations. In contrast, quantita-
tive techniques focus on estimating the probability of failure of quality-related
goals [19], or use informal measures of the degree to which software proper-
ties contribute to specific qualities [1]. Decision on placing some approaches in

A More Expressive Softgoal Conceptualization 283

qualitative or quantitative category is based on the methods described in the
cited papers; e.g., adapting a qualitative approach to use quantitative methods
remains possible, but is not discussed in the literature.

Table 1. A classification of process-oriented approaches proposed in related work for
ensuring quality during the software development process

Qualitative Quantitative

Formal [18,20,31] [19,23]

Informal [8,22,27,17] [9,1]

The NFR framework [22,8] has been the first to propose the concept of Soft-
goal in the RE context (the original concept that is specialized for RE in NFR
has a longer history—e.g., [28]) and a process for dealing with nonfunctional
requirements. In NFR, Softgoals describe quality requirements in very abstract
terms. They are related with contribution links to support qualitative reason-
ing about the degree to which alternative software properties satisfy the desired
qualities. Their intuitiveness and ease of use have led to their integration in
goal-oriented RE (GORE) frameworks: i* [32], Tropos [6], GRL [21], and REF
[11]. However, the Softgoal concept remains informally defined and used. Many
GORE frameworks that have adopted NFR suffer from the same symptoms, as
few extend the NFR Softgoal conceptualization. [9] adds a probabilistic layer to
study the impact of requirements change on quality satisfaction. Others [1] use
multi-criteria decision techniques to select among alternative software architec-
tures.

Formal approaches have been proposed to provide systematic support when
semi-formal techniques are considered inadequate. Instead of Softgoals, [19] is
focused on software goals that are precise, but cannot be completely achieved by
the software (i.e., they are idealistic). Quality variables are associated with all
goals that can only be partially satisfied and objective functions are defined over
these variables to indicate ideal software behavior. Quality variables seem to be
metrics that measure performance of the behavior specified by the goal to which
the variables are associated. Based on a sample of software operation, probabil-
ities of satisfying a goal can be estimated—these probability values indicate the
degree to which the goal is satisfied. Imprecise requirements are treated with
fuzzy logic in [18,20,31,23]. While fuzzy logic may be an interesting approach
for formalizing imprecise requirements, it has been discussed mostly in isolation
from typical RE activities, although it is not obvious how such formalisms can
be integrated within existing, more extensive frameworks.

Discussion. Expressive formalisms such as fuzzy logic have unfortunately been
discussed somewhat separately from confirmed GORE methodologies and frame-
works, making the us of the techniques proposed in [18,20,31,23] impractical and
difficult. The informed reader will also note that fuzzy logic is merely one among

284 I.J. Jureta, S. Faulkner, and P.-Y. Schobbens

many approaches to imprecision. While quality requirements are indeed impre-
cise, they do have other characteristics that need to be accounted for during
representation and reasoning. Partial satisfaction, extensively discussed in [19]
is relevant, but is discussed with focus on precise goals. It should also be noted
that the NFR approach and other RE frameworks using the Softgoal concept
fail to address situations in which systematic and formal treatment is required,
even though the growing criticality of software increases the need for rigor.

The research presented in the remainder of this paper starts from a hypoth-
esis that the informally defined Softgoal concept, extensively used in NFR, can
be more valuable if its facets: subjectivity, context-specificity, idealism, impre-
ciseness, and preference are characterized explicitly. Such a characterization will
allow both a systematic treatment of the stated facets, and a closer integration
of the proposed Softgoal analysis approach and later RE activities, such as func-
tional goal specification. In this respect, the proposed conceptualization draw
on the extensive body of related work to provide a more integrative view on the
representation and manipulation of software quality information.

3 The Softgoal Concept Revisited

Softgoals provided by the stakeholders at the outset of the RE process, such
as “the software should be fast”, can be characterized as imprecise, subjective,
context-specific, and ideal. Imprecision stems essentially from the inability to
specify what “fast” mean, so that they could be measured. Subjectivity results
from the fact that two people can evaluate the same software as being fast to
a different extent. Context-specificity further entails that “fast”, or “usable”,
“maintainable”, “adaptable” (standard qualities of software [8]) will have a dif-
ferent meaning for each project. Finally, implicit preference information is hid-
den behind terms such as “fast software”: various measures can be taken, but
low values will be preferred. All of the above characteristics need to be taken
into account to deal systematically with quality requirements. To use the Soft-
goal concept to represent and reason about such requirements, it is necessary
to make its traditional definition more expressive and precise. The choice of the
Softgoal concept is based on the illustrated usefulness of the underlying goal con-
cept in RE activities, such as elicitation, elaboration, structuring, specification,
analysis, negotiation, documentation, and modification of requirements [29].

3.1 Functional and Nonfunctional Goals vs. Hardgoals and Softgoals

A goal can be broadly defined as a constraint on software behavior that is de-
sired by stakeholders involved in the software development project (e.g., [10]).
Among the many proposed goal taxonomies (for an overview, see [30]), two are
particularly relevant for quality requirements modeling. Functional goals have
been used to represent services that the software is expected to deliver (i.e.,
what the software does), whereas nonfunctional goals refer to quality require-
ments that the software needs to satisfy while delivering the services (i.e., how

A More Expressive Softgoal Conceptualization 285

the software provides services; e.g., securely, safely, rapidly, etc.). While it is
common to equate nonfunctional goals and softgoals (e.g., [22]), it is suggested
that softgoals belong to another taxonomy, in which they are opposed to hard-
goals [30]. Although softgoal satisfaction cannot be established in a clear-cut
sense [22], the satisfaction of a hardgoal is objective in that it can be established
using (formal) verification techniques [10]. Consequently, there are: (i) functional
hardgoals, which are objective goals about services that software needs to deliver
(e.g., “whenever an e-mail marked as important arrives, the user is informed with
a pop-up window and a sound”); (ii) nonfunctional hardgoals which describe ob-
jective criteria for how the services are to be delivered (e.g., “the user should be
informed about important e-mail arrival within 1sec”); (iii) functional softgoals
describe imprecisely stated software services (e.g., “the user should be informed
when an e-mail marked as important arrives”); and finally, (iv) nonfunctional
softgoals characterize imprecise statements for how a service is to be delivered
(e.g., “the user should be informed rapidly about the arrival of an e-mail marked
as important”). It is likely that statements about the needs that the software is
to satisfy will be closer to nonfunctional softgoals than to functional hardgoals
at the outset of the RE phase of software development. Notice that there is a
large gap in precision between nonfunctional softgoals and functional hardgoals
example: the former says nothing on how the user is to be informed, while the
latter gives a specific context (the e-mail reader software) and process (e-mail
arrives, pop-up is displayed, and a sound is played). Having clarified the informal
meaning of Softgoal in relation to goal types, we proceed to its characterization.

3.2 Characterizing Softgoals

The traditional view of softgoals [21] focuses essentially on the subjectivity facet:

“A softgoal is similar to a (hard) goal except that the criteria for whether
a softgoal is achieved are not clear-cut and a priori.”

A definition proposed in the REF framework [11] adds details:

“For a soft goal [...] it is up to the goal originator [i.e., the agent wishing
goal achievement], or to an agreement between the involved agents, to
decide when the goal is considered to have been achieved [...]. In com-
parison to hard goals, soft goals can be highly subjective and strictly
related to a particular context; they enable the analysts to highlight
quality issues (e.g., the concept of a ’fast computer’) from the outset,
making explicit the semantics assigned to them by the stakeholders.”

Softgoals therefore involve subjectivity because of a lack of objective achievement
criteria, and the responsibility for evaluating their achievement falls on stake-
holders. Notice that it is imprecise to say that quality considerations can mainly
be modeled with softgoals, since quality refers to software behavior that can
be both objectively and subjectively evaluated. However, there is more to qual-
ity requirements than the current softgoal conceptualization allows representing

286 I.J. Jureta, S. Faulkner, and P.-Y. Schobbens

and reasoning about. Consider a simple example of a quality requirement often
encountered in practice: “the software should be fast”. By examining the stated
and implied information contained in this statement, a notation can be proposed
to model the various softgoal facets.

Subjectivity. Since many stakeholders (i.e., parties being influenced by, or having
an influence on the development project) are likely to be involved in the RE
phase of software development, the specificity of each these parties’ views on the
software, the development process, and the environment in which the software
will operate needs to be accounted for. The usefulness of separating stakeholders’
concerns and the use of adapted, different notations is now widely accepted. Such
multi-perspective requirements require techniques for making individual views
consistent either by reconciling requirements specifications written in different
specification languages (e.g., [25]), or written different styles, terminology, etc.
(e.g., [14]). The resulting heterogeneous representations need to be integrated to
ensure consistency [29], coordination and composition [24].

We argue that subjectivity in softgoals can be accounted for in a relatively
straightforward manner by annotating the softgoal with an identifier of its stake-
holder and the suggestion time. Then each stakeholder can refine his requirement
(by answering, e.g.: “When is this software fast for you?”) independently.

Softgoal: E-Mail reader should be fast.
Added on: 08Nov2005
Stakeholder: Mr. J. Smith
Refined into: An e-mail reader is fast if it opens quickly and creates

new e-mail messages quickly.
If a similar softgoal is stated, our approach will see it as different:

Softgoal: E-Mail reader should be fast.
Added on: 08Nov2005
Stakeholder: Mr. J. Smith
Refined into: An e-mail reader is fast if it opens quickly and creates

new e-mail messages quickly.

Context-Specificity. At an abstract level, information about the context to which
the quality requirement refers can be specific to: the software, the software devel-
opment process, and the environment in which the software will operate (which
can be the hardware environment, the human environment, etc.). For example,
“development cost should be low” is a softgoal related to the software develop-
ment process, whereas “the throughput should be high on the production line”
is specific to the human environment in which the software will operate. The
combination of the software and environment compose the information system
(IS) [34]. To specify the context of a softgoal, an attribute applies to (with soft-
ware, environment, process as allowed values) is added to the softgoal template:

Softgoal: E-Mail reader should be fast.
Added on: 08Nov2005
Stakeholder: Mr. J. Smith
Refined into: An e-mail reader is fast if it opens quickly and creates

A More Expressive Softgoal Conceptualization 287

new e-mail messages quickly.
Applies To: Software

Idealism and Preferences. Quality requirements are often not clear-cut. It is thus
beneficial to measure the degree to which a quality requirement, modeled as a
softgoal, is satisfied. Metrics, called quality variables in [19], can be designed
based on refined requirements. Consider the earlier Mr. J. Smith’s Softgoal. It
can be refined into two Softgoals, each having a quality variable and an objective
function.

Softgoal: The E-Mail reader should open fast.
...
Preferences:

Objective Functions:
Name Def Type Modal Target Threshold Current

3SecOpen P(TimeToOpen < 3sec) Prob Max 80% 70% unknown

Quality Variables:
TimeToOpen: Duration
Sample space: distribution of old e-mails, size of old e-mails,...
Definition: time between the input of the request to open the software
and the moment the software functionalities can be used.

Softgoal: It should be possible to create new e-mail messages quickly.
...
Preferences:

Objective Functions:
Name Def Type Modal Target Threshold Current

2SecCreate E(TeToCrMail) < 2sec Durat Min 1Sec 2Sec unknown

Quality Variables:
TimeToCrMail: Duration
Sample space: number of options available when writing an e-mail,...
Definition: time between the input of the request to create a new e-mail
message and the moment its content can be written.

Quality variables are random variables whose distribution can be estimated us-
ing data collected by experimentation. Sample spaces can be, e.g., related to
similar functionality in existing software. The estimated probability distribution
functions are then used to estimate the probability of satisfying the softgoal to
some desired level and questions such as, e.g., “What is the probability for the
software to open in less than 2 seconds?” or “Under what time will the software
open in 90% of cases?” can be answered. Objective functions are associated with
quantifiable quality variables, and target levels of performance for each variable
are specified. A modal (i.e., max or min) is also added to indicate the preferred
direction. Because not all objective functions are stated in terms of probabili-
ties (i.e., there are objective functions defined over quality variables), the tables
used in [19] to specify objective functions are extended here with a type column,

288 I.J. Jureta, S. Faulkner, and P.-Y. Schobbens

to give an indication on the type of variable used in the objective function. In
addition, a threshold column is added to further distinguish acceptable from
unacceptable degree of softgoal satisfaction.

Quality variables combined with objective functions as in [19] allow the degree
of softgoal satisfaction to be measured in cases in which the degree of satisfaction
is not under stakeholders’ complete control (i.e., there is a probabilistic compo-
nent in the events affecting softgoal satisfaction). While this is often the case,
the RE phase will also involve preferences that can be perceived as deterministic.
Assume that a stakeholder provides the following view of a softgoal:

Softgoal: Software should not take too much hardware resources.
...
Stakeholder’s view: An e-mail reader will take little hardware resources if it does not

occupy memory when not running (i.e., it does not run “in the background”).

The stakeholder expresses preference in the quality requirement modeled with
the above softgoal. Traditional economics preferences conceptualization (e.g.,
[16]) can be used to make the preference information from the stakeholders’
view explicit. Implicitly, a statement of preference provides partial information
about alternatives that are to be ordered using preference relations. We use the
classical preference formalism to indicate strict, partial or indifference prefer-
ence. Using this simple formalism, we can write:

Softgoal: Software should not take too much hardware resources.
...
Preferences:

Choice Preferences:
(run software when requested)�(software runs in background)

Modeling preferences using objective functions can refine the preference formal-
ization given above. For example, “software should not take too much hardware
resources” indicates that the degree of hardware resources used by the software
would ideally be measured to determine the degree to which alternative software
structures would satisfy the softgoal. Consequently, the above partial softgoal
specification can be improved by adding a quality variable that can be used
to quantify the “too much” term. Notice that the choice between alternatives
specified in choice preferences influences the value of quality variables.

Imprecision. Without an accurate notion of the stated and implied needs, the
degree of quality satisfaction by software cannot be measured and software prop-
erties that could satisfy quality requirements cannot be determined. The use of
fuzzy logic has been suggested to formalize imprecise requirements to allow for
conflicts between them to be studied ([18,20,31,23]) unfortunately outside the
goal-oriented RE field. A key limitation of this approach (see, [19] for a discus-
sion) is that the degree of imprecise requirements satisfaction, measured through
a “satisfaction function” that maps software behavior to a degree (comprised be-
tween 0 and 1) to which it satisfies a fuzzy (in the sense of [33]) requirement
is measure-independent. There are no specific metrics involved, and it is not

A More Expressive Softgoal Conceptualization 289

obvious how the measurement could be made objective, as in [19]. It would
be beneficial if objective metrics and fuzzy logic notation can be combined to
express formally the information given in the softgoal template.

Imprecision is dealt with here in a procedural approach, consisting of progres-
sively increasing the precision of initially imprecise information contained in a
softgoal template. This is achieved through the application of a set of transforma-
tions that manipulate specialized formalisms defined to characterize the above
discussed facets of quality requirements modeled as softgoals. The formalisms
are necessary to assist stakeholders in representing and reasoning about quality
requirements in a systematic manner. A softgoal formalization, based on the
discussions above is as follows.

Formal Characterization of Softgoal. We make explicit the facets of softgoals
described above by modeling a softgoal S as a tuple:

S = 〈n, t, St, v, c, P 〉 (1)

where n is the softgoal identifier, t is the time of softgoal statement, St is
the set of stakeholders that agree on the softgoal, v is the view of the soft-
goal shared by members of St, c is the context of the softgoal where c ∈
software, process, environment), and P is the preference information associ-
ated with the softgoal, including utility. The utilities are evaluated over a set
of alternatives for softgoal operationalization (call this set B), each including a
combination of the software, environment, and development process. The soft-
goals are then aggregated to produce the global utility, corresponding to the top
softgoal of the project.

The preference information in a softgoal can be represented with a tuple P :

P : Obj ×Mod× T × Thr × Curr × U (2)

where Obj is the objective function, Mod is the modality Min, Max of the ob-
jective function, T its target value, Thr its threshold value, Curr the quality
variable value of the existing alternative, U indicates whether the objective func-
tion can be considered as a local utility (see the classical utility theory [15]). The
definition of the objective will often make use of auxiliary quality variables. They
are defined by an expression, the metric function that (implicitly) depends on
the alternative b ∈ B. An objective function is thus a metric function with an
associated modality: mod(m(b)), where mod ∈ Mod. The modality indicates in
which direction the metric function will influence the global utility.

The notation defined above allows the requirements engineer to compare al-
ternatives by:

1. Defining an order among alternatives, as a first approximation.
2. State quality variables Qv to quantitatively compare alternative behaviors,

as in [19] but not limited to random variables.
3. Defining metric functions m(b) to associate alternatives bi to metric values.
4. Combining metric functions m(b) with modalities mod to construct objective

functions mod(m(b)) ∈ Obj which indicate preferred metric values T .

290 I.J. Jureta, S. Faulkner, and P.-Y. Schobbens

5. Refining metrics to local utilities, and aggregating them to obtain the global
utility. Tradeoffs between degrees of satisfaction can be evaluated using the
marginal rate of substitution (MRS), a concept taken from economics (e.g.,
[15]) which, in the terminology used here, indicates the maximal amount of
a metric value that a stakeholder is willing to sacrifice for a unit increase
in value of another metric. Techniques described in [31] can be reused here,
although with caveats noted earlier.

6. Using linguistic facilities as in fuzzy logic: a value above threshold will be
deemed acceptable, above target good.

The formalisms themselves do not eliminate imprecision, but point to informa-
tion to look for and a way to organize it in order to reduce imprecision.

Imprecision can further be reduced by using logic to formalize the informa-
tion about alternative behaviors contained in the softgoal. This allows closer
integration with later steps of software development.

3.3 Formally Specifying Softgoals

To this point, the traditional softgoal concept has been enriched with templates
that allow the expression of subjective, idealist, and context-specific facets of
quality requirements information. Imprecision has been indicated, and treated
with a simple formal model of the enriched softgoal concept. The model, while
summarizing softgoal information in a precise way, does not alleviate imprecision.
However, sources of imprecision have become clearer: the fuzzy set of behaviors
and time-dependency of preferences which is derived from the fuzziness of the set
of behaviors (i.e., preferences change because stakeholders learn about previously
unknown behaviors during the development process). Both can receive further
treatment: the former through formalization of behaviors, and the latter, through
the transformation activities, presented in Sect. 4.

While behavior can be represented in various ways, the goal concept, discussed
earlier, proves invaluable in the RE phase (e.g., [10,19,29]). It allows more free-
dom in the specifications, than, e.g., pre/post condition specification of state
transitions used in [18,20,31]. As precise representation of behavior is needed,
and since behavior represents what software or stakeholders do, functional goals
(see, [30]) are used as a concept to model behavior. To remain general, the choice
of formal acquisition language for functional goal specification is left to the re-
quirements engineer. It is suggested that temporal logic be used for expressivity
reasons. Softgoal formalization then consists of writing formal specification of
behaviors b ∈ B using the chosen acquisition language.

Return to the “software should not take too much hardware resources” soft-
goal in the previous subsection. Two behaviors appear in its choice preferences
attribute. Using the KAOS framework (where a goal is defined as a constraint
on behavior [10]), the two behaviors can be specified as KAOS goals (i.e., precise
functional goals):

Goal: Maintain [SoftwRunsInBackgr]
Definition: The e-mail reader runs constantly.
Formal Def: os : OperatSyst;mr : MailReader;os.status = on ⇒ mr.status = on

A More Expressive Softgoal Conceptualization 291

Goal: Achieve [RunSoftwWhenRequest]
Definition: When the os receives a request to start the mail reader, the mail reader

should start running.
Formal Def: os.status = on ∧ mr.status = off ∧ os.start = mr ⇒ mr.status = on

The above formalization is reflected in the softgoal template by adding a keyword
becomes after the imprecise preference relation and rewriting that information
using the identifiers for specified behaviors. The imprecise formulation is main-
tained for traceability reasons.

...
Preferences:

Choice Preferences:
(run software when requested)�(software runs in background)
becomes Achieve [RunSoftwWhenRequest] � Maintain [SoftwRunsInBackgr]

In the NFR framework [22,8] terminology, the above would be represented with
a softgoal, two goals, and a contribution link between each of the goals and the
softgoal. The preference relation can be translated into a positive and a nega-
tive contribution. However, NFR is less expressive, since metrics and most other
facets of the softgoal concept presented above are missing.

4 General Guidelines for RE Frameworks

On the basis of the revisited conceptual foundations, guidelines can be sug-
gested as to the transformations that can be applied to softgoals and that need
to be present in requirements modeling approaches that aim to employ the given
Softgoal conceptualization. Any such transformation activities need to be con-
structed so that they can deal with all of the four Softgoal facets identified
above. Ideally, the transformations would allow initially imprecise, subjective,
context-specific, and idealistic softgoals to be transformed into a consistent set
of hardgoals (e.g., similar to those of the KAOS acquisition language [10]). We ar-
gue that two classes of transformation activities are useful—one for dealing with
individual softgoals, and another for transforming several softgoals together.

Single-Softgoal Transformations are aimed at arriving, for each softgoal, at a
template in which the initially vague statement of need is made more precise,
subjectivity is made explicit, objective metrics are found, and alternative behav-
iors influencing the degree of softgoal satisfaction are informally identified:

– (T1) Build an initial softgoal template. To discover softgoals, the require-
ments engineer will ask questions about what and how the software and the
wider context should do, according to each stakeholder. The what and how
questions are likely to result in informal and imprecise statements of needs
that may be both related to behaviors (i.e., functional aspects) of the con-
text, and how the behaviors need to be exhibited (i.e., nonfunctional aspects;
e.g., rapidly, safely, securely, etc.). Consequently, the requirements engineer
will need to fill in softgoal templates in a rather sketchy manner at first. As
a result of T1, the template needs to contain information about the name of

292 I.J. Jureta, S. Faulkner, and P.-Y. Schobbens

the softgoal (n), statement time (t), stakeholder identifier (St), stakeholder’s
view (v), and the context relevant to the softgoal (c).

– (T2) Identify alternative behaviors that are likely to influence softgoal satis-
faction. The what and how questions will also lead stakeholders to indicate
alternative behaviors whose execution will satisfy to a varying degree the
softgoal. The set of identified alternative behaviors for a softgoal j (Bj) can
be enlarged by looking at similar existing contexts (and observing, e.g., lim-
itations, errors, etc.), seeking expert opinion on the specific problems, etc.

– (T3) De-idealize the softgoal. Stakeholders may express views which qualify
or quantify behaviors in ideal ways (e.g., development cost should be lower
than X—where X is simply impossible to achieve). De-idealization can be
realized by further discussing alternative target values and/or behaviors, or
by taking into account benchmarks, which would provide evidence on the
idealistic nature of stated needs.

– (T4-A) Construct objective measurements of softgoal satisfaction. The aim
is to find a set of quality variables (Qv), for the softgoal j. For each quality
variable qjk, there should be a metric function (mjr(bi)) to which a modal
modjr is associated to form an objective function (modjr(mjr(bi))). A target
value (tjr) should be defined for the objective function. Quality variables can
be derived from information contained in the stakeholders’ view (as in the
example in Sect. 3.2), in the parent softgoal (see transformation T7), and/or
can be based on company-/industry-specific benchmarks. Metric functions
can come from knowledge about the events generated by behaviors that are
to be measured, from company-/industry-specific standards, and/or behav-
ior categories (i.e., KAOS goal categories [19]). Benchmarks are an invaluable
source of target values.

– (T4-B) Establish preference relations over alternative behaviors. Based on
subjective indications of the stakeholder that has provided the information
for softgoal j, alternative behaviors found by application of T2 can be re-
lated with preference relations. Preferences can also be established based on
objective measurements, when, e.g., the current value for a metric is closer
to the target value for a behavior over some other behavior. Notice that
preference relations can be objectively constructed only when actual mea-
surements exist (based, e.g., on similar systems) so that current values of
quality variables under different behaviors can be observed.

The above transformations are likely to be given as a toolset to the requirements
engineer. The order of application will probably be T1 to T4 initially, but iter-
ations should not come as a surprise, especially when additional behaviors are
suggested by the stakeholder or due to preference variability over time.

Many-Softgoal Transformations are aimed at establishing relationships between
two or more softgoals, to indicate inter-softgoal contribution and refinement.
Contribution and refinement are based on widely accepted conceptualizations
of such relationships initially given in the NFR framework [22,8], while relying
here on a formal model for argumentation of contribution and refinement choices,
which itself employs the formal softgoal model proposed above.

A More Expressive Softgoal Conceptualization 293

– (T5) Negotiate to avoid conflict. Contribution between softgoals indicates
the degree to which a softgoal supports or obstructs the satisfaction of
another softgoal. Contribution is interesting mainly when negative, or con-
flicting contribution exists between softgoals. Conflict between softgoals may
appear in the form of inconsistencies resulting from different terminology
(due to subjectivity and imprecision), conflicting preferences, and/or dif-
ferent target values of objective functions. Because of imprecision, the re-
quirements engineer will not be able him/herself to resolve conflicts. Instead,
negotiation can be used to lead stakeholders to common understanding, con-
sensus, and closer terminology.

– (T6) Argument modeling decisions. Argumentation during negotiation can
be recorded using a logical model of argument (for an overview of the research
specific to logical models of argument, see [7]). Rigor in recording argumen-
tation during the early phases is relevant not only for traceability reasons,
but also because it confronts stakeholders to discuss quality requirements (al-
lowing the requirements engineer to potentially find more information about
preferences and alternative behaviors)..

– (T7) Merge softgoals. Negotiation will ideally lead stakeholders to a shared
terminology and an agreement on quality requirements that have been ini-
tially perceived differently. Merging two or more softgoals consists of select-
ing a subset of preference information available in all softgoals to merge,
while using a shared softgoal name, view, context, etc. Objective functions
from merged softgoals can be aggregated, provided that quality variables
they refer to be converted into compatible types.

– (T8) Refine a softgoal. A softgoal is refined if there are sub-softgoals whose
joint partial satisfaction is considered equivalent to partially satisfying the
refined softgoal. In practical terms, refinement can consist of, e.g., decom-
posing a softgoal according to some taxonomy (see, e.g., [3] for a privacy and
[22] for an accuracy and a performance requirements taxonomies) into sub-
softgoals, or making the softgoal more specific through each sub-softgoal.
For example, “software should be fast” can be refined into a set of softgoals,
e.g., “operation A should be fast”,..., “operation Z should be fast”.

The result of these transformations can be considered as completed when all of
the following conditions hold: (i) a set of behaviors is associated with each leaf
softgoal; (ii) there are no conflicting softgoals; (iii) all disagreements on softgoals
have been resolved through negotiation; (iv) the set of softgoals is considered
sufficiently complete by the stakeholders.

5 Conclusions and Future Work

The aim of the work presented in this paper is primarily a more profound under-
standing of the Softgoal concept that is commonly used to model requirements
in the early stages of requirements engineering. It has been argued that there
is more to the information commonly represented using Softgoal instances, than
currently established Softgoal definitions seem to indicate. In particular, four

294 I.J. Jureta, S. Faulkner, and P.-Y. Schobbens

facets of the Softgoal concept are identified—namely: imprecision, subjectivity,
context-specificity, and idealism (which involves implicit preference orderings of
the stakeholders who state the information represented using Softgoal instances).
A tentative formalism for this extended Softgoal conceptualization is suggested,
to summarize the information that we argue the requirements engineer can and
should attempt to extract from a Softgoal instance (or, in relation to it). It
is also illustrated how richer requirements can be obtained when the extended
conceptualization is taken into account.

Although a rather simple example has been employed to illustrate the facets
we consider relevant, we believe that a powerful insight comes from this paper: a
more elaborate treatment of imprecise, subjective, context-specific, and idealistic
requirements, usual at the outset of a RE project, can be realized if a commonly
used Softgoal concept is extended. Ultimately, this is likely to lead to richer
requirements specifications and more stakeholders who are satisfied with the
performance of the systems built for them.

Important directions for future work include extending the Softgoal concept
further, by possibly identifying additional facets. The formalism needs to be op-
erationalized within already common specification languages. Additional trans-
formation techniques, more effectively exploiting the extended conceptualization
remain to be explored.

References

1. Al-Naeem, T., Gorton, I., Ali Babar, M., Rabhi, F., Benatallah, B.: A Quality-
Driven Systematic Approach for Architecting Distributed Software Applications.
Proc. Int. Conf. Softw. Eng. (2005) 244–253.

2. Alves, C., French, X., Carvallo, J.P., Finkelstein, A.: Using Goals and Quality
Models to Support the Matching Analysis During COTS Selection. In French, X.,
Port, D.: Proc. Int. Conf. on COTS-Based Software System (2005) 146–156.

3. Anton, A., Earp, J., Reese, A.: Analyzing Website Privacy Requirements Using a
Privacy Goal Taxonomy. Proc. IEEE Int. Conf. Req. Eng. (2002) 23–31.

4. Avesani, P., Bazzanella, C., Perini, A., Susi, A.: Facing Scalability Issues in Re-
quirements Prioritization with Machine Learning Techniques. Proc. IEEE Int.
Conf. Req. Eng. (2005) 297–305.

5. Boehm, B.W., Brown, J.W., Kaspar, H., Lipow, M., MacLeod, G.J., Merritt, M.J.:
Characteristics of Software Quality. North-Holland, Amsterdam (1978).

6. Castro, J., Kolp, M., and Mylopoulos, J.: Towards requirements-driven information
systems engineering: the Tropos project. Info. Syst. 27, 6 (2002) 365–389.

7. Chesnevar, C.I., Maguitman, A.G., Loui R.P.: Logical Models of Argument. ACM
Comput. Surv. 32, 4 (2000) 337-383.

8. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Kluwer Publishing (2000).

9. Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhanskaya, E., Christina, S.:
Goal-Centric Traceability for Managing Non-Functional Requirements. Proc. Int.
Conf. Softw. Eng. (2005).

10. Dardenne, A., van Lamsweerde, A., Fickas S.: Goal-directed requirements acquisi-
tion. Sci. of Comput. Prog. 20 (1993) 3–50.

A More Expressive Softgoal Conceptualization 295

11. Donzelli, P.: A goal-driven and agent-based requirements engineering framework.
Req. Eng. 9 (2004) 16–39.

12. ISO: Int. Standard ISO 8402. Quality – Vocabulary. Int. Org. for Standardization,
Geneva (1986) (and later).

13. Issarny, V., Bidan, C., Saridakis, T.: Achieving Middleware Customization in a
Configuration-based Development Environment: Experience with the Aster Proto-
type. Proc. Int. Conf. Config. Distrib. Syst. (1998) 207–214

14. Jackson, D.: Structuring Z Specifications with Views. ACM Trans. Softw. Eng.
Method. 4, 4 (1995) 365–389.

15. Keeney, R.L., Raiffa, H.: Decisions with multiple objectives: preferences and value
tradeoffs. Wiley, New York (1976).

16. Kreps, D.: Notes on the Theory of Choice. Westview Press, Boulder (1988).
17. Landes, D., Studer, R.: The Treatment of Non-Functional Requirements in MIKE.

Proc. Europ. Softw. Eng. Conf. (1995).
18. Lee, J., Kuo, J-Y.: New Approach to Requirements Trade-Off Analysis for Complex

Systems. IEEE Trans. Knowl. Data Eng. 10, 4 (1998) 551–562.
19. Letier, E., van Lamsweerde, A.: Reasoning about Partial Goal Satisfaction for

Requirements and Design Engineering. Proc. ACM SIGSOFT Symp. Found. of
Softw. Eng. (2004) 53–62.

20. Liu, X.F., Yen, J.: An Analytic Framework for Specifying and Analyzing Imprecise
Requirements. Proc. Int. Conf. Softw. Eng. (1996) 60–69.

21. Liu, L., and Yu, E. Designing information systems in social context: a goal and
scenario modeling approach. Info. Syst. 29 (2004) 187–203.

22. Mylopoulos, J., Chung, L., Nixon, B.: Representing and Using Nonfunctional Re-
quirements: A Process-Oriented Approach. IEEE Trans. Softw. Eng. 18, 6 (1992).

23. Noppen, J., van der Broek, P., Aksit, M.: Dealing with Imprecise Quality Factors
in Software Design. Proc. Worksh. Softw. Qual., (2005) 1–6.

24. Nuseibeh, B., Finkelstein, A., Kramer, J.: Fine-Grain Process Modelling. Proc. Int.
Worksh. Softw. Spec. Des. (Dec.1993) 42–46.

25. Nuseibeh, B., Kramer, J., Finkelstein, A.: A Framework for Expressing the Re-
lationships Between Multiple Views in Requirements Specifications. IEEE Trans.
Softw. Eng. 20, 10 (1994) 760–773.

26. Osterweil, L.: Strategic Directions in Software Quality. ACM Comput. Surv. 28, 4
(1996) 738–750.

27. Rosa, N.S., Justo, G.R.R., Cunha, P.R.F.: A Framework for Building Non-
Functional Software Architectures. Proc. ACM Symp. Appl. Comput. (2001).

28. Simon, A. H.: The Sciences of the Artificial. 2nd Ed. MIT Press, 1981.
29. van Lamsweerde, A.: Divergent Views in Goal-Driven Requirements Engineering.

Proc. ACM SIGSOFT Worksh. Viewpoints Softw. Dev. (1996) 252–256.
30. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour.

Proc. IEEE Int. Conf. Req. Eng. (2001) 249–263.
31. Yen, J., Tiao, W.A.: A Systematic Tradeoff Analysis for Conflicting Imprecise

Requirements. Proc. IEEE Int. Conf. Req. Eng. (1997) 87–96.
32. Yu, E.: Modelling Strategic Relationships for Process Reengineering. Ph.D. Thesis,

Univ. of Toronto (1995).
33. Zadeh, L.A.: Fuzzy Sets. Information and Control 8 (1965) 338–353.
34. Zave, P., Jackson, M.: Four Dark Corners of Requirements Engineering. ACM

Trans. Softw. Eng. Meth. 6, 1 (1997) 1–30.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 296 – 310, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Conceptualizing the Co-evolution of Organizations and
Information Systems: An Agent-Oriented Perspective

Ning Su1 and John Mylopoulos2

1 Leonard N. Stern School of Business, New York University
44 West Fourth Street, New York, NY, 10012, USA

nsu@stern.nyu.edu
2 Department of Computer Science, University of Toronto
10 King’s College Road, Toronto, ON, M5S 3G4, Canada

jm@cs.toronto.edu

Abstract. In today’s ever-transforming business environment, information
systems need to evolve in concert with changes in their organizational settings.
In order to help system analysts conceptualize the co-evolution of organizations
and information systems, we adopt an agent-oriented perspective to develop the
Tropos Evolution Modeling Process for Organizations (TEMPO). Specifically,
inspired by Kauffman’s NKC model, we introduce the concept of goal interface
into the traditional agent-oriented Tropos methodology; within this interface,
evolution is conceptualized as a negotiation process between agents. TEMPO is
illustrated with a case study that demonstrates how to evolve a retail website
under new European e-commerce legislation. TEMPO is also evaluated with a
small behavioral experiment, which offers additional evidence on the usefulness
of the approach.

1 Introduction

Organizations change rapidly in the twenty-first century. Information systems, which
have become an essential component of modern organizations, need to evolve in
concert with changes in their organizational context. Unfortunately, the “agile” co-
evolution of organizations and information systems has been impeded by a number of
factors. Traditionally, information systems are modeled with programming concepts
such as data structures, while organizations are understood in terms of stakeholders,
competitors, customers, and their respective business objectives. The “semantic gap
[2]” between the two domains constitutes a major difficulty, and so does the ever-
increasing complexity of modern information systems. Complexity manifests itself in
the large number of components and interconnections [12], which is approaching the
limit of human analysts’ capacity to absorb and manipulate information [6].

In response to these challenges, agent-orientation has emerged as a novel paradigm
that aligns the modeling of organizations and information systems at the intentional
level [26]. From an agent-oriented perspective, both organizations and information
systems can be viewed as distributed adaptive systems consisting of coordinated
agents in pursuit of their respective goals. Hence, one unified ontology can be applied

 Conceptualizing the Co-evolution of Organizations and Information Systems 297

to model both domains. Agent is also especially appropriate for tackling the issue of
complexity in information systems modeling [12]. Existing literature on agent-
oriented software engineering has proposed various modeling frameworks and
methodologies, e.g., [1] [5] [25]. However, the evolutionary aspects of agent-oriented
information systems modeling remain unexplored.

Aimed at providing heuristics for conceptualizing the co-evolution of organizations
and information systems, we draw upon agent-oriented software engineering, agent-
based economics, biological evolution, and human negotiation behavior to develop
the Tropos Evolution Modeling Process for Organizations (TEMPO). The rest of the
paper is structured as follows. Section 2 outlines the interdisciplinary conceptual
framework of TEMPO. Section 3 elaborates on TEMPO’s main components. Section
4 presents a real-life based case study to illustrate how to use TEMPO to evolve an e-
commerce website under new legal requirements. Section 5 reports a small behavioral
study that evaluates the effectiveness of TEMPO. Section 6 concludes with discussion
and future research directions.

2 An Interdisciplinary Conceptual Framework

From the perspective of complex systems [14], an enormous range of phenomena,
natural and artificial, from molecular machines within cells to markets, societies and
even the entire global socio-economy, can be conceptualized as evolving systems of
interacting agents [11]. In the same vein, three fundamental analogies are assumed in
TEMPO: information systems as socioeconomic systems, socioeconomic systems as
biological systems, and information systems as biological systems.

The agent-oriented Tropos ontology [1] is adopted to provide a unified framework
for modeling both organizations and information systems. Based on our fundamental
analogies, Kauffman’s NKC model, which was intended to simulate the co-evolution
of species in an ecosystem [14], is projected into the Tropos ontology to model the
co-evolution of organizations and information systems. The conceptual framework is
shown in Figure 1.

Fig. 1. The interdisciplinary conceptual framework

Biological systems

A
na

lo
gy

A
na

lo
gy

Tropos Information
systems

Socioeconomic
systems

298 N. Su and J. Mylopoulos

2.1 Information Systems as Socioeconomic Systems

Co-evolving organizations and information systems requires close alignment of
business objectives and information technology. This, in turn, requires a unified
framework for modeling both organizational contexts and the embedded information
systems. Agent-orientation is a modeling paradigm applicable to both socioeconomic
systems and information systems. According to this approach, both types of systems
are viewed as distributed complex adaptive systems, consisting of large numbers of
autonomous agents involved in parallel local interactions, which in turn gives rise to
macro-level system behaviors [16] [21].

Tropos [1] is a state-of-the-art agent-oriented information systems development
methodology. The ontology of this methodology is centered on the concept of “actor”
and actors’ mentalistic notions such as goals, tasks, resources, and dependencies.

1. Actor represents an entity that is autonomous, strategic and intentional. An actor
can be a physical agent, a software component, a role, or a position.

2. Goal represents actors’ strategic interest. Goals can be categorized into hard-goals
and soft-goals.

3. Task represents a way of satisfying a hard-goal and/or satisficing a soft-goal.
4. Resource represents a physical or informational entity.
5. Dependency indicates that one actor depends on the other to achieve some goal,

perform some task, or obtain some resource. The former actor is called depender;
the latter is called dependee.

There are two types of model in Tropos: Strategic Dependency (SD) model, which
captures various stakeholders, their intentions, and dependencies between one
another, and Strategic Rationale (SR) model, which describes how goals are achieved
through means-end analysis and contribution analysis.

The information system development process in Tropos consists of five phases.

1. Early requirements analysis aims at understanding the organizational context of
the system-to-be. The entire development process is driven by this phase.

2. Late requirements analysis specifies the strategic dependencies and strategic
rationales of the system-to-be. The system-to-be is added to the original models as
one or several actors, and analysis is carried out to produce modified models.

3. Architectural design consists of selecting architectural styles that meet system-
level non-functional requirements, further decomposing actors and dependencies,
and assigning actors to certain roles.

4. Detailed design extends SD and SR models to produce AUML diagrams.
5. Implementation produces the detailed BDI (Belief-Desire-Intentions) architecture.

In order to model emergent properties of agent-oriented systems, Tropos includes a
set of patterns, e.g., structure-in-5 and joint venture [7]. These patterns can be used as
generic architectures for both socioeconomic systems and information systems.

2.2 Socioeconomic Systems as Biological Systems

Modern economics has a tradition of using biological metaphors to understand
economic processes [8], giving rise to a collection of novel research paradigms such

 Conceptualizing the Co-evolution of Organizations and Information Systems 299

as sociobiology and bioeconomics. Biological approaches to economics rest on the
ontological continuity, i.e., the construction of metaphors, between natural and socio-
economic domains. Based on these metaphors, biology-based theories are extended to
the economic realm. For example, the concept of self-organization has been used to
account for the self-amplifying features of innovative changes in markets [24].

Similarly, TEMPO assumes an analogy between socioeconomic organizations and
biological systems. The fundamental resemblance between the two domains is that
both are undergoing continual evolution caused by cooperation and conflict from
within, i.e., the interactions among the various comprising components, and from
outside, i.e., the interactions between the systems and the environment.

2.3 Information Systems as Biological Systems

The parallel between computing and biology has inspired burgeoning research fields,
such as evolutionary computation and artificial life. Recently in the face of the
complexity crisis, which looms in modern software systems [11], the metaphorical
use of biosciences to tackle system complexity is gaining increasing attention.

The analogy between information systems and biological systems applied in the
TEMPO conceptual framework lies in the fact that both information systems and
biological systems can be viewed as vast and entangled nexus of various goal-
directed, self-governed agents, which constantly interact with and adapt to one
another; the emergent systems consisting of these agents, in turn, demonstrate
continual evolution, which helps to maintain the fitness of the systems.

2.4 Kauffman’s NKC Coevolution Model

Organisms in nature continuously co-evolve both with other organisms and with a
changing abiotic environment. In these processes, the fitness of one species depends
upon the characteristics of other species that it interacts with. Meanwhile all species
simultaneously adapt and change.

In an attempt to provide a framework for modeling the genetic interactions in the
co-evolution processes and explore the structure of “fitness landscape” that underlies
adaptive evolution, Kauffman [14] introduces the NKC model, which is named after
the three main components that determine the behaviors of species’ interaction and
change with one another. Specifically, N refers to all the genes in a given genotype,
each gene making a fitness contribution that depends upon the gene itself and upon a
set of other genes in this genotype; this set of other genes in the same genotype are
denoted as K; each of the N genes also depends on a set of genes, denoted as C, in
other genotypes. By attributing the overall fitness of a composite system (a genotype)
to three interacting modules (N, K, C) of the system and its embedding environment,
the model provides a framework for analyzing adaptive evolution.

More generally, the NKC model can be interpreted as follows. The co-evolution of
a system and its environment is the equilibrium of external coupling (i.e., the
interaction between the N module and the C module) and internal coupling (i.e., the
interaction between the N module and the K module).

300 N. Su and J. Mylopoulos

3 Tropos Evolution Modeling Process for Organizations

By interpreting the NKC model with the Tropos ontology, i.e., modules’ components
as goals and the coupling between components as dependency or other relationships
between goals, we construct TEMPO to conceptualize the organization-information
system co-evolution. The key elements of TEMPO include the definition of goal
interfaces, the taxonomy of goal relationships, the use of negotiation as a mechanism
for organizational evolution, and an integrated process model that aligns the above
elements.

3.1 Goal Interface

Interdependencies between the goals of interacting agents both within and beyond the
original information system boundary produce a dynamic area. Specifically, some
original goals might have dependency or other relationships with goals newly elicited
from the business environment. These dependencies and relationships, together with
the involved goals, comprise the goal interface.

Inspired by the NKC model, we partition the goal interface into three modules: C
module, i.e., the newly elicited goals that have some dependency or relationship with
goals in the original Tropos model; N module, i.e., goals in the original Tropos model
that have direct or indirect dependency or relationship with the new goals; and K
module, i.e., goals in the N module that have only indirect relationship with the new
goals. Interaction between C module and N module represents the external coupling
between the information system and its environment; interaction between K module
and the rest of N module represent the internal coupling in the goal interface.

Goal interface is the evolution frontier of the organizational information system: C
module causes immediate changes in N module; changes are then propagated through
K module to the entire information system.

Fig. 2. Goal interface

3.2 A Taxonomy of Goal Relationships

The various cognitive elements in the goal interfaces need to be coordinated. This
requires an understanding of the nature of interactions, or relationships, among goals.

Internal
Coupling

Goal relationship

Goal

Goal

LEGEND

C Module

N Module

New Goal A Old Goal A Old Goal F

Old Goal D

Old Goal E New Goal B

New Goal C

Old Goal B

Goal Interface
Information System Boundary

External
Coupling

D

K Module

Dependency
D

Dependee Depender

Old Goal C

 Conceptualizing the Co-evolution of Organizations and Information Systems 301

Depending on whether the interactions entail favorable or adverse situations, goal
relationships can be categorized into positive and negative relationships. In order to
formally define the relationships, hereafter we will use the following set of notations.

A B : A implies B. Subgoal(g1, g2) : Goal g1 is a (and-)subgoal of goal g2.
S(g) : Goal g is satisfied. D(g) : Goal g is denied.

3.2.1 Positive Goal Relationship
This refers to a situation where the fulfillment of one goal enhances the attainment of
the other goal. Positive goal relationship might lead to cooperation between agents.
According to the degree of benevolence between the two goals, positive goal relation-
ships can be classified into three types.

1. Equivalent. The fulfillment of one goal implies the attainment of the other, and
vice versa. One agent might be able to achieve both goals simultaneously. The
specifications of equivalent goals might be, but are not necessarily, identical. The
owners of equivalent goals might be different.

Equivalent (g1:Goal, g2:Goal) iff (S(g1) S(g2)) ∧ (S(g2) S(g1))

2. Subsumption. The fulfillment of one goal implies the attainment of the other, but
the achievement the latter goal can at most guarantee partial satisfaction of the
former. A special case is that one goal is a (and-)subgoal of the other.

Subsumption (g1:Goal, g2:Goal) iff (S(g1) S(g2)) ∧ ∃g: Goal (Subgoal(g, g1) ∧ ¬(S(g2) S(g))

3. Overlap. Two goals share a common subgoal. If either of the two goals is partially
satisfied, so might be the other. However, the achievement of either goal can at
most guarantee partial satisfaction of the other. In other words, the fulfillment of
one goal contributes helpfully to the attainment of the other goal, and vice versa.

Overlap (g1:Goal, g2:Goal) iff ∃g:Goal ((S(g1) S(g)) ∧ (S(g2) S(g)))
∧ ∃g’:Goal (Subgoal(g’, g2) ∧ ¬(S(g1) S(g’)) ∧ ∃g”:Goal (Subgoal(g”, g1) ∧ ¬(S(g2) S(g”))

3.2.2 Negative Goal Relationship
This refers to a situation where the fulfillment of one goal conflicts with the attainment
of the other goal. The antecedents, or source factors, of negative goal relationships
include logic incompatibility, resource scarcity, and task interdependency [16].
Depending on the degree of incompatibility between goals, negative goal relationship
can be categorized into the following three types.

1. Negation. The fulfillment of one goal denies the attainment of the other goal.
Meanwhile, no subgoal of either goal is achievable when the other goal is satisfied.

Negation (g1:Goal, g2:Goal) iff ((S(g1) D(g2)) ∧ ∀g:Goal (Subgoal(g, g2) (S(g1) D(g))
∧ ∀g’:Goal (Subgoal(g’, g1) (S(g2) D(g)))

2. Exclusion. The fulfillment of one goal excludes the attainment of the other goal, as
well as every subgoal of the latter goal. However, the latter goal can only partially
deny the satisfaction of the former goal.

Exclusion (g1:Goal, g2:Goal) iff ((S(g1) D(g2)) ∧ ∀g:Goal (Subgoal(g, g2) (S(g1) D(g))
∧ ∃g’:Goal (Subgoal(g’, g1) ∧ ¬(S(g2) D(g’))

302 N. Su and J. Mylopoulos

3. Interference. The fulfillment of one goal partially denies the attainment of the
other goal, and vice versa.
Interference (g1:Goal, g2:Goal) iff ((S(g1) D(g2)) ∧ ∃g:Goal (Subgoal(g, g2) ∧ ¬(S(g1) D(g))
∧ ∃g’:Goal (Subgoal(g’, g1) ∧ ¬(S(g2) D(g’))

3.3 Goal-Directed Negotiation Strategies

We use negotiation as a mechanism for agent-based evolution. Corresponding to the
goal relationship taxonomy, a set of strategies is introduced to guide the management
of goal relationships in a changing organizational information system.

3.3.1 Negotiation as a Mechanism for Organizational Evolution
From an agent-oriented perspective, evolution is the process of adaptation of the
cognitive elements (e.g., goals) of a system’s agents to organizational changes. In this
process, the relationships between the agents’ cognitive elements, especially goals,
need to be identified and reconfigured such that the dysfunctional aspects of the
relationships are eliminated and the functional aspects are enhanced.

This process is similar to human negotiation behavior, which is “a form of decision
making where two or more parties talk with one another in an effort to resolve their
opposing interests [18]”. In TEMPO, we view organizational evolution as a process of
negotiation on agents’ goals. Human negotiation strategies provide heuristics for
managing both positive and negative goal relationships in this process.

3.3.2 Negotiation on Positive Goal Relationships
Positive goal relationships can generate benefit for the overall system, and thus need
to be properly utilized. Depending on the degree of benevolence among agents, a set
of strategies can be applied to fully exploit the positive relationships.

1. Redundancy elimination. When two or more goals are equivalent, one of the
equivalent goals should be preserved, while others can be removed. The preserved
goal can be either assigned to the original agent, or reallocated to another agent
capable of achieving it.

2. Merge. When one goal is subsumed by another goal, the subsumed goal can be
merged into the subsuming goal. The merged goal can be either assigned to the
agent of the subsuming goal, or refined into a set of subgoals, which are then
allocated to a group of agents.

3. Reconfiguration. Overlap between goals is due to the equivalence of some of their
subgoals. The equivalent subgoals can be merged with one of the overlapping
goals and eliminated from the other goal. The two modified goals can continue to
be possessed by their original agents.

3.3.3 Negotiation on Negative Goal Relationships
Negative goal relationships might cause difficulties in organizational evolution.
Depending on the degree of cooperation that the owners of the conflicting goals may
exhibit in negotiation, three strategies can be used to handle negative goal relationships.

1. Unilateral concession. This refers to a situation where one of the conflicting goals
is relaxed, i.e., only some of its subgoals continue to be pursued, and other
subgoals are dropped, while the other goal is preserved. An extreme case of
unilateral concession is that one of the conflicting goals is totally abandoned.

 Conceptualizing the Co-evolution of Organizations and Information Systems 303

2. Coordination. Both conflicting goals exchange a certain degree of relaxation in
search of a mutually acceptable agreement. Coordination includes several specific
forms. Bilateral concession is a case in which both conflicting goals selectively
abandon some of their subgoals to resolve the conflict. Bilateral reconfiguration is
a case in which the conflicting goals are refined into subgoals; some subgoals are
dropped from one goal and merged with the other, until an alternative, conflict-free
combination of goals is formed. Third-party intervention is a case in which a new
agent is introduced to mediate the conflict situation.

3. Competition. Both conflicting goals continue to be pursued by agents. There are
two types of competition: unregulated competition, in which the conflict is actually
tolerated and preserved, and regulated competition, in which an external agent is
introduced to mediate the conflict through certain mechanisms.

3.4 Process Model

Given the original agent-oriented model of an organizational information system, and
new requirements in the form of new business goals, the process model helps analyze
the impact of new requirements and evolve the original model to incorporate new
goals. This process consists of three steps, each consisting of three iterative sub-steps.

Step 1: Goal interface identification. The new high-level goals emerging from the
business environment could trigger a series of changes in the information system.
This step is aimed at outlining the preliminary goal interface in the original model.
Specifically, the three constituent modules need to be analyzed.

1. C module elicitation. The new goals tend to be global and abstract, and thus need
to be incrementally refined into an AND goal tree. Subgoals can be elicited
through asking How questions to high-level goals [3]. The output is one or several
preliminary goal hierarchies, which constitute the C module of the goal interface.

2. N module identification. Through discovering external coupling, i.e., goal
relationships and dependencies between goals in the C module and goals in the
original model, the N module, which consists of all affected goals and associated
relationships, can be identified.

3. K module propagation. In the original model, goals that are indirectly affected by
the C module can be captured through discovering internal coupling in the goal
interface. Specifically, by identifying relationships and dependencies among goals
in the N module, the K module can be captured. Meanwhile, the goal interface is
propagated in the original model.

During the three sub-steps, new goals and relationships might gradually emerge,
and thus the sub-steps might need to be performed iteratively until no more goals or
relationships can be elicited. The output of this step is the preliminary goal interface.

Step 2: Goal relationship management. The preliminary goal interface identified in
Step 1 needs to be coordinated and transformed based on the goal relationships
involved in the interface. The management of goal relationships contains three steps.

304 N. Su and J. Mylopoulos

1. Goal relationship diagnosis. The various goal relationships in the interface are
diagnosed according to the goal relationship taxonomy, so that appropriate
strategies can be applied to negotiate on goals.

2. Goal-directed negotiation. Once goal relationships in the goal interface are
captured, goal-directed negotiation strategies are selected according to the types of
the relationships between, and the characteristics of, the involved goals. This step
also includes the implementation of selected strategies, i.e., the resolution of goal
relationships. The resolution usually leads to changes in the configuration of goals
and agents in the original model.

3. Resolution evaluation. After the selected strategies are implemented, the solution
is evaluated against the ‘local’ non-functional requirements (NFR) i.e., NFR on the
agents associated with the resolution, If the NFR are not satisficed, either the
specific implementation needs to be altered, or the strategies need to be changed.

The sub-steps are performed iteratively so that more goal relationships are
diagnosed and resolved if needed. The output is the transformed goal interface.

Step 3: Goal interface integration. The goals in the original Tropos model that are
not affected by the new business goals are integrated with the transformed goal
interface. Then the architecture-level SD model is constructed from the evolved
Tropos model. Specifically, this step involves three sub-steps.

1. Strategic Rationale (SR) model composition. The part of the original Tropos
model that is outside the goal interface is integrated with the transformed goal
interface. The output of the composition is a complete evolved Tropos model, the
configuration of which has incorporated the new business goals.

2. Strategic Dependency (SD) model abstraction. Architecture, as an emergent
property of organization, is abstracted from the new Tropos model, and is defined
in terms of actors and the dependencies between them. Actors are individual agents
or aggregations of agents. The abstraction can be based on defined organization
patterns: the selected pattern is instantiated into a specific architecture [7].

3. Architecture evaluation. The abstracted architecture is evaluated against system-
level non-functional requirements. If the NFR are not satisficed, alternative
abstraction and evaluation need to be performed until a satisfactory architecture-
level SD model is formed.

Goal interface
integration

Architecture
evaluation

SD model
abstraction

SR model
composition

Organization
patterns

System-
level NFR

Original SR
model

Evolved
 SD model

Evolved
SR model

Preliminary
interface

Goal interface
identification

K module
propagation

N module
identification

C module
elicitation

Goal relation
management

Resolution
evaluation

Goal-directed
negotiation

Goal relation
diagnosis

Transformed
interface

New business
goals

Original
SR model

Original
SD model

Negotiation
strategies

Local
NFR

Goal relation
taxonomy

Fig. 3. Process model

 Conceptualizing the Co-evolution of Organizations and Information Systems 305

4 Case Study

osCommerce [17] is an open-source e-commerce solution that helps online stores to
be setup conveniently. It now supports over 1000 registered online shops worldwide.
In year 2000, the European Parliament and the Council adopted the European E-
Commerce Directive to regulate online market. All companies offering services to EU
residents, including osCommerce, are required to comply with the Directive [4].

In this case study, we apply TEMPO to help osCommerce meet the new legal
requirements. We then preliminarily evaluate TEMPO by comparing our result with
the solution proposed by the osCommerce project team.

The following is a partial Tropos model of the original osCommerce website [20].

Fig. 4. Partial original Tropos model

Step 1: Goal interface identification. The new goal hierarchy is elicited through
identifying clauses in the Directive that are applicable to osCommerce [22]. The new
goal hierarchy constitutes the C module of the goal interface, as shown in Figure 5.
Then, the N, K modules are also identified.
Step 2: Goal relationship management. Three types of goal relationships are
identified: equivalent, subsumption, and overlap. According to the corresponding
negotiation strategies, associated goals are removed, merged, or reconfigured. The
modified goals are then assigned to responsible agents, as shown in Figure 6. The
shaded goals and agents are those modified or added to the original Tropos model.
Step 3: Goal interface integration. The transformed goal interface is integrated with
the remaining part the original Tropos model. Due to space constraint, the full SR and

306 N. Su and J. Mylopoulos

SD models are not included here. More details can be found in [20]. Synthesizing
from Figure 6, we recommend the following changes to the osCommerce solution.

1. Adding a Help desk page to describe the technical steps to conclude contracts.

2. Providing business contact details on the Email feedback form (Contact) page.

3. Indicating organization information, authorization information, and contracting
languages on the Condition of use page.

4. Specifying privacy policy about contract on the Privacy policy page.

Fig. 5. Preliminary goal interface

 Conceptualizing the Co-evolution of Organizations and Information Systems 307

Fig. 6. Partial transformed goal interface

Comparing these recommendations with the changes proposed by the osCommerce
development team (http://www.oscommerce.com/community/workboard), we find
that the two sets of results are largely consistent, except that one defect is discovered
in the latter: shipping charges cannot be shown in the shopping cart until the customer
chooses her shipping option. The validity and effectiveness of TEMPO has been
shown through this study.

5 Behavioral Evaluation

Based on the results of the case study, we propose that TEMPO can help analysts
generate evolved models of higher quality. We further evaluate the proposition with a
small experiment. Our subjects were four graduate students majoring in computer
science or information systems. The subjects each had about two years’ software
development experience, either in industry or academia. Two subjects had prior
knowledge of agent-oriented information systems (AOIS).

In the experiment, we first briefly introduced Tropos to the subjects, and offered to
answer related questions. We then gave the descriptions of TEMPO to two subjects,
including one who had learned AOIS before and one who hadn’t, and let them read
the TEMPO descriptions. We then assigned all subjects the same task – evolving a

308 N. Su and J. Mylopoulos

given Tropo model of a fictitious online retail website to meet a new business goal:
realizing the Customer Relationship Management (CRM) strategy. All subjects had
only preliminary understanding of CRM. Each subject was given an introduction of
CRM, and allowed a maximum of one hour to perform the task. After the experiment,
we administered an interview to collect subjects’ comments on the modeling process.

The quality of the evolved models created by the subjects was evaluated based on
the correctness and completeness of the models. Specifically, we measured the quality
by recording the number of inconsistent or missing components (agents, goals, and
dependencies). The results show that for both novices and subjects with prior
knowledge of AOIS, providing TEMPO significantly improved the quality of the
evolved models. The improvement is especially obvious in the novice group. The
effects of TEMPO can be roughly represented by Figure 7.

The feedback we collected in the interview confirmed our hypothesis. The subjects
given the descriptions of TEMPO commented that they felt their modeling processes
were well guided and focused by following TEMPO, while the subjects without the
descriptions of TEMPO reported that they lacked heuristics to elicit and support their
modeling decisions.

Fig. 7. Effects of TEMPO on model quality

6 Conclusions and Discussion

In order to assist analysts in conceptualizing the co-evolution of organizations and
information systems, we have proposed the Tropos Evolution Modeling Process for
Organizations (TEMPO). TEMPO fuses concepts and models from several areas,
including agent-oriented methodologies, agent-based economics, biological evolution,
and human negotiation behavior. Specifically, we define the goal interface as the
evolution frontier of an information system; the interface consists of three modules,
which mirror the three main components in Kauffman’s NKC co-evolution model;
within the goal interface, evolution is conceptualized as negotiation between agents.
The metaphorical use of concepts and models from different disciplines generates
heuristics that can guide the co-evolution of organizations and information systems.

We have evaluated TEMPO with a case study and a small behavioral experiment.
The case study illustrates how to apply TEMPO to evolve information system models
in real business scenarios; the results show that TEMPO can help construct sound and
complete solutions. The behavioral experiment gives further evidence that TEMPO is
able to guide analysts, both with and without prior knowledge of agent-oriented
modeling, to produce evolved models of higher quality.

Q
ua

lit
y

of
 e

vo
lv

ed

m
od

el
s

Without TEMPO

With prior knowledge of AOIS

No prior knowledge of AOIS

With TEMPO

 Conceptualizing the Co-evolution of Organizations and Information Systems 309

It is worth noting that TEMPO focuses only on modeling goals and agents, and
deliberately omits other modeling constructs such as tasks and resources. The reason
is that we are most interested in the intentional level of organizational information
systems, and the other constructs can be derived by operationalizing goals [3].

TEMPO has its limitations. First, it requires the agent-oriented models of existing
information systems. Otherwise, reengineering is needed to generate these models
before TEMPO can be applied. Second, the major steps in TEMPO are performed by
human analysts. Tool support is needed to further reduce the complexity of analysis in
the face of large-scale models. Moreover, the validity of the behavioral evaluation is
constrained by the small number of subjects and by the lack of benchmarks for
measuring the quality of agent-oriented conceptual models.

This study leaves much room for further investigation. On the theoretical side, the
heuristics offered by TEMPO can be applied by both human analysts and autonomous
software agents. We might give automated software components a greater decision-
making role by integrating TEMPO with decision-theoretic models, e.g., [9], and
automated negotiation models, e.g., [13]. In an ideal scenario, information systems
will be able to evolve themselves in an autonomic fashion to satisfy new requirements
[11]. On the practical side, TEMPO has yet to be supported by software tools. One
possibility is using existing model merging tools, e.g., [19], to merge goals in the C
module into the N module, and further improve the efficiency of modeling activities.

Acknowledgement

We would like to thank Eric Yu, Yijun Yu, Steve Easterbrook, Yinghua Jia, Ou Wei,
and many other participants of the “EarlyRE” seminar at the Department of Computer
Science, University of Toronto for helping shape the ideas in this work.

References

1. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An Agent-
Oriented Software Development Methodology. Autonomous Agents and Multi-Agent
Systems. Vol. 8, No. 3 (2004) 203–236

2. Castro, J., Kolp, M., Mylopoulos, J.: Towards Requirements-Driven Information Systems
Engineering: The Tropos Project. Information Systems. Vol. 27, No. 6 (2002) 365–389

3. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-Directed Requirements Acquisition.
Science of Computer Programming, Vol. 20. No. 1-2 (1993) 3–50

4. European Commission Information Society: Directive 2000/31/EC of the European
Parliament and of the Council of 8 June 2000 on Certain Legal Aspects of Information
Society Services, in Particular Electronic Commerce, in the Internal Market. Official
Journal of the European Communities (2000)

5. Ferber, J., Gutknecht, O.: A Meta-Model for the Analysis and Design of Organizations in
Multiagent Systems. Proceedings of the Third International Conference on Multi-Agent
Systems (1998) 128–135

6. Fox, M. S.: Organization Structuring: Designing Large Complex Software. Technical
Report CMU-CS-79-155, Computer Science Department, Carnegie-Mellon University
(1979)

310 N. Su and J. Mylopoulos

7. Kolp, M., Giorgini, P., Mylopoulos, J.: Multi-Agent Architectures as Organizational
Structures. Autonomous Agents and Multi-Agent Systems. Vol. 13, No. 1 (2006) 3–25

8. Gowdy, J. M.: Coevolutionary Economics: The Economy, Society and the Environment.
Kluwer Academic Publishers (1994)

9. Haddawy, P., Hanks, S.: Utility Models for Goal-Directed Decision-Theoretic Planners.
Computational Intelligence, Vol. 14, No. 3 (1998) 392–429

10. Hoyle, R. H., Harris, M. J., Judd, C. M.: Research Methods in Social Relations. 7th edn.
Wadsworth (2002)

11. I.B.M.: The Vision of Autonomic Computing. www.research.ibm.com/autonomic (2004)
12. Jennings, N. R.: On Agent-Based Software Engineering. Artificial Intelligence, Vol. 117,

No. 2 (2000) 277–296
13. Jennings, N. R., Faratin, P., Lomuscio, A. R., Parsons, S., Sierra, C., Wooldridge, M.:

Automated Negotiation: Prospects, Methods and Challenges. International Journal of
Group Decision and Negotiation, Vol. 10, No. 2 (2001) 199–215

14. Kauffman, S. A.: The Origins of Order: Self-Organization and Selection in Evolution.
Oxford University Press (1993)

15. von Martial, F.: Coordinating Plans of Autonomous Agents. Springer-Verlag, Berlin
(1992)

16. Miles, R. H.: Macro Organizational Behavior. Scott, Foresman and Company (1980)
17. Open Source E-Commerce Solutions. www.oscommerce.com (2004)
18. Pruitt, D. G.: Negotiation Behavior. Academic Press, Inc., New York and London (1981)
19. Sabetzadeh M., Easterbrook, S.: An Algebraic Framework for Merging Incomplete and

Inconsistent Views. 13th International Requirements Engineering Conference (2005)
20. Su, N., Mylopoulos, J.: Managing the Coevolution of Organizations and Information

Systems. Technical Report 516, Department of Computer Science, University of Toronto
(2005)

21. Tesfatsion, L.: Agent-Based Computational Economics: Growing Economies from the
Bottom Up. Artificial Life, Vol. 8, No. 1 (2002) 55–82

22. UK Department of Trade and Industry: Complying with the E-commerce Regulations
2002. http://www.dti.gov.uk (2002)

23. Wilensky, R.: Planning and Understanding: A Computational Approach to Human
Reasoning. Addison-Wesley Publishing Company, Inc. (1983)

24. Witt, U.: The Evolving Economy: Essays on the Evolutionary Approach to Economics.
Edward Elgar Publishing Ltd., Northampton Massachusetts (2003)

25. Wooldridge, M., Jennings, N. R., Kinny, D.: The Gaia Methodology for Agent-Oriented
Analysis and Design. Journal of Autonomous Agents and Multi-Agent Systems, Vol. 3,
No. 3 (2000) 285–312

26. Yu, E.: Agent Orientation as a Modelling Paradigm. Wirtschaftsinformatik, Vol. 43, No. 2
(2001) 123–132

Towards a Theory of Genericity Based on
Government and Binding

Alexander Bienemann1, Klaus-Dieter Schewe2, and Bernhard Thalheim1

1 Christian Albrechts University Kiel, Department of Computer Science
Olshausenstr. 40, D-24098 Kiel, Germany

2 Massey University, Information Science Research Centre
Private Bag 11 222, Palmerston North, New Zealand

{binemann, thalheim}@is.informatik.uni-kiel.de, k.d.schewe@massey.ac.nz

Abstract. Conceptual modelling in the area of data-intensive systems
produces database schemata and a variety of systems characteristics,
which ideally could be used to facilitate the generation of an implemen-
tation. This paper proposes a framework for the development of patterns
and components that will permit a direct computation of the correspond-
ing functions, whenever all system parameters and the schemata of the
application are known. For this a theory of genericity that is based on
the linguistic theory of government and binding (GB), which consists of
a two-step specialization of ideas or raw utterances, is developed. This
theory of GB genericity is applied to obtain generic workflows and the
functionality involved in them.

1 Introduction

Conceptual modelling is widely accepted as a necessity for the development of
data-intensive applications. The expectations associated with it are twofold: to
capture requirements of the application on a high level of abstraction that eases
understanding, and the facilitation of logical and physical design. Ideally, con-
ceptual modelling should produce database schemata and a variety of systems
characteristics that could be used to generate at least partially an implementa-
tion.

One way to achieve this is to provide genericity. According to Webster’s dic-
tionary [1], the term “generic” means relating or applied to or descriptive of all
members of a genus, species, class, or group; common to or characteristic of a
whole group or class; typifying or subsuming; not specific or individual. Thus,
defining a generic function should give us the advantage of a certain, universal
description of what the function does, along with the possibility to make the
definition more precise and/or make it comprise areas of activity not comprised
by it originally.

The following challenges in specifying such generic functions have been iden-
tified in previous research, e.g. in [22,21]:

1. We need a general description of the demanded functionality and of the
necessary data objects [26]. Depending on the individual context [3,5] this

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 311–324, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

312 A. Bienemann, K.-D. Schewe, and B. Thalheim

general description has to be unfolded into a complete function specification
including also imposed activities, additional data objects queried from the
database, etc. Such an unfolding mechanism has to be developed in order to
achieve genericity.

2. The specification method must permit the refinement of structuring depend-
ing on the needs of a particular user. For instance, subtyping is such a re-
finement operation [25]. The goal is to have general function specifications
refined as well [20,6].

3. Complex generic functions are to be assembled out of other generic functions
that are instantiated on the basis of given types and with adaptation to the
refined structuring [18]. The function generation process has to be done
automatically.

Generic functions can be based on software patterns. In general, patterns
are an attempt to describe successful solutions to common software problems
[2,11,13,14,15,19]. The research on patterns has led to a number of frameworks
such as MacApp, ET++, Interviews, ACE, MFC, DCOM, RMI, and CORBA,
which play an increasingly important role in contemporary software develop-
ment. So far patterns have proven to be useful in reuse of successful practices.

In this paper we propose a framework for the development of patterns and com-
ponents that will permit a direct computation of generic functions, whenever all
system parameters and the schemata of the application are known. For this we
exploit the linguistic theory of Governance and Binding (GB), which consists of a
two-step specialization of ideas or raw utterances [7,9,23]. GB assumes that a uni-
versal grammar can be broken into two parts: levels of representation and a system
of constraints. It assumes a derivational model and four different levels of repre-
sentation. The lexicon lists the atomic units of the syntax called basic concepts.
Lexical items are combined together to a D-structure, which might be a forest
of concept fields [12]. D-structures are mapped into S-structures that reflect the
syntactic surface order of the sentence. Examples of S-structures are query and
answer forms [25], which are used for representing the general structure and func-
tionality of a given query. S-structures are factored into phonological forms and
logical forms. The former ones may be understood to be specific representations
of the sentence; the latter ones combine the interface with semantics.

GB still lacks a formal foundation [8,10,24]. The idea behind it, however,
summarizes one of the main approaches to generate an utterance. The sub-
components of the rule system are the lexicon, the categorical components and

Phonological form

�������
stylistic and phonological rules �������

β rules

Logical form

�α rules

S-structure

D-structure�Lexicon of basic concepts

Fig. 1. The levels of representation and rules used in government and binding

Towards a Theory of Genericity Based on Government and Binding 313

the transformational components of the syntax, the LF-component and the PF-
component. The systems of principles include a binding theory, a government
theory, a Θ-theory, the case theory, and the control theory. The idea can be
generalized to a generation framework that supports a variety of applications of
generation rules. The separation into α- and β-rules permits a concentration on
different aspects of concern.

We tailor GB to obtain generic workflows and the functionality involved in
them. In our work the first specialisation step consists of mapping a general idea
of a workflow to a particular context. Then the second specialisation step takes
the special refinements and instantiations of this context into account.

We first present the concept of generic workflow in Section 2. Then we take a
closer look into the generic functions appearing in such workflows in Section 3.
Finally, in Section 4 we describe our approach to genericity. We conclude with
in brief summary and outlook in Section 5.

To illustrate our concepts we use the relocation of a person as a running ex-
ample. Here we have to consider the basic relocation data including the possible
removal of data on the old location, optional relation enhancements such as the
registration of pets, relocation of cars, personal specific data such as family en-
hancements or relationships to religious bodies, additional relocation announce-
ments such as tax and insurance changes, and specific additional tasks such as
applications for housing allowances. We observe that relocation depends on the
profile of the issuer, specific tasks of the issuer, specific laws and regulations, and
advanced functionality required for associating the workflowwith other workflows.

2 Generic Workflows

Applications often require the adaptation of the processing context, e.g. to actual
environments such as client, server, and channel currently in use, to users rights,
roles, obligations, and prohibitions, to content required for the current portfolio
for the current user, to preferences of actual users, to the level of task completion
depending on the user, and to users completion history.

This kind of processing adaptation is not yet well supported. In our run-
ning example citizens may apply for a primary place of residence, in which case
their passport must be changed. Otherwise, no change is required. Citizens with
schoolboys/girls may have to complete additional documents. After completion
documents may have to be decomposed into a suite of documents due to le-
gal restrictions, e.g. the German data protection law requires that data for city
officials and service offices such as the labour agency must be separated.

Depending on the role of users, workflow completion may be scheduled se-
quentially for some users or scheduled in parallel for others. For instance, clerks
in a city office may consider documents in parallel. Citizens are completing their
documents in a sequential mode.

Adaptability may be required at run-time. For instance, citizens arriving from
a foreign country may be required to have a residence permit. Users may require
varying support depending on the environment that is used for the completion

314 A. Bienemann, K.-D. Schewe, and B. Thalheim

of documents. Users should be supported whenever they are interrupted during
task completion. These requirements lead directly to the task to develop a facility
for mutable, adaptable workflows for different users, portfolios, and contexts.

A workflow suite consists of a set of workflows that are bundled together by
an association schema, which is maintained by consistency requirements. For
instance, in our running relocation example we find workflows such as change of
address data, change of data for associated people, change of registration data for
cars, pets, etc., change of specific data, e.g. data for public authority responsible
for foreigners, change of data for social aid, etc. These workflows are bundled
together due to their relationship to one person and to one life circumstance.

These workflows are related to different views and different functionality pro-
vided. We use the theory of media types [21] that combines views and their
functions into one type. Media types may be linked to other media types. For
instance, in our running example, we may distinguish input data for the work-
flow, retrieval data for the workflow, output data of the workflow, display data
suites for each stage of the workflows, and escorting data supporting the under-
standing of each stage of the workflow.

kernel,
workflow

address
workflow

associated
people

workflow

registration
workflows

foreign citizen workflow

social aid
workflow

Fig. 2. Hierarchically ordered workflow suite representing the life circumstance reloca-
tion

The associations may be represented by adhesion between different work-
flows, which can be represented by a hypergraph as in Figure 2. Additionally,
we may specify the adhesion of the workflows by a certain adhesion value. Adhe-
sion of workflows may be used for parallel execution, generation of dependence-
restricting scheduling of different workflows, and run-time adaptation of the
scheduling algorithm. Additionally, we may consider transaction-based execu-
tion of workflows. These facilities provide a set of rules that may be used as
β-rules for deriving the logical form of the workflow under the context that is
provided during compile-time or during run-time.

We may “universalize” workflow suites. For instance, the workflow suite for
relocation may be understood as a specific instantiation of the universal workflow
relocation. A generic workflow represents the concept of a workflow suite and is
specified by

Description: The workflow itself is described by a general CSP expression
based on generic functions. It specifies the steps of the generic workflow.

Context: The application context discussed above is explicitly specified.

Towards a Theory of Genericity Based on Government and Binding 315

Applicability: Under certain circumstances the generic workflow may not be
applicable or must be applied.

Interactions: The generic workflow requires media types for its support.
Consequences: The utilization of the generic workflow may result in non-

applicability of other workflows or in specific restrictions for the context.
Strategies: The mapping to workflow suites is based on a number of α-rules;

β-rules are used to map workflow suites to workflow instantiations.
Related generic workflows: A generic workflow may be substituted by or

substituting other workflows.

3 Generic Functions

So far, we introduced the concept of generic workflows. This concept uses generic
functions. since we are interested in generation of workflow instantiations based
on a generic workflow we have to develop a theory of generic functions first.
Since our approach is only practicable if the theory of generic functions has
been developed in detail we introduce in more detail this concept.

3.1 Generic Functionalizations

Function Applications. Consider types t1, ..., tk, t′1, ..., t′n for some k, n ∈ N.
Consider Dom := Colt1 × ...×Coltk and Rng := Colt

′
1 × ...×Colt

′
n to be sets of

tuples of collections of objects of the corresponding types, for k, n ∈ N. Consider
a function f : Dom → Rng mapping a tuple of collections of types t1, ..., tk into a
tuple of collections of types t′1, ..., t

′
n. Consider two formulae φ, ψ defined over the

domain and the co-domain of f , respectively. The quintuple (Dom, φ, f, ψ, Rng)
is called a function application with precondition φ and postcondition ψ [4].
Function applications can be defined recursively by means of operators of the
function algebra of choice, i.e. (Dom, φ, θ(F1, ..., Fm), ψ, Rng) is a function ap-
plication, if θ is a corresponding operator of the function algebra, and F1, ..., Fm

are function applications.

Machines and Genericity. Once we have chosen a computation model, e.g.
Java, each function f has a machine realization Mf . For each function applica-
tion (Dom, φ, f, ψ, Rng) there is thus a machine Mf

φ,ψ realizing it.
Consider function applications F and F ∗ having machine realizations M and

M∗ with a notion ≡ of equivalence of states (selected states of interest) and of
initial and final states.

The function application F is generic with respect to F ∗, denoted by F � F ∗,
iff for each M∗-run (s∗0, u

∗
1, s

∗
1, u

∗
2, ...) there is an M -run (s0, u1, s1, u2, ...) and

sequences i0 < i1 < ..., j0 < j1 < ... such that i0 = j0 = 0 and sik
≡ S∗

jk
for each

k and either

– both runs terminate and their final states are the last pair of ≡-equivalent
states, or

– both runs and both sequences i0 < i1 < . . . and j0 < j1 < . . . are infinite.

316 A. Bienemann, K.-D. Schewe, and B. Thalheim

The states sik
, s∗jk

are the corresponding states of interest. Note that this de-
finition corresponds to the one of a correct refinement in ASMs [20,6]. We are
therefore interested in obtaining a more specialized functionalization specifica-
tion on the basis of a generic one, so that desired properties of the function
application behaviour are still preserved. Typical properties of interest are e.g.
presentation of particular data content to a specific user, or preserving the se-
quence of decisions met by users as imposed by legal regulations.

Functionalizations. A functionalization is a quadruple (S, F, Σ, s0) with

1. a specification of structuring denoted by S = (S, V) and consisting of a
database schema S = (T S , ΣS) with T S being a set of types according to
the type system as stated above, and ΣS being a set of static integrity
constraints, and a set of views V upon schema S defining collections in
domains and co-domains of function applications,

2. a function application F,
3. a set of dynamic integrity constraints Σ on S,
4. a distinguished initial state s0.

As we can see, a functionalization is an abstraction of an interactive informa-
tion system on conceptual and logical layer [25]. The genericity of functional-
izations is defined analogously to the one of function applications, and it is this
notion of genericity we are interested in in the following.

3.2 Dimensions of Genericity

In order to use the advantages of a generic function specification, we need to
move through the space of functionalizations that are generic to each other.
In general, we make a functionalization either “more specific” (and thus “less
generic”), or the other way round. However, in order to develop rules for moving
throughout such functionalization space, a system of “genericity dimensions”
with finer granularity is needed.

A natural choice of “dimensions” would be S, F, and Σ. In this case the word
“dimension” is nothing but a plausible, simplified name for a more complex
algebraic structure.Dimensions do not necessarily refer to totally ordered sets.
Another one would be taking the three semiotic aspects of a functionalization
description: syntax, semantics, and pragmatics. Also, other possibilities would
be to take “aspects” or “concerns” of software systems [16].

The choice of the dimension system is thus quite arbitrary and depends on how
difficult the development of a system of transformation rules for such a dimension
system would be. Moreover, the dimensions should reflect typical lines of thinking
during the design of a functionalization, i.e. an interactive information system
[26]. This is why we introduce the dimensions refinement of structuring, context
embedding, and instantiation. These dimensions are compatible with experiences
gathered in the past [5] and can be briefly exemplified as follows (we abstract
from functionalizations for the sake of simplicity and show only the functions
themselves).

Towards a Theory of Genericity Based on Government and Binding 317

– Refinement of structuring:
E.g., when decomposing a type T (A, B, C) into {T1(A, B), T2(B, C)}, then
function f(o : T) can be refined to θ(f1(o : T1), f2(o : T2)), with θ being an
operator of the function algebra of choice.

– Instantiation:
E.g., the function insert(·) can be instantiated with a concrete type defini-
tion T (A, B, C, D). In this case a number of insert() applications is neces-
sary, joint together by operators from the function algebra of choice.

– Context embedding:
E.g., if the function purchase() affects not only an object of type Item,
but also involves performing checkFunds() on an object of associated type
BankAccount, then the transformation purchase(Item) → θ(purchase(o :
Item), checkFunds(o : BankAccount)) is performed. In addition, the
schema needed by the function purchase() is enriched with the type
BankAccount.

It still has to be stressed that the three dimensions are arbitrary. They do not
cover all aspects of software design and transformation. For instance, distribu-
tion has been left out in this paper, but might also result in imposing another
dimension if considered. On the other hand, when speaking of “dimensions”,
we may replace one system of coordinates by another one, provided we have a
mapping from one system to the other. This is also the reason for being able to
look at dimensions as in Figure 3.

�

�
	

	
	

		

Refinement

Context
embedding

Instantiation

�(S1, F 1, Σ1, s1
0)�

(S2, F 2, Σ2, s2
0)

��� �� �...

Fig. 3. Functionalization Space with Three Dimensions

3.3 Transformation Rules in Functionalization Space

Each functionalization (S, F, Σ, s0) can be transformed into either a less or a
more generic one. The transformation is performed stepwise by firing rules. There
is a set of rules for each of the distinguished dimensions refinement of structuring,
context embedding, and instantiation. The rules are fired consecutively in the
desired order so that the functionalization satisfies the quality criteria of the
current context, as in the approach of content conditioning [22]. The quality
criteria can be either heuristically or formally defined.

Let us illustrate the approach for our running example. We consider the
functionalization (S, {changeOfResidence()}, Σ, s0). Assume that we want to

318 A. Bienemann, K.-D. Schewe, and B. Thalheim

achieve a more specialised functionalization for a citizen owning a car and mov-
ing to an area where a residence parking permit must be issued. Obviously, when
his/her change of residence is processed, the residence parking permit needs to be
involved as well. Hence, the following context rules are fired (for schema update
and for function application change):

{Application} → {RegistrationF ile �� ParkingPermit}

and

changeOfResidence(Application)→
updateResidence(o : RegistrationF ile)‖issueParkingPermit(o : Car)

4 The GB Framework for Genericity

In [12] the theory of word fields has been extended to a theory of concept fields.
Concept fields are governed by a verb. This verb governs

– the arguments and the logical structure of the verb,
– the semantical description with relevant and irrelevant valences, and
– the kernel semantics including a description of the semen.

We may extend this approach on the basis of the GB theory. Since we aim at
the development of a framework of generic workflows we may restrict ourselves
to their main specification elements. A general generation facility does not exist.
We may, however, use the internal coherence of generic workflows, as some com-
ponents govern the other ones. Therefore, we develop a set of governing rules
and a binding mechanism.

4.1 Developing Generic Governors

Workflows may be instantiated by various rules. We assume that the core se-
mantics of a generic workflow has a clear semantic content, but the mapping to
workflow suites and the instantiation involve structural configurations refining
the core semantics. At the same time, dependence provided by the core semantics
must be maintained to meet the following conditions:

– conditions on the choice of governor,
– conditions on governed terms, and
– structural conditions on the relation of government.

Relating the GB theory [7] to the theory of ASM refinement [20] we conclude
that the core semantics of a generic workflow is refined by the workflow suite
and further refined to the instantiated workflow. A kernel element of the generic
workflow governs the other components of the generic workflow, some of which
may also be generic workflows. In some applications we have to assume that the
dependence or government structure is irreflexive.

Towards a Theory of Genericity Based on Government and Binding 319

In our running example the kernel workflow is given by the relocation. Reloca-
tion is governed by the subject of relocation, i.e. in the example by people moving
from one place to another one. The data structures used for representing the data
of a moving person, the technical environment, the set of preferences of users,
the rights and roles of users in the process of relocation govern the generation of
the workflow suite and the instantiation of the workflow. At the same time, the
generic workflow relocation governs the generic workflow change of passport.

A governor G is therefore defined by a function G : C × GW
→ WS mapping
the generic workflow GW under consideration of the context C to a workflow
suite WS. For practical purposes we use term rewriting rules for the governors.

4.2 Developing Generic Bindings

The binding theory originally proposed in [7] characterizes two domains as
opaque: the direct expression of a word and the rules for integrating the word
into an utterance. These two binding principles may be generalized for our pur-
poses to cover a wider range of application. There are several ways for rep-
resentation of these bindings. The approach used by Chomsky is the integra-
tion into anaphorical structures. Another way we prefer to use is the expression
of structural binding through attribute grammars. The latter approach allows
the direct mechanism for binding to be represented in an explicit form. In our
running example, the generic workflow relocation governs the generic workflow
change of passport.

Bindings may be used for associating the parameters of the generic workflows
or the workflow suites to each other. For the sake of simplicity we assume that
bindings can be expressed by substitution rules σ that map parameters to ex-
pressions defined over these parameters. The expressions are based on the CSP
expression that define the workflow. For instance, in the case of sequential exe-
cution the substitution rule maps some of the parameters of the second element
to parameters of the first element, thus equating these parameters. In a similar
form we may substitute parameters used for parallel execution.

4.3 Examples of Basic Generic Workflows

We generalize some of the patterns in [17] for access and collaboration using GB.
The approach shows how generic workflows can be developed, can be mapped
to workflow suites and instantiated to workflows. In the sequel, we discuss a
number of basic generic workflows that might support data exchange.

The Basic Generic Workflow Accessor

Description: The workflow abstracts from access details and represents the
general access. It is governed by the environment, i.e. media type and the
platform providing the access. It governs the generic workflow feedback
that supports the error messaging after enacting the workflow. The media
type may be normalized and may be based on optimized behavior. The
governor incorporates these two specializations as well. The generic workflow

320 A. Bienemann, K.-D. Schewe, and B. Thalheim

is based on extraction of data and functionality from the source media type,
transformation of the data and the functions to the target media type and
an modification facility for the target database.

Context: The generic workflow uses generic contracts that provide a frame-
work for automatic application. Typical such contracts are based on publish-
subscribe, publish-trade, or publish-broker-request. The generic workflow
uses a model-view-controller concept for its workflow suite.

Applicability: The generic workflow is used to hide access complexity, opti-
mization facilities and specific semantics for data and functionality extrac-
tion and their transfer to a target database.

Structure: The structure of the generic workflow is specified by the nested
structural expressions
(AccessPath.QueryExpression, TransformExpression, ResultForm)
and
ConcreteAccessor(Accessor(operationSet(Params)), MediaTypeDriver)

Interactions: The media type support collaboration of agents AnApplicat,
AConcreteAccessor, AMediaTypeDriver on a protocol expression

Protocol(StartOperationA; StartOperationA;
ReturnResultFromMT; ReturnResultToSource)

which results in a data exchange between the application and the accessor
and in a data exchange between the accessor and the system supporting the
media type.

Consequences: The generic workflow limits application control of data access.
At the same time it provides independence, optimization, and allows swap-
ping of data sources.

Strategies: The α-rules map the generic workflow to an MVC-based workflow
suite. The β-rules map the workflow suite to access programs thus support-
ing versatile access, incorporating enhancements and optimization points,
guarding against inefficient application usage, and guarding for errors and
exceptions

Related generic workflows: The generic workflow adapter may be gov-
erned by the given generic workflow.

Typical examples are the JDBC or ODBC access.

The Basic Generic Workflow Active Media Type

Description: The generic workflow abstracts from the media type structuring
and functionality.

Context: The structure and the functionality of the media type constitute an
element of the context. Typical functionality is based on schema matching
for the media type structures, and on recharging functions such as initialize,
refresh, save, and list.

Applicability: The generic workflow masks legacy, hides complexity, groups
associated objects into combined objects, and is the basis for webpage con-
tainers.

Towards a Theory of Genericity Based on Government and Binding 321

Structure: The structure of the generic workflow is specified by the nested
structural expression
Application(activeContainerObject (Structure,

QueryAnswerForm(MediaTypeObject)))
and may be extended by specific logging facilities.

Interactions: The protocol is based on message exchange facilities between
between applications, containers and media objects. It depends on policies
for data modification and bindings.

Consequences: The generic workflow spreads access across and thus limits
application control. At the same time, application code becomes surveyable
and maintainable. Application code independence is supported.

Strategies: α-rules inject the context (e.g. database schemata and procedures
for access, matching rules,) into the workflow suite. β-rules are responsible
for the connection management, the database state maintenance and the
recharging process.

Related generic workflow: The generic workflow is similar to the concept of
data containers [25] used for content delivery for websites.

Simple examples of the generic workflow are XML exchange facilities and EJB.

The Basic Generic Workflow Media Type Collaboration

Description: The generic workflow specifies collaboration among different par-
ties based on query-based exchange, request, and delivery of data.

Context: Collaboration is restricted by collaboration contracts [26] and by the
matching of appropriate media types.

Applicability: Various schemata mappings are becoming versatile.
Structure: The structure of the generic workflow is specified by the nested

structural expressions
Application(OwnMediaTypes, MediaObjectSuiteManager)
and
MediaObjectSuite(MediaObjectSuiteManager, Profiler,

CollaboratingMediaObjectSuite).
Interactions: The protocol is based on message exchange facilities such as

Protocol.read(MediaObjectSuite); mediaObjectSuite.find(Profiler);
mediaObjectSuite.collaborate(CollaboratingMediaObjectSuite);
mediaObjectSuite.create(CollaboratingObjects).

Consequences: The generic workflow limits application control of access but
provides independence from the context.

Strategies: α-rules are used for profiling and suite workspace creation. β-rules
provide a facility for identity matching, aggregation detection, and inheri-
tance orchestration.

Related generic workflow: This basic generic workflow is governed by the
service workflow.

A typical simple example is Java data object (JDO).

322 A. Bienemann, K.-D. Schewe, and B. Thalheim

The Basic Generic Workflow Service

Description: This basic generic workflow stacks orthogonal features that access
issues with increasing level of abstraction.

Context: The workflow supports abstraction in terms of less abstract me-
dia objects and depends on context data such as media object mapping,
data conversion, data operation mapping, resource management, distribu-
tion, caching, authorization, and logging.

Applicability: The workflow is based on separatability of features into incre-
mental levels that might be build gradually.

Structure: The structure of the generic workflow is specified by the nested
structural expressions
application(...., ImportServiceMediaType);
service(ExportMediaTypes, ImportServiceMediaTypes)
with competences such as
accessService(ExportMediaTypes).

Interactions: The workflow is based on delegation to inner services with sema-
phores.

Consequences: Interaction is layered and initialization complexity is increas-
ing. At the same time the generic workflow supports functional decomposi-
tion, feature modularization, feature detail encapsulation, and layer plugga-
bility.

Strategies: α-rules are used for top-down detailization, sequentialization, and
algorithmication. β-rules support to stub layering and provide layer initial-
izations.

Related generic workflow: The complex generic workflow architecture is
based on the given basic generic workflow.

5 Conclusion

This paper introduces the concept of generic workflows. Similar to situations in
applications, tasks may be specified on the basis of a general description of pos-
sible ways for satisfaction and completion. In traditional workflow development
approaches a task may be given by a verb that represents a group of verbs with
similar behavior. Each of the more special verbs is supported by its own work-
flow. The traditional approach will lead to a huge number of workflows with a
similar behavior. Whenever a part of the context is changing the workflow must
change as well.

Instead of these classical approaches we propose a different way. We associate
a task with a generic workflow that accommodates all possible different ways of
completing the task. The generic workflow may be unfolded to a workflow suite
by consideration of the context. A workflow suite has a number of parameters
that are instantiated for a given actual workflow. This approach allows to repre-
sent the “general workflow” by an activity skein displayed in Figure 4. This skein
may be specialized to the workflow suite. The concrete instance of the workflow
is a fiber within this skein.

Towards a Theory of Genericity Based on Government and Binding 323

�

�

	

�

�

	

 �

�

	

�

�

	

� ���

������ ������ ���� � ������� �
�

�
�

� �

Fig. 4. Generic workflows, workflow suites and their instantiations

The paper shows that this vision can be developed on the basis of government
and binding theory. The exploitation of the GB approach is our contribution
to thoughtful and consistent development of applications. Our approach has
already been used in some of our projects, e.g. for the citizen service portal of
www.cottbus.de and for the e-learning portal damit.dfki.de. The concept is
currently extended in other e-government projects.

Acknowledgement

The authors would like to thank Noam Chomsky for his helpful comments on
his theory of Government and Binding.

References

1. Websters ninth new collegiate dictionary, 1991.
2. P. Aiken. Data Reverse Engineering: Slaying the Legacy Dragon. McGraw-Hill,

1995.
3. A. Binemann-Zdanowicz. Sitelang::edu - towards a context-driven e-learning con-

tent utilization model. In Proc. SAC’2004 (ACM SIGAPP), Nicosia, Cyprus,
March 2004, pages 924–928. Association for Computing Machinery, 2004.

4. A. Binemann-Zdanowicz. A Generative Approach to Functionality of Interactive
Information Systems. PhD thesis, Christian Albrecht University of Kiel, Germany,
2006 (to be submitted).

5. A. Binemann-Zdanowicz, R. Kaschek, K.-D. Schewe, and B. Thalheim. Context-
aware web information systems. In Proc. APCCM’2004, January 2004, pages
37–48, 2004.

6. E. Börger and R. Stärk. Abstract state machines - A method for high-level system
design and analysis. Springer, Berlin, 2003.

7. N. Chomsky. Some concepts and consequences of the theory of government and
binding. MIT Press, 1982.

8. N. Chomsky. Lectures on government and binding - The Pisa lectures. Mouton,
De Gryuter, 1993.

9. N. Chomsky. The minimalist program. MIT Press, Cambridge, 1995.
10. N. Chomsky. Personal communication, 2005, Aug., 5 and 8.
11. J. O. Coplien and D. C. Schmidt, editors. Pattern languages for program design.

Addison-Wesley, Reading, 1995.
12. A. Düsterhöft and B. Thalheim. Integrating retrieval functionality in websites

based on storyboard design and word fields. volume 2553 of LNCS, pages 52–63.
Springer, 2002.

324 A. Bienemann, K.-D. Schewe, and B. Thalheim

13. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Elements of
reusable software architecture. Addison-Wesley, 1995.

14. D. C. Hay. Data model pattern: Conventions of thought. Dorset House, New York,
1995.

15. Taligent Inc., editor. The power of frameworks - For windows and OS/2 developers.
Addison-Wesley, 1995.

16. P. Klint, T. van der Storm, and J.J. Vinju. Term rewriting meets aspect-oriented
programming. In Report SEN-E0421, December 2004.

17. C. Nock. Data Access Patterns - Database Interactions in Object Oriented Ap-
ploications. Addison-Wesley, Boston, 2004.

18. T. Pittman and J. Peters. The Art of Compiler Design: Theory and Practice.
Prentice Hall, 1992.

19. K. Quibeldey-Cirkel. Design patterns. Springer, Berlin, 1999.
20. G. Schellhorn. Verifikation abstrakter Zustandsmaschinen. PhD thesis, University

of Ulm, Germany, 1999.
21. K.-D. Schewe and B. Thalheim. Conceptual modelling of web information systems.

Data and Knowledge Engineering, 2005.
22. K.-D. Schewe, B. Thalheim, A. Binemann-Zdanowicz, R. Kaschek, T. Kuss, and

B. Tschiedel. A conceptual view of web-based e-learning systems. Education and
Information Technologies, 10(1-2):83–110, January 2005.

23. E. Stabler. Derivational minimalism. In C. Retore, editor, Logical aspects of com-
putational linguistics, volume LNCS 1328, pages 68–95. Springer, 1998.

24. E. Stabler. Personal communication, 2005, Sept., 3.
25. B. Thalheim. Entity-relationship modeling – Foundations of database technology.

Springer, Berlin, 2000. See also
http://www.is.informatik.uni-kiel.de/∼thalheim/HERM.htm.

26. B. Thalheim. Informationssystem-Entwicklung. In BTU Cottbus, Computer Sci-
ence Institute, Technical Report I-15-2003, Cottbus, 2003.

Concept Modeling by the Masses: Folksonomy
Structure and Interoperability

Csaba Veres

Department of Computer Science, Norwegian University of Science and Technology
Csaba.Veres@idi.ntnu.no

Abstract. The recent popularity of social software in the wake of the
much hyped "Web2.0" has resulted in a flurry of activity around folk-
sonomies, the emergent systems of classification that result from making
public the individual users’ personal classifications in the form of sim-
ple free form "tags". Several approaches have emerged in the analysis
of these folksonomies including mathematical approaches for clustering
and identifying affinities, social theories about cultural factors in tagging,
and cognitive theories about their mental underpinnings. In this paper
we argue that the most useful analysis is in terms of mental phenomena
since naive classification is essentially a cognitive task. We then describe
a method for extracting structural properties of free form user tags, based
on the linguistic properties of the tags. This reveals some deep insights in
the conceptual modeling behavior of naive users. Finally we explore the
usefulness of the latent structural properties of free form "tag clouds"
for interoperability between folksonomies from different services.

Keywords: Web2.0, folksonomy, interoperability, tagging, concept mod-
eling.

1 Introduction

There is currently a great deal of activity revolving around applications and
initiatives on the World Wide Web that fall under the rubric of Web2.0, the live
Web, social software, or architecture of participation [1]. While there is a great
deal of hype and cynicism concerning the phenomenon [2], there is nevertheless
some consensus on an interesting set of properties that loosely define prototypical
Web2.0 applications.

One important hallmark of Web2.0 applications is that they tend to be based
around web services so that there is no requirement to install a special applica-
tion on a client machine. This already introduces a new dynamic to the applica-
tion space since functionality can change incrementally and with an extremely
fast life cycle. It is reported that Carl Henderson, leading developer at Flickr1
(a leading Web2.0 application) commented that "on good days, Flickr releases
new versions every half an hour"2. This development model is complemented
1 http://www.flickr.com/
2 http://blogs.warwick.ac.uk/chrismay/tag/flickr/)

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 325–338, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

326 C. Veres

by an architecture in which constant evolution makes sense; the "architecture
of participation". Such architecture is exemplified in eBay’s services which are
entirely dependent on the participation of its members, and increasing levels
of participation can enable the gradual implementation of feature refinements.
Amazon.com is another service where users add value by default: whenever they
purchase multiple items, add reviews, add items to the wish list, and in general
simply "use" the system, they contribute data which in aggregate can improve
the service to other customers by providing recommendations and associations
which would otherwise not exist. The web service is then improved to make use
of the accumulating data. The architecture is designed by default to improve the
service simply as a side effect of its ordinary use, and the improved service is
quickly rolled out through program updates.

This participatory architecture enables the harnessing of collective intelligence
by aggregating user data, which is the second hallmark of Web2.0 applications:
the primacy of data over application. A hallmark achievement in this vein is
WikipediA, a brave experiment in creating a collaborative encyclopedia which,
ideally, anyone could contribute to. Amazingly this radical departure from the
kind of authoritarian editorial style one might expect for a reference of this sort,
proved to deliver a product comparable to the most venerable Encyclopedia Bri-
tannica3. A similar challenge is being laid to traditional news services by the
activity of blogging, and services like digg. These activities aided by search tools
like Technorati together with syndication and other tools like RSS and track-
backs, make it possible for news and opinions to be disseminated and discussed
very rapidly.

The benefits of collective intelligence gained through social interaction have
come into the popular limelight through the introduction of services like
del.icio.us4, Flickr, CiteUlike5, Yahoo MyWeb 2.0 Beta6 and Google Base Beta7,
in which content is contributed, aggregated, and categorized through the collec-
tive actions of its users. In some cases the content is created by users as with
the photographs contributed to Flickr, but mostly they are proxied as in the
case of bookmarks on del.icio.us, or scientific references in CiteUlike. In either
case extra value is added through the classification and organization efforts of
multiple users. All of these services employ some form of user annotation of the
resources, usually referred to as tags (e.g. in del.icio.us, Flickr), but sometimes
called labels and properties (in Google Base Beta). The primary value of these
services is not simply the addition of content but organization of content in
a way that allows its discovery. Crucially, the system of classification and dis-
covery is not driven by sophisticated organizational and search strategies, but
by a network of associations that emerges in the process of opportunistic user
behavior.

3 http://www.nature.com/nature/journal/v438/n7070/full/438900a.html
4 http://del.icio.us/
5 http://www.citeulike.org/
6 http://myweb2.search.yahoo.com/
7 http://base.google.com/

Concept Modeling by the Masses 327

For example on the social bookmarking service del.icio.us, users mark up their
favorite web sites with their chosen tags. The service requires a user account,
and acts in the first instance as a web based repository for each individual user’s
bookmarks for their favorite web sites. The web sites are indexed by URL and
described with a textual description which is typically generated from the title in
the web site. As a result, most bookmarks to the same URL will have the same
descriptive title, but this is not necessarily the case because users are free to
insert their own descriptions. In addition, users annotate each bookmark with
metadata in the form of any number of single word tags. The user interface
provides access to popular tags for a given URL at the time of bookmarking,
assuming of course that other users have tagged that URL. In addition, users
can view other URLs annotated with a particular tag they might use. Because
the aggregated "tag use" of all users is available in various forms on the service,
users can derive value from each others behavior. For example popular tags for a
given URL can influence a user who is also adding that URL to their bookmarks,
because popular tags are, putatively, useful for other users. On the other hand,
users can find new web sites by following links that were tagged with the same
terms as the current one of interest. As pointed out in [3] the novel feature of
services like del.icio.us is not their reliance on keywords in lieu of taxonomies
for indexing – that idea has been around for years. Instead, the novelty is the
immediacy of the feedback from the community of users: "Feedback is immediate.
As soon as you assign a tag to an item, you see the cluster of items carrying
the same tag. If that’s not what you expected, you’re given incentive to change
the tag or add another ... you can adapt to the group norm, keep your tag
in a bid to influence the group norm, or both." The benefits to indexing are
that resources are grouped according to flexible category structures that are not
imposed by authority. This emerging categorization activity that results from
the combination of a large number of users tagging resources for their own use
has been called folksonomy (e.g. [4]). The most fundamental unit of analysis of
tagging on del.icio.us is the tag set that each individual assigns to an individual
resource, which gives rise to a tag cloud, the combined set of tags all users assign
to that resource weighted by frequency. A tag cloud is therefore a multiset in
which order is ignored but multiplicity is significant.

Such a complex network of data lends itself to analysis in a number of different
forms. One obvious approach is to use any number of mathematical techniques
for the analysis of complex networks, or to find clusters in multi dimensional
spaces (e.g. [5]; [6]; [7]; [8]).

In the following section we will briefly present some select observations about
mathematical properties of "tag space". But we argue that such analyses are not
enlightening as an explanation for the way tags are used to classify resources.
Instead we argue that a cognitive perspective, which looks at the linguistic be-
havior of tags, can provide a useful explanatory account of tag use. Our analysis
suggests that naive users produce tags which display latent properties that are
typical of complex conceptual modeling activities. In section 3 we describe an
approach that can uncover the latent structure in sets of tags. In section 4 we

328 C. Veres

show that the explicit representation of this latent structure can facilitate in-
teroperability. Finally we conclude in showing that we have strong evidence for
sophisticated concept models in spontaneous, un solicited naive user tags, which
reflect fundamental properties of the cognitive apparatus.

2 Some Mathematical Observations

[6] presents a thesis on the (by now well known) observation that the distribution
of the relative popularity of tags in tag clouds approximates a power law function.
Individual URLs tend to have a few popular tags (usually less than 10 in number)
which are consistently used by a vast majority of users. [6] argues that there is
a shift in the precise function that is approximated by the tag cloud, since the
popularity of particular tags can vary due to cultural factors such as the spread
of new terminologies. But, while this is undoubtedly true in some cases, [7] show
on the basis of a large empirical sample that the shape of tag clouds tend to be
remarkably stable. In analyzing historical trends for the most popular tags used
for a given URL by an ever-increasing number of users, they make the following
interesting observations:

"One might expect that individuals’ varying tag collections and personal
preferences, compounded by an ever-increasing number of users, would yield
a chaotic pattern of tags. However, it turns out that the combined tags of many
users’ bookmarks give rise to a stable pattern in which the proportions of each
tag are nearly fixed. Empirically, we found that, usually after the first 100 or
so bookmarks, each tag’s frequency is a nearly fixed proportion of the total
frequency of all tags used." ([7], p. 6).

Fig. 1. Tag cloud of del.icio.us tags for the web site script.aculo.us

Concept Modeling by the Masses 329

An example showing this stability, as well as the approximate power law curve,
and some evidence for cultural influence in terms of the community uptake of the
term "Ajax" is shown in figure 1. (“Ajax” is represented by the slowly ascending,
second curve from the top.)

There are several possible explanations for the manifest stability, including
relatively un-interesting ones concerning the user interface to del.icio.us, which
suggests existing popular tags to each user who tags for their own use a site
which was already bookmarked by others. But [7] make an additional observation
which shows that such explanations cannot completely account for the observed
stability in tag use since the less popular tags which are not shown as suggestions
through the interface, display the same stability over time. They conclude that
"Shared knowledge among taggers may also account for their making the same
choices." Thus while the most popular tags in figure 1 evolved in full view, as it
were, of the taggers, the mass of less popular tags at the bottom of the graphic
evolved in private. But the two sorts of tags are indistinguishable in terms of their
pattern of use, suggesting that the "shared knowledge" contributes significantly
to tagging behavior. In addition, [9] suggests an interesting thought experiment.
"Suppose I am a really rich guy who wants to influence tags on del.icio.us. So
I pay 10000 people to tag resources according to my schema. I tell them to
mark one site with ’eek’, another one with ’woo hoo’, a third one with ’grumpy
grumpy head’, and so on. With enough people, these should become the most
popular tags. But how long will the dominance of these tags last? This is an
experiment that does not really need doing!". The simple point, of course, is
that the user interface suggestions are popular tags which somehow reflect the
shared knowledge discussed in [7].

In this paper we try to find the nature of that "shared knowledge". To do so, we
adopt the position that folksonomies are an abundant source of free, interesting
data which can give a clue about the way humans organize knowledge, and
about the extent to which the mentalistic organizational systems are shared. We
subscribe to the hopefully non-controversial position that mental architecture
fundamentally shapes our perceptions and organization of the world in which
we live. Perhaps more controversially we argue that essential aspects of the
mental architecture are fixed and therefore shared by all humans (e.g. [10]) The
empirical questions then become "What are the characteristics of the shared
architecture?" and "To what degree are they shared?". Clearly there are points
of difference in individual conceptualizations. I say ’Library of Congress’, but
Clay Shirky wants to say ’LOC’ [11]. Good for him. But pity the poor soul
who calls it ’the square root of a banana’ ! The point is that the mind creates
categories, because that is what minds do. These categories allow some degree of
variation, but differences are tightly bounded. The mental architecture enforces
the range of possible ontologies and taxonomies that we can bring to bear on the
understanding of our universe. All humans share fundamental aspects of mental
architecture and therefore properties of possible taxonomies and folksonomies.
Folksonomy, on this view, becomes an invaluable source of data for studying
the mental processes of naive human classifiers. Conversely, properties of the

330 C. Veres

mental architecture as known from independent sources should give us insight
into communal tagging behavior.

A second source of evidence that communal tagging is constrained by, and
therefore displays properties of, deep cognitive processes comes from looking at
so called narrow folksonomies which are to be contrasted with the broad folk-
sonomies we have been considering up until now. Tim Vanderwal coined the
two terms to describe the two styles of tagging that can be observed on different
web applications [4]. The typical behavior on del.icio.us is that many users tag
each resource, whereas on the photo sharing service Flickr the default behavior
is that tags can only be added by the original contributor and their invited con-
tacts. As a result narrow folksonomies do not display the rich collection of tags
that we saw with broad folksonomies. But if we are correct in our claim that
the emergent stability of tag clouds with broad folksonomies is due to cognitive
facts more than to social, cultural or user interface issues, then there ought to be
similar constraints on the tags observed in narrow folksonomies. Some support
for this is found through the clustering feature offered by Flickr, which identifies
groups of pictures which tend to be associated with overlapping tags, proba-
bly using k-means clustering methods. For example a search for clusters with
the word "love" returns several distinct groups with tag groups such as {heart,
red, valentine, valentinesday, nature, pink, flowers, hearts, white}, {couple, kiss,
wedding, bw, people, friends, bride, groom, romance, marriage}, {dog, cat, cute,
smile, happy, pet, puppy, cats, kitty, kitten}, and {family, mother, baby, child,
kids, fun, daughter, christmas, children, mom}. Clearly the clusters are meant
to identify overall themes in the picture collections that can be used to orga-
nize photographs. The observation that such clustering is possible suggests that
people tend to tag pictures for personal use with sufficient consistency to allow
aggregation in a useful way, even though each individual is tagging from their
own point of view in complete ignorance of the other users. On the other hand,
while clustering is a popular way to process tags for enhanced usability, they
have an inherent limitation in that they conflate many dimensions simultane-
ously [12]. The cognitive approach will give us a way to keep these dimensions
distinct.

3 A Cognitive Approach

The hypothesis that folksonomies contain hidden properties that are also ob-
servable in formal taxonomies was investigated by [13]. Inspired by the cognitive
theory of Lawrence Barsalou8 [14] and the linguistic insights of Anna Wierzbicka
[15], he described a distinction between purely taxonomic concepts and a num-
ber of other categories of concepts which were not taxonomic. The idea is that
taxonomic concepts are those which describe the basic entities in the world, and
8 We realize that there is a vast literature on human categorization that we are not

covering here, as kindly pointed out by an anonymous reviewer. We leave these out
mainly because the theoretical underpinning as elaborated in [13] would gain little
by their inclusion.

Concept Modeling by the Masses 331

can be represented in the customary generalization hierarchies where each level
in the hierarchy contains disjunctive categories whose members resemble one an-
other more closely than they do members of other categories at the same level.
Further, members of a category on a given level are also members of a category
at all higher levels. Perhaps most importantly, membership in a category allows
a large number of inferences to be drawn about entities. A clear example is in
the domain of animals: cats resemble each other more than they resemble dogs,
and all cats (and dogs) are also mammals. Cats can be further specialized as
Siamese cats and Russian Blue, where Siamese cats resemble one another more
than they resemble Russian Blues, and so on. There are also a very large number
of inferences that can be drawn about an individual if it is known to be a cat.
We know its rough dimensions, its weight, appearance, that it needs food, goes
to the toilet, likes to breathe air, and so on.

On the other hand there are a large number of categories which do not display
these properties. Consider as an example the class which is described by the
word weapon. If someone tells you that their country just acquired a fantastic
new weapon, what can you conclude about the acquired object? For sure, it can
be used to inflict harm and destruction. But how big is it? Is it solid or gas? Is it
even a substance, or is it instead a kind of psychological weapon? Does it look like
a pistol? Or an inter continental ballistic missile? Or a dog? In point of fact, very
little can be inferred from category membership, except its functional property.
Wierzbicka [15] calls these concepts purely functional ones, because they describe
heterogeneous types which can be used to fulfill a particular function. In addition,
she describes three other non-taxonomic categories as follows.

A second kind of category, exemplified by furniture, is formed because its
members are often experienced together in a common location and serving a
common function. Furniture can refer to a very loose and heterogeneous col-
lection of "things" which might include tables, chairs, lamps, ashtrays, stereo
systems, televisions, and any number of other items with very little resemblance
to one another. A third kind of category that also depends on exemplars being
collected in a common location is exemplified by groceries and dishes (as in "go
wash the dishes"). In addition to being united by a common location, exemplars
of these categories share a common explanation for their collective existence,
or a common origin: groceries can include anything put in a shopping basket
at the supermarket including non food items, and dishes can refer to any food
eating implement used for a meal including plates, pots, knives and forks. This
latter example is also interesting because it shows that ambiguity of the word
dishes: in its taxonomic use it can refer only to different kinds of dishes used for
serving food, such as cereal bowl, salad bowl, and so on; but in its collective use
it can also refer to pots and pans and forks. It is possible for elements of this
sort of category to lose their collective status as long as they retain a temporal
bond. For example leftovers can be scattered in various locations but the concept
still retains its collective status by virtue of the fact that there was some time
and place for their common place of origin. Finally, there is a category whose
exemplars have similar sources and similar purposes or functions, but aren’t

332 C. Veres

necessarily experienced together in a common collection. This sort of category
includes vegetables, medicines, and herbs. For example vegetable describes a het-
erogeneous collection of entities that people grow in the ground to be used for
food. Members of this category acquire an unusual interpretation when used in
plural form: “I had three vegetables for dinner” would seem misleading if I had
three carrots, whereas “I had three birds for dinner” would be fine if I had three
quails.

One important feature of these types of categories, as we have already hinted,
is that they can be distinguished on their grammatical properties. This is not
only theoretically interesting but also practically useful because it makes pos-
sible the automatic discovery of the appropriate type of category that a given
term represents. A comprehensive set of grammatical tests for distinguishing the
categories is detailed in [13]. As an example of distinguishing between two differ-
ent types by their grammatical properties, consider the following sets of sentence
frames. Functional category names display the following pattern of acceptable
and unacceptable (*) frames:

– a toy/vehicle/weapon
– toys/vehicles/weapons, three toys/vehicles/weapons, many toys/vehicles/

weapons
– * a lot of toy/vehicle/weapon
– a lot of toys/vehicles/weapons
– * much toy/vehicle/weapon

whereas functional collocations exhibit the following pattern of frames (note they
are almost, but not completely identical to mass nouns in their pattern of use):

– * a furniture/cutlery/clothing
– * furnitures/cutlerys/clothings, *three furnitures/cutlerys/clothings, *many

furnitures/cutlerys/clothings
– a lot of furniture/cutlery/clothing
– *a lot of furnitures/cutleries/clothings
– * much furniture/cutlery/clothing
– an item of furniture/cutlery/clothing

[13] used these categories to compare the structure of the semi formal taxonomies
used in YAHOO directory and DMOZ to categorize a resource, with the set of
tags assigned by users to the same resource. He found surprising similarities,
indicating a similar distribution of the category structures in tags and in the
directories. But an interesting difference was a disproportionately large use of
taxonomic concepts in the user tags. This is sensible if we assume that the
directory categories exist mainly to collect heterogeneous unknown resources ac-
cording to various function related criteria. In contrast, taxonomic classifications
are about single types, so the taxonomic classifiers are likely to be used more
often as tags where the resource is already known and a specific view can be
taken about their type. In the directories which are used for resource discovery
it makes sense to commit to this sort of classification less frequently. In fact in
the rare circumstance that taxonomic categories are used, they tend to be leaf
nodes where the narrow categories are more appropriate.

Concept Modeling by the Masses 333

4 Folksonomy Interoperability

The cognitive approach provides a way that latent structural information can be
extracted from user tags in a given service. But if the cognitive processes are ubiq-
uitous, then their impact should be observed in all applications that utilize user
tags. We should therefore be able to achieve interoperability of tags across different
applications. Tom Gruber, the author of possibly the most often cited definition of
Ontology, considers two possible scenarios from a future Web2.0 where this would
be beneficial; first, users might wish to interoperate different services on which
they have independently tagged content, and second, search engines might be able
to exploit user tags on different services to produce better search results[16]. In
both scenarios the key is interoperability of tags such that no one application has
precedence over another in terms of tag reference. If tags from different sources
are to be compared in some way, then there must be an explicit agreement on the
interpretation of the possible patterns of tag use. To solve this problem Gruber
suggests an ontology of tags in which the representation of each tagging instance
requires at least a four place relation: Tagging(Object1, tag1, tagger1, source1).
We could then have n-tuples of the form

– Tagging(Object1, tag1, tagger1, source1)
– Tagging(Object1, tag2, tagger1, source1)
– Tagging(Object1, tag1, tagger2, source1)
– Tagging(Object1, tag3, tagger3, source2)
– Tagging(Object2, tag1, tagger4, source2)

on which a set of axioms can be defined. These axioms might address ques-
tions like tag equivalence, for example. So, tagger1 might tag Object1 as both
tag1="san francisco" and tag2="sanfrancisco". Are tag1 and tag2 identical?
There is obviously not an absolute right answer to this, but an explicit assump-
tion could be stated in terms of axioms defined in the ontology. Then one could
go on to ask, if tag1=tag2, does this mean tagger1 only assigned one tag to
Object1? Once again assumptions made by implementations can be explicitly
stated in axioms. This proposal is about establishing the relationships between
individual tags, which precedes the more interesting possibilities for tag based
resource discovery. While tackling the issues of syntactic equivalence, synonymy
and ambiguity of tags is clearly important, the question of interoperability more
broadly construed should include notions of semantic similarity.

Suppose as a concrete example that you had several web services in regular
use, each annotated by a set of tags, and you wanted them to inter operate.
For example you could be writing a document on Writely9 the web based word
processor, which allows users to annotate documents with tags, and you wanted
to collect a set of relevant URLs from del.icio.us and a set of relevant photographs
from Flickr. Suppose the document was about the impending bird flu epidemic
in 2006, and you wanted relevant links and photos for the different content
areas in the paper. Searching for bird flu on the two services gives the results in
9 www.writely.com

334 C. Veres

figure 2. The del.icio.us tags are obtained from the list of "common tags" that
are returned from a search for "bird flu". The clusters that are returned from a
similar search on Flickr are shown on the left side of figure 2.

Fig. 2. Tags returned from Flickr and del.icio.us from a search on “bird flu”

It is quite apparent from looking at the set of returned tags that a wide variety
of topics are related to bird flu in both services, and retrieving all of the resources
on the basis of the single tag will give too many irrelevant results for a particular
interest. The problem is in identifying the relevant resources in each service and
to match them across services. The large number of tags in figure 2, mixed in
terms of focus and generality, makes it difficult to find meaningful connections
even for humans. The situation is obviously worse for automated processing. For
example, cluster2 on Flickr appears to be more about travel, or geography, than
the bird flu. How is an automated process to make sensible connections? Which
cluster will contain photographs to match the content on del.icio.us?

Our claim in this paper is that tags on both services contain a latent structure
which explains their cognitive associations to the various resources, and provides
some semantics for the associations. Exposing this structure will clarify the ways
in which various tags relate to one another across applications. The process for ex-
posing the latent structure involves a number of steps of natural language process-
ing, and the details are beyond the scope of this paper. (A forthcoming paper will
detail this process). However, a brief summary is given here. First, tags are cate-
gorized according to a rough division according to the primary grammatical cat-
egories Noun, Proper Noun, Verb, Adjective/Adverb. This requires a number of

Concept Modeling by the Masses 335

heuristics to resolve ambiguities when they arise. Then the Nouns are further sub
divided according to the categories outlined above. Currently this involves man-
ual grammaticality decisions using the templates discussed earlier, but work is well
underway toward automating the process. The outcome of the process is the divi-
sion of the tags into a number of distinct grammatical/semantic categories which
are shown with a human interpretable label in figure 3. For example the gram-
matical category of nouns which describe entities united by a common function
are labeled as a category of "related things with common uses, roles". Similarly,
taxonomic categories are labeled "What kind of thing is it?".

Fig. 3. Tags categorized by grammatical/semantic type

The grammatical/semantic categories tend to group the tags in sensible groups
which makes their relationship to the resource, and each other, clear. For exam-
ple the taxonomic tags on del.icio.us {bird, blog, virus, flu, influenza} refer to
specific kinds of entities that are involved in the function/role connected events
{pandemic, disease, emergency, food, maps}, and have come to be referenced
with the common names {birdflu, avianflu, china, google}. The categories group
tags in semantically distinguished relations to the resource. The inclusion of
terms like "google" in the original tag set is odd, probably reflecting the per-
ception that Google somehow plays an important part in our awareness of the
disease. But our categories help with this, telling us that Google is not one of
the things that the tag bird flu is about; it is about birds, viruses, and diseases.

Let us now compare tags across the two services by trying to match the tags
in the available categories.

336 C. Veres

1. Taxonomic, which tells us specific kinds of things. Four out of five elements in
the del.icio.us set match tags in cluster 1 of Flickr, only one matches cluster
2, and none match cluster 3. If we try to expand the matching process by
supplementing each tag with synonyms and more/less general terms from a
resource like WordNet, we discover that all of the tags in Flickr cluster 2,
and bird in del.icio.us fall in the same hierarchy of terms. It is important to
note that using WordNet in the comparison process is simplified because the
linguistic categories reduce the number of terms that need to be compared.
We can therefore specify more precise search phrases on both resources,
based on the two matching groups of taxonomic terms, which will retrieve
two sets of matching results. {virus + flu + influenza} and {bird + chicken
+ poultry + hen + animals}

2. Function, which tells us about the uses and roles of the resources. Again if we
compare across the two services we find two matches: an exact match on pan-
demic, and a match that can easily be derived through the synonym set for
market in WordNet: [grocery store, grocery, food market, market]. The third
cluster on Flickr is once again without a match. The search terms again are
expanded by inserting into the cluster that was matching in the taxonomic
classifications. The sets become: {virus + flu + influenza + pandemic} and
{bird + chicken + poultry + hen + animals + market}

3. Names. Again there is a straightforward match between delicious and the
two clusters. In addition, there is now a match for cluster 3, so we begin
a new set: {virus + flu + influenza + pandemic + birdflu + avianflu} and
{bird + chicken + poultry + hen + animals + market + china + birdflu},
{bidflu}

At the end of the matching process we have three sets of tags that identify
matching content on the two services. This can be used in several ways, but we

Fig. 4. Flickr photographs and matching del.icio.us URLs for the search phrases [poul-
try market china bidflu] and [flu pandemic birdflu]

Concept Modeling by the Masses 337

illustrate with simple search. Submitting all search terms as a conjunctive search
yields no results because the phrase is overly specific. We therefore submitted
only the most general term from each category of nouns, yielding a small number
of resources in both services. Figure 4 illustrates a sample pairing of Flickr
photographs and del.icio.us URLs.

The ontology helps inter operation in two ways. First, it reduces the number
of nodes to be compared by introducing independent dimensions of comparison.
While some correspondences between tags could be established without the lin-
guistic categories, the search space would be much higher, as noted in point 1
above. But equally importantly the semantics of the groupings is uncovered. So,
for example, if we have the need to manipulate the search terms as above, we
have semantically distinct groupings that can be treated differently. We know for
example that proper names do not have more general terms, so we can’t exclude
any of them. On the other hand we could exclude all taxonomic terms and only
use functional ones, to get all markets in China, not just poultry ones.

5 Conclusion

We have argued that folksonomies which reportedly have no structure or con-
straint on their properties in fact do have rich structure, determined by the
properties of our mental faculties. We have shown a method that can expose
significant aspects of that structure, together with a semantics that can be used
to construct an ontology from the folksonomy basis. This ontology, we argue,
is a simple conceptual domain model built through an unconsciously mediated
collaboration. Finally, we showed a way in which the ontologies can facilitate
interoperability between application dependent tag sets.

The work described in this paper has lofty goals, but is described in the spirit
of the emerging Web2.0. That is, the content that is needed for the complex op-
erations is collected as a default behavior of system use. Value can be added to
existing applications without first solving all the complex problems. Enhancing
manual operation of tag based services is only first goal. Once the data is avail-
able, it can be used to research more complex problems addressing automation
and, eventually, bootstrapped into enabling interoperability in the most complex
Semantic Web applications.

Acknowledgments. This work was sponsored by the Norwegian Research
Council, WISEMOD project, 160126V30 in the IKT-2010 program.

References

1. Levy, S. and Stone, B. The New Wisdom of the Web. Newsweek, April 3, 2006.
http://www.msnbc.msn.com/id/12015774/site/newsweek/

2. Boutin, P. Web 2.0 The new Internet "boom" doesn’t live up to its name. Slate.
Posted Wednesday, March 29, 2006, http://www.slate.com/id/2138951/

3. Udell, Jon. Collaborative knowledge gardening. InfoWorld. August 20, (2004).
http://www.infoworld.com/article/04/08/20/34OPstrategic_1.html

338 C. Veres

4. Vanderwall, T. Explaining and Showing Broad and Narrow Folksonomies,
http://www.vanderwal.net/random/entrysel.php?blog=1635, February 21, (2005)

5. Shen, K. and Wu, L. Folksonomy as a Complex Network. Computer Science, ab-
stract cs.IR/0509072. http://arxiv.org/abs/cs.IR/0509072, (2005)

6. Speroni, P. On Tag Clouds, Metric, Tag Sets and Power Laws
http://blog.pietrosperoni.it/2005/05/25/tag-clouds-metric/ (2005)

7. Golder, S., and Huberman, B. A. The Structure of Collaborative Tagging Systems,
http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:cs/0508082 (2005)

8. Grigory Begelman, G. Keller, P. and Smadja, F. Automated Tag Clustering: Im-
proving search and exploration in the tag space. Collaborative Web Tagging Work-
shop, 15 th International World Wide Web Conference, Edinburgh, Scotland, 2006.

9. Veres, C. Emerging Patterns. http://csabaveres.net/blog8/?p=7 February, 7,
(2006)

10. Jackendoff, R. Semantics and Cognition Cambridge, Mass. MIT Press (1983)
11. Shirky, C. Matt Locke on folksonomies. March 01, 2005. http://many.corante.com/

archives/2005/03/01/matt_locke_on_folksonomies.php
12. Hearst, M. Clustering versus Faceted Categories for Information Exploration, Com-

munications of the ACM, 49 (4), April 2006
13. Veres, C. The Language of Folksonomies: What tags reveal about user classifica-

tion. In Natural Language Processing and Information Systems. Proceedings of the
11th International Conference on Applications of Natural Language to Information
Systems May 31 - June 2, Klagenfurt, Austria. Springer, LNCS 3999. (2006)

14. Barsalou, Lawrence W. Deriving categories to achieve goals. in Bower, G. (Ed.)
The Psychology of Learning and Motivation: Advances in Research and Theory,
Academic Press, 1991.

15. Wierzbicka, A Apples are not a ’kind of fruit’: the semantics of human categoriza-
tion. American Ethnologist 313–328 (1984)

16. Gruber, T. Ontology of Folksonomy: A Mash-up of Apples and Or-
anges. http://tomgruber.org/writing/ontology-of-folksonomy.htm#_edn4, Jan 19,
(2006)

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 339 – 353, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Method Chunks for Interoperability*

Jolita Ralyté1, Per Backlund2, Harald Kühn3, and Manfred A. Jeusfeld4

1 CUI, University of Geneva, Rue de Général Dufour, 24, CH-1211 Genève 4, Switzerland
Jolita.Ralyte@cui.unige.ch

2 University of Skövde, P.O. Box 408, SE 541 28 Skövde, Sweden
Per.Backlund@his.se

3 BOC Information Systems GmbH, Rabensteig 2, A-1010 Vienna, Austria
Harald.Kuehn@boc-eu.com

4 Tilburg University, CRISM/Infolab, 5000 LE Tilburg, The Netherlands
Manfred.Jeusfeld@uvt.nl

Abstract. Interoperability is a key property of enterprise applications, which is
hard to achieve due to the large number of interoperating components and
semantic heterogeneity. Platform-based approaches such as service-oriented
architectures address the technical integration of systems. However, a deep
integration needs to cover the whole lifecycle of the interoperable system. We
propose method engineering as a means for encoding situated knowledge about
achieving interoperability in the form of method chunks. We analysed the field
of interoperability for enterprise applications and propose that a tool modelling
the business- and ICT-related choices in the form of method chunks is needed
for a knowledge-based solution of interoperability problems. An industrial case
is included to back our claims.

1 Introduction

The competitiveness and efficiency of an enterprise largely depends on its ability to
interact with other enterprises and organisations. Not only large organisations set up
cooperation agreements with other enterprises, also small and medium sized enter-
prises are combining their forces to compete jointly in the market. This evolution
makes interoperability between enterprises and software systems an increasingly
important issue. Interoperability is one of the key challenges for modern enterprises.

The problem of interoperability is as old as the existence of software systems. A
first idea was to make enterprise applications interoperable via central databases.
This approach failed in practice because not enough semantics could be covered in
the database schema to understand the semantics of data. As a consequence, non-
interoperable applications were created based on decentralised data management.
The next attempt was to save the original vision of data independence by so-called
federated databases. For the same reason as for the central databases, this approach
has not passed the test in practice: it is almost impossible to create a global

* This research has been carried out within the INTEROP Network of Excellence (Contract N°

IST-508011) and supported by the Swiss National Science Foundation (N° 200021-103826).

340 J. Ralyté et al.

understanding of data without referring to application semantics, let alone business
semantics.

Another school of interoperability has been concerned with standardising system
interfaces in a way that one system can call the other system. This has led to platforms
such as RPC, CORBA, J2EE and .NET, to name a few. Here, the problem of interop-
erability is only addressed at the technical level and fundamentally relies on informa-
tion hiding. It may be perfectly feasible to call a remote service with the parameter
values that are completely non-sensical.

We claim that we need a domain-dependent approach to interoperability. Rather
than focusing on technical interoperability alone (which is mainly solved by industry
standardisation), we propose to encode successful solutions to interoperability prob-
lems as suggested in Situational Method Engineering [13]. Some solutions deal with
technical interoperability problems; others are about aligning business processes.
Situational Method Engineering promotes project-specific method construction by
selecting and assembling method fragments [3] or chunks [16, 20] stored in a method
repository [3, 6, 16, 19] hence addressing the method requirements of the specific
project. The repository then becomes the common knowledge base which can aid in
interoperability solution projects. Hence, our approach can contribute in the early
stages of such projects by setting up a project specific method. In this sense we envis-
age method engineering as a knowledge management application for projects within
the interoperability domain. Instead of providing one universal method for interopera-
bility problems solution we propose to define a knowledge base of reusable method
chunks each of them addressing one or more specific interoperability problems. The
latter are grouped in an extensible hierarchy of interoperability problem classes.

The remainder of this paper is organised as follows. In section 2 we characterise
the field of interoperability between enterprises and systems. Section 3 presents an
industrial case and identifies some associated interoperability problems. In section 4
we discuss how situational method engineering and the notion of reusable method
chunks can be adopted to structure specific solutions to interoperability problems. The
paper ends with a review of this work, and outlines future research.

2 Characterising the Interoperability Domain

Interoperability may be seen as “the ability for a system or a product to work with
other systems or products without special effort of the part of the customer” [10].
Interoperable systems have been the goal for quite some time. However, there are
some obstacles in terms of technology, organisational problems and powerful tech-
nology vendors [15, 7]. The basic infrastructure seems to be in place [15] but we have
not yet achieved sufficient interoperability. The problem is well known and recurring
in many domains, some examples are: database schema integration [18], interopera-
bility between modelling techniques [5], interoperability in metamodelling platforms
[14], interoperability of ERP with other systems [1], and CNC manufacturing [23].

Interoperability is not only a problem concerning software and technologies. It is
also a problem that concerns knowledge and business references that must be shared
in order to achieve interoperability [4]. Hence, interoperability is described in terms

 Method Chunks for Interoperability 341

of a three-layered model consisting of a business layer, a knowledge layer and an ICT
systems layer. In order to achieve meaningful interoperation between enterprises,
interoperability must be achieved on all layers of an enterprise. This includes the
business environment and business processes on the business layer, the organisational
roles, skills and competencies of employees and knowledge assets on the knowledge
layer, and applications, data and communication components on the ICT layer. In
addition, semantic descriptions can be used to get the necessary mutual understanding
between enterprises that want to collaborate.

Similarly, Mak and Ramprasad [15] point out that organisations must be able to
contact each other using agreed protocols, share a common language, agree on goals
and tasks, and have people assigned to complete these tasks in order to achieve inter-
operability. Moreover, we may not assume that interoperability concerns only the
interoperability between enterprises.

We also draw on the experience of systems integration [8, 7] to further characterise
the concept of interoperability. Wainwright and Waring [24] show that the term inte-
gration is open for interpretation, as is indeed the term interoperability. There are four
domains of integration: technical, systems, strategic, and organisational. The technical
domain corresponds to the ICT layer, which is further, refined into application, data
and communication interoperability [22]. Johannesson and Perjons [12] propose three
types of architectures for application integration: point-to-point, message brokers, and
process brokers. We complement these views by making a distinction between devel-
opment and execution with respect to the ICT layer. The development aspect concerns
all parts of the systems development life cycle whereas the execution aspect focuses
on runtime issues.

The business and knowledge layers are further refined in the systems, organisation
and strategic domains [24]. The systems domain encompasses approaches to under-
stand the technical, strategic and organisational behaviours from a holistic perspec-
tive. That is, organisations are complex and any effort has to handle all aspects in
order to achieve interoperability between systems. Interoperability is a strategic issue;
hence interoperability has to incorporate strategic planning for the entire system.
Finally, the organisational domain encompasses issues such as work practices, power
and knowledge sharing which are all affected if enterprises are to be interoperable.
Interoperability between two organisations is a multifaceted problem since it concerns
both technical and organisational issues, which are intertwined and complex to deal
with. We summarise our view of interoperability in Fig. 1.

There are already various technologies to realise interoperability; some examples
are TCP/IP, XML, SOAP and BPEL. However, true interoperability is not yet here
since enterprises running different applications built with different designs and archi-
tectures still have difficulties talking to each other [15]. Whereas achieving interop-
erability also has to do with cooperative work between people from different organi-
sations. Furthermore, we also note that interoperability in the organisational and stra-
tegic domains also remain to be achieved in many cases.

Divergence and interoperability is a well-known problem in the open source soft-
ware (OSS) community. A study by van Wendel de Joode and Tineke [25] reveals a
set of strategies for dealing with interoperability issues within OSS projects. In

342 J. Ralyté et al.

general, two types of strategies are used: committee standardisation and market coor-
dination. We also observe that coding style guidelines and respected gatekeepers, i.e.
a knowledgeable and trusted person, are two important means for coordination [25].

Business

ICT

Strategic

Operational

Development

Execution

Knowledge

Strategies for the
complete system

Business

ICT

Strategic

Operational

Development

Execution

Knowledge

Strategies for the
complete system

Interoperability

Organisation A Organisation B

Business

ICT

Strategic

Operational

Development

Execution

Knowledge

Strategies for the
complete system

Business

ICT

Strategic

Operational

Development

Execution

Knowledge

Strategies for the
complete system

Interoperability

Organisation A Organisation B

Fig. 1. Interoperability between two organisations entails interoperability in all domains

Interoperability is to be facilitated by combining knowledge concerning architec-
tures and enabling technologies (to provide implementation frameworks), enterprise
modelling (to define interoperability requirements) and ontology (to identify interop-
erability semantics of enterprises). The three knowledge domains identified by NoE
INTEROP [10] have been further analysed to identify relevant interoperability prob-
lems [17]. From the perspective of our work we note that data integration and busi-
ness process integration were identified as recurring problems. Hence, we find this
issues relevant and worth pursuing from the interoperability perspective.

3 Interoperability in the Insurance Domain: A Case

In this section we analyse an industrial case of interoperability in the insurance do-
main and identify interoperability problems related to this case. We classify them
following our characterisation framework presented in Fig. 1.

3.1 Business Model

Insurance companies develop business models based on Internet technology either to
reduce administration costs or to establish new sales channels. They have to establish
a well-defined strategic position in the network of their competitors - especially when
they join together to establish a common Internet platform for their sales partners, e.g.
agents and brokers, to share platform development and operation costs.

The following industry case describes a B2B sales platform for insurance partners
based on Internet technology ("insurance portal"). The main objective of the insur-
ance portal is to support independent insurance agents with a single point of access to
products and services of different insurance companies. An agent is working for sev-
eral competing insurance companies on a commission basis. Some advantages for the
agents are a single point of access to reduce cycle times for business processes such as

 Method Chunks for Interoperability 343

offer management, contract management, and portfolio management, less administra-
tion costs, and improved service quality because of a broad product and information
portfolio. Some advantages for the insurance companies are reduced maintenance and
operation costs for their partner systems due to cost sharing and an enlarged sales
force because of potentially new agents.

Sales Partner
(e.g. agent, broker,

agencies etc.)

Customer
(i.e. buyer of

insurance products)

Sub Service
Provider

Insurance
Company

Insurance
Platform

(operated by
platform company)

21

6 5

3a

3b
4a

4b

7

8

Sales Partner
(e.g. agent, broker,

agencies etc.)

Customer
(i.e. buyer of

insurance products)

Sub Service
Provider

Insurance
Company

Insurance
Platform

(operated by
platform company)

21

6 5

3a

3b
4a

4b

7

8

Fig. 2. Business Model from Insurance Domain based on Common Platform

Fig. 2 describes the business model of this industry case, i.e. how the different
business participants interact with each other to create business value. Customers
interact with their sales responsibles e.g. agents, brokers, agencies etc. (step 1). A
sales responsible uses the insurance portal to execute his business processes such as
offer management, order management, policy management etc. For example, a broker
may request certain product offers (step 2) which are calculated and returned to him
(step 5), and then sent to a customer (step 6). The insurance portal, or more precisely
the company operating the platform, interacts with different sub providers such as
application hosting companies, security companies, customer information suppliers
etc. to fulfil its tasks (steps 3a and 4a). Additionally, the company operating the plat-
form interacts with the insurance companies to exchange product data, customer data
etc. (steps 3b and 4b). Finally, the customer signs a contract with the insurance com-
pany, which provided the best offer, and pays the insurance fee to the insurance com-
pany (step 7). The insurance company delivers the appropriate contracts, pays the
commission fees, and fulfils its part of the insurance contract (step 8).

All interactions within this business model raise issues concerning interoperability.
To structure these issues we use three of the interoperability domains proposed in
chapter 2, namely the strategic business domain, the operational business domain, and
the ICT domain including development and execution aspects.

3.2 Interoperability Issues in the Strategic Business Domain

In the strategic business domain, the business strategy of each participating partner
has to be defined in the context of the insurance portal and interoperability questions
such as the following have to be answered:

344 J. Ralyté et al.

• Which are the processes and services (products) to be realised on the platform?
Processes, services (products) and their interdependencies have to be identified. In-
tra-organisational business processes (e.g. user management on the platform) and
inter-organisational business processes (e.g. application and claims processes) can
be distinguished.

• Which are the appropriate business partners to develop and run the platform?
According to the required processes and services (e.g. insurance core services, con-
sulting services, implementation and provider services) partners are involved with
different contractual relationships (e.g. associate, supplier, customer etc.).

• Does the business plan of the platform correspond with the business plans of each
partner? Each partner has to agree upon the platform strategy. For example, the
standardisation of strategies of competitors participating in the platform may imply
the request of investigation of antitrust law. Furthermore, advantages realised by
one partner may damage business of another partner (e.g. insurance company A de-
livers a particular insurance policy within one day, insurance company B in seven
days).

3.3 Interoperability Issues in the Operational Business Domain

In the operational business domain the various types of processes have to be deter-
mined. The business processes have to be modelled in detail with a special focus on
the products and interfaces between the business actors involved. The roles of each
business actor also have to be modelled. Business processes can be divided into the
following types:

• insurance core service processes, e.g. application processes and claims manage-
ment,

• value adding processes, e.g. cash management processes and event management,
• development processes, e.g. business and software development based on the core

elements: products, processes, organisational units and information technology,
• business operations processes, e.g. process integration of business partners and
• additional services, e.g. legal advisor services, training and learning.

The following list shows some areas of interoperability problems and opportunities
in the business domain:

• Product Management: In every realisation state a set of products is integrated into
the platform, which entails new requirements for the business processes. Implica-
tions for the software development and integration efforts of the insurance partners
should be evaluated as early as possible.

• Process integration of business partners: Each actor participating in the platform
realisation can be certified with respect to its business processes. Some criteria are
complexity of interfaces (business operations as well as data flow), process bench-
marks, availability and integrity.

• Training and Learning: Business processes can be documented online for learning
the sequence of operations of core processes as well as administrative processes.

 Method Chunks for Interoperability 345

• Pricing Model: Agents pay for using the insurance portal. If insurance companies
want to consolidate their customer database, the platform company can reduce the
cost of the business process “Customer Data Modification” to encourage the agents
to reach insurance partners objectives.

• Test Management: In combination with the product model, a set of test cases can
be developed as a specification for testing the platform application and interopera-
bility.

3.4 Interoperability Issues in the ICT Domain

The ICT domain is divided into development issues and execution issues. The insur-
ance portal consists of a core service application, dynamic HTML-based user interface,
complex application modules etc. During platform development typical interoperability
problems are:

• How can the different viewpoints of requirement definition be integrated e.g. how
can the metamodels of the specification models be integrated?

• Which implementation technologies and target platforms will be used and how will
they be integrated?

• What are the different modules of the implementation environment and how can
they be integrated?

• Which runtime libraries can be used and how can they be bound to the develop-
ment environment?

The execution domain is influenced by short release cycles - especially driven by
short term content such as news and events and by a high fluctuation of platform
users. Business operation processes such as content management processes, user man-
agement, and first and second level support, are documented by exporting all required
information in a process-based online operating instructions manual. Some interop-
erability problems in the execution domain are:

• Data conversions: Customer data, contract data, product data etc.
• Component integration: How can different components of functionality be oper-

ated within a single business service (even if they are realised with different tech-
nologies)?

• How can long lasting transactions be synchronised and consistently integrated?

3.5 Summary of the Case

The above case study is based on a real industrial project. It shows that an ICT
project integrating several organisations is typically characterised by a multitude of
interoperability problems, in our case totalling to about 20. It also shows that a
purely ICT-based answer to the interoperability problem is not only insufficient but
also misses the: first one has to solve the business-related interoperability problems
before one can tackle the ICT-related issues. A consistent method that will solve all
possible interoperability problems does not exist because the business and ICT

346 J. Ralyté et al.

domains are too diverse. Instead of a single method, an extensible and domain-
specific knowledge base of method chunks shall support the development of inter-
operable systems.

4 Situational Method Engineering to Support Interoperability

We use the term method to denote a regular and systematic way of accomplishing a
result. Methods cover a wide spectrum of industrial capabilities and services incorpo-
rated in either pragmatic or scientific working methods. Moreover, we claim that a
method may be decomposed into a set of method chunks [20]. In the realm of meth-
ods there is a lack of a cohesive body of knowledge concerning interoperability issues
as characterised in section 2, i.e. traditional methods have not managed to solve the
interoperability problem. We argue that this is the case due to the inherent complexity
and multi-facetedness of the area. In this sense, we propose method engineering as a
knowledge management application. Systems development has been characterised as
knowledge work [11, 9]. In this context, we view the development method as a body
of knowledge. In order to make it an active body of knowledge it has to be made
available for use, update and refinement, something which may be achieved by con-
structing a dynamic method chunk repository [2, 16, 19].

In the following we will demonstrate how Situational Method Engineering can
help in solving parts of the problem of managing interoperability knowledge. More
precisely, we consider specific method chunks dealing with interoperability problem
solutions such as guidelines and models for data exchange, data integration, informa-
tion logistics mapping, model transformation and comparison.

4.1 Method Chunk

We propose to use the notion of reusable method chunk [16, 20] to represent meth-
odological knowledge related to interoperability. A method chunk is an autono-
mous, cohesive and coherent part of a method providing guidelines and related
concepts to support the realisation of some specific system engineering activity. A
method is viewed as a collection of loosely coupled method chunks expressed at
different levels of granularity. Such a modular view of methods favours their adap-
tation and extension and permits to reuse chunks of a given method in the construc-
tion of new ones.

As illustrated in Fig. 3, from the engineering perspective the body of a method
chunk includes two types of knowledge: the process model, also called guideline,
supporting the engineer in method chunk application, and the product model defining
concepts, relationships between concepts, and constraints used by the corresponding
process. The structure of a guideline can be found in [16, 20]. It can be more or less
rich and represented as an informal description or expressed by using different proc-
ess modelling formalisms. Application examples can be provided in order to help the
method engineer to apply the method chunk.

The context in which a method chunk is relevant is defined in its interface. It is
formalised by a couple <situation, intention>, which characterises the situation in

 Method Chunks for Interoperability 347

which the method chunk can be applied in terms of required input product(s) and the
intention, i.e. the goal, that the chunk helps to achieve.

AtomicAggregate

2..*

*
1

1 1..*Reuse Situation

Reuse Intention

Criterion

Descriptor

1

1..*

*

1..*
Interoperability Problem

1..*

Experience
Report

Origin

1..*

1

Method

*
1 1

1
is based on

Interface

1

Not-Chunk1..* 1

1

Situation

Intention

target

1..*

1..*

*

has

1..*1..*

1..*

contains

1..*

1

Body

Process Model

Product Model

Guideline Product
Part

is based on

represented
by

Method
Chunk

ID
Name
Objective
Score

Method
Chunk

ID
Name
Objective
Score

1..*

1..*

1

1..*

Example

*

1

Fig. 3. Metamodel of method chunk

A set of characteristics, called a method chunk descriptor, is associated to each
chunk in order to better situate the context in which it can be reused. The reuse inten-
tion expresses the generic objective that the method chunk helps to satisfy in the cor-
responding engineering activity. The reuse situation captures a set of criteria charac-
terising the context in which the method chunk is suitable. A detailed classification of
these criteria, named Reuse Frame, can be found in [16]. Some examples of such
criteria are: system engineering activity (e.g. business modelling, requirements speci-
fication and design) in which the method chunk is relevant and characteristics of the
application domain (e.g. application type, impact of legacy system and application
technology). While the reuse situation and reuse intention are expressed by using
keywords defined in the MCR glossary and the reuse frame, the objective of the
method chunk provides a narrative explanation of its role.

Due to the fact that in this work we consider specific method chunks dealing with
interoperability problems solution, we explicitly relate each method chunk to the
corresponding interoperability problem identified in the interoperability classification
framework illustrated in Fig. 1.

The descriptor also contains the information necessary for method chunk identifi-
cation and selection such as name, ID, information about its structure (i.e. atomic or
aggregate) and origin (i.e. the existing method or best practice provider). It can also
include experience reports in order to help the method engineer to evaluate the appro-
priateness of the method chunk to a given situation.

348 J. Ralyté et al.

4.2 Method Chunk Repository for Interoperability

In our approach, the knowledge about interoperability, based on experience and
best practices or extracted from existing system engineering methods, is formal-
ised in the form of reusable method chunks stored in a Method Chunk Repository
(MCR). The process of method chunks reuse in a specific project consists of three
steps: evaluating the interoperability problem at hand, selecting the appropriate
method chunks from the MCR and, finally, assembling these method chunks into a
situation-specific method. The last step is not tackled in this paper, see [16, 21] for
details. In order to support the situation evaluation and selection process, we pro-
vide a metamodel depicted in Fig. 4 for interoperability problems definition and
classification. The metamodel only shows the highest abstraction level of the
classification.

 Interoperability
Problem

Organisational
Knowledge

Organisational
Strategy

Business ICT

Strategic Operational Development Execution

Concerns

* *

Concerns

**

B2B
Architecture

Data
Integration

…Product Process
Dependency

… … …

Interoperability
Problem

Organisational
Knowledge

Organisational
Strategy

Business ICT

Strategic Operational Development Execution

Concerns

* *

Concerns

**

B2B
Architecture

Data
Integration

…Product Process
Dependency

… … …

Fig. 4. Metamodel for interoperability problems classification

The interoperability problem identified is matched with those supported by method
chunks stored in the MCR. Let us suppose the question: “How can we integrate the
product data of several insurance companies?” We can identify that the interoperabil-
ity problem that we are facing is classified as “ICT.Development.Data_Integration”.
The next step would be to ask the MCR to retrieve all method chunks associated to
this interoperability problem.

4.3 Identifying Method Chunks for Interoperability: An Insurance Case

Based on the practical experiences in the insurance case we have identified several
method chunks dealing with interoperability problems. Due to the lack of space, we
present only two of them. Among the interoperability problems identified in section 3,
we have selected one from the strategic and operational business domain and one
from the ICT domain, which will be addressed to show how method chunks can be
utilised to represent this knowledge.

 Method Chunks for Interoperability 349

Method Chunk: Product Process Dependency
Different enterprises form a supply chain and they have to align their products and
their business processes. It must be defined which products and product definitions
are interrelated with which processes and process interfaces. The method chunk be-
low proposes a solution for this kind of interoperability problem.

Chunk ID: MC01 Name: Product Process Dependency
Objective: Identify dependencies between products and their corresponding business processes as
basis for business alignment.
Type: Aggregate Origin: BOC Information Systems
Interoperability problem: Business.Strategic_and_Operational.Business Alignment
Reuse situation:

Application domain.Application type.Inter-organisation application
Application domain.Impact of legacy system.Functional domain reuse
System engineering activity.Business modelling.Business process alignment
Innovation level.Business innovation

Reuse intention: To align product definitions and business process definitions.
Interface:

Situation: Products and business processes of partner enterprises.
Intention: To define integrated product and process modelling language.

Body:
Product Part: Integrated definition of products and business processes.

Business Model

Business
Value

Product

creates

Business
Benefit

handles
has

interacts with

Employee Customer Supplier

Flow
Object

Sub-
process

information
flow

control flow

Decision Parallelity
Synchroni-

zation
End

Process
Start

Activity
Business

Process Model

responsible for

Task

Interface

Business
Actor

connects

consists of

Price
has

has value
for

Guideline: Define the product structure in accordance with the business metamodel. Define the busi-
ness process structure. Assign the responsible business actors to the activities and sub-processes of the
business process. Define the interfaces which are necessary to connect the activities and sub-processes.
By assigning the product responsibilities between products and business actors, the dependencies be-
tween products and business processes are defined transitively.
Application Example:
An application example of this method chunk is the definition of insurance products and their interde-
pendency to business processes executed in the insurance portal. A life insurance product consists of
sub-products such as risk insurance and font investment. A life insurance process consists of sub-
processes such as insurance application, risk check, contracting and payment. Employees of insurance
companies are responsible for executing the sub-processes. These employees are also handling several
insurance products. Via this, the product process dependency is defined.

350 J. Ralyté et al.

ICT Method Chunk: B2B Architecture
Different companies want to establish a common Internet-based platform implement-
ing parts of their e-business processes. The existing company strategies, business
processes and information systems have to be interoperable with this new platform.

Chunk ID: MC02 Name: B2B Architecture
Objective: To provide a general architecture for a collaborative Internet-based partner platform.
Type: Atomic Origin: BOC Information Systems
Interoperability problem: ICT. Development. B2B Architecture Design
Reuse situation:

Application domain.Application type.Inter-organisation application
Application domain.Impact of legacy system.Functional domain reuse
System engineering activity.Design
Innovation level.Technology innovation; Business innovation

Reuse intention: To establish a common Internet-based platform.
Interface:

Situation: The strategies, business processes and information systems of the involved companies.
Intention: To define building blocks for a B2B system.

Body:
Product Part: General software architecture of a B2B platform. The arrows depict the different

places of interoperability.

(Temporary) Database
of External Data

(e.g. products etc.)

Application Server/
Business Services

Web Browser

Web Server/
Servlet Server

Platform Database
(internal data)

Company Components
(deployed

to platform)

Company Services
(integrated

into platform)

Company Data
(used

within platform)

…

Analysis and
Retrieval Services

Security Services

Customer Information
Services

…

Sub Service Providers

Partner
Platform

Partner CompaniesPlatform
Users

(Temporary) Database
of External Data

(e.g. products etc.)

Application Server/
Business Services

Web Browser

Web Server/
Servlet Server

Platform Database
(internal data)

Company Components
(deployed

to platform)

Company Services
(integrated

into platform)

Company Data
(used

within platform)

…

Analysis and
Retrieval Services

Security Services

Customer Information
Services

…

Sub Service Providers

Partner
Platform

Partner CompaniesPlatform
Users

Guideline: Identify participants involved in operating and using a B2B platform. For each partici-
pant assign which of the generic building blocks are provided/used. Build an instance of each generic
building block for the specific case. Describe the interrelationships within the B2B platform for each
building block instance.
Application Example: An insurance portal. The identification and assignment is as follows:
Platform users (sales agents, brokers etc.): the sales partners access the portal via Internet and web
browser technology.
Insurance partner platform: The access of the business functionality and the generation of the user
interface are via web server / servlet server. The business functionality runs on an application server.
The application server stores platform internal data in the platform database. External (and temporary)
data are stored in the database for external data. Via business services of the application server sub
service providers and insurance companies interoperate with the insurance partner platform.
Insurance companies: The insurance companies provide components (e.g. product calculators, risk
check modules etc.), services (e.g. printing, mailing etc.), data (e.g. customer data, contract data, prod-
uct data etc.), which have to interoperate with the insurance partner platform.
Sub service providers: The sub service providers provide services such as analysis and retrieval services
(e.g. data analysis, management reports, statistical evaluations etc.), security services (e.g. trust centres
certificate management etc.), customer information services (e.g. credit agency services, market evalua-
tion etc.), which have to interoperate with the insurance partner platform.

 Method Chunks for Interoperability 351

The above two method chunks have to be seen as examples. A realistic method
chunk repository shall contain hundreds of chunks of varying complexity. While the
reusable chunks are formulated on generic type level, a specific case like the insur-
ance case is formulated at a lower abstraction level, the instance level. By making the
instance level explicit, the method chunk repository is extended to an experience
based knowledge base (Fig. 5).

 Interoperability
Problem

Method
Chunk1..*1..*

Experience
Report

*

1

Problem Instance

*

1 0..1

1

Grade

Aspect

Type level

Instance level

Interoperability
Problem

Method
Chunk1..*1..*

Experience
Report

*

1

Problem Instance

*

1 0..1

1

Grade

Aspect

Type level

Instance level

Fig. 5. Instance level in the method chunk repository

The interoperability problems from the case are formulated as a set of problem in-
stances, which are classified into the hierarchy of interoperability problems (see also
Fig. 4). When a case has been completed by executing suitable method chunks, an
experience report is added to the repository that includes a critical review of the merit
of the selected method chunk to solve the problem instance(s). By storing this infor-
mation, subsequent cases can exploit the experience from earlier cases and select
those chunks that earned high grades in the earlier cases.

5 Conclusions

Interoperability is an issue that arises when multiple organisations need to cooperate
via information systems. We proposed a knowledge-based approach where solutions
to common interoperability problems are encoded as method chunks. These method
chunks together with experience reports and an extensible taxonomy of interoperabil-
ity problems form the basis of a method chunk repository, which we are currently
developing in the NoE INTEROP [10]. We see the following contributions of this
paper:

• The new method chunk metamodel allows to link best practices for achieving in-
teroperability to specific interoperability problems. It covers best practices from
the business domain (e.g. aligning the business processes of enterprises) as well as
from the ICT domain (e.g. integrating heterogeneous product catalogues).

• The proposed solution provides a possibility to go from generic knowledge of
interoperability, via experiences of applying that knowledge, to a specific body of
interoperability knowledge.

• The usefulness of the new method chunk data structure has been demonstrated by
applying them to a real-world interoperability case.

A prototype for the method chunk repository is under development using the
METIS tool [26] in cooperation with the METIS developers. The metamodel of Fig. 3
has been mapped to METIS meta classes. The two cases sketched in this paper have

352 J. Ralyté et al.

also been represented. It turned out the METIS knowledge base already had many of
the business process modeling features used in the first method chunk example. For
METIS, methods chunks are regarded as a substantial extension to the tool's capabili-
ties since they are encoding procedural knowledge. The tight integration to the enter-
prise modelling views in METIS shall make it possible to automate parts of the
method chunk execution, in particular model transformation. For non-automated
parts, the system can provide assistance through the guidelines encoded in the method
chunks. Additional prototypes based on the Adonis tool [27] and ConceptBase [28]
are under investigation to test the general implementability of the method chunk
metamodel for interoperability.

The repository will first be filled with chunks extracted by academic partners as
well as the IT consulting companies to form a critical mass. Then, successful and un-
successful applications will be added to the repository as examples of method chunks
application. These examples form the experience layer of the repository. The larger the
number of successful examples for a method chunk, the higher its score will be.

Future work is concerned with formalising the textual guidelines of a method
chunk into a computer-interpretable process model, which allows teams from multiple
collaborating enterprises to jointly execute method chunks. A related aspect is to
represent the product side of method chunks, i.e. business as well as ICT models,
within the repository to allow not only collaborative method chunk execution but also
model sharing.

References

1. Botta-Genoulaz V., Millet P.-A. and Grabot B. (2005) A survey on the recent research lit-
erature on ERP systems. Computers in Industry (56), pp. 510-522.

2. Brinkkemper S. (2000) Method Engineering with Web-enabled Methods. Information Sys-
tems Engineering: State of the Art and Research Themes. Eds. S. Brinkkemper, E. Linden-
crona, A. Sölvberg, Springer-Verlag, pp. 124-133.

3. Brinkkemper S., Saeki, M. and Harmsen, F. (1998). Assembly Techniques for Method En-
gineering. 10th Conference on Advanced Information Systems Engineering, CAiSE’98.
Springer, LNCS 1413, pp.381-400.

4. Chen D. and Doumeingts G. (2003) European initiatives to develop interoperability of en-
terprise applications — basic concepts, framework and roadmap. Annual Reviews in Con-
trol (27) pp. 153–162.

5. Domínguez E. and Zapata M.A. (2000) Mappings and Interoperability: A Meta-modelling
Approach. ADVIS 2000, Ed. T. Yakhno. LNCS 1909, Springer-Verlag, pp. 352-362.

6. Firesmith D. and Henderson-Sellers B. (2001) The OPEN Process Framework. An Intro-
duction. Addison-Wesley.

7. Garlan D., Allen R. and Ockerbloom J. (1995). Architectural mismatch or why it's hard to
build systems out of existing parts, Proceedings of the 17th international conference on
Software engineering, ACM Press, pp. 179-185.

8. Hasselbring W. (2000). Information system integration. Communications of the ACM 43
(6) pp. 32-38.

9. Hirschheim R. and Klein H. (2003) Crisis in the IS Field? A Critical Reflection on the
State of the Discipline. Journal of the Association for Information Systems, 4, pp. 237-293.

 Method Chunks for Interoperability 353

10. INTEROP (2005) Interop Network of Excellence IST – 508011 Presentation of the Pro-
ject. http://interop-noe.org/INTEROP/presentation Last accessed 2005-11-02

11. Iivari J. (2000) Information Systems Development as Knowledge Work: The body of sys-
tems development process knowledge. In Information Modelling and Knowledge Bases XI
(Eds, Kawaguchi, E., Hamid, I. A., Jaakkola, H. and Kangassalo, H.) IOS Press, pp. 41-56.

12. Johannesson P. and Perjons E. (2000) Design principles for application integration. Pro-
ceedings of the 12th International Conference of Advanced Information Systems Engineer-
ing, CAiSE 2000, LNCS 1789. Eds. B. Wangler & L. Bergman. Springer.

13. Kumar, K. and Welke, R.J. (1992). Method Engineering, A Proposal for Situation-specific
Methodology Construction. In Systems Analysis and Design: A Research Agenda, Cotter-
man and Senn (eds), Wiley, pp.257-268.

14. Kühn H. and Murzek, M. (2005) Interoperability in Metamodelling Platforms. In: Kon-
stantas, D.; Bourrières, J.-P.; Léonard, M.; Boudjlida, N. (Eds.): Interoperability of Enter-
prise Software and Applications. Springer-Verlag, pp. 215-226.

15. Mak K-T. and Ramaprasad A. (2001) An Interpretation of the Changing IS/IT-Standard
Game, Circa 2001. Knowledge, Technology & Policy (14) pp. 20-30.

16. Mirbel I. and Ralyté J. (2006) Situational Method Engineering: Combining Assembly-
Based and Roadmap-Driven Approaches, Requirements Engineering, 11(1), pp. 58–78.

17. Ottoson A. (2005) An Analysis of a Content of a Method Chunk Repository concerning In-
teroperability Problems. Master Thesis HS-EA-DVA-2005-001, University of Skövde.

18. Rahm E. and Bernstein P. A. (2001) A survey of approaches to automatic schema match-
ing. The VLDB Journal, 10, pp. 334-350.

19. Ralyté J. (1999) Reusing Scenario Based Approaches in Requirement Engineering Meth-
ods: CREWS Method Base. 10th Int. Workshop on Database and Expert Systems Applica-
tions (DEXA'99), IEEE Computer Society, p. 305-309.

20. Ralyté J. and Rolland C. (2001). An Approach for Method Reengineering. Proceedings of
the 20th International Conference on Conceptual Modeling (ER2001), LNCS 2224,
Springer-Verlag, pp.471-484.

21. Ralyté J. and Rolland C. (2001). An Assembly Process Model for Method Engineering.
Proceedings of the 13th Conference on Advanced Information Systems Engineering
(CAISE’01), LNCS 2068, Springer-Verlag, pp. 267-283.

22. Schulz K., et al. (2003) A Gap Analysis; Required Activities in Research, Technology and
Standardisation to close the RTS Gap; Roadmaps and Recommendations on RTS activi-
ties. Deliverables D 3.4, D 3.5, D 3.6. IDEAS Thematic Network - No.: IST-2001-37368.

23. Xu X.W. and Newman S.T. (2006) Making CNC machine tools more open, interoperable
and intelligent—a review of the technologies. Computers in Industry. 57 (2), pp.141-152.

24. Wainwright D. and Waring T. (2004) Three domains for implementing integrated informa-
tion systems: redressing the balance between technology, strategic and organisational
analysis. International Journal of Information Management, 24 (2004) pp. 329–346.

25. van Wendel de Joode R. and Tineke E.M. (2004) Handling variety: the tension between
adaptability and interoperability of open source software. Computer Standards and Inter-
faces (28), pp. 109-121.

26. Troux Technologies (2006) http://www.troux.com/products/metis/, Metis by Troux.
Online. March 30, 2006.

27. BOC Information Technologies Consulting (2006) http://www.boc-eu.com/, Adonis by
BOC Online. March 30, 2006.

28. ConceptBase Team (2006) http://conceptbase.cc, ConceptBase Online. March 30, 2006.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 354 – 370, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Domain Analysis for Supporting Commercial
Off-the-Shelf Components Selection*

Claudia Ayala and Xavier Franch

Technical University of Catalunya
UPC-Campus Nord (Omega), 08034 Barcelona, Spain

{cayala, franch}@lsi.upc.edu

Abstract. Though new technological trends and paradigms arise for developing
complex software systems, systematic reuse continues to be an elusive goal. In
this context, the adoption of Commercial Off-The-Shelf (COTS) technologies
introduces many challenges that still have not been fully overcome, such as the
lack of comprehensive mechanisms to record and manage the required
information for supporting COTS components selection. In this paper we
present a domain analysis approach for gathering the information needed to
describe COTS market segments as required for effective COTS components
selection. Due to the diversity of the information to capture, we propose
different dimensions of interest for COTS components selection that are
covered by different domain models. These models are articulated by means of
a single framework based on a widespread software quality standard.

1 Introduction

Systematic reuse is based on the observation that quality and productivity can be
significantly increased by building an infrastructure support. The engineering
discipline concerned with building these optimal reusable assets is called domain
engineering [1]. Domain engineering supports the notion of domain, a set of
applications that use common concepts for describing requirements, problems,
capabilities and solutions. Particularly, being part of domain engineering, domain
analysis has been identified as a major factor in the success of software reusability
[2]. Domain analysis refers to the process of identifying the basic elements of the
domain, organizing an understanding of the relationships among these elements, and
representing this understanding in a useful way by means of different types of domain
models [3]. The different existing views on domain modelling (e.g., [1], [4], [5]) share
the same goal: to facilitate quality software development by reusing the knowledge of
the addressed domain.

Reuse is not a context-independent activity. The type of artifact to be reused
impacts on the reuse models to be adopted and the reuse processes to be undertaken;

* This research has been partially supported by the Spanish MEC project TIN2004-07461-C02-

01. C. Ayala´s work has been partially supported by the Mexican Council of Science and
Technology (CONACyT) and the Agència de Gestió d’Ajuts Universitaris i de Recerca
(European Social Fund).

 Domain Analysis for Supporting Commercial Off-the-Shelf Components Selection 355

therefore, the reuse discipline has to evolve as new paradigms and artifacts emerge. In
this context, we are interested in one particular case of those software artifacts,
namely Commercial Off-The-Shelf (COTS) components. A COTS component is
defined as “a product that is sold, leased or licensed to the general public, offered by a
vendor trying to profit from it, supported and evolved by the vendor who retains the
intellectual property rights, available in multiple identical copies and used without
source code modification by a consumer” [6].

Successful COTS-based systems development requires an effective and efficient
COTS selection process to deliver full potential to this technology. COTS selection is
defined as the process of searching candidates and evaluating them with respect to the
system requirements. Several COTS selection methods, processes and techniques
have been formulated (see [7] for a recent survey). However, though these approaches
have achieved significant results, they are mainly oriented to individual selection
processes. Even in the cases in which a reuse infrastructure is suggested (e.g., OTSO,
CARE, PECA), no real support or precise guidelines are offered.

To solve this problem, it seems feasible to use domain analysis for recording and
structuring the informational dimensions required for selecting COTS components.
This could be done by means of different domain models with the aim of supporting
organizations that need continuously to carry out COTS selection processes in order
to reuse their knowledge and information in a structured way (e.g., reusing criteria for
COTS evaluation or reusing information of the organizational environment).
However, as far as we know, COTS technology issues have not been explicitly
addressed in the domain analysis discipline (although of course many concepts of
domain analysis apply to this particular case).

The goal of this paper is to present a particular approach of domain analysis for
supporting COTS components selection. This approach is part of our GOThIC (Goal-
Oriented Taxonomy and reuse Infrastructure Construction) [8], a prescriptive goal-
oriented method for building and maintaining a reliable reuse infrastructure in which
COTS market segments are arranged to form a taxonomy whose nodes are decorated
with domain models. In this sense, our domain analysis approach aims at producing
several domain models for stating the most important aspects of a particular COTS
segment in the COTS marketplace. Moreover, all these models are integrated and
synchronized using a unifying framework and, widespread notations and standards.

The rest of the paper is organized as follows. Section 2 introduces the GOThIC
method, the importance of domain analysis in its context and its feasibility. The
informational dimensions for evaluating COTS components are identified in section
3. Section 4 discusses the most appropriate types of models to record these
informational dimensions whilst section 5 explains how these models are integrated
into a unified one. Section 6 illustrates our proposal with an example. Section 7
outlines the impact of domain analysis onto COTS components selection, and finally,
conclusions are given in section 8.

2 The GOThIC Method

As a response to the need of organizing the knowledge of the COTS marketplace in a
structured manner, we have formulated the GOThIC method [8]. Its ultimate goal is to

356 C. Ayala and X. Franch

guide the construction and maintenance of goal-oriented taxonomies that describe the
contents of the COTS marketplace. The method is articulated by means of several
activities, such as the exploration of information sources, the identification of goals
and their hierarchization. Among these activities, we also find domain analysis of the
COTS marketplace segment being addressed by the taxonomy. This activity has the
mission of producing an integrated domain model (representation of important aspects
of a COTS segment) that serves as the basis to gain knowledge for identifying the
correct goals and to build a reuse infrastructure with several kinds of reusable assets
of interest for COTS selection processes.

From an operational point of view, the goal of the GOThIC method is to populate a
knowledge base with data according to the UML [9] conceptual model sketched in
Fig. 1. At the heart of this model lies the taxonomy composed of two types of nodes,
market segments and categories, which are characterized by their goals. Market
segments are the leaves of the taxonomy, whilst categories serve to group related
market segments and/or subcategories (e.g., the category of communication
infrastructure systems or financial packages). From a semantic point of view, market
segments stand for the basic types of COTS components available in the marketplace,
i.e. atomic entities covering a significant group of functionality such that their
decomposition would yield to too fine-grained domains (e.g., the domain of anti-virus
tools or spreadsheet applications). As a consequence, COTS components are
associated with market segments and not with categories (although an indirect
relationship exists, because market segments belong to categories). Components may
cover more than one market segment. Taxonomy nodes have a generic domain model
bound, which is built during the domain analysis activity. Their construction is a
result of the integration of diverse models which are designed from the analysis of
some information sources which are gathered, analyzed and prioritized according to
several characteristics of the taxonomy construction project.

The taxonomy built with GOThIC may then be browsed during COTS selection to
locate the market segment (or segments) of interest. Once found, the domain model
bound may be used to obtain the appropriate criteria for selecting the most suitable
component.

Fig. 1. Conceptual model for goal-oriented COTS taxonomies in the GOThIC method: overview

The feasibility of the GOThIC method depends on some premises:

• In general, it is mainly addressed to organizations that are carrying out subsequent
COTS selection processes (e.g., a consultant company, a third-party software
provider, an IT department of a big corporation, etc.). Therefore, they may find

 Domain Analysis for Supporting Commercial Off-the-Shelf Components Selection 357

valuable to have means to transfer knowledge from one experience to another (i.e.
the return on investment for building a reuse infrastructure should be justified).

• It should be applied to a COTS segment that is of general interest. This means that
a great deal of organizations needs to select COTS components from this segment.
Some examples are: communication infrastructure, ERP systems, security-related
systems, etc. In these contexts, the number of selection processes that take place
will be high and then reusability of the models likely to occur.

• It should be addressed to COTS segment that offer components of coarse-grained
granularity. This makes domain understanding more difficult, time-consuming and
cumbersome and so domain analysis is helpful. Market segments such as CRM and
ECM systems are typical examples, whilst time or currency converters are not.

3 Domain Analysis for Supporting COTS Selection: Dimensions

In the previous sections we have justified the convenience of having domain models
for describing COTS marketplace segments. In this section, informational dimensions
required for selecting COTS components are identified. Each dimension will be
described by a model. To guide the identification of such dimensions, we analyze the
different informational needs and facts of COTS selection processes that have been
reported in the literature (e.g., [10, 11, 12]) as well as our own experiences in the field
(e.g., [13, 14, 15, 16]).

Fundamental Concepts
In the COTS context the same concept may be denoted by different names in different
products or even worse, the same term may denote different concepts in different
products. Furthermore, currently, it is not usual to find places in the COTS
marketplace where fundamental concepts are stated in a clear way, making difficult to
use them, customize them and make them evolve as the marketplace does [17]. On the
other hand, every single COTS segment defines lots of concepts that are used over
and over, e.g., anti-virus tools have “viruses”, e-mail systems have “messages” and
“folders”, etc. These concepts may be related in many ways, e.g. “messages” are
“stored” inside “folders”. A poor knowledge of these fundamental concepts and
semantic relationships may interfere with the efficiency and effectiveness of COTS
selection processes. Therefore a model for representing all this information is needed.
Its purpose is to settle the scope of a particular segment, to define its main concepts
(both as a vocabulary and as a semantic model) and the relationships that facilitate the
understanding of the domain as a whole. The resulting model can there be used as a
reference framework for the segment. To build this model, information sources such
as standards and textbooks are useful (see [8] for a set of suggested information
sources). We recommend to choose one of the most trustable sources as starting point,
then to synthesize the corresponding dimensions of the domain model, and last to
calibrate this dimension with other informational sources.

Functionality
COTS components have their functionality already built-in, so it is a primary source
of information for selecting them. Thus, instead of traditional requirements that

358 C. Ayala and X. Franch

specify “must” and “should” needs, requirements for COTS-based systems articulate
broad categories of needs and possible trade-offs. A domain model must cover this
dimension, but a good balance is needed. On the one hand, the most representative
functionalities of a particular segment should be included (e.g., virus repair, automatic
resending of messages) and described up to a level of detail that enables efficient
survey and evaluation of particular COTS components. On the other hand, if too
much detail is given, several obstacles, remarkably growing size and evolvability of
the COTS marketplace, are harder to overcome, since a lot of information would need
to be updated continuously. Also, too much detail may commit the description of the
functionality to the behaviour of particular components.

Quality of Service
Quality factors are likely to break the tie when several COTS candidates provide the
required functionality; consequently the role of quality information becomes utterly
important for driving COTS selection [18]. Therefore, a dimension for stating quality
of service is required. The resulting model needs to offer a structured description of
the COTS segment addressed, organizing the different quality factors hierarchically
(e.g., Throughput and Response Time as subfactors of Time Efficiency) and should
also include metrics for the quality factors. This model may serve as a framework in
which particular COTS components may be evaluated and compared to user
requirements during selection processes.

Non-technical Description
Despite the fact that the evaluation of candidate COTS components from a technical
point of view (functionality and quality of service) is necessary, experiences in COTS
selection show that non-technical information (i.e., information that does not refer
directly to the intrinsic quality of software, but to its context, including economic,
political and managerial issues; e.g., adequacy of the procedures imposed by the
COTS with respect to procedures of the organization) must be taken into account and,
in fact sometimes it is even more important than the technical information [19]. As a
result, we need to record this information as part of the domain model. This new
dimension must distinguish several concepts and focus on the commercial nature of
COTS components, stating information about licensing issues, provider reputation,
post-sale supporting services, etc. One should be aware that part of the information
may be difficult to obtain (e.g., provider finance information) and the corresponding
factor may not be included in the model for this reason.

Interoperability
The analysis of any COTS market segment shows that some relationships among
components exist. We have analyzed the types of dependencies that may exist and we
have concluded that a COTS component may need another for: enabling its
functionality (e.g., document management tools need workflow technology to define
life cycles); complementing its functionality with an additional feature, not originally
intended to be part of its suitability (e.g., a web page edition tool can complement a
web browser to facilitate web page edition); enhancing its quality attributes (e.g.,
resource utilization can be improved significantly using compression tools). However,
in the context of COTS selection, interoperability has been dealt with in a case-by-case

 Domain Analysis for Supporting Commercial Off-the-Shelf Components Selection 359

basis. Furthermore, some of the COTS selection methods proposed so far just address
single component selection, they do not even address the need to select a suite as final
solution. Therefore we propose a new dimension to cover this need, otherwise COTS
selection becomes not trustable. It is worth remarking that, since we are describing not
a particular COTS component but a whole segment, interoperability issues must not be
stated in much detail (e.g., data formats, API specificities, etc.); instead the model
should include the needs and expectations that one type of component has on others in
a very high-level way.

4 Domain Analysis for Supporting COTS Selection: Models

Taking into account the informational dimensions required by the COTS technology,
in this section we discuss which are the most appropriated types of models for
representing them. A first observation is that, due to their diversity, various types of
models will be probably required.

In the domain analysis field, a variety of methods and techniques have been
proposed as: FODA, DARE, ODM, DSSA and PLUS (see [20] and [21] for a survey)
which use a diversity of different types of artefacts and mechanisms to record the
knowledge that range from the traditional requirements models (namely models of
data, behaviour, and function), as Data Flow diagrams [22], Entity-Relationship (ER)
models [23], Object Oriented models [24], UML models [9] Scenarios [25], and
Feature models [26], to UML metamodeling techniques and more elaborated UML
extensions and stereotypes for dealing with domain structural elements, relations and
domain variability [21, 27]. In practice, these proposals vary in their terms, notations,
and emphases, but in general they are focused on designing product lines or product
families for promoting reusability between software applications by means of an
intended reuse plan [21, 27].

 Furthermore, as far as we know, none of these approaches has examined in depth
the special kind of relationships and information that the COTS technology requires.
In this sense, we have studied whether the models proposed by the actual domain
analysis practices could be suitable for recording all the COTS informational
dimensions. We found that although some commonly used models could fit well
enough for representing some dimensions, some other dimensions were still lacking
of an adequated representation and analysis (see Table 1 for examples), for instance
those relationships that enable interoperability among components, which could be
partially fulfilled by establishing “Artifact Dependencies” (a special kind of
variability in variability models for Software Product Lines design [21]), as well as
the dimension related with stating non-technical information and quality of service
(this last could also be partially addressed by test cases, but generally they are
considered to be out of domain analysis).

For that reason, it is a fact that actual domain analysis approaches do not address in
an optimal way all the fundamental informational dimensions required for assessing
COTS components in terms of expressiveness and adequateness, structure, and
compatibility. Hence, existent domain analysis strategies have to be somehow adapted
and complemented to fully deal with the COTS technology characteristics [28, 29].

360 C. Ayala and X. Franch

In the rest of this section, we propose a set of domain models for covering all the
required COTS informational dimensions using widespread notations and standards.
Table 1 summarizes our proposal and makes clear the gap for recording non-technical
descriptions and interoperability with respect to other domain analysis approaches.

Table 1. Summary of domain analysis practices for representing COTS dimensions

COTS Dimension Domain Analysis Practices Our approach

Fundamental Concepts
ER Models, Feature Models,

UML Diagrams, etc.
UML Class Diagrams + LEL

Functionality
Data Flow Diagrams, Scenarios,

UML Diagrams, etc.
UML Use Case Diagrams + brief

individual descriptions

Quality of Service None ISO/IEC 9126-1

Non-Technical Description None 3 categories of non-technical factors

Interoperability None i* SD Models

Fundamental Concepts
Two types of artifacts are adequate for representing fundamental concepts: conceptual
data models or feature-oriented models to express the semantic meaning of the terms
in the market segment together with their relationships; and a glossary to set up a
vocabulary of the domain with information about synonymous and other lexical
relationships. In particular, we have chosen UML class diagrams [9] for representing
the semantic information due to its expressiveness and acceptance in the community.
As for the glossary, the Language Extended Lexicon (LEL) [30] approach provides an
adequate level of service since it allows to capture the meaning and fundamental
relationships of the particular symbols (words or phrases) of the domain. The glossary
includes at least the terms that appear in the rest of the models (e.g., the names of
classes, attributes and associations of the UML class diagram). One could also think
of the general concept of ontology [31] for capturing all the information needed.

Functionality
Any approach based on the concept of scenario seems a good option. As commented
in section 3, the important point is to use the right level of detail. We propose the use
of UML use case diagrams [9] for defining the functionalities of the COTS segment
and a brief format of use cases [32] for describing them individually.

Quality of Service
Quality models [13] provide a measurable framework which precisely defines and
consolidates the different views of quality (e.g. performance, reliability, integrity,
etc.) which are required for COTS components evaluation. Among the different
existing proposals, we have adopted the ISO/IEC 9126-1 standard [33] for several
reasons, remarkably: it provides a two-level departing catalogue but at the same time
it is highly customizable to each different COTS segment; there are some metrics
already defined for this standard; and it is widespread. In the next section we give
more details of this model.

 Domain Analysis for Supporting Commercial Off-the-Shelf Components Selection 361

Non-technical Description
Not only in the domain analysis context but in general, it is not usual to find models
for representing non-technical information. Usually some categories are identified and
for each of them, a list of non-technical factors identified. We have identified 3 high-
level factors and 15 second-level subfactors referring to supplier information (e.g.,
financial information), cost information (e.g., licensing schemes) and other non-
technical information about the product (e.g., history of versions). See [19] for more
details.

Interoperability
Interoperability of COTS components is usually described by means of APIs or data
formats. However, as already explained in section 3, we are interested in describing
not particular COTS components but the general behavior of all the components
belonging to a COTS segment, therefore we need more abstract descriptions. The
combination of goal- and agent-oriented models provides a good response to our
needs. Goals allow expressing needs and expectations in a high-level way, whilst
agents are an appropriate way to model COTS segments. Then, one COTS segment
may state that depends on another to attain a goal. We have chosen i* Strategic
Dependency (SD) models [34], adapting its semantic to represent COTS segments
and their dependencies. See [35] for details.

5 A Unifying Model for COTS Domain Analysis

The models proposed in section 4 cover the informational dimensions that were
identified in section 3. However, the primary goal of COTS segments domain analysis
is to characterize COTS components for their evaluation and selection, so it is clear
that having these dimensions structured in separate models hampers domain
understanding and model management. For this reason, we need a unifying model
which facilitates this goal. Thus, from the dimension models given, quality models
seem the most appropriate type of artefact. Therefore, if we succeed in putting all the
models in an ISO/IEC 9126-1 quality model we will have our goal attained.

5.1 The ISO/IEC 9126 Quality Standard

The ISO/IEC 9126-1 software quality standard proposes quality models as the
artifacts that keep track of the quality factors that are of interest in a particular
context. The ISO/IEC 9126-1 standard fixes 6 top level characteristics: functionality,
reliability, usability, efficiency, maintainability and portability. It also fixes their
further refinement into 27 subcharacteristics but does not elaborate the quality model
below this level, making thus the model flexible. To carry out this refinement,
subcharacteristics are, in turn, decomposed into attributes, which represent the
properties that the software products belonging to the domain of interest exhibit.
Intermediate hierarchies of subcharacteristics and attributes may appear making thus
the model highly structured. Metrics are bound to attributes. The standard is highly
customizable to different purposes and domains; e.g., in our previous work [19], we

362 C. Ayala and X. Franch

have created an extension for the particular case of quality of COTS components, and
new subcharacteristics and attributes have been introduced.

5.2 Integrating All the COTS Domain Models into the ISO/IEC 9126-1

In this subsection we aim at integrating the domain models obtained so far, even
considering their different nature, into an ISO/IEC 9126-1 quality model. Fig. 2
shows an overview of our proposed framework.

 Characteristics Subcharacteristics
Suitability

Suitability of Services

Suitability of Data
Accuracy
Interoperability
Security

Functionality

F. Compliance
Reliability …

Understandability
Semantic UnderstandabilityUsability

Lexical Understandability

Efficiency …
Maintainability ...

Q
u

al
it

y
O

f
S

er
vi

ce

Portability

 Extended
Characteristics

Organizational Structure
Positioning and Strength Supplier
…
Licensing Schema
Licensing Costs Cost
…
Platform Cost
Implementation Cost N

on
-T

ec
h

n
ic

al

Product
…

*

*

*
*

*1

1..*

* Subcharacteristic

{ disjoint, complete}
{ disjoint, complete}

Basic
Subcharacteristic

*

0..1 Derived
Subcharacteristic

Qualit yM odel 1 *

Qualit yEntit y

{ disjoint, complete}
{ disjoint, complete}

Character istic

1..*

*

Metric

{ disjoint, complete}
{ disjoint, complete}

Subjective Objective

Att ribute

{ disjoint, complete}
{ disjoint, complete}

Basic Att ributeDerived Attribut e

*

*

*
*

*1

1..*

* Subcharacteristic

{ disjoint, complete}
{ disjoint, complete}

Basic
Subcharacteristic

*

0..1 Derived
Subcharacteristic

Qualit yM odel 1 *

Qualit yEntit y

{ disjoint, complete}
{ disjoint, complete}

Character istic

1..*

*

Metric

{ disjoint, complete}
{ disjoint, complete}

Subjective Objective

Att ribute

{ disjoint, complete}
{ disjoint, complete}

Basic Att ributeDerived Attribut e

UML Class
Diagram

Use Case
Specification

i* SD Model

LEL Glossary

Fig. 2. An overview of the ISO/IEC 9126-1-based quality model for COTS segments

Functionality
Regardless of having the same name, the functionality of a COTS segment does not
correspond with the ISO/IEC Functionality characteristic. Instead, it corresponds to
the Suitability concept that is a subcharacteristic of Functionality. However, since
functionality focuses on the services provided but not the data managed, we create a
new subcharacteristic Suitability of Services that contains the UML Use Case diagram
and the individual use case descriptions.

Fundamental Concepts
The UML class diagram is related to two ISO/IEC subcharacteristics. On the one
hand, as the case before, Suitability, because some of the classes (and their attributes)
and relationships are defining part of the suitability of the COTS segment. On the
other hand, Understandability, which is a subcharacteristic of Usability, because
having a UML class diagram provides a reference framework that allows testing how
much a particular COTS component adheres to it. For the same reason, also the LEL

 Domain Analysis for Supporting Commercial Off-the-Shelf Components Selection 363

glossary supports Understandability. Therefore, we create 3 new subcharacteristics;
Suitability of Data, belonging to Suitability, contains the class diagram; Semantic
Understandability and Lexical Understandability, belonging to Understandability.
The first one also contains the class diagram and the second one the glossary.

Non-technical Description
For arranging non-technical factors proposed in [19] in an ISO-9126-1-form, we
define the 3 high-level ones as characteristics and the other 15 as subcharacteristics.

Interoperability
Interoperability is also a subcharacteristic of Suitability and in this case, we just
consider the i* SD model as the description of Interoperability.

5.3 Transforming the Models into the ISO/IEC 9126-1 Framework

Although we have achieved our primary goal, namely integrating all the dimension
models under the same umbrella, there is still a question left that may be considered
as a drawback when using the domain model for COTS components evaluation
purposes: the fundamental concepts, functionality and interoperability models are
expressed with their own formalisms which are not straightforward to evaluate. In this
subsection we deal with this problem by providing rules that map the constructs in
these models into ISO/IEC 9126-1 quality factors. Furthermore, we state how their
metrics are defined. These rules are defined in such a way that they could generate the
new, final model automatically from the former models.

Functionality
For each use case UC appearing in the Use Case diagram, a quality attribute UC
belonging to the Suitability of Services subcharacteristic is created. The individual use
case specifications are part of the description of these quality attributes.

For each obtained quality attribute, an ordinal metric which can take three values,
Satisfactory, Acceptable and Poor, is created. These values express how a particular
COTS component covers the service represented by the use case.

Fundamental Concepts
For each class or association C appearing in the class diagram that represents a
concept provided by the COTS components in the segment, a quality attribute C
belonging to the Suitability of Data subcharacteristic is created. The elements of the
class diagram are part of the description of these quality attributes.

For each obtained quality attribute, an ordinal metric which can take three values,
Satisfactory, Acceptable and Poor, is created. These values express how a particular
COTS component provides the data represented by the class or association. These
values will be obtained during evaluation by using different criteria (e.g., whether all
the attributes are provided, whether the instances are permanent or not, etc.).

Each term of the glossary is included as part of the description of the quality
attribute(s) it is related to. The same happens with the elements of the class diagram
that were not tackled in the previous step. Last, two numerical metrics are bound to
the Semantic Understandability and Lexical Understandability attributes. The values

364 C. Ayala and X. Franch

of these metrics will count the number of semantic and lexical discrepancies of a
particular COTS component with respect to the reference models.

Interoperability
For each agent A appearing the i* SD model, except the agent S that represents the
COTS segment we are modeling, a subcharacteristic A belonging to Interoperability
is created.

For each dependency G among S and A, an attribute G is created. For each
obtained quality attribute, we create an ordinal metric whose values depend on the
type of the corresponding dependency: if goal, values are Attained and Not Attained;
if resource, Provided and Not Provided; if task, Executed or Failed; if softgoal,
Satisfactory, Acceptable and Poor.

Once these rules are applied, evaluation of COTS component may be done in a
more uniform and comfortable way. But of course, the original models should be
preserved since they are easier to understand and evolve.

6 Example: The Real-Time Synchronous Communication Domain

For illustrating our proposal, we present some excerpts of the domain model obtained
for the Real-Time Synchronous Communication (RTSC) market segment. This
segment embraces the various tools and technologies used to enable communication
and collaboration among people in a “same time-different place” mode.

Fundamental Concepts
Part of the UML class diagram is presented in Fig. 3a. Several key concepts are stated
as classes. These concepts are of different nature, e.g. human roles (e.g. Sender and
Receiver), artefacts of any kind (either physical or informational, e.g. Message),
software and hardware domain-specific components (e.g. Software Client, Software
Server and Proxy), etc. Inside these classes, we identify attributes but just those that

a. Excerpt of the UML Class Diagram

b. Excerpt of the UML Use Case Diagram

c. Excerpt of an Individual Use Case Specification

User

Connect to the
Network

Send/Receive
Message

Sender Receiver

Use Case: Send/Receive Message

Precondition Sender and Receiver are connected with each other.

Description
The Sender composes a message of any kind and
delivers it to the Receiver. The Receiver is notified and
then reads the message

Fig. 3. Excerpt of some domain models constructed for the RTSC case

 Domain Analysis for Supporting Commercial Off-the-Shelf Components Selection 365

play a crucial part in the domain, e.g. Message that can be of different types. Domain
relationships are also of different kinds. Thus, we can see a high-level relationship
among the human roles Sender and Receiver which are generalized into a User class.
On the other hand, associations may be of very different nature. For instance, we have
permanent or at least very stable relationships (e.g., among User and Software Client)
while others are highly dynamic (real-time connections that are created and destroyed
dynamically). OCL restrictions may be used to decorate the model appropriately.

Functionality
As stated in section 3, the use case model for functionality focuses on the most
characteristic services offered by packages in this domain. Fig. 3b shows some for the
RTSC domain, namely Connect to the Network and Send/Receive Message. Others
such as Send Video Message or Connecting Multiuser Session are not included either
because they are not considered general enough but specific of a few COTS
components, or because they are considered as secondary. In addition, we can also
check that the individual use case specification of Send/Receive Message presented in
Fig 3c follows the given recommendation of being very abridged.

RTSC

Fig. 4. Some dependencies among RTSC Tools and other types of tools

Interoperability
As it is the usual case in COTS segments that offer a lot of functionality, we may
identify several relationships with other types of COTS domains. In Fig. 4 we
introduce as example two COTS segments related with RTSC, AntiVirus Tools
(AVT) and Compression/Decompression Tools (CO/DE), all of them modelled as i*
actors. Among their relationships, we find: a RTSC component relies on an AVT
component for detecting viruses (goal dependency, since the AVT decides the best
way to do it) and requires this detection to be robust (softgoal dependency, because
the concept of “robust” detection is matter of negotiation); a RTSC component
depends on a CO/DE one to compress/decompress messages automatically (task
dependency, because the RTSC states when and how these automatic activities are
done); a RTSC component may improve its performance using a CO/DE component
(softgoal dependency, because the concept of “good” performance is matter of
negotiation); and both related components need the message to work with from a
RTSC component (resource dependency, because it is an informational entity).

Quality of Service
In table 2 we decompose a bit the Understandability subcharacteristic with the
Adherence to Best Practices and Supported Interface Languages attributes. We
include specific metrics that help to evaluate and compare user requirements. The first

366 C. Ayala and X. Franch

metric illustrate the subjective case, whilst the second one illustrates a metric that is
both objective and structured (set of values). The description included in the table is
in fact part of the glossary but appears for legibility purposes.

Non-technical Description
Table 3 shows an excerpt of the refinement of a non-technical factor of a product, its
stability. Note the similarity compared to quality of service description, which
facilitates further integration. It should be mentioned that non-technical factors are
very similar among different COTS segments.

Table 2. Excerpt of the quality model for the RTSC case

Quality factor Metric Description

3 Usability ISO/IEC 9126-1 Characteristic

 1 Understandability ISO/IEC 9126-1 Subcharacteristic

 3
Interface
Understandability

Effort to recognizing the logical concepts
and its applicability by means of interfaces.

 1
Adherence to
Best Practices

ADP: 4valueOrder[Ordinal]
4valueOrder = (Optimal, Good, Fair, Poor)

How well events and elements of the
interface comply with user interface best
practices.

 2
Supported Inter-
face Languages

SIL: Languages = Set(Labels[Nominal])
Labels = (Spanish, Catalan, English, …)

Languages supported by the interface.

Table 3. Excerpt of a non-technical factor decomposition for the RTSC case

Non-technical factor Metric Description

3 Product
Non-technical characteristics of a COTS
product that may influence COTS selection

 1 Stability

 1
Time of Product in the
Market

TPM: Time[Ratio]
Time = Float

Number of years the product has been in the
marketplace

 2
Versions Currently in
the Market

VCM: List(Version[Nominal])
Version = String

Versions currently available in the market-
place

 3 In-house Product
IP: Own[Nominal]
Own = (Yes, Not)

Whether the product is in-house or acquired
from a third party

Table 4 shows the integration of the presented excerpts in the unifying model using
the mapping rules introduced in the section 5.3.

7 Domain Analysis-Based COTS Selection

Our domain analysis strategy has been integrated into the GOThIC method by
considering that the ISO/IEC 9126-1-based quality model for COTS segments
introduced in Fig. 2 is in fact the Domain Model that appears in Fig. 1. As stated in
section 2, a GOThIC taxonomy is used to locate the taxonomy node that fulfils the

 Domain Analysis for Supporting Commercial Off-the-Shelf Components Selection 367

Table 4. The unifying model for the RTSC case (excerpt)

368 C. Ayala and X. Franch

needs of the user in charge of the selection process. Once located, its domain model
may be used to guide the rest of the selection process by refining this model with
more specific requirements. The factors in the ISO/IEC 9126-1-based quality model
help to elicit and negotiate the requirements, making easier the identification of
mismatches among components characteristics and the requirements. Moreover, those
factors corresponding to the stated requirements are used to evaluate the capabilities
of the candidate components in a uniform way, using the metrics defined in the
model. For doing so, we can proceed manually, or use tool support ranging from a
simple spreadsheet to a more sophisticated tool, e.g. our DesCOTS system [36].

8 Conclusions

We have detailed the domain analysis approach for building a reuse infrastructure for
supporting COTS selection processes enclosed in our GOThIC method. This approach
is based on the application of domain analysis principles for recording and
representing all the required information for evaluating COTS. Our proposal relies on
several industrial experiences that have been undertaken under action-research
premises, complemented with literature survey and grounded theory.

These industrial experiences have been carried out in the field of Workflow
Systems [14], Requirements Engineering Tools [15], Telephony Systems [16] and
some sub-categories of Enterprise Applications (with emphasis with those related to
Content Management). Industrial experiences have been complemented with
academic ones (e.g. Real-Time Synchronous Communication and Message-based
Communication Systems) to analyse in more depth some particular aspects.

Concerning domain analysis, we have concluded that existing approaches were not
oriented to support reuse in the COTS framework, consequently the need of
mechanisms to analyze and create a reuse infrastructure for COTS domains still
remained. In particular, it is required to represent interoperability among COTS
components and to analyze non-technical factors that may influence the selection, as
well as the need of putting more emphasis to software quality issues.

With respect to COTS selection:

• We have put the emphasis on reuse, making a concrete proposal based on the
domain analysis technique which allows transferring knowledge from one
experience to another.

• We have explicitly identified the informational dimensions required for the
effective and efficient selection of COTS components.

• We have offered guidance for representing these informational dimensions using
appropriate types of domain models.

• Using some mapping rules, we have integrated all these models into a single one,
based on a well-known standard, highly oriented to support the evaluation of the
candidate components.

• Given this representation, we may use some existing tool-support to conduct the
evaluation of candidates in the framework of the ISO/IEC 9126-1 standard.

• Domain analysis not only impacts positively on reuse, but also ameliorates some
well-known obstacles for COTS selections success [8]. Remarkably, using domain
analysis principles we avoid those semantic and syntactic discrepancies that are
common in the COTS marketplace.

 Domain Analysis for Supporting Commercial Off-the-Shelf Components Selection 369

References

1. Prieto-Díaz, R., Arango, G. Domain Analysis and Software Systems Modelling. IEEE
Computer Society Press, 1991.

2. Frakes, W., Prieto-Díaz, R., Fox, C. “DARE: Domain Analysis and Reuse Environment”.
Annals of Software Engineering, 5, pp. 125-141, 1998.

3. Software Engineering Institute (SEI). http://www.sei.cmu.edu/domain-engineering/, 2002.
4. Cornwell, P.C. “HP Domain Analysis: Producing Useful Models for Reusable Software”.

Hewlett-Packard Journal, August 1996.
5. Neighbors, J. Software Construction Using Components. PhD. Thesis, University of

California, Irvine, 1980.
6. Meyers, C., Oberndorf, P. Managing Software Acquisition. Addison-Wesley, 2001.
7. Ruhe, G. “Intelligent Support for Selection of COTS Products”. In Proceedings of Web,

Web-Services and Database Systems. LNCS 2593, 2003.
8. Ayala, C. Franch, X. "A Goal-Oriented Strategy for Supporting Commercial Off-The-

Shelf Components Selection". In Proceedings of the 9th International Conference on
Software Reuse (ICSR), LNCS 4039, 2006.

9. UML Specifications. http://www.uml.org/
10. Bertoa, M.F., Troya, J.M., Vallecillo, A. “A Survey on the Quality Information Provided

by Software Component Vendors”. In Proceedings of the 7th ECOOP Workshop on
Quantitative Approaches in Object-Oriented Software Engineering (QAOOSE), 2003.

11. Torchiano, M., Morisio, M. “Overlooked Aspects of COTS-Based Development”. IEEE
Software, 21(2), pp. 88-93, 2004.

12. Cechich, A., Réquilé-Romanczuk, A., Aguirre, J., Luzuriaga, J.M. “Trends on COTS
Component Identification and Retrieval” In Proceedings of 5th International Conference
on COTS-Based Software Systems (ICCBSS), IEEE Computer Society, 2006.

13. Franch, X., Carvallo, J.P. “Using Quality Models in Software Package Selection”. IEEE
Software, 20(1), 2003.

14. Carvallo, J.P., Franch, X, Quer, C., Rodríguez, N. “A Framework for Selecting Workflow
Tools in the Context of Composite Information Systems”. In Proceedings of the 15th
Database and Expert Systems Applications Conference (DEXA), LNCS 3180, 2004.

15. Carvallo, J.P., Franch, X., Quer, C. “A Quality Model for Requirements Management
Tools”. Book chapter in Requirements Engineering for Sociotechnical Systems, Idea
Group, 2005.

16. Carvallo, J.P. “Supporting Organizational Induction and Goals Alignment for COTS
Components Selection by means of i*”. In Proceedings of the 5th International Conference
on COTS-Based Systems (ICCBSS), IEEE Computer Society, 2006.

17. Ayala, C., Franch, X. “Transforming Software Package Classification Hierarchies into
Goal-Based Taxonomies”. In Proceedings of the 16th Database and Expert Systems
Applications Conference (DEXA), LNCS 3588, 2005.

18. Maiden, N., Ncube, C. “Acquiring Requirements for COTS Selection”. IEEE Software
(15)2, 1998.

19. Carvallo, J.P., Franch, X. “Extending the ISO/IEC 9126-1 Quality Model with Non-
Technical Factors for COTS Components Selection”. In Proceedings of the 4th ICSE
Workshop of Software Quality (WoSQ), ACM Digital Libray, 2006.

20. Ferré, X., Vegas, S. “An Evaluation of Domain Analysis Methods”. In Proceedings 4th
CAiSE Workshop on Exploring Modelling Methods for Systems Analysis and Design
(EMMSAD), 1999.

370 C. Ayala and X. Franch

21. Pohl, K., Böckle, G., van der Linden, F.J. Software Product Line Engineering. Springer-
Verlag, 2005

22. McMenamin, S.M., Palmer, J.F. Essential Systems Analysis. Yourdon Press, 1984.
23. Chen, P. “The Entity-Relationship Model –Towards a Unified View of Data”. ACM

Transactions on Database Systems, 1(1), March 1976.
24. Cohen, S., Northrop, L. “Object-Oriented Technology and Domain Analysis”. In

Proceedings of the 5th International Conference on Software Reuse (ICSR), 1998.
25. Pohl, K., Brandenburg, M., Glich, A. “Scenario-Based Change Integration in Product

Family Development”. In Procs. of the 2nd Workshop on Software Product Lines, 2001.
26. SEI http://www.sei.cmu.edu/domain-engineering/FODA.html
27. Gomaa, H. Designing Software Product Lines with UML: From Use Cases to Pattern-

Based Software Architectures. Addison-Wesley, 2005.
28. Almeida, E.S, et al. “The Domain Analysis Concept Revisited: A Practical Approach”. In

Proceedings of 9th International Conference on Software Reuse (ICSR), LNCS 4039,
2006.

29. Vitharana, P., Zahedi, F., Jain, H. “Design, Retrieval, and Assembly in Component-Based
Software Development”. Communications of the ACM, 46(11), 2003.

30. Leite, J.C.S.P. “Application Languages: A Product of Requirements Analysis”.
Informatics Department PUC-/RJ (1989).

31. Gruber, T.R. “Towards Principles for the Design of Ontologies Used for Knowledge
Sharing”. International Journal of Human-Computer Studies, 43(5/6), 1995.

32. Cockburn, A. Writing Effective Use Cases. Addison-Wesley, 2001.
33. ISO/IEC International Standard 9126-1. Software Engineering-Product Quality-Part 1:

Quality Model, 2001.
34. Yu, E. Modelling Strategic Relationships for Process Reengineering. PhD Thesis,

University of Toronto, 1995.
35. Ayala, C., Franch, X. “Overcoming COTS Marketplace Evolvability and Interoperability”.

In Proceedings of the CAiSE’06 Forum, 2006.
36. Grau, G., Carvallo, J.P., Franch, X., Quer, C. "DesCOTS: A Software System for

Selecting COTS Components". In Proceedings of the 30th EUROMICRO Conference,
IEEE Computer Society, 2004.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 371 – 384, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Formal Framework for Reasoning on Metadata
Based on CWM

Xiaofei Zhao and Zhiqiu Huang

Department of Computer Science and Engineering
Nanjing University of Aeronautics and Astronautics

210016 Nanjing, China
zxf-first@nuaa.edu.cn

Abstract. During the metadata creation based on Common Warehouse
Metamodel(CWM), the different experiences and views of describing data of
organizations involved in metadata creation bring metadata on some problems
inevitably, such as inconsistencies and redundancies. However, reasoning on
CWM metadata for automatically detecting these problems is difficult because
CWM metamodel and metadata lack precise semantics. In this paper, we
formalize and reason on CWM metamodel and metadata in terms of a logic
belonging to Description Logics, which are subsets of First-Order Logic. We
distinguish consistency into horizontal consistency and evolution consistency.
Towards evolution consistency, we extend CWM metamodel with version
capabilities so that reasoning about inconsistency caused by evolution can be
done. Then reasoning engine LOOM is applied to check consistency for the
above two situations, the results are encouraging.

1 Introduction

Today, as a metadata integration standard for data warehouse field proposed by
Object Management Group(OMG), Common Warehouse Metamodel(CWM)[2,3] has
been accepted as a prevailing standard. However, during the metadata creation based
on CWM, for the following reasons: 1 different organizations have different
experiences and expertise; 2 different organizations focus on different aspects of data;
3 metadata will evolve in use; 4 the specialities of CWM, the inconsistencies of
metadata, such as: content conflicts or the violation of constraints in metamodel or
inconsistencies caused by misdeletion during evolution, arise inevitably. So if CWM
metadata can be reasoned, so that these inconsistencies can be detected automatically,
it is possible to provide computer aided support for the development of the
components of data warehouse systems, thus the reliability of metadata integration
process and data warehouse system will be remarkably improved.

Unfortunately, CWM metamodel and metadata which is the instances of
metamodel are rendered to users by graphs, which lack formal semantics, so how to
reason on metadata with the information provided by metamodel hasn’t been well
solved. In this paper, we attempt to formalize and reason on CWM metadata by a
logical approach. Description Logics(DLs)[1], which are subsets of First-Order Logic,
provide powerful description ability and equipped with reasoning engines such as

372 X. Zhao and Z. Huang

LOOM[13], RACER[10], Fact[19], etc. which can perform various reasoning tasks,
become our first choice.

In order to fully represent CWM metadata, according to the specialities of CWM
metamodel and model, we propose a DL, here called DLid. The DLid offers highly
expressive power for CWM structuring mechanisms and is equipped with decidable
reasoning procedures, thus provides the description and reasoning of CWM metadata
a rigorous formal and reasoning framework.

In this paper, we distinguish consistency into horizontal consistency and evolution
consistency because the consistencies caused by metadata evolution are different from
those caused by different views of organizations both in contributing factors and in
checking approaches. Because versioning capabilities are not supported by current
CWM standard, we extend CWM metamodel so that it provides the capability for
recording the trace information of metadata evolution, then research on how to
capture the structuring information of metamodel and model in the above two
situations in terms of DLid, respectively, and resort to query reasoning mechanisms of
LOOM to detect inconsistency information.

2 The Description Logic DLid

The basic elements of Description Logics are concepts and relations, which describe
the types of objects and the relations between them in a domain, respectively.
Complex concepts and complex relations can be formed from atomic concepts and
atomic relations by constructors. The set of allowed constructors characterizes the
expressive power of a Description Logic. Various Description Logics have been
considered by the DL community. According to the specialities of CWM metamodel
and model, in this paper we propose a DL which supports identification constraints on
concepts, here called DLid. The DLid can be seen as a fragment of the Description
Logic DLR presented in [9] by Diego et al.. The basic elements of DLid are
concepts(unary relations) and roles(binary relations). Atomic concepts and atomic
roles are denoted by A and P, respectively. Arbitrary concepts, denoted by C, and
arbitrary roles, denoted by R, are built according to the following syntax:

R::= 2 | P | (i/2:C) | ¬R | R1 R2

C::= 1 | A | ¬C | C1 C2 | (k[i]R)
where i denotes the i-th component of role R, it can be 1 or 2; k denotes a non-
negative integer; (i/2:C) denotes that the i-th concept associated with role R is concept

C, sometimes we abbreviate (i/2:C) with (i:C); k[i]R is the multiplicity constraint on
the participation to role R of the i-th component of R. We consider only concepts and

roles that are well-typed, which means that i 2 whenever i denotes a component of a
role R. We also have the following equivalences in table 1:

Table 1. Equivalences in DLid

C1 C2 ¬(¬C1 ¬C2) C1 C2 ¬C1 C2

(k[i]R) ¬ (k-1[i]R) [i]R (1[i]R)

[i]R ¬ [i]¬R

 A Formal Framework for Reasoning on Metadata Based on CWM 373

A DLid knowledge base (KB) is constituted by the Tbox and the Abox. The Tbox is
the set of axioms describing domain structure and contains inclusion assertions of

type R1 R2, C1 C2. Besides inclusion assertions, DLid KBs allow for assertions
expressing identification constraints.

An identification assertion on a concept has the form:
(id C [i1]R1, … , [ih]Rh)

where C is a concept, each Rj is a role, and each ij denotes one component of Rj.
Intuitively, such an assertion states that if two instances of concept C both participate
to Rj as the ij-th component, then they coincide.

The Abox in DLid is the set of axioms describing instances, it is constituted by
concept assertions stating whether an object belongs to a certain concept and role
assertions stating whether two objects satisfy a certain relation.

The semantics of DLid is specified through the notion of interpretation. An

interpretation I = (I, •I) of a DLid KB K is constituted by an interpretation domain
I and an interpretation function •I that assigns to each concept C a subset CI of I

and to each role R a subset RI of (I)2. More semantics are shown in table 2:

Table 2. Semantic rules for DLid

2
I (I)2 1

I = I

PI
2
I A I I

(i/2:C I ={t 2
I | t[i] C I } (¬C) I = I \C I

(¬R) I = 2
I \R I (C1 C2)

 I = C1
I C2

I

(R1 R2)
 I = R1

I R2
I (k[i]R) I={a I | #{t R1

I | t[i]=a} k}

To specify the semantics of a KB we have the following definitions:

(i) An interpretation I satisfies an inclusion assertion R1 R2 (resp. C1 C2) if

R1
I R2

I (resp. C1
I C2

I).
(ii) An interpretation I satisfies the assertion (id C [i1]R1, … , [ih]Rh) if for all a,

b CI and for all t1,s1 R1
I, …, th ,sh Rh

I we have that:
a=t1[i1]=…=th[ih],
b=s1[i1]=…=sh[ih], implies a=b

tj[i]=sj[i],j {1,…,h},i ij
An interpretation that satisfies all assertions in a KB K is called a model of K.
Several reasoning services are applicable to DLid KBs. The most important ones are

KB satisfiability and logical implication. A KB K is satisfiable if there exists a model
of K. A concept C is satisfiable in a KB K if there is a model I of K such that CI is

nonempty. A concept C1 is subsumed by a concept C2 in a KB K if C1
I C2

I for every
model I of K. An assertion is logically implied by K if all models of K satisfy a.

Reasoning in the basic DL ALC[1] is EXPTIME-complete, on the other hand, DLid
can be mapped to a fragment of the Description Logic DLR[9] in which reasoning is
also EXPTIME-complete, hence reasoning in DLid is decidable, and is EXPTIME-
complete.

374 X. Zhao and Z. Huang

3 Horizontal Consistency Checking

In this paper we distinguish two types of consistency: horizontal consistency and
evolution consistency. Horizontal consistency indicates consistency within the
metadata in the same version; evolution consistency indicates consistency between
different versions of the metadata. The two types of consistency are shown in Figure
1: the consistency in the horizontal plane belongs to horizontal consistency, the
consistency in the vertical plane belongs to evolution consistency.

Fig. 1. Horizontal Consistency and Evolution Consistency

3.1 Formalization in Horizontal Consistency Checking

Taking advantage of the explicit information in the metamodel and the implicit
information obtained by reasoning, consistency checking is the reasoning on the
metadata which is the instance of metamodel, so we translate the metamodel into the
Tbox and the metadata which is the instance of metamodel into the Abox. To be
precise and brief, the following formalization is described in DLid expressions.

3.1.1 Formalization of CWM Metamodel
(1) Metaclasses
In CWM metamodel, a metaclass is also a class, so in the following we don’t
distinguish metaclass and class. A metaclass is graphically rendered as a rectangle
divided into two parts. The first part contains the name of the metaclass; the second
part contains the attributes of the metaclass, each denoted by a name and with an
associated class, which indicates the domain of the attribute values. For example, the
attribute namespace: Namespace of metaclass ModelElement means that each
namespace is an instance of Namespace. Each “/” indicates that the type of the
attribute is the metaclass already included in the metamodel, i.e., the metaclass that
the attribute belongs to is associated with the metaclass that is the type of the
attribute.

A CWM metaclass is represented by a DLid concept. This follows naturally from
the fact that both CWM metaclasses and DLid concepts denote sets of objects.

A CWM attribute a of type C for a class C associates to each instance of C, zero,
one, or more instances of a class C , so we think of an attribute of type C for a
class C as a binary relation between instances of C and instances of C We capture

 A Formal Framework for Reasoning on Metadata Based on CWM 375

such a binary relation by means of a role of DLid. To specify the type of the attribute
we use the assertion:

C ((: C))

Such an assertion specifies precisely that, for each instance c of the concept C, all
objects related to c by , are instances of C . It also indicates that an attribute name
is not necessarily unique in the whole metadata, and hence two different metaclasses
could have the same attribute, possibly of different types. Note that although the
attributes after “/” denote associations between C and C , the formalization of such
attributes is necessary, because one attribute of C may has several corresponding
associations between C and C , if we only formalize the corresponding associations,
the name of the attribute may be lost.

(2) Aggregation Associations
An aggregation association in CWM metamodel, graphically rendered as in Figure 2
(attributes are ignored), is a binary relation between the instances of two metaclasses,
denoting a part-whole relationship. For example, the aggregation association between
metaclass Classifier and Feature specifies that each instance of Classifier is made up
of a set of instances of Feature. Observe that in CWM, names of aggregation
associations (as names of metaclasses) are unique. In other words, there can’t be two
aggregation associations with the same name.

Fig. 2. Aggregation association in CWM

The general form of the formalization of aggregation association is that if instances
of the metaclass C1 have components that are instances of metaclass C2 by
aggregation association A, the multiplicity on C1 is m1..m2, the multiplicity on C2 is
n1..n2, then A is formalized in DLid by means of a role A, and the following assertions
are added to the Tbox:

A (1 : C1) (2 : C2)

C1 (n1[1]A) (n2[1]A)

C2 (m1[2]A) (m2[2]A)

The second assertion specifies that for each instance of C1, there can be at least n1 and
at most n2 instances of C2 related to it by role A. Note that the distinction between the
contained metaclass and the containing metaclass isn’t lost. Indeed, we simply use the
following convention: the first argument of the role is the containing class. So the
aggregation association shown in Figure 2 is formalized by means of the assertions
(the multiplicities 0..* on Feature and 0 on Classifier are omitted):

A (1 : Classifier) (2 : Feature)

Feature (1[2]A)

376 X. Zhao and Z. Huang

Role names in metamodel are not formalized, such as the role name owner of
Classifier, because if we want to keep track of them in the formalization, it suffices to
consider them as convenient abbreviations for the components of the DLid role
modeling the aggregation.

(3) Ordinary Associations
Although association class isn’t supported by CWM, each ordinary association has a
corresponding association class for the conceptual perspective. To capture the
information of an ordinary association, we formalize each ordinary association into a
DLid concept.

Fig. 3. Ordinary association in CWM

For example, we represent an ordinary association shown in Figure 3 by introducing a
concept A and two roles r1, r2, one for each component of the ordinary association A.
Each role has A as its first component and concept ModelElement or Stereotype as its
second component. Then we enforce the following assertion:

A [1] r1 [1] (r1 (2 : ModelElement))

[1] r2 (1[1] r2) [1] (r2 (2 : Stereotype))

Note that the presentation of r1 and r2 is different from that in aggregation association
because the names of DLid roles (which correspond to the components of an ordinary
association) are unique wrt the ordinary association only, not the entire metamodel.

[1] ri(i {1,2})specifies that the concept A must have all components r1, r2 of the

ordinary association A; 1[1] r2 specifies that the corresponding component is single-

valued; [1] (r1 (2 : ModelElement))specifies that the second component of r1 has
to belong to ModelElement. Finally we use the assertion:

(id A [1]r1 [1]r2)

to specify that each instance of the concept A indeed represents a distinct tuple of the
corresponding association. By imposing suitable number restrictions on r1 and r2, we
can easily represent a multiplicity on an ordinary association. Differently from
aggregation association, the names of DLid roles (which correspond to the
components of an ordinary association) may be not unique wrt the entire metamodel,
so the assertions which represent the multiplicities of an ordinary association are
slightly different from those of an aggregation association. The multiplicities shown
in Figure 3 are captured as follows:

ModelElement (0 [2] (r1 (1 : A))) (1 [2] (r1 (1 : A)))

 A Formal Framework for Reasoning on Metadata Based on CWM 377

(4) Generalization and Inheritance
In CWM metamodel, one can use generalization between a parent class and a child
class to specify that each instance of the child class is also an instance of the parent
class. Hence the instances of the child class inherit the prosperities of the parent class,
but typically they satisfy additional properties that do not hold for the parent class.

Generalization is naturally supported in DLid. In CWM, the metaclass Element
generalizes ModelElement, we can express this by the DLid assertion: ModelElement

 Element.
Inheritance between DLid concepts works exactly as inheritance between CWM

metaclasses. This is an obvious consequence of the semantics of “ ” which is based

on subsetting. Indeed, in DLid, given an assertion C1 C2, every tuple in a role having
C2 as i-th argument type may have as i-th component an instance of C1, which is in
fact also an instance of C2. As a consequence, in the formalization, each attribute of
C2, and each aggregation association and each ordinary association involving C2 are
correctly inherited by C1. Observe that the formalization in DLid also captures directly
multiple inheritance between metaclasses.

(5) Constraints
In CWM metamodel, there are constraints expressed in the Object Constraint
Language(OCL). These OCL constraints are used to express in an informal way
information which can not be expressed by other constructs of CWM metamodel.
Some constraints can be captured in DLid, and reasoning about them is decidable. For
example, the OCL constraint [C-4-4] in Behavioral Package: An Interface can only
contain Operations, can be captured by:

Interface Classifier-Feature . Operation

The other OCL constraints are essentially full first order logic formulas, hence they
would make reasoning undecidable, so we don’t consider these OCL constraints.

3.1.2 Formalization of CWM-Based Metadata
Each element in CWM metadata is an instance of the corresponding metaclass in
metamodel. Each relation between elements is the instance of the corresponding
association between metaclasses, so metadata should be formalized into the Abox in
DLid knowledge base. General forms are as follows:

(1) if element c in metadata is the instance of metaclass C in metamodel, then we
have:

c : C or C(c)
(2) if element c1 in metadata aggregates c2, the corresponding metaclsss C1 (its

ancestor) aggregates C2 (its ancestor) by aggregation association A, aggregation
association A is translated as role A in the Tbox, then we have:

< c1 , c2> : A
(3) if element c1 in metadata is related to c2 by non-aggregation, the corresponding

metaclass C1 (its ancestor) is related to C2 (its ancestor) by an ordinary
association which is translated as concept A and roles r1, r2, then the relation
between c1 and c2 can be captured by:

378 X. Zhao and Z. Huang

a : A
< a , c1> : r1
< a , c2> : r2

According to the rules above, the metadata shown in Figure 4 can be formalized by
means of the assertions:

Fig. 4. Metadata for relational table

Person : Table
PersonID : Column
Name : Column
PersonPK : PrimaryKey
<Person , PersonID> : ColumnSet-Column
<Person , Name> : ColumnSet-Column
<Person , PersonPK> : Table-PrimaryKey
ColumnVUniqueConstraint : ColumnVUniqueConstraint
<ColumnVUniqueConstraint , PersonPK> : ColumnVUniqueConstraint-
UniqueConstraint
<ColumnVUniqueConstraint , PersonID> : ColumnVUniqueConstraint-Column

3.2 Illustration in Horizontal Consistency Checking

After the construction of DLid knowledge base, the query and reasoning mechanism of
the reasoning tool will allow the query and reasoning on metadata so that various
inconsistencies can be detected. After a study of each reasoning tool, we choose
LOOM[13] which has a very expressive concept definition language and a powerful
query and retrieval mechanism. The query facility and production rules of LOOM can
be used to detect inconsistencies. Although the classification algorithm of LOOM is
incomplete[18], it is complete on the knowledge base we introduce. However, although
reasoning over the DLid knowledge base is decidable, indeed, it is EXPTIME-complete,
current LOOM is not able to deal with identification constraints which are needed to
fully capture in DLid the semantics of ordinary associations, so it is necessary to extend
LOOM with capabilities of describing and reasoning about identification constraints.
For the purpose of testing our approach, here we make proper simplification by
translating each ordinary association into a role. After such simplification, LOOM can
be used to check a majority of known inconsistencies although the semantics of CWM
metamodel and metadata is not fully captured in DLid. The following is an illustration in
which LOOM is used to detect the violation of constraints:

 A Formal Framework for Reasoning on Metadata Based on CWM 379

Fig. 5. Metadata: multiplicity conflict

An example of the inconsistency which arises when the multiplicity constraints are
violated is shown in Figure 5, the metadata element Association which is an instance
of metaclass Association aggregates AssociationEnd1 which is an instance of
AssociationEnd, AssociationEnd1 is associated with Table1 which is an instance of
metaclass Table. According to the metamodel, an instance of Association should
aggregate at least two instances of AssociationEnd by Association-AssociationEnd, in
Figure 5, an instance of Association aggregates one instance of AssociationEnd only.
In reality, what the metadata represents is probably two or more associated instances
of Table, so the metadata is violating the multiplicity constraints imposed by
metamodel, conflict arises.

The inconsistency above can be detected by the following function:

(defun multiplicity (?association ?metadata-A)
... //the part omitted queries the knowledge base,
detects Association which is the corresponding
metaclass of ?association and Association aggregates
AssociationEnd by aggregation association Association-
AssociationEnd.
(let* ((?count1 (length (retrieve (?associationEnd)
(:and
(Association-AssociationEnd
?association ?associationEnd)
(Namespace-ModelElement ?associationEnd ?metadata-
A)))))
(?count2 (get-role-min-cardinality (get-concept
'Association)(get-relation 'Association-AssociationEnd
))))
(if (< ?count1 ?count2)
(format t "Multiplicity conflict: ~S aggregates ~S
elements, at least ~S is needed~%" ?association
?count1 ?count2))))

Given the metadata context and an element, the function queries the Tbox to obtain
the bottom limit of the multiplicity range of the aggregation association related to the
element imposed by the metamodel, and then compares it with the result that is
obtained by querying the Abox, if the constraint is disobeyed, the user is notified. The
function is applied to the metadata we create intentionally with the conflict shown in
Figure 5, the result is:

Multiplicity conflict: | I | ASSOCIATION aggregates 1
elements, at least 2 is needed

380 X. Zhao and Z. Huang

4 Evolution Consistency Checking

4.1 Extension for CWM

It is necessary to extend CWM for capturing the information needed for reasoning
about evolving metadata. Because versioning capabilities are not supported by CWM
currently, each version of metadata has to be saved to a different XML file, the
information during metadata evolution is difficult to be tracked, and we have to
extend CWM to enable it to support the record of evolution information, so as to
make it possible to maintain consistency during metadata evolution.

Fig. 6. Extension for CWM

We extend CWM metamodel by defining six metaclasses: VersionedModel,
CompositeModel, PrimitiveModel, Trace, HorizontalTrace, EvolutionTrace as shown
in Figure 6. ModelElement, Model, Dependency belong to the Core Package. The
intermediate metaclasses Namespace and Package between Model and ModelElement
are ignored for the sake of brief, the hierarchy has been flattened, maintaining only
the subclass Model. The namespace relationship is now assumed by Model. Metaclass
Trace, the subclass of Dependency, is used to indicate the evolution information of
ModelElements. In order to record metadata versions, evolution, the Model metaclass
is stereotyped into VersionedModel, so as to include a tag-value pair (version,
Integer) that indicates the metadata version information. To specify the type of
metadata that can be related by horizontal consistency or evolution consistency,
VersionedModel is stereotyped into PrimitiveModel and CompositeModel, which
indicate the metadata of the single component of data warehouse systems and the
metadata which is the product of integration, respectively. CompositeModel is a
container for all the PrimitiveModels that belong to the same version. In order to keep
track of the metadata belonging to a CompositeModel, a tag-value pair (vmodel,
Set(VersionedModel)) is introduced. For VersionedModel, a tag-value pair (container,
CompositeModel) is needed. Both tag-value pairs are represented together as a

 A Formal Framework for Reasoning on Metadata Based on CWM 381

bidirectional association in Figure 6. In addition, the following constraints must be
specified:

(1) A CompositeModel contains zero or more VersionedModels.
(2) A HorizontalTrace can only be specified between the same PrimitiveModel

belonging to the same CompositeModel.
(3) An EvolutionTrace can only be specified between different versions of the same

CompositeModel, or between different versions of the same PrimitiveModel.
(4) With respect to two models participating in an EvolutionTrace, the version

number of the client model must be greater than that of the supplier model.

In the using of extended metamodel, the metadata that is in the same version and
belongs to different components is the instance of CompositeModel, Elements in
metadata are owned by the instance of CompositeModel which acts as namespace,
while the instance of EvolutionTrace is related to different versions of the same
metadata by supplier association and client association, respectively.

4.2 Formalization in Evolution Consistency Checking

During the formalization in evolution consistency checking, the extension part in
metamodel and the corresponding part in metadata should be added to the Tbox and
the Abox, respectively. The other part is the same as that in horizontal consistency
checking, here it is ignored.

4.3 Illustration in Evolution Consistency Checking

The following is an example with the evolution-induced conflict. If a relational table
Worker has a foreign key WorkshopID, while the relational table Workshop that has
the key as its primary key has been removed or may have not been included in the
metadata, then the foreign key of the first table doesn’t exist as the primary key of
another table, the inconsistency arises.

The following function can be applied to detect the inconsistency above:

(defun foreignkey (?foreignkey ?metadata-v1)
(let* ((?count (length (retrieve (?table2)
(:and (Column ?column)
(Namespace-ModelElement ?column ?metadata-v1)
(ColumnSet-Column ?table1 ?column)
(Namespace-ModelElement ?table1 ?metadata-v1)
(Table-ForeignKey ?table1 ?foreignkey)
(ForeignKey-Column ?foreignkey ?column)
(Table ?table2)
(Namespace-ModelElement ?table2 ?metadata-v1)
(Table-PrimaryKey ?table2 ?primarykey)
(Namespace-ModelElement ?primarykey ?metadata-v1)
(UniqueConstraint-Column ?primarykey ?column))))))
(if (= ?count 0)
(do-retrieve(?metadata-v2)
(:and (Dependency ?dependency)
(Model-Dependency-c ?metadata-v1 ?dependency)

382 X. Zhao and Z. Huang

(Model-Dependency-s ?metadata-v2 ?dependency)
... //the omitted part requires that ?table2 belongs
to ?metadata-v2 and has ?column as its primary key,
?table1 belongs to ?metadata-v2 and has ?column as its
foreign key.
(format t "ForeignKey reference conflict: Foreign ~S of
the table ~S does not exist in ~S,while exists in ~S"
?column ?table1 ?metadata-v1 ?metadata-v2)))))

Given a foreign key and the metadata context it belongs to, the function queries the
knowledge base, looking for tables that have the foreign key as their primary keys, if
no table is found, the inconsistency arises. Then queries the related versions of the
metadata according to evolution trace, if succeeds, the information about the
inconsistency will be printed. The function is applied to the metadata we create
intentionally with the conflict above, the result is:

ForeignKey reference conflict: Foreign | I | WORKSHOPID
of the table | I | WORKER does not exist in | I |
METADATA-A-V1,while exists in | I | METADATA-A-V2

5 Related Work

Until today, to the best of our knowledge, little related research on the argument in this
paper is found. In what follows, we review some of the most relevant researches.
Barton et al. [4] and Randall et al. [5] elaborate the inconsistencies may be encountered
during metadata creation and integration, and present strategies to resolve it.
Finkelstein et al. [16] elaborate a list of the technical challenges that arise when trying
to build a toolset that deals with evolution and consistency. Tools dealing with these
two aspects should help establish, express and reason about the relationships between
formal languages and check consistency wrt these relationships and to provide
diagnostic feedback. Finkelstein et al. [11] explain that consistency between partial
models is not always possible, they suggest the use of temporal logic to identify and
handle inconsistencies. This formalism is used to describe sequences of actions that
lead to inconsistencies, unlike the approach taken in this paper that uses logic to find
inconsistencies. Diego et al. [8] introduce DLRreg, an expressive Description Logic
with n-ary relations, for specifying database schemas and queries, they discuss whether
the problem of checking query containment under the constraints is decidable. In [9],
they extend DLRreg so that it can be used to formalize and reason on a great variety of
data models, including the relational, the entity-relational, and the object-oriented
model, they also discuss the decidability problems and computational complexity of
reasoning in the extended Description Logic. Simmonds [7] proposes the approach to
deal with inconsistencies between UML class, statechart and sequence diagrams by
means of Description Logics. Andy [6] and Andrea et al. [12] propose the approaches
of formalization and reasoning on UML class diagrams, respectively, but they all don’t
take advantage of the information from the metamodel. In addition, Francesco et al.
[17] survey the related researches on the relationship between expressive power and
computational complexity of reasoning of Description Logics. Mens et al. [20] explain
the extension mechanism of UML, and propose the strategies to extend the UML
metamodel with support for evolution.

 A Formal Framework for Reasoning on Metadata Based on CWM 383

6 Conclusion

In this paper, we propose a new approach to formalize CWM metamodel and the
metadata based on CWM in terms of a particular formal logic of the family of
Description Logics, and to reason on metadata so that inconsistencies can be detected.
The approach can detect automatically not only the inconsistency information
irrelevant to evolution but also that caused by evolution. The approach can be
favorably exploited for developing intelligent system that support automated
reasoning on CWM metadata, so as to provide support for the development of the
components of data warehouse systems, thus improve the reliability of metadata
integration and data warehouse system. We have already started experimenting such
systems, the first results are encouraging.

The future work is as follows:

(1) It is of interest to characterize interesting fragments of OCL constraints that do
not lead to undecidability and study how to translate these into DLid.

(2) The inconsistency information in the metadata to test our approach is artificially
introduced, next work is to test our approach in practical systems, as these will
provide the metadata with more natural inconsistencies and evolution steps.

(3) Current work concentrates on automatically detecting inconsistencies,
automatically solving these inconsistencies will be studied in the future.

References

1. F. Baader, D. McGuinness, D. Nardi, P.F. Patel-Schneider. The Description Logic
Handbook: Theory, Implementation and Applications. Cambridge University Press, 2003.

2. Object Management Group. Common Warehouse Metamodel(CWM) Specification
Version 1.1. November 2001.

3. John Poole, Dan Chang, Douglas Tolbert, David Mellor. Common Warehouse Metamodel
Developer's Guide. New York, John Wiley & Sons Inc, January 2003.

4. Barton Jane, Currier Sarah, Hey Jessie M. N. Building Quality Assurance into Metadata
Creation: an Analysis based on the Learning Objects and e-Prints Communities of
Practice. In Proceedings 2003 Dublin Core Conference: Supporting Communities of
Discourse and Practice - Metadata Research and Applications(DCMI), Seattle,
Washington, 2003: 39-48.

5. Randall Hauch, Alex Miller, Rob Cardwell. Information intelligence: metadata for
information discovery, access, and integration. In Proceedings of the 2005 ACM SIGMOD
international conference on Management of data, 2005: 793-798.

6. Andy S. Evans. Reasoning with UML class diagrams. In Second IEEE Workshop on
Industrial Strength Formal Specification Techniques(WIFT98), 1998.

7. J. Simmonds. Consistency maintenance of uml models with description logic. Master’s
thesis, Vrije Universiteit Brussel, September 2003.

8. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini. On the decidability of query
containment under constraints. In Proc. of the 17th ACM SIGACT SIGMOD SIGART
Symp. on Principles of Database Systems(POD'98), 1998: 149-158

9. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini. Identification constraints
and functional dependencies in description logics. In Proc. of the 17th Int. Joint Conf. on
Artificial Intelligence(IJCAI 2001), 2001.

384 X. Zhao and Z. Huang

10. Volker Haarslev, Ralf Moller. RACER system description. In Proc. of the Int. Joint Conf.
on Automated Reasoning(IJCAR 2001), 2001

11. Anthony Finkelstein, Dov M. Gabbay, Anthony Hunter, Jeff Kramer, Bashar Nuseibeh.
Inconsistency handling in multi-perspective specifications. In European Software
Engineering Conference, 1993: 84-99.

12. Andrea Cali, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini. A formal
framework for reasoning on UML class diagrams. In Proc. of the 13th Int. Sym. on
Methodologies for Intelligent Systems (ISMIS'02), 2002: 503-513.

13. David Brill. LOOM reference manual, version 2.0 edition. University of Southern
California, Information Sciences Institute, December 28 1993.

14. John C. Grundy, John G. Hosking, Warwick B. Mugridge. Inconsistency management for
multiple-view software development environments. IEEE Transactions on Software
Engineering, 1998, 24(11): 960-981.

15. Object Management Group. Unified Modeling Language specification version 1.4.
September 2001.

16. Finkelstein. A Foolish Consistency: Technical Challenges in Consistency Management. In
Proceedings of the 11th International Conference on Database and Expert Systems
Applications(DEXA), London, UK, September 2000.

17. Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, Andrea Schaerf. Reasoning in
description logics. In Principles of Knowledge Representation, Studies in Logic, Language
and Information, 1996: 193-238.

18. Robert MacGregor. Inside the LOOM description classifier. SIGART Bull, 1991, 2(3):
88–92.

19. Ian Horrocks. FaCT and iFaCT. In International Workshop on Description Logics(DL99),
1999: 133-135.

20. Tom Mens, Theo D’Hondt. Automating support for software evolution in uml. Automated
Software Engineering Journal, February 2000, 7(1): 39–59.

21. Joaquin Miller, Jishnu Mukerji. Model driven architecture (MDA). Draft ormsc/2001-07-
01, Architecture Board ORMSC, July 2001.

A Set of QVT Relations to Assure the
Correctness of Data Warehouses by Using

Multidimensional Normal Forms

Jose-Norberto Mazón1, Juan Trujillo1, and Jens Lechtenbörger2

1 Dept. of Software and Computing Systems
University of Alicante, Spain

{jnmazon, jtrujillo}@dlsi.ua.es
2 Dept. of Information Systems
University of Münster, Germany
lechten@wi.uni-muenster.de

Abstract. It is widely accepted that a requirement analysis phase is
necessary to develop data warehouses (DWs) which adequately represent
the information needs of DW users. Moreover, since the DW integrates
the information provided by data sources, it is also crucial to take these
sources into account throughout the development process to obtain a
consistent representation. In this paper, we use multidimensional normal
forms to define a set of Query/View/Transformation (QVT) relations to
assure that the DW designed from user requirements agrees with the
available data sources that will populate the DW. Thus, we propose a
hybrid approach to develop DWs, i.e., we firstly obtain the conceptual
schema of the DW from user requirements and then we verify and enforce
its correctness against data sources by using a set of QVT relations based
on multidimensional normal forms.

1 Introduction

A data warehouse (DW) is commonly described as an integrated collection of his-
torical data in support of decision making that structures information into facts
and dimensions based on multidimensional (MD) modeling [1,2]. Since the DW
integrates several data sources, the development of conceptual MD models has
traditionally been guided by an analysis of these data sources [3,4,5]. Consider-
ing these data-driven approaches, MNFs (multidimensional normal forms) have
been developed [6] to reason, in a rigorous manner, about the quality (faithful-
ness, completeness, avoidance of redundancies, summarizability) of a conceptual
MD model derived from operational data sources.

Nevertheless, in these data-driven approaches the requirement analysis phase
is overlooked, thus resulting in an MD model in which the user needs and
expectations may not be satisfied [7]. To overcome this problem, several ap-
proaches [7,8,9,10] advocate a requirement-driven DW design process. However,
hardly any of these approaches considers the data sources in the early stages of
the development. Therefore, the correctness of the MD model with respect to

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 385–398, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

386 J.-N. Mazón, J. Trujillo, and J. Lechtenbörger

the data sources cannot be assured and the DW repository cannot be properly
populated from these data sources.

In order to reconcile these two points of view (data-driven and requirement-
driven), a Model Driven Architecture (MDA) [11] framework for the development
of DWs has been described in [12]. Within this approach a conceptual MD model
of the DW repository is developed from user requirements. This MD model must
be then conformed to data sources in order to assure its correctness.

In this paper, we focus on presenting a set of Query/View/Transformation
(QVT) relations in order to check the correctness of the MD conceptual model
against the available data sources within our MDA framework. These QVT re-
lations are based on MNFs proposed in [6]. The QVT language allows us to
easily integrate this approach in our MDA framework from the development of
DWs [12], while MNFs enable us to formalize the relationship between the data
sources and the MD conceptual model of the DW repository.

The motivation of our approach is as follows: since the DW integrates the in-
formation provided by source databases, it is important to check (in early stages
of the development) if the requirement-driven MD conceptual model agrees with
the available data sources in order to assure that (i) the DW repository will be
properly populated from data sources, (ii) the analysis potential provided by
the data sources is captured by the MD conceptual model, (iii) redundancies
are avoided, and (iv) optional dimension levels, i.e., levels allowing NULL val-
ues, are controlled via specialization/generalization to enable context-sensitive
summarizability and to avoid inconsistent queries.

CustomerOrganization

Time

Account

<<FactAttribute>> Balance

<<FactAttribute>> Turnover

<<FactAttribute>> Interest

<<FactAttribute>> CustomerAge

1
0..n

1
0..n

Product

Customer

<<Descriptor>> ID

<<DimensionAttribute>> Name

<<DimensionAttribute>> DataOfBirth

<<DimensionAttribute>> Job

<<DimensionAttribute>> Gender

<<DimensionAttribute>> Branch

<<DimensionAttribute>> ContactPerson

District

<<Descriptor>> Name

City

<<Descriptor>> Name

<<DimensionAttribute>> Population

1..n

1

+d

1..n

+r

1

<<Rolls-upTo>>

1..n

1

+d

1..n

+r

1

<<Rolls-upTo>>

State

<<Descriptor>> Name

<<DimensionAttribute>> Population

<<DimensionAttribute>> Area

Region

<<Descriptor>> Name

1

1..n

+r
1

+d

1..n

<<Rolls-upTo>>

1
1..n

+r

1

+d

1..n

<<Rolls-upTo>>

Fig. 1. MD model for banking domain

A Set of QVT Relations to Assure the Correctness of Data Warehouses 387

To illustrate these benefits, consider the following running example, which is
inspired by an example of [6]. We assume that the MD conceptual model for
the banking domain shown in Fig. 1 has been derived from analysis require-
ments without taking data sources into account, e.g., according to the guidelines
presented in [9]. The notation of Fig. 1 is based on a UML profile for MD mod-
eling presented in [13] (see Section 4.2 for details). The figure models Account
facts which are composed of several measures (balance, turnover, interest, and
customerAge) and described by dimensions Organization, Product, Time, and
Customer. Due to space constraints, we only focus on the Customer dimension.

Every customer is described in terms of a unique identification number, a
name, and a date of birth. Every customer lives in a city which is described with
a name and a population. Moreover, customers may be associated with job,
gender, industry branch, and contact person. Finally, a city belongs to (Rolls-
upTo) exactly one region and exactly one district, while a region belongs to
exactly one state.

This model represents a geographical classification where every region falls
into exactly one state, while districts and states appear to be unrelated. From a
conceptual perspective, this classification seems reasonable. However, if the data
sources provide geographical information where every district falls into exactly
one state, while regions and states are unrelated then (i) the source information
concerning regions and states cannot be represented faithfully under the MD
model and (ii) potential for roll-up queries from level district to level state is not
represented, i.e., analysis potential is lost. Moreover, the MD model does not rep-
resent the structural information that industry branches and contact persons are
assigned only to company customers while job and gender are only applicable to
private customers, which poses challenges for summarizability and complicates
querying (see [6,14]). Finally, while it certainly makes sense to analyze the age
structure of customers, the measure age is not specific to accounts but only to
customers. Thus, this measure should be moved to a different fact schema. To
summarize, based on schema information for the data sources, the MD concep-
tual model shown in Fig. 1 should be improved in a number of ways to obtain
the “better” model shown in Fig. 2. Indeed, in this paper we show how to apply
QVT relations, which are derived from MNFs, to obtain the model shown in
Fig. 2 from the model shown in Fig. 1 by taking source databases into account.

The remainder of this paper is structured as follows: Related work is put into
perspective next, before necessary background concerning QVT and MNFs is
collected in Section 3. Our approach is presented in Section 4 by describing data
source model as well as MD conceptual model, and defining QVT relations based
on MNFs. The application of sample QVT relations is illustrated in Section 5.
The paper ends with conclusions and suggestions for future work in Section 6.

2 Related Work

In this section, we briefly describe the most relevant approaches for both data-
driven and requirement-driven DW development.

388 J.-N. Mazón, J. Trujillo, and J. Lechtenbörger

Organization

Time

Account

<<FactAttribute>> Balance

<<FactAttribute>> Turnover

<<FactAttribute>> Interest

Product

Customer

1
0..n

1
0..n

Private

<<DimensionAttribute>> Job

<<DimensionAttribute>> Gender

Company

<<DimensionAttribute>> Branch

<<DimensionAttribute>> ContactPerson

Customer

<<Descriptor>> ID

<<DimensionAttribute>> Name

<<DimensionAttribute>> DataOfBirth

Region

<<Descriptor>> Name

City

<<Descriptor>> Name

<<DimensionAttribute>> Population

1..n

1

+d

1..n

+r

1

<<Rolls-upTo>>

1

1..n

+r

1

+d

1..n

<<Rolls-upTo>>

State

<<Descriptor>> Name

<<DimensionAttribute>> Population

<<DimensionAttribute>> Area

District

<<Descriptor>> Name

1..n

1

+d 1..n

+r 1

<<Rolls-upTo>>

1
1..n

+r

1

+d

1..n

<<Rolls-upTo>>

Fig. 2. Improved MD model for banking domain

Concerning data-driven approaches, in [4], the authors present the Multidi-
mensional Model, a logical model for MD databases. The authors also propose
a general design method, aimed at building an MD schema starting from an
operational database described by an Entity-Relationship (ER) schema.

In [3], the authors propose the Dimensional-Fact Model (DFM), a particular
notation for the DW conceptual design. Moreover, they also propose how to
derive a DW schema from the data sources described by ER schemas. Also
in [15], the building of a conceptual MD model of the DW repository from the
conceptual schemas of the operational data sources is proposed.

In [5], the authors present a method to systematically derive a conceptual MD
model from data sources. In this paper a preliminary set of multidimensional
normal forms is used to assure the quality of the resulting conceptual model.

Although in each of these data-driven approaches the design steps are de-
scribed in a systematic and coherent way, the DW design is only based on the
operational data sources, what we consider insufficient because the final user
requirements are very important in the DW design [7].

Concerning requirement-driven approaches, in [7] an approach is proposed in
order to both determine information requirements of DW users and match these
requirements with actual data sources. However, no formal approach is given in
order to match requirements with data sources.

In [8], the authors propose a requirement elicitation process for DWs by group-
ing requirements in several levels of abstraction. Their process consists of iden-
tifying information that supports decision making via information scenarios. In
this process, a Goal-Decision-Information (GDI) diagram is used. Although the
derivation of GDI diagrams and information scenarios is described, the relation-
ships between information scenarios and requirements are not properly specified.

A Set of QVT Relations to Assure the Correctness of Data Warehouses 389

Moreover, requirements are not conformed to data sources in order to obtain a
conceptual MD model.

In [10], the authors present a framework to obtain a conceptual MD model
from requirements. This framework uses the data sources to shape hierarchies
and user requirements are used to choose facts, dimensions and measures. How-
ever, the authors do not present a formal way to conform data sources and the
MD conceptual model.

As a survey, we wish to point out that these requirement-driven approaches
do not formalize the relation between the data sources and the requirements to
verify and enforce the correctness of the resulting DW. Therefore, we propose
to use MNFs [6] in a systematic manner, thus formalizing the development of
the DW repository by means of (i) obtaining a conceptual MD model from
user requirements, and (ii) verifying and enforcing its correctness against the
operational data sources. Details on MNFs are presented in the next section.

3 Background

In this section, we provide a brief overview of the building blocks of our approach,
namely Query/View/Transformation and Multidimensional Normal Forms.

3.1 Query/View/Transformation Language

The MOF 2.0 Query/View/Transformation (QVT) language [16] is a standard
approach for defining formal relations between MOF-compliant models. Fur-
thermore QVT is an essential part of the MDA standard as a means of defining
formal and automatic transformations between models.

QVT consists of two parts: declarative and imperative. The declarative part
provides mechanisms to define relations that must hold between the model ele-
ments of a set of candidate models (source and target models). This declarative
part can be split into two layers according to the level of abstraction: the rela-
tional layer that provides graphical and textual notation for a declarative speci-
fication of relations, and the core layer that provides a simpler, but verbose, way
of defining relations. The imperative part defines operational mappings that ex-
tend the declarative part with imperative implementations when it is difficult to
provide a purely declarative specification of a relation.

In this paper, we focus on the relational layer of QVT. This layer supports
the specification of relationships that must hold between MOF models by means
of a relations language. A relation is defined by the following elements:

– Two or more domains: each domain is a set of elements of a source
or a target model. The kind of relation between domains must be specified:
checkonly (C), i.e., it is only checked if the relation holds or not; and enforced
(E), i.e., the target model can be modified to satisfy the relation.

– When clause: it specifies the conditions under which the relation needs to
hold (i.e. precondition).

390 J.-N. Mazón, J. Trujillo, and J. Lechtenbörger

– Where clause: it specifies the condition that must be satisfied by all model
elements participating in the relation (i.e. postcondition).

Defining relations by using the QVT language has the following advantages: (i)
it is a standard language, (ii) relations are formally established and automatically
performed, and (iii) relations can be easily integrated in an MDA approach.

3.2 Multidimensional Normal Forms

The formal guidelines that we are using to formulate our QVT relations in
the following are the three multidimensional normal forms 1MNF, 2MNF, and
3MNF presented in [6]. Here, we recapitulate the essence of these normal forms
informally. The reader is referred to [6] for formal definitions. Preliminarily we
recall that within an MD conceptual model the terminal dimension levels of a
fact are those that are attached immediately to the dimensions, i.e., those that
provide the finest level of detail within each dimension.

The goal of 1MNF is to ensure that an MD conceptual model “matches” with
the information provided by the source databases. More specifically, 1MNF is
characterized by four conditions as follows:

1. Faithfulness. The functional dependencies (FDs) implied by the MD model
must be a subset of those observed in the source databases. (Otherwise, some
source data cannot be represented under the MD model.)

2. Roll-up completeness. The FDs among dimension levels contained in the
source databases must be represented as roll-up arcs in the MD model. (Oth-
erwise, analysis potential is lost.)

3. Derivation completeness. The FDs among sets of measures contained in the
source databases must be represented via derivation formulas in the MD
model. (Otherwise, derivation relationships are lost.)

4. Avoidance of redundancies. Each measure must be assigned to a fact in such
a way that the terminal dimension levels of the fact form a key for the
measure without transitive dependencies. (Otherwise, a measure is recorded
redundantly at the “wrong” level of detail. E.g., in Fig. 1 in the Introduction
measure customerAge was repeated for each account owned by a customer.)

In addition to 1MNF, the normal forms 2MNF and 3MNF aim to control
optional dimension levels by means of so-called contexts of validity. Roughly, a
context of validity for an optional dimension level explains the occurrence (and
absence) of structural null values (such as NULL for industry branch of pri-
vate customers in Fig. 1) based on the values of so-called discriminating levels.
E.g., for the scenario in Fig. 1, we may assume that in the data sources there
is an attribute customerType with values “private” and “company”, which acts
as discriminating level, such that a customerType of “private” implies NULL
for Branch and ContactPerson, whereas “company” implies NULL for Job and
Gender. As argued in [14] and elaborated in more detail in [6], structural NULL
values can and should be avoided by suitable introduction of specialization hi-
erarchies. In fact, in [6] it has been shown that 3MNF allows to construct a

A Set of QVT Relations to Assure the Correctness of Data Warehouses 391

class hierarchy of dimension levels with an implementation as relational data-
base that avoids null values. Note that such a class hierarchy is indeed part of
the improved model shown in Fig. 2.

Importantly, the MD model considered in [6] does not provide mechanisms
for specialization/generalization explicitly, which necessitates the use of context
dependencies. As in this paper we consider a richer MD model that explicitly
supports subclassing, we are able to explain the occurrence of NULL values
directly by moving an attribute with structural NULL values into the appropriate
subclass. As a result, we obtain a simplified approach.

As explained in [6,14] control over NULL values enables context-sensitive
summarizability (e.g., if an analyst rolls up from individual customers to industry
branches, then schema information explains that the context of analysis has
changed to a subclass of all customers) and avoids inconsistent queries (e.g., a
query such as “group private customers by industry branch” can be rejected
based on schema information).

4 Checking Correctness of the MD Conceptual Model

In this section, we present our approach to check the correctness of a conceptual
MD model with respect to the source databases. To this end, we present a set of
QVT relations based on MNFs and obtain their inherent desirable design objec-
tives: The resulting MD conceptual model faithfully represents the data sources
and captures their analysis potential completely, redundancies are avoided, and
NULL values are controlled to allow context-sensitive summarizability and avoid
contradictory queries. Our approach consists of two main phases:

First, the elements of the data sources are marked as dimensional elements
(fact, dimension, measure and so on). Second, a set of QVT relations between the
data source model and the MD conceptual model (previously derived from user
requirements) are applied, thus checking and enforcing that the MD conceptual
model is aligned with data sources.

4.1 Data Source Model

We assume that the data source model is the relational representation of the data
sources in third normal form. (Note that third normal form is not a restriction
as well-known algorithms such as Synthesis [17] can transform any input schema
into third normal form.) In particular, we use the CWM (Common Warehouse
Metamodel) relational metamodel [18] in order to specify this data source model.
The CWM relational metamodel is a standard to represent the structure of data
resources in a relational database and allows us to represent tables, columns,
primary keys, foreign keys, and so on. Since every CWM metamodel is MOF-
compliant [18], it can be used as source or target for QVT relations [16].

On the other hand, this data source model must be marked before the QVT
relations can be applied. Marking models is a technique that provides mecha-
nisms to extend elements of the models in order to capture additional informa-
tion [11,19]. Marks are used in MDA to prepare the models in order to guide the

392 J.-N. Mazón, J. Trujillo, and J. Lechtenbörger

matching between them. A mark represents a concept from one model, which
can be applied to an element of other different model. These marks indicate
how every element of the source model must be matched. In our approach, the
data source model is marked by appending a suffix to the name of each element
according to the MD conceptual model. In particular, we assume that the data
source tables corresponding to MD model elements Fact, Dimension, and Base
are marked with FACT, DIM, and BASE, respectively, while data source
columns corresponding to FactAttribute, DimensionAttribute, and Descriptor
are marked with MEASURE, DA, and D, respectively. Finally, a ForeignKey
representing a Rolls-upTo element is marked with ROLLS.

4.2 MD Conceptual Model

The conceptual modeling of the DW repository is based on a UML profile for
MD modeling presented in [13]. This profile contains the necessary stereotypes
in order to elegantly represent main MD properties at the conceptual level by
means of a UML class diagram in which the information is clearly organized
into facts and dimensions. These facts and dimensions are represented by Fact
(represented as) and Dimension classes (represented as), respectively.
Fact classes are defined as composite classes in shared aggregation relationships
of n Dimension classes. A fact is composed of measures or fact attributes (Fac-
tAttribute stereotype,). Furthermore, derived measures (and their derivation
rules) can also be explicitly represented as tagged values of a FactAttribute.

With respect to dimensions, each level of a classification hierarchy is speci-
fied by a Base class (). Every Base class can contain several dimension at-
tributes (DimensionAttribute stereotype,) and must also contain a Descrip-
tor attribute (D stereotype,). An association with a Rolls-UpTo stereotype
(<<Rolls-UpTo>>) between Base classes specifies the relationship between two
levels of a classification hierarchy. Within this association, role R represents the
direction in which the hierarchy rolls up, whereas role D represents the direction
in which the hierarchy drills down. An overview of our UML profile is given in
Fig. 3. Apart from these defined stereotypes the generalization/specialization
relationships of UML is used for suitably representing optional dimension levels.

Other MD issues are also defined by this UML profile (degenerate dimensions,
degenerate facts, non-strict hierarchies, and so on), however they are not taken
into account in this paper, since only the characteristics related to MNFs are
considered.

4.3 QVT Relations

In the following, each QVT relation is described: Check1MNF1 1,
Check1MNF1 2, Check1MNF1 3, Check1MNF1 4, Check1MNF2, Check1MNF3,
and Check1MNF4 are based on the 1MNF; Check2MNF3MNF is based on both
2MNF and 3MNF.

The relations are applied as follows: first Check1MNF1 1, Check1MNF1 2,
Check1MNF1 3, and Check1MNF1 4 are applied in order to check that the FDs
of the MD model are contained in those of the sources (first condition of the

A Set of QVT Relations to Assure the Correctness of Data Warehouses 393

+ownedAttribute+class

0..1 *

2..*

Class

Classifier

Generalization

Property

aggregation: AggregationKind

upper: UnlimetedNatural (from MultiplicityElement)

lower: Integer (from MultiplicityElement)

type: Type (from TypedElement)

Property

aggregation: AggregationKind

upper: UnlimetedNatural (from MultiplicityElement)

lower: Integer (from MultiplicityElement)

type: Type (from TypedElement)

Association
<<enumeration>>

AggregationKind

none

shared

composite

<<enumeration>>

AggregationKind

none

shared

composite

11

*

+general

+specific

+generalization

+memberEnd

+association

0..1

<<stereotype>>

Rolls-upTo

<<stereotype>>

Fact

<<stereotype>>

Dimension

<<stereotype>>

Base

<<stereotype>>

FactAttribute

<<stereotype>>

DimensionAttribute

<<stereotype>>

Descriptor

Fig. 3. Extension of the UML with the stereotypes used in this paper

1MNF); since both domains are check-only, it is only checked whether there
exists a valid match that satisfies these relations without modifying any model
if the domains do not match. If the check fails, there typically is no automatic
solution, and the DW developer must redesign the MD conceptual model. (E.g.,
in our example given in Fig. 1, the user requirements express that Regions roll-
up to States, whereas the data sources do not provide this information. Thus,
either the conceptual model has to be modified as shown in Fig. 2 or the source
data has to be aligned with the model.) Otherwise, i.e., if the check succeeds,
the remaining relations can be applied to properly modify the MD conceptual
model (according to the second, third, and fourth condition of 1MNF as well
as according to 2MNF and 3MNF). Therefore, these QVT relations not only
check the correctness of the MD conceptual model according to the data sources,
but also enforce this correctness by creating the necessary elements of the MD
conceptual model until each relation holds.

Throughout the checks, we assume that the names of corresponding elements
in both models are equal (apart from the previously added marks) according to
a linguistic approach based on name similarity [20]. This issue is captured in the
when clause of each relation.

Verify 1MNF (first condition). According to this condition, for every FD in the
MD conceptual model we have to check that there is a corresponding FD in the
data source model, i.e., the FDs implied by the MD model must be a subset of
those observed in the source databases. Therefore, this condition assures that
the source data can be properly represented under the MD model. We have de-
fined one QVT relation (see Fig. 4-5) for each situation in which an FD arises in
the MD conceptual model in order to check if the same FD occurs in the data
source model. These situations are as follows:

1. Descriptor determines DimensionAttributes. This is checked by Check-
1MNF1 1 (see Fig. 4). The elements related to the MD conceptual model are the
following: a Base (b), a Descriptor (d) and a DimensionAttribute (da). These
elements of the MD conceptual model must be matched against a set of elements
of the data source model: a table (t) with a column (c1) which is part of the
primary key (pk). This table is marked as a Dimension or Base (m n t) and the
column (c1) is marked as a Descriptor (m n c1). There is also a column (c2)

394 J.-N. Mazón, J. Trujillo, and J. Lechtenbörger

which is functionally determined by the primary key. This column is marked as
a DimensionAttribute (m n c2).

2. A Rolls-upTo association is an FD between hierarchy levels (Bases). This
is checked by Check1MNF1 2 as follows (see Fig. 4): a set of elements that
represent two Bases (b1 and b2) related by means of a Rolls-upTo association
must be checked against the following pattern in the data source model: a set of
elements that represents a table (t1) with a foreign key (fk) that references the
other table (t2). This represents a many-to-one relationship in a third normal
form relational database. Furthermore, table t1 must be marked as Dimension
or Base, t2 as Base and foreign key fk as Rolls-upTo.

3. Derived measures. This is checked by Check1MNF1 3 (see Fig. 4). It checks
that if there is a derived FactAttribute (with a derivation rule) in the MD model,
then in the data sources there must be a procedure which implements this deriva-
tion rule.

Fig. 4. QVT relations based on Multidimensional Normal Forms (1/2)

4. Dimensions (and their terminal dimension levels) functionally determine
FactAttributes (i.e., measures). This is checked by Check1MNF1 4 (see Fig. 5).
In this relation, a set of elements of the MD conceptual model that represent the
relation between a Dimension (d), together with its terminal dimension level, i.e,
Base (b) and a Fact (f) together with its attributes (fa) is matched against the
following pattern of the data sources: a table (t1) with a column (c), a primary
key (pk) which contains a foreign key that references another table (t2). Table
t1 is marked as a Fact, while table t2 is marked as Dimension and column c is
marked as FactAttribute.

Verify 1MNF (second condition). The Check1MNF2 relation checks this con-
dition, i.e., roll-up completeness (the FDs among dimension levels contained in
the source databases must be represented as roll-up arcs in the MD model).
Therefore, if this relation holds then there exists a Rolls-upTo association be-
tween bases in the MD conceptual model if there is an FD between columns
of different tables in the data source model. This relation is the same that the

A Set of QVT Relations to Assure the Correctness of Data Warehouses 395

Fig. 5. QVT relations based on Multidimensional Normal Forms (2/2)

Check1MNF1 2 relation, but the kind of relation in the MD side is specified as
enforced.

Verify 1MNF (third condition). This condition is related to derivation complete-
ness (third condition of the 1MNF). If a certain measure can be computed from
a set of other measures, then it indicates that there is an FD among measures.
Therefore, the FDs among measures that appear in the data source model should
be reflected as derived FactAttributes of the MD conceptual model. The relation
that verifies this condition (Check1MNF3) is the same that Check1MNF1 3 (see
Fig. 4), by specifying the kind of relation in the MD side as enforced.

Verify 1MNF (fourth condition). This condition (avoidance of redundancies)
is checked by the Check1MNF4 relation. This relation is the same that the
Check1MNF1 4 relation (see Fig. 5), but with an enforced kind in the MD side.
Therefore, each measure must be assigned to a Fact (as a FactAttribute) in such
a way that the terminal dimension levels of the Fact form a key for the measure
without transitive dependencies.

Verify 2MNF and 3MNF. This relation is based on 2MNF and 3MNF. These
normal forms control optional dimension levels by avoiding structural NULL
values. The aim of this relation is check or enforce a class hierarchy of dimension
levels in order to avoid these NULL values. As in this paper we consider an MD
conceptual model that explicitly supports subclassing, this QVT relation covers
both 2MNF and 3MNF by moving an attribute with structural NULL values
into the appropriate subclass.

This relation is shown in Fig. 5. A table (t1) with two columns, an optional
column (l0) and a discriminating level (l) is matched against a generalization
hierarchy: a superclass is a base (b1), and a subclass is other base (b2) with a
DimensionAttribute that corresponds to the optional column. Furthermore, we
use context dependencies as schema level constraints to identify discriminating
levels, so in the when clause there is a function (isDiscriminatingLevel) that
checks whether the column l is a discriminating level according to the table t1
and the other column l0.

396 J.-N. Mazón, J. Trujillo, and J. Lechtenbörger

5 Sample Applications of QVT Relations

In this section, we show how our QVT relations are properly applied to assure
the correctness of the MD conceptual model of the DW repository against data
sources. We use the sample scenario previously introduced in the Introduction
(see Fig. 2). The data source model (already marked) is shown in Fig. 6.

Customer_DIM:
Table

ID_Customer_D:
Column

PK_Customer:
PrimaryKey

/owner

/namespace

/feature

/ownedElement /feature

/uniqueKey

Name_DA: Column

DateOfBirth_DA: Column

/owner

/feature

/feature

City_DA: Column
/feature

FK_ToCity_ROLLS:
ForeignKey

/ownedElement

/namespace

/uniqueKey

/feature

Population_DA:
Column

/feature

City_BASE: Table Name_D: Column

PK_City:
PrimaryKey

/owner

/namespace

/feature

/ownedElement /feature

/uniqueKey/owner

/keyRelationship

/feature

/feature

District_BASE: TableName_D: Column

PK_District:
PrimaryKey

/owner/feature

/ownedElement

/uniqueKey

/owner

District_DA:
Column

FK_ToDistrict_ROLLS:
ForeignKey

/namespace

/feature

Account_FACT:
Table

Turnover_MEASURE: Column

Interest_MEASURE: Column

Balance_MEASURE: Column

/owner

/feature

/feature

/feature

PK_Account:
PrimaryKey

/namespace /ownedElement

FK_To_Customer:
ForeignKey

Customer: Column
/feature

/ownedElement

/namespace

/keyRelationship

/uniqueKey

/feature

/feature

/uniqueKey

/feature

Region_BASE: Table

Name_D: Column

PK_Region:
PrimaryKey

/feature

/ownedElement

/uniqueKey

/owner

/namespace

/feature

Population_DA:
Column

/feature

State_BASE: TableName_D: Column

PK_State:
PrimaryKey

/owner

/feature

/ownedElement

/uniqueKey

/owner

Area_DA:
Column

/feature

/namespace

/feature

State_DA:
Column

FK_ToState_ROLLS:
ForeignKey

/feature

/keyrelationship

/feature

Region_DA:
Column

/feature

FK_ToRegion_ROLLS:
ForeignKey

Job_DA: Column

Gender_DA: Column

Branch_DA: Column

ContactPerson_DA: Column

/feature

Type_DA: Column
/feature

Fig. 6. Data sources model for our example

Due to space restrictions, we only describe a subset of the applied relations.
These QVT relations are as follows:

Check1MNF2. This relation checks and enforces that FK ToState ROLLS,
a foreign key in the District BASE table referencing the State BASE table
(which embodies a many-to-one relationship between districts and states), is
represented via a Rolls-upTo association between District base and State base
in the MD conceptual model. We point out that this Rolls-upTo association was
missing in the requirement-driven MD conceptual model (recall Fig. 1).

Check1MNF4. This relation checks that the Account FACT table, its pri-
mary key (PK Account), foreign key (FK To Customer) to the Customer DIM
table, and its columns (Balance MEASURE, Turnover MEASURE, and Inter-
est MEASURE,) correspond to the Account fact (including fact attributes) and
the Customer dimension (including the terminal dimension level Customer base).

Check2MNF3MNF. The enforcement of this relation creates subclasses of
the Customer base in the MD conceptual model, whose names are determined

A Set of QVT Relations to Assure the Correctness of Data Warehouses 397

by the values of the discriminating level Type DA: company and private. Fur-
thermore, it enforces that the optional columns Job DA and Gender DA in the
data source model belong to the private subclass in the MD conceptual model,
while the optional columns Branch DA and ContactPerson DA belong to the
company subclass of the Customer base.

6 Conclusions and Future Work

In this paper, we have presented an approach to assure the correctness of an
MD conceptual model of the DW repository according to the data sources that
will populate this repository. This approach is outlined as follows: we firstly ob-
tain the MD conceptual schema of the DW from user requirements and then
we verify and enforce its correctness against data sources by using a set of
QVT relations based on MNFs. By using MNFs, we can assure that the MD
conceptual model also satisfies certain desirable properties such as faithfulness,
completeness, avoidance of redundancies, and context-sensitive summarizability.
Furthermore, QVT relations allow us to integrate this approach into an MDA
framework for the development of DWs.

Our immediate future work is to extend our approach by defining QVT rela-
tions in order to automatically transform the MD conceptual model into logical
models that are closer to the relational implementation. Furthermore, non-strict
hierarchies, many-to-many relationships between a fact and a dimension, degen-
erate facts, and other MD issues should be taken into account. Therefore, MNFs
will also assure the correctness of these logical models.

Acknowledgements

This work has been partially supported by the METASIGN (TIN2004-00779)
project from the Spanish Ministry of Education and Science, by the DADAS-
MECA project (GV05/220) from the Valencia Ministry of Enterprise, University
and Science (Spain), and by the DADS (PBC-05-012-2) project from the Castilla-
La Mancha Ministry of Education and Science (Spain). Jose-Norberto Mazón is
funded by the Spanish Ministry of Education and Science under a FPU grant
(AP2005-1360).

References

1. Inmon, W.: Building the Data Warehouse. Wiley & Sons (2002)
2. Kimball, R., Ross, M.: The Data Warehouse Toolkit. Wiley & Sons (2002)
3. Golfarelli, M., Maio, D., Rizzi, S.: The Dimensional Fact Model: A conceptual

model for data warehouses. Int. J. Cooperative Inf. Syst. 7(2-3) (1998) 215–247
4. Cabibbo, L., Torlone, R.: A logical approach to multidimensional databases. In

Schek, H.J., Saltor, F., Ramos, I., Alonso, G., eds.: EDBT. Volume 1377 of Lecture
Notes in Computer Science., Springer (1998) 183–197

398 J.-N. Mazón, J. Trujillo, and J. Lechtenbörger

5. Hüsemann, B., Lechtenbörger, J., Vossen, G.: Conceptual data warehouse model-
ing. In Jeusfeld, M.A., Shu, H., Staudt, M., Vossen, G., eds.: DMDW. Volume 28
of CEUR Workshop Proceedings., CEUR-WS.org (2000) 6

6. Lechtenbörger, J., Vossen, G.: Multidimensional normal forms for data warehouse
design. Inf. Syst. 28(5) (2003) 415–434

7. Winter, R., Strauch, B.: A method for demand-driven information requirements
analysis in data warehousing projects. In: HICSS. (2003) 231

8. Prakash, N., Singh, Y., Gosain, A.: Informational scenarios for data warehouse
requirements elicitation. In Atzeni, P., et al, eds.: ER. Volume 3288 of Lecture
Notes in Computer Science., Springer (2004) 205–216

9. Mazón, J.N., Trujillo, J., Serrano, M., Piattini, M.: Designing data warehouses:
from business requirement analysis to multidimensional modeling. In Cox, K.,
Dubois, E., Pigneur, Y., Bleistein, S.J., Verner, J., Davis, A.M., Wieringa, R.,
eds.: REBNITA, University of New South Wales Press (2005) 44–53

10. Giorgini, P., Rizzi, S., Garzetti, M.: Goal-oriented requirement analysis for data
warehouse design. In: DOLAP. (2005) 47–56

11. Object Management Group: MDA Guide 1.0.1.
http://www.omg.org/cgi-bin/doc?omg/03-06-01 (Visited January 2006)

12. Mazón, J.N., Trujillo, J., Serrano, M., Piattini, M.: Applying MDA to the devel-
opment of data warehouses. In: DOLAP. (2005) 57–66

13. Luján-Mora, S., Trujillo, J., Song, I.Y.: A UML profile for multidimensional mod-
eling in data warehouses. Data & Knowledge Engineering In Press (2006)

14. Lehner, W., Albrecht, J., Wedekind, H.: Normal forms for multidimensional data-
bases. In Rafanelli, M., Jarke, M., eds.: SSDBM, IEEE Computer Society (1998)
63–72

15. Tryfona, N., Busborg, F., Christiansen, J.G.B.: starER: A conceptual model for
data warehouse design. In: DOLAP, ACM (1999) 3–8

16. Object Management Group: MOF 2.0 Query/View/Transformation.
http://www.omg.org/cgi-bin/doc?ptc/2005-11-01 (Visited January 2006)

17. Bernstein, P.A.: Synthesizing third normal form relations from functional depen-
dencies. ACM Trans. Database Syst. 1(4) (1976) 277–298

18. Object Management Group: Common Warehouse Metamodel Specification 1.1.
http://www.omg.org/cgi-bin/doc?formal/03-03-02 (Visited January 2006)

19. Mellor, S., Scott, K., Uhl, A., Weise, D.: MDA distilled: principles of Model-Driven
Architecture. Addison Wesley (2004)

20. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4) (2001) 334–350

Design and Use of ER Repositories: Methodologies and
Experiences in eGovernment Initiatives

Carlo Batini, Daniele Barone, Manuel F. Garasi, and Gianluigi Viscusi

Dipartimento di Informatica Sistemistica e Comunicazione (Disco)
Università degli Studi di Milano-Bicocca - Italy

batini@disco.unimib.it, daniele.barone@unimib.it,
garasima@lib.unimib.it, gianluigi.viscusi@unimib.it

Abstract. In this paper we describe the main results of a fifteen years research
activity in the area of repositories of Entity-Relationship conceptual schemas.
We first introduce a set of integration/abstraction primitives that are used in order
to organize a large set of conceptual schemas in a repository. We describe the
methodology conceived to produce the repository of schemas of central public
administrations in Italy. Then we describe an heuristic methodology, applied in
the production of the set of schemas of the public administrations of an italian
region. We also compare the former exact methodology and the heuristic one ac-
cording to their correctness, completeness, and efficiency. Finally, we show how
such repositories can be used in eGovernment initiatives for planning activities
and in the identification of projects. Further work highlights possible evolutions
of the repositories toward enhanced semantic representations and usage.

1 Introduction

The goal of this paper is to describe several experiences of modelling, design and usage
of repositories of conceptual schemas, related to central and local Italian public adminis-
tration. The structure of public administration (PA) consists in many countries, of central
and local agencies that together offer services to citizens and businesses. For example,
in Italy, central PAs are of two types, ministries such as Internal Affairs, Revenues, and
other central agencies such as Social Security, Accident insurance and the Chambers of
commerce. Main types of local PAs correspond to regions (21), provinces (about 100)
and municipalities (about 8.000). Each one of these administrations manages its own
databases and registries. A crucial aspect in changing the relationship between PAs and
citizens consists in the design of a new technological architecture (see Figure 1, where
three agencies are considered) that, contrary to the past, offers the services to citizens
by means of a common front office layer, on the basis of the one stop shop paradigm;
furthermore, a cooperative back office layer has to be developed, that allows adminis-
trations to share information and application services, in order to reengineer the admin-
istrative procedures and reduce the burden to users. Concerning the data architecture,
redundancies should be discovered and controlled, data has to be interchanged in an in-
teroperable format, all the administrations have to assign the same meaning to the same
data, achieving integration in the long term. To be able to (i) discover redundancies and
heterogeneities among data bases of different administrations, (ii) reconcile the different
meanings of data, (iii) reuse entities in the design of new databases achieving semantic

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 399–412, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

400 C. Batini et al.

a. Technological architecture

in the traditional interaction

b. Technological architecture

in the new interaction

Common front office layer

Common back office layer

Internal information

flows

Local

databases

Local

databases

Local

databases

Global

databases

and DWs

Global

databases

and DWs

Fig. 1. New technological architecture for Government to Citizens and to Business interactions

interoperability, a unified conceptual description is needed of the different databases.
This goal has been achieved building a repository of conceptual schemas (repository
in the following) of existing databases. The repository of the main databases of Italian
central PA(central PA repository in the following) has been produced in years 1995-
1997 using a methodology for conceptual schema integration [1] and a methodology
for repository structuring [2]. In 2004, one region, namely the Piedimont region, de-
cided to build its own repository (local PA repository), concerning the main databases
managed in its territory. Logical relational schemas were the input to the process, and
limited human resources were available. As a consequence, an heuristic methodology
has been conceived to allow the production of the local repository [3], [4]. In this paper
we describe the experiences gained in the two activities, and compare the two method-
ologies. Furthermore, we show several analysis performed in years 1995-2000 on the
central PA repository, that led to significant planning decisions and to the conception of
innovative projects that (in some cases) improved significantly the relationships among
PAs and citizens and businesses; we report also the failures. The paper is organized as
follows. Section 2 discusses the basic primitives used for schema organization in the
conceptual schema repositories. Section 3 outlines the methodology used in years for
the construction of the central PA repository. In Section 4 we describe the heuristic
methodology used to produce the local PA repository. Section 5 compares the two pre-
vious processes against criteria such as correctness, completeness and efficiency. Sec-
tion 6 provides several analysis performed on the central PA repository that inspired
planning activities and innovative projects. Discussion on related work (Section 7) and
future research (Section 8) concludes the paper.

2 The Structure of a Repository

A repository can be defined as a set of conceptual schemas, each one describing all the
information managed by an organization area within the information system

Design and Use of ER Repositories 401

Basic

Construct

Conflict

Name

Conflict

Structural

Conflict

Synonymy Homonymy

Organizational

Unit

Basic

Schema

Abstract

Schema

Attribute

RelationshipEntity

Generalization

Fig. 2. Metaschema of the repository

considered. In particular, the repositories referenced in this paper use the Entity-
Relationship model to represent conceptual schemas. However, a flat set of schemas
does not display the relationships among concepts managed in different areas; the
repository has to be organized in a more complex structure, through the use of struc-
turing primitives. The primitives used in our approach were presented first in [2] and
are: abstraction, view, and integration. Abstractions allow the description of the same
reality at different levels, from detailed to abstract ones. We will call refinement the
inverse primitive, that allows to proceed from abstract representations to more detailed
ones. This mechanism is fundamental for a repository, since it helps the user to per-
ceive a complex reality step by step, going from a more abstract level to a local one.
Views are fragments of schemas; they allow users to focus their attention just on the
part of a complex reality of interest to them. Integration is the mechanism by which a
set of local schemas is merged into a unique global schema, after solving all hetero-
geneities present in the input schemas. By jointly using these structuring primitives we
obtain a repository of schemas. In the following we name basic schemas the conceptual
schemas defined at the bottom level of the repository, abstract schemas the schemas at
the upper levels. In practice, when the repository is populated at the bottom level by
hundreds of schemas, as in the case that we will examine in the following, it is unfea-
sible to manage the three structuring primitives, and the view primitive is sacrificed.
Furthermore, integration and abstraction are applied together, resulting in the appli-
cation of a new composed primitive, the integration/abstraction primitive. The integra-
tion/abstraction is iterated, producing schemas at several levels of abstraction. In Figure
2 we show the metaschema of the repository, where meta attributes are shown within
boxes representing entities. The central part of the metaschema represents the organiza-
tion of schemas, together with their classification in areas and their relationships with

402 C. Batini et al.

organizational units (managed, owner, and external to PA). The right hand part rep-
resents objects defined in the schemas, together with their types. The left hand part
represents conflicts defined among objects in schemas that are involved in integra-
tion/abstraction primitives.

3 Designing the Repository

The repository organization described in the previous section has been adopted to pro-
vide a structure to a wide amount of conceptual schemas related to the most rele-
vant databases of the Italian central PA. At the bottom level of the central PA repos-
itory, approximately 500 conceptual schemas are defined, corresponding to the logical
schemas of databases. In order to build the whole repository the procedure described in
Figure 3 has been adopted, defined in more detail in [2]. The methodology is made up of
three steps. In step 1, starting from logical relational schemas or requirement collection
activities, traditional methodologies for schema design have been used (see e.g. [5]),
that lead to the production of about 500 basic schemas, with approximately 5.000 en-
tities and a similar number of relationships. In step 2 conceptual schemas representing

1. Produce basic schemas [Batini, Ceri, Navathe 1984]

2. Cluster schemas in groups, using areas of interests

3. For each cluster of schemas, produce an integrated/abstracted

schema

3.1 Integration [Batini, Lenzerini 1984], [Batini, Lenzerini, Navathe

1984]

3.1.1 Pairwise comparison of input schemas

- Name conflict analysis

- Structural conflict analysis

3.1.2 Production of amended schemas

3.1.3 Production of the integrated schema

3.1.4 Inclusion of interschema properties.

3.2. Abstraction [Batini, Di Battista, Santucci 1993]

Until a unique abstract schema is obtained

1. Produce basic schemas [Batini, Ceri, Navathe 1984]

2. Cluster schemas in groups, using areas of interests

3. For each cluster of schemas, produce an integrated/abstracted

schema

3.1 Integration [Batini, Lenzerini 1984], [Batini, Lenzerini, Navathe

1984]

3.1.1 Pairwise comparison of input schemas

- Name conflict analysis

- Structural conflict analysis

3.1.2 Production of amended schemas

3.1.3 Production of the integrated schema

3.1.4 Inclusion of interschema properties.

3.2. Abstraction [Batini, Di Battista, Santucci 1993]

Until a unique abstract schema is obtained

Fig. 3. The methodology for the production of the central PA repository

the different organization areas are grouped in terms of homogeneous classes, corre-
sponding to meaningful administrative areas of interest in central PA, such as social se-
curity, finance, cultural heritage, and education. In step 3 each group of basic schemas
is first integrated and abstracted, resulting in a unique schema for each area, that pop-
ulates the second level of the repository, resulting in 32 second level abstract schemas.
For instance, the Internal security second level schema results from the inte-
gration/abstraction process, performed over 6 schemas corresponding to 130 concepts.
The integration/abstraction process is iterated, producing higher level schemas, corre-
sponding to more abstract areas, such as financial resources, human resources, social
services, economic services, finally producing a unique integrated schema, that is fur-
ther abstracted, resulting at the topmost level of the repository in a schema shown in
Figure 4. The schema represents the most significant concepts managed in the infor-
mation systems of any public administration, i.e. Subject, Individual, Legal

Design and Use of ER Repositories 403

Fig. 4. The schema at the top level of repository

person, Property, Place, and Document, and their high level relationships. The
resulting pyramid of schemas provides a natural representation of concepts at different
abstraction levels, and, with suitable approximation, finds the common heterogeneous
parts among databases pertaining to different agencies.

In order to produce the repository, about 200 person-months were needed to produce
in step 1 the 500 basic conceptual schemas, while about 24 person-months were needed
to produce in step 3 the 59 abstract schemas of the upper part of the repository (approx-
imately 14 person-days per schema, both for the basic and for the abstract schemas).

4 Reusing the Repository

In this section we describe the methodology adopted in the production of the local PA
repository. In this case, much less resources were available, while we could reuse as
an input to the process the central PA repository. A second input concerns documenta-
tion available for the regional databases. The logical schemas of the 500 databases are
documented in terms of: relational database schemas, tables, descriptions of tables, ref-
erential integrity constraints defined among tables, attributes, descriptions of attributes,
identifiers. The basic sources of knowledge available for the production of the local PA
repository, as results from the above discussion, are very rich, but characterized by a
significant heterogeneity: the conceptual documentation concerns central PA, while the
logical documentation pertains to local PAs.

A relevant condition of our activity has been budget constraints. Therefore, in con-
ceiving the methodology for the production of the local PA repository, we made a sig-
nificant assumption, and we have used heuristics and approximate reasoning, in order
to reduce human intervention as much as possible. The assumption we made has been
that, while basic schemas of the central PA repository and the local PA repository may
probably differ, due to the different functions between the central and local administra-
tions, the similarity should be much higher among the abstract schemas of the central
PA repository and basic + abstract schemas of the local PA repository. In consequence
of the above assumption and resource constraints, we decided to use a much more dense
conceptual structure than the set of schemas of the central PA repository. It consists of
the generalization hierarchies that have at their top level the six concepts defined in
the schema of Figure 4, and having at lower levels the concepts in more refined abstract
schemas and basic schemas, obtained applying top down the refinements along the inte-
gration/abstraction hierarchy. We show in Figure 5 the hierarchy of Individual. We

404 C. Batini et al.

Individual

School

Justice

Foreign affairs

Work

Pension

Health and
Assistance

Revenue

Politics

Social
life

Retired

Veteran

Civil Disability

Claiming
civil disabilities

Worker

Unemployed

Student

Self-employed
Employee

Convict

Taxpayer

Foreigner

Assisted

Housewife

Candidate

Volunteer

Italian

Resident
abroad

Foreign

With disability

Condemned

Waiting for sentence

With scholarship

Reported

Belonging to
Tax registry

Taxpayer VAT
office

Land registry
office member

Town clerk

Drug addict

Reported drug addict

Looking for new job

Looking for first job

Applicant for
citizenship

Applicant for
visa

Individual

School

Justice

Foreign affairs

Work

Pension

Health and
Assistance

Revenue

Politics

Social
life

Retired

Veteran

Civil Disability

Claiming
civil disabilities

Retired

Veteran

Civil Disability

Claiming
civil disabilities

Worker

Unemployed

Student

Self-employed
Employee

Convict

Taxpayer

Foreigner

Assisted

Housewife

Candidate

Volunteer

Italian

Resident
abroad

Foreign

With disability

Condemned

Waiting for sentence

With scholarship

Reported

Belonging to
Tax registry

Taxpayer VAT
office

Land registry
office member

Town clerk

Drug addict

Reported drug addict

Looking for new job

Looking for first job

Applicant for
citizenship

Applicant for
visa

Fig. 5. The Individual generalization hierarchy

now provide the rationale of the methodology, for the details see [3], [4]. The methodol-
ogy follows diverse approaches in building the basic schemas and the abstract schemas
of the repository, and, consequently, can be seen as divided in two phases. For each
local logical schema, available conceptual/central and logical/local knowledge is used
in Phase 1 to produce a basic local conceptual schema. Then, in Phase 2, the abstract
schemas are built. Phase 1 is made of five steps, shortly described in Figure 6. Con-
cerning Phase 2 (see the details in [3]) we initially observe that the schema obtained
after steps 1-3 (draft schema in the following) inherits high level abstract knowledge
from the central PA repository and basic knowledge from the local PA logical schemas,
while the enriched schema obtained in step 4 encapsulates exclusively basic knowledge
from the local PA logical schemas. So, we may conjecture that the draft schema is a
candidate for abstract schema for the upper levels of the repository, while the enriched
schema, being a more detailed description of a logical schema, populates the basic level
(see Figure 7). We have now to associate an abstraction level to the draft schema. By
construction, all the entities of draft schemas belong to the central PA generalization
hierarchies. So, we may associate an abstraction level to the draft schema that, intu-
itively, captures the relative position of its entities with regard to the five hierarchies.

1. Extract entities and attributes, looking for similar concepts between generalization

hierarchies of the central PA repository and relational tables and attributes

2. Add generalizations

3. Extract relationships among entities from basic schemas of the central PA repository

4. Extract relationships from referential integrity contraints in relational schemas

5. Domain expert check

1. Extract entities and attributes, looking for similar concepts between generalization

hierarchies of the central PA repository and relational tables and attributes

2. Add generalizations

3. Extract relationships among entities from basic schemas of the central PA repository

4. Extract relationships from referential integrity contraints in relational schemas

5. Domain expert check

Fig. 6. Steps of phase 1 of the heuristic methodology

Design and Use of ER Repositories 405

Level 1

Level 2

Level 3

Level 4

Draft schema

Enriched schema

Level 1

Level 2

Level 3

Level 4

Draft schema

Enriched schema

Fig. 7. Presumable locations in the repository of draft and enriched schemas

An abstraction level can be associated also to each schema in the central PA repository,
defined similarly. Correspondingly, we may associate an average abstraction level to
each layer in the central PA repository. The level of the draft schema in the local repos-
itory is heuristically set as the closest abstraction level among the layers in the central
PA repository. We split the entities of the draft schema on the basis of their closeness to
the different areas chosen to cluster schemas in the central PA repository. By iterative
application to all draft schemas of the two steps discussed above, we finally obtain the
complete local PA repository.

5 Comparison Among Methodologies Adopted for the Central PA
Repository and the Local PA Repository

In order to compare the two methodologies used in the production of the central PA
repository and the local PA repository, we performed several cases measuring three
different qualities:

1. the correctness of the conceptual schema with respect to the “true” one, i.e. the
schema that could be obtained directly by the domain expert through a traditional
analysis or else a reverse engineering activity. Correctness is measured in the case
of the local repository with an approximate indirect metrics, namely the percentage
of new/deleted concepts in the schema produced by the expert at the end of step 5
with respect to the concepts produced in the semi automatic steps 1-4.

2. the completeness of the conceptual schema with respect to the corresponding logi-
cal schema. Completeness is measured by the percentage of tables that are captured
in steps 1-5, in comparison with the total number of tables, after excluding tables
not carrying relevant information, such as redundant tables, tables of codes, etc.

3. the efficiency of the process, measured by the resources needed for producing a
schema.

Figure 8 summarizes main results of the comparison activity. Concerning correctness,
the joint application of the central PA knowledge and local PA knowledge leads to en-
couraging results, considering the highly heuristic nature of the methodology. Results
are more problematic for completeness. Initial values of completeness for the heuristic
methodology were around 50%. As was to be expected, completeness decreases signif-
icantly when the referential integrity constraints are not documented or partially docu-
mented. Apart from the quality of the documentation, another cause of reduced com-
pleteness is the static nature of generalization hierarchies used in step 1, and the unequal

406 C. Batini et al.

2 person-

days per

schema

70%80%Local PA

repository

Central PA

repository

Logical

schemas

Heuristic

14 person-

days per

schema

100%100%Central PA

repository

InterviewsExact

EfficiencyCompletnessCorrectnessOutputInputType of

methodology

2 person-

days per

schema

70%80%Local PA

repository

Central PA

repository

Logical

schemas

Heuristic

14 person-

days per

schema

100%100%Central PA

repository

InterviewsExact

EfficiencyCompletnessCorrectnessOutputInputType of

methodology

Fig. 8. Comparisons among the production process of the central PA repository and the local PA
repository

semantic richness in representing related top level concepts. We have improved this step
by incrementally updating hierarchies with abstract concepts generated in Phase 2. Such
enriched hierarchies are progressively made more close to hierarchies characteristic of
local administrations, resulting in a more effective selection mechanism. Finally, the
increase in efficiency of the heuristic methodology looks really impressive, leading to a
good balance between cost and quality.

1.3211.560# opf relationships

174.221-# of attributes of relational tables

1.7162.166# of entities

18.967-# of relational tables

2859# of abstract schemas

5.4646.916# of attributes of basic schemas

168224# of basic schemas in the repository

567516# of basic schemas representing

databases

LPA repositoryCPA repositoryConcept observed

1.3211.560# opf relationships

174.221-# of attributes of relational tables

1.7162.166# of entities

18.967-# of relational tables

2859# of abstract schemas

5.4646.916# of attributes of basic schemas

168224# of basic schemas in the repository

567516# of basic schemas representing

databases

LPA repositoryCPA repositoryConcept observed

Fig. 9. General figures on the central PA and the local PA repository

6 Use of the Repositories in eGovernment Initiatives

In this section we discuss several analysis made on the repositories, that provide use-
ful information for planning activities and for defining joint eGovernment projects in
groups of administrations exploiting the new technological architecture of Figure 1.
Figure 9 provides general data on schemas of the central and local repositories, and on
logical tables of the regional databases. Notice that Social security and Social insurance
schemas are not considered in figures related to the central repository since the two
agencies were examined in a second survey. The following sections describe specific
analysis on the central PA repository.

Choosing priorities and planning new initiatives. eGovernment initiatives in most
countries are the result of a planning activity, whose goal is to choose the most effective
projects and to establish priorities among them. The repository provides useful knowl-
edge on the information resource for such planning. At a very high level of analysis

Design and Use of ER Repositories 407

Fig. 10. Macroareas and corresponding number of entities of schemas owned by a set of selected
administrations

Fig. 11. Common attributes of the entity Company among different administrations

we may evaluate the distribution of entities among the different areas of interest and
among the different owner agencies. In Figure 10 we show such a distribution for the
main areas and related macroareas, namely Services and Resources. Referring to agen-
cies, we see that the 50% of entities is concentrated in three agencies, namely Revenues,
Treasury and Internal affairs, while, referring to areas, over 40% of entities is managed
for resource related support processes, while less than 60% of entities is used for ser-
vice related primary processes. Similar figures can be produced for the distribution of
instances. Since 1995 several projects have been conceived and set up that make an
attempt to change this unequal distribution of information. A second analysis concerns
the overlapping of common information related to the same entity in different schemas
and administrations; in such analysis we may initially focus on macro entities defined
in the high level conceptual schema of Figure 4. We represent in Figure 11 common
attributes of the Company entity among three agencies that own national registries on
businesses, namely Chambers of commerce, Social insurance and Social security. Due
to such overlapping, common attributes regarding any particular business are likely to
be duplicated, with no guaranteed consistency among the copies. Furthermore, high
costs for agencies and for businesses are related to the multiple updates. In [6] a project
set up to tackle the above issues is described, showing that in the new cooperative

408 C. Batini et al.

3.500.000240.000Student

10.500.0004.900.000Retired

person

1.700.0002.500.000State

employee

57.000.000250.000.000Individual

size of the universe# of instancesConcept

observed

3.500.000240.000Student

10.500.0004.900.000Retired

person

1.700.0002.500.000State

employee

57.000.000250.000.000Individual

size of the universe# of instancesConcept

observed

24Economic issues

Human resources

Juridical issues

Macroentities

24

52

% of entities

24Economic issues

Human resources

Juridical issues

Macroentities

24

52

% of entities

a. Types of individuals

and number of related instances

b. Macroentities of state employees

and number of related entities

Fig. 12. Types of individuals, related instances and entities

architecture overall costs for agencies and businesses are reduced yearly of approxi-
mately 200 Ml euros.

Coverage analysis. Public administration, in its relationship with citizens, exercises
a different “degree of attention” as to different types of individuals, such as workers,
retired persons, emigrants, immigrants, etc. We show in Figure 12.a an analysis of in-
stances of entities referring to individuals, state employees, retired persons and students
compared with the corresponding size of the universe in Italy, as results from the Na-
tional bureau of census statistical tables. The comparison puts in evidence uneven cov-
erage between the four categories, e.g. students are neglected, despite a much greater
availability of information (in terms of instances) for public employees. Focusing on
state employees, we deepen in Figure 12.b the analysis by evaluating the number of
entities of the three major areas of interest in personnel information systems, namely
economic issues, juridical issues, and human resources. The low number of entities in
human resources resulted in a project focused in the area, that did not produce so far
significant results, due to its high unpopular objective.

Reconciliation of identifiers and knowledge potential. The knowledge represented
in the information systems of public administrations is huge, but is fragmented in data-
bases managed by different agencies. The possibility of integrating the different data-
bases and retrieving and joining related data is enhanced by having common identifiers
defined in the different databases. An analysis on the repository has shown that among
all identifiers of individuals and legal persons only 25% is a standard identifier such as
fiscal code. The interoperability of databases and the possibility to coordinate updates
related to life events have been enhanced through building central databases where the
different identifiers are linked in the same record; such databases have been produced
through record linkage activities [6].

7 Related Work

Integration is a key issue in all information systems where several levels of coop-
eration have to be established between different organizations or players. As an ex-
ample, [7] discusses the need for agencies to integrate their IT infrastructures, so to

Design and Use of ER Repositories 409

improve their competitiveness by integrating their systems with suppliers, or other trad-
ing partners. Methodologies for conceptual schema integration have been developed
in the past, see [8] for a comprehensive comparison. A survey of the approaches to
schema matching, a critical issue in schema integration, appears in [9]. Primitives for
schema integration are introduced in [1], where a methodology for schema integration
in the Entity-Relationship model is presented. Integration and abstraction primitives
have been introduced in [2], where several properties of the repositories adopting such
primitives have been formally modelled and investigated. Heuristic methodologies and
tools for efficient production of service conceptual schemas are presented in [3] and
in [10]. In [11] a descriptive model based on words and concepts and a set of primitives
for integration of object oriented schemas that generate abstract concepts as a result
of the integration process is proposed. A repository of relational schemas is described
in [12] within a GLAV data integration system. In [13] the conceptual schema package
is introduced as an abstraction mechanism in the ER model. Several effective tech-
niques are proposed to group entities and relationships in packages such as dominance
grouping, accumulation and abstraction absorbing.

In [14] a solution and methodology for reverse engineering of legacy databases us-
ing formal method-based techniques is presented. Similarity-based criteria are used to
evaluate concept closeness and, consequently, to generate concept hierarchies. The tech-
niques allow the analysis of conceptual schemas of databases in a federation and the
definition and maintenance of concept hierarchies. In [15] and in [16] a corpus based
approach is introduced, where a corpus is a collection of any kind of information related
to structured data, e.g. schemas and mappings between some schema pairs. Schemas in
the corpus are loosely related and belong to a single domain, but need not be mapped to
each other. Repositories of conceptual schemas are proposed in several application ar-
eas; e.g. in biosciences [17], for reuse in schema design [18], [19]. A data repository is
used in [20] as the core structure of a mediator-like module supporting the user-friendly
integrated access to available data resources. The core of the system is the extraction
and exploitation of the inter-schema knowledge (in the form of inter-schema properties)
relative to the involved database schemas. In [4] and [3] methodologies are proposed
for the reuse of a repository of conceptual schemas in large scale eGovernment projects.

8 Future Work

In this paper we have described several methodologies conceived and used in building
and analyzing the repositories of conceptual schemas of the Italian central and local
public administrations. In this section we discuss two areas of research that we aim at
investigating in the future, related to (i) the enhancement of the semantic structure of
the repositories, and (ii) their linkage and integration with a repository of services we
have recently built.

Concerning the first issue, the two central and local repositories use a set of concep-
tual structures that all together represent an evolution and a semantic enrichment with
respect to a flat set of conceptual schemas. Such conceptual structures correspond to
(i) the integration/abstraction primitives, that allow to produce an integrated schema,
describing a domain at different abstraction levels, and (ii) a set of generalization

410 C. Batini et al.

hierarchies. The recursive application of the primitives produces the entities, the re-
lationships and the generalization hierarchies describing the core concepts of a specific
domain of interest (e.g. personnel or economic services), representing, in the terminol-
ogy adopted in ontologies [21], [22], the raw nucleus of a core ontology of the Italian
public administration (for examples of core ontologies, see [23], [24]) . At the same
time, the schemas at the top of the repositories describe the most abstract entities such
as Subject or Place, not specific to a particular domain, and representing the raw
nucleus of an upper ontology. Other aspects that distinguish the repositories are (iii)
the name conflicts, such as synonyms and homonyms, the type conflicts and the inter-
schema properties produced during the integration abstraction process. These semantic
structures provide further contribution for possible construction of the above mentioned
ontologies and of a thesaurus of terms used in public administration. Indeed, the con-
ceptual repository offers an enriched model that goes beyond the limits of a flat set of
Entity-Relationship schemas. Future work in this areas aims at exploiting such model, in
order to build an enriched knowledge base. Such knowledge base could be used to sup-
port interoperability in cooperative architectures, a crucial issue for the effectiveness of
eGovernment projects (see e.g. [25] and [26]). For these issues, we focus on expressing
the intensional knowledge represented in the repositories through languages character-
ized by a richer semantics that supports reasoning activities, e.g. OWL [27], [28] or its
extensions such as OWL-DL [29].

Concerning the repository of services, in [30] we have described an experience of
design of a repository of services, performed in an eGovernment project related to ser-
vices to businesses (S2B) provision through a cooperative architecture [6]. The S2B
repository represents several characteristics of a wide number of services provided by
Italian public administrations to businesses, and is used (i) to make easier, through a
seamless interface, the access to services, and (ii) to characterize the relevance of the
services for the value chain business processes. In future work, we focus first of all
on the development of heuristic methodologies for the production of the conceptual
schemas of services, on the basis of the knowledge represented both in the S2B reposi-
tory and in the repositories of schemas presented in the paper. A conceptual schema of
services represents the intensional knowledge needed in order to produce and deliver
the service.

In the long term we conceive a framework that, starting from a high level user ori-
ented specification of the service in terms of a set of concepts, uses conceptual schemas
of services, and, by means of similarity functions, retrieves the service semantically
nearest to the concepts in the specification. We argue that the advantages of such an
approach rely on the user friendliness of the Entity-Relationship model and on the the
explicit availability of the conceptual schema of data retrieved by the service.

References

[1] Batini, C., Lenzerini, M.: A methodology for data schema integration in the Entity Rela-
tionship model. IEEE Transaction on Software Engineering (1984)

[2] Batini, C., Battista, G.D., Santucci, G.: Structuring primitives for a dictionary of entity
relationship data schemas. IEEE Trans. Software Eng. 19(4) (1993) 344–365

Design and Use of ER Repositories 411

[3] Batini, C., Garasi, M.F., Grosso, R.: Reuse of a repository of conceptual schemas in a large
scale project. In: Advanced Topics in Database Research, Idea Book (2005)

[4] Batini, C., Grosso, R., Longobardi, G.: Design of repositories of conceptual schemas for
large scale e-government projects. (Journal of Electronic Government - to be published
march 2006)

[5] Elmasri, R., Navathe, S.: Foundamentals of database systems, Fifth Edition. Addison-
Wesley Publishing Company (1994)

[6] Bertoletti, M., Missier, P., Scannapieco, M., Aimetti, P., Batini, C.: Improving Government-
to-Business Relationships through Data Reconciliation and Process Re-engineering. In
Wang, R., ed.: Information Quality - Advances in Management Information Systems-
Information Quality Monograph (AMIS-IQ) Monograph. Sharpe, M.E. (2005. Shorter
version also in ICIQ 2002.)

[7] Themistocleus, M., Chen, H.: Investigating the integration of smes’ information systems:
an exploratory case study. International Journal of Information Technology and Manage-
ment 3(2/3/4) (2004) 208–234

[8] Batini, C., Lenzerini, M., Navathe, S.: Comparison of Methodologies for Database Schema
Integration. ACM Computing Surveys 18(4) (1986)

[9] Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The
VLDB Journal 10 (2001) 334–350

[10] Batini, C., Grosso, R., Longobardi, G.: Design of repositories of conceptual schemas in
the small and in the large. In: Proceedings of the eGovernment Workshop ’05 (eGOV05),
Hosted at Brunel University, September 13, 2005, West London UB8 3PH, UK (2005)

[11] Mirbel, I.: Semantic Integration of Conceptual Schemas. In: Proceedings of the First
International Workshop on Applications of Natural Language to Databases (NLDB’95),
Versailles, France (1995) 57–70

[12] Motro, A., Anokhin, P.: Fusionplex: resolution of data inconsistencies in the integration of
heterogeneous information systems. Information fusion (2004)

[13] Shoval, P., Danoch, R., Balaban, M.: Hierarchical entity-relationship diagrams: the model,
method of creation and experimental evaluation. Requir. Eng. 9(4) (2004) 217–228

[14] Perez, J., Ramos, I., Cubel, J., Dominguez, F., Boronat, A., Carı̀, J.: Data reverse engi-
neering of Legacy Databases to object oriented conceptual schemas. Electronic Notes in
Theoretical Computer Science 74(4) (2002)

[15] Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.Y.: Corpus-based schema matching.
In: ICDE, IEEE Computer Society (2005) 57–68

[16] Halevy, A.Y., Madhavan, J.: Corpus-based knowledge representation. In: In Proc. In-
ternational Joint Conference on Artificial Intel ligence (IJCAI 03). Volume 18., Morgan
Kaufmann (USA, 2003) 1567–1572

[17] Taxonomic Databases Working Group Annual Meeting: Taxonomic Databases Working
Group on Biodiversity Informatics, University of Canterbury, Christchurch, New Zealand,
Taxonomic Databases Working Group Annual Meeting (2004)

[18] Ruggia, R., Ambrosio, A.P.: A toolkit for reuse in conceptual modelling. In: CAiSE. (1997)
173–186

[19] Wohed, P.: Conceptual patterns for reuse in information systems analysis. In: CAiSE.
(2000) 157–175

[20] Palopoli, L., Terracina, G., Ursino, D.: Dike: a system supporting the semi automic con-
struction of cooperative information systems from heterogeneous databases. Software Prac-
tice and Experience 33(9) (2003) 847–884

[21] Gruber, T.: A translation approach to portable ontology specification. Knowledge Acqui-
sition (5) (1993)

[22] Guarino, N., ed.: Formal ontologies and information systems. In Guarino, N., ed.: Pro-
ceedings of FOIS’98, IOS Press (Amsterdam, 1998)

412 C. Batini et al.

[23] Breuker, J., Hoekstra, R.: Epistemology and ontology in core ontologies: FOLaw and LRI-
Core, two core ontologies for law. In: Proceedings of EKAW Workshop on Core ontologies.
CEUR. (2004)

[24] Valente, A., Breuker, J.: Towards principled core ontologies. In: In Proceedings of the
Tenth Knowledge Acquisition for Knowledge-Based Systems Workshop. (Banff, Alberta,
Canada, 1996)

[25] Beneventano, D., Bergamaschi, S.: The MOMIS methodology for integrating heteroge-
neous data sources. In: IFIP Congress Topical Sessions, Kluwer (2004) 19–24

[26] Benetti, I., Beneventano, D., Bergamaschi, S., Guerra, F., Vincini, M.: An information
integration framework for e-commerce. IEEE Intelligent Systems 17(1) (2002) 18–25

[27] McGuinness, D., van Harmelen, F.: Owl web ontology language overview.
http://www.w3.org/TR/2003/WD-owl-features-20030331/ (2003)

[28] Patel-Schneider, P., Hayes, P., Horrocks, I.: Web ontology language (owl). Technical report,
http://www.w3.org/TR/owl-semantics/ (W3C, February 2003)

[29] Antoniou, G., van Harmelen, F.: Web ontology language: Owl. In: Handbook on Ontolo-
gies. Springer (2004) 67–92

[30] Barone, D., Viscusi, G., Batini, C., Naggar, P.: A Repository of Services for the Government
to Businesses relationship. In Etzion, O., Kuflik, T., Motro, A., eds.: Next Generation
Information Technologies and Systems. LNCS 4032, 6th International Conference, NGITS
2006 Kibbutz Shefayim, Israel, Springer (2006)

Notes for the Conceptual Design of Interfaces

Simone Santini

Universidad Autónoma de Madrid, Spain
University of California, San Diego, USA

Abstract. This paper presents a design method for user interfaces based on some
ideas from conversation analysis. The method uses interaction diagram and it is
conceived to design the overall flow of conversation between the user and the
computer system in an abstract way, as an architectural prolegomenon to the de-
signer’s choice of the actual interface elements that will be used.

1 Introduction

The art of design is an art of abstraction. A design is the specification of certain struc-
tural relations between components; a specification that abstracts, on one hand, from
the characteristics of the components that are not relevant for the structure of the whole
and, on the other hand, from those structural relations that can be dispensed with at the
level of abstraction where the designer is operating at a particular moment. For design
is also a process of progressive deepening of the detail: the first sketch that Norman
Foster made of his Hong Kong and Shanghai Bank building (in Hong Kong) consisted
in a stack of four rectangles hanging, each one separately, from the steps of a ladder-like
structure [10]. Each one of these rectangles would in the end become a block of ten sto-
ries of the bank, a transition process that required painstaking attention to a plethora of
excruciatingly minute details. In the case of Norman Foster, just as in any other case of
design of a complicated system, however, it is important to maintain a progressive view
of the process, to possess the means to express the evolving design at different levels
of detail, from a very generic one in which only the most general and most important
traits of the system are represented to the most detailed one.

What is true for the design of a building is true as well for the design of an interface
to a complex information system. Just as it happens for other design activities, the
design of an interface needs a methodology and a notation that will allow a design to
progress from its most general lines to its most minute details. The design of interfaces
for information systems often fails to develop along these lines, in particular it fails to
start at a suitably abstract and conceptual level. Quite paradoxically, this problem is due
in part to the great success of standard computer interfaces, in particular to the interfaces
based on overlapping windows for local programs and to those based on documents and
forms for programs invoked through the web. The ubiquity of these interfaces often
leads the designer to start thinking about the interface in terms of windows, buttons,
data presentation options (or, in the case of web interfaces, in terms of pages, forms,
and documents). This, I submit, is the interface equivalent of trying to create a program
starting from the specification of its low-level functions, without an architectural design
in which the overall organization of the program and the relations among its different
functions are established.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 413–423, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

414 S. Santini

That the design of windows or forms is a necessary step in the design of an interface
doesn’t entail that it should be the first, nor the most abstract. The lack of a suitably
high level architectutal design of interfaces is exacerbated by the lack of a suitable
design method and formalism: in many cases, interfaces are designed using the same
methods and formalisms used for general programming, which these days means, more
often than not, using an object oriented design method. For instance, UML, the popular
object oriented graphic formalism for object oriented design, has been used in [9], and
specialized for web navigation in [2]. Object oriented design has the primary purpose of
designing the static structure of a program and the dynamics of the interaction among
its components.

In an interface, however, the process of interaction is logically prior both to the sta-
tic structure of the interface and to the dynamic interaction of the components, both of
which depend on the more abstract process of interaction. Such a process is not well
captured by program design formalisms because it is not itself a part of program design,
but the description of a generalized conversation between the user and the system. In
other words, the use of a program design method forces the designer to focus immedi-
ately on the structure of the interface rather than beginning by designing the structure
of the conversation that takes place between the user and the information system. It is
noteworthy, for instance, that a paper such as [9] on the use of UML for user interface
design makes little of no use of the class diagram, that is, with the main conceptual tool
of UML. The class diagram is of course present in this approach, but the impression is
that it is by no means the main design instrument. The main graphical instrument for
interface design in [9] is an interaction diagram not too dissimilar from what is pre-
sented here although, in my view, it suffers from two drawbacks. First, it is not properly
grounded in a theory of interaction and, secondly, the need to resolve the interface in
an object oriented design makes the specification of the interface very much oriented
towards the information exchange between the user and the system, rather than on the
possibilities of the conversation between the two.

In this paper, I present a method and a formalism for interface design particularly
suitable for information systems interfaces, but adaptable to a considerably wider range
of situations. The method abstracts from the details and the appearance of the interface
to concentrate on the design of the process of conversation that takes place between
the user and the system. The types of interaction that are chosen at any particular step
constrain the choice of what interface elements are suitable to implement them, so that
the method is also very effective as an architectural phase preliminary to the design of
the appearance of an interface. The principal formal instrument of the method is the
interaction diagram, somewhat inspired to conversation analysis [4]. Section 2 will in-
troduce the theoretical basis of the method, which is to be sought in a form of algebraic
semiotics [1]; section 3 illustrates the interaction diagrams and their use.

2 Semiotic Systems

The essential function of an interface is to allow an interaction between a person and
a program, a communicative function that falls in the general area studied by semi-
otics. In this respect, however, we find ourselves in a conundrum: by its very nature and

Notes for the Conceptual Design of Interfaces 415

theoretical foundations, semiotics escapes any attempt at formalization while, in order
to design a computer program for a given problem, we need that the problem be com-
pletely formalized. The pragmatic solution in this case is to proceed to a programme
of “partial formalization,” that is, of formalizing only those aspects of communication
that lead themselves to formalization. It is clear that, in so doing, many of the inter-
esting aspects of signification will be left out: in particular, all the semantic aspects of
communication will be left out. But this is not a loss in the present situation, since if an
aspect of communication can’t be formalized we can’t deal with it using a computer,
so it can’t be the object of interface design. In particular computers can’t deal with se-
mantics, unless the semantics is an epiphenomenon of the interaction (episemantics, or
emergent semantics [5]), in which case the syntactic rôle of the interface is particularly
important [7].

The basis for this formalization is constituted by the formal sign system derived, with
some adaptation, from Goguen’s algebraic semiotics.

Definition 1. A sign system is a 5-tuple

S = (T, V,≤T , F, A) (1)

where:

i) T is the set of sorts (or data types);
ii) V is a set of parameter types;
iii) ≤T is a partial order on T , called the subsort relation;
iv) F is a set of functions and relations on T and V ;
v) A is a set of logical statements called the axioms.

The sorts are those to which the signs of the system belong, that is, in the case of
an interface, the types of elements and combinations of elements through which the
interaction takes place. The parameters capture ancillary information about the sorts
(position, color, etc.).

Definition 2. Given two sign systems S1 = (T1, V1,≤T1 , F1, A1), and S2 = (T2, V2,
≤T2 , F2, A2), a semiotic morphism M : S1 → S2 is a collection of partial functions

M : T1 → T2

M : V1 → V2

M : F1 → F2

M : A1 → A2

such that

i) if τ1 ≤T1 τ2, then M(τ1) ≤T2 M(τ2);
ii) if p(s1, . . . , sk) ∈ F1, and M(p) is defined, then M(p)(M(s1), . . . , M(sn));
iii) if s=f(s1, . . . , sn) and M(f) is defined, then M(s)=M(f)(M(s1), . . . , M(sn)).

The general idea of a semiotic morphism is to transform the system S1 into S2 in
a way that preserves (part of) its structure. Before specifying additional properties of
morphisms, I will need the following technical definition:

416 S. Santini

Definition 3. A selector for a sign system S is a function f : τ → ν, with τ ∈ T and
ν ∈ V for which there is a set of axioms A′ such that adding A′ and f to S is consistent
and defines a unique value f(x) for each such x : τ .

The definition is a trifle involved but, essentially, it states that f attaches a parameter
to each sign of sort τ and that its definition (the axioms in A′, which uniquely define
it) does not cause the system to become contradictory. I will clarify all this with an
example in a short while, but first I need a couple more definitions.

Definition 4. Let S1 = (T1, V1,≤T1 , F1, A1), and S2 = (T2, V2,≤T2 , F2, A2) be two
sign systems and M : S1 → S2 a semiotic morphism.

i) M is axiom preserving if, for each a ∈ A1, A2 |= M(a);
ii) M preserves a selector f of S1 if there is a selector f ′ of S2 such that for every

sign of S1 for which f is defined it is f ′(M(x)) = M(f(x)).

Definition 5. let S1 and S2 be two sign systems as in the previous definition, and
M, M ′ : S1 → S2 two semiotic morphisms, then

i) M ′ preserves at least as many axioms as M , written M ≤a M ′ if for every a ∈ A1,
if M preserves a then M ′ also preserves a;

ii) M ′ is at least as inclusive as M , written M ≤i M ′ if, for each sign x of S1,
M(x) = x → M ′(x) = x;

iii) M ′ preserves at least as much content as M , written M ≤c M ′, if whenever M
preserves a selector of |frakS1, so does M ′.

The inverse of a morphism, the definition of isomorphisms, and the various unicity and
definition theorems follow pretty much the expected patterns [6,1].

2.1 An Example

As an inllustration of the principles of semiotic systems, I will present a simple inter-
face for a fictitious image data base. As the purpose of an example is to illustrate the
ideas rather than obfuscate them, I have purposedly chosen a very simple example, one
for which I will reach conclusions that are, per se, quite obvious, and that could be ob-
tained without the complicated machinery of algebraic semiotics. The reader is invited
to consider that the purpose of the example is to illustrate the theory rather than to prove
its power, and to mentally extrapolate the results to much more complicated examples.

Consider the typical interface of a system for doing content based image retrieval
based on query by example, which displays a grid of 3 × 3 images, containing the
images most similar to the current query image. This is a semiotic system with three
sorts: image, position, and group. An image is composed of an identifier and the actual
image data:

type image is (id : int × data : unit)

The image data are declared of the data type unit because, in this particular interface,
there are no operations defined on them. A position is a pair of integers:

Notes for the Conceptual Design of Interfaces 417

type pos is (row : int × col : int)

while the group is an array of images that is, a function that associates an image to each
position:

type group is pos → image

The ordering relations of the system are

image ≤ group
pos ≤ group

Some functions defined in this system include:

img at: group × pos → image; given a group and a position in it, returns the image
in that position;

ngb : pos × pos → boolean; determines whether two positions are neighbors in the
interface;

nxt : pos → pos ∪⊥; returns the next position to a given one in the textual order (left
to right, top to bottom), or ⊥ is there is no such position;

s : image → (0, 1); returns the “score” of an image.

Axioms may include:

i) structural axioms of the group, such as ngb((1,1),(2,1)), ntx(1,3) = (2,1), τ : pos ⇒
1 ≤ τ.r ≤ 3 ∧ 1 ≤ τ.c ≤ 3, the symmetry of ngb, and so on;

ii) unicity axioms, such as

∀p1, p2 : pos.(p1 �= p2 ⇒ img at(p1).id �= img at(p2).id) (2)

iii) scoring axioms

∀p1, p2 : pos.(p2 = nxt(p1) ⇒ s(img at(p1)) ≥ s(img at(p2))) (3)

(images are ordered by score),

∀p1, p2 : pos.(p2 = nxt(p1) ⇒� ∃i.s(img at(p1)) ≥ s(i) ≥ s(img at(p2))) (4)

(positions next to each other contains images which are next to each other in the
scoring list), and

∀i.(∃p.s(i) > s(img at(p)) ⇒ ∃p′.i = img at(p′)) (5)

(the interface contains the images with the highest scores).

Consider now a second interface, similar to the first with one exception: the images
are laid out in a single file of 6 images. The position is now an integer number between
one and six (pos′ ≡ int) and consequently the group (group′ : pos′ → image′) is now a
function from integers to image′, which is isomorphic to image. A morphism between
the two can be defined as a map of types M : pos
→ pos′, M : image
→ image′, M :
group
→ group′. The morphism maps functions M : nxt
→ nxt′, and M : ngb
→ ngb′,

418 S. Santini

and so on. Note, however, that some of these mappings are partial functions: for in-
stance, when mapping pos to pos′, not all the positions in the first interface are mapped
to positions of the second one, since the first interface has nine position, while the sec-
ond has only six. Also, only some of the axioms are translated; we have, for instance,
M(ngb((1, 1), (1, 2))) = ngb′(1, 2), but an axiom such as ngb((1, 1), (1, 2)) is not
translated into any axiom of the second interface, while an axiom such as ngb′(3, 4)
of the second interface has no correspondent in the first one. These differences simply
reflect the different arrangement of the two interfaces, but there are other discrepancies
between the two. One, which we have already noticed, is the partiality of the function
M : pos → pos′ due to the fact that the first interface shows nine images, but the second
only six. But, suppose the second interface as well displayed nine images: what could
we say of the structural differences between the two? Note that the scoring function is a
selector (considering the score as one of the parameters of the image position) and that,
for each interface, axiom 4 holds: consecutive positions contain images that are con-
secutive in the score ordering. But for the second interface we can state the additional
axiom:

∀p, p′.(ngb(p, p′) ⇒ p′ = nxt(p) ∨ p = nxt(p′)) (6)

(all neighbors are consecutive). With this, and defining for the sake of convenience
Q(p, p′) ≡� ∃i.s(img at(p1)) ≥ s(i) ≥ s(img at(p2)) one can infer for the second
interface

∀p, p′.(ngb(p, p′) ⇒ Q(p, p′) ∨Q(p′, p) (7)

There is no morphism from the second interface to the first that can maintain this axiom:
the second interface has, in semiotic terms, a richer structure than the first.

Of course, when designing an interface, additional considerations come into play: for
one thing, the order “left-to-right, top-to-bottom” is culturally so rooted in the western
civilization that the “vertical” neighborhood relations are hardly perceived, so that the
matrix placement is virtually equivalent to the linear one. (Things would be very differ-
ent, of course, were the interface designed for a multi-cultural environment, a matter of
which the blindly western-centric engineers are often blissfully oblivious: this is, how-
ever, the possible subject for a separate article.) Considerations such as this one are to
be regarded as part of the designer’s common sense judgment, of his being-in-the-word,
so to speak, and, as such, they are beyond the scope of formalization, and will not be
considered here. Note, however, that the model that we are using can still be useful to
suggest the location of possible problems: in this case, it might suggest to the designer
the opportunity to place suitable elements (lines, spacing,...) to “weaken” the vertical
organization of the matrix, thereby reinforcing the horizontal order.

3 Interaction Diagrams

Consider again the query by example interface of the previous section, and the way it
works. The user sees a set of images in what we might call the display space of the inter-
face, a space constituted, as we have seen, by the possible instantiations of an algebraic
sign system. Out of this configuration, the user operates a selection, which we’ll call
a member of the composition space, constituted by the instantiations of another sign

Notes for the Conceptual Design of Interfaces 419

system (in this case a very simple one whose signs are single images). A composition
is then translated in a suitable request to the system that, in the case of an information
system, takes the form of a query drawn from a query space, which can be considered,
once again, a sign system: one involved in the communication between the interface and
the information system. The information system executes the commands of the query
space (since one can say that the query sign system belongs to an imperative sprach-
spiel, which is the active principle of the whole system), and creates a configuration
in a suitable output space. The output space is often an abstract space and, in order to
show some of its results, a further semiotic morphism translates it back in the display
space. (In a query by example system, for instance, the output may consist of the whole
data base organized in a high-dimensional space.) All this can be specified by a diagram
constituted in this way:

Q �� O

display
��

C

��

D��

(8)

The four letters are not part of the diagram per se, but labels used to distinguish the
different semiotic systems involved. Here Q stands for query (semiotic) system, O for
output system, C for (query) composition system, and D for display system; the arrows
indicate semiotic morphisms (which, optionally, can be labeled), and the dotted arrow
indicates a user action. It should be noted that this diagram is in many senses orthogonal
to design-oriented specifications, even to very abstract ones such as the model-view-
controller formalism [3,8]. In this diagram there is no a priori distinction between the
functions performed by the user and those performed by the computer system. In this
case, for instance, the semiotic morphism between query and output is implemented
by a computer (specifically, by a data base) but, should we replace the data base with
an archivist that does the research manually, the diagram would not change, since it
describes an interaction that is the result of a certain activity, and it is logically prior to
the decision of having part of that activity done by a computer. In this sense, this kind
of diagram is the logical equivalent, at the interface design level, of the architectural
diagrams collected during the requirement phase of a software project.

A closed loop such as this one indicates an iteratively refined query, and I call it a
context. To make a comparison, consider querying a relational data base: here the user
fills in a form, which is translated into a query and answered; the answer is suitably
formatted and displayed. There is no context formation in this case and, introducing
opportune symbols for the beginning and the end of the interaction, the diagram looks
something like this:

s ��C ��Q ��O ��D ��e (9)

Where the last arrow corresponds to whatever user acknowledgment closes the query.
Looking back at the query by example diagram, two things appear to be missing: a way
to start a query and a way to finish it. There are typically two ways to start a query:
either the user starts it from outside the loop (e.g. by providing a sample image) or the
system proposes an initial configuration (e.g. a display with random images): the two

420 S. Santini

alternatives (including the action that terminates the interaction) are shown in these two
diagrams:

Q �� O

��
s �� C

��

D��
OK

�� e

Q �� O

��

s��

C

��

D��
OK

�� e

(10)

The first one assumes that the composition is exactly the same at the beginning of the
interaction as it is in the context, which is seldom true: some special interface element
is used to make the first image selection. The diagram is then

s �� C′ �� Q �� O

��
C

��

D��
OK

�� e

(11)

The diagram can be extended to allow a more complete interaction. For instance, if
the data base has some machinery to determine that the interaction is not converging
towards a satisfactory solution, it can offer the user the option to disengage: the user
can accept, decide to continue, or start a new context by posing a new query:

C′′

��

D′
rest.

�� disengage ��

cont.
��

e

s �� C′ �� Q �� O

disengage?
��

��
C

��

D��
OK

�� e

(12)

* * *

This diagrammatic notation allows one to analyze other interesting cases of inter-
faces. One is that of what I elsewhere called direct manipulation interfaces [6], in which
the composition is done directly in the display space, so that the systems C and D above
coincide. This situation can be represented by collapsing the two systems in a single
one

Q �� O

����
��
��

D

�������

		

(13)

or by joining the two symbols with a double edge (reminiscent of the “=” sign) which
states that the two systems are one and the same:

Notes for the Conceptual Design of Interfaces 421

Q �� O

��
C

��

D

(14)

(The two diagrams are equivalent: the double edge is only a graphic convenience.)
In some cases we want to highlight that some of the sign systems are the union

of two parts: in the previous example, for instance, it may be the case that part of
the configuration comes from direct manipulation and part from some other kind of
interaction. We can divide the composition space in two portions c = c1 ⊕ c2 and join
them with a · ⊕ · edge:

Q �� O

��
C′

⊕

��

D
��

C′′ s��

(15)

Note that C and C′ are part of the same semiotic system: if they were two separate
systems, each one to which could be used to compose a query, the diagram would have
looked like

s �� C′′ �� Q �� O

��
C′

��

D
��

(16)

As a final example, consider an interface that deals at the same time with two aspects
of an information system—say, with the images and the text associated with them,
as the interface that I discussed in [7]. Such a system consists of two separate direct
manipulation interfaces that operate on the same query space, a situation corresponding
to the following diagram:

F

��

Txt

����������
 img

����������

��

O

����������

����������

(17)

In summary, we can give the following definition:

Definition 6. An interaction diagram is a colored graph whose nodes are either sign
systems, start nodes (s), or end nodes (e), and whose edges are of four colors (types):

�� : a semiotic morphism realized by the system;
�� : a semiotic morphism realized by the user;

422 S. Santini

: an edge that establishes the identity of two sign systems;
⊕ : an edge that composes two sign systems into one.

Subject to the following restrictions:

i) start nodes only have outgoing edges; end nodes only have incoming edges; all other
nodes have at least one outgoing and one incoming edge;

ii) every cycle has at least one �� edge; the graph that is obtained from the original
one by removing all the �� edges is acyclic.

3.1 The Diagrams as a Design Instrument

In the previous examples, the diagrams were used as a semi-formal way of keeping track
of the interactions between the user and the information system. In this rôle, they are
useful mainly as an informal “thought instrument” to collect and organize requirement:
the type of instrument that is more useful on a paper napkin or a blackboard than on
a computer screen. What makes diagrams into a more complete design instrument is
the presence of sign systems and semiotic morphisms. We developed a design system
based on these diagrams in which each one of the nodes of the graph is associated
by the designer to the formal specification of a semiotic system given in a suitable
language1: an interface panel for query by example, for instance, can be associated to
the formal specification of a system such as that briefly outlined in section 2. Some
of the sign systems are chosen by the designer from a library of available interface
elements (the display and the composition space are typically selected in this way),
while others derive from a formalization, in semiotic terms, of the system for which
the interface is designed, others yet can correspond to special modules created by the
designer. Between all these elements, the designer creates the morphisms specified by
the �� edges of the graph.

The system tries to assist the designer by identifying the locus of possible problems
(e.g. an interaction in which the user is required to add too much structure or, con-
versely, one in which a considerable portion of a structure is lost) and to enforce con-
straints (both the topological constraints of the definition of the diagram and structural
constraints such as the fact that the net structural variation in a cycle must be zero). The
design instrument is in its early alpha release at the time of this writing (June 2005), but
it is being developed along the directions outlined here. Due to my own technical point
of view, the system, even in its final form, will not generate automatically the code for
the interface that is being designed.

4 Conclusions

In this paper I presented the embryo of a design method for user interfaces in visual
information systems. In this area, an interface is important not only as an access to the
system, but also as a way of creating the semantics of the data. The theoretical bases of
the method are to be sought in conversation theory and in algebraic semiotics, and its
embodiment is in the form of interaction diagrams.

1 I am happy to report that none of the languages used by this system is based on XML.

Notes for the Conceptual Design of Interfaces 423

References

1. Joseph Goguen. An introduction to algebraic semiotics, with applications to user interface
design. In Chrystopher Nehaniv, editor, Computation for metaphor, Analogy and Agents,
Springer Lecture Notes in Artificial Intelligence,. Springer-Verlag, 1999.

2. Natacha Güell, Daniel Schwabe, and Patricia Vilain. Modeling interactions and navigation in
web applications. In S.W. Liddle, H.C. Mayr, and B. Thalheim, editors, Conceptual Modeling
for E-Business and the Web: ER 2000 Workshops on Conceptual Modeling Approaches for
E-Business and The World Wide Web and Conceptual Modeling, volume 1921 of Lecture
notes in computer science. Berlin:Springer-Verlag, 2000.

3. G. Krasner and S. Pope. A description of the model-view-controller user interface paradigm
in the smalltalk-80 system. Journal of Object Oriented Programming, 1(3):26–49, 1988.

4. Michael Norman and Peter Thomas. The very idea. In Paul Luff, Nigel Gilbert, and David
Frohlich, editors, Computers and Conversation, pages 51–66. San Diego:Academic Press,
1990.

5. S. Santini, A. Gupta, and R. Jain. Emergent semantics through interaction in image databases.
IEEE Transactions on Knowledge and Data Engineering, (in press).

6. Simone Santini. Exploratory Image Databases; Content Based Retrieval. San
Diego:Academic Press, 2001.

7. Simone Santini. Image semantics without annotation. In Siegfried Handschuh and Steffen
Staab, editors, Annotation for the Semantic Web. Amsterdam:IOS Press, 2003.

8. Matthias Veit and Stephan Herrmann. Model-view-controller and object teams: a perfect
match of paradigms. In AOSD ’03: Proceedings of the 2nd international conference on
Aspect-oriented software development, pages 140–149, New York, NY, USA, 2003. ACM
Press.

9. Patrcia Vilain, Daniel Schwabe, and Clarisse Sieckenius de Souza. A diagrammatic tool for
representing user interaction in uml. In A. Evans, S. Kent, and B. Selic, editors, UML 2000;
The Unified Modeling Language. Advancing the Standard: Third International Conference.
Berlin:Springer-Verlag, 2000.

10. Stephanie Williams. Hongkong Bank: The Building of Norman Foster’s Masterpiece.
Boston: Little, Brown, and Company, 1989.

The User Interface Is the Conceptual Model

James F. Terwilliger1, Lois M.L. Delcambre1, and Judith Logan2

1 Department of Computer Science
Portland State University, Portland OR 97207, USA

{jterwill, lmd}@cs.pdx.edu
2 Department of Medical Informatics and Clinical Epidemiology

School of Medicine, Oregon Health and Science University, Portland OR 97239, USA
loganju@ohsu.edu

Abstract. Frequently, the structure and description of the data in a
database bears little resemblance to the structure and description of data
as it appears in the tool that captured it. This makes it difficult for users
to write queries because they receive little information from the database
schema regarding the precise meaning of the data. We assert that the
semantics of data can be more reliably understood by viewing the data
in the context of the user interface (UI) of the software tool used to enter
the data rather than the bare framework of a database. GUAVA (GUi As
View) presents a conceptual model that captures information about user
interface components. In this paper, we describe how to model a forms-
based UI using a GUAVA-tree (g-tree), which can be used to generate a
natural schema against which querying is simple. We then introduce and
formalize the notion of a channel of database transformation operators
from the natural schema to the underlying physical schema.

1 Introduction

The user interface for a typical information system comprises various forms with
controls such as radio buttons, check boxes, drop-down lists, group boxes, and
text boxes that allow data to be entered. The user interface usually includes
labels for each control and possibly other descriptive information that helps
a user understand the data that is being entered or displayed through the user
interface. More than that, one form may contain a button that allows the user to
launch a second form. In short, the user interface, by design, provides a detailed
description of the data (to be entered and to be displayed) in a given application.

Software development environments in common use make it quite easy to
assemble a user interface, simply by selecting and placing instances of the various
controls. There is typically a main-memory data structure that holds the data
associated with the form. This data structure is often structured as a set of tables;
we refer to this as the natural schema associated with the user interface. The job
of the developer, then, is to write the code that provides for any special checking
or handling of the data and then stores it in a database or other persistent store.
The database schema may have a structure that is quite similar to the natural
schema, e.g., where there is one table for each form, with one attribute for each
control on a form.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 424–436, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The User Interface Is the Conceptual Model 425

However, our focus is on database schemas where the structure can be con-
siderably different from the natural representation. In our experience, software
tools for data entry are almost always implemented with a generic schema —
where the data from the user interface is stored in attribute-value pairs, and the
software can be easily extended without modifying the schema. The difference
between the natural schema, where attribute names are used to indicate the field,
and the underlying physical database schema, where attribute names appear as
data, is referred to as schematic heterogeneity [5]. Although some effort has been
devoted to providing an SQL-like query language that can handle schematic het-
erogeneity [3], the resulting language may be quite difficult for ordinary users to
master.

Our research has a simple goal: use the user interface of the software tool
that creates the data directly as the conceptual model for users, and allow the
users to express queries against the resulting conceptual model. But we must be
able to process user queries against the underlying database, as specified by the
database designer. The problem, then, is how to support the natural schema for
the purpose of querying, with a physical database with a significantly different
structure.

This paper introduces components of the GUi As View (GUAVA) frame-
work, as shown in Figure 1. First, the complete structure of the user interface
is represented in a hierarchical structure called a GUAVA-tree (g-tree). GUAVA
automatically generates a g-tree from the user interface controls based on our
extensions to an integrated development environment. Next, GUAVA translates
a g-tree into a simple relational table structure with a natural schema. Finally, a
database designer can transform the natural schema into the underlying physical
database schema using database operators. A collection of these operators form a
channel that transforms the natural schema into the desired physical schema (at
DB design time) and to transform simple queries from the application and the
query interface from the natural schema to the physical schema (at run time).

The central purpose of this paper is to introduce the g-tree as a conceptual
model and to formally define the transformation operators that can appear in the
channel. The remainder of this paper is organized as follows. Section 2 provides
the motivation for this work. The GUAVA framework is presented in Section
3, the main section of the paper. Section 4 describes our current work; Section
5 briefly discussed related work; and the paper concludes with a discussion of
contributions and future work in Section 6.

2 Motivation

The development of GUAVA is motivated by our work with the Clinical Out-
comes Research Initiative (CORI) [1] where endoscopy reports from nearly 70
sites across the US are being compiled in a data warehouse on an ongoing ba-
sis. CORI seeks to improve the practice of endoscopy by conducting retroactive
studies on de-identified patient data (i.e., the endoscopy reports). CORI devel-
ops and distributes a software reporting tool that allows the clinician to enter

426 J.F. Terwilliger, L.M.L. Delcambre, and J. Logan

UI DB SQL

analyst user
application

UI

DB
SQL Query

Interface

analyst

user

application

NS
DB

channel

g-tree

(b) GUAVA: UI generates g-tree, then g-tree generates natural schema

(a) Traditional approach: analyst writes queries against (physical) DB

Fig. 1. The GUi As View (GUAVA) software engineering framework

data that describes the endoscopic procedure and then generates the endoscopy
report, suitable for inclusion in the patient medical record.

CORI supports a number of data analysts who conduct various studies. Each
study requires that the analyst select an appropriate subset of the reports in the
warehouse, classify the source data into categories of interest in the study, as
appropriate, and then hand-off the selected data, post-classification, for analysis
in a statistical package. Given that additional vendors of endoscopic reporting
tools would like to contribute to the CORI warehouse and given that the cur-
rent generic schema used for the CORI warehouse is nearly unintelligible to the
CORI analysts, we have defined the GUAVA framework [11] to allow the ana-
lyst to express queries directly against the user interface and an accompanying
framework to support multiple classification decisions. Since we are working with
report data, we have focused on source schemas with what we call a “single en-
tity of interest” (a report, in the CORI case) with an accompanying, perhaps
complex, user interface. That is, the source data has a primary entity as de-
scribed in an initial form in the interface, with weak entities to provide further
elaboration (corresponding to nested forms) of the primary entity.

3 Introduction to GUAVA

The GUAVA framework seeks to exploit the hierarchical nature of forms-based
user interfaces (e.g., Figure 2) to provide a simple representation of its informa-
tion. We define a GUAVA-tree (g-tree) to represent the information present on
a user interface, including the relationships between forms. Also of interest are
the context elements for the controls, such as the control’s type (e.g. text box or
checkbox), its default value, and its text. A control’s text may be simple to find
for checkboxes and group boxes, where the text is actually part of the control,

The User Interface Is the Conceptual Model 427

Fig. 2. A simple forms-based application with two forms. The second form provides
additional details for the same person represented by the first form, and that the second
form appears by clicking the first form’s ‘Details’ button.

but harder for text boxes and drop-down lists where the text is actually in an
adjacent label. These properties are important to anyone using the application,
but are also informative to users that want to query the data.

Formally, a g-tree is a tree with nodes N and edges E such that:

– Each n ∈ N is labeled with one of the values Entity, Attribute, Container,
or Control.

– Each n ∈ N has an attribute Name whose value is unique in the tree.
– Each n ∈ N has a hash function h that associates context elements with

values.
– Each e ∈ E is labeled with one of the values Contains, Single-launch, or

Multiple-launch.

Translating a user interface into a g-tree is straightforward (Figure 3). Each
form in the user interface becomes an entity node, each data-bound control
becomes an attribute node, each container control (such as a group box) becomes
a container node, and everything else becomes a control node. The name of each
node is derived from the name of the control in code. If one form or control
contains another, a Contains edge is drawn from one to the other. If a control
launches another form, but the new form merely contains more details about
the first form, a Single-Launch edge is drawn from the control to the form.
If, instead, the new form is a new entity entirely, a Multiple-Launch edge is
drawn.

Notice that not every g-tree corresponds to a working user interface. For
instance, a single-launch edge leading to an attribute node does not make sense,
because that implies clicking a button launches a text box or a checkbox, not
another form. We define a g-tree to be valid if it satisfies these properties:

428 J.F. Terwilliger, L.M.L. Delcambre, and J. Logan

– The root node of the tree must be of type Entity.
– The in-edge for any non-root Entity node is of type Single-launch or Multiple-

launch.
– The in-edge for any non-Entity node is of type Contains.
– The out-edges for any Entity node are of type Contains.

In GUAVA, we generate what we call a natural schema, a relational schema
where each form corresponds to a single table using the following algorithm:

Algorithm 1: To translate a valid g-tree (N, E) into its natural database
schema:

– For each Entity node n ∈ N , create a table with name n.Name, and add a
column called id, an artificially-generated primary key.

– For each Entity node n ∈ N that is not the root node, find the closest Entity
node p above it in the tree. If n’s in-edge is of type Single-launch, create
a foreign key from (n.Name).id to (p.Name).id. If n’s in-edge is of type
Multiple-launch, create a new column (n.Name).fk and a foreign key from
the new column to (p.Name).id.

– For each Attribute node a ∈ N , find the closest entity node p in its list of
ancestors and create a column named a.Name in p’s table.

Figure 4 shows the result of running Algorithm 1 on the g-tree in Figure 3.

Endoscopy
(Entity)

Personnel
(Container)

Outcomes
(Container)

Endoscopist
(Attribute)

Anesthetist
(Attribute)

Procedure
Complete
(Attribute)

Severity
(Attribute)

Details
(Control)

Endoscopy Details
(Entity)

Primary
Finding

(Attribute)

Other
Findings

(Attribute)

Anesthesia
Required

(Attribute)

Complications
Occurred

(Attribute)

Post-Operative
Instructions
(Attribute)

Other Surgery
Required

(Attribute)

Single-Launch

Fig. 3. An example g-tree corresponding to the application in Figure 2. Any edge that
is not labeled is a Contains edge.

To pose a query against a g-tree, any attribute node in the tree can be marked
as a “print” node or as a filter node with a boolean condition, similar to QBE.
Translating a g-tree query into a query against the natural schema is straight-
forward. The result is a simple query language, where the following constructs
are allowed:

The User Interface Is the Conceptual Model 429

– T for any table in the natural schema
– Exp1 � Exp2 only if there is a foreign key from Exp2 to Exp1
– πC(Exp) for any collection of columns
– σC=V (Exp) for any column C and any atomic constant value V

Fig. 4. The natural schema corresponding to Figure 3, before (a) and after (b) the
application of a channel with operators Unpivot(EndoscopyDetails, {id}) and VParti-
tion(Endoscopy, {id}, {ProcedureComplete, Severity}, EndoscopyPersonnel)

4 Formal Definition of Database Operators

The focus of this paper is on defining the GUAVA back-end so that queries
expressed against the natural schema can be processed against an underlying
physical database whose schema may be completely different. Our approach is
to define invertible database transformation operators that allow a database
designer the freedom to structure the physical database as he or she chooses. In
the formal definition that we present here, instances of these operators provide
automatic generation of the physical database schema, as well as automatic
translation of the data input from the user interface for storage in the physical
database. The operators are invertible, so they also describe how to translate
the physical data back into the natural schema to make it available for query
processing.

Table 1 lists operators that GUAVA provides, with a short description. The
parameters required to instantiate each database operator are present in Table
2. Table 3 formally describes how each operator transforms a schema and an
instance of a database. Each operator can take a schema or database instance
as input, and produces a schema or database instance as output. The operator
definitions use the following notation:

– Tables: The list of tables in the schema
– Cols(T): The list of columns in the schema for table T
– inst(T): The instance of table T
– Name(D): The name of the column or table D, returned as a data value
– A subscript of “in”, such as instin, refers to the input of the operator

430 J.F. Terwilliger, L.M.L. Delcambre, and J. Logan

Table 1. Descriptions of eight database operators

Operator Description
Apply Uses an invertible function to transform the values in a table
Rename Uses an invertible function to rename the tables or columns in the

schema
VPartition Partitions a table vertically into two tables, and creates a foreign key

between the two
VMerge Joins two tables together, provided that the key for one table serves

as a foreign key for the key of the other
HPartition Partitions a table horizontally based on the values in a given column
HMerge Merges a collection of union-compatible tables, using a new column

to keep track of the table from which each tuple came
Pivot Transforms a table so that values appearing in a specific column

become column headings
Unpivot Transforms a table so that a group of column names become data

values

– A subscript of “out”, such as instout, refers to the output of the operator
– Anything in boldface is a set

The operators defined in Table 3 have an inverse operator, as shown in Table 4.
The current focus of this work is allowing a DB designer to specify the sequence
of operators necessary to transform the natural schema associated with the user
interface into the stored DB. Once the sequence of transformation operators is
specified, we show that the stored database instance can be transformed into an
instance of the natural schema, using the sequence of inverse operators in reverse
order.

Definition: A cell is an instantiation of a database operator with specific input
parameters provided. A cell includes an instantiation of the operator’s inverse.
As shown in Table 4, some parameters for the inverse operator in a cell are taken
from the input parameters to the operator in this cell. Thus, a cell provides a
mechanism to “remember” specific details of the original transform operator. For
example, the HPartition operator produces a set of new tables (Tsresult) from a
given table (T). The inverse operator, HMerge, within the cell uses these table
names (merging Tsresult to produce T). To apply a cell forward is to apply the
operator; to apply a cell in reverse is to apply the inverse operator.

Theorem 1. Given a cell with operator O from Table 1 with specific parameters
P and the inverse operator O′ from Table 1 with parameters P ′ as shown in
Table 4, S = O′(P ′)(O(P)(S)) and D = O′(P ′)(O(P)(D)) for any schema S
and its instance D on which the operator O is valid. Note that O(P) returns an
instantiated operator that can then be applied to either a schema or an instance.

Proof: The claim is true for Apply and Rename because the particular functions
(shown as f in Table 3) are invertible and defined for all input (from the natural
schema). The fact that the claim is true for the remaining operators follows from
their definitions as shown in Table 3.

The User Interface Is the Conceptual Model 431

Table 2. Eight database operators, their parameters and restrictions

Operator Input Parameters

Apply T : The input table name, T ∈ Tablesin
C1: A column name, C1 ∈ Colsin(T)
C2: A column name, C2 �∈ Colsin(T)
f : A total, invertible function with single input and single output

Rename f : A total, invertible function whose input and output are string
values

VPartition T : The input table name, T ∈ Tablesin
Ks: The set of key column names, Ks ⊂ Colsin(T)
Cs: A set of non-key column names from T , Cs ⊂ (Colsin(T)−Ks)
T new : The name of the new table, T new �∈ Tablesin

VMerge T L: The primary input table name, T L ∈ Tablesin
T R: The name of the table to merge, T R ∈ Tablesin
Ks: A set of column names

where Ks comprises the key for both T L and T R

and a foreign key exists from T R.Ks to T L.Ks

HPartition T : The input table name, T ∈ Tablesin
C: A column name, C ∈ Colsin(T)

whose values will be used to distribute the table’s tuples
Tsresult: The set of output table names, Tsresult ∪ Tablesin = �

HMerge Ts: A set of table names, Ts ⊆ Tablesin
where the tables in T are union-compatible

T result: The output table name, T result �∈ Tablesin
C: A column name such that, ∀T ∈ Ts, C �∈ Colsin(T)

Pivot T : The input table name, T ∈ Tablesin
such that the name V alue ∈ Colsin(T)

Ks: The set of key column names from T , including one column
named Attr

Unpivot T : The input table name, T ∈ Tablesin
Ks: The set of key column names from T

where the columns (Colsin(T) − Ks) have the same data type

Definition: A channel is a sequence of cells, as shown in Figure 5. Formally, for
a channel C, C = On(Pn) ◦ . . . ◦O1(P1), and C−1 = O1(P1)−1 ◦ . . . ◦On(Pn)−1.
Thus, we use the notation C(S) (or C−1(S)) for a forward (reverse) application
of the cells in forward (reverse) order. Similarly, we use C(D) and C−1(D) to
indicate the application of a forward or reverse data transformation. C is a valid

432 J.F. Terwilliger, L.M.L. Delcambre, and J. Logan

T
ab

le
3.

D
efi

ni
ng

th
e

ac
ti
on

of
ei

gh
t

da
ta

ba
se

op
er

at
or

s.
A

ny
ta

bl
e

in
th

e
in

pu
t

sc
he

m
a

or
in

st
an

ce
th

at
is

no
t

ex
pl

ic
it
ly

re
fe

re
nc

ed
by

th
e

op
er

at
or

si
m

pl
y

pa
ss

es
to

th
e

ou
tp

ut
un

aff
ec

te
d.

O
p
er

at
or

S
ch

em
a

T
ra

n
sf

or
m

at
io

n
D

at
a

T
ra

n
sf

or
m

at
io

n

A
pp

ly
(T

,C
1
,C

2
,f

)
C

ol
s o

u
t(

T
)
=

(C
ol

s i
n
(T

)
−

C
1
)
∪

C
2

in
st

o
u

t
(T

)
=

{(
d
1
,d

2
,.

..
,f

(d
i
),

..
.,

d
n
)|(

d
1
,d

2
,.

..
,d

i
,.

..
,d

n
)

∈
in

st
in

(T
)}

w
he

re
C

1
is

th
e

ith
co

lu
m

n
in

T

R
en

am
e

(f
)

T
ab

le
s o

u
t
=

{f
(T

)|T
∈

T
ab

le
s i

n
}

∀T
∈

T
ab

le
s i

n
,

C
ol

s o
u
t
(f

(T
))

=
{f

(C
)|C

∈
C

ol
s i

n
(T

)}

N
on

e

V
P
ar

ti
ti
on

(T
,K

s,
C

s,
T

n
e
w
)

T
ab

le
s o

u
t
=

T
ab

le
s i

n
+

{T
n

e
w

}
C

ol
s o

u
t(

T
)
=

K
s

∪
C

s
C

ol
s o

u
t(

T
n

e
w
)

=
K

s
∪

(C
ol

s i
n
(T

)
−

C
s)

in
st

o
u

t
(T

)
=

π
K

s∪
C

s
(i

n
st

in
(T

))
in

st
o
u

t
(T

n
e
w
)

=
π
C

o
ls

in
(T

)−
C

s
(i

n
st

in
(T

))

V
M

er
ge

(T
L
,T

R
,K

s)
C

ol
s(

T
L
)
=

C
ol

s(
T

L
)
∪

C
ol

s(
T

R
)

T
ab

le
s o

u
t
=

T
ab

le
s i

n
−

{T
R

}
in

st
o
u

t
(T

L
)
=

in
st

in
(T

L
)

�
T

L
.K

=
T

R
.K

∀K
∈K

S
in

st
in

(T
R
)

H
P
ar

ti
ti
on

(T
,C

,T
sr

e
su

lt
)

T
ab

le
s o

u
t
=

(T
ab

le
s i

n
−

T
)
∪

T
sr

e
su

lt

∀T
r

∈
T

sr
e
su

lt
,

C
ol

s o
u
t(

T
r
)

=
C

ol
s i

n
(T

)
−

{C
}

in
st

o
u

t
(T

r
)

=
π
C

o
ls

in
(T

)−
{C

}(
σ

T
.C

=
N

a
m

e
(T

r
)(

in
st

in
(T

))
)

H
M

er
ge

(T
s,

T
r
e
s
u

lt
,C

)
C

ol
s o

u
t(

T
r
e
s
u

lt
)

=
C

ol
s i

n
(T

)
∪

{N
a
m

e(
C

)}
,
fo

r
an

y
T

∈
T

s
in

st
o
u

t
(T

r
e
s
u

lt
)
=

T
∈T

s
(i

n
st

in
(T

)
×

(N
a
m

e(
T

))
)

P
iv

ot
(T

,K
s)

C
ol

s o
u
t(

T
)
=

K
s

∪
D

s
w

he
re

D
s

=
th

e
se

t
of

va
lu

es
in

in
st

in
(T

.A
tt

r)
N

ew
ke

y
fo

r
T

is
K

s
−

{A
tt

r}

in
st

o
u

t
(T

)
=

π
K

s−
{A

tt
r
}(

in
st

in
(T

))
�

ρ
V

a
lu

e
→

D
1
π

(K
s−

{A
tt

r
})

∪{
V

a
lu

e
}(

σ
T

.A
tt

r
=

D
1
(i

n
st

in
(T

))
)

�
..

.
�

ρ
V

a
lu

e
→

D
n
π

(K
s−

{A
tt

r
})

∪{
V

a
lu

e
}(

σ
T

.A
tt

r
=

D
n
(i

n
st

in
(T

))
)

fo
r
D

s
=

{D
1
,D

2
,.

..
,D

n
}

U
np

iv
ot

(T
,K

s)
C

ol
s o

u
t(

T
)
=

K
s

∪
{V

a
lu

e,
A

tt
r}

N
ew

ke
y

fo
r

T
is

K
s

∪
{A

tt
r}

in
st

o
u

t
(T

)
=

C
∈(

C
o
ls

in
(T

)−
K

s)
(π

K
s
∪{

C
}(

in
st

in
(T

))
×

(N
a
m

e(
C

))
)

The User Interface Is the Conceptual Model 433

channel for a schema S and instance D if, when applied to S and D, none of
the restrictions on the operators in C, as described in Table 2, are violated.

The following theorem guarantees that the original fully materialized natural
schema is equivalent to the data returned from the physical database associ-
ated with a valid channel. This provides the foundation for query processing in
GUAVA.

Theorem 2. Given a schema S with instance D, and a channel C that is valid
on S and D, S = C−1(C(S)) and D = C−1(C(D)).

Proof: The proof follows from the fact that each cell in the channel represents
an invertible function and the composition of invertible functions is invertible.
Note, we expect that each operator in a channel to be total with respect to the
input data that appear as input when using the channel in the forward direction.
Thus, the function f used with the Apply operator must be defined for all values
that can appear in the relevant attributes and the HPartition operator must have
an input table name in Tsresult for each possible value that can appear in the
column upon which the HPartition is based.

In our implementation in progress, the channel does not transform an entire
database instance. Rather, it transforms DML and DDL statements and SQL
queries issued against the natural schema into the corresponding statements
against the physical schema. The channel also transforms query results so that
it appears that the query was actually executed against the natural schema.

Table 4. Defining the inverse of the eight database operators

Operator Inverse
Apply (T, C1, C2, f) Apply (T, C2, C1, f−1)
Rename (f) Rename (f−1)
VPartition (T, Ks,Cs, T new) VMerge (T, T new,Ks)
VMerge (T L, T R,Ks) VPartition (T L,Ks, Colsin(T L) − Ks, T R)
HPartition (T, C,Tsresult) HMerge (Tsresult, T, C)
HMerge (Ts, T result, C) HPartition (T result, C)
Pivot (T,Ks) Unpivot (T,Ks − {Attr})
Unpivot (T,Ks) Pivot (T,Ks ∪ {Attr})

Schema In:

Data In:

Schema Out:

Data Out:

Schema In:

Data In:

Schema Out:

Data Out:
O1(P1)

O1(P1)-1

On(Pn)

On(Pn)-1

Oi(Pi)

Oi(Pi)-1

…

…

…

…

…

…

…

…

Cell 1 Cell i Cell n

Fig. 5. Description of a channel, as used in our formal definition

434 J.F. Terwilliger, L.M.L. Delcambre, and J. Logan

5 Related Work

Our Pivot, Unpivot, HMerge, and HPartition operators are adapted from Laksh-
manan, et al, [3]. Our work differs in its approach. Whereas SchemaSQL allows
the user (i.e., the query writer) to express queries in the presence of schematic
heterogeneity, Guava presents the user with a simple query language over a sim-
ple view of his or her data that mirrors a user interface and allows the database
design to express transformations as desired, including transformations that in-
troduce schematic heterogeneity.

There are several approaches that model a user interface as a tree structure
and view the associated data as an XML document, including XAML [13] and
XUL [14]. These XML-based approaches are similar in spirit to GUAVA but they
are limited to describing a single form at a time; there is no automated support
for describing the relationship among forms other than by using a programming
language.

GUAVA allows the database designer to describe how to transform a natural
relational schema (that arises from the hierarchical g-tree) to other relational
schemas. So GUAVA offers an approach different from the typical XML shred-
ding approaches [2] to choosing a relational database schema to store XML data.

Rather than starting with the UI and generating the back end as GUAVA
does, a Ruby on Rails scaffold [9] starts with the database and generates a UI
that performs queries and updates. That is, Ruby on Rails makes it easy to start
with what we call the natural schema and then generate a user interface and
provides no support for schematic heterogeneity. One approach to application
development would be to start with the natural schema and use Ruby on Rails
(or a similar tool) to generate a user interface and then use GUAVA to generate
the back-end.

Rollinson and Roberts [8] describe how to represent the semantics of a forms-
based interface in a conceptual modeling language. The applications they con-
sider are limited to ones where the UI and the database are closely related,
perhaps even where the UI is semi-automatically generated from the database.

In general, our GUAVA framework offers one approach to information trans-
formation and is thus related to some aspects of the decades of work in infor-
mation integration. We comment on a few specific efforts here. Miller, et al, [6]
have considered ways to help the user identify mappings between data sources in
the presence of schematic heterogeneity, e.g., by using data in various ways. In
GUAVA, we are working in the context of a single database and we ask the data-
base designer to generate the mappings by describing a channel. If two or more
database systems had been designed using GUAVA and the user were able to
indicate correspondences between two user interfaces, then perhaps we could ex-
ploit the definitions of the respective channels to construct the mapping between
the two data sources.

Larson, et al, [4] considered the problem of attribute and values equivalences
extensively. We introduce the Apply operator to handle attribute transforma-
tions. The COIN project [10] focuses on describing attributes with context el-
ements, such as units. GUAVA captures context information about each user

The User Interface Is the Conceptual Model 435

interface control, such as the label that appears on the screen. We do not focus
specifically on the kind of context elements considered in the COIN project, such
as units for a value, but such context elements could be easily incorporated in
GUAVA.

GUAVA offers an alternative to the classical extract-transform-load processing
associated with a data warehouse [12]. In fact, GUAVA was motivated by the
difficulties experienced by CORI analysts when trying to understand the data
warehouse schema well enough to extract data for their queries. The contribution
of GUAVA is it allows users to express queries against the natural schema, with
context elements from the user interface, rather than against the data warehouse
schema.

Finally, our work is not addressing the problem of automatic schema matching
[7] but perhaps suggests the possibility of trying to match user interfaces directly
and then rely on the corresponding channels to determine the mappings between
schemas. Also, if we succeed in extending GUAVA to propagate user interface
changes to the stored database schema, we will likely have a detailed description
of how one schema (from an earlier version of the software) matches new versions.

6 Conclusions and Future Work

This paper defines the initial, formal framework for supporting GUAVA, where
we use the user interface, directly, as a conceptual model. The database opera-
tors, instantiated in a channel, precisely describe the transformations that take
place between the natural schema and the desired, stored database schema.

Our GUAVA implementation extends a subset of the forms controls in the
Microsoft Visual Studio development environment to automatically generate the
g-tree and corresponding natural schema. We are currently implementing the
operators shown in Tables 1-3 in the channel. Also, we are considering additiona
operators besides the ones in Table 1 as necessary.

We have defined the GUAVA query language, and are developing query op-
timization strategies. We plan to develop a user-friendly interface that allows
the user to express queries against a visual display that looks like the original
user interface. Although our work was prompted by the need to describe the
relationship between the user interface and the stored, generic database schemas
typically used by forms-based reporting tools, we believe that the database op-
erators introduced here can be used more generally. As one part of that work,
we will define the conditions under which a channel is valid for a particular
schema and instance. We would also like to consider how to modify the GUAVA
framework to accommodate modifications to the UI. We hope to propagate the
desired changes to the g-tree and its natural schema through the channel to
the physical database. Finally, we plan to extend the set of user interface con-
trols that can be used with GUAVA to include aggregate data structures (such
as lists, tuples, and trees) over known atomic data types (such as strings, in-
teger, and binary objects), and define appropriate translations to the natural
schema.

436 J.F. Terwilliger, L.M.L. Delcambre, and J. Logan

Acknowledgements

This work is supported in part by Collins Medical Trust, by DHHS NIH National
Institute of Diabetes Digestive and Kidney Diseases No. 5-R33-DK061778-03
awarded to Oregon Health & Science University (OHSU), and by NSF grant No.
0534762.

References

1. Clinical Outcomes Research Initiative. Available at http://www.cori.org/. Last
accessed on April 10, 2006.

2. F. Du, S. Amir-Yahia, J. Freire. A comprehensive solution to the XML-to-relational
mapping problem. In Proceedings of the 6th Annual ACM International Workshop
on Web Information and Data Management, Washington DC, November 12-13,
2004, 31–38.

3. L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. On efficiently implement-
ing SchemaSQL on a SQL database system. In Proceedings of the International
Conference on Very Large Databases (VLDB 99), Edinburg, Scotland, September
1999, 471–482.

4. J. A. Larson, S. B. Navathe, and R. Elmasri. A Theory of Attribute Equivalence in
Databases with Application to Schema Integration. IEEE Transactions on Software
Engineering, April 1989, 15(4):449–463.

5. R. J. Miller. Using Schematically Heterogeneous Structures. In Proceedings of ACM
SIGMOD, Seattle, WA, June 1998, 27(2):189–200.

6. R. J. Miller, M. A. Hernandez, L. M. Haas, L.-L. Yan, C. T. H. Ho, R. Fagin,
and L. Popa. The Clio Project: Managing Heterogeneity. SIGMOD Record, 2001,
30(1):78–83.

7. E. Rahm and P.A. Bernstein. A survey of approaches to automatic schema match-
ing. In Proceedings of the 27th International Conferences on Very Large Databases,
2001, 10(4):334–350.

8. S. R. Rollinson and S. A. Roberts. Formalizing the Informational Content of Data-
base User Interfaces. In Proceedings of the 17th International Conference on Con-
ceptual Modeling (ER98), Singapore, November 16-19, 1998, 65–77.

9. Ruby on Rails. Available at http://www.rubyonrails.org/. Last accessed on April
10, 2006.

10. E. Sciore, M. Siegel, and A. Rosenthal. Using semantic values to facilitate interoper-
ability among heterogeneous information systems. ACM Transactions on Database
Systems, June 1994, 19(2):254–290.

11. J. F. Terwilliger, L. M. L. Delcambre, and J. Logan. Context-Sensitive Data Inte-
gration. In Proceedings of the EDBT 2006 Workshop on Information Integration
in Healthcare Applications (IIHA), Munich, Germany, March 26, 2006, 20–31.

12. P. Vassiliadis, A. Simitsis, P. Georgantas, M. Terrovitis, and S. Skiadopoulos. A
generic and customizable framework for the design of ETL scenarios. Information
Systems, November 2005, 30(7):492–525.

13. XAML. Available at http://www.xaml.net/. Last accessed on April 10, 2006.
14. XUL. Available at http://www.xulplanet.com/. Last accessed on April 10, 2006.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 437 – 450, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Towards a Holistic Conceptual Modelling-Based
Software Development Process

Sergio España, José Ignacio Panach, Inés Pederiva, and Óscar Pastor

Department of Information Systems and Computation
Valencia University of Technology

Camino de Vera s/n, 46022 Valencia, España
Phone: +34 96 387 7000, Fax.: +34 96 3877359

{sergio.espana, jpanach, ipederiva, opastor}@dsic.upv.es

Abstract. Traditionally, the Conceptual Modelling (CM) community has been
interested in defining methods to model Information Systems by specifying their
data and behaviour, disregarding user interaction. On the other hand, the Human-
Computer Interaction (HCI) community has defined techniques oriented to the
modelling of the interaction between the user and the system, proposing a user-
centred software construction, but leaving out details on system data and behav-
iour. This paper aspires to reconcile both visions by integrating task modelling
techniques using a sound, conceptual model-based software development proc-
ess in a HCI context. The system is considered on its three axis (data, functional-
ity and interaction), as a whole. The use of CTT (Concurrent Task Trees)
embedded in a model-based approach makes it possible to establish mapping
rules between task structure patterns that describe interaction and the elements of
the abstract interface model. By defining such structural patterns, the CTT nota-
tion is much more manageable and productive; therefore, this HCI technique can
be easily integrated in a well-established conceptual modelling approach. This
proposal is underpinned by the MDA-based technology OlivaNova Method Exe-
cution, which allows real automatic software generation, while still taking user
interface into account at an early requirements elicitation stage.

1 Introduction

For several decades, computer science students have become aware of the Crisis of
Software concept. It is related to the apparently unavoidable fact that producing an In-
formation System is costly (it uses expensive resources over extended periods of
time); it is much too slow for modern business conditions; it is very risky (it is hard to
control and has a high failure rate); and it is highly unreliable (because it introduces
hidden failure points).

The Conceptual Model community continues to claim that programming is still
the basic task when software engineers speak in terms of the expected final software
product and this fault justifies the historical failure when it is attempted to meet
software system needs. From a Conceptual Modelling perspective, the development
process has not changed much over the past 40 years. Even if it is strongly argued
that Model-Based Code Generation can provide a reliable alternative to those

438 S. España et al.

conventional programming-based software production environments, in most pro-
jects, the design, programming and testing activities still require substantial manual
effort. Thus, the potential that modelling offers is not being taken advantage of.

After many attempts, it seems that, for the first time, the idea of transforming the
model into code is an affordable dream, instead of having the code as the only real
model. Many specific proposals have been presented: Extreme-Non-Programming
(XNP) [18], Model Driven Architecture (MDA) [23], Conceptual-Schema Centric
Development [22], Model Transformation Technologies, etc. Even tools that imple-
ment Conceptual Model Compilers have started to appear in industry.

In this challenging context, it is interesting to realize that modelling an Information
System is traditionally seen as a process where there is a data-oriented component and
a process-oriented component as the two basic axes. They represent the static system
view and the dynamic system view, respectively. Accordingly, a lot of methods and
techniques have been provided in the past to solve this specification problem, includ-
ing well-known data modelling techniques (the Entity-Relationship Model [4] and its
extensions) and process modelling approaches (Structured Analysis with its Data
Flow Diagrams). In the nineties Object-Oriented Modelling was seen as the way to
encapsulate statics (data) and dynamics (behaviour) under the common notion of ob-
ject, so new methods [2][32] and languages (UML [24]) have been proposed under
this unified paradigm. The focus is commonly placed on those data and functional
system aspects at the modelling stage, while one very important issue is normally left
aside until the design stage: the user interaction with the system.

This is the main issue that we confront in this work and several questions arise. If
user interaction is a basic component of a system specification, why is interaction
modelling not considered at the same level as data and behaviour modelling in the
vast majority of software production methods? Isn’t interaction an essential part of the
world description, as system data and functionality are? Why isn’t there a widely ac-
cepted model when talking about user interaction modelling, as there is when talking
about data modelling (i.e. the ER model)? A possible explanation for this situation is
that the interaction modelling problem has been treated separately by a parallel com-
munity, the Human Computer Interaction community (HCI), where specific tech-
niques are proposed as potential solutions. However, these proposals normally ignore
the required link of interaction modelling with data and process modelling.

In order to provide proper bridges between the Conceptual Modelling (CM) and
the HCI communities, we assume that CM is considered to be strong in modelling
data and functional requirements, while HCI is centred on defining user interaction at
the appropriate level of abstraction. We want to define a conceptual model-based
software production environment where system data, functionality and interaction are
specified all together, in a precise way. We argue that if any of these aspects is not
properly dealt with, the software production process will fail because, as a whole, the
reality to be modelled is an inseparable mix of data, functionality and interaction.,

The purpose of this paper is to provide the basis for building a holistic software
production process, with two basic principles in mind:

• To use Model Transformation as the basic strategy to automate the conversion
of the Requirements Model into the Conceptual Model, and then to convert this

 Towards a Holistic Conceptual Modelling-Based Software Development Process 439

Conceptual Model into the final software product. A model compiler imple-
ments the corresponding mappings.

• To assume that each modelling step has to provide the appropriate methods to
deal properly with the specification of structural, functional, and interaction
properties.

We present an approach that introduces the following original aspects:

• The combination of two well-known techniques that come from different fields:
a sound functional specification (Use Cases [10], widely used in CM contexts)
that is enriched by an interaction model (CTT Model from HCI [26])

• Then a set of mappings allows the derivation of the Conceptual Schema.

The approach presented here is currently being successfully implemented in Oli-
vaNova Model Execution (ONME)[3], an MDA-based tool which generates a soft-
ware product that corresponds to the source Conceptual Schema. Without going into
detail on the technical aspects of the model compilation, we intend to demonstrate
that conceptual modelling is more powerful when user interaction and system behav-
iour are modelled within a unified view at the early stage of requirements elicitation.

The paper is structured as follows. Section 2 presents an overview of model-based
user interface development environments proposed in the literature. Section 3 intro-
duces a software production process that combines model-based and task-based ap-
proaches. This process is explained with a case study using an application generated
with ONME. Finally, section 4 presents the conclusions derived from the process ap-
plication, and future work.

2 Related Work

From an HCI point of view, there are a number of model-based user interface devel-
opment environments (MB-UIDEs) reported in the literature. In da Silva’s survey [5],
several MB-UIDEs are reviewed, distinguishing two generations of tools. The aim of
the first generation was to provide a run-time environment for user interface models;
some examples are COUSIN [9], HUMANOID [29] and UIDE [12]. The second gen-
eration aimed to provide support for interface modelling at a high level of abstraction.
Examples of these environments include ADEPT [15], FUSE [14], GENIUS [11],
MASTERMIND [30], MECANO [27], MOBI-D [28], TADEUS [7], and TRIDENT
[1]. Many of the second-generation MB-UIDEs rely on a domain model. This model
is often a description of the domain entities and the relationships among them, which
are represented as a declarative data model (as in MECANO and MOBI-D), an entity-
relationship data model (as in GENIUS), or an object-oriented data model (as in
FUSE). Some MB-UIDEs like ADEPT, FUSE, TADEUS, TRIDENT, and USIXML
propose task models as a primary abstract interaction modelling, from which the ab-
stract interface models (or their equivalent dialogue models) are later derived. It is
important to remark that USIXML [31] is an XML-based interface description lan-
guage that is supported by a suite of tools, ranging from creating User Interface (UI)
sketches to generating the final UI. Therefore, we will consider USIXML as an MB-
UIDE for the purposes of this review.

440 S. España et al.

Moreover, there are several UML-based approaches. WISDOM [21] is a UML-
based software engineering method that proposes a use-case-based and evolutive
method in which the software system is iteratively developed by incremental proto-
types until the final product is obtained. The UML notation has been enriched with
the necessary stereotypes, labelled values, and icons to allow user-centred develop-
ment and a detailed user interface design. Three of its models are concerned with in-
teraction modelling at different stages: the Interaction Model, at the analysis stage;
and the Dialog Model and the Presentation Model during the design stage, as refine-
ments of the Interaction Model. Another important proposal is UMLi [6]. It is a set of
user interface models that extends UML to provide greater support for UI design.
UMLi introduces a new diagram: User Interface Diagram; it is the first reliable pro-
posal of UML to capture the user interface formally. However, the models are so de-
tailed that the modelling turns out to be very difficult. Middle-sized problems are very
hard to specify, that maybe the reason why UMLi has not been adopted in industrial
environments.

Table 1 shows a comparison between some of the reviewed MB-UIDEs. In general
terms, there is poor lifecycle support, lack of integration between models to provide a
full software production process, and lack of functionality specification leading to no
functionality generation. In addition, some of the reviewed MB-UIDEs do not allow
the automatic generation of the final UI.

Table 1. Review of several approaches

Approach
Whole

life-cycle
support

Model in-
tegration

Functionality
specification
/ generation

Interface
generation

Conceptual
domain
model

Mobi-D Yes Yes No / No Guided Declarative
Mastermind No Yes No / No Yes Declarative

Adept Yes Yes No / No Yes
In Task
model

Genius No Yes No / No Yes
Entity rela-

tionship

Fuse No Yes Partial/No Yes
Object
model

Tadeus Yes Yes No / No Yes
Object
model

Trident Yes Yes No / No Yes
Enhanced

data models

Usixml No Yes No / No Yes
Class dia-

gram

Wisdom Yes Yes No / No No
UML class

diagram

UMLi No Yes No/No Yes
Class dia-

gram

 Towards a Holistic Conceptual Modelling-Based Software Development Process 441

The result is that the application being modelled cannot be completely generated.
For example, USIXML has properly mapped the elements of a task model to the ele-
ments of domain and interface models by defining a Transformation Model and the
corresponding support tools [13][17]. Although there are tools that deal with the final
user interface generation, no business layer is generated due to the lack of a functional
model.

From a software engineering point of view, some development methods and envi-
ronments have been proposed. They normally use a class-diagram-like model to cap-
ture the system structure and a process model to fix the functionality that the system is
supposed to provide. In addition, in recent years, some CASE tools (Together, Ra-
tional Rose, Poseidon, etc.) have been proposed with the objective of providing some
kind of automation to manage these models. However, interaction modelling is not a
key issue when requirements and conceptual modelling is represented in a software
production process.

3 The Role of Conceptual Modelling in OlivaNova Model
Execution

In this section, we present a complete software production process that combines
functional requirements specification, analytical conceptual modelling (including user
interaction design), and implementation. It is defined on the basis of OlivaNova
Model Execution (ONME) [3], a model-based environment for software development
that complies with the MDA paradigm [23] by defining models of a different abstrac-
tion level. Figure 1 shows the correspondence between the models proposed by MDA
and the models dealt with in OO-Method [25], which is the methodology underlying
ONME.

As we are about to see, the main strategy behind OO-Method is the modelling of
the real world in terms of abstract concepts which are well defined. In other words, a
specific syntax is given to create the models and an unambiguous semantics is con-
ferred to the conceptual constructs. These semantically precise notations will allow us
to automatically transform the Conceptual Model into the final application, thus es-
tablishing a powerful framework for software production.

At the most abstract level, a Computation-Independent Model (CIM) describes the
Information System (IS) without considering whether or not it will be supported by
any software application. In OO-Method, this description is called the Functional Re-
quirements Model. As we have identified a lack of interaction requirements elicitation
in these early stages of the software production process, we advocate the adoption of a
task model to help to establish the user needs concerning interaction. Figure 1 gives a
graphical description of the approach.

The Platform-Independent Model (PIM) describes the system in an abstract way,
keeping in mind that the system will somehow be computerized but without determin-
ing the underlying computer platform. This is called the Conceptual Model in OO-
Method.

442 S. España et al.

Fig. 1. OO-Method software development as an MDA-compliant process

ONME implements an automatic transformation of the Conceptual Model into the
source code of the final user application. This is done by a Model Compilation process
that has implicit knowledge about the target platform. This implied and tacit knowl-
edge, which is equivalent to the Platform Specific Model (PSM) defined by MDA, is
projected onto the mappings between the concepts of the PIM and their implementa-
tion on a specific programming language and platform (the Code Model, CM).

In the following, we explain the main steps of our software production process in
more detail, illustrating the argumentation with examples from a real case study.

3.1 Functional Requirements Extraction

The first step in building the conceptual modelling is the capture of requirements. In
our software production process, this is done through the definition of a Requirements
Model [10]. This model contains a description of the objectives and the external behav-
iour of the system, that is, what the system must do without describing how to do it.

The Requirements Model is defined using three elements: the Mission Statement,
the Functions Refinement Tree (FRT), and the Use-Case Model.

The Mission Statement is a high-level description of the nature and purpose of the
system. This element describes what the system will and will not do. The FRT

 Towards a Holistic Conceptual Modelling-Based Software Development Process 443

represents the hierarchical decomposition of the business functions of a system, inde-
pendently of the current system structure. Each tree’s leaf is a function of the system.
The leaves are grouped into internal tree nodes that group related business functions.

Once we have defined the FRT, the next step is to create the Use-Case Model. A
use case is an interaction between the system and an external entity. The leaf nodes of
the FRT, which are the elemental functions, are considered to be primary use cases;
they represent the most important functions of the system.

In order to explain our proposal, we use an example taken from a real system from
the OlivaNova Model Execution portfolio: the Bullent Water application. This system
is used in a company that delivers water to homes. The main functions of the system
are: to read the customer’s meter, to emit an invoice, to register the use of some mate-
rial in a repair, and to maintain the stock in the warehouses. For the sake of simplicity,
we have centred our attention on only one task of this system: the task to add a meter
reading in the system.

In Figure 2, we show part of the FRT of our case study. The figure shows the func-
tional groups, e.g. Meter; this group includes all the functions related to the meters,
including the studied task (remarked).

Fig. 2. Functions Refinement Tree for the Bullent Water system

Each use case is described in a template that is a specification of this use case. It
consists of a use-case description, the actors who can invoke it, the conditions needed
to execute it, and the list of events which compose it. Table 2 contains the specifica-
tion of the studied task.

Table 2. Use-case specification

Identification: Add meter reading
Description: It creates a new meter reading in the system.

Actor: Administrator
Precondition: Meter must previously exist

Event flow:

1.Click on new meter reading
2.Select the meter that has been read
3.Insert the date of the reading
4.Insert the measurement (in cubic metres)
6.The entered information is saved

444 S. España et al.

3.2 Modelling Interaction Requirements with CTT

We have proposed the Concur Task Trees (CTT) notation [26] in order to document
interaction requirements. Although this notation from the HCI community has a for-
mal background and is well-known among HCI practitioners, its inclusion in an in-
dustrial software production process entails some problems like:

1. The granularity of the task decomposition (when to stop refining the task model).
2. The burden of repeatedly modelling frequent and structurally similar interactions;
3. The intractability of the task models for large business management information

systems, even with the aid of available tools [19][20].
4. The notorious but frequently overlooked difference between modelling an itinerary

across the interface and modelling the interface itself.
5. The difficulty of defining how this task model should derive later models of the

system.

Some of the problems have been addressed in the previous works that were men-
tioned in Section 2. That is the case of the mappings between CTT elements and ele-
ments of the abstract interface model [13]; those mappings solve problem #5 in the
UsiXML framework.

In order to try to overcome the aforementioned problems, we propose the follow-
ing:

1. To clear up the uncertainty of the granularity issue, we have defined that the basic
data elements must be reached during the task decomposition.

2. Even though the former requirement seems to worsen the task model size, we pro-
pose the identification of structural task patterns that are common in the interaction
of a user and an information system.

3. Thus, we conceive of a tool that supports this workstyle by allowing the reuse of
these structural task patterns and their adjustment to each usage (that is to say, each
instantiation).

4. We consider the task model to be an assemblage of task patterns, thus, by adding
some recurrent-building rules, we are defining a grammar that allows both model-
ling user interaction in a very economic way and modelling the interface, since the
task model will represent the itinerary through the whole interface.

5. Several correspondences have been defined to map elements of the Task Model
(CIM) to elements of the Interaction Model (PIM), allowing a model-to-model
transformation.

Our approach to the problem is similar to that taken with the use of UML notations
in some of the diagrams of the Conceptual Model in OO-Method. The proposal of a
pattern-oriented solution where concise semantic values are given to the elements of
the model is already being applied to the definition of the business domain and the
modelling of the abstract interface. This strategy simplifies the work of the analyst
and makes code generation possible.

 Towards a Holistic Conceptual Modelling-Based Software Development Process 445

Fig. 3. CTT for the Add meter reading use case

To build the task model we proceed as follows. The Functional Requirements
Model is taken as input and a task tree is built for each leaf of the FRT (that is, each
use case). A precise mapping is defined between lines of the use case specification
and elements of the task model. The steps of the use case involving elemental data
manipulation appear as basic tasks of the task tree. For example, the introduction or
selection of a piece of data being described in the use-case specification (i.e. step 3 of
Table 2) results in an interaction task of the lowest granularity, which consists of the
user introducing or selecting that data in the interface (i.e. the Date interactive task in
the tree of Figure 3). Note that step 6 of the use-case description corresponds to the
Process reading system task.

Since the task model not only reflects the interaction of use cases one-at-a-time, the
interaction modelling involves the restructuring of the functional requirements repre-
sented in the FRT. Therefore, the example CTT also includes the “List meters” use
case, as the selection of a meter is prior to the introduction of a new meter reading
(this is stated in step 2 of the use case description).

To deal with how the initial access to the system’s functionality is presented to the
user, we propose building a taxonomical task tree that models this fact, taking advan-
tage of task decomposition in order to follow the gradual approach principle.

The CIM level is fulfilled with the interaction requirements. The next section ex-
plains the Conceptual Modelling step, which is the real basis of the OO-Method ap-
proach and the cornerstone of the ONME code generation technology.

3.3 Conceptual Modelling the Three Problem Axes in ONME

In order to model what has been elicited in the Requirements Model, OO-Method
[25] defines four complementary models that should be used to define the data, the
behaviour, and the interaction of the system which; all together make up the Concep-
tual Model.

The Object Model is designed with a classic class diagram similar to UML and
represents the data that the system will manipulate. The interaction and the sequences

446 S. España et al.

of events that occur among those objects are modelled in the Dynamic Model, while
the changes of their states are modelled by the Functional Model. Together the Dy-
namic and Functional Model define the entire behaviour of the system.

The fourth and last model is called the Presentation Model. It is based on abstract
ways of interaction and defines three levels of interaction patterns [16]. The first level
is called Hierarchical Action Tree (HAT) and organizes the way the user can access
the functionality of the system. The second level is called Interaction Units (IU) and
represents the interface units that the user is going to interact with. These units are
called Service IU, Instance IU, Population IU, and Master/Detail IU. The third level is
called Elementary Patterns and constitutes the building blocks of the IUs.

Figure 4.a graphically represents part of the system in the first two levels. Figure
4.b describes the three levels of the case study in greater detail. These patterns are de-
rived by applying transformation rules to the CTT and these transformations are ex-
plained elsewhere [8].

Fig. 4. Presentation Model

3.4 Automatic Code Generation

After the Functional Requirements Model and the Conceptual Model are specified,
the Conceptual Model can be transformed into code by applying specific transforma-
tion rules. ONME implements these transformations for Visual Basic, C #, ASP.
NET, Cold Fusion and Java, in a Model View Controller way, obtaining a full soft-
ware system using SQL-Server, ORACLE, or DB2 database in the persistence tier.

As an example, Table 3 presents the transformation between the abstract patterns
from the Presentation Model and the concrete widgets of the Visual Basic program-
ming language.

 Towards a Holistic Conceptual Modelling-Based Software Development Process 447

Table 3. Some Transformation Patterns

Presentation model VB component
Hierarchical action tree (HAT) Application menu
Interaction unit MDI child form
Service IU MDI child form with entry controls
Simple type service argument Entry control
Object-valued service argument OIDSelector Generic control
Filter Filter control
Filter variable Entry control
Actions Button panel
Action item Button
Service throw “Accept” button and code to validate and invoke

the service
Cancellation “Cancel” button and code to close the form
Services invocation Code for linking business logical layer with ser-

vice invocation
Data presentation Code for formatting and data recovery
Navigation Button panel
Navigation Item Button

Figure 5 shows the generated interface. Table 4 shows the mapping used for the
transformation presented in Figure 5.

Fig. 5. Add meter reading window

448 S. España et al.

Table 4. Mapping between Presentation Model and Final Interface

Presentation Model Final Interface
Hierarchical action tree (HAT)
Service IU

The whole window

Service throw and Cancellation

Simple type service argument

Introduction pattern for a date
field

Code for validating date format

Navigation

Filter

There is a back and forth traceability through the entire software process. The final
interface was designed in the early steps of the software project and the corresponding
transformation model is defined in each level of abstraction of OO-Method.

4 Conclusions and Future Work

Model-Based Software Production Methods need to integrate system functionality,
behaviour, and user interaction from the early stages of the system lifecycle. As inter-
action modelling is rarely considered at the same level as data and process modelling,
methods to model user interaction need to be properly embedded in such a Model-
Based strategy. Consequently, HCI techniques must be adapted to specify user inter-
action, fixing which conceptual primitives must be taken into account when system
interaction is to be modelled. In this paper, we have presented a software production
process that starts from requirements elicitation and adds the use of the CTT (HCI-
based technique) to model user interaction.

The original semantics of CTT are simplified in order to adapt it to the proposed
model-based development approach. As a consequence, the user interface is designed
by taking into account the way in which the user interacts with the system, and a full
final software product can be obtained through the use of Model Transformation
techniques. The practical application of these new ideas is the extension of ONME
(an MDA-based tool that generates a software product corresponding to the source
Conceptual Schema).

Future work will include the application of this approach to new case studies, as
well as the study of sketching techniques, to be used in combination with the defined
task models.

References

[1] Bodart, F., Hennebert, A., Leheureux, J., Provot, I., and Vanderdonckt, J.. (1994) A
Model-Based Approach to Presentation: A Continuum from Task Analysis to Prototype.
In Proceedings of DSV-IS'94, pp. 25-39, Bocca di Magra.

 Towards a Holistic Conceptual Modelling-Based Software Development Process 449

[2] Booch, G. (1993). Object-oriented Analysis and Design with Applications, 2nd ed. Red-
wood City: Benjamin Cummings.

[3] Care Technologies: http://www.care-t.com Last visit: June-2006
[4] Chen, P. P. (1976) The Entity Relationship Model - Toward a Unified View of Data.

ACM Transactions Database Systems, 1 (1), pp. 9-36. 103
[5] da Silva, P. P. (2001) ”User interface declarative models and development environ-

ments: A survey”. Interactive Systems. Design, Specification, and Verification, 8th Inter-
national Workshop, DSV-IS 2001, Glasgow, Scotland, Springer-Verlag Berlin.

[6] da Silva, P. P. d. and N. W. Paton (2003). "User Interface Modelling in UMLi " IEEE
Softw. 20 (4). pp. 62-69

[7] Elwert, T. and Schlungbaum, E. (1995) Modelling and Generation of Graphical User In-
terfaces in the TADEUS Approach. In Designing, Specification and Verification of Inter-
active Systems, pp. 193-208, Vienna, Springer.

[8] España, S., Pederiva, I., Panach, I., Pastor, O. (2006). Integrating Model-Based and Task
Based Approaches to User Interface Generation. 6th Int. Conf on Computer-Aided De-
sign of User Interfaces (CADUI 2006). Springer.pp. 255-262.

[9] Hayes, P., Szekely, P. and Lerner, R. (1985) Design Alternatives for User Interface Man-
agement Systems Based on Experience with COUSIN. Proc. of SIGCHI'85, pp. 169-175.
Addison-Wesley.

[10] Insfrán, E., Pastor, O., Wieringa, R. (2002). Requirements Engineering-Based Concep-
tual Modelling. Requirements Engineering, Vol. 7, Issue 2, p. 61-72. Springer-Verlag.

[11] Janssen, C., A. Weisbecker, et al. (1993). Generating user interfaces from data models
and dialogue net specifications. Proceedings of the SIGCHI conference on Human fac-
tors in computing systems Amsterdam, The Netherlands ACM Press: 418-423

[12] Kim, W. and Foley, J. (1990) DON: User Interface Presentation Design Assistant. In
Proceedings of UIST'90, pp. 10-20. ACM Press.

[13] Limbourg, Q. and J. Vanderdonckt (2004). Addressing the mapping problem in user in-
terface design with UsiXML Proceedings of the 3rd annual conference on Task models
and diagrams Prague, Czech Republic ACM Press: 155-163.

[14] Lonczewski, F. and Schreiber, S. (1996) The FUSE-System: an Integrated User Interface
Desgin Environment. Computer-Aided Design of User Interfaces, pp. 37-56, Namur, Bel-
gium, Namur University Press.

[15] Markopoulos, P., Pycock, J., Wilson, S. and Johnson, P. (1992) Adept - A task based de-
sign environment. Proceedings of the 25th Hawaii International Conference on System
Sciences, pp. 587-596. IEEE Computer Society Press.

[16] Molina P. 2003. User interface specification: from requirements to automatic generation,
, PhD Thesis, DSIC, Universidad Politécnica de Valencia. (in Spanish) .

[17] Montero, F., V. López-Jaquero, et al. (2005). Solving the mapping problem in user inter-
face design by seamless integration in IdealXML. Proc. of DSV-IS'05, Newcastle upon
Tyne, United Kingdom, Springer-Verlag.

[18] Morgan,T. "Business Rules and Information Systems – Aligning IT with Business
Goals", Addison-Wesley, 2002

[19] Mori G., Paternò F., Santoro C. (2002) "CTTE: Support for Developing and Analyzing
Task Models for Interactive System Design" IEEE Trans. on Software Engin.; pp.797-
813

[20] Mori G., Paternò F., Santoro C. (2004) "Design and Development of Multidevice User
Interfaces through Multiple LogicalDescriptions" IEEE Transactions on Software Engi-
neering; pp.507-520

450 S. España et al.

[21] Nunes, N. J. y J. F. e. Cunha (2000). "Wisdom: a software engineering method for small
software development companies." Software, IEEE 17(5): 113-119.

[22] Olive, A. (2005). Conceptual Schema-Centric Development: A Grand Challenge for In-
formation Systems Research. Proceedings of the 16th Conference on Advanced Informa-
tion Systems Engineering, Oscar Pastor, João Falcão e Cunha (Ed.), Lecture Notes in
Computer Science, Springer-Verlag, Porto, Portugal, Lecture Notes in Computer Sci-
ence, Vol. 3520, ISBN 3-540-26095-1.pp. 1-15.

[23] OMG (2003) MDA Guide Version 1.0.1: http://www.omg.org/docs/omg/03-06-01.pdf
Last visit: June-2006

[24] OMG (2003) Unified Modelling Language v1.5: http://www.omg.org/cgi-
bin/doc?formal/03-03-01 Last visit: June-2006.

[25] Pastor, O., J. Gómez, et al. (2001). "The OO-method approach for information systems
Modelling: from object-oriented conceptual Modelling to automated programming." In-
formation Systems 26(7): 507-534.

[26] Paternò, F., C. Mancini, et al. (1997). ConcurTaskTrees: A Diagrammatic Notation for
Specifying Task Models. Proceedings of the IFIP TC13 International Conference on
Human-Computer Interaction, Chapman & Hall, Ltd.: 362-369.

[27] Puerta, A. (1996). The Mecano Project: Comprehensive and Integrated Support for
Model-Based Interface Development. Computer-Aided Design of User Interfaces
CADUI'96 , pp. 19-36, Namur, Belgium, Namur University Press.

[28] Puerta, A. and Maulsby, D. (1997) Management of Interface Design Knowledge with
MODI-D. In Proceedings of IUI'97, pp. 249-252, Orlando, FL, USA.

[29] Szekely, P. (1990) Template-Based Mapping of Application Data to Interactive Displays.
Proceedings of UIST'90, pp. 1-9. ACM Press.

[30] Szekely, P., Sukaviriya, P., Castells, P., Muthukumarasamy, J., and Salcher, E. (1996)
Declarative Interface Models for User Interface Construction Tools: the MASTERMIND
Approach. In Engineering for HCI, pp. 120-150, London, UK, Chapman & Hall.

[31] Vanderdonckt, J., Q. Limbourg, et al. (2004). USIXML: a User Interface Description
Language for Specifying Multimodal User Interfaces. Proceedings of W3C Workshop on
Multimodal Interaction WMI'2004, Sophia Antipolis, Greece.

[32] Yourdon, E. (1994). Object-Oriented Systems Design an Integrated Approach, Yourdon
Press.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 451 – 467, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Multi-perspective Framework for Organizational
Patterns

Enzo Colombo1 and John Mylopoulos2

1 Politecnico di Milano – Dip. Elettr. e Informazione – via Ponzio 34/5, 20133 Milano, Italy
enzo.colombo@polimi.it

2 Dept. of Computer Science, University of Toronto, 40 St. George Street,
Toronto, Canada M5S 2H4
jm@cs.toronto.edu

Abstract. The goal of this paper is twofold. First we present a multi-perspective
framework supporting the description of organizational patterns, supporting the
design of business conversations among organizations within a virtual
enterprise. The framework exploits three different concurrent views: an
intentional view, a strategic view and a process view. Each view addresses a
specific set of concerns of interest to different stakeholders in the system and,
as a consequence, it has its own particular notation, rationale and constraints.
The paper then introduces three patterns that are particularly well-suited for
designing business conversations. One of these is studied in detail and validated
through a non-trivial case study from an Italian industrial district.

Keywords: Requirements modeling, Perceiving and Modeling Social Reality,
Organizational Patterns, Control and Coordination.

1 Introduction

An industrial district consists of a number of enterprises, often small-to-medium, that
are located in the same geographic area and often collaborate through short-term
projects – or, virtual enterprises -- to deliver products and services. Each virtual
enterprise includes one or more business processes through which participating
organizations collaborate. We are interested in the design of such virtual enterprises
and their business processes.

The literature on information systems and workflow management systems has paid
little attention to the impact of the structure of the organization on business process
management. Instead, the emphasis has been on managing the execution of activities in
processes, but not on their control and coordination, other than relating a sequence of
activity executions to a given goal [7]. In the cooperative information systems manifesto
[10], technologies are discussed for agent cooperation acting towards the fulfillment of
shared goals in terms of three complementary facets: systems, group collaboration, and
organizational facets. Flexible systems and change management are emphasized, in
particular with reference to organizational change. However, the organizational facet
focuses on possible changes of goals in the organization and therefore on the
identification and modeling of organizational objectives and on enterprise integration.

452 E. Colombo and J. Mylopoulos

In the workflow literature, the structure of the organization is represented only to
indicate the roles of the agents executing activities. The problem of control in
workflow management systems is studied from the point of view of guaranteeing a
correct sequence of execution of activities. Therefore most research work focuses on
methodologies for modeling workflow processes and on activity scheduling [2].

Recent work on e-services [19, 21] has focused on representing the interfaces of
services provided by different organizations in a cooperative environment in terms of
exchanged messages, data and control dependencies, and e-service state evolution.
Little attention is paid to the problem of designing these interactions according to
patterns of interactions between organizations.

However, modeling and understanding the organizational context within which
cooperative relationships are deployed has been widely recognized as an important
task of the requirements engineering process [14, 23]. This is especially true for
cooperative and adaptive information systems where there is a need to reduce the
effort for building and maintaining cross-application business conversations. [5].
Accordingly, this work presents three organizational styles and provides a multi-
perspective framework to represent these patterns during requirements analysis.

In the remainder of the paper, motivations to this work are presented depending on
pattern-based requirements engineering and coordination theory literature. Next, a
multi-view framework for organizational patterns is presented. Three specific
organizational patterns are presented in Section 4. Then one pattern, i.e. the market
pattern, is studied in-depth through a non-trivial case study. Finally, conclusions are
drawn and future work is discussed.

2 Related Works

Experiences with system design have shown that experts working on a particular
problem tend to capture existing, well-structured solutions reusing best practices for
their needs [12]. In the last decade, many researchers have stressed the importance of
patterns supporting requirements engineering. Patterns are provided at different level
of concerns: they support requirements elicitation, specification, analysis and
validation. For example, a set of late requirements patterns for embedded software
systems have been discussed in [15]. Patterns supporting goal refinement and
operationalization are studied in the KAOS project, in order to support the generation
of formal requirements specifications. [9]. Moreover, recurrent patterns of task,
conversation, physical action and artefact usage have been observed during meetings
among stakeholders aimed at establishing system requirements [17].

This work is concerned with organizational patterns supporting early requirements
analysis and extends work conducted in the Tropos project. The main goal of Tropos
is to provide methods, models and tools supporting the development of multi-agent
information systems. In this context, researchers formalized agent-based software
architectures inspired to organizational styles. These styles are based on two
fundamental control and coordination mechanisms: organizational hierarchies and
markets.

Within organizational hierarchies, actors are organized hierarchically, ranging from
top management at the highest level to operations at the lowest level [22]. Functional

 A Multi-perspective Framework for Organizational Patterns 453

specialization is usually the criterion for specialization and organizational units are
built around the specific set of functional competencies that they develop.
Organizations can also outsource part of their production and related decision-making
activities to other organizations, such as customers, suppliers, consultants or
commercial partners. A relationship between distinct organizations is implemented
through the execution of economic conversations (or transactions), defined as
exchanges of economic goods and services ruled by a price system [22]. Hierarchical
and market coordination and control can mix and generate different organizational
styles depending on the degree of delegation [18]. Organizational styles include
market relationships [22], long-term agreements (e.g., comakership) [20], vertical
quasi-integration [1], relationships based on equity exchange and vertical integration
(hierarchy) [22]. The focus of this paper is on inter-organizational styles and, in
particular, on networks of juridical independent agents such as virtual enterprises. As
a consequence, organizational styles based on equity exchange and on vertical
integration are not considered in this work.

In the Tropos project, organizational styles are specified through strategic
relationships according to the i* social model [3, 23] and recently formalized through
the Formal Tropos language [11]. However, social specifications alone are inadequate
for modeling data and control flows and message exchange typical of business
conversations [5, 6]. Indeed, recently, some attempts have been conducted to embed
business process semantics within i* [14]. However, exceptional flows derived from
goal violations are not considered and parallel tasks are not modeled explicitly.
Moreover, this approach suffers of poor separation of concerns [16] since it is
provided a single specification model that attempts to capture the overall system
requirements. As a consequence, the contribution of this work is to study
organizational patterns according to different views in order to address a specific set
of concerns of interest to different stakeholders in the system.

3 A Multi-perspective Framework for Organizational Patterns

An organizational structure defines the way in which interrelated groups of actors
manage their relationships in terms of control and coordination mechanisms [22].
Typically, organizational structures are specified according to three levels of
abstraction, i.e. strategic, decisional and operative. Each abstraction involves
different stakeholders in the organization and, as a consequence, requires its own
particular notation. In particular a board of directors operates at a strategic level, a
pool of decision makers operates at a decisional level and process analysts model
conversations at an operative level. These actors specify organizational structures
using several specification methods in well-chosen forms. In this section, these
specification methods are grouped into views and the contribution of each view is
singularly discussed.

Intentional View. The intentional view supports reasoning on strategic objectives. A
board of directors operating at a strategic level refines high-level strategies through a set
of key abstractions. These abstractions are intentional elements such as softgoals, goals,
task and resources [3, 23]. Goals represent requirements to be fulfilled (= goal);
softgoals are similar to goal but their fulfillment is not clearly defined (= softgoal).

454 E. Colombo and J. Mylopoulos

A task is a structured sequence of decisions and actions aimed at producing an added
value transformation of inputs into outputs (= task) and, finally, information

resources represent inputs to tasks (= resource).
An intentional diagram shows a set of intentional elements and their logical

relationships: decomposition (), contribution (→) and means-end () links.
Directors define their high-level strategies and then, following a refinement process,
elicit the set of tasks (and the corresponding resources) that should be performed to
achieve their goals (and softgoals).

Social View. The social view concerns with the specification of social dependencies
among organizations. Managers at the decision making level specify social
dependencies through a model of strategic relationships [3, 23] complemented with
the Formal Tropos (FT) language [11].

The strategic relationships model is a graph where each node is represented by an
organization and each link between two actors describes a dependency in terms
of intentional entities. A dependency formalizes an agreement between two
organizations, i.e. a depender and a dependee (depender →⎯ int. entity →⎯
dependee). The type of dependency defines the nature of the agreement.

A goal (or softgoal) dependency represents the delegation of responsibility over the
fulfillment of a goal (or softgoal) from a depender to a dependee. A task dependency
represents the delegation of responsibility over the execution of a task from a
depender to a dependee. With respect to goal (or softgoal), a task dependency is
stronger since the depender also specifies how the task needed to fulfill a goal (or a
softgoal) must be implemented. Finally, a resource dependency represents the need
for an input that must be provided to a depender by a dependee. We note that actors’
boundaries may embed intentional elements from the intentional view if they are
involved in some way in the social relationships.

Formal Tropos (FT) is a linear-time temporal logic modeling actors, intentional
entities and dependencies. It complements the strategic relationships model allowing
the formalization of cardinalities and strategic policies. The formalization of
cardinalities is essential to decide whether an instance of the specification is allowed
or not. On the other hand, policies describe the social behavior of participating
organizations depending on their strategic relationships. For example, FT is used to
model policies implemented when a seller is able to provide more than one offer
satisfying a delegated goal. Moreover, where possible, policies link together instances
of the social model over time. Examples of FT specifications are provided in Sect. 5.

Process View. The process view takes into account some non-functional requirements
such as flexibility, adaptability and controllability of business conversations. Process
analysts at the lower level of our conceptual model describe the process view at
several level of abstraction, each addressing a different concern.

At a highest level, the process view is a business conversation among organizations
in terms of activities and control flows, resource assignments and information flows.
This process model is a particular instance of statechart [13] enriched with (i)
compensation actions derived from [5] and (ii) predicates around the correct
execution of tasks and violation of goals [6]. Accordingly, the model formalizes both
the standard and exceptional behavior of a business conversation where exceptions
are typically triggered by goal violations and compensated at run-time.

 A Multi-perspective Framework for Organizational Patterns 455

Compensation actions are grouped into classes, i.e. delay (e.g. wait for, delay, …),
informative (e.g. notify, urge, …), re-execute (e.g. re-execute, skip,…), re-negotiate
(e.g. relax, tighten, …) and re-transact (e.g. delegate execution,…).

At the lowest level, a specification of business conversation is complemented with
a set of properties satisfied by instances of the model. Moreover, process analysts
document their specification choices through a blueprint discussing rules supporting
the refinement of intentional elements, the management of residual rights of control,
the management of abort and the management of time-outs.

4 Organizational Patterns

In this section we describe three organizational patterns: vertical quasi-integration,
comakership and market. In particular, first we provide a brief theoretical definition
of these patterns as discussed in economic theories on coordination and transaction
costs [1,20,22]. This theoretical introduction is necessary to recall the economic
context within which a pattern can be used. Then, we present each pattern informally
according to the views introduced with our framework.

Notice that our organizational patterns are grounded in data from the literature and
large-scale case studies. Indeed, within the VISPO project [24], we conducted an in-
depth analysis of the supply chain of a large Italian district. More precisely, within
VISPO, our main goal was to study districts in order to design a service-oriented
architecture supporting cooperation among organizations operating along the same
value chain [5].

In this context, our interviews with managers empirically confirmed the existence
of a continuum of different economic relationships between market and hierarchies as
theorized by economic literature. In particular, within the district, we identified a
complex network of spot relationships typical of a market system and few
relationships of comakership and vertical quasi-integration. Since we note that a
social model alone was not sufficient to formalize these cooperative interactions, at
this stage we developed our multi-perspective framework in order to overcome this
limitation and represent economic relationships unambiguously. We observe that our
formalization the cooperative relationships among organizations is focused on aspects
relevant for information system designers, i.e. the degree of control - either supervised
or distributed - and the coordination policy in terms of flexibility and adaptability of
the relationship (see Section 6).

As a second step, we used our multi-perspective framework to formalize other
cases from the literature. Examples are the strategic comakership of boilers analyzed
in [20] and the vertical quasi-integration between Marks & Spencer and William
Baird cited in [1]. As a result we obtained schemas similar (from a structural
perspective) to those formalized using data from the VISPO project. Accordingly, we
abstracted these instances into the organizational patterns presented informally in the
following subsections.

Finally, notice that further empirical application of our patterns have confirmed our
findings but they have also highlighted some deviations from the three initial version
of market, comakership and vertical quasi-integration. For example, a market pattern

456 E. Colombo and J. Mylopoulos

allows deviations in its process view since the renegotiation of price as a consequence
of a failure is sometimes not enabled.

In conclusion, in Section 5 we present and formalize in detail the market pattern
according our multi-perspective framework showing how this pattern can be
abstracted from one of the several case studies considered in our research. Notice that
due to lack of space, in this paper, vertical quasi-integration and comakership are not
presented formally. However, a longer version of the present paper with the
formalization of the three patterns is provided in a technical report and available on
line for an in-depth exam [8]. Moreover, a detailed discussion of the possible
deviations from our three patterns is presented in [4, 7].

4.1 Vertical Quasi-integration

Theoretical definition. By cooperating according to a vertical quasi-integration,
organizations can benefit the advantages of hierarchical coordination without dealing
with the typical risks of ownership [1, pp. 253]. Vertical quasi-integration is an
organizational structure that embeds operating relationships typical of ownership and
preserves juridical independence among cooperating actors.

Organizations are vertical quasi-integrated when they coordinate each other
through strategic dependencies negotiated within an environment where decisional
power is not symmetrically distributed among the cooperating counterparts [1].
Accordingly, in a vertical quasi-integration, a seller strongly depends from an
enterprise-wide organization and it is typical required to comply with well-defined
assets. Sellers are therefore unable to organize cooperation with more potential buyers
because of site, physical, human and time asset specificity [18].

Intentional description. Typically, a vertical quasi-integration between a buyer and
a seller is implemented when the procurement of a product/service represent a
strategic activity for the buyer company. This is the case when the frequency of
interactions among the counterparts is high, when specific assets (i.e., either site
specificity, physical asset specificity, human asset specificity, or time asset
specificity) are required to supply the product/service [18] and when the environment
is uncertain [22].

Social description. In order to minimize interaction costs, the buyer controls seller’s
production at run-time thus reducing the period required to compensate failures. This
means that the buyer company supervises the seller’s primary activities while
delegating the management of supporting activities (i.e., management of finance &
administration, human resources, technological assets,…) [7]. In exchange, the buyer
guarantees to the seller the saturation of its production capacity. On the other hand,
the seller is delegated the responsibility of providing products/services which comply
with buyer’s strategic goals.

Process description. With respect to the traditional phases of a conversation (i.e.,
matchmaking, negotiation, execution and post-settlement) [22], in a vertical quasi-
integration, interactions are organized into the execution and post-settlement phases
only [5, 6]. This behavior is quite intuitive since here we are discussing a long-term
cooperating relationship where a seller supplies a complex and strategic product.
Accordingly, the buyer does not need an automatic mechanism to support discovery

 A Multi-perspective Framework for Organizational Patterns 457

and negotiation since cooperation is planned and negotiated “face-to-face” when
requirements on either physical and technological assets or service characteristics are
specified. When an agreement is reached and required assets are deployed, discovery
and negotiation are no more executed. Finally, notice that in a vertical quasi-
integration, conversations are not isolated from each other1. On the contrary, as we
see in Section 5, in a market, the commitment of a conversation does not depend on
the previous interaction with the same supplier.

In conclusion, from a process perspective, in a vertical quasi-integration control is
totally retained by the buyer (i.e., supervised control), a re-execution of production
can be required if the product do not comply with the agreement (i.e., medium level
of self-repair) and the product is always provided by the same seller (i.e., low level of
adaptability to change in the environment).

4.2 Comakership

Theoretical definition. Coordination of dissimilar activities cannot be effectively
managed according to a vertical quasi-integration (or through market mechanisms, see
Section 5). Therefore, when cooperating organizations need to coordinate dissimilar
but complementary activities, direct supervision is overcome by a more dynamic
mechanism of mutual adjustment known as comakership [20]. A comakership is an
organizational style grounded on a strong peer-to-peer cooperation among business
partners and provides an effective solution to the problem of coordinating dissimilar
activities.

Intentional description. The implementation of a comakership is based on the
adoption of a policy of continuous improvement, on the reduction of process lead-
time and on trust. Continuous improvement is achieved performing vendor rating,
requiring information around the performance of the process, sharing knowledge
(know-how) with the seller and requiring a continuous improvement of the product
and the overall process [20]. Lead-time is reduced through a stricter integration with
the business partner and implementing weekly orders on the basis of current needs.

Strategic description. From a strategic perspective, the buyer delegates to the seller
the improvement of product quality and the downsizing of prices in order to pursue a
continuous improvement of key performance indicators over time. The seller
downsizes price improving the production process with a policy of continuous
investments over time. These investments are counterbalanced by a redefinition of
strategic goals with the buyer when better performance have been obtained [20].
Moreover, the improvement of product quality is achieved through the traditional
quality control activities.

Process description. In a comakership, interactions are organized into execution and
post-settlement as well as vertical quasi-integration. However, comakership is based
on trust and, as a consequence, embeds a weaker control over the seller. Accordingly,
this coordination paradigm focuses on communicating the fulfillment of goals as
opposite to the communication of violations typical of market and vertical quasi-
integration. Execution involves three parallel standard flows: an integrated operative

1 We use the term isolation to indicate that the achievement of goals in one conversation

depend on the achievement of goals in another conversation.

458 E. Colombo and J. Mylopoulos

flow, a vendor rating flow and a flow of activities aimed at updating prices according
to market trends. The integrated operative flow begins when the buyer sends a
daily/weekly order to the seller. Moreover, at the end of production process,
improvements around quality of production and price downsizing are notified to the
buyer. Then, a quality control task (performed by the seller) receives the product and
checks its compliance with the requirements specified by the buyer. If violations
occur, the seller re-executes the overall production tasks. We note that, according to
this pattern, the buyer is not aware of violations since control is performed by the
seller. Finally, since the buyer adopts a free-pass policy, the final product is delivered
directly to the seller assembly line without any other control.

In conclusion, from a process perspective, control is distributed (i.e., the seller
controls the compliance with the agreement and the buyer controls the fulfillment of
high-level business goals) but participative (i.e., pre-defined and agreed by the
cooperating actors), production can be re-executed (i.e., medium level of flexibility)
and strategic goals are refined over time by the cooperating partners (i.e., good level
of adaptability to changes in the environment).

4.3 Market Pattern

Theoretical definition. A market conversation is defined as the exchange of
economic goods and services ruled by a price system [22]. In a market system, a
buyer aims at discovering a commodity minimizing its price. Coordination among
cooperating actors is spontaneous and not planned beforehand [18]. In particular a
market system is adopted when the frequency of conversation is low, when there is no
need to deploy specific assets, when the environment is not uncertain and when the
commodity is a complementary but dissimilar good for the seller (i.e., it is cheaper to
outsource production than implementing its internalization).

This pattern is studied in detail and validated through a non-trivial case study in the
next section.

5 Case Study

Poly Coo. Poly Coo is an organization producing polyurethane (a material derived
from oil) with revenues about 4.5 mil/euro per year. When Poly Coo receives an
order, it schedules production and notifies the customer whether the order can be
supplied or not according to lead-time requirements. Moreover, in order to improve
quality of service (QoS), Poly Coo implemented a customized information system to
monitor production and obtained the ISO9002 certification. Each lot of polyurethane
is therefore provided with a technical document certifying the quality of the product
with respect to a set of quality parameters (e.g., granularity). This production process
is organized as follows. Orders of polyurethane are received and automatically
scheduled according to lead-time requirements. According to the production plan,
pieces of raw polyurethane are cut either manually or with a semi-automatic machine.
The polyurethane is shaped with a numerically controlled machine and glued
together. Final quality control is performed according to ISO9002 norms.

 A Multi-perspective Framework for Organizational Patterns 459

Before performing an order, Poly Coo negotiates an agreement with its potential
buyer (i.e., Sofa Coo). Negotiation on price is based on polyurethane parameters such
as granularity, pressure, inflammability, toxicity and resistance to traction. Moreover
also lead-time requirements and ordered quantities impact on the price of
polyurethane proposed to the buyer.

Sofa Coo. Sofa Coo is part of the Comfort Group S.p.A., one of the primary
organizations producing sofas worldwide. The Comfort Group exports around 92% of
its production, supplying 3500 customers located in 137 countries. The success of
Comfort is a consequence of a well-defined strategic plan focused on high QoS,
minimization of production costs, wide variety of sofa models and a particular
attention to international markets.

The quality of polyurethane needed by Sofa Coo varies according to the model of
sofas. Medium quality polyurethane (e.g., medium granularity) is used to stuff cheap
sofas for the U.S.A. market. On the contrary, high quality polyurethane is used for the
European market. During procurement, Sofa Coo gathers offers submitted by multiple
potential sellers (one is Poly Coo) that should comply with polyurethane
requirements. Selection is finally ruled by the better price and the seller is committed
with Sofa Coo to comply with the signed agreement. Moreover, Sofa Coo does not
adopt a free-pass policy and it controls polyurethane samples for each supply. If
polyurethane does not comply with the agreement, Sofa Coo is authorized either to
require a new lot of polyurethane or to re-negotiate the agreement. Re-negotiation
(within predefined intervals) is allowed since this polyurethane could be used to stuff
sofas for the USA market anyway. Payment is therefore performed either if control
activities do not show violations or if violations are successfully compensated.

5.1 Intentional View

Figure 1.(a) shows the intentional model associated with the delegated buy
polyurethane on the market softgoal. In order to fulfill this softgoal, it is necessary to
procure polyurethane at the better price and satisfy customers. The former is
achieved by Sofa Coo discovering polyurethane producers, evaluating offers of

Fig. 1. (a) –Intentional reasoning of Sofa Coo
in a market system

Fig. 1. (b) – Intentional view of a market
pattern

460 E. Colombo and J. Mylopoulos

polyurethane suppliers to obtain the better price and managing polyurethane
purchases. The latter is fulfilled either trusting the supplier or controlling the
polyurethane lot before production. Figure 1.(b) shows the intentional view of a
market pattern derived from the Sofa Coo – Poly Coo scenario.

5.2 Social View

Figure 2 shows the strategic relationships between Sofa Coo and Poly Coo within a
market system. Part of the intentional view in Figure 1.(a) is reported into Sofa Coo’s
boundaries. In particular, the task discover polyurethane producers requires from
Poly Coo an offer complying with polyurethane requirements. We note that offers are
generated in order to fulfill Poly Coo’s marketing policies and comply with
polyurethane requirements. Moreover, the manage polyurethane purchases task
provides the final order to the polyurethane production & delivery task according to
the agreement.

The polyurethane production & delivery task produces polyurethane in order to
comply with the current agreement on polyurethane supply. The agreement between
Poly Coo and Sofa Coo is therefore used to set the assembly line performing
polyurethane production. Besides, the execution of the polyurethane production &
delivery task over time with different buyers allows Poly Coo to improve its
production process thus contributing positively to the fulfillment of the repeat on
multiple buyers softgoal. Finally, the manage polyurethane input control task receives
ISO9002-compliant certifications together with the polyurethane supply and performs
source inspections.

Figure 3 shows the social view derived from the example of market relationship
between Sofa Coo and Poly Coo. This view specifies an actor playing the role of

Fig. 2. Market relationship between Sofa Coo and Poly Coo

 A Multi-perspective Framework for Organizational Patterns 461

Fig. 3. Social view of a market pattern (roles and intentional elements are the parameters of this
pattern)

buyer and one playing the role of seller. Moreover, the social view models an
abstraction of the vertical cooperating relationships between Poly Coo and Sofa Coo
obtained by generalizing the example from actors to roles and from domain dependent
to domain-independent intentional elements.

Moreover, in the following, examples of structural properties constraining the
representation of Figure 3 are specified with Formal Tropos (FT) [11]. The FT outer-
layer of a market pattern is provided in [7]. These structural properties impose
constraints on the instantiation of a pattern.

Each instance of the market relationship pattern includes exactly one Buyer actor
∃b: Buyer (b) ∧ ∀ b1, b2: Buyer (b1=b2);

Multiple instances of both the “Requirements” and the “Offer & Profile” resource (different
instances have a different identification).
∀ re1, re2: Requirements (re1≠re2 ↔ re1.id ≠ re2.id)
∀ op1, op2: Offer&Profile (op1≠op2 ↔ op1.id ≠ op2.id)

The “Production & Delivery” task performed by a seller and the “Manage Purchases” task
performed by the buyer share the same agreement
∀ mp: ManagePurchases, p: Production&Delivery (mp.agm=p.agm)

If more then one offer fulfills the softgoal “Comply with Requirements”, the offer associated
with the lower price is selected thus satisfying the “Negotiate Better Price” goal .
∀ b: Buyer, s1, s2: Seller, cr1, cr2: ComplyWithRequirements, nbp: NegotiateBetterPrice,
op1, op2: Offer&Profile, or: Order
(Fulfilled(cr1) ∧ Fulfilled(cr2) ∧ (cr1.dependee = s1) ∧ (cr2.dependee = s2) ∧ (cr1.depender =
b) ∧ (cr2.depender = b) ∧ (op1.dependee = s1) ∧ (op2.dependee = s2) ∧ (nbp.betterprice =
op1.price) ∧ (nbp.betterprice < op2.price) → (or.depender = s1) ∧ (or.pspec = op.pspec) ∧
(or.price = op1.price) ∧ Fulfilled(nbp))

462 E. Colombo and J. Mylopoulos

If a seller can supply two different “Offer & Profile” that “Comply with Requirements”, the
alternative satisfying the “Fulfill Marketing Policies” softgoal is submitted to the buyer.
∀ s: Seller, cr1, cr2:ComplyWithRequirements, fmp1, fmp2:FulfillMarketingPolicies,
op: Offer&Profile
((Fulfilled(cr1) ∧ Fulfilled(cr2) ∧ Fulfilled(fmp1) ∧ (¬Fulfilled(fmp2)) ∧ (fmp1.pspec ≠
fmp2.pspec) ∧ (cr1.dependee = fmp1.actor) ∧ (cr2.dependee = fmp2.actor) ∧ (fmp1.actor=s) ∧
(fmp2.actor=s) → (op.pspec = fmp1.pspec))

5.3 Process View

Figure 4 shows the standard and exceptional flows of activities between Sofa Coo and
Poly Coo. In particular interactions are organized according to the classical
matchmaking, negotiation, execution and post-settlement phases of a market
conversation [5]. Figure 4 shows how Sofa Coo discovers two potential suppliers on
the market (i.e., Poly Coo and Argo) and sends them polyurethane requirements. If
the counterparts correctly receive polyurethane requirements, the negotiation process
is started. Accordingly, the transition between Matchmaking (MM) and Negotiation
(NEG) is triggered through the following ECA rule.

End(MM)[Received([1,7]days, Sofa Coo, Poly Coo, “Polyur. Requirements”) ∧
Received([1,7]days, Sofa Coo, Argo, “Polyur. Requirements”)]|ξ

The potential sellers generate offers in parallel. If Sofa Coo receives at least an offer,
a comparative evaluation is performed and finally, in our scenario, Poly Coo is
selected as the final polyurethane supplier. Note that if at the end of the evaluate
offers of polyurethane task (EOP), offers do not comply with polyurethane
requirements, new offers are required, thus implementing the typical bargaining
interaction of mutual adjustment of negotiation. The transition that implements this
bargaining process is labeled as follows:

End(EOP)[¬Achieved(Poly Coo, “Comply with Polyurethane Requirements”) ∧
¬Achieved(Argo, “Comply with Polyurethane Requirements”)]|ξ

The negotiation process is typically time-bounded on 7 days, thus this value is
specified as the maximum residence time of negotiation. Once the agreement between
Poly Coo and Sofa Coo is reached, control is transferred to Sofa Coo’s Purchase
Office that formalizes the polyurethane order and then handles all supporting
activities needed to terminate the purchase process. In the meantime, Poly Coo
schedules, produces and delivers the polyurethane to Sofa Coo. If the polyurethane
order is not received by the process polyurethane order task (PPO) within 30 days
from the agreement, Poly Coo first waits for 3 days from the deadline, then urges the
submission of an order.

Begin(PPO)[¬Received([1,30]days, Poly Coo, Sofa Coo, “Polyurethane Order”)]|
Sequence(Wait-for([1,3]days “Polyurethane Order”);
Urge([1,3]days, Sofa Coo, Polyurethane Order”)

If Sofa Coo does not acknowledge the request, the market conversation reaches a
pending state that requires a manual compensation. Finally, source inspections and
then payment are performed. In particular, source inspections need some information
from Poly Coo about the lot of polyurethane supplied. If this information is not
provided and the urge compensation fails, the transition towards the pending state is

 A Multi-perspective Framework for Organizational Patterns 463

triggered. Moreover if source inspections on polyurethane discover a violation of the
agreement, Sofa Coo requires Poly Coo to relax the price of the supply.

Note that the use of history here is critical to model a correct behavior. If the
counterparts agree on reducing the price of polyurethane, the business conversation
must evolve into the payment state. By marking both execution and post-settlement
with history, this behavior is easily modeled since the automaton enters the execution
state and immediately leaves it since history points to the final sub-state within
execution. Leaving execution, the automaton enters post-settlement but since the
manage polyurethane control state has been already visited, history points to the
payment state as expected. On the other hand, marking post-settlement with history
could generate a wrong behavior since, after the re-execution of polyurethane
production & delivery, the automaton skips quality control. The effect is that Sofa
Coo receives the second lot, does not perform source inspections and pays the full
price. This behavior is corrected by specifying a reset_history action together with the
re-execution from component production as follows (see also Figure 4).

End(NEG)
[(¬Achieved(Poly Coo, “Comply with the Current Agreement on Supply”))
∧ Done(Relax([1,3]days, Poly Coo, Current Agreement)]|
Re-execute<-, Poly Coo, Polyur. Production & Delivery> ∧ Reset_history(p-s)

Finally, if the re-execution from polyurethane production and delivery fails, the
business conversation reaches the pending state.

Figure 5 shows the process view of a market pattern as a generalization of the
exemplification in Figure 4. Note how the use of universal and existential quantifiers
within ECA (Event-Condition-Action) rules allows the substitution of a specific actor
(i.e., Poly Coo) with a general token belonging to a set modeling a role (s∈Seller).
Moreover, the following rules typical of a market system complement the process
view shown in Figure 5.

− Refinement. Tasks cannot be refined since the market pattern already provides
the maximum view on internal business processes (i.e., black-box view). Goals,
softgoals and resources can be instead refined further. Moreover, the
requirements resource can embed information around price, product quality,
delivery time, reliability of delivery and product specification.

− Management of residual rights of control (on pending). When a market
conversation reaches a pending state, the actor forcing pending has the
responsibility to take control of the conversation and execute a recovery
procedure.

− Management of abort. When a market conversation reaches an abort state, each
actor has the responsibility for its recovery actions.

− Management of time-outs.
A time-out violation during negotiation brings the whole transaction into abort.
∃t ((t>time-out) ∧ (lq =<NEG, time-out, ->) → lq+1 = <abort, null, null>))
A time-out violation during matchmaking brings the whole transaction into abort.
∃t ((t > time-out) ∧ (lq =<MM, time-out, ->) → lq+1 = <abort, null, null>))

464 E. Colombo and J. Mylopoulos

EX

MM

(NEG, 1 week)

OPM

Discover
Polyur. Prod

(DPS, 1 week)

Eval. Offers
of Polyur.

(EOP)

{Buyer}

{Sofaland}

Polyur. Prod.
& Delivery

(PPD)

{Sofaland}

Process
Polyur. Orders

(PPO)

{Beca}

Process
Polyur. Orders

(PPO)

{Argo}

End(OPM)
[Received(-, Beca, Sofaland,
“Offer & Beca’s Profile”))]|ξ

P-S

Manage Invoices
& Customer Service

(MICS)

{Sofaland}

End(MM)
[Received([1,7]days,Beca, “Polyur.Requirements”)∧
Received([1,7]day,Argo, Polyur.Requirements”)]|ξ

ABORT

End(EOP)
[¬Achieved(Beca, “Comply with
Polyurethane Requirements”) ∧
¬Achieved(Beca, “Comply with
Polyurethane Requirements”)]|ξ

Manage Polyur.
Purchases

(MPP)

{Beca}

Begin(PD)
[¬Received([[1,30]days, Beca, Sofaland, “Polyurethane
Order”)]| Sequence(Wait-for([1,3]days “Polyurethane
Order”); Urge([1,3]days, Sofaland, Polyurethane Order”)

COMMIT

Manage Invoices
& Customer Service

(MICS)

{Beca}

{Buyer}

Manage Input
Control
(MIC)

PENDING

Begin(PO)
[¬Fulfilled(Sequence(Wait-for([1,3]days “Polyurethane
Order”); Urge([1,3]days, Sofaland, Polyurethane Order”)))]|ξ

End(NEG)
[(¬Achieved(Beca, “Comply with the Current Agreement on Supply”))
∧ Done(Relax([1,3]days, Beca, Current Agreement)]|
Re-execute<-, Beca, Polyur. Production & Delivery> ∧ Reset_history(p-s)
∨
End(NEG)
[Achieved(Beca, “Comply with Polyur. Requirement”))]|ξ

End(MIC)
[(¬Achieved(Beca, “Comply with the Current Agreement on Supply”))]| Relax([1,3]days, Beca, “Current Agreement”)

H

Begin(MICS)
[Received(null, Sofaland,
“Payment Info”]|ξ

Begin(MICS)
[Received(-, Beca,
“Payment Info”]|ξ

HBegin(MIC)
[¬Received(-, Beca,
Sofaland, “ISO90002
certifications]|
Urge([1,3]days, Sofaland,
Polyurethane Order”

Begin(MIC)
[¬Fulfilled(Urge([1,3]days,
Sofaland, Polyurethane Order”)]|ξ
∨
End(NEG)
[¬Fulfilled(Re-execute<-, Beca,
Polyur. Production & Delivery>)]|ξ

End(PPD)|ξ ∧
End(MPP)|ξ

End(<MICS, Beca>)|ξ ∨
End(<MICS, Sofaland>)[]|ξ

BEGIN

End(OPM)
[¬Received([1,7]days, Beca, Sofaland, “offer&becaprofile”) ∧
¬Received([1,7]days, Argo, Sofaland, “offer&argoprofile”)]
Wait-for([1,7]days “Offer & Profile”)

End(OPM)
[¬Fulfilled(Wait-for([1,7]days “Offer &
Profile”))]|ξ

Process
Polyur. Orders

(PPO)

{Beca}

EX

MM

(NEG, 1 week)

OPM

Discover
Polyur. Prod

(DPS, 1 week)

Eval. Offers
of Polyur.

(EOP)

{Buyer}

{Sofaland}

Polyur. Prod.
& Delivery

(PPD)

{Sofaland}

Process
Polyur. Orders

(PPO)

{Beca}

Process
Polyur. Orders

(PPO)

{Argo}

End(OPM)
[Received(-, Beca, Sofaland,
“Offer & Beca’s Profile”))]|ξ

P-S

Manage Invoices
& Customer Service

(MICS)

{Sofaland}

End(MM)
[Received([1,7]days,Beca, “Polyur.Requirements”)∧
Received([1,7]day,Argo, Polyur.Requirements”)]|ξ

ABORT

End(EOP)
[¬Achieved(Beca, “Comply with
Polyurethane Requirements”) ∧
¬Achieved(Beca, “Comply with
Polyurethane Requirements”)]|ξ

Manage Polyur.
Purchases

(MPP)

{Beca}

Begin(PD)
[¬Received([[1,30]days, Beca, Sofaland, “Polyurethane
Order”)]| Sequence(Wait-for([1,3]days “Polyurethane
Order”); Urge([1,3]days, Sofaland, Polyurethane Order”)

COMMIT

Manage Invoices
& Customer Service

(MICS)

{Beca}

{Buyer}

Manage Input
Control
(MIC)

PENDING

Begin(PO)
[¬Fulfilled(Sequence(Wait-for([1,3]days “Polyurethane
Order”); Urge([1,3]days, Sofaland, Polyurethane Order”)))]|ξ

End(NEG)
[(¬Achieved(Beca, “Comply with the Current Agreement on Supply”))
∧ Done(Relax([1,3]days, Beca, Current Agreement)]|
Re-execute<-, Beca, Polyur. Production & Delivery> ∧ Reset_history(p-s)
∨
End(NEG)
[Achieved(Beca, “Comply with Polyur. Requirement”))]|ξ

End(MIC)
[(¬Achieved(Beca, “Comply with the Current Agreement on Supply”))]| Relax([1,3]days, Beca, “Current Agreement”)

H

Begin(MICS)
[Received(null, Sofaland,
“Payment Info”]|ξ

Begin(MICS)
[Received(-, Beca,
“Payment Info”]|ξ

HBegin(MIC)
[¬Received(-, Beca,
Sofaland, “ISO90002
certifications]|
Urge([1,3]days, Sofaland,
Polyurethane Order”

Begin(MIC)
[¬Fulfilled(Urge([1,3]days,
Sofaland, Polyurethane Order”)]|ξ
∨
End(NEG)
[¬Fulfilled(Re-execute<-, Beca,
Polyur. Production & Delivery>)]|ξ

End(PPD)|ξ ∧
End(MPP)|ξ

End(<MICS, Beca>)|ξ ∨
End(<MICS, Sofaland>)[]|ξ

BEGIN

End(OPM)
[¬Received([1,7]days, Beca, Sofaland, “offer&becaprofile”) ∧
¬Received([1,7]days, Argo, Sofaland, “offer&argoprofile”)]
Wait-for([1,7]days “Offer & Profile”)

End(OPM)
[¬Fulfilled(Wait-for([1,7]days “Offer &
Profile”))]|ξ

Process
Polyur. Orders

(PPO)

{Beca}

Fig. 4. Specification of standard and exceptional activity flows between Sofa Coo and Poly Coo

An example of properties satisfied by the process view in Figure 5 is presented in the
following. Properties are formalized according to a notation that complies with FT
and the process view provided in Section 3. Let s be an actor and g a goal in the
social model, the following equivalence maps a goal condition of a process view into
a FT formula:

Achieved(s, g) ≡def (g.actor= s) ∧ Fulfilled(g)

The “Comply with the Agreement” softgoal can be satisfied if the “Comply with Requirements”
softgoal has been satisfied in the past.
∀ s: Seller, ca:ComplyWithTheAgreement, cr: ComplyWithRequirements
((ca.actor=s) ∧ Fulfilled(ca)) → ((cr.actor=s) ∧ O(Fulfilled(cr))

Only the actor receiving the “Order” performs “Production & Delivery” and “Manage
Invoices & Customer Services” tasks
∀ s: Seller, pd: Production&Delivery, mics: ManageInvoices&CustomerService, o: Order
((pd.actor=s) ∧ (mics.actor=s) ∧ Received(-, s, o) ↔ Done(pd) ∧ Done(mics))

The “Manage Purchases” task and the “Production” task are executed in parallel
∀ mp: ManagePurchases, p: Production&Delivery And(mp, pd)

A market transaction is always correct, i.e. each run terminates within either an abort or a
commit or a pending state.
Let n be the number of transition needed to reach the final state qn and τ our transition function,
correctness is formalized as following.

 A Multi-perspective Framework for Organizational Patterns 465

[(τ (begin, -, -)=MM) ↔ ∃ qn-1: Q ,qn: F ((τ(qn-1, ln-1, -)=<qn, ln>) ∧
((ln= <commit, null, null>) ∨ (ln = <pending, null, null>) ∨ (ln= <abort, null, null>)))]

The partial satisfaction of all delegated goals is required to commit the business transaction.
∃qn∈F (ln = <commit, null, null> →
[∃s:Seller, cr: ca:ComplyWithTheAgreement, cr: ComplyWithRequirements
((cr.actor=s) ∧ Fulfilled(cr)) ∧ (((ca.actor=s) ∧ Fulfilled(ca)) ∨ Fulfilled(Re-negotiate(s, ca))]

EX

MM

(NEG, TIME-OUT)

OPM

Discovery
(DS, TIME-OUT)

Evaluate
Offers
(EO)

{Buyer}

{Buyer}

Production
& Delivery

(PD)

{Buyer}

{Buyer}

Process
Orders
(PO)

{Seller 1}

Process
Orders

(PO)

{Seller k}

End(OPM)
[∃s∈Seller(Received(null, s, Buyer,
“Offer and Profile”))]|ξ

P-S

Manage Invoices
& Customer Service

(MICS)

{Buyer}

End(MM)[∀s∈Seller
(Received(time-out, s,
“Requirements”))]|ξ

ABORT

End(EO)
[¬∃s∈Seller(Achieved(s,
“Comply with Requirements”)]|ξ

Manage
Purchases

(MP)

{s}

Begin(PD)
[¬Received(null,Buyer, s, “Order”)]|
(delay • informative)

COMMIT

Manage Invoices
& Customer Service

(MICS)

{s}

{Buyer}

Manage Input
Control
(MIC)

PENDING

Begin(PD)
[¬Fulfilled(delay • informative)]|ξ

End(NEG)
[(¬Achieved(s, “Comply with the Agreement”))
∧ Done(Re-negotiate)]|Re-execute ∧ Reset_history(p-s)
∨
End(NEG)
[∃s∈Seller(Achieved(s, “Comply with Requirement”))]|ξ

End(MIC)
[(¬Achieved(s, “Comply with the Agreement”))]|Re-negotiate

H

Begin(MICS)
[Received(null, s, Buyer,
“Payment Info”]|ξ

Begin(MICS)
[Received(null, Buyer, s,
“Payment Info”]|ξ

H

Begin(MIC)
[¬Received(null, s, Buyer
“Commodity Information”]|
(delay • informative)

Begin(MIC)
[¬Fulfilled(delay • informative)]|ξ
∨
End(NEG)
[¬Fulfilled(re-execution)]|ξ

End(PD)[]|ξ ∧
End(MP)[]|ξ

End(<MICS, s>)[]|ξ ∨
End(<MICS, Buyer>)[]|ξ

BEGIN

End(OPM)
[¬∃s∈Seller(Received(null, s, Buyer,
“Offer and Profile”)])|(delay • informative)

End(OPM)
[¬Fulfilled(delay • informative)]|ξ

Process
Orders
(PO)

{s}

EX

MM

(NEG, TIME-OUT)

OPM

Discovery
(DS, TIME-OUT)

Evaluate
Offers
(EO)

{Buyer}

{Buyer}

Production
& Delivery

(PD)

{Buyer}

{Buyer}

Process
Orders
(PO)

{Seller 1}

Process
Orders

(PO)

{Seller k}

End(OPM)
[∃s∈Seller(Received(null, s, Buyer,
“Offer and Profile”))]|ξ

P-S

Manage Invoices
& Customer Service

(MICS)

{Buyer}

End(MM)[∀s∈Seller
(Received(time-out, s,
“Requirements”))]|ξ

ABORT

End(EO)
[¬∃s∈Seller(Achieved(s,
“Comply with Requirements”)]|ξ

Manage
Purchases

(MP)

{s}

Begin(PD)
[¬Received(null,Buyer, s, “Order”)]|
(delay • informative)

COMMIT

Manage Invoices
& Customer Service

(MICS)

{s}

{Buyer}

Manage Input
Control
(MIC)

PENDING

Begin(PD)
[¬Fulfilled(delay • informative)]|ξ

End(NEG)
[(¬Achieved(s, “Comply with the Agreement”))
∧ Done(Re-negotiate)]|Re-execute ∧ Reset_history(p-s)
∨
End(NEG)
[∃s∈Seller(Achieved(s, “Comply with Requirement”))]|ξ

End(MIC)
[(¬Achieved(s, “Comply with the Agreement”))]|Re-negotiate

H

Begin(MICS)
[Received(null, s, Buyer,
“Payment Info”]|ξ

Begin(MICS)
[Received(null, Buyer, s,
“Payment Info”]|ξ

H

Begin(MIC)
[¬Received(null, s, Buyer
“Commodity Information”]|
(delay • informative)

Begin(MIC)
[¬Fulfilled(delay • informative)]|ξ
∨
End(NEG)
[¬Fulfilled(re-execution)]|ξ

End(PD)[]|ξ ∧
End(MP)[]|ξ

End(<MICS, s>)[]|ξ ∨
End(<MICS, Buyer>)[]|ξ

BEGIN

End(OPM)
[¬∃s∈Seller(Received(null, s, Buyer,
“Offer and Profile”)])|(delay • informative)

End(OPM)
[¬Fulfilled(delay • informative)]|ξ

Process
Orders
(PO)

{s}

Fig. 5. Process view of a market pattern (state and transition labels are parameters of this
pattern)

In conclusion, from a process perspective, control is distributed but decentralized
(i.e., control policies are not agreed among the counterparts typically of spontaneous
coordination), the agreement can be re-negotiated (i.e., high level of flexibility) and
for each conversation the buyer looks for the partners that fits better its requirements
(i.e., high-level of adaptability to changes in the environment).

6 Conclusion

We believe that the introduction of cooperation patterns according to a multi-
perspective framework is the first step towards improving the quality of cross-
organizational conversations and overcoming the limits of traditional intra-organi-
zational workflow design. Accordingly, this paper presents three patterns for designing

466 E. Colombo and J. Mylopoulos

virtual enterprises. Each pattern has been informally discussed in terms of three
complementary views: an intentional view, a strategic view and a process view.
Moreover, these views highlight that patterns differs from each other in terms of
control2 and coordination mechanisms3 [6]. Table 1 summarizes the main features of
our three patterns in a way understandable by an IS designer. Finally, we have also
presented a detailed study on the application of a market pattern in a non-trivial case
study. The application of the comakership and vertical quasi-integration pattern is
provided in [7, 8].

Table 1. Organizational patterns at a glance

Pattern Control Coordination
 Flexibility Adaptability
Vertical
q.integration

Supervised Supports the re-execution of business
services.

The initial supplier of
the business service
cannot be changed.

Comakership Distributed
but
participative

a) Supports the re-execution of
business services.
b) The fulfillment of shared strategic
business goals is periodically
communicated to the buyer.

The strategic goals can
be refined over time

Market Distributed
but
decentralized

Supports the re-negotiation of the
agreement when a business goal is not
fulfilled.

Select on the market the
business partner that fits
better the requirements

In conclusion, the present work can provide a formal basis for orchestrating
e-applications involving several organizations, providing a coordination and control
infrastructure consistent with cross-organizational structures. Future research
directions include the study of additional views supporting architectural design for
virtual enterprises. In particular, we are currently formalizing a component view that
discusses how a business conversation is described as composition of multiple e-
services. Moreover, a deployment view is under development, focusing on the service-
oriented infrastructure necessary to support control and coordination according to
different organizational styles. Finally, a pattern factory supporting pattern
identification, documentation, choice and composition will be developed in order to
support modelers during the requirement engineering process.

2 control concerns both the level of visibility on a private business processes and the

localization of control activities. In particular, supervised control is characterized by the
centralization of control over cooperating activities. On the other hand, participative control
is a typical peer-to-peer communication where all economic actors first define the control
policies of the whole cooperation process. Finally, decentralized control means that
specialized economic actors decide the control policy for their part of the global process.

3 coordination concerns with the level of flexibility and adaptability of the cooperative
relationship. In particular, flexibility refers to the run-time management of service self-repair
intended to bring a business conversation in a consistent state at the lowest cost. Adaptability
is instead concerned with modifications of the standard and exceptional behaviour of a
composite process depending on the environment within which the composition is deployed.

 A Multi-perspective Framework for Organizational Patterns 467

References

[1] Blois, K. (1972). Vertical Quasi Integration, Journal of Industrial Economics, 20
[2] Casati, F., Ceri, S., Paraboschi, S. and G. Pozzi (1999), Specification and

Implementation of Exceptions in Workflow Management Systems. ACM Trans.
Database Syst. 24(3): 405 – 451.

[3] Castro J., Kolp M., Mylopoulos J. (2002). Towards Requirement-Driven Information
Systems Enginnering: The Tropos Project. Inf. Syst. 27(6): 365 – 389.

[4] Colombo, E. (2005), A Service-Oriented Methodology for the Analysis and Specification
of Business Conversation Requirements, Ph.D. Thesis, Politecnico di Milano, Italy.

[5] Colombo, E., Francalanci, C. and B. Pernici (2004), Modeling cooperation in virtual
districts: a methodology for e-service design, Int. Journal of Coop. Inf. Syst., 13(4),
369 – 411.

[6] Colombo, E., Mylopoulos, J. and P. Spoletini (2005), Modeling and Analyzing Context-
Aware Composition of Services, Proceedings of ICSOC’05, 198 – 213.

[7] Colombo, E. and J. Mylopoulos (2004), Organizational Patterns for Virtual Enterprises,
Technical Report #2004.34, Politecnico di Milano.

[8] Colombo, E. and J. Mylopoulos (2006), A Multi-View Framework for Organizational
Patterns, Technical Report #DIT-06-017 , Università degli Studi di Trento.

[9] Darimont, R. and A. van Lamsweerde (1996) Formal Refinement Patterns for Goal-
Driven Requirements Elaboration. SIGSOFT FSE, 179 – 190

[10] De Michelis, G., Dubois, E., Jarke, M., Matthes, F., Mylopoulos, J., Papazoglou, M.,
Pohl, K., Schmidt, J., Woo, C., Yu, E. (1997), Cooperative Information Systems: A
Manifesto, Cooperative Information Systems, M.P. Papazoglou, G. Schlageter (eds.)

[11] Fuxman, A., Liu, L., Mylopoulos, J., Roveri, M. and P. Traverso (2004) Specifying and
analyzing early requirements in Tropos. Requir. Eng. 9(2): 132 – 150

[12] Gamma, E.. Helm, R., Johnson, R., and J. Vlissides (1995). Design Patterns: Elements of
Reusable Object-oriented Software, Addison-Wesley.

[13] Harel, D. and Naamad A. (1996). The STATEMATE Semantics of Statecharts, ACM
Trans. on Softw. Eng. and Meth., 5(4), 293 – 333.

[14] Kolp, M., Giorgini, P. and J. Mylopoulos (2003), Organizational Patterns for Early
Requirements Analysis, Proceedings of CAiSE 2003.

[15] Konrad S. and B. Cheng (2002), Requirements Patterns for Embedded Systems,
Proceeding of RE’02, Essen.

[16] Krutchen, P. (1995), The 4+1 View Model of Architecture. IEEE Software 12(6).
[17] Maiden, N. and B.P. Bright (1996), Recurrent Communication Patterns in Requirement

Engineering Meetings, Proceedings of WET ICE ‘96
[18] Malone, T. W., Crowston, K. (1994). The Interdisciplinary Study of Coordination. ACM

Computing Surveys, 26(1), 87 – 119.
[19] Mecella, M. and B. Pernici (2001), Designing wrapper components for e-services in

integrating heterogeneous systems. VLDB Journal 10(1), 2 – 15
[20] Merli, G. and M. Luoni (1997), Comakership, Isedi.
[21] Papazoglou, M. P.,Yang, J. (2002), Web Component: A Substrate for Web Service Reuse

and Composition. CAiSE, 21 – 36
[22] Williamson, O. E. (1996). The mechanisms of governance. Oxford University Press.
[23] Yu, E. and J. Mylopoulos (1996). Using goal, rules and methods to support reasoning in

business process reengineering. Intel. Syst. and Acc., Fin. and Man., 5(1),1 – 13.
[24] Vispo Project, cube-si.elet.polimi.it/vispo.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 468 – 481, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Deriving Concepts for Modeling Business Actions

Peter Rittgen

University College of Borås, 50190 Borås, Sweden

Abstract. We outline a procedure called communicative and material functions
analysis that can be used to derive business modeling concepts. It is rooted in
the language-action perspective on organizations and has its point of departure
in Business Action Theory, an empirically grounded framework for modeling
business processes from an action perspective. We apply this procedure to
enhance an existing method, the Situation-adaptable work and Information
systems Modeling Method. This extended method is then used to analyze a
business situation in order to follow up the commitments that are made in the
course of a business process with the ultimate aim of detecting flaws in that
process.

1 Introduction

According to the language-action perspective a business is understood as a network of
agents that interact via language. The literature on communicative action provides a
broad spectrum of frameworks to describe business processes, e.g. Business Action
Theory (BAT) [7, 8, 10], Dynamic Essential Modelling of Organizations (DEMO) [5,
6, 17, 20, 21], Action Workflow [4, 13, 18], Action-Based Modeling [14] and
Conversation for Action [28].

Among these frameworks BAT can, in a certain sense, be seen as the most general
because

− it does not commit the modeler to any specific method,
− it provides the most comprehensive set of phases, and
− its smallest unit of discourse is not a language act but a business act.

The first two issues are discussed in the next section. The latter is unique among the
language-action approaches to organizational modeling and deserves specific
attention. A business act comprises both a language act and a material act, i.e. it has a
broader scope. A language act is an elementary communicative activity in spoken or
written form directed from one actor to another with the aim of changing the mental
state of the latter. A material act is an elementary physical activity directed from an
actor to the material world with the aim of changing its state.

Strictly speaking, and as observed by Goldkuhl [7], language and material acts are not
so much distinct and separate acts but in many cases rather functions (or aspects) of one
and the same business act. For example, the business act of delivering goods is, perhaps
in the first place, a material act. i.e. transporting “stuff” from one place to another. But at
the same time it has a communicative function, i.e. it implies the language act “We have
fulfilled the commitment we entered by accepting the respective order.”

 Deriving Concepts for Modeling Business Actions 469

This means that a deeper understanding of business action must be grounded in an
analysis of these functions. We call this analysis ‘communicative and material
functions analysis’ and use it as a basis for deriving concepts for modeling business
actions. The objectives of such an analysis are

1. to find the communicative and material functions that are inherent in a generic or
specific business act,

2. to classify the identified functions, and
3. to derive suitable concepts for business action modeling.

This procedure is applied to BAT itself to arrive at a rudimentary set of concepts that
can be used as a starting point for developing a BAT method or, as in our case, to
refine and extend an already existing method: the Situation-adaptable work and
Information systems Modeling Method (SIMM) [7]. A case study shows that the
extended method can be used successfully to analyse the commitment management
within a business process and to detect flaws in that process that lead to “broken
commitments”.

The remaining sections are structured as follows: We first introduce the BAT
framework and the generic layered patterns for business modeling. In the following
section this framework is refined by combining phases and layers. We proceed by
applying communicative and material functions analysis to the refined framework,
followed by a classification of the resulting functions, and finally leading to the
derivation of concepts for modeling business actions which are used to refine and
extend SIMM. We conclude by presenting a possible application of the extended
method for the purpose of commitment analysis.

2 Business Action Theory

As we already mentioned in the introduction BAT is not accompanied by its own
method. On the one hand this is an advantage: The modeler can choose freely the
method that is most appropriate in the actual application context. A possible choice
would be that of SIMM as was suggested in the same paper that introduced BAT [7].

But on the other hand the lack of a dedicated modeling method also represents a
disadvantage because choosing a method that was not tailored for BAT also implies
that the modeler is not supported in applying BAT. The framework behind such a
method might lack essential concepts of BAT or it might even be partially in conflict
with BAT. For example, most of the frameworks mentioned above are accompanied
by their own methodologies. Using them in the context of BAT might lead to
conflicts. These issues have been explored in several papers comparing BAT with
DEMO [22, 26] and Action Workflow [7, 26]. It can therefore be argued that the
introduction of a BAT method is worthwhile as is the identification of suitable
concepts for such a method.

Although the frameworks mentioned above are substantially different in many
aspects they do largely agree on dividing a business process into phases. Among them
BAT offers the most comprehensive phases:

1. Business prerequisites phase
2. Exposure and contact search phase

470 P. Rittgen

3. Contact establishment and proposal phase
4. Contractual or commitment phase
5. Fulfilment phase
6. Completion or assessment phase

The other frameworks address only a part of these phases and/or they give different
names to the phases and/or they subsume several phases under one heading. As BAT
is the most general framework and offers the most comprehensive phases it appears to
be an ideal starting point for a business modeling method. But contrary to many
others (and as already mentioned) it does not yet provide its own method. The author
of BAT defends the corresponding decision with the “freedom of choice” argument
[7] but this argument can be challenged as we have shown above. As a consequence
we show in this paper how the existing method SIMM can be enriched with BAT
concepts.

Business Action Theory (BAT) has been introduced by Goldkuhl [7] and was
refined and adapted on the basis of further empirical evidence in [8, 10, 16]. It is
based on Socio-Instrumental Pragmatism (SIP) [9] that combines communicative
(social) and material (instrumental) aspects of actions. One of the roots of BAT is
Speech Act Theory [2, 24] that views communication as action between (two)
individuals, another one is the Theory of Communicative Action [12], which puts
action into a social context.

According to BAT business interaction involves two principal players, i.e. the
supplier and the customer, where the former sells to the latter. At the core of BAT is
the so-called business transaction that consists of the six phases which we have
already mentioned. Goldkuhl [7] identifies also a number of generic business actions
that constitute the phases on the respective side of the transaction (i.e. supplier or
customer). These actions are summarized in table 1.

Table 1. Generic Business Actions

Phase Supplier Customer
Prerequisites phase Product/offer

development
Identification of
problems/needs

Exposure & contact search phase Offer exposure Contact search
Proposal phase Offer Inquiry
Commitment phase Order confirmation Order
Fulfilment phase Delivery, Invoice,

Receipt of payment
Receipt of delivery,
Payment

Assessment phase Acceptance, Claim Acceptance, Claim

The business actions follow a certain execution logic but the whole transaction is by
no means a linear, sequential procedure. In the proposal phase, for example, the
supplier can make any number of offers concerning their products and/or services
where each one will typically meet the customer’s needs better than the preceding one.
Likewise the customer can make a series of inquiries that usually become more and
more “realistic”. These loops terminate when offer and inquiry are sufficiently close to
each other to reach an agreement whereupon we enter the contractual phase. In an ideal

 Deriving Concepts for Modeling Business Actions 471

scenario this consists of the customer placing an order and the supplier confirming it.
Both actions together constitute a contract the fulfilment of which is subject of the next
phase. Here the supplier, again ideally, delivers the products/services and sends a
corresponding invoice. The customer receives the delivery and makes the payment,
which the supplier finally receives. In the completion phase each party decides whether
they accept the receipt of the delivery/money or make a claim, i.e. request the
fulfilment of that part of the contract they consider unfulfilled.

Orthogonal to the phases BAT offers another dimension, layers, that was
introduced in [15]. They extend and modify the layers originally suggested by
Weigand and van den Heuvel [27]. Layers refer to the granularity of an action and in
BAT they are, from fine grain to coarse grain: business act, action pair, exchange,
business transaction and transaction group. A business act is a communicative act
(speech act, e.g. placing an order) or a material act (e.g. performing a delivery). It is
directed towards somebody with the aim of changing the world, i.e. the material
world or the mental world (state of mind) of the addressee. An action pair is a pair of
actions where the first one is a trigger (initiative) and the second a response. Actions
can have a dual function so the response of one action pair can be the initiative of
another.

On the third layer an exchange consists of an arbitrary number of action pairs (but
at least one). An actor gives something to another in return for something else. An
exchange always concerns actions of the same type, i.e. a value is exchanged against
another value (e.g. product against money) or a proposal is exchanged against another
proposal (e.g. offer and inquiry). The fourth layer is called business transaction. It
consists of a number of exchanges that correspond to the phases. There is an exchange
of interests (contact search), an exchange of proposals (bidding), an exchange of
commitments (contract), an exchange of values (e.g. products and/or services against
money) and finally an exchange of assessments (claims or acceptances). A transaction
starts when the (potential) customer has a need and the (potential) supplier has a
corresponding ability (to satisfy the need). It ends when the need is (at least partially)
satisfied or when the parties agree that this goal cannot be reached. In the latter case
the actor in the customer role will search for a different supplier whereupon a new
transaction begins.

On the fifth and final layer the same customer and supplier engage in a number of
transactions over a longer period of time thus forming a stable business relationship
[3,11]. In the next section we elaborate the generic business actions with the help of
communicative and material functions analysis. We use the results of that analysis to
develop a set of essential functions of business acts that can be basic concepts of a
language for BAT.

3 Refining the Framework

A method for BAT would have to take into account both dimensions, phases and
layers. Strictly speaking, the phases are only a refinement of one particular layer,
namely the transaction layer. On the way towards concepts for such a method we also
need a refinement of the other layers. Such a refinement is suggested in fig. 1 with the

472 P. Rittgen

exception of the transaction group layer. The transaction layer is divided into the
exchanges (or phases) that have already been mentioned. An exchange consists of two
handover actions: One is directed from the supplier to the customer and the other vice
versa. These handovers usually happen one after the other where the second happens
in return for the first but the order is not predefined, i.e. in some cases the supplier
hands over first and in others the customer. In certain cases, e.g. if the parties do not
trust each other, the handovers can be near-simultaneous as for example in “delivery
versus payment”.

Fig. 1. Structure of the Layers

4 Communicative and Material Functions Analysis

An action pair consists of two business acts, an initiative and a response. They have
already been introduced as trigger and response in [15]. On the lowest layer a
business act consists of one or more functions. The importance of these functions was
already recognized in [7] where they were named mixed communicative actions. This
suggests that a business act can be further divided into distinct, separate acts. But the
mixed actions are rather different functions of the same act than different acts. We
therefore prefer to call them the communicative and/or material functions of a
business act as outlined in the introduction. Goldkuhl [7] gives the examples of
(commercial) offer and order. A commercial offer can be a single business act that has
two communicative functions,

1. that of requesting the potential customer to buy (i.e. to place an order),
2. that of committing the potential supplier to sell (i.e. to deliver) under certain

conditions.

These are two communicative functions that are often part of the same business act
rather than two separate steps (i.e. distinct actions). The same holds for the order
which has the functions of

1. requesting the supplier to sell (i.e. to deliver),
2. and committing the customer to buy under certain conditions.

 Deriving Concepts for Modeling Business Actions 473

If we apply the same kind of analysis, which we call communicative and material
functions analysis, to the remaining generic business actions we get the results shown
in table 2.

Table 2. Material and Communicative Functions of the Generic Business Actions

Business Action Material and/or communicative
function

Business Action

Offer exposure State general offer Offer exposure
Contact search Express interest Contact search
Inquiry Request commercial offer + Express

interest
Inquiry

Commercial offer Offer delivery + Request order Commercial offer
Order Request delivery + Offer payment Order
Order confirmation Promise delivery Order confirmation
Delivery Transfer merchandise/Perform

service + State delivery
Delivery

Invoice Request payment + State contract
fulfilment [supplier]

Invoice

Receipt of delivery Accept delivery + (Accept contract
fulfilment [supplier])

Receipt of delivery

Payment Transfer money + State contract
fulfilment [customer]

Payment

Receipt of payment Accept payment + (Accept contract
fulfilment [customer])

Receipt of payment

Acceptance Accept contract fulfilment [supplier
or customer]

Acceptance

Claim Request contract fulfilment [supplier
or customer]

Claim

These results show that a business act typically has one or two functions. The
communicative function is always present (even in the case of material acts) but there
might also be another function that is either communicative or material. This is
reflected in the model of fig. 1. The generic business action “receipt of delivery or
payment” can in some cases imply the acceptance of the contract fulfilment of supplier
or customer, respectively. In other cases the acceptance is stated explicitly (i.e.
separately in the assessment phase) or a claim is made (also in the assessment phase).

We are aware of the fact that such a list of generic actions and their functions can
only serve as a recommendation that covers some typical or common situations. It is
not meant to be a prescriptive template for all business interactions. The main purposes
of it are rather as follows: First it should give an example of how communicative and
material functions analysis can be used to identify material and communicative
functions. Using that analysis in a different context might yield different actions and
even different functions concerning the same actions. But the results can nevertheless
be useful, and that is the second purpose, to find a set of recurring material and
communicative functions that can be used as a pattern for a modeling language.

474 P. Rittgen

5 Classifying Functions

If we compile the identified material and communicative functions and sort them
according to the illocutionary points introduced in [25], adding a column for material
functions, we arrive at the structure show in table 3.

Table 3. Classification of material and communicative functions

material communicative
 expressives declaratives Assertives commissives directives
Transfer Express Accept State Promise Request
Apply Reply Offer Ask
Transform

Perform

The material functions are transfering and object (i.e. moving it in space), applying
an object as an instrument and transforming and object (i.e. changing some of its
properties) possibly with the help of an instrument (this is in accordance with SIP).
The function “express” is used to show an emotion or an attitude (e.g. interest in a
product). A directive is usually a request in a business context. A less formal and less
compelling directive would be to ask a question. The reply is the corresponding
assertive. There is another assertive, state, that carries a higher illocutionary force. It
is a unilateral establishment of a fact, whereas the declarative “accept” is a
confirmation of a stated fact, i.e. a mutual agreement on that fact. An “accept” must
therefore always be preceeded by a “state” because one party alone cannot declare
agreement. The commissives are divided into promise and offer. The former is an
unconditional commitment, the latter is subject to some conditions. If these conditions
are fulfilled (typically by the other party) the offer becomes a promise. To avoid
confusion of the communicative function “offer” with the same term as used in a
business context we have called the latter a commercial offer. The function “perform”
refers to a business act that is elementary at the current level of abstraction (i.e. with
respect to the model under consideration) but a complex action on some lower, more
detailed level.

The development of a set of material and communicative functions was motivated
by [7, 15]. Both stress the importance of this issue (in the latter paper it was called
multi-functional business acts, in the former mixed communicative actions). We agree
with Goldkuhl [7] that the illocutionary points of Searle [25] are too coarse for
business modeling and have therefore developed the set of functions in table 3 which
is somewhat more elaborate and more adapted to business interaction. But
nevertheless such a classification should be seen as a suggestion rather than a fixed
template. Such a set might require adaptation to a particular modeling scenario.

A classification of speech acts has also been done by Reijswoud et al. [23]. They
employed a purely theoretical method that consisted in viewing the one-dimensional
classifications of Searle and Habermas, respectively, as two dimensions of a matrix.
As a result they got the six speech acts question, answer, request, promise, state and

 Deriving Concepts for Modeling Business Actions 475

accept. These are also found in table 3. Our classification can therefore be seen as an
extension of that of Reijswoud et al. [23].

Based on the suggested refinements, the next section derives a set of concepts that
are fundamental for modeling business actions.

6 Deriving Business Action Concepts

The development of a full-blown language or even a method is a huge project. Such a
project is only justified if the new language or method really offers something
substantially new. As we have mentioned earlier, there is already a number of
methods that “implement” language-action concepts to some extent. We do therefore
not propose a comprehensive new language but rather a set of concepts that can, for
example, be used to extend existing languages. In this context we refer to these
concepts as language elements. The techniques for such an extension are offered by
(situational) method engineering [19]. The idea behind method engineering is to
design methods in such a way that they fit the particular modeling situation. This can
be done in different ways. One way is to extend an existing method. Another one is to
create a new one from chunks of existing methods by performing method chunk
selection and assembly. The third way is to construct a new method from scratch with
the help of a suitable meta-model or paradigm. Using the first approach, method
extension, we enrich and refine the language of SIMM with the concepts introduced
in this section.

We propose that a business action language requires at least three basic categories:
actors, actions and (action) objects. As SIMM has the most elaborate concept of an
action object, we borrow both the notion and the notation of an object from SIMM.
Examples of information and material objects are shown in fig. 2 but SIMM offers
many additional types. Actors are denoted by a rectangle containing the name of the
actor as is common in many approaches. The actions themselves are divided into two
categories according to the layer: business acts (layer 1) and the other layers. Actions
on layers 2 to 5 are represented by a rounded rectangle with a double line. An
additional classification symbol can be used to identify the particular layer: two
intersecting circles for an action pair, two arrows pointing towards each other for an
exchange, a “T” for a transaction and a “G” for a transaction group. For business acts
in general we also use the rounded rectangle, for material acts the octagon. Both
shapes have only one line to show that the act is elementary. The box can either
contain the name of the business act or the respective material or communicative
function where the function header is italicized. In the case of multiple functions the
box can be divided into horizontal compartments, one for each function. If material
and communicative functions are mixed we can also mix the respective shapes. Fig. 2
shows an overview of the business action concepts and their notational representation.

Among the notational elements there are also four types of arcs. Two undirected
arcs that represent an information flow (thin arc) or a material flow (thick arc). These
have been borrowed from the SIMM Action Diagram where the direction of the flow
is coincides with the drawing direction (from top to bottom). The condition arc allows
us to show that one action is a condition for another action. The end with the black

476 P. Rittgen

Fig. 2. Concepts for business action modeling and their notation

dot is attached to the latter action. The arrow serves two purposes. If it points from
one action to another, the former triggers the latter. If it points from one actor to
another, it represents an action that is directed from the first actor to the second. In
this case the name of the action is written along the arrow. It can be accompanied by a
symbol denoting the layer. For layers 2 to 5 we use the classification symbols
introduced above. For communicative or material acts we use a small rounded
rectangle (or circle) or a small octagon (or diamond), respectively. As an alternative
to the arrow form of the action the boxed form of the action can be interlaced with the
arrow.

In the next section we apply the extended method for the analysis of commitments.

7 Applying the Extended Method: A Case Study

Commitment analysis in terms of language action was introduced by Auramäki et al.
[1]. They used discourse analysis to develop a discourse graph, a conversation graph
and finally a network graph of actions and commitments that shows in which way the
actions influence the commitments. This helped them to discover flaws in the way
that commitments are handled. As the main objective in our case project was business
process re-engineering we used the existing business process analysis as the point of
departure instead. The project involved two companies that have a very close business
relationship. One of them is the headquarters of a retail chain in the home textiles and
decoration industry. The other is a third-party logistics provider, let us call them
LogPro, that performs all inbound and outbound logistics for the retailer.

Our goal was to discover the major problems in their relationship and to suggest
appropriate solutions. For this purpose we carried out a thorough analysis of the
relevant business process, order processing and delivery, that involved, apart from
Headquarters and LogPro, also the shops of the chain which are organizations in their
own right although they do maintain a very close, franchise-like relation with

 Deriving Concepts for Modeling Business Actions 477

Headquarters. For the analysis of the interaction between these players we first used
the Interaction Diagrams of SIMM. But then we discovered that we also need
information on the type and level of an action so we enriched the Interaction Diagram
with the features introduced above. The resulting diagram is shown in fig. 3.

Fig. 3. Enriched Interaction Diagram

The process starts when Headquarters send an estimate regarding the capacity
required for executing future orders. Such estimates are send six months, two months
and two weeks in advance of the time of delivery. Shortly before that time the Shop
can place different kinds of orders. A customer order is iniated by the Shop on behalf
of a customer who wishes to buy an article that is not currently available in the Shop.
The refill order is triggered by Headquarters whenever the Shop’s stock is running
low on articles of the basic assortment. Both actions are on the action-pair level
because they require some kind of confirmation from the partner. The third type of
order is called a distribution order. It is based on the budget that was negotiated
before and the shop has to accept it as part of its franchise obligations. The
distribution order is therefore only a single speech act that has a more informative
character. The negotiation of the budget on the other hand is a bilateral process that is
initiated by Headquarters but consists of an exchange of budget proposals.

Orders of all types are combined into one order by Headquarters and forwarded to
LogPro. As a consequence LogPro will perform the delivery to the Shop.
Headquarters inform the Shop about the upcoming delivery and receive a
confirmation that is has arrived (delivery handshake). In regular intervals LogPro bill
their services to Headquarters.

On the basis of this overview we developed detailed Interaction Diagrams for the
interactions between Headquarters and Shop as well as between LogPro and
Headquarters. The latter is shown in fig. 4. This diagram is on the business-act level,
i.e. all actions in it are business acts. It shows that Headquarters send a capacity
estimate first. On the day of delivery a pick file is transferred to LogPro that contains
the order data. This is used by LogPro to pick the appropriate articles from the shelves
and to pack them for delivery. As soon as the articles are on their way, LogPro reports
the delivery to Headquarters. At the next billing occasion LogPro send an invoice and
Headquarters makes the respective payment.

478 P. Rittgen

Fig. 4. Detailed Interaction Diagram

For performing a commitment analysis we need more detailed information about
how the actions are related to each other. This means that we have to exhibit the
communicative and material functions that the actions have. These functions are the
ones that lead to the establishment or fulfilment of commitments. When they have
been made explicit we can show the conditional and causal relationships between the
functions. This in turn helps us to uncover broken commitments. For this purpose we
have created a new type af diagram, the Business Act Diagram. A diagram of this
type for the relation between LogPro and Headquarters is shown in fig. 5.

Each actor box covers the actions that are performed by this actor. The capacity
estimate is an action that implies both a request to provide this capacity and a promise
to place an order that requires approximately the requested capacity. LogPro makes an
offer to provide this capacity subject to Headquarters’ order in general and their offer
of payment in particular. This offer is implicit (i.e. not communicated) because
LogPro is required to provide the respective capacity by the terms of the frame

Fig. 5. Business Act Diagram

 Deriving Concepts for Modeling Business Actions 479

contract. The provision of the capacity is a condition for the ability to perform the
delivery that is triggered by the respective request from Headquarters that is a
function of the order. The other function, offer payment, is subject to an accepted
delivery. The performed delivery triggers a respective report (state delivery) which in
turn triggers the invoice (request payment). The latter triggers the payment (transfer
money) but only if the Shop has confirmed the arrival of the delivery. Headquarters
does not explicitly accept the delivery towards LogPro but does so implicitly by
paying the invoice. Therefore “Transfer money” and “Accept delivery” are functions
of the same business act.

The Business Act Diagram has shown us that the commitment concerning capacity
is broken in three different places (see the flash symbols in fig. 5):

1. Headquarters promise that the order will require the capacity that was requested.
But in reality the orders often deviate substantially from the estimates.

2. The request for the capacity is not in a for LogPro suitable format so that they can
hardly plan for providing this capacity. But Headquarters assume that the capacity
is provided.

3. As a consequence of 1 and 2 the condition for performing the delivery are not
given in many cases. This leads to higher costs and sometimes failure to meet the
deadlines for delivery.

We have used this approach for other parts of the business process where we also
succeeded in finding mistakes in commitment management. Among the problems we
have identified this way are:

1. Indistinct communication structures: It is often unclear who communicates with
whom regarding which issue.

2. Lack of trust: Different interpretations of the frame contract by the parties lead to
expectations that are not fulfilled.

3. Lack of information: LogPro is not provided with suitable information for reliable
capacity planning, This is not specified clearly in the existing frame contract.

4. Excessive communication: A considerable amount of personal communication
between organizations is spent on handling everyday work. This is only necessary
because of insufficient specification of routine procedures in the frame contract.

5. High transaction costs due to ad-hoc solutions.

8 Conclusion

Business Action Theory is a stable framework for analysing business processes. It can
guide the modeler in finding appropriate abstractions of the studied process and in
relating different parts of the model to each other. These features are achieved by
rooting the theory solidly in an ontology, i.e. Socio-Instrumental Pragmatism, that
describes all important aspects of social behaviour in general and business behaviour
in particular. Other cornerstone of BAT are the existence of different dimensions,
layers and phases, and the multi-functionality of business acts. All these features
contribute to better business process models. But the support of the modeler can be
strengthened by providing a modeling language that reflects these features of BAT.
We have suggested a number of concepts of such a language and we have shown two

480 P. Rittgen

ways in which they can be used: to refine the exisiting modeling methods SIMM and
to define new diagram types that are adapted to a particular modeling situation.

As an example for such a situation we have used the analysis of commitments that
are created and fulfilled (or broken) in the course of a business process. An enriched
Interaction Diagram and a Business Act Diagram, two examples of newly defined
diagram types, have proved useful in this context. But the concepts are only potential
language elements. How they can be introduced into existing languages and whether
they can contribute to the development of new languages depends on the context of
use of such languages. This is subject to future research.

References

1. Auramäki, E., Lehtinen, E., Lyytinen, K. (1988). A Speech-Act-Based Office Modeling
Approach. ACM Transactions on Office Information Systems 6(2), pp. 126-152.

2. Austin, J. L. (1962). How to Do Things with Words. Oxford University Press.
3. Axelsson, K., Goldkuhl, G., Melin, U. (2000). Using Business Action Theory for Dyadic

Analysis. 10th Nordic Workshop on Interorganisational Research, 18-20 August, 2000,
Trondheim.

4. Denning, P. J., Medina-Mora, R. (1995). Completing the Loops. Interfaces, 25 (3), 42-57.
5. Dietz, J. L. G. (1999). Understanding and modeling business processes with DEMO. In

Akoka, J., Bouzeghoub, M., Comyn-Wattiau, I., Métais, E. (eds.): Conceptual modeling -
ER '99: proceedings (Lecture notes in computer science 1728). Berlin: Springer, 188-202.

6. Dietz, J. L. G., Habing, N. (2004). The Notion of Business Process Revisited. In
Proceedings of the OTM Confederated International Conferences, CoopIS, DOA, and
ODBASE (Meersman, R., Tari, Z., Eds), pp. 85-100, Springer, Berlin, Germany.

7. Goldkuhl, G. (1996). Generic business frameworks and action modelling. In Dignum, F.,
Dietz, J., Verharen, E. and Weigand, H. (eds.): Communication Modeling – The
Language/Action Perspective, Proceedings of the First International Workshop on
Communication Modeling, Electronic Workshops in Computing, Berlin: Springer.

8. Goldkuhl G. (1998). The six phases of business processes - business communication and
the exchange of value. 12th biennial ITS conference ”Beyond convergence” (ITS´98),
Stockholm.

9. Goldkuhl G. (2002). Anchoring scientific abstractions – ontological and linguistic
determination following socio-instrumental pragmatism. European Conference on
Research Methods in Business and Management (ECRM 2002), Reading, 29-30 April,
2002.

10. Goldkuhl G., Lind M. (2004). Developing e-interactions – A framework for business
capabilities and exchanges. 12th European Conference on Information Systems, June 14-
16, 2004, Turku, Finland

11. Goldkuhl, G., Melin, U. (2001). Relationship Management vs Business Transactions:
Business Interaction as Design of Business Interaction. 10th International Annual IPSERA
Conference, 9-11 April, 2001, Jönköping International Business School.

12. Habermas, J. (1984). The Theory of Communicative Action 1, Reason and the
Rationalization of Society. Boston: Beacon Press.

13. Kethers, S., Schoop, M. (2000). Reassessment of the Action Workflow Approach:
Empirical Results. In Proceedings of the Fifth International Workshop on the Language-
Action Perspective on Communication Modelling LAP 2000 (Schoop, M., Quix, C., Eds),
pp. 151-169, RWTH Aachen University, Germany.

 Deriving Concepts for Modeling Business Actions 481

14. Lehtinen, E., & Lyytinen, K. (1986). An Action Based Model of Information Systems.
Information Systems 11 (4), pp. 299-317.

15. Lind, M., Goldkuhl, G. (2001). Generic Layered Patterns for Business Modelling. In
Proceedings of the Sixth International Workshop on the Language-Action Perspective on
Communication Modelling (LAP 2001) Montreal, Canada, July 21-22, 2001.

16. Lind M., Goldkuhl, G. (2005). Designing business process variants. Business Process
Design Workshop at the Third International Conference on Business Process Management,
September 5-8 2005, Nancy, France.

17. Liu, K., Sun, L., Barjis. J., Dietz, J. L. G. (2003). Modelling dynamic behaviour of
business organisations - extension of DEMO from a semiotic perspective. Knowledge-
Based Systems 16(2), pp. 101-111.

18. Medina-Mora, R., Winograd, T., Flores, R., Flores, F. (1992). The Action Workflow
Approach to Workflow Management Technology. In Turner, J. and Kraut, R. (eds.):
Proceedings of the Conference on Computer-Supported Cooperative Work, CSCW’92.
New York: ACM Press.

19. Ralyté, J., Deneckère, R., Rolland, C. (2003). Towards a Generic Model for Situational
Method Engineering, In Proceedings of 15th International Conference on Advanced
Information Systems Engineering (Caise 2003), Klagenfurt, Austria, June 16-18, 2003,
(Eds, Eder J, et al.) Heidelberg, Germany: Springer-Verlag, pp. 95-110.

20. Reijswoud, V. E. van (1996). The Structure of Business Communication: Theory, Model
and Application. PhD Thesis. Delft, The Netherlands: Delft University of Technology.

21. Reijswoud, V. E. van, Dietz, J. L. G. (1999). DEMO Modelling Handbook, Volume 1. TU
Delft. Online version available at http://www.demo.nl/documents/handbook.pdf.

22. Reijswoud, V. E. van, Lind, M. (1998). Comparing two business modelling approaches in
the language action perspective. In Proceedings of Language Action Perspective
(LAP´98), Stockholm.

23. Reijswoud, V. E. van, Mulder, H. B. F., Dietz, J. L. G. (1999). Communicative action-
based business process and information systems modelling with DEMO. Information
Systems Journal 9(2), pp. 117-138.

24. Searle, J. R. (1969). Speech Acts, An Essay in the Philosophy of Language. London:
Cambridge University Press.

25. Searle, J. R. (1979). Expression and meaning. Studies in the theory of speech acts,
Cambridge University Press, London.

26. Verharen, E. (1997). A language-action perspective on the design of cooperative
information agents. PhD thesis, KUB, Tilburg.

27. Weigand, H., van den Heuvel, W.J. (1998). Meta-Patterns for Electronic Commerce
Transactions based on FLBC. Hawaii International Conference on System Sciences
(HICSS ’98), IEEE Press.

28. Winograd, T., Flores, F. (1986). Understanding Computers and Cognition: A New
Foundation for Design. Norwood, NJ: Ablex.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 482 – 496, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Towards a Reference Ontology for Business Models*

Birger Andersson1, Maria Bergholtz1, Ananda Edirisuriya1, Tharaka Ilayperuma1,
Paul Johannesson1, Jaap Gordijn2, Bertrand Grégoire3, Michael Schmitt3,

Eric Dubois3, Sven Abels4, Axel Hahn4, Benkt Wangler5, and Hans Weigand6

1 Royal Institute of Technology
Department of Computer and Systems Sciences, Sweden

{ba, maria, si-ana, si-tsi, pajo}@dsv.su.se
2 Department of Computer Science

Vrije Universiteit, Amsterdam
gordijn@cs.vu.nl

3 Public Research Centre Henri Tudor
Luxembourg

{bertrand.gregoire, michael.schmitt, eric.dubois}@tudor.lu
4 University of Oldenburg,

Business Information Systems
Department of Computing Science, Germany

{abels, hahn}@wi-ol.de
5 University of Skövde,

School of Humanities and Informatics, Sweden
benkt.wangler@his.se

6 Tilburg University, P.O. Box 90153,
5000 LE Tilburg, Netherlands
H.Weigand@uvt.nl

Abstract. Ontologies are viewed as increasingly important tools for structuring
domains of interests. In this paper we propose a reference ontology of business
models using concepts from three established business model ontologies; the
REA, BMO, and e3-value. The basic concepts in the reference ontology
concern actors, resources, and the transfer of resources between actors. Most of
the concepts in the reference ontology are taken from one of the original
ontologies, but we have also introduced a number of additional concepts,
primarily related to resource transfers between business actors. The purpose of
the proposed ontology is to increase the understanding of the original ontologies
as well as the relationships between them, and also to seek opportunities to
complement and improve on them.

1 Introduction

It is increasingly recognized that when modelling enterprises and the ways they do
business, a starting point could be to identify the main actors and the values
transferred between them. This can be expressed in terms of business models. A

* This paper represents a community effort coordinated by KTH within the Interop, a NoE in

EU 6th FP. The author order starts with authors from KTH and continues with authors in
affiliation order.

 Towards a Reference Ontology for Business Models 483

business model is created in order to make clear who the actors are in a business case
and explain their relations, which are formulated in terms of values exchanged
between the actors.

In this paper, we propose a reference ontology for business models. The purpose is
not to present an all encompassing ontology of the business domain. Neither is the
purpose to question the design of the ontologies that are analysed. The purpose is to
identify, analyse, and compare the basic notions of business models by constructing a
reference ontology based on three established business model ontologies: REA, e3-
value, and BMO.

A reference ontology will be richer and wider in scope than any of the ontologies it
is based on. One benefit from widening the scope is the increased applicability of the
reference ontology. Another benefit is that opportunities for extensions and revisions
of the component ontologies are discovered and can be considered. Finally, the main
benefit of the reference ontology is that it provides a clear understanding of the
relationships between the original ontologies. A characteristic of business models is
the focus on concepts related to value transfers between actors. This makes their
scope different from enterprise model ontologies (e.g. TOVE [Fox92] or EO
[Uschold96]) that are more focused on organisational activities, structures, and
management.

The work presented in this paper represents a continuation of the effort reported in
[Andersson06a] but has also a bearing on work presented in [Weigand06, Bergholtz05,
Schmitt05, Andersson06b]. The main purpose of those works was to investigate methods
for going from business models to process models in structured ways. Such methods
need a clear understanding of the business domain, and ontologies are useful as tools
for getting this understanding.

The paper is structured as follows. Section 2 provides a brief overview of the three
ontologies used as a basis for the reference ontology. In section 3, the reference
ontology is presented. Mappings between concepts in the original ontologies and the
reference ontology are presented in section 4. Section 5 concludes the paper with a
summary and directions for further work.

2 Features of REA, e3-Value and BMO

The reference ontology presented in this paper is based on three established business
model ontologies: REA, e3-value, and BMO. As these are the most comprehensive
and well defined ontologies for business models, they provide an adequate basis for a
reference ontology. These three ontologies were originally developed for different and
specific purposes, but there has also been recent work on expanding their
applicability. REA was originally intended as a basis for accounting information
systems [McCarthy82] and focused on representing increases and decreases of value in
an organisation. REA has been extended to form a foundation for enterprise
information systems architectures [Hruby06], and it has also been applied to e-
commerce frameworks [UMM03]. e3-value focuses on modelling value networks of
cooperating business partners and provides instruments for profitability analysis that
help in determining whether a certain value network is sustainable [Gordijn04].
Extensions of e3-value have been suggested that incorporate process related aspects as

484 B. Andersson et al.

well as risk management [Bergholtz05] and [Weigand06]. BMO differs from the two
other ontologies by being much wider in scope. In addition to modelling exchanges of
resources, BMO also addresses internal capabilities and resource planning.
Furthermore, BMO incorporates marketing aspects describing value propositions as
well as marketing channels [Osterwalder05].

2.1 The Resource-Event-Actor Ontology

The Resource-Event-Actor (REA) ontology was formulated originally in [McCarthy82]
and has been developed further, e.g. [Geerts99, UMM03]. Its conceptual origins can be
traced back to business accounting where the needs are to manage businesses through
a technique called double-entry bookkeeping. This technique records every business
transaction as a double entry (a credit and a debit) in a balanced ledger.

The core concepts in the REA ontology are Resource, Event, and Actor and the
intuition behind the ontology is that every business transaction can be described as an
event where two actors exchange resources. To get a resource, an agent has to give up
some other resource. For example, in a purchase a buying agent has to give up money
to receive some goods. The amount of money available to the agent is decreased, while
the amount of goods is increased. There are two events taking place here: one where
the amount of money is decreased and another where the amount of goods is increased.
This combination of events is called a duality. A corresponding change of control of
resources takes place at the seller's side. Here the amount of money is increased while
the amount of goods is decreased. An exchange occurs when an agent receives
economic resources from another agent and gives resources back to that agent; and
vice versa. A conversion occurs when an agent consumes resources to produce other
resources [Hruby06]. Events often occur as consequences of existing obligations of an
actor; in other words, events fulfill the commitments of actors. A commitment is
defined as being "an agreement to execute an event in a well-defined future that will
result in either an increase or a decrease of resources" available to an agent. Thus,
events "happen" because commitments exist between actors, and the duality relation
between events exists because of a relation called reciprocity between commitments.
Which commitment is related to which is established through an agreement.

2.2 The e3-Value Ontology

The e3-value ontology [Gordijn00] aims at identifying exchanges of value objects
between the actors in a business case. It also supports profitability analysis of
business cases. The ontology was designed to contain a minimal set of concepts and
relations to make it easy to grasp for the intended users. The basic concepts in e3-
value are actors, value objects, value ports, value interfaces, value activities and value
exchanges. An actor is an economically independent entity. An actor is often, but not
necessarily, a legal entity, such as enterprises and end-consumers. A value object is
something that is of economic value for at least one actor, e.g. cars, Internet access,
and stream of music. A value port is used by an actor to provide or receive value
objects to or from other actors. A value port has a direction, in (e.g., receive goods)
or out (e.g., make a payment) indicating whether a value object flows into or out of
the actor. A value interface consists of in and out ports that belong to the same actor.

 Towards a Reference Ontology for Business Models 485

Value interfaces are used to model economic reciprocity. In the case of e3-value
models without actor compositions a value exchange is a pair of value ports of
opposite directions belonging to different actors. It represents one or more potential
trades of value objects between these value ports. A value activity is an operation that
can be carried out in an economically profitable way for at least one actor.

2.3 The Business Model Ontology

The Business Model Ontology (BMO) as proposed in [Osterwalder04] provides an
ontology that allows describing the business model of a firm accurately and in detail.
The BMO takes the perspective of a single enterprise, highlighting its environment
and concerns for facing a particular customer’s demands. It consists of nine core
concepts in four categories (or “pillars” as they are called). The categories are
Product, Customer Interface, Infrastructure Management, and Financial Aspects.

The single concept in Product is Value Proposition. A value proposition is an
overall view of a company's bundle of products and services that are of value to the
customer.

Customer Interface contains three concepts; Target Customer, Distribution
Channel, and Relationship. A target customer is a segment of customers to which a
company wants to offer value. A distribution channel is a means of getting in touch
with the customer. A relationship is the kind of link a company establishes between
itself and the customer.

Infrastructure Management contains three concepts; Value Configuration,
Capability, and Partnership. A value configuration describes the arrangement of
activities and resources that are necessary to create value for the customer. A
capability is the ability to execute a repeatable pattern of actions that is necessary in
order to create value for the customer. A partnership is a voluntarily initiated
cooperative agreement between two or more companies in order to create value for
the customer.

Financial Aspects contains two concepts; Cost Structure and Revenue Model. Cost
structure is the representation in money of all the means employed in the business
model. Revenue Model describes the way a company makes money through a variety
of revenue flows.

3 A Reference Ontology

In this section, we introduce the reference ontology for business models. It is
constructed using the concepts of REA, e3-value, and BMO as inputs to an analysis
and subsequent synthesis. The approach used in constructing the reference ontology
has been to survey all concepts from all the established ontologies and analyse
similarities and differences.

As the three original ontologies include concepts on the operational level as well as
the knowledge level, the reference ontology has to include both these levels. As
described in [Fowler97], the operational level models concrete, tangible individuals in
a domain. The knowledge level, on the other hand, models information structures that
characterise categories of individuals at the operational level. For example, the

486 B. Andersson et al.

ontology distinguishes between Resource Types (categories of resources like car
models) and Resources (specific, tangible things like concrete cars).

We have aimed at including all of the concepts in REA and e3-value except for a
small number of peripheral concepts, i.e. concepts that occur in only one of the
ontologies and are not central for transfers of values. For BMO, we have not aimed at
including all its concepts. In particular, some concepts from Customer Interface and
all concepts from Financial Aspects are excluded from this work. The reasons are that
the Distribution Channel and Link from Customer Interface concerns technical
distribution issues. The reason for omitting the Financial Aspects category is that this
category goes into issues of internal capabilities and resource planning, and has little
to do with transfers of values between actors.

We have also introduced a small number of concepts that do not have any direct
correspondences in the original ontologies. This has been done mainly in order to
facilitate the analysis of value transfers and resources. The introduction of those
additional concepts represents an extension of the reference ontology with respect to
the combination of the originals.

The concepts are described in the following paragraphs and the correspondences
to an original ontology are discussed and motivated in section 4.

Actor
An Actor is someone who is able to participate in events (event defined below).

Resource, Feature, and Right
A Resource is an object that is regarded as valuable by some actors. An actor views a
resource as valuable because she can use it for producing other resources, for trading
it with other actors, or for deriving some consumer experience. Essentially any object
can be a resource. However, it is possible to identify some typical categories of
resources like goods, information, and services. A resource may have properties and
associations to other objects, like the weight of a pizza or the number of shops
accepting a credit card. Such properties and associations are modelled by means of
the class Feature.

Resources are furthermore related to rights. A Right on a resource means that an
actor is entitled to use that resource in some way. An example is the ownership of a
book, which means that an actor is entitled to read the book, give it to someone else,
or even destroy it. Another example of a right is borrowing a book, which gives the
actor the right to read it, but not to give it away or destroy it or use it in any other
way. Figure 1 shows the main concepts: Resource, Feature and Rights that are
described in this section together with their relationships to other concepts.

Event, Transfer, and Conversion
An Event changes a feature or a right of a resource. An event is associated to exactly
one actor representing the perspective from which the event is viewed. This means
that each event can be seen as either an increment or decrement event from that
actor’s perspective. An increment event changes a feature or a right of a resource in
such a way that the resource becomes more valuable for the actor, while a decrement
event causes a change that decreases the value of the resource. In order to model
increments and decrements, an attribute stockflow of the class Event is introduced that
can take one of the values in {use, consume, produce, give, take}. This corresponds to
the stockflow relationship in REA [McCarthy82].

 Towards a Reference Ontology for Business Models 487

EVIDENCE
DOCUMENT

TRANSFER
custody 0..1

0..*1 0..*1

RIGHT

CONVERSION

EVENT
stockflow 1..1

ACTOR TYPE

CONVERSION TYPE

0..1

1

0..1

1

TRANSFER TYPE

0..*

1

0..*

1

0..*

1

0..*

1

type_of_transferred_right

EVENT TYPE
increment/decrement

0..*

1

0..*

1

0..* 10..* 1has_actor type

FEATURE

0..*

1

0..*

1

refers_to

RESOURCE

0..*
1

0..*
1

feature_value_changed_for

0..*

1

0..*

1

conversed/transferred resource/service

RESOURCE TYPE
1custodyService

0..*

1

0..*

1

0..*

11

range

0..*

11

domain

0..*

1

0..*

1

0..*

0..*

1

Fig. 1. Resource, Feature, and Right, and their respective relationships

The class Event has two subclasses, Transfer and Conversion [Hruby06]. A transfer

means that a right is transferred from one actor to another (for a more detailed
analysis, see the next subsection). If the actor of the event receives the right to the
resource, the event is a take event (represented by the stockflow attribute). If the actor
gives up the right to the resource, the event is a give event. Similarly, a conversion
event changes some feature of a resource. If this change means that a new resource is
created or the value of an existing resource is increased, the event is a produce event.
If the resource is completely consumed and no longer exists after the event, it is called
a consume event. If the resource is used but continues to exist also after the event, it is
called a use event. Use, consume, and give are decrement events, while produce and
take are increment events. Figure 2 shows the events, transfers, conversions and their
relationships to other concepts such as exchanges, interfaces, and transactions.

Rights, Custody and Evidence Documents - Three components of a transfer
A Transfer from A to B can be viewed as consisting of three components:

− transferring rights on a resource from A to B
− giving custody of the resource to B
− transferring an evidence document (documenting the transferred right) from A

to B

The second component of a Transfer is transferring the custody of the resource
being exchanged from one actor to another. An actor has the Custody of a resource if
he has immediate charge and control of the resource, typically physical access of the
resource. If an actor has the custody of a resource, this does not mean that she has any

488 B. Andersson et al.

rights on the resource. For example, a distributor may have the custody of some
goods, but he is not allowed to use the goods in any way. Providing custody of a
resource is essential in a value exchange, as the buyer is typically unable to exercise
the rights she gets unless she has custody of the resource. In the reference ontology,
custody is modeled by means of the Custody attribute of a Transfer (Figure 1).

A Transfer may also include the transfer of some evidence document that certifies
that the buyer has certain rights on a resource. A typical example of an evidence
document is a movie ticket that certifies that its owner has the right to watch a movie.
While the first component, the transfer of right, always is included in a Transfer, the
last two components are optional. For example, when buying a piece of land, the
buyer is typically not given the custody of that resource. Clearly, evidence documents
are not always provided in a value exchange. Furthermore, the provision of custody
and evidence documents may be so trivial that it is not of interest to make them
explicit in a model.

Process, Interface, Exchange, Transaction, and Transformation
A Process is a set of Event types including increment as well as decrement event
types, i.e. a process specifies how to group together a number of transfer and
conversion events. This means that a process, as defined here, only describes the
changes of rights and features of resources; it does not specify temporal or
communicative aspects. These aspects are certainly relevant for processes in general,
but they are outside the scope of business models. The notion of a process is quite
general, as it may contain any event types. It is, therefore, useful to identify a number
of specialised processes, and the ontology distinguishes between interfaces,
exchanges, transactions, and transformations. An Interface is a process consisting of
transfer event types all associated to the same actor type. An interface specifies that
an actor (type) is prepared to trade according to the transfer event types of the
interface. An Exchange is a process consisting of a pair of one give transfer event
type and one take transfer event type associated to two different actor types. An
exchange specifies that one actor (type) is prepared to give a resource to another actor
(type) who takes it. A Transaction is a process consisting of a number of exchanges,
or more precisely, the transfer event types included in the exchanges. A transaction
specifies that two actor (types) are prepared to trade with each other according to the
transfer event types of the exchange. A Transformation is a set of conversion event
types all associated to the same actor type. A transformation specifies that some
resource is produced while other resources are consumed or used.

Commitment, Claim, Contract, and Agreement
A Commitment is an obligation to carry out a give Transfer within an Exchange in the
future. A Contract is a collection of Commitments. An Agreement is an arrangement
between two Actors that specifies in advance the conditions under which they will
trade. A Claim comes into existence when one business partner has fulfilled an
Economic Commitment while the other partner has yet to fulfill the reciprocal
Economic Commitment.

 Towards a Reference Ontology for Business Models 489

PROCESS

INTERFACE

VALUE ACTIVITY

1..*

EVENT TYPE
increment/decrement 1..*

0..*

1..*

0..*

RESOURCE TYPE

TRANSFORMATION

1..*

1

1..*

1

VALUE PROPOSITION
1..*

1..*

1..*

1..*

0..*

1

0..*

1

CONVERSION TYPE

0..*

1..*1..*

FEATURE

1..*

0..*

0..*

1

0..*

1

refers_to

TRANSFER TYPE

TRANSACTION

EXCHANGE

1

1..*1..*

1

1..*1..*

contains

1

1..*

1..*

0..*

1

0..*

Fig. 2. Events, Transfer, Conversion and their respective relationships

CLAIM
EXCHANGE

1..*1..* settles

1..*
1..*

materializes

COMITTMENT
0..*

1

0..*

1

fulfills

1..* 1..*1..*

reciprocity

1..*

CONTRACT1..*

1

1..*

1

AGREEMENT

0..* 10..* 1

of _type

1..*
1..*

1..*1..*

Fig. 3. Commitment, Claim, Contract and Agreement and their respective relationships

Value Activity
A Value Activity consists of a number of interfaces associated to one actor. A value
activity is a set of related processes carried out by one actor, but that could potentially
be performed by another actor.

Value Proposition
A Value proposition consists of a resource type and a number of features and
processes containing decrement event types associated to that resource type.
Intuitively, a value proposition does not only specify a resource type offered by an
organisation but also arguments why the customer should buy that resource type.
These arguments could consist of references to features of the resource, such as the

490 B. Andersson et al.

0..*

1

RIGHT

VALUE ACTIVITY

ACTOR

1

1..*

1

1..*

INTERFACE

PROCESS

EVENT
stockflow 1..1

1..*1..*

TRANSFOR
MATION

1..*

1

1..*

1

CONVERSION

RESOURCE

1

0..*

1

0..*

feature_value_changed_for

1
0..*

1
0..*

conversed/transferred resource/service

EVENT TYPE
increment/decrement

1..*

0..*

1..*

0..*

1

0..*

1

0..*

VALUE PROPOSITION
1..*

1..*

1..*

1..*

RESOURCE TYPE

1

0..*

1

0..*

1

0..*

1

0..*

1

0..*

1

0..*

FEATURE

0..*1..*

1
0..*

1

range 1
0..*

1

domain

EVIDENCE
DOCUMENT

TRANSFER
custody 0..1

0..*

1

0..*

1

CONTRACT AGREEMENT
0..* 10..* 1

of _type

TRANSACTION

COMITTMENT

11..* 11..*

TRANSFER TYPE

1

0..*

1

0..*
type_of_transferred_right

1

0..*

1

0..*

EXCHANGE

1

1..*1..*

0..*

1

0..*

1

fulfills

1

1..*1..*

CONVERSION TYPE

0..*

1..*1..*

1

0..1

1

0..1

1

0..*

1

refers_to

0..*

0..*

contains

1

1..* 0..*

1

0..*

Fig. 4. The Reference Ontology (some concepts omitted)

freshness or nutritional content of a pizza. Another kind of argument would be
references to processes where the resource is used or consumed in order to produce or
improve other resources. For example, an argument for buying a kitchen machine is
that it can be used to produce freshly squeezed orange juice.

Figure 4 contains the entire reference ontology, in UML Class diagram notation,
except for a few concepts that are excluded to reduce clutter. Figures 1-3 are views of
this model.

4 Mappings of Business Model Ontologies to the Reference
Ontology

In this section, we map each of the business model ontologies REA, e3-value, and
BMO to the Reference ontology. For reasons of space, the mappings are presented
informally in tables as relationships between concepts of the ontologies.

4.1 REA-Reference Ontology Mappings

The version of REA used in this analysis is based on UMM [UMM03]. This version
does not explicitly distinguish between the notions of conversion and transfer
described in [Hruby06], as it focuses on electronic commerce. In fact, only transfers of
resources are modeled in UMM.

 Towards a Reference Ontology for Business Models 491

REA Reference ontology
Partner Actor
Partner type Actor type
Economic Event A pair of Transfers (1)
Economic Resource Resource
Economic Event Type Exchange (2)
Economic Resource Type Resource Type
Duality Transaction (3)
Economic Commitment Commitment (4)
Claim Claim (5)
Economic Contract Contract (6)
Agreement Agreement (6)
Reciprocity Reciprocity (7)

(1) In REA, an Economic Event represents the transfer of an Economic Resource

from one partner to another. In the reference ontology, this is mapped to two
Transfers. One Transfer represents that one Actor gives up a Resource, while the
other Transfer represents that the other Actor receives that Resource. It can be noted
that REA does not model the right being transferred but only the Resource.

(2) In REA, an Economic Event Type resides on the knowledge level, while an
Economic Event is on the operational level. As Economic Events are mapped to pairs
of Transfers, an Economic Event Type will be mapped to a pair of Transfer Types –
one give and one take Transfer Type. In other words, an Economic Event Type is
mapped to an Exchange.

(3) In REA, Economic Events can be related to each other by means of the duality
association, which means that one Economic Event is carried out as a compensation
for another, see Section 2. In the reference ontology, a number of Economic Events
that are related by duality will, therefore, belong to the same Transaction. Note that
while the reference ontology differentiates between Economic Events in terms of
Conversions and Transfers of Resources from one Actor to another, REA does not
make this distinction.

(4) In REA, an Economic Commitment is an obligation to perform an Economic
Event in the future. An Economic Commitment can be fulfilled by an Economic
Event. Hence, in the reference ontology, an Economic Commitment is mapped to a
Commitment.

(5) A Claim in REA materializes when one business partner has fulfilled an
Economic Commitment, while the other partner has yet to fulfill the reciprocal
Economic Commitment. Thus a Claim in REA is mapped to a Claim in the reference
ontology.

(6) An REA Economic Contract is an aggregation of Economic Commitments. In
REA, an Economic Contract is a subtype of an Economic Agreement. In the reference
ontology, however, the concept of Agreement is an arrangement between two actors
that specifies in advance the conditions under which they will trade, i.e. a concept
defined on the knowledge level. Economic Contract is mapped to Contract in the
reference ontology.

492 B. Andersson et al.

(7) Reciprocity is a relationship between two or more Economic Commitments that
expresses that the corresponding Economic Events are related through one and the
same duality. The REA Reciprocity relationship is mapped to the equally named
relationship in the reference ontology.

4.2 e3-Value -Reference Ontology Mappings

e3value Reference ontology
Actor Actor
Market segment Actor type
Value object Resource type and Right (1)
Value port Transfer type (2)
Value exchange Exchange (3)
Value offering Set of Transfer types (4)
Value interface Interface (5)
Value activity Transformation (6)
Value transaction Transaction (7)

(1) When a Value Exchange occurs in e3-value, some (instance of a) Value Object

is transferred from one agent to another. However, it is not sufficient to specify only
which resource that is transferred; the right that the receiving actor obtains also has to
be given. For example, buying a car is different from renting a car. In the first case,
the recipient gets an ownership right on the car, while in the second case, the recipient
gets a time limited use right on the car. Thus, there are two different value objects
though only one Resource Type. For this reason, a Value Object is mapped to the
combination of a Resource Type and a Right.

(2) A Value Port in e3-value represents that an Actor Type is prepared to provide or
receive some Value Object. Thus, a Value Port is mapped to a Transfer Type. The
direction of the Value Port, in or out, is represented by means of the Transfer Type
being an increase or a decrease of value for the actor.

(3) A Value Exchange in e3-value is a pair of Value Ports belonging to different
actors or market segments. It represents one or more potential trades of Value Objects
between these Value Ports. A Value Exchange is, therefore, mapped to two Transfer
Types of different Actor Types, where one is an increase Event Type and the other a
decrease Event Type. In other words, a Value Exchange in e3-value is mapped to an
Exchange.

(4) A Value Offering in e3-value is a set of Value Ports with the same direction.
Thus, it is mapped to a set of Transfer Types, either all decrease or increase.

(5) A Value Interface is either one Value Offering or one in-going and one out-
going Value Offering that belong to the same Actor. Value Interfaces are used for
modeling economic reciprocity and are hence mapped to Interface, i.e. a Process
consisting of Transfer Event types all associated to the same Actor Type.

(6) A Value Activity in e3-value corresponds closely to a Transformation.
However, a Transformation tells what resources that are used or consumed in order to
produce some other resource, while a Value Activity tells what activities carried out
by an actor and what value objects are used as inputs to produce value objects that are

 Towards a Reference Ontology for Business Models 493

tradable. In the reference ontology the Transformation specifies that some resource is
produced while other resources are used or consumed. Therefore the Value Activity in
e3-value is mapped to the Transformation in the reference ontology.

(7) A Value Transaction in e3-value is defined as a set of Value Exchanges. The
Value Exchanges in a Value Transaction are performed according to the Value
Interfaces connected to the Value Exchanges. This means that if a Value Object is
exchanged through a particular port of a value interface, then Value Exchanges must
occur via all the other ports of that value interface. In the reference ontology a
Transaction is defined as process containing a set of Exchanges. We also mapped the
Value Exchange in e3-value to the Exchange in the reference ontology. Therefore the
Value Transaction in e3-value is mapped to the Transaction in the reference ontology.

As can be seen from the mappings above, there are close relationships between the
concepts in REA and e3-value, but also some differences:

Resource, Right, and Value Object
Economic Resource in REA and Value Object in e3-value models similar, but not
identical concepts. In an Economic Event, something is transferred from one agent to
another agent, but what is transferred is not an only an Economic Resource, but the
control of an Economic Resource and in some cases also the custody of the same
resource. For example, one Economic Event may transfer the ownership of a car,
while another Economic Event lends the car. These Economic Events concern the
same Economic Resource but transfer different rights on that resource. This motivates
the introduction of Rights in the reference ontology. In e3-value, a Value Exchange
transfers a Value Object from one agent to another. Therefore, Value Object can be
mapped to both Right and Resource in the reference ontology.

A recent analysis on Value Objects, [Weigand06], points out that a Value Object has
a dual character combining both a right and transformations, i.e. how the value object
can be used to modify some object of interest to an actor. The reference ontology is able
to capture this through Conversions that use or consume the Value Object.

4.3 BMO-Reference Ontology Mappings

BMO Reference ontology
Target Customer Actor Type (1)
Value Proposition A set of Value propositions (2)
Offering Value Proposition (3)
Agreement Agreement (4)
Actor Actor OR Actor Type (1)
Activity Value Activity (5)
Value Configuration Process, in particular Transformation,

and Transaction OR the corresponding
classes defined on the knowledge level
(6)

Resource Resource
Capability A relationship between Value

Proposition, Resource and Value
Configuration (7)

494 B. Andersson et al.

(1) A Target Customer is mapped to the class Actor of the reference ontology,
while the class Actor is mapped to Actor or Actor type. In BMO actors are viewed
from an internal perspective. This means that the ontology is designed from one
particular actor’s viewpoint making this actor implicit. In contrast, the reference
ontology views actors from an external perspective. Therefore, an Actor in BMO does
not exactly correspond to an Actor of the reference ontology. The class Actor in the
reference ontology represents all actors, whereas the class Actor in BMO represents
all actors except the one from whose perspective the ontology is constructed.
Furthermore, an Actor in BMO (as opposed to a Target Customer) should be
understood as being defined on the operational level, whereas a Target customer
(segment) is defined as the type of customers a company intends to address, i.e. a
definition on the knowledge level.

(2) In BMO, a Value Proposition represents value for one or several Target
Customers, i.e. how a firm differentiates what it offers from its competitors. A Value
Proposition may be decomposed into a set of Offerings (2), and hence is mapped to a
set of reference ontology Value Propositions, see (3).

(3) An Offering in BMO is part of an overall Value Proposition (which in turn may
be decomposed into a set of Offerings). Each BMO Offering describes an elementary
product or service, offered (directed) towards the target customers. In the reference
ontology it is mapped to a Value Proposition related to (set of) decrement Event
type(s).

(4) In BMO an Agreement specifies functions, terms and conditions of a
partnership with an (external) actor. It is mapped to the concept of Agreement in the
reference ontology, where an agreement is an arrangement between two actors that
specifies in advance the conditions under which they will trade, i.e. a concept defined
on the knowledge level.

(5) An Activity in BMO is an action relative to one company, performed in order
to do business and achieve the company goals. It is mapped to the concept of Value
Activity in the reference ontology, since value activities in the reference ontology are
defined as activities that can be profitably performed by some Actor.

(6) BMO Value Configuration describes the arrangements of activities and
resources that are necessary to create value for the customer (a Value proposition),
which is mapped to the reference ontology class Process. In the reference ontology
Process is a set of increment and decrement Event Types that have to happen in order
to fulfill transfers of value. The reference ontology further distinguishes between a
number of specializations of processes: Interfaces, Exchanges, Transactions and
Transformations. In mapping Value Configuration to Processes it should be noted that
the sub types Transformation and Transaction are probably most similar to Value
configuration. A Transformation tells what resources are used or consumed in order to
produce some other resource of value for some actor. A Transaction groups a number
of Exchanges.

(7) A BMO Capability describes the ability to execute a repeatable pattern of
actions. A Capability hence describes whether or not a particular needed Value
Configuration can be applied by a particular company to provide the value
proposition and if the appropriate resources (i.e. services and resources) are available.
This concept of capability has no immediate correspondence in the reference
ontology. Capability is mapped to a relationship between a particular Value

 Towards a Reference Ontology for Business Models 495

Proposition, a Value Configuration and the needed services and resources, where the
capability relationship signals that the offering partner can deliver its value
proposition.

5 Concluding Remarks

In this paper we have presented a reference ontology based on three business
ontologies – the REA, e3-value, and BMO. We constructed the reference ontology
primarily in order to gain a better understanding of the original ontologies. An
additional use of such an ontology is that it may serve as a mapping tool where
models can be transformed from one formalism to another.

The work has shown that there is a considerable overlap between the ontologies
but that there are also differences, some obvious and some subtle. An example is that
Economic resource in REA and Value object in e3-value might seem identical to each
other. However, they are different as can be seen by analysing what is happening in
an Economic event. In an Economic event, something is transferred from one agent to
another agent, but what is transferred is not an Economic resource, but the control of
an Economic resource. For example, one Economic event may transfer the ownership
of a car, while another Economic event lends the car. These Economic events concern
the same Economic resource but transfer different rights on that resource. This
motivates the introduction of Rights in the reference ontology – in a Transfer, the
right to a resource is transferred from one agent to another. In e3-value, a Value
exchange transfers a Value object from one agent to another. Therefore, Value object
is mapped to the combination of Right and Resource in the reference ontology
Similarly, the concept of a Transfer gave rise to the issue of what is transferred. To
address this question, i.e. what is actually transferred in a value transfer, we analysed
the concept into three sub-concepts; Custody, Documentary Evidence and Right
transfer and thereby extended the reference ontology with concepts not present in the
originals.

Future research includes validation of the reference ontology. One way of doing
this is to implement the original ontologies as well as the reference ontology using an
ontology management tool such as Protégé [Protégé06]. Formalized mappings
between the ontologies could then be formulated using an ontology mapping
language.

References

[Andersson05] Andersson, B., Bergholtz, M., Edirisuriya, A., Ilayperuma, T., Johannesson, P.,
A Declarative Foundation of Process Models. Proceedings of Advanced Information
Systems Engineering: 18th International Conference (CAiSE05), Porto. Springer-Verlag,
LNCS, 2005.

[Andersson06a] Andersson, B., Bergholtz, M., Edirisuriya, A., Ilayperuma, T., Johannesson, P.,
Bertrand G., Michael S., Dubois E.,, Abels S., Hahn A., Gordijn J., Weigand H., Wangler
B., Towards a Common Business Ontology. Proceedings of the 3rd Open Interop Workshop
on Enterprise Modelling and Ontologies for Interoperability (Interop-EMOI'06).
Luxembourg, 2006.

496 B. Andersson et al.

[Andersson06b] Andersson, B., Bergholtz, M., Grégoire, B., Johannesson, P Michael Schmitt,
M., Zdravkovic, J., From Business to Process Models – a Chaining Methodology. In
proceedings of BUSITAL (a workshop on Business/IT Alignment and Interoperability), co-
located with CAISE’06, Luxembourg, 2006.

[BPMN03] Business Process Modelling Notation (BPMN), http://www.bpmn.org/ Accessed
November, 2005.

[Bergholtz05] Bergholtz M., Bertrand G., Johannesson P., Schmitt M., Wohed P. and
Zdravkovic J., Integrated Methodology for linking business and process models with risk
mitigation. In proceedings of the 1st International Workshop on Requirements Engineering
for Business Need and IT Alignment (REBNITA05). Paris, 2005.

[Fowler97] Fowler M., Analysis Patterns. Reusable Object Models. ISBN: 0-201-89542-0.
Addison-Wesley, 1997.

[Geerts99] Geerts, G., McCarthy, W. E., An Accounting Object Infrastructure For Knowledge-
Based Enterprise Models. IEEE Intelligent Systems & Their Applications, pp. 89-94, 1999.

[Gordijn00] Gordijn J., Akkermans J.M., Vliet J.C. van, Business Modeling is not Process
Modeling. Conceptual Modeling for E-Business and the Web, LNCS 1921, Springer-
Verlag pp. 40-51, 2000.

[Gordijn04] Gordijn, J., e-Business Model Ontologies. Book chapter contribution to "e-
Business Modelling Using the e3value Ontology", Wendy Curry (ed.), pp. 98-128, Elsevier
Butterworth-Heinemann, UK, 2004.

[Hruby06] Hruby, P., Model-Driven Design Using Business Patterns. Forthcoming book.
ISBN: 3-540-30154-2. Springer Verlag, 2006.

[McCarthy82] McCarthy W. E., The REA Accounting Model: A Generalized Framework for
Accounting Systems in a Shared Data Environment. The Accounting Review, 1982.

[Osterwalder04] Osterwalder, A., The Business Model Ontology. A Proposition in a Design
Science Approach. PhD-Thesis. University of Lausanne, 2004.

[Osterwalder05] Osterwalder, A., Pigneur, Y., Tucci, C., Clarifying Business Models: Origins,
present and Future of the Concept. In Communications of the Association for Information
Science (CAIS), Vol. 15, 2005, p. 751-775

[Protégé06] Protégé Open Source Ontology Editor and Knowledgebase Framework. Protégé
Beta 3.2, 2006, http://protege.stanford.edu.

[Schmitt05] Schmitt M., Grégoire, B., Risk Mitigation Instruments for Business Models and
Process Models. Proceedings of the 1st International Workshop on Requirements
Engineering for Business Need and IT Alignment (REBNITA05). Paris, 2005

[UMM03] UN/CEFACT Modeling Methodology (UMM) User Guide. Accessed November,
2005, http://www.unece.org/cefact/umm/.

[Fox92] Fox, M.S., (1992), The TOVE Project: Towards A Common-sense Model of the
Enterprise. Enterprise Integration Laboratory Technical Report. Available at http://
www.eil.utoronto.ca/enterprise-modelling/papers/fox-tove-uofttr92.pdf

[Uschold96] Uschold M., Gruninger M., Ontologies: principles, methods, and applications.
Knowledge Engineering Review, 11(2), pp.93-155, 1996.

[Weigand06] Weigand H., Johannesson P., Andersson B., Bergholtz M., Edirisuriya A.,
Ilayperuma T., On the Notion of Value Object. Proceedings of Advanced Information
Systems Engineering: 18th International Conference (CAiSE06), Luxembourg, 2006.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 497 – 512, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Reasoning on UML Class Diagrams with OCL
Constraints

Anna Queralt and Ernest Teniente

Universitat Politècnica de Catalunya
Dept. de Llenguatges i Sistemes Informàtics

c/ Jordi Girona 1-3, 08034 Barcelona (Catalonia, Spain)
{aqueralt, teniente}@lsi.upc.edu

Abstract. We propose a new approach to check whether a given UML class
diagram with its OCL integrity constraints satisfies a set of desirable properties
such as schema satisfiability, class liveliness, redundancy of integrity con-
straints or reachability of partially specified states. Our approach is based on
translating both the class diagram and the OCL constraints into a logic repre-
sentation. Then, we use the CQC Method to verify whether these properties
hold for the given diagram and constraints.

1 Introduction

The quality of an information system is largely determined early in the development
cycle, i.e. during requirements specification and conceptual modeling. Moreover,
errors introduced at these stages are usually much more expensive to correct than
those of design or implementation. Thus, it is desirable to prevent, detect and correct
errors as early as possible in the development process.

The quality of a conceptual schema (CS) can be seen from two different points of
view. From an external point of view, quality refers to the correctness of the schema
regarding the user requirements. This can be validated, for instance, through checking
whether the schema specifies the relevant knowledge of the domain. From an internal
point of view, quality can be determined by reasoning on the definition of the CS,
without taking requirements into account. In this sense, there are some typical reason-
ing tasks that can be performed on a CS like satisfiability checking or class consis-
tency, among others.

As a simple example, consider the schema in Figure 1 which contains information
about employees (distinguishing among rich and average employees) and their de-
partments. The schema contains also five integrity constraints stating conditions that
each state of the information base should satisfy.

At first glance, it may seem that the schema is perfectly right. It allows instances of
Employee (like John with a salary of 7000), Department (like Sales with a minimum
salary of 6000) and WorksIn (like John works in Sales). However, a deeper analysis
allows determining that AverageEmp will never have any instance since constraint 5
requires the salary of average employees to be lower than 5000 while constraints 2 and
3 assert that it must be higher than 5000. This means that AverageEmp is ill specified.
Moreover, constraint 4 is redundant (and it should not be defined) since constraints 2
and 3 already guarantee that the salary of a rich employee is higher than 5000.

498 A. Queralt and E. Teniente

Employee

name: String
salary: Float

1..*

Integrity constraints

1. Employees and departments are identified by their name

2. The minimum salary of a department is greater than 5000

3. The salary of all the employees in a department is greater
than the department's minimum salary

4. The salary of a rich employee is not lower than 5000

5. The salary of an average employee is lower than 5000

1

AverageEmp

e-mail: String

RichEmp

phone: String

Department

name: String
minSalary: Float

{disjoint, complete}

Works in

Fig. 1. Conceptual schema about employees and their departments

The previous example illustrates the need to be able to reason on CSs to improve in-
formation systems quality. In fact, this has been identified as one of the key problems
to be solved to achieve the goal of automating information systems building [13].

Several efforts have already been devoted to this problem. There are automatic
procedures for the verification of some properties of CSs in Description Logics [2], to
check whether a given CS accepts particular system states at a given time point [9] or
to reason about cardinality constraints of the CS [10-12]. However, there are still
several open problems in reasoning on CSs. Probably, the most important one is the
lack of methods able to reason about general-purpose integrity constraints like the
ones in Figure 1. This is indeed the main goal of this paper.

Hence, the main contribution of our work is to propose a new approach to reason
on the structural part of UML conceptual schemas, defined by means of the corre-
sponding UML class diagram with its OCL integrity constraints. Two different kinds
of reasoning are provided by our method. On the one hand, it automatically verifies
whether the CS satisfies a set of desirable properties such as schema satisfiability,
class liveliness (in the example above it would determine that AverageEmp is not
lively) or redundancy of integrity constraints (like constraint 4 in Figure 1). On the
other hand, it provides the designer with the ability to ask questions to check whether
certain goals may be satisfied according to the CS. For instance, if he or she wants to
know whether the CS in Figure 1 accepts a department Marketing with a salary of
8000, our method would answer positively, specifying that there must also be at least
one employee working in it (required to satisfy the cardinaltiy constraint of the asso-
ciation WorksIn), with a salary higher than 8000 (entailed by constraint 3) and who is
a RichEmp (because of the complete constraint of the generalization).

This paper is organized as follows. Section 2 presents an overview of our method.
Section 3 defines how to translate an UML CS into a logical representation. Section 4
describes how to use the CQC Method to reason on UML CSs. Section 5 reviews
related work. Finally, section 6 presents our conclusions and points out future work.

2 Overview of the Method

The structural part of a CS consists of a taxonomy of classes together with their at-
tributes, a taxonomy of associations among classes, and a set of integrity constraints
over the state of the domain, which define conditions that each state of the informa-
tion base must satisfy. Those constraints may have a graphical representation or can
be defined by means of a particular general-purpose language.

 Reasoning on UML Class Diagrams with OCL Constraints 499

In UML, a structural schema is represented by means of a class diagram, with its
graphical constraints, together with a set of user-defined constraints, which can be
specified in any language. According to [15], we assume they are specified in OCL.

The subset of the OCL language we consider consists of those OCL expressions
that are used in integrity constraints, not those operations that can only be used in pre
or postconditions, such as @pre and oclIsNew. Moreover, we only deal with OCL
operations that result in a boolean value. Exceptions are select and size that, despite
returning a collection and an integer, can also be handled by our method.

In Figure 2 we show the structural schema we will use throughout the paper. It
consists of a UML class diagram with three classes, three associations and seven OCL
constraints. It states that several employees work in a department, which is managed
by one employee. Some employees have a superior, and some employees are bosses.

The OCL constraints provide the class diagram with additional semantics. There
are two key constraints (UniqueEmp and UniqueDep), one for each class. The con-
straint ManagerIsWorker states that the manager of a department must be one of its
workers. Constraint ManagerHasNoSuperior guarantees that the manager of a de-
partment does not work for any other employee. The constraint BossIsManager guar-
antees that a boss is the manager of some department. The next constraint, BossHas-
NoSuperior, states that a boss does not work for any other employee. Finally, Superi-
orOfAllWorkers states that the workers of a deparmtent managed by a boss must work
for that boss.

Fig. 2. UML class diagram and OCL integrity constraints for Employees and Departments

Given a structural schema such as the one in Figure 2, our method determines a
number of properties, namely satisfiability, liveliness, constraint redundancy and state
reachability, taking both the UML class diagram and the OCL constraints into ac-
count. This is achieved by means of two different steps.

First, we automatically translate the UML class diagram and the OCL constraints
into a logical representation. Classes, attributes and associations are represented by
means of basic predicates. For instance, in the example of Figure 2, classes Employee
and Deparmtent become Employee(e), EmployeeName(e,n) and Deparmtent(d), De-
partmentName(d,n), and the association WorksIn is represented by WorksIn(e,d).

500 A. Queralt and E. Teniente

The OCL constraints of the schema are translated into formulas in denial form,
which represent conditions that must not be satisfied by any state of the information
base. For instance, the constraint BossHasNoSuperior is translated into:

←Boss(e) ∧ Superior(s,e)

The graphical constraints of the schema, such as cardinality and taxonomic con-
straints, also need to be translated into this kind of conditions.

A class diagram has also a set of implicit constraints that need to be taken into ac-
count in the logical representation of the schema to preserve the semantics of the
original one. For example, since UML is an object-oriented language, each instance
has an internal object identifier (OID) which uniquely differentiates two instances,
even though they are externally equivalent. Thus, additional constraints are needed in
the logical representation to guarantee that two instances of the schema do not have
the same OID. In the example of Figure 2 we need to specify the following constraint:

←Employee(x) ∧ Department(x)

As well as OIDs, the implicit constraints we can find in a class diagram are:

- In class hierarchies, an instance of a subclass must also be an instance of the
superclass.

- In associations or association classes, an instance of the association must link
instances of the classes that define the association.

- In association classes, there cannot exist several instances linking exactly the
same instances. Note that this is also true for associations without an associa-
tion class, but an additional constraint is not needed in this case, since predi-
cates representing n-ary (n>=2) associations have exactly n terms that can not
be identical in two different instances of the predicate.

Once this translation is done, we are able to define the determination of each prop-
erty as a constraint-satisfiability checking test. Then, we show how to use the CQC
Method [7, 8] to determine those properties.

The CQC Method performs constraint-satisfiability checking tests by trying to con-
struct a sample state satisfying a certain condition. The method uses different Vari-
able Instantiation Patterns (VIPs) according to the syntactic properties of the CSs
considered in each test.

For instance, to demonstrate that the class Employee of our example may have at
least one instance, the CQC Method constructs the following state:

[employyee(0), employeeName(0,0), worksIn(0,1),
department(1), departmentName(1,0), manages(0,1)]

This means that it is possible to have an instance of Employee satisfying all the
graphical, implicit and OCL constraints. The values of the instantiation correspond to
a representative state of the information base. That is, this solution given by the CQC
Method means that an instance of employee can exist if he works in a department
(since all employees must work in a department) and is the manager of that depart-
ment (since every department must have a manager and he must be one of its
workers).

 Reasoning on UML Class Diagrams with OCL Constraints 501

3 Translating a UML Structural Schema into Logic

In this section we propose a set of rules that, applied to a UML class diagram and a
set of OCL constraints, result in a set of first-order formulas that represent the struc-
tural schema. The subset of first-order logic considered does not provide functions;
and rules and conditions are required to be safe, that is, every variable occuring in
their head or in atoms of their body that are negated or use comparison operators must
also occur in an ordinary positive literal of the same body.

We will explain first how to obtain the formulas for the class diagram, taking into
account its implicit and predefined constraints. Later, we propose a translation for
user-defined OCL constraints. The complete logic representation of the schema can
be found in [14].

3.1 Translation of a UML Class Diagram

A UML class diagram is translated into a set of first-order formulas according to the
following rules.

3.1.1 Translation of classes
For each class C not being an association class we define a unary predicate C, where
its term represents the internal object identifier (OID).

For example, the class Employee is translated into a predicate Employee(e).

3.1.2 Translation of Attributes, Associations and Association Classes
Let R be an association between classes C1,...,Cn. If R is not an association class, we
define a base predicate R(c1,...,cn). Otherwise, if R is an association class we define a
base predicate R(r,c1,...,cn). Although it is not strictly necessary, we also include an
OID r so that all classes can be treated uniformly.

For example, the association WorksIn that relates Employees and Departments is
translated into the predicate WorksIn(e,d).

Attributes can be regarded as binary associations between a class C and a datatype.
Then, for each attribute ai in C we define a binary predicate CAi(c,ai). Note that, since
several classes can have an attribute with the same name, we need to use the class
name in the definition of the predicates representing attributes.

For example, the attribute name of Employee is translated into Employ-
eeName(e,n).

3.1.3 Translation of Implicit and Graphical Constraints
First of all, we must guarantee that there cannot exist two instances with the same
OID. This is already guaranteed for instances of the same class, since they are repre-
sented by unary predicates. Then, we must define rules to prevent the existence of two
literals of different predicates with the same OID, defining the following constraint
for each pair of predicates not representing classes in the same hierarchy:

← C1(x) ∧ C2(x)

502 A. Queralt and E. Teniente

According to this rule, we must define the following constraint in our example:

← Employee(x) ∧ Department(x)

Class hierarchies also require the definition of a set of constraints to guarantee that
an instance of each subclass Csubi is also an instance of its superclass Csuper. This is
done by means of the rule:

← Csubi(c) ∧ ¬Csuper(c)

In the example, the hierarchy of employees requires the following constraint:

← Boss(e) ∧ ¬Employee(e)

Moreover, additional rules are sometimes required to guarantee that an instance of
the superclass is not an instance of several subclasses simultaneously (disjoint con-
straint), or that an instance of the superclass is an instance of at least one of its sub-
classes (complete constraint). Then, for each pair of subclasses Csubi , Csubj we define a
constraint stating that an instance cannot belong to both of them simultaneously:

← Csubi(c) ∧ Csubj(c)

 and another one stating that an instance of Csuper must belong to at least one of the
Csubi. To do this we need a derived predicate isKindOfCsuper, with a rule for each Csubi:

← Csuper(c) ∧ ¬IsKindOfCsuper(c)
IsKindOfCsuper(c)← Csubi(c)

Another set of constraints is needed to guarantee the implicit constraint that an in-
stance of an association can only relate existing instances of the classes that define it.
Then, for each association R, being or not an association class with OID r, represented
by the predicate R([r,],c1,...,cn), we define the following constraint for each ci:

← R([r,],c1,...,cn) ∧ ¬Ci(ci)

In our example, the association WorksIn requires the addition of the rules:

← WorksIn(e,d) ∧ ¬Employee(e)
←WorksIn(e,d) ∧ ¬Department(d)

Similarly, we must define constraints to guarantee that the first term of a predicate
representing an attribute corresponds to an instance of the class to which the attribute
belongs. In our example:

←EmployeeName(e,n) ∧ ¬Employee(e)
←BossPhone(e,p) ∧ ¬Boss(e)
← DepartmentName(d,n) ∧ ¬Department (d)

Additionally, for the definition of association classes, we must guarantee that there
are not several instances of an association class having the same value in the terms
defining the instance. Then, if R is an association class, defined by classes C1,...,Cm,
we define the following constraint:

← R(r1,c1...cm) ∧ R(r2,c1...cm) ∧ r1<>r2

Finally, let min..max be a cardinality constraint attached to an attribute or to a class
Ci in an association R defined by classes C1,...,Cn. If min>0 we must add the following
constraint:

 Reasoning on UML Class Diagrams with OCL Constraints 503

← C1(c1) ∧...∧ Ci-1(ci-1) ∧ Ci+1(ci+1) ∧ ... ∧ Cn(cn) ∧ ¬MinR(c1,...,ci-1,ci+1,...,cn)
MinR(c1,...,ci-1,ci+1,...,cn) ← R([r1,]c1,...,ci-1,ci1,ci+1,...,cn) ∧ ...

∧ R([rmin,]c1,...,ci-1,cimin,ci+1,...,cn) ∧
∧ ci1<> ci2 ∧ ... ∧ ci1<> cimin ∧ ... ∧ cimin-1<>cimin

And if max < *, the following constraint is needed:

← R([r1,]c1,...,ci-1,ci1,ci+1,...,cn) ∧ ... ∧
R([rmax+1,]c1,...,ci-1,cimax+1,ci+1,...,cn) ∧ ci1<>ci2 ∧ ... ∧ ci1<>cimax+1 ∧ ...
∧ cimax<>cimax+1

As an example, we must define the following constraint to guarantee the lower
multiplicity of class Employee in the association WorksIn:

← Department(d) ∧ ¬OneWorker(d)
OneWorker(d)← WorksIn(e,d)

And we also have to define the following one due to the upper multiplicity of De-
partment in the same association:

← WorksIn(e, d1) ∧ WorksIn(e, d2) ∧ d1<> d2

For attributes, if no multiplicity is specified in the class diagram, it is assumed that
they are single-valued and not optional. Then, in our example we need the constraints:

←Employee ∧ ¬OneEmployeeName(e)
OneEmployeeName(e) ← EmployeeName(e,n)
←EmployeeName(e,n1) ∧ EmployeeName(e,n2) ∧ n1<>n2

Analogous constraints are needed for phone in Boss and name in Department.

3.2 Translation of OCL Integrity Constraints

We perform the translation of OCL integrity constraints into first-order logic in two
steps. First, we transform each OCL expression into an equivalent one expressed in
terms of the operations select and size. Both select and size are OCL operations that
apply to collections of elements, select returns the subset of the collection that satis-
fies a condition, and size returns the number of elements in the collection. The aim of
this transformation is to reduce the number of OCL constructs to be translated, so that
a uniform treatment can be applied to all constraints in order to obtain the correspond-
ing logic formulas.

3.2.1 Simplification of OCL Operations
The first step in the translation process consists in the reduction of the number of
OCL operations that appear in the constraints. Table 1 shows the OCL operations we
consider, and gives their equivalent simplified expressions. These translations are
iteratively applied until the only OCL operations that appear in the expression are
select and size.

504 A. Queralt and E. Teniente

Table 1. Equivalences of OCL operations

Original expression Equivalent expression with select and size
source->includes(obj) source->select(e | e=obj)->size()>0
source->excludes(obj) source->select(e | e=obj)->size()=0
source->includesAll(c) c->forall(e| source->includes(e))
source->excludesAll(c) c->forall(e| source->excludes(e))
source->isEmpty() source->size()=0
source->notEmpty() source->size()>0
source->exists(e | body) source->select(e | body)->size()>0
source->forall(e | body) source->select(e | not body)->size()=0
source->isUnique(e | body) source->select(e |source->select(e2 | e <>e2

and e2.body = e.body))->size()=0
source->one(e | body) source->select(e | body)->size()=1
source->reject(e | body) source->select(e | not body)

As an example we give the simplified form of ManagerIsWorker in our example:

context Department inv ManagerIsWorker:
self.worker->select(e |e = self.manager)-> size() > 0

Notice that if a department could have many managers (and we still wanted all of
them to be workers of the same department) the expression obtained from the simpli-
fication would have been different, since the operation includesAll would appear
instead of includes in the original OCL expression.

3.2.2 Translation of OCL Invariants into Logic
Once simplified, an OCL invariant has the following form:

context C inv: path-exp->select(e| body)->size() opComp k

where C is a class of the CS, path-exp is a sequence of navigations through associa-
tions, opComp is a comparison operator <, >, = or <> and k is an integer not lower
than zero1.

The translation of the simplified OCL invariants into logic depends on the specific
operator after size(). We are going to see first how to translate the navigation defined
by path-exp and the translation of the select operation. The select expression does not
necessarily appear in the simplified OCL invariant, in which case it is not translated.

Tr-path(path-exp). Let path-exp = obj.r1...rn[.att] be a path starting from an instance
obj of a class C, or from a call to the allInstances operation on C, navigating through
roles r1 to rn and, optionally, ending with the access to an attribute. Let C(obj) be the
literal resulting from the translation of the class to which obj belongs, and Ri(obji-1,
obji,...) be the literals corresponding to the association between roles ri-1 and ri, and C2

be the class where the attribute att is defined. Then, this navigation path is translated
into logic by means of the clause:

C(obj) ∧ R1(obj,obj1,....) ∧ ... ∧ Rn(objn-1, objn,...) [∧ C2(objn) ∧ C2Att(objn, att)]

1 When <=k or >=k appear in the original invariant and k is an integer greater than 0, they are

translated into <k+1 and >k-1. Those cases in which k is equal to 0 do not represent valid
constraints and, thus, they are not taken into account.

 Reasoning on UML Class Diagrams with OCL Constraints 505

For instance, the navigation self.worker appearing in constraint ManagerIsWorker
will be translated into Department(d) ∧ WorksIn(e,d).

Tr-select(e| body). We provide here the translation of a select expression in its most
simplified and usual form, where body = path1 opComp path2. In this case, the select
operation is translated into:

Tr-path(path1) ∧ Tr-path(path2) ∧ obj1 opComp obj2

where obj1 and obj2 are the objects obtained as a result of the navigation paths path1
and path2, respectively. Note that if any of the paths is a constant or e, then it must
not be translated. The details of the translation for the rest of cases may be found
in [14].

For instance, the translation of the expression select(e| e=self.manager) appearing
in the simplified OCL invariant of the constraint ManagerIsWorker will be translated
into Department(d) ∧ Manages(e2,d) ∧ e=e2.

Translation of an OCL invariant. Let path-exp=obj.r1...rn-1.rn. Depending on the
comparison operator, we define the translation of an OCL invariant in terms of the
translation of the path expression (Tr-path) and the select (Tr-select) as follows:

a) context C inv: obj.r1... rn-1.rn -> select(e| body)-> size() < k becomes

 ← C(c) ∧ Tr-path(obj.r1... rn-1) ∧ Tr-path1(rn) ∧ Tr-select1(e| body)
∧ … ∧ Tr-pathk(rn) ∧ Tr-selectk(e| body)

b) context C inv: obj.r1... rn-1.rn -> select(e| body)-> size() > k becomes

← C(c) ∧ ¬Aux(c)
Aux(c) ← Tr-path(obj.r1... rn-1) ∧ Tr-path1(rn) ∧ Tr-select1(e| body)

∧ … ∧ Tr-pathk+1(rn) ∧ Tr-selectk+1(e| body)

c) context C inv: obj.r1... rn-1.rn -> select(e| body)-> size() = k becomes

← C(c) ∧ ¬Aux(c)
Aux(c) ← Tr-path(obj.r1... rn-1) ∧ Tr-path1(rn) ∧ Tr-select1(e| body)

∧ … ∧ Tr-pathk(rn) ∧ Tr-selectk(e| body)
← C(c) ∧ Tr-path(obj.r1... rn-1) ∧ Tr-path1(rn) ∧ Tr-select1(e| body)

∧ … ∧ Tr-pathk+1(rn) ∧ Tr-selectk+1(e| body)

d) context C inv: obj.r1... rn-1.rn -> select(e| body)-> size() <> k becomes

← C(c) ∧ Tr-path(obj.r1... rn-1) ∧ Tr-path1(rn) ∧ Tr-select1(e| body)
∧ … ∧ Tr-pathk(rn) ∧ Tr-selectk(e| body) ∧ ¬Aux(c)

Aux(c) ← Tr-path(obj.r1... rn-1) ∧ Tr-path1(rn) ∧ Tr-select1(e| body)
∧ … ∧ Tr-pathk+1(rn) ∧ Tr-selectk+1(e| body)

Each translation Tr-path or Tr-select may be performed several times depending on
the constant k. Each Tr-pathi or Tr-selecti expressions refer to the same translations
but with different variables for those attributes not coming from obj.r1... rn-1. Clearly,
the previous formalization becomes much simpler in the usual cases where k is 0 or 1.

Intuitively, we may see that the translation of each OCL invariant defines a denial
stating that a given situation cannot hold. The first part of each denial includes the
logic representation of the path leading to the collection of instances to which the
select and the size operations are applied. The second part, the one defined by the

506 A. Queralt and E. Teniente

subindexes 1 to k, is required to guarantee that the cardinality of the set of elements
that fulfill the select condition satisfies also the required comparison.

As an example, consider the simplified invariant of constraint ManagerIsWorker:

context Department inv: self.worker -> select(e| e=self.manager)-> size() > 0

applying the translation b) above we obtain2:

← Department(d) ∧ ¬Aux(d)
Aux(d) ← Tr-path(self) ∧ Tr-path(worker) ∧ Tr-select(e| e=self.manager)

and, after translating paths and selects, we get the following formulas which force all
departments to have at least one worker who is also a manager.

← Department(d) ∧ ¬Aux(d)
Aux(d) ← Department(d) ∧ WorksIn(e,d) ∧ Manages(e2,d) ∧ e=e2

It may also happen that the original expression does not include any OCL opera-
tion. Then the constraint has not been simplified and has the form:

context C inv: path-exp opComp value

where value is either a constant or another navigation path. The translation of these
invariants into logic is:

← C(c) ∧ Tr-path(path-exp) ∧ Tr-path(value) ∧ obj1 opComp obj2

where obj1 and obj2 are the objects obtained as a result of the navigation path(s) path-
exp and value. Note that if value is a constant then it must not be translated.

4 Reasoning on UML Structural Schemas Using the CQC Method

4.1 The CQC Method in a Nutshell

The CQC Method performs query containment tests on deductive database schemas.
Moreover, it is able to determine several properties on a database schema: satisfiability,
predicate liveliness, constraint redundancy and reachability [7, 8]. It is a semidecidable
procedure for finite satisfiability and unsatisfiability, i.e. it always terminates when
there is a finite consistent state satisfying the property, or when it is unsatisfiable.

Roughly, the CQC Method is aimed at constructing a state that fulfills a goal and
satisfies all the constraints in the schema. As we will see, the goal to attain is formu-
lated depending on the specific reasoning task to perform.

In this way, the CQC Method requires two main inputs besides the database
schema definition itself. The first one is the definition of the goal to attain, which the
method will try to obtain by constructing an information base. The second input is the
set of constraints to enforce, which must not be violated by the constructed informa-
tion base.

Then, in order to check if a certain property holds in a schema, it has to be ex-
pressed in terms of an initial goal to attain (G0) and the set of integrity constraints to
enforce (F0), and then ask the CQC Method Engine to construct a sample information
base to prove that the initial goal G0 is satisfied without violating any integrity con-
straint in F0.

2 Note that, since k=0, the translation of the select and the path must be performed only once.

 Reasoning on UML Class Diagrams with OCL Constraints 507

4.2 Using the CQC Method to Reason on UML and OCL Class Diagrams

In this subsection we show how to use the CQC Method to reason on UML class
diagrams with OCL constraints. There are two kinds of reasoning tasks we can per-
form. The first ones consist in verifying, without the designer's intervention, that the
schema satisfies a set of properties, namely satisfiability of the schema, liveliness of
classes or associations and redundancy of constraints. On the other hand, state reach-
ability requires the designer to ask questions and see if the answers given according to
the conceptual schema correspond to what he expected.

We give the initial goal (G0) and the set of constraints to enforce (F0) in order to
perform each reasoning task with the CQC Method. In most cases, F0 coincides with
the set of constraints of the schema (IC). The results of each reasoning task applied to
Figure 2 have been proved by a Prolog implementation of the method.

4.2.1 Satisfiability
 A schema is satisfiable if there is a non-empty state of the information base in which
all its integrity constraints are satisfied.

To check this property with the CQC Method, G0 is to have any instance of any
class or association, and F0 = IC. If the CQC Method engine succeeds in this task, i.e.
if it finds a sample information base, then the schema is satisfiable. Otherwise, it is
not.

The schema of Figure 2 is satisfiable, since it accepts at least a non-empty state.
For instance, it may have an employee, which has to work in a department. Since each
department must have a manager that is one of its workers, a sample state (obtained
by the CQC Mehtod) proving satisfiability is {Employee(John), WorksIn(John,Sales),
Department(Sales), Manages(John,Sales)}.

4.2.2 Liveliness of a Class or Association
Even if a schema is satisfiable, it may turn out that some class or association is empty
in every valid state. Liveliness of classes or associations determines if a certain class
or association can have at least one instance.

In this case, G0 is to have any instance of the predicate representing the class or as-
sociation to be checked, and F0 = IC. If the CQC Method engine succeeds in this task
then the class or association is lively.

Class Department of the schema in Figure 2 is lively, since there exists at least a
state satisfying all the constraints in which Department has an instance. If we want to
have a department, we also need at least one employee that works in it, and another
one that is its manager. Besides, the manager must be one of the workers, so a valid
state (obtained by the CQC Method) is {Department(Sales), WorksIn(John, Sales),
Manages(John, Sales), Employee(John)}. At the same time, this state proves that class
Employee and associations Manages and WorksIn are lively as well.

Let us see then if the association Superior and the class Boss are lively too. We
have that there is at least a state in which Superior is not empty, which consists in an
employee that works for another one, both of them working in the same department
and the superior employee being the manager of the department. For example {Supe-
rior(Mary, John), Employee(Mary), Employee(John), WorksIn(Mary, Sales), Work-
sIn(John, Sales), Department(Sales), Manages(Mary, Sales)}.

508 A. Queralt and E. Teniente

In contrast, if we reason on the liveliness of Boss, we see that to have an instance
of Boss we need that he or she is the superior of all the workers of the department
managed by that boss (constraint SuperiorOfAllWorkers). A state satisfying this con-
dition would be one in which a boss does not manage any department, but this is pre-
vented by the constraint BossIsManager. Another way of satisfying this condition
would be a state in which the department managed by the boss does not have workers,
but the constraint ManagerIsWorker forces each department to have at least a worker,
its manager. Then, the only option is to have a boss that manages a department and
that all the workers of that department (including the boss himself) are subordinates of
that boss. But this is impossible according to the constraint BossHasNoSuperior and,
therefore, the class Boss is not lively.

When eliminating either of these constraints, a state fulfilling the rest of conditions
can be found and Boss becomes lively. For instance, if we remove BossIsManager we
obtain the following state, in which the boss works in a department but is not a man-
ager. Since every department must have a manager, it is another employee the one
who manages the department: {Boss(John), Employee(John), WorksIn(John,Sales),
Department(Sales), Manages(Mary,Sales), WorksIn(Mary,Sales), Employee(Mary)}.

4.2.3 Redundancy of an Integrity Constraint
An integrity constraint is redundant if integrity does not depend on it, that is, if the
states it does not allow are already not allowed by the rest of constraints.

Let Ic1 be one of the integrity constraints defined in the schema. In order to check
if it is redundant, G0 = Ic1, and F0 = IC – {Ic1}. If the CQC Method engine is not
capable of constructing such a state, then Ic1 is redundant.

If we analyze the constraints of the schema in Figure 2 we can see, for instance,
that the constraint BossHasNoSuperior is redundant. We can try to build a state in
which this constraint is violated while the rest are not, but it is not possible since a
boss must be the manager of some department (constraint BossIsManager). Addition-
ally, the constraint ManagerHasNoSuperior prevents the manager of a department
from having a superior and thus, the constraint BossHasNoSuperior can never be
violated.

There are other redundancies in this example, for instance between a graphical and
an OCL constraint. In particular, ManagerIsWorker implies that a department must
have at least a worker, since it must have a manager and he must be one of its work-
ers. At the same time, the cardinality constraint 1..* of Employee in the association
WorksIn already forces the existence of at least a worker in each department. Both
redundancies are confirmed by the execution of the CQC Method.

4.2.4 Reachability of a Partially Specified State
We may also be interested in more general properties of the schema, like checking
whether it accepts certain states. This is usually known as checking reachability of
partially specified states.

Let S be a partially specified state of the information base, that is, a set of instances
probably inconsistent. If the CQC Method engine is capable of building a state with
G0 = S and F0 = IC, then S is reachable.

We can do this in two ways, either by giving specific instances of some classes or
associations, or by specifying a condition, that is, a state not fully instantiated.

 Reasoning on UML Class Diagrams with OCL Constraints 509

For instance, taking the example in Figure 2, we may wonder whether it is possible
to have a manager that is not a boss. Assuming that the initial partially specified state
is {Manages(John, Sales) ∧ ¬Boss(John)}, a solution given by the CQC Method is
{Manages(John,Sales), Employee(John), Department (Sales), WorksIn(John, Sales)}.
This means that the state is reachable, as long as there exist the corresponding in-
stances of Employee and Department and the employee works in the department he
manages.

Another question we could ask is whether there can be a boss who is not the supe-
rior of any employee, which may not be clear at first sight. If we try to construct a
state satisfying {Boss(x) ∧ ¬isSuperior(x)} with isSuperior(x) ← Superior(x,e) we
can see that this is not possible. The constraint BossIsManager forces a boss to be the
manager of some department while the constraint SuperiorOfAllWorkers guarantees
that all employees that work in the department managed by a boss are his subordi-
nates. In this case, the CQC Method determines that the goal can not be attained.

5 Related Work

We review how reasoning on CSs has been addressed so far. We will start in ER con-
ceptual schemas and later we will deal with UML conceptual schemas. As will be
seen, the main contribution of our approach is to deal with more expressive concep-
tual schemas than previous methods. We must state however that those methods are in
general more efficient than ours for the particular cases they handle.

5.1 Reasoning on ER Conceptual Schemas

The most popular task addressed in ER schemas is strong satisfiability, in particular
regarding cardinality constraints. Strong satisfiability was introduced in [12] and their
approach consists in reducing the problem to solving a linear inequality system. This
system is defined from the relationships and cardinality constraints of the schema.
Then, a schema is strongly satisfiable if and only if there are solutions for its corre-
sponding inequality system.

On the other hand, [10] determines strong satisfiability of a schema by means of a
graph-theoretic approach. This work deals with int-cardinality constraints, which are
more general than traditional ones since they allow gaps in the sets of cardinalities.

The same method is used in [11], but this time it serves more specific purposes.
Given a cardinality constraint set S, the method can find superfluous entities, i.e.
entities whose population is empty in every instance of the schema satisfying S de-
termine which is the minimal subset of constraints that causes a schema not to be
satisfiable suggest strategies to resolve inconsistency.

Another problem is approached in [5], which is the detection of potentially redun-
dant associations in an ER schema. The method is based this time in adjacency ma-
trixes, but it is incomplete since some types of redundancy involving more than one
relationship between two entities cannot be detected.

Summarizing, we may see that several methods have approached reasoning on ER
schemas, mainly through cardinality constraints. Nevertheless, none of them takes
general-purpose integrity constraints into account, while we do.

510 A. Queralt and E. Teniente

5.2 Reasoning on UML Conceptual Schemas

Description Logics (DL) is a family of formalisms for knowledge representation,
based on first-order logic [1]. In the last years, DL has gone beyond its traditional
scope in the Artificial Intelligence area to provide new alternatives and solutions to
many topics in the database and conceptual modeling areas [3, 4, 6].

DL allows inferring represented knowledge from the knowledge explicitly contained
in the knowledge base. Such an inference mechanism can be used to determine some
properties of the schema, such as schema consistency (satisfiability), class consistency,
class equivalence or class subsumption. DL assumes that the system should always check
these properties in reasonable time and, thus, it restricts the expressive power of each
specific DL to guarantee that the problem to be solved remains decidable.

An interesting approach to reasoning on UML specifications (i.e. class diagrams) is
to translate them to DL and then use current standard DL-based reasoning systems on
them [2] to automatically verify properties like the ones stated above. However, this
approach does not deal with general-purpose OCL constraints since they may not be
taken into account to guarantee decidability of the problem being handled.

An important exception on the treatment of OCL integrity constraints is the system
USE [9], which allows to validate UML and OCL models by constructing snapshots
representing system states with objects, attribute values and links (something similar
to our reachability of partially specified states). With this feature USE allows to vali-
date whether the schema specifies the relevant knowledge of the domain, as perceived
by the designer. Nevertheless, USE is not able to automatically verify whether the
schema satisfies desirable properties like satisfiability, liveliness or redundancy.

Moreover, we see two important differences between USE and the work reported
here. Firstly, in USE the designer must define by hand an operation to build each of
the states of the CS to be validated, while we allow defining them declaratively by
stating (the subset of) the information they should contain.

Secondly, and most important one, in USE the generated snapshots are checked
against the constraints and then rejected if some of them is violated. On the contrary,
in our approach the partially specified states that violate some constraint are repaired
by assuming additional information that allows repairing the violations. In this way,
we obtain solutions that may not be generated in USE. For instance, in the example of
the introduction, USE would conclude that a Department named Marketing with a
minimum salary of 8000 is not a valid snapshot, while we draw that it is possible to
have such a department if the state contains also an Employee named Mary with a
salary of 9000, who is a RichEmp and WorksIn Marketing.

6 Conclusions and Further Work

We have proposed a new approach to reason on structural schemas specified in UML
with OCL constraints, both regarding the correctness of their structure and the states
of the domain they accept. In this sense, we have provided a set of automatic tests that
can be performed on a schema, namely satisfiability, liveliness or redundancy, and
also facilities to check if the schema represents the information expected by the
designer.

 Reasoning on UML Class Diagrams with OCL Constraints 511

Our approach consists of two main steps. First, we translate the UML class dia-
gram and the OCL constraints into a first-order logic representation, and then we use
the CQC Method, which performs constraint-satisfiability checking tests, in order to
perform the reasoning and validation tasks stated above. The CQC Method is a
semidecidable procedure for finite satisfiability and unsatisfiability. This means that it
always terminates when there exists a finite consistent state satisfying the property, or
when the property is unsatisfiable (finitely or infinitely).

We have illustrated the usefulness of our results by applying our approach to a
simple conceptual schema. We have translated the whole schema into its logic repre-
sentation following our proposal and we have determined all properties pointed up in
the paper by means of an implementation of the CQC Method.

The main contribution of our approach is to be able to deal with general-purpose
OCL constraints. In particular, we may reason about OCL invariants defined by
means of OCL operations that result in a boolean value plus select and size opera-
tions.

There are some interesting directions for further work to take from this point. First,
we plan to provide an implementation of the first step of our method, that is, the trans-
lation of UML and OCL into logic. Also, we plan to extend the subset of the OCL
language considered in order to improve the expressiveness of the constraints treated.
Moreover, we would like also to extend the kind of reasoning we may perform on
UML conceptual schemas by considering also their behavioral part.

Acknowledgments. We would like to thank J. Cabot, J. Conesa, D. Costal, C.
Gómez, A. Olivé, R. Raventós and M.R. Sancho for helpful discussions on previous
drafts of this paper. This work has been partially supported by the Ministerio de
Ciencia y Tecnología under project TIN2005-06053.

References

1. Baader, F., Calvanese, D., McGuiness, D., Nardi, D., Patel-Schneider, P., (Eds.): The
Description Logic Handbook: Theory, Implementation and Applications. Cambridge Uni-
versity Press (2003)

2. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML Class Diagrams. Artifi-
cial Intelligence 168(1-2) (2005) 70-118

3. Borgida, A.: Description Logics in Data Management. IEEE Transactions on Knowledge
and Data Engineering 7(5) (1995) 671-682

4. Borgida, A., Lenzerini, M., Rosati, R.: Description Logics for Data Bases. In: F. Baader,
D. Calvanese, D. McGuiness, D. Nardi, and P. Patel-Schneider, (eds.): The Description
Logic Handbook: Theory, Implementation and Applications. Cambridge University Press
(2003) 472-494

5. Bowers, D. S.: Detection of Redundant Arcs in Entity Relationship Conceptual Models.
ER 2003 Ws LNCS 2784 (2003) 275-287

6. Calvanese, D., Lenzerini, M., Nardi, D.: Description Logics for Conceptual Data Model-
ing. In: J. Chomicki and G. Saake, (eds.): Logics for Databases and Information Systems.
Kluwer (1998) 229-263

7. Farré, C., Teniente, E., Urpí, T.: A New Approach for Checking Schema Validation Prop-
erties. In: Proc. 15th International Conference on Database and Expert Systems Applica-
tions (DEXA'04) (2004) 77-86

512 A. Queralt and E. Teniente

8. Farré, C., Teniente, E., Urpí, T.: Checking Query Containment with the CQC Method.
Data and Knowledge Engineering 53(2) (2005) 163-223

9. Gogolla, M., Bohling, J., Richters, M.: Validation of UML and OCL Models by Auto-
matic Snapshot Generation. «UML» 2003 LNCS 2863 (2003) 265-279

10. Hartmann, S.: On the Consistency of Int-cardinality Constraints. 17th International Con-
ference on Conceptual Modeling - ER'98 LNCS 1507 (1998) 150-163

11. Hartmann, S.: Coping with Inconsistent Constraint Specifications. 20th International
Conference on Conceptual Modeling - ER 2001 LNCS 2224 (2001) 241-255

12. Lenzerini, M., Nobili, P.: On the Satisfiability of Dependency Constraints in Entity-
Relationship Schemata. In: Proc. 13th International Conference on Very Large Databases
- VLDB'87 (1987) 147-154

13. Olivé, A.: Conceptual Schema-Centric Development: A Grand Challenge for Information
Systems Research. 17th Int. Conf. on Advanced Information Systems Engineering
(CAISE'05) LNCS 3520 (2005) 1-15

14. Queralt, A., Teniente, E.: Reasoning on UML Class Diagrams with OCL Constraints.
Departament de LSI, UPC, Technical Report LSI-06-15-R (2006)

15. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models Ready for
MDA. 2nd edn. Addison-Wesley Professional (2003)

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 513 – 527, 2006.
© Springer-Verlag Berlin Heidelberg 2006

On the Use of Association Redefinition in UML Class
Diagrams

Dolors Costal and Cristina Gómez

Universitat Politècnica de Catalunya
Departament de Llenguatges i Sistemes Informàtics

Jordi Girona 1-3 E08034 Barcelona (Catalonia)
{dolors, cristina}@lsi.upc.edu

Abstract. Association redefinition is a new concept in UML 2.0 that makes it
possible to impose additional constraints on some instances of associations. In
this paper, we describe how to use association redefinition to declare additional
referential integrity and cardinality constraints for associations. We also analyze
the interactions between taxonomic constraints and association redefinitions
and their impact on the satisfaction of taxonomic constraints. Finally, we
establish several conditions that are necessary to guarantee well-formed
association redefinitions.

1 Introduction

Association redefinition is a new concept in UML 2.0 [11] that makes it possible to
define association ends more specifically. This paper focuses on association
redefinitions that allow designers to specify additional constraints on associations.
Figure 1.1 shows an example in which the association Enrols connects students to the
courses they take. There are two generalizations representing that there are two types
of students (degree students and foreign students) and two types of courses (degree
courses and master courses) respectively.

Fig. 1.1. Examples of association and generalization

Association redefinitions facilitate the specification of constraints that apply only
to instances that belong to a particular descendant of one of the associated classes. In
the previous example, we can specify that foreign students can take up to two courses
(although the maximum for the rest of the students is five) and that degree students
can only take degree courses (and not courses of other types). Both examples
establish constraints that do not affect the whole set of students but rather only
students that belong to a particular descendant subclass, i.e. students who are foreign
students or students who are degree students.

514 D. Costal and C. Gómez

These examples show that both associations and generalizations are involved in
association redefinitions. As a consequence, interactions may appear between
constraints specified by association redefinitions and taxonomic constraints of
generalizations such as disjoint or complete constraints.

The analysis of association redefinitions to specify additional constraints is
important for several reasons:

(1) To facilitate their use in conceptual schemas.
(2) To allow the development of specialized procedures for reasoning about them.
(3) To develop efficient patterns of implementation for their enforcement.

Our work has the aim to contribute to objectives (1) and (2). We analyze the use of
association redefinitions to specify additional constraints on associations and we
introduce a classification of association redefinitions according to the kinds of
constraints they specify with the objective of clarifying their use.

We also study the interactions between taxonomic constraints and association
redefinitions. Based on those interactions, we identify conditions that guarantee the
satisfaction of taxonomic constraints, which contributes to objective (2). Additionally,
we establish several rules that are necessary to guarantee well-formed association
redefinitions. These results can be used by designers to help guarantee the validity of
their specifications.

This paper is structured as follows. Section 2 reviews some basic concepts. Section
3 analyzes the use of association redefinitions to specify additional constraints on
associations and compares the expressiveness of association redefinitions with
previous proposals. Section 4 discusses the satisfaction of taxonomic constraints in
the presence of association redefinitions. Section 5 presents several rules that are
necessary to define well-formed association redefinitions. Section 6 discusses related
work. Finally, in Section 7 we present our conclusions and suggest future work.

2 Basic Concepts for UML Association Redefinitions

In this section, we review the concept of association and their referential integrity and
cardinality constraints. We also review generalizations and taxonomic constraints.

Associations and their constraints. An association represents a relationship between
classes (or more specifically, instances of those classes) that indicates some
meaningful and interesting connection [11, 13]. It has at least two ends, each of which
is connected to a class. Association ends are represented by properties. This paper
deals with non-recursive binary associations (two ends). In Figure 1.1, for instance,
the association Enrols relates students to the courses they take.

Two kinds of integrity constraints that are relevant to associations are referential
integrity constraints and the cardinality constraints specified by multiplicities.
Referential integrity constraints are inherent to associations, since an instance of an
association is a tuple with one value for each end of the association, where each value
must necessarily be an instance of the class at its corresponding end. Multiplicity is
almost always specified for association ends. In binary associations, it restricts the
possible number of values of the association end that can simultaneously be related to
an object at the opposite end. For example, in the association Enrols shown in Figure

 On the Use of Association Redefinition in UML Class Diagrams 515

1.1, the multiplicity 1..5 specified for the end course indicates that each student must
be enrolled in at least one and at most five courses.

Generalizations and taxonomic constraints. Generalization is a directed relation-
ship that can be specified between two classes [11, 13]. It relates a more general class
(superclass) to a more specific class (subclass). Specialization is the same
relationship viewed from the subclass. It implies a taxonomic specialization constraint
that states that all instances of the subclass are also instances of the superclass.

A set of subclasses that share a common superclass may be grouped into a
generalization set. Other taxonomic constraints may be applied to a generalization set.
These are disjoint constraints and complete constraints. Disjoint constraints indicate
that an object can be an instance of at most one subclass of the corresponding
generalization set. Complete constraints indicate that each object of the superclass
must be an instance of at least one subclass of the corresponding generalization set.
Generalization sets labelled as overlapping (incomplete) indicate the absence of a
disjoint (complete) constraint. Figure 1.1 shows a generalization set in which Course
is the superclass and DegreeCourse and MasterCourse are the subclasses. Disjoint
and complete taxonomic constraints are specified for this generalization set.

This paper focuses on redefinitions that only involve direct subclasses of classes
connected by the redefined associations. Thus, we only deal with one level of
generalization or specialization hierarchies.

3 UML Association Redefinitions for Specifying Additional
Constraints on Associations

The concept of association redefinition introduced in UML 2.0 is complex, since it
involves not only associations but also generalizations. In fact, the description of
redefinition in the UML metamodel is scattered over more than 20 locations, as
remarked in [3]. Therefore, in order to clarify its use to specify additional constraints
on associations, it is necessary both to analyze in detail this concept and to introduce a
classification of different kinds of redefinitions based on the types of constraints they
specify.

A redefinition of a binary association allows us to define an association end more
specifically [11, 13]. Several redefinitions may be specified for each association end.
The notation {redefines <end-name>} is applied to an association end (the redefining
end) to indicate that this end redefines the one named <end-name> (the redefined
end). For instance, in the example in Figure 3.1, the ends dCourse and mCourse
redefine the end course.

Association ends are represented by properties. The redefinition of association
ends is a particular case of property redefinition. In general, the characteristics of a
property that can be redefined are name, type (which may be specialized), default
value, derivation status, visibility, multiplicity and constraints on values. For
properties corresponding to association ends in particular, we can redefine name,
type, derivation status, visibility and multiplicity.

In this paper, we deal with property redefinitions that apply to name, type and
multiplicity, since we focus on using redefinitions to specify new types of constraints

516 D. Costal and C. Gómez

that are relevant at a conceptual level. Type and multiplicity redefinitions impose
additional referential and cardinality constraints on an association respectively.

To analyze in detail the additional constraints that a property redefinition may
imply for an association, we will consider three separate cases: a property redefinition
that redefines type, a property redefinition that redefines multiplicity and a property
redefinition that redefines both type and multiplicity.

In all three cases, the redefinition of an end property applies to instances connected
by the association that are instances of a class that specializes the class used at the
opposite end. We call this set of instances the affected instances of the redefinition.
Consider, for example, the end dCourse, which redefines the end course of the
association Enrols, shown in Figure 3.1. Since the class at the opposite end of the
redefinition is DegreeStud, the instances affected by the redefinition are the instances
of the class Student that are also instances of DegreeStud.

This implies that the following condition must hold in all three cases of property
redefinition: (C1) in a redefining association, the end opposite the redefining end is
always connected to a class that is a descendant of the class connected by the end
opposite the redefined end.

In our example, condition C1 holds because the class DegreeStud is a descendant
of the class Student. The UML 2.0 metamodel [11] establishes that condition C1 must
hold for any association end redefinition.

According to C1, when we have a redefinition of an association end, we always
have a specialization (or generalization) of the class opposite the redefined end and
consequently a taxonomic specialization constraint. In cases in which there are two or
more redefinitions of an association end with affected instances from different
subclasses, it is possible to have a generalization set for those subclasses with a
disjoint and/or complete taxonomic constraint.

3.1 Type Redefinition

A type redefinition establishes an additional referential integrity constraint that states
that the affected instances of the redefinition are connected by the association to
instances that must belong to the class of the redefining end.

Figure 3.1 shows two type redefinitions. The end dCourse redefines the type of the
end course by establishing that all courses in which a degree student is enrolled must
be degree courses. Similarly, the end mCourse redefines the end course by
establishing that all courses in which foreign students are enrolled must be master
courses. In this example, only the end course is redefined. However, in general, both
ends of an association can be redefined.

Fig. 3.1. Examples of type redefinition

 On the Use of Association Redefinition in UML Class Diagrams 517

When designers specify a type redefinition, they must fulfil the following
conditions (in addition to condition C1): (C2) the redefining end must be connected to
a class that is a descendant of the class connected by the redefined end, and (C3) the
redefining end must not specify a multiplicity.

Conditions C2 and C3 hold for the redefinitions depicted in Figure 3.1. Both
DegreeCourse and MasterCourse are descendants of Course. The UML 2.0
metamodel [11] imposes that either condition C2 must hold or the redefining end
must be connected to the same class connected by the redefined end. The latter case
would not be a type redefinition (see Section 3.2).

3.2 Multiplicity Redefinition

A multiplicity redefinition restricts the multiplicity allowed for the affected instances
of the redefinition to the redefining multiplicity.

Figure 3.2 shows two multiplicity redefinitions. The end dCourse restricts the
number of courses that degree students take to between three and five. The end
fCourse restricts the courses that foreign students take to one or two.

Fig. 3.2. Examples of multiplicity redefinition

In order to specify a multiplicity redefinition (not combined with a type
redefinition), designers must fulfil the following conditions (in addition to condition
C1): (C4) the redefining end is connected to the same class as the redefined end, and
(C5) the redefining end has an associated multiplicity, that we call redefining
multiplicity, which is more restrictive than the multiplicity of the redefined end.

In Figure 3.2, the redefining ends are connected to the class Course, which is the
class that corresponds to the redefined end (condition C4), and the redefining
multiplicities are more restrictive than the redefined multiplicity (condition C5). If the
redefining end specifies multiplicity, the UML 2.0 metamodel [11] ensures that C5
holds. UML 2.0 also imposes that either condition C4 or condition C2 (from Section
3.1) must hold. The case in which C2 and C5 are both true corresponds to a type and
multiplicity redefinition as we will see in Section 3.3.

3.3 Type and Multiplicity Redefinition

A type and multiplicity redefinition establishes that the affected instances of the
redefinition are connected by the association to instances that must belong to the class
of the redefining end. Additionally, the multiplicity allowed for those affected
instances is restricted to the redefining multiplicity.

Figure 3.3 depicts two type and multiplicity redefinitions. The end dCourse
establishes that degree students may only be enrolled in degree courses and that they

518 D. Costal and C. Gómez

may take between three and five of them. Similarly, the end mCourse establishes that
foreign students may only be enrolled in master courses and that they may take one or
two of them.

Fig. 3.3. Examples of type and multiplicity redefinition

In type and multiplicity redefinitions, conditions C1, C2 and C5 hold.

3.4 Relationship Between Association Redefinition and Previous Proposals

Type and multiplicity redefinitions are closely related to relationship type refinements
of participants and relationship type refinements of cardinality constraints, which
have been studied and used by many authors [2, 5, 7, 8, 9, 10]. More concretely, type
redefinition is similar to the refinement of participants and multiplicity redefinition is
similar to the refinement of cardinality constraints.

Despite this, there are some particular cases of refinement of cardinality constraints
that are not expressible by means of UML association redefinitions. In Figure 1.1 we
could specify, using a cardinality constraint refinement, that a foreign student can take
up to three degree courses without disabling the possibility that foreign students take
other types of courses as well. A UML association redefinition can not express this
case because, when the multiplicity is redefined in a subclass, the type is implicitly
redefined (and is a type and multiplicity redefinition).

Additionally, the proposal of [8] allows sets of subclasses to be in the antecedents
and consequents of refinements, while a UML association redefinition allows a single
subclass both in the redefining end and in the opposite end of the redefinition.

4 Interactions Between Taxonomic Constraints and Association
Redefinitions

Constraints defined in a class diagram must be satisfied in the information base (IB).
An IB satisfies a constraint if the constraint is true in the IB.

We say that a constraint is satisfied by a class diagram when the diagram entails
this constraint. This means that other constraints defined in the diagram imply the
former. In other words, the constraint is a logical consequence of the conceptual
schema represented by the diagram. In this case no particular action needs to be taken
at runtime to ensure the constraint is satisfied, but it may be important to keep it in the
class diagram for verification, validation, implementation or evolution purposes. If a
constraint is not satisfied by means of the class diagram, it must be enforced.

 On the Use of Association Redefinition in UML Class Diagrams 519

We will show that, in some cases, taxonomic constraints may be entailed by
constraints on association redefinitions and, as a consequence, their enforcement is
not necessary.

We will illustrate some of our results based on the example shown in Figure 4.1,
which refers to a fragment of an example shown in [13]. The class diagram defines
account products and legal entities in a bank. Accounts have at least one legal entity
owner and may have several agents. Legal entities own at least one account and may
act as agents of various accounts. Accounts are specialized into personal and
corporate accounts. Legal entities are specialized into person and company entities.
Each generalization set is disjoint and complete. Three type and multiplicity
redefinitions are defined, which establish that personal accounts must have at most
one trustee (a person who acts as agent), corporate accounts must have between two
and five signers (companies that act as agents) and corporate accounts must have just
one owner, which must be a company.

Fig. 4.1. Examples of type and multiplicity redefinition of an association end

This diagram includes eight taxonomic constraints. Four of them are specialization
constraints. They define that personal accounts are accounts, corporate accounts are
accounts, people are legal entities and companies are legal entities. Two of them are
disjointness constraints, which define that an account cannot be corporate and
personal at the same time and that a legal entity cannot be a person and a company at
the same time. Finally, two complete constraints define that an account must be
corporate or personal and a legal entity must be a person or a company.

We discuss, in the following, how each kind of taxonomic constraint can be
satisfied by association redefinitions.

4.1 Specialization Constraints Entailed by Association Redefinitions

This section presents a theorem that establishes the conditions in which specialization
constraints are entailed by redefinitions. Figure 4.2 illustrates the situations it describes.

Fig. 4.2. Specialization constraint entailed by a multiplicity or a type and multiplicity redefinition

520 D. Costal and C. Gómez

Theorem 4.1. (Specialization constraint entailed by a multiplicity or a type and
multiplicity redefinition). Let A and B be two classes and R a binary association
between them. Let b be the association end that connects R to class B. Let spec1 be the
specialization of A into subclass A1. Assume that b1 is a multiplicity redefinition (resp.
type and multiplicity redefinition) of end b with multiplicity m1, that b1 is connected
to B (resp. to B1) and that the opposite end of b1 is connected to class A1. Then, if the
lower bound of m1 is greater than zero, the specialization constraint of spec1 is
entailed by the redefinition.

Proof. (1) Assume that x is any instance of A1. We say that R1 represents a subset of R
that contains the instances involved by the redefinition. There must be an instance y of
B (resp. B1) such that x is R1-related to y since the lower bound of m1 is greater than
zero.

(2) If x is R1-related to y, then x is R-related to y since b1 is a redefinition of b.
(3) If x is R-related to y, then x is an instance of A due to the referential integrity of R.
(4) From (1) and (3), if x is an instance of A1 then x is an instance of A.

Consider the example of Figure 4.1. All of its redefinitions are type and multiplicity
redefinitions. By applying Theorem 4.1, we can conclude that the specialization
constraint between CorporateAccount and Account is entailed by the redefinition of
the end agent into signer or by the redefinition of the end owner, since both
redefining multiplicities have a lower bound greater than zero.

However, the specialization constraint between PersonalAccount and Account
must be enforced because the redefinition of the end agent into trustee has a
redefining multiplicity with a lower bound equal to zero. There may be instances of
PersonalAccount that do not have a trustee person and, consequently, type and
multiplicity redefinitions do not apply to those instances.

4.2 Disjointness Constraints Entailed by Association Redefinitions

This section presents four theorems that establish the conditions in which disjointness
constraints are entailed by redefinitions. The first one corresponds to the case of type
redefinition, which is illustrated in Figure 4.3.

Fig. 4.3. Disjointness constraint entailed by type redefinitions

Theorem 4.2. (Disjointness constraint entailed by type redefinitions). Let A and B be
two classes and R a binary association between them. Let b be the association end that
connects R to class B and let m be its multiplicity. Let gs1 be a generalization set that
specializes superclass A into subclasses A1,…,An. Let gs2 be a generalization set that
specializes superclass B into subclasses B1,…,Bn. Assume that all specialization

 On the Use of Association Redefinition in UML Class Diagrams 521

constraints of gs1 hold. Assume that b1,…,bn are type redefinitions of the end b, that
each bi is connected to Bi and that the opposite end of bi is connected to class Ai.
Then, if the lower bound of m is greater than zero and gs2 is disjoint, the disjointness
constraint of gs1 is entailed by the type redefinitions.

Proof. (1) Assume that x is an instance of Ai and Aj, where 1 i n and 1 j n and i j.
We say that Ri (Rj) represents a subset of R that contains the instances involved by the
redefinition bi (bj).
(2) If x is an instance of Ai, then x is also an instance of A by the specialization
constraint of gs1 involving Ai.
(3) If x is an instance of A, there must be an instance y of B such that x is R-related to
y since the lower bound of m is greater than zero.
(4) From (1) and (3), as x is an instance of Ai and x is R-related to y then x is Ri-
related to y and y is an instance of Bi because bi is a type redefinition of b.
(5) From (1) and (3) as x is an instance of Aj and x is R-related to y then x is Rj-related
to y and y is an instance of Bj because bj is a type redefinition of b.
(6) (4) and (5) are contradictory because they state that y is an instance of Bi and Bj
and gs2 is disjoint.

In Figure 3.1, the disjointness constraint between DegreeStud and ForeignStud is
entailed by the type redefinitions of the end course, since the lower bound of its
multiplicity is equal to one and DegreeCourse and MasterCourse are disjoint.

Fig. 4.4. Disjointness constraint entailed by disjoint multiplicity redefinitions

Theorem 4.3. (Disjointness constraint entailed by disjoint multiplicity redefinitions).
Let A and B be two classes and R a binary association between them. Let b be the
association end that connects R to class B. Let gs1 be a generalization set that
specializes superclass A into subclasses A1,…,An. Assume that b1,…,bn are multiplicity
redefinitions of the end b with their corresponding multiplicities m1,…,mn, that each bi
is connected to B and that the opposite end of bi is connected to class Ai. Then, if each
pair of multiplicities mi and mj , where 1 i n and 1 j n and i j, are mutually disjoint
(i.e. each intersection is empty), the disjointness constraint of gs1 is entailed by the
multiplicity redefinitions (see Figure 4.4).

Proof. (1) Assume that x is an instance of Ai and Aj, where 1 i n and 1 j n and i j.
(2) If x is an instance of Ai, there must be a number of instances (between the
minimum and the maximum of mi) of B such that x is Ri-related to them.
Consequently, by the redefinition bi, x is R-related to them.
(3) If x is an instance of Aj, there must be a number of instances (between the
minimum and the maximum of mj) of B such that x is Rj-related to them.
Consequently, by the redefinition bj, x is R-related to them.
(4) Because mi and mj are mutually disjoint, (2) and (3) are inconsistent.

522 D. Costal and C. Gómez

In Figure 3.2, the disjointness constraint between DegreeStud and ForeignStud is
entailed by the multiplicity redefinitions of the end course, since the multiplicities of
dCourse and fCourse are disjoint intervals.

Fig. 4.5. Disjointness constraint entailed by type and multiplicity redefinitions

Theorem 4.4. (Disjointness constraint entailed by type and multiplicity redefinitions).
Let A and B be two classes and R a binary association between them. Let b be the
association end that connects R to class B. Let gs1 be a generalization set that
specializes superclass A into subclasses A1,…,An. Let gs2 be a generalization set that
specializes superclass B into subclasses B1,…,Bn. Assume that b1,…,bn are multiplicity
redefinitions of the end b with their corresponding multiplicities m1,…,mn, that each bi
is connected to Bi and that the opposite end of bi is connected to class Ai. Then, if n-1
lower bounds of m1,…,mn are greater than zero and gs2 is disjoint, the disjointness
constraint of gs1 is entailed by the type and multiplicity redefinitions (see Figure 4.5).

Proof. (1) Assume that x is an instance of Ai and Aj, where 1 i n, 1 j n, i j and the
lower bound of mi is greater than zero. As n-1 lower bounds of m1,…,mn are greater
than zero then either lower bound of mi or mj is greater than zero. We assume that the
lower bound of mi is greater than zero.
(2) If x is an instance of Ai, there must be an instance y of Bi such that x is Ri-related to
y by the lower bound of mi.
(3) If x is Ri-related to y, then x is R-related to y, since bi is a redefinition of b.
(4) If x is an instance of Aj and x is R-related to y, then x is Rj-related to y and y is an
instance of Bj, since bj is a redefinition of b.
(5) Because y is an instance of Bi and Bj and gs2 is disjoint, (2) and (4) are
contradictory.

In Figure 3.3, the disjointness constraint between DegreeStud and ForeignStud is
entailed by the type and multiplicity redefinitions of the end course, since the lower
bound of the multiplicity of dCourse is greater than zero and DegreeCourse and
MasterCourse are disjoint.

Fig. 4.6. Disjointness constraint entailed by type and disjoint multiplicity redefinitions

 On the Use of Association Redefinition in UML Class Diagrams 523

Theorem 4.5. (Disjointness constraint entailed by type and disjoint multiplicity
redefinitions). Let A and B be two classes and R a binary association between them.
Let b be the association end that connects R to class B. Let gs1 be a generalization set
that specializes superclass A into subclasses A1,…,An. Let gs2 be a generalization set
that specializes superclass B into subclasses B1,…,Bn. Assume that b1,…,bn are
multiplicity redefinitions of the end b with their corresponding multiplicities m1,…,mn,
that each bi is connected to Bi and that the opposite end of bi is connected to class Ai.
Then, if each pair of multiplicities mi and mj, where 1 i n, 1 j n and i j, are mutually
disjoint (i.e. each intersection is empty), the disjointness constraint of gs1 is entailed
by the type and multiplicity redefinitions (see Figure 4.6).

Proof. (1) Assume that x is an instance of Ai and Aj, where 1 i n, 1 j n and i j.
(2) If x is an instance of Ai, there must be a number of instances (between the
minimum and maximum of mi) of Bi such that x is Ri-related to them. Consequently,
by the redefinition bi, x is R-related to them.
(3) If x is an instance of Aj, there must be a number of instances (between the
minimum and maximum of mj) of Bj such that x is Rj-related to them. Consequently,
by the redefinition bj, x is R-related to them.
(4) Because mi and mj are mutually disjoint, (2) and (3) are inconsistent.

Consider the example given in Figure 4.1. By applying Theorem 4.5, the
disjointness constraint between CorporateAccount and PersonalAccount is entailed
by the type and multiplicity redefinitions of the end agent, since the redefining
multiplicities are mutually disjoint and Person and Company are also disjoint.

4.3 Complete Constraints Entailed by Association Redefinitions

For complete constraints, we only consider the case presented in Figure 4.7.

Fig. 4.7. Complete constraint entailed by type or type and multiplicity redefinitions

Theorem 4.6. (Complete constraint entailed by type or type and multiplicity
redefinitions). Let A and B be two classes and R a binary association between them.
Let b be the association end that connects R to class B and a the opposite end that
connects R to class A with multiplicity n. Let gs1 be a generalization set that
specializes superclass A into subclasses A1,…,An. Let gs2 be a generalization set that
specializes superclass B into subclasses B1,…,Bn. Assume that b1,…,bn are type or type
and multiplicity redefinitions of the end b with their corresponding multiplicities, that
each bi is connected to Bi and that the opposite end of bi is connected to class Ai.
Then, if the lower bound of n is greater than zero and gs1 is complete, the complete
constraint of gs2 is entailed by the type or type and multiplicity redefinitions.

524 D. Costal and C. Gómez

Proof. (1) Assume that y is an instance of B. There must be an instance x of A such
that x is R-related to y, since the lower bound of n is greater than zero.
(2) If x is an instance of A, then x is an instance of at least one Ai, where 1 i n, since
gs1 is complete.
(3) If x is an instance of at least one Ai and x is R-related to y, then y is an instance of
the corresponding Bi since bi is a type or type and multiplicity redefinition of b.
(4) As a consequence of (1), (2) and (3), if y is an instance of B, then y is an instance
of at least one Bi where 1 i n.

In Figure 4.1, the complete constraint of the generalization of Person and Company
into LegalEntity must be enforced because the multiplicity of owned is 1..*, but owner
is not redefined for PersonalAccount. Moreover, the end agent is redefined for all
subclasses of Account, but the lower bound of the multiplicity of account is equal to
zero. In Figure 3.3, by applying Theorem 4.6, the complete constraint of the
generalization of DegreeCourse and MasterCourse into Course is entailed by the type
and multiplicity redefinitions.

5 Well-Formed Association Redefinitions in UML

The previous section showed that constraints imposed by association redefinitions
may ensure that several taxonomic constraints of the generalization sets involved are
satisfied. As mentioned above, those constraints, although redundant, should be
specified in the diagram for verification, validation, implementation and evolution
purposes.

In the case of a generalization set with a disjoint (or complete) taxonomic
constraint entailed by association redefinitions, the designer might accidentally
specify that the generalization set is overlapping (or incomplete). Although the
resulting diagram would be satisfiable because overlapping (and incomplete)
corresponds to the absence of the disjoint (and complete) constraint, it would not
represent the real-world domain with the degree of precision required.

We therefore say that a set of association redefinitions is not well-formed if it
entails a disjoint (complete) constraint for a generalization set that the designer has
specified as overlapping (incomplete).

For instance, in the example in Figure 3.1, if the designer specifies that the
generalization of ForeignStud and DegreeStud into Student is overlapping, it will
nevertheless be impossible for a student to belong to the foreign and degree types at
the same time. This is because the type redefinitions of the association end course
entail a disjoint constraint for that generalization.

To help designers avoid this situation and more accurately describe the real-world
domain, we formulated five rules that define conditions necessary to guarantee well-
formed association redefinitions. These rules are based on the results for satisfying
disjoint and complete constraints presented in Section 4.

Rule 1. A generalization set with a superclass connected to the opposite end of a
redefined end with type redefinitions in each direct descendant subclass must be
disjoint if the lower bound of the redefined end multiplicity is greater than zero and

 On the Use of Association Redefinition in UML Class Diagrams 525

the generalization set with a superclass connected to the redefined end and subclasses
connected to the redefining ends is disjoint. This rule is extracted from Theorem 4.2.

Rule 2. A generalization set with a superclass connected to the opposite end of a
redefined end with multiplicity redefinitions in each direct descendant subclass must
be disjoint if the multiplicities of the redefining ends connected to the same class as
the redefined end are mutually disjoint (from Theorem 4.3).

Rule 3. A generalization set with a superclass connected to the opposite end of a
redefined end with type and multiplicity redefinitions in each direct descendant
subclass must be disjoint if n-1 lower bounds of the redefining end multiplicities are
greater than zero and the generalization set with a superclass connected to the
redefined end and subclasses connected to the redefining ends is disjoint (from
Theorem 4.4).

Rule 4. A generalization set with a superclass connected to the opposite end of a
redefined end with type and multiplicity redefinitions in each direct descendant
subclass must be disjoint if the generalization set with a superclass connected to the
redefined end and subclasses connected to the redefining ends is disjoint and the
multiplicities of the redefining ends are mutually disjoint (from Theorem 4.5).

Rule 5. A generalization set with a superclass connected to a redefined end and
subclasses connected to the redefining ends must be complete if the generalization set
with a superclass connected to the opposite end of the redefined end with type and
multiplicity redefinitions in each direct descendant subclass is complete and the lower
bound of multiplicity of the opposite end of the redefined end is greater than zero
(from Theorem 4.6).

All the redefinitions shown in the examples given in this paper are well-formed
because they follow the rules presented above.

As seen in Section 3, a single association redefinition in UML must fulfil a set of
conditions in order to be a well-formed redefinition. These conditions are expressed in
the UML metamodel as constraints attached to the metaclass RedefinableElement. In
order to define well-formed redefinitions, a constraint representing each rule
presented above must be attached to the metaclass RedefinableElement in the UML
metamodel.

6 Related Work

Relationship type refinements, which are closely related to association redefinitions
(see Section 3.4), have received much attention in the literature. Relationship type
refinements were defined in [9] and they have been studied and used by many authors
[2, 5, 7, 8, 9, 10]. All of these studies focus exclusively on the definition and use of
refinements for conceptual models. However, a few works such as [6, 8] focus on
reasoning about relationship type refinements.

[6] presents a method that makes it possible to verify the satisfiability of a schema
that may have refinements of participants and cardinality constraints and also check
whether the schema implies specialization and cardinality constraints. However, this
work does not deal with disjoint and complete constraints.

526 D. Costal and C. Gómez

[8] establishes a set of necessary conditions to guarantee that a given set of
refinements is valid, assuming multiple classification. However, this work is restricted
to the case of generalization sets that are partitions.

Other works have dealt with satisfaction of constraints. Specifically, [12] studies
the satisfaction of taxonomic constraints and is complementary to our work, although
[12] considers the impact of derived classes while ours deals with the impact of
association redefinitions. [1] proposes to reason about interesting properties of UML
class diagrams using DL-based reasoning systems. From those properties, satisfaction
of several kinds of constraints may be deduced. The authors show that this reasoning
task is decidable for UML class diagrams including elements such as object classes,
associations, aggregations and generalizations. However, association redefinitions are
not included in their decidability analysis.

7 Conclusions and Further Work

We have analyzed and explained the concept of association redefinition in detail to
make it easier to use in class diagrams. Moreover, we have introduced a classification
of different kinds of redefinitions according to the different types of constraints they
specify.

Additionally, we have studied the interactions between association redefinitions
and taxonomic constraints and the impact that association redefinitions have on the
satisfaction of related taxonomic constraints.

Finally, in order to help designers more accurately describe the real-world domain,
we have provided a set of rules that establish several necessary conditions to
guarantee that association redefinitions are well-formed.

Future work may involve the interaction of association redefinitions with other
types of constraints that can be defined in a class diagram and the analysis of other
kinds of redefinitions. We also plan to incorporate the results of this work into a
CASE tool.

Acknowledgments. We would like to thank Jordi Cabot, Jordi Conesa, Antoni Olivé,
Anna Queralt, Ruth Raventós, Maria Ribera Sancho and Ernest Teniente for helpful
discussions on previous drafts of this paper. We also thank the anonymous referees
for their useful comments. This work has been partially supported by the Ministerio
de Ciencia y Tecnologia under project TIN2005-06053.

References

1. Berardi, D., Calvanese, D., De Giacomo, G., Reasoning on UML class diagrams. Artificial
Intelligence 168 (2005) 70-118.

2. Brachman, R.J., Schmolze, J.G., An Overview of the KL-ONE Knowledge Representation
System. Cognitive Science 9 (2) (1995) 171-216.

3. Büttner, F., Gogolla, M., On Generalization and Overriding in UML 2.0, UML Workshop
on OCL and Model Driven Engineering, Lisbon (Portugal), 2004.

 On the Use of Association Redefinition in UML Class Diagrams 527

4. Bratsberg, S.E., Odberg, E., Relation Refinement in Object-Relation Data Models. Nordic
Workshop on Programming and Software Development Research, Tampere (Finland),
1992.

5. Cook, S., Daniels, J., Designing Object Systems: Object-Oriented Modeling with
Syntropy. Prentice-Hall, 1994.

6. Calvanese, D., Lenzerini, M., On the Interaction Between ISA and Cardinality Constraints,
10th Int. Conference on Data Engineering. (ICDE’94), pp. 204-213.

7. de Champeaux, D., Lea, D., Faure, P., Object-Oriented System Development. Addison-
Wesley, 1994.

8. Costal, D., Olivé, A., Teniente, E., Relationship Type Refinement in Conceptual Models
with Multiple Classification, 20th International Conference on Conceptual Modeling.
(ER’01), LNCS 2224, pp. 397-411.

9. Mylopoulos, J., Bernstein, P.A., Wong, H.K.T, A Language Facility for Designing
Database-Intensive Applications, TODS 5 (2) (1980) 185-207.

10. Martin, J., Odell, J., Objects-Oriented Methods: a Foundation. Prentice-Hall, 1995.
11. OMG. UML 2.0 Superstructure Specification, OMG Adopted Specification, 2005.

Available online at http://www.omg.org/cgi-bin/doc?formal/05-07-04.
12. Olivé, A., Teniente, E., Derived types and taxonomic constraints in conceptual modeling.

Information Systems 27 (2002) 391-409.
13. Rumbaugh, J., Jacobson, I., Booch, G., The Unified Modeling Language Reference

Manual, Second Edition, Addison-Wesley, 2005.

Optimising Abstract Object-Oriented Database
Schemas

Joachim Biskup and Ralf Menzel

Universität Dortmund, 44221 Dortmund, Germany
{biskup, menzel}@ls6.cs.uni-dortmund.de

Abstract. Conceptual design is one step on the way from requirements
analysis to implementation. During conceptual design of a database ap-
plication we work with conceptual database schemas, which are based on
a formal model. Because of this formal model it is possible to investigate
equivalence of schemas and consequently to examine schema transfor-
mations. In an earlier work we presented a cost model that allows us
to estimate time costs for machine programs of an abstract database
machine. In this paper we show how this cost model can be employed
to evaluate cost effects of schema transformations. This enables us to
steer schema transformations to meet given time requirements of criti-
cal database queries and updates. In particular, we analyse the schema
transformation pivoting. As a result of such an analysis we can charac-
terise high-level queries and updates and tell how the time required for
their execution is affected by the schema transformation.

1 Introduction

A major part of the design of a database application is the design of a database
schema. Typically, there are several candidate schemas to choose from. By the
choice the designer tries to meet given design goals. One important goal is to
minimise the time required to execute given queries and updates.

It is common practice to put a conceptual design step before the implemen-
tation. Typically, there is no formal model for the implementation, while the
conceptual design of our interest is based on a formal model. With this formal
model the designer can make sure that the different schema alternatives are
formally equivalent or that one alternative can be embedded into another. In
particular it is possible to use schema transformations that guarantee an equiv-
alence or an embedding when they transform a given schema into another.

In this paper we want to show how our cost model [2], which is based on an
abstract oriented database machine [1], can be used to analyse the cost effects of
schema transformations. Such an analysis not only tells us when it is desirable
to transform a schema because given critical queries and updates take less time,
but also provides an estimate of the expected savings. With this information we
can systematically optimise conceptual object-oriented database schemas.

As an example we analyse the schema transformation we call pivoting [4,5].
We did a case study of pivoting [3,6] without using a formal model. Now, we
employ the cost model to examine the cost effects of pivoting.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 528–543, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Optimising Abstract Object-Oriented Database Schemas 529

We see the contribution of this paper as an elaboration of the steps 3 to 5 of a
generic model-based method instantiated for database schema design as follows:

1. Choose a model: our abstract database machine and cost model.
2. Judge suitability: preparatory inspection underlying our contribution.
3. Apply model to problem: cost effects of schema transformations.
4. Get results: cost differences for characteristics of high-level operations.
5. Look for model-caused artifacts: discussion in conclusion.
6. If not happy, use knowledge gained in Step 5 to reiterate from Step 1.

It has been a research topic for quite some time to account for the need
of optimisation at conceptual design level already. There are several investiga-
tions considering costs while designing databases [17,18,20,21]. The field of soft-
ware performance engineering researches how to develop software that satisfies
given performance requirements. There is an especially noteworthy approach by
Nixon [15,16] who describes a Performance Requirements Framework that illus-
trates how to consider time costs requirements while designing a database appli-
cation. We base our analysis of the time cost effects of schema transformations
on an abstract object-oriented database machine. In this way we compose high-
level queries and updates from the different machine operations. In a similar way
Yao [22] analyses different query evaluation algorithms for relational databases
by breaking them into simple access operations. The maintenance of semantic
constraints takes time. One way to check constraints is by globally querying the
database after each update or at least before committing a transaction. But it
is typically more cost effective to take care of constraint maintenance during
the execution of updates incrementally [10,12,13,14]. Gupta and Widom [8] with
their approach for local verification of global integrity constraints even show how
to handle this task in an distributed environment.

2 Abstract Database Machine and Cost Model

For the purpose of this paper we only sketch a simplified version of our cost
model and its underlying abstract object-oriented database machine. You can
find a formal definition of the complete versions in our earlier publications [1,2].

Object Model. We base our database machine on a simple object model that is
inspired by the object-oriented models of the ODMG [7] and F-logic [11].

The basic values in our object model are literals like integers or strings. Com-
plex structures must be represented through objects. Each object has a unique
object identifier. Furthermore it can give values for any number of attributes. In
our object model, these attribute values can only be literals, object identifiers,
sets of literals, or sets of object identifiers. We collectively call the corresponding
types value types.

The conceptual (database) schema declares the classes and their object types.
It declares a class hierarchy and for all object types it declares the valid attribute
types. While the full version of our object model employs an explicit class type

530 J. Biskup and R. Menzel

Table 1. Operations of the abstract database machine

name number of
input
streams

number of
output
streams

access to
persistent
database
state

may
generate
duplicates

sorted
input
required

needs entire
input stream
for operation

const — 1 — yes n/a n/a
duplicate 1 2 — — — —
scan — 1 read — n/a n/a
activate 1 1 read — — —
unnest 1 1 — yes — —
nest0 1 1 — — yes —
project 1 1 — yes — —
unique0 1 1 — — yes —
select 1 1 — — — —
sort 1 1 — — — yes
product 2 1 — — — yes
unionall 2 1 — yes — —
create 1 1 — — — —
write 1 — write n/a — —
delete 1 — write n/a — —
union0 2 1 — — yes —
join0 2 1 — — yes —
access 1 1 read — — —

assignment to set up the relation between classes and their object types, for
the simplified version we consider in this paper we assume that there is an
implicit one-to-one correspondence between classes and object types. We will
therefore henceforth use the same name for a class and its object type. A further
simplification is to assume that attribute names are unique and don’t need to be
qualified by class names. We will often use the same identifier for an attribute
name, the attribute type name, and the name of the corresponding class.

The internal (database) schema declares access structures. An access structure
declaration consists of a class and one of its attributes. It tells that the database
system shall set up an access structure for the class on the attribute.

Abstract Database Machine. The state of our abstract database machine consists
of a persistent and a transient part. The persistent database state is an instance
for a conceptual database schema as described above.

The transient data in the abstract database machine is represented through
streams. In this form data is passed from one machine operation to another.
Streams are typed. A stream type is a list of value types. A stream itself is a
sequence of value lists (i.e., lists of values). The values in the value lists are
numbered by their positions. All the value lists in a stream must adhere to the
stream type. Additionally a stream can be lexicographically sorted, which is
described by a position list (k1, . . . , kn).

Table 1 gives an overview of the operations of the abstract database machine.
A machine program consists of one or more steps. Each step designates one

operation and describes the input and output of the operation. For this purpose,
streams are represented by program variables of the form xi, called channels.
Every input stream for an operation is given as a channel that stands for the
output stream of an earlier step.

Optimising Abstract Object-Oriented Database Schemas 531

Depending on the number of output streams, a machine program step is de-
noted as either op(args), or xk := op(args), or (xk, xl) := op(args). Here xk

and xl denote channels, op is an operator, and args is a comma separated list
of suitable arguments. An argument that stands for an input stream is in turn
given as a channel xi. A machine program is a sequence of machine program
steps that satisfies the following requirements:

– The preconditions of the operators in all steps are satisfied. All arguments
are of valid types in particular.

– Each channel is used as output by exactly one step. (The two outputs of
‘duplicate’ must be two different channels.)

– Each channel is used as input by at most one step.
– Each channel that is used as input by a machine program step is used as

output by an earlier step.

Note, that every program can be represented by an ordered directed acyclic
graph, where the vertices stand for program steps and the edges for channels.

Cost Model. For the purpose of this paper we will only sketch how the time
cost estimation works. Time costs are estimated for a given machine program.
The estimation works by successively assigning a step cost statement to every
step of the machine program and a channel cost statement to every channel of
the program. These cost statements result from evaluating cost functions that
are provided by the cost model for every type of operation. Finally, all step cost
statements are combined by an aggregation function into a total cost statement.

The cost functions model the underlying database system. Table 2 contains
the simple cost functions that we employ in the context of the present paper.
They use cost parameters, which are given in Tables 3 and 4. The cost functions
work with channel cost statements that describe the stream length. The step
cost statements consist of block accesses (I/O) and value accesses (CPU). The
aggregation function is just an addition of the individual step cost statements.

3 Schema Transformations and Pivoting

A schema transformation has two input parameters: the original schema and the
part of the schema to be transformed. A schema transformation can be extended
to transform instances and queries for the schema. While a schema transforma-
tion is a syntactic operation, it must exhibit certain semantic properties to be
of interest. Common schema transformations warrant that the original schema
can be embedded into the transformed schema, or, if achievable and desirable,
that the two schemas are even equivalent.

Usually, during the design process, schema transformations are considered at
the conceptual level. At this level a formal model is available that can be used to
specify the desired semantic properties of schema transformations. Our abstract
database machine reaches to the internal level. When we investigate pivoting we
must therefore supplement the usual transformation of the conceptual schema
with a matching transformation of the internal schema.

532 J. Biskup and R. Menzel

Table 2. Simple cost functions for the operations used in the paper

operation block accesses value accesses stream length

(x′, x′′) := duplicate(x) 2 · ‖x‖ · ntypex
0 ‖x‖, ‖x‖

x′ := scan(c) 	Nc/nOID/θs : c
 0 Nc

x′ := activate(x,posc) ‖x‖ · (θa:c + ntypec
) ‖x‖ ‖x‖

x′ := project(x, . . .) 0 0 ‖x‖

x′ := unique0(x) 0 (‖x‖ − 1) ·
nq : typex

fq : typex (‖x‖)

x′ := sort(x, (pos1, . . .)) 2 · ntypex
· ‖x‖ · 	logq(k)
 ‖x‖ ·

log2(‖x‖/k) ·n ‖x‖

write(x, c, posc, f)
‖x‖ · nγ(c) + η(N0,c) +

(c′,A)∈Xc
η(Nc′) · nA: c′,A

0 —

delete(x, c, posc)
‖x‖ · θd: c · nγ(c) + θD: c · η(N0,c) +

(c′,A)∈Xc
η(Nc′) · nA: c′,A

0 —

x′ := access(x, (c, A), posA)
‖x‖ · η(Nc) +

nX: c,A · (θa:c + ntypec)
‖x‖ ‖x‖ · nX: c,A

where k = 	‖x‖·n(t1,...,tn)/nmem
, q = min(nmem/n(t1 ,...,tn)
, nfiles), n is the number of positions
in the input stream, and Xc = {(c′, A) | (c′, A) ∈ X ∧ c � c′}.

Table 3. Application dependent cost parameters

parameter description relevant for

Nc: number of objects in the extension of class c. scan, write,
delete, access,
space

N0,c: number of objects in the direct extension of class c. write, delete,
space

nt: average number of blocks for an object of type t. activate, write,
delete, access,
space

n(t1,...,tn): average number of blocks for a value list of type (t1, . . . , tn). duplicate, sort,
product, join0

nu: t: average number of elements in a set of type t. unnest, nest0
nA: c,A: average number of values for attribute A of class c. write, delete,

space
nX: c,A: average number of objects of class c per value of attribute A. access
nq: (t1,...,tn): average number of value accesses necessary to decide whether two

value lists of type (t1, . . . , tn) are identical or not.
nest, unique0,
union0

np: the number of values that must be accessed to evaluate the
predicate p.

select, join0

θs : c: average filling level of the object identifier access structure for
class c.

scan, space

θa : c: portion of objects of class c that have been moved from their
original second memory location.

activate,
access

θp: selectivity of predicate p. select
θd: c: fraction of objects in class c that are only members of c or any

subclasses of c.
delete

θD: c: correction factor for deletion of objects of class c to model
additional costs to delete the given objects from all subclasses
of c.

delete

fq: (t1,...,tn)(l): average number of unique elements in a stream of type
(t1, . . . , tn) of length l.

unique0

Optimising Abstract Object-Oriented Database Schemas 533

Table 4. System dependent cost parameters

parameter description relevant for

na: fraction of a block that is needed for the non-data part of an
access structure per element of the stored set.

space

nOID: number of object identifiers that fit into one block. scan, space
nmem: size of memory that is reserved for sorting and similar operations. sort, product,

join0
nfiles: maximum number of open files for sorting. sort
η(n): number of block accesses required to locate an element using an

access structure for a set with n elements.
write, delete,
access

3.1 Pivoting

Pivoting is a schema transformation that tries to reduce the redundancy of a
schema by effecting that values are stored with the values they functionally
depend on. That way, we avoid storing the values multiple times and ease the
maintenance of the functional dependency involved.

Pivoting moves attributes from one class to another, new class. A precondi-
tion for applying pivoting is that there exists a functional dependency among
the attributes of a basic class, b, such that one attribute, p, (that is of an ob-
ject identifier type) functionally determines some other attributes, D. In this
case we can pivot the basic class using the attribute on the left-hand side of
the functional dependency, p, as the so-called pivot attribute. The class of the
pivot attribute is called pivot class. The attributes on the right-hand side of the
functional dependency, D, are called pivoted attributes or dependent attributes.
In the standard case pivoting does the following things:

1. It introduces a new class, p′, as a sub-class of the pivot class, p.
2. The new class, p′, becomes the class of the pivot attribute, p.
3. The pivoted attributes, D, are moved from the basic class, b, to the new

class, p′.

In Fig. 1 we use a UML style presentation to show a generic schema and
its pivoted alternative for the functional dependency p → D. We simplified
the diagram by assuming that all attributes are of object identifier types and
therefore correspond to object classes. Furthermore, though there is only one
attribute D and only one attribute A shown, they should be seen as representing
a set of attributes. We will concentrate on a standard case, neglecting further
options while pivoting or more general situations as presented by Hartmann [9].

3.2 Pivoting the Internal Schema

Since pivoting changes the schema, we must adjust the internal schema accord-
ingly. This is mostly straightforward. Each access structure on one of the pivoted
attributes is moved along with the attribute from the basic class to the new class.
This may lead to the loss of an ‘access path’ from the pivoted attributes to the
basic class. To avoid this, we add an access structure on the basic class for the
pivot attribute if such an access structure is not already there.

534 J. Biskup and R. Menzel

1
{inverse}

1

1
{inverse}

b

p D

A

1
{inverse}

1
{inverse}

b

p′

D

1
A

p

Fig. 1. A pattern for pivoting a schema with the functional dependency p → D and
moving access structure while pivoting

In Fig. 1 the access structures are shown as additional associations. Their role
as access structures is signified by the ‘inverse’ constraints. The figure pictures
the case were there is an access structure in the original schema for the pivot
attribute and for the pivoted attributes.

4 Cost Analysis of Schema Transformations

The cost model allows us to calculate cost statements for programs of the ab-
stract database machine. How can we use this to estimate the effect of schema
transformations on the time requirements of an application? We would like to
be able to tell how a transformation might change the execution time of queries
or updates that are given in a high-level language. To do this we must bridge
the gap between high-level queries and updates on the one side and low-level
machine programs on the other side.

In a database management system it is the task of the optimiser to translate
statements of a high-level data manipulation language into low-level execution
plans. Since we can hardly incorporate the complete design of an optimiser into
our analysis, we need to find another way to relate the conceptual and the
internal level. First, we make some observations:

1. The total cost statement is a sum of step cost statements. This allows us to
use a compositional approach, where we examine the effects of the transfor-
mation on single operations or short sequences of operations.

2. As we can see in Table 1 only a few of the available machine operations access
the persistent database state. These are the only operations that are affected
by a schema transformation. This allows us to divide the machine operations
into schema-dependent and schema-independent machine operations.

3. Schema-dependent machine operations and high-level queries and updates
work on common aspects given by the schema like classes, types, attributes
etc. Additionally, there are only one or two possible machine operations
that can access the particular information required for a high-level query or
update. Thus, when we identify a machine operation where there is a signifi-
cant difference between the costs for the original schema and the transformed
schema, we can give a meaningful description of characteristics of high-level
queries and updates that are affected by the schema transformation.

Optimising Abstract Object-Oriented Database Schemas 535

schema schema

schema transformation

high-level
query

(extended) schema transformation high-level
query

machine
program

machine
program

transformation machine
program

?= machine
program

optimiser optimiser

machine
program

steps

machine
program

steps

machine
program steps
transformation

consists of consists of

cost
statement

cost
statement

cost function cost function

differential
cost

statement

comparison

charac-
teristics

exhibits

corre-
spond
to

correspond to

Fig. 2. The transformations and the affected time costs

We can use these observations to approach the cost analysis of schema trans-
formations according to the following plan:

1. Determine all schema-dependent machine operations: This complete
enumeration serves to cover all possible queries. Note, that most operations
are schema-independent.

2. Define basic machine program transformation: For each schema-de-
pendent operation, find an equivalent sequence of machine operations for the
other schema and evaluate the costs. With that we can provide a machine
program transformation that matches our schema transformation.

To keep our investigation manageable, we only look at the effect of the schema
transformation on single steps and not on complete programs. This leads to
the problem that the optimiser might find a better machine program for the
transformed schema than we get by using our machine program transformation
on the machine program of the original schema. The upper half of Fig. 2 shows
the two paths to arrive at a machine program for the transformed schema.

536 J. Biskup and R. Menzel

In the following we aim at judging when our basic machine program transfor-
mation provides a sufficiently efficient machine program and if there are cases
where the optimiser might find a better program. To handle such cases we will
try to find a better machine program transformation.

3. Refine the machine program transformation: Look, if there are special
cases where a better machine program transformation can be found.
This is a kind of peep hole optimisation to further refine our machine program
transformation and thus our assessment.

4. Characterise high-level queries and updates: Find a characterisation
of high-level queries and updates that might be affected by the transforma-
tion. Such a characterisation can be based on the schema aspects that are
common to machine operations and high-level queries, that is, classes and
their relations.

The part of Fig. 2 that is highlighted in grey summarises the way to start
from a high-level query or update and arrive at a differential cost statement.

4.1 Schema-Dependent Machine Operations

There are quite a few machine operations that are not affected by a schema
transformation, that is, machine operations that can equally well be part of a
program for the original and for the transformed schema and that will entail
the same time costs. While the schema influences which types are available,
for most operations this only affects their stream types. Stream types, in turn,
contain either literal types or literal set types, which do not dependent on the
schema, or object identifier types or object identifier set types. Since we assume
that object identifiers have a fixed size, in our analysis of time costs we can
disregard operations that are only affected through their stream types by a
schema transformation.

Therefore, in our time cost analysis we regard the following machine opera-
tions as schema-independent : const, duplicate, unnest, nest0, project, unique0,
select, sort, product, unionall, create, union0, join0.

We must pay special attention to the select operation. This operation works
using a predicate. The description of the abstract database machine does hardly
limit the type of this predicate. It is therefore conceivable that there may be a
predicate that tests for schema-dependent properties. For this paper we assume
that the predicate of the select operation is schema-independent.

What remains are the five schema-dependent operations, which are used to
access the persistent database state: scan, activate, write, delete, access.

4.2 Basic Machine Program Transformation

The schema-dependent machine operations are affected by changes to the class
hierarchy, extensions, types, and access structures (cf. Table 2). Figure 3 shows
which of these schema elements are changed by pivoting by marking them grey.

Optimising Abstract Object-Oriented Database Schemas 537

1
{inverse}

1

1
{inverse}

b

p D

A

1
{inverse}

1
{inverse}

b

p′

D

1
A

p

changed schema elements:

class hierarchy c extension c type access structure

Fig. 3. Highlighting the differences caused by pivoting

Table 5. Cases to investigate

class operation

scan activate write delete

b — o�t o�t o�t
p — — — o�t
D — — — —
A — — — —
p′ o←t o←t o←t o←t

class attribute operation

access

b p o→t
b D o→t
b A o�t
b p′ o←t
p′ D o←t

scan: For scan changes to extensions are relevant. The only interesting case is
the scan of the new class p′ in the transformed schema.

activate: For activate changes to types are relevant. There are two classes for
which the types differ between the schemas. These are the class b in both
schemas and p′ in the transformed schema.

write: For write changes to types and extensions and changed access structures
for a class or any of its super-classes are relevant.

delete: For delete changes to types and extensions and changed access struc-
tures for a class or any of its super-classes as well as changes to a class’s
sub-classes are relevant.

access: For access changes to types and access structures are relevant. Pivoting
the internal schema moves the access structures for the pivoted classes, d ∈
D, from the basic class, b, to the new class, p′.

Table 5 gives an overview of the interesting cases, which we are going to inves-
tigate. The entries in the table indicate whether the cases must be respected
when moving from the original schema to the transformed schema, o→t, from
the transformed schema to the original schema, o←t, or in both directions, o�t.

How to Create the Basic Cost Tables: We can now construct what we call cost
tables. These cost tables contain the information about how to perform the
machine program steps transformation and the corresponding differential cost
statements. For each case we get a table through the following procedure:

538 J. Biskup and R. Menzel

– Take the machine operation and the schema as provided by the case.
– Write a machine program fragment for the other schema that emulates the

operation of the first schema.
– Apply cost functions (see Table 2) and calculate cost statements for the

original and the transformed schema.
– The difference of the total costs for the two schemas is the differential cost

statement.

We must take into account that we don’t calculate cost statements for com-
plete machine programs but for program fragments only. This effects that the
resultant differential cost statements do not only depend on the cost parameters
belonging to the relevant schema but also on the properties of the input stream
for the fragment. The essential property of an input stream is its size, that is, the
number of value lists in the stream. When we associate high-level characteristics
to these low-level cost statements, we can see that a value list on the low level
corresponds to an object (in an extension) or a relationship between an object
and its attribute value on the high level. Due to the space restrictions we cannot
provide the cost tables for all cases and only give two examples in Appendix A.

Summary of the basic cost tables: As shown in Table 5 there are seven cases
for the transformation from the original schema to the pivoted schema. Out of
these seven the case of write of b has the biggest increase in costs, because its
emulation requires two write, one duplicate and one sort operation. For the other
six cases there are only slight changes to the costs. The costs for activate of b and
access of b from D increase, while the costs for delete from b or p and access of b
from p or A decrease. Depending on the cost parameters involved, the difference
could even become negligible.

For the transformation from the pivoted schema to the original schema there
are eleven cases given in Table 5. As there is no class p′ in the original schema
the five cases for operations on this class require a complex emulation with
consequentially increased costs. Only the transformation of the delete operation
is simpler, but it still entails slightly increased costs. The costs for the five cases
of operation on class b increase mostly due to the bigger size of b objects in the
original schema. For the case of write of b there is a further cost increase, because
its emulation requires an additional activation to access the required values of
the moved D attributes. The costs for delete from p increase slightly.

4.3 Refined Machine Program Transformation

There are cases where a given machine operation does more than necessary to
implement a high-level statement. Then, part of the transformation given in
the basic machine program transformation might be unnecessary. In essence,
this happens for the operations activate and write. These operations access the
complete type, even if only some of the attributes are accessed by the high-level
query or update. Here we can define special sub-cases for the appropriate cases
from Table 5 by adding pre- or postconditions. In Appendix B you can find an
example of a cost table for the refined machine transformation.

Optimising Abstract Object-Oriented Database Schemas 539

Table 6. Accessing the Entity and Relationship Sets

Reading Entity Sets: 1. scan: to read the complete extension of a class.
2. activate/access: to read a subset of an extension, that is restricted

through a relationship.
Reading Relationship Sets: 1. activate: to read the attribute values for given objects.

2. access: to read the objects for given attribute values.
Writing Entity Sets: 1. write: to add objects to an extension.

2. delete: to remove objects from an extension.
Writing Relationship Sets: 1. write: to add a relationship.

2. write: to change a relationship.
3. write: to remove a relationship.

Cases where we can refine the machine program transformation: The transfor-
mation from the original schema to the pivoted schema for the activation of b can
be simplified when the D attributes are not needed. A cost table for this special
case shows that the costs decrease with the transformation. For write on b we
can add two special cases. The first one when no D attribute is accessed, and
the second one when only D attributes are accessed. For the first case we now
get a decrease in costs, while in the second case we have a smaller increase in
costs than for the basic transformation. Similarly, for the transformation from
the pivoted schema to the original schema we can refine the case of write on p′.
When no D attributes are accessed the costs increase only slightly, while when
only D attributes are accessed, there is still a non-negligible increase in costs
that yet improves on the basic transformation.

4.4 Characterisation of High-Level Queries

Envision a declarative high-level query and manipulation language in the style
of an object domain calculus that uses the following features to query a database
instance:

– Entity Sets: Variables are used to access class extensions.
– Relationship Sets: Object/attribute relationships can be used to restrict vari-

ables.

We employ these two features to set high-level queries in relation with our ma-
chine program operations.

In a concrete database management system an optimiser translates high-level
queries and updates into low-level execution plans. Similarly, our abstract data-
base machine uses machine programs to implement high-level queries and up-
dates. In general we can not predict the complete resulting machine programs
without knowing the workings of an optimiser. But for the task of reading and
writing the instance information that represents entity and relationship sets, we
can find crucial operations that must be part of an eligible machine program.
The relevant cases are shown in Table 6.

Analysing these cases, we can find characteristics of high-level queries and
updates that enable us to predict operations that must be part of a corresponding
machine program:

540 J. Biskup and R. Menzel

[Unrestricted Scan of c] Reading the extension of a class c not restricted
through any relationships: scan of class c.

[Relational Read for c → a] Reading the extension of a class c restricted by a
relationship c → a: either activate of objects of class c or (if the appropriate
access structure exists) access of class c from attribute a.

[Insert into c] Adding objects to the extension of a class c: write of class c.
[Delete from c] Removing objects from the extension of a class c: delete from

class c.
[Update of c → a] Modifying a relationship c → a: write of class c.

See Appendix C for an example high-level query and its characteristics.

5 Conclusion

The execution of queries and updates can take different amounts of time for a
schema and its transformed alternative. We presented a method to find out char-
acteristics of high-level queries and updates for which schema transformations
change the time required for the execution of these operations. This method
employs the cost model for an abstract object-oriented database machine that
we introduced in an earlier work.

In particular we determined the quantitative effects of pivoting on the execu-
tion time. The basic effects of pivoting on query execution time were already
addressed in a qualitative manner in earlier publications. This contribution ex-
pands on the earlier publications by providing quantitative results in the form
of differential cost statements. This is an essential step on the way to an inter-
active design tool that helps to find database schemas that meet specific time
requirements for given use cases.

During the application of our cost model for conceptual schema design as
described in this paper we encountered some cost statements whose validity
could be questioned. These statements indicate points where our cost model
could be refined. One point shows in Table 7: For the pivoted schema the costs
of the second activate statement disregard any possible caching effects arising
when the same object is activated more than once. Another point shows for some
more complex emulations. Here we could sometimes reduce the costs if slight
variations of the current operations were available. For example, we wouldn’t
need to use a duplicate operation for the emulation of write of b, as mentioned
in Sect. 4.2, if the available write operation passed its input through as output
instead of throwing it away.

Accordingly, there remain possibilities for future research and development:
The experiences gained could be exploited to improve our existing abstract data-
base machine and the corresponding cost model. In particular, we devise to build
an experimental design tool to validate the method of this contribution and the
underlying cost model. In this context we plan an empirical evaluation based on
the Oracle database management system. It is a nice fiction to dream of one day
finding the functionality suggested in this paper in future versions of tools like
Oracle JDeveloper or Sybase PowerDesigner®.

Optimising Abstract Object-Oriented Database Schemas 541

References

1. J. Biskup and R. Menzel. An abstract database machine for cost driven design
of object-oriented database schemas. In Adv. in Databases and Inf. Syst., Fifth
East European Conference, ADBIS 2001, number 2151 in LNCS, pages 366–380,
Vilnius, Lithuania, Sept. 25–28, 2001. Springer.

2. J. Biskup and R. Menzel. A flexible cost model for abstract object-oriented data-
base schemas. In ER 2002, Proc. 21th Int. Conf. on Conceptual Modeling, number
2503 in LNCS, pages 444–462, Tampere, Finland, Oct. 7–11, 2002. Springer.

3. J. Biskup, R. Menzel, T. Polle, and Y. Sagiv. A case study on object-oriented
database schema design. In Int. Baltic Workshop on Databases and Inf. Syst.,
Tallinn, Estonia, 1996.

4. J. Biskup, R. Menzel, T. Polle, and Y. Sagiv. Decomposition of relationships
through pivoting. In Thalheim [19], pages 28–41.

5. J. Biskup and T. Polle. Decomposition of object-oriented database schemas. Annals
of Mathematics and Artificial Intelligence, 33:119–155, 2001.

6. J. Biskup, Y. Sagiv, R. Menzel, and T. Polle. A case study on object-oriented
database schema design. TR 27/95, Univ. Hildesheim, Inst. f. Informatik, 1995.

7. R. G. G. Cattell and D. K. Barry, editors. The Object Data Standard: ODMG 3.0.
Morgan Kaufmann, San Francisco, CA, 2000.

8. A. Gupta and J. Widom. Local verification of global integrity constraints in dis-
tributed databases. In Proc. 1993 ACM SIGMOD Conf., pages 49–58, 1993.

9. S. Hartmann. Decomposing relationship types by pivoting and schema equivalence.
Data & Knowledge Eng., 39(1):75–99, 2001.

10. H. V. Jagadish and X. Qian. Integrity maintenance in an object-oriented database.
In Proc. 18th Int. Conf. on VLDB, pages 469–480, Vancouver, Canada, 1992.

11. M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-
based languages. J. ACM, 42(4):741–843, 1995.

12. U. Lipeck. Transformation of dynamic integrity constraints into transaction spec-
ifications. Theoretical Comput. Sci., 76:115–142, 1990.

13. W. W. McCune and L. J. Henschen. Maintaining state constraints in relational
databases: A proof theoretic basis. J. ACM, 36(1):46–68, 1989.

14. J.-M. Nicolas. Logic for improving integrity checking in relational databases. Acta
Inf., 18(3):227–253, 1982.

15. B. A. Nixon. Representing and using performance requirements during the de-
velopment of information systems. In Adv. in Database Technology – EDBT ’94,
number 779 in LNCS, pages 187–200. Springer, 1994.

16. B. A. Nixon. Management of performance requirements for information systems.
IEEE Trans. Softw. Eng., 26(12):1122–1146, Dec. 2000.

17. M. Steeg. The conceptual database design optimizer CoDO – Concepts, implemen-
tation, application. In Thalheim [19], pages 105–120.

18. M. Steeg and B. Thalheim. A computational approach to conceptual database
optimization. Technical report, BTU Cottbus, May 1995.

19. B. Thalheim, editor. Proc. 15th Int. Conf. on Conceptual Modeling, number 1157
in LNCS, Cottbus, Germany, Oct. 7–10, 1996. Springer.

20. P. van Bommel. Experiences with EDO: An evolutionary database optimizer. Data
& Knowledge Eng., 13(1994):243–263, 1994.

21. P. van Bommel and T. P. van der Weide. Reducing the search space for conceptual
schema transformation. Data & Knowledge Eng., 8(1992):269–292, 1992.

22. S. B. Yao. Optimization of query evaluation algorithms. ACM Trans. Database
Syst., 4(2):133–155, June 1979.

542 J. Biskup and R. Menzel

A Basic Machine Program Transformation for Activate
of b

In this section we show example cost tables constructed as described in Sect. 4.2
using the cost functions from Table 2 on page 532. As cost parameters change
through pivoting, we use a tilde to mark cost parameters of the pivoted schema
that might have a different value than for the original schema. Furthermore, we
need additional parameters for class p′.

Table 7 is the cost table for activate of b for the transformation from the
original schema to the pivoted schema. Here the main costs are the block ac-
cesses. For simplicity, let’s assume that no objects have been moved from their
secondary memory location, that is, all the parameters of the form θa : c (accord-
ing to Table 3 on page 532, line 11) are zero. Then we have nb block accesses
per value list for the original schema and ñb + np′ block accesses for the piv-
oted schema. While pivoting decreases the size of b objects, in the average case
p′ objects are large than p objects by about the same amount. Thus we can infer
that the emulating program fragment is slightly more costly than the activate
operation on the original schema.

Table 7. 〈act b〉o→t: Transformation for activate of b on the original schema

original schema

program fragment block accesses/
‖x0‖

value
accesses/

‖x0‖

stream
length/
‖x0‖

xf := activate(x0, posb) θa : b + nb 1 1

pivoted schema

program fragment block accesses/
‖x0‖

value
accesses/

‖x0‖

stream
length/
‖x0‖

x1 := activate(x0, posd) ˜θa : b + nb 1 1
x2 := activate(x0, posp) θa : p′ + np′ 1 1
xf := project(x2, . . .) 0 0 1

Table 8. 〈act b〉t→o: Transformation for activate of b on the transformed schema

pivoted schema

program fragment block accesses/
‖x0‖

value
accesses/

‖x0‖

stream
length/
‖x0‖

xf := activate(x0, posb) ˜θa : b + nb 1 1

original schema

program fragment block accesses/
‖x0‖

value
accesses/

‖x0‖

stream
length/
‖x0‖

x1 := activate(x0, posb) θa : b + nb 1 1
xf := project(x1, . . .) 0 0 1

Optimising Abstract Object-Oriented Database Schemas 543

Table 8 shows the respective transformation for the opposite direction. Using
the same assumptions as above, we see that the operation on the pivoted schema
is cheaper, because of the smaller size of the b objects.

B Refined Machine Program Transformation from the
Original to the Pivoted Schema for Activate of b

Table 9 shows the special case of activate of b where no D attribute is used in
the subsequent program. In the cost table we show this constraint by a pseudo
project statement. Using the assumptions from Appendix A we can see that the
costs decrease with the size of the b objects.

Table 9. 〈act b〉o→t
¬D : Transformation for activate of b on the original schema with no

attribute out of D getting used

original schema

program fragment block accesses/
‖x0‖

value
accesses/

‖x0‖

stream
length/
‖x0‖

x1 := activate(x0, posb) θa : b + nb 1 1
xf := project(x1, L) 0 0 1

where no d ∈ D appears in L.

pivoted schema

program fragment block accesses/
‖x0‖

value
accesses/

‖x0‖

stream
length/
‖x0‖

x1 := activate(x0, posd) ˜θa : b + nb 1 1
xf := project(x1, L) 0 0 1

C Example Characterisation

Regard the following example OQL query (a p is some attribute of p):

select p.a_p
from b in class_b, p in class_p
where b.attr_p = p

The example exhibits relational read characteristics for b → p and p → a p. Of
these only the relational read for b → p is affected by pivoting. The corresponding
differential cost statements are those for activate of b and access from p to b. For
activate of b we have the special case where we don’t access any D attributes. For
both cases pivoting promises a decrease of costs. (Table 9 provides the differential
cost statement for this special case of activate of b.)

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 544 – 547, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Experimental Research on Conceptual Modeling:
What Should We Be Doing and Why?

Geert Poels1, Andrew Burton-Jones2, Andrew Gemino3,
Jeffrey Parsons4, and V. Ramesh5

1 Faculty of Economics and Business Administration, Ghent University,
Gent, Belgium

2 Sauder School of Business, University of British Columbia, Vancouver, Canada
3 Faculty of Business Administration, Simon Fraser University, Burnaby, BC, Canada.

4 Faculty of Business Administration, Memorial University of Newfoundland,
St. John’s, NL, Canada

5 Kelley School of Business, Indiana University, Bloomington, IN, USA
Geert.Poels@ugent.be, Andrew.Burton-Jones@sauder.ubc.ca,

gemino@sfu.ca,
jeffreyp@mun.ca, venkat@indiana.edu

Abstract. This panel considers a number of contentious issues in the conduct of
experimental research on conceptual modeling. The panelists will present a
range of perspectives on the issues to encourage audience input and discussion.

1 Panel Summary

Recently, there has been a growing interest in experimental research on conceptual
modeling. A key objective of such research is to demonstrate the influence of one or
more independent variables (such as modeling grammar, modeling process, domain
familiarity) on one or more dependent variables (such as comprehension, understanding,
recall, perceived difficulty, confidence). However, there is considerable uncertainty and
some disagreement about the theoretical underpinnings of conceptual modeling
techniques, the appropriateness or usefulness of certain independent and dependent
variables, and the balance between rigor and relevance of such research. Recently,
several papers have examined some of these questions explicitly (e.g., [3][5]), while a
range of other research has examined aspects of evaluating conceptual modeling
techniques (e.g., [1][2][4]).

This panel will present a range of opposing perspectives on important issues
regarding theoretical foundations, choosing independent and dependent variables, and
the balance between rigor and relevance, from researchers who have conducted
experiments in this area and struggled over some of the issues involved. The main
issues for debate in the panel include:

• What are the purposes of a conceptual model, and should these purposes
influence the design of empirical studies?

• Is theory necessary or useful in the design of experimental studies?

 Experimental Research on Conceptual Modeling 545

• What measurements are most appropriate in evaluating conceptual modeling
techniques?

• Is experimental research relevant to the practice of conceptual modeling?
• What can experimental research on conceptual modeling teach us that other

research approaches can’t?
• Is experimental research a necessary component in the process of developing

new or improved conceptual modeling constructs, models, methods or
implementations?

2 Position Statements

2.1 Andrew Burton-Jones

In the ideal research cycle, knowledge of practice informs theoretical and empirical
work, which informs observations of and perhaps even change in practice, and the
cycle continues. Over the last 20 years, conceptual modeling researchers have
undertaken a great deal of theoretical work and have carried out experiments to test
these theories. Although more of this work is needed, we sorely need to improve our
understanding of and impact on practice. At present, our theories and empirical tests
have a tenuous relationship with conceptual modeling practice. For example, a key
reason for using conceptual models in practice is to help analysts and users to reach a
shared understanding of a domain, but no experimental studies to my knowledge have
ever examined this issue. Likewise, several case studies show that social factors
influence how conceptual models are used in practice. However, most theories and
experimental tests of conceptual modeling “assume away” such factors. I will discuss
recent exemplar studies that show how researchers can improve experimental research
on conceptual modeling through insights from practice.

2.2 Andrew Gemino

If the objective of comparing alternative conceptual modeling techniques is to find
which modeling technique performs better, then empirical tests and comparative results
fulfill this objective. This phenomenon-based approach to comparison is based on
inductive principles. While this may be one of the objectives of evaluating alternatives,
I will argue that relative performance should not be the ultimate objective. Instead, the
objective should be to understand why these performance differences occur. To explain
“why” requires theory that enables us to reason deductively. I will suggest that we
evaluate techniques in order to test theories of how characteristics of modeling
techniques affect the eventual understanding of individuals viewing or creating models.
A focus on theory rather than phenomena will improve our area’s ability to design and
refine effective conceptual modeling techniques.

2.3 Jeffrey Parsons

Conceptual modeling grammars and processes should be evaluated in ways that deem
their ‘fitness for purpose.’ In other words, when evaluating grammars and/or processes,

546 G. Poels et al.

we should focus on tasks and measures that are relevant to how they are used in
practice. I will argue that the primary purpose of conceptual modeling techniques is to
represent domain semantics in order to promote a shared understanding of domain
semantics among clients, analysts, and systems developers, and that other uses are built
on this purpose. Furthermore, our knowledge of the capacity of modeling grammars to
express domain semantics remains primitive. I will argue for the need for more basic
studies focusing on representation fidelity as a prerequisite for studies that examine
other purposes of conceptual modeling, such as integrating semantics expressed in a
conceptual schema with existing knowledge.

2.4 V. Ramesh

Experimental research on data modeling has been a topic of interest for at least 15
years. This area has gone through a transformation over the past few years with an
increasing emphasis on academic rigor and theory as evidenced by publications in top
IS journals (e.g., [1][2][4]). However, this has also resulted in research that is very
deep and narrow. In this panel, I will highlight some of the key areas that are still ripe
for the plucking and that might allow us to broaden the focus of our research
questions. These include:

Examining the impact of multiple conceptual models: Experimental research has
typically examined performance on various tasks using a single conceptual model and
compared it with another model. However, in practice a single model is unlikely to be
used in isolation for communicating with various stakeholders. I will present some
thoughts how to bridge this gap between theory and practice.

Understanding the fit between the intended target of the conceptual model and its
inherent characteristics: Conceptual models have been designed and used with a one-
size fits all mentality, i.e., the same model and its constructs are used irrespective of
whether they are intended to be a tool for communication between users-analysts,
analysts-designers or any other stakeholder combination. I will present some
arguments for why there is a need to better understand the needs of each dyad and
how cognitive principles can be used to guide the design and/or use of conceptual
models in each situation.

Role of application domain knowledge: [4] and [5] describe two of very few attempts
at examining the role that application domain knowledge plays in conceptual schema
comprehension. I will present some fertile areas for future study in this area.

References

1. Bodart, F., Sim, M., Patel, A., Weber, R.: Should Optional Properties be Used in
Conceptual Modeling? A Theory and Three Empirical Tests. Information Systems
Research. 12(4) (2001) 384-405

2. Burton-Jones, A. and Meso, P.: Conceptualizing Systems for Understanding: An Empirical
Test of Decomposition Principles in Object-Oriented Analysis. Information Systems
Research, 17(1) (2006), 38-60.

 Experimental Research on Conceptual Modeling 547

3. Gemino, A., Wand, Y.: A Framework for Empirical Evaluation of Conceptual Modeling
Techniques. Requirements Engineering. 9 (2004) 248-260

4. Khatri, V., Vessey, I., Ramesh, V., Clay, P., Park, S.-J.: Understanding Conceptual
Schemas: Exploring the Role of Application and IS Domain Knowledge. Information
Systems Research. 17(1) (2006) 81-99

5. Parsons, J., Cole, L. What Do the Pictures Mean? Guidelines for Experimental Evaluation
of Representational Fidelity in Diagrammatical Conceptual Modeling Techniques. Data and
Knowledge Engineering. 55(3) (2005) 327-342

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 548 – 551, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Eliciting Data Semantics Via Top-Down and Bottom-Up
Approaches: Challenges and Opportunities

Lois Delcambre, Vijay Khatri, Yair Wand, Barbara Williams,
Carson Woo, and Mark Zozulia

Portland State University, USA; Indiana University, USA
University of British Columbia, Canada; Hill-Rom Company, USA
University of British Columbia, Canada; Deloitte Consulting, USA

lmd@cs.pdx.edu, vkhatri@indiana.edu, yair.wand@ubc.ca,
Barb_Williams@Hill-Rom.Com, carson.woo@ubc.ca,

mzozulia@deloitte.com

1 Introduction

Data semantics can be defined as the meaning and use of data [2]. In the context of
databases, data semantics refers to the set of mappings from a representation language
to agreed-upon concepts in the real world [1]. Eliciting and capturing data semantics
can enable better management of the enterprise data. Additionally, elicitation of data
semantics can enhance understanding of applications and result in reduced
maintenance and testing costs along with improved administration of applications.
“Bad” data, or data whose semantics are not known or are not clear, is considered a
major cause of failures such as “botched marketing campaigns, failed CRM1 and data
warehouse projects, angry customers, and lunkhead decisions” [3]. To investigate the
practical challenges and to propose future research opportunities, this discussion
panel, moderated by Vijay Khatri and Carson Woo, will present: 1) views from
Management Information Systems (MIS) and Computer Science (CS) research as
well as 2) methods, tools and approaches employed in practice.

The current regulatory and competitive environment necessitates organizations to
understand and leverage their enterprise-wide data assets. Two main approaches to
understand the meaning of data assets can be differentiated as: 1) top-down and 2)
bottom-up. The top-down approach seeks theoretical guidance, via an ontology, to
help articulate explicit data semantics. In contrast, bottom-up approaches help
articulate implicit data semantics, for example, those based on data source and
context, which can help explain the meaning of data. While both approaches have
merit for practitioners who seek to manage data quality while developing enterprise-
wide data models, each has inherent drawbacks. The four panelists from MIS, CS and
industry will present three distinct perspectives. In the context of business
intelligence (BI), the industry panelists, Barbara Williams and Mark Zozulia, will
provide background for eliciting data semantics. The panelists from MIS (Yair Wand)
and CS (Lois Delcambre) will present the top-down and bottom-up approaches,
respectively, and will discuss how one approach can complement/supplement the
other. In presenting different perspectives, this panel will explore how the two

1 Customer Relationship Management.

 Eliciting Data Semantics Via Top-Down and Bottom-Up Approaches 549

approaches can dove-tail with each other, thus, ultimately helping address challenges
faced by the industry.

In the following, we describe three aspects that will be included in this panel
discussion: 1) background for eliciting data semantics in the context of enterprise-
wide modeling and data quality program; and two approaches for eliciting data
semantics, that is, 2) top-down and 3) bottom-up.

2 Background

Competitive and regulatory pressures are requiring organizations to take a fresh look
at the value of their information assets. These organizations are taking an enterprise-
wide, business-focused approach to developing or re-engineering their enterprise data
warehouses, data marts and analytical applications. Central to this approach is: 1)
enterprise data models referred to as business information models (BIM); and 2) a
well-defined data quality program. Mark Zozulia will discuss BIM and how eliciting
data semantics via BIM supports source-to-report transparency. Barbara Williams
will discuss the importance of a data quality program and how such a program is
dependent on data semantics elicitation.

2.1 BIM

Panelist: Mark Zozulia (mzozulia@deloitte.com), Senior Manager, Deloitte Consulting,
LLP, Chicago, Illinois, USA.

My position is that BIM provides the bridge between the usage of business
information and the storage of data in technical repositories. It establishes a
consistent language and definitions within a framework that links metrics to
information assets to underlying information sources and business processes. The
practical aspects of BIM include increased business understanding, agreement and
adoption of technical data models through the use of more simplified contextual and
conceptual models. The process followed to develop and validate the model and the
artifacts created also supports the implementation of an enterprise information
governance and stewardship program.

2.2 Data Quality Program

Panelist: Barbara Williams (Barb_Williams@Hill-Rom.Com), Director of Enterprise
Business Intelligence Solutions, Hill-Rom Company, Inc., Batesville, Indiana, USA.

Faced with plethora of data quality issues that result in conflicting answers to basic
business questions, inconsistent approach to data management, no mandatory data
retirement practice and inability to drive informed and insightful decisions have
caused organizations to reassess their enterprise BI solution. The key to BI success is
a vision and a roadmap to that vision that enables an enterprise-wide use of data to
drive insightful decisions. I will argue that a fundamental part of the enterprise BI
solution is the introduction of a data quality program, which enables greater business
ownership and accountability for comprehensive, consistent, relevant and timely
enterprise BI reporting. This is achieved through the use of a data quality architecture
linked with the metadata architecture, business rule integration into ETL mappings,

550 L. Delcambre et al.

data quality metrics management and a closed loop data quality reports for data
stewards.

3 Top-Down Approach

Panelist: Yair Wand (yair.wand@ubc.ca), CANFOR Professor of MIS, Sauder
School of Business, University of British Columbia, Canada.

My position is related to the role of ontology in data semantics. Data semantics is
viewed as a mapping from representation (data) to concepts in the real world. Hence,
the question of what representational concepts can be used to define the meaning of
data is germane to the analysis and determination of data semantics. My position is
that since ontology (in the philosophical meaning) deals with beliefs of what exists in
the world, the use of ontology can provide an important theoretical guidance for
analyzing data semantics. However, ontology-based analysis has three potential
drawbacks. First, it is unclear how a set of ontological concepts can be determined
and agreed upon by a “community.” This can be viewed as a “social” issue. Second,
even if a set of ontological constructs can be agreed upon, it is not guaranteed they
would match the way users of the data perceive application domains. This can be
considered a cognitive issue. Third, as ample work about formalized ontologies exists
with the intention to make such ontologies software-accessible a danger of
confounding meaning issues with processing aspects exists. This can be considered
an implementation risk. The use of ontological guidance to data semantics has to
address these three issues.

4 Bottom-Up Approach

Panelist: Lois Delcambre (lmd@cs.pdx.edu), Professor, Computer Science, Portland
State University, Portland, Oregon, USA.

The value of using a standard or otherwise agreed-upon representation of data
semantics is undisputed, regardless of whether the representation is considered to be a
standard schema, XML DTD, thesaurus or a classification scheme. If the schema for
two or more systems is mapped to the same thesaurus, then we can expect that the
corresponding data from the systems have the same meaning or semantics. In this
panel, I will consider other issues beyond this type of mapping. First, I will discuss
the problem of implicit semantics of a data source. Sometimes, part of the semantics
of particular data is implied (solely) by its membership in a data source. For example,
one dataset might be limited to students in the honors program in the College of
Engineering and another dataset might consist of students from the College who, at
some point in the past four years, were placed on academic probation. Such
information, that is often implicit, is also part of the semantics of the data. Second, I
will discuss the importance of retaining links to the original source data. Seeing
information in its original context can provide important documentation of the
original semantics of the data. In one of our current research projects that seeks to
integrate clinical endoscopy reports, for example, the analysts attempting to analyze
trends in the data want to see the text of the question or label on the original user

 Eliciting Data Semantics Via Top-Down and Bottom-Up Approaches 551

interface in order to understand the meaning of the data. In another of our research
projects, in collaboration with David Maier, we are developing generic mechanisms to
support superimposed information that allow one to easily connect information used
in a new application, to support some new perhaps unanticipated purpose, to the
underlying, original information in context.

References

[1] Sheth, A. (1995). Data semantics: What, where and how? Paper presented at the 6th IFIP
Working Conference on Data Semantics (DS-6), Atlanta, Georgia.

[2] Woods, W. A. (1975). What's in a link: Foundations for semantic networks. In D. G.
Bobrow & A. Collins (Eds.), Representation and understanding: Studies in cognitive
science (pp. 35-82). New York: Academic Press.

[3] Whiting, R. (2006). Aawww, rubbish, Information Week, pp. 37-44, May 8.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 552 – 565, 2006.

The ADO.NET Entity Framework: Making the
Conceptual Level Real

José A. Blakeley, S. Muralidhar, and Anil Nori

Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399, USA
{joseb, smurali, anilnori}@microsoft.com

Abstract. This paper describes the ADO.NET Entity Framework, a platform for
programming against data that raises the level of abstraction from the logical
(relational) level to the conceptual (entity) level, and thereby significantly
reduces the impedance mismatch for applications and data services such as
reporting, analysis, and replication. The conceptual data model is made real by
a runtime that implements an extended relational model (the Entity Data Model
aka the EDM), that embraces entities and relationships as first class concepts; a
query language for the EDM; a comprehensive mapping engine that translates
from the conceptual to the logical (relational) level, and a set of model-driven
tools that help create entity-object, object-xml, and entity-xml transformers.

1 Introduction

Modern applications require data management services in all tiers. They need to
handle increasingly richer forms of data which includes not only structured business
data (customers, orders) but also XML, email, calendar, files, and documents. These
applications need to integrate data residing in multiple data sources and enable end-
to-end business insight by collecting, cleaning, storing, and preparing business data in
forms suitable for an agile decision making process. Developers of these applications
need data access, programming and development tools to increase their productivity.

This paper describes the ADO.NET Entity Framework, a platform for program-
ming against data that significantly reduces the impedance mismatch for applications
and data services such as reporting, analysis, and replication. We argue that modern
applications and data services need to target a higher-level conceptual model based on
entities and relationships rather than the relational model and that such conceptual
model needs to be implemented concretely in a data platform. The Entity Framework
makes the conceptual data model concrete by a runtime that implements an extended
relational model – the Entity Data Model, or the EDM -, that embraces entities and
relationships as first class concepts, a query language for the EDM, a comprehensive
mapping engine that translates from the conceptual to the logical (relational) level,
and a set of model-driven tools that help create entity-object, object-xml, and entity-
xml transformers. The Entity Framework is part of a broader Microsoft Data Access
vision supporting a family of products and services so customers derive value from
all data, birth through archival.

 The ADO.NET Entity Framework: Making the Conceptual Level Real 553

Section 2 describes the physical, logical, conceptual and programming levels as
well as other terms used throughout the paper. Section 3 describes the evolution of
applications and data services and motivates the need for making the conceptual level
central to application and data services design. Section 4 introduces the Entity Data
Model and the concrete manifestation of this model in the Entity Framework. Section
5 presents a summary and conclusions.

2 Database Modeling Layers

Today’s dominant information modeling methodology for producing database designs
factors an information model into four main levels: Physical, Logical (Relational),
Conceptual, and Programming/Presentation.

The physical model describes how data is represented in physical resources such
as memory, wire or disk. The vocabulary of concepts discussed at this layer include
record formats, file partitions and groups, heaps, and indexes. The physical model is
typically invisible to the application - applications usually target the logical or
relational data model described in the next section. Changes to the physical model
should not impact application logic, but may impact application performance.

Fig. 1. Physical, logical, conceptual and multiple programming and presentation views of an
Order

A logical data model is a complete and precise information model of the target
domain. The relational model is the representation of choice for most logical data
models. The concepts discussed at the logical level include tables, rows, and primary
key-foreign key constraints, and normalization. While normalization helps to satisfy
important application requirements such as data consistency and increased

554 J.A. Blakeley, S. Muralidhar, and A. Nori

concurrency with respect to updates and OLTP performance, it also introduces
significant challenges for applications. (Normalized) Data at the logical level is too
fragmented and application logic needs to aggregate rows from multiple tables into
higher level entities that more closely resemble the artifacts of the application domain.
The conceptual level introduced in the next section is designed to overcome these
challenges.

The conceptual model captures the core information entities from the problem
domain and their relationships. A well-known conceptual model is the Entity-
Relationship Model introduced by Peter Chen in 1976 [1]. UML is a more recent
example of a conceptual model [2].

Most significant applications involve a conceptual design phase early in the
application development lifecycle. Unfortunately, however, the conceptual data model
is captured inside a database design tool that has little or no connection with the code
and the relational schema used to implement the application. The database design
diagrams created in the early phases of the application life cycle usually stay “pinned
to a wall” growing increasingly disjoint from the reality of the application
implementation with time. However, a conceptual data model can be as real, precise,
and focused on the concrete “concepts” of the application domain as a logical
relational model. A goal of the Microsoft Data Access vision is to make the
conceptual data model (embodied by the Entity Data Model, described in Section 4.2)
a concrete feature of the data platform.

The programming/presentation model describes how the entities and relationships
of the conceptual model need to be manifested (presented) in different forms based on
the task at hand. Some entities need to be transformed into programming language
objects to implement application business logic; others need to be transformed into
XML streams for web service invocations; still others need to be transformed into in-
memory structures such as lists or dictionaries for the purposes of user-interface data
binding. Naturally, there is no universal programming model or presentation form;
thus applications need flexible mechanisms to transform entities into the various
presentation forms.

Most developers, and most of the modern data services want to reason about high-
level concepts such as an “Order” (See Figure 1), not about the several tables that an
order may be normalized over in a relational database schema. They want to query,
secure, program, report on the order. An order may manifest itself at the presentation/
programming level as a class instance in Visual Basic or C# encapsulating the state
and logic associated with the order, or as an XML stream for communicating with a
web service. We believe there is no “one proper presentation model”; and that the real
value is in making the conceptual level real and then being able to use that model as
the basis for flexible mappings to and from various presentation models and other
higher level services.

3 Application and Data Services Evolution

This section describes the platform shift that motivates the need for a higher level data
model and data platform. We will look at this through two perspectives: application
evolution and SQL Server’s evolution as a product. A key point we make in this

 The ADO.NET Entity Framework: Making the Conceptual Level Real 555

section is that the need for rich data model is motivated not just for developing
application logic but also for supporting building higher-level data services such as
reporting and replication.

3.1 Application Evolution

Data-based applications 10-20 years ago were typically structured as data monoliths;
closed systems with logic factored by verb-object functions that interacted with a
database system at the logical schema (e.g. relational) level. A typical order entry
system built around a relational database management system (RDBMS) 20 years ago
would have logic partitioned around verb-object functions associated with how users
interacted with the system. In fact, the user interaction model via “screens” or “forms”
became the primary factoring for logic – there would be a new-order screen, and
update-customer screen. The system may have also supported batch updates of
SKU’s, inventory, etc. The application logic was tightly bound to the logical
relational schema.
Much of the data-centric logic (e.g. validation logic) is embedded within the
application logic. People typically wrote batch programs to interact directly with the
logical schema to perform updates. Programming languages did not support
representation of high-level abstractions directly – objects did not exist. These
applications can be characterized as being closed systems whose logical data
consistency was maintained by application logic implemented at the logical schema
level. An order was an order because the new-order logic ensured that it was.

A key reason for custom data-centric logic by applications is the well-known
application impedance mismatch problem. The logical schema does not match the
level of abstraction of the application. Applications address this problem by
developing at the data abstraction (e.g. relational) and by writing custom mapping
code to bridge the gap between the application and the data abstractions. This not only
leads to duplication of effort but also reduces application development productivity.
In the next sections we will show how the Entity Framework and the Language
Integrated Query innovations in .NET languages help to minimize this impedance
mismatch.

Several significant trends have shaped the way that modern data-based applications
are factored and deployed today. Chief among these are object oriented factoring,
service level application composition, and higher level data services. When we think
about the factoring, composition, and services from above, we can see that the
conceptual entities are an important part of today’s applications. It is also easy to see
how these entities must be mapped to a variety of representations and bound to a
variety of services. There is no one correct representation or service binding. XML,
Relational and Object representations are all important but no single one will suffice.

Consider a “StockNotifications” application which deals with concepts like
Customer Order, Product, and Stock. How do we make them real and use our
conceptual understanding of them throughout the system whether they are stored in a
multi-dimensional database for analytics, in a durable queue between systems, in a
mid-tier cache; a business object, etc. Figure 2 captures the essence of this issue by
focusing on several entities in our order entry system. Note that conceptual level

556 J.A. Blakeley, S. Muralidhar, and A. Nori

Fig. 2. Order Entry System circa 2005

entities have become real. Also note that the conceptual entities are communicating
with and mapping to various logical schema formats, e.g. relational for the persistent
storage, messages for the durable message queue on the Submit Order service, and
perhaps XML for the Stock Update and Order Status web services.

3.2 SQL Server Evolution

The data services provided by a “data platform” 20 years ago were minimal and
focused around the logical schema in an RDBMS. These services included query &
update, atomic transactions, and bulk operations such as backup and load/extract.

SQL Server itself is evolving from a traditional RDBMS to a complete data
platform that provides a number of high value data services over entities realized at
the conceptual schema level. While providing services such as reporting, analysis, and
data integration in a single product and realizing synergy among them was a
conscious business strategy, the means to achieve these services and the resultant
ways of describing the entities they operate over happened more organically – many
times in response to problems recognized in trying to provide higher level data
services over the logical schema level. There are two good examples of the need for
concrete entity representation for services now provided within SQL Server: logical
records for merge replication, and the semantic model for report builder.

Early versions of merge replication in SQL Server provided for multi-master
replication of individual rows. In this early mode, rows can be updated independently
by multiple agents; changes can conflict; and various conflict resolution mechanisms
are provided with the model. This row-centric service had a fundamental flaw – it did
not capture the fact that there is an implicit consistency guarantee around entities as
they flow between systems. To address this flaw, the replication service introduced

 The ADO.NET Entity Framework: Making the Conceptual Level Real 557

“logical records” as a way to describe and define consistency boundaries across
entities comprised of multiple related rows at the logical schema level. “Logical
records” are defined in the part of the SQL catalog associated with merge replication.
There is no proper design-time tool experience to define a “logical record” such as an
Order that includes its Order Details – applications do it through a series of stored
procedure invocations.

Report Builder (RB) is another example of SQL Server providing a data service at
the conceptual entity level. Since it operates at the logical schema level though,
writing reports requires knowing how to compose queries at the logical schema level
– e.g. creating an order status report requires knowing how to write the join across the
several tables that make up an order. End users and analysts, however, want to write
reports directly over Customers, Orders, Sales, etc. Thus, the SQL Server team
created a means to describe and map conceptual entities to the logical schema layer
we call the Semantic Model Definition Language (SMDL).

These are just two of a number of mapping services provided within SQL Server –
the Unified Dimensional Model (UDM) provides a multi-dimensional view
abstraction over several logical data models. A Data Source View (DSV), on which
the BI tools work, also provides conceptual view mapping technology.

A key observation is that several higher-level data services in the SQL Server
product are increasingly delivering their services at the conceptual schema level.
Currently, each of these services has a separate tool to describe conceptual entities
and map them down to the underlying logical schema level. Figure 3 illustrates the
evolution of SQL Server into a data platform with many high value data services and
multiple means to map conceptual entities to their underlying logical schemata.

Fig. 3. SQL Server 2005

558 J.A. Blakeley, S. Muralidhar, and A. Nori

4 Entity Framework

This section describes the ADO.NET Entity Framework that makes the conceptual
level real. We start with the rationale that led us to the development of an Entity Data
Model (EDM) followed by an overview of the EDM. We present an architectural
description of the entity framework implementing a runtime supporting the EDM, a
query language, and mapping. We conclude the section with a description of the
development process around the EDM.

4.1 Why a New Model?

The Entity Data Model (EDM) is intended for developing rich data-centric
applications. The obvious question that arises is: “why not use (or extend) one of
these established data models? There are at least four other modern candidates for
such a data model:

• The SQL data model (tables, columns, keys, referential integrity constraints...).
SQL99 extends this core model to include object relational features (user
defined-, structured-, and distinct-types, methods, typed tables, refs…).

• The CLR data model (classes, fields, methods, properties, value, and Ref
types, collections…)

• The XSD model based on XML Infoset (Atomic-, list-, and union-types,
primitive- and derived-types, token, ID, IDREF, ENTITY…)

• The UML data model (classes, objects, associations, generalizations,
attributes, operations, aggregations…)

The overall reason is that we need something that maps cleanly to both the CLR
and to relational databases like SQL Server, for programmability and persistence
respectively. None of the other candidates has all the needed facilities for both. The
CLR is an object-oriented, imperative-programming runtime, and has no native data
model or notions of integrity constraints, relationships, or persistence. SQL99 lacks
data modeling concepts like relationships, and does not have good programming
language integration. The XSD specification does not support concepts like keys,
relationships, and persistence. In addition, the full XSD specification is complex and
has awkward mapping to both the runtime and to relational database models. The
UML is too general: it requires application developers to add precise semantics,
especially for persistence.

The EDM has been designed to map downward cleanly to both the CLR and to a
relational database, and upward to a specialization of UML. Designers can work with
concepts familiar from UML, which can be compiled in phases to XML, CLR
programs, and SQL.

An important aspect of EDM is that it is value based like the relational model (and
SQL) rather than object/reference based like C# (CLR). One or more object
programming models can be easily supported on top of EDM. Similarly, the EDM can
mapped to one or more relational DBMS implementations for persistence.

 The ADO.NET Entity Framework: Making the Conceptual Level Real 559

4.2 EDM Overview

The EDM extends the classic relational model with concepts from E-R modeling. The
central concepts in the EDM are entities and relationships. Entities represent top-level
objects with independent existence and identity, while Relationships are used to relate
(or, describe relationships between) two or more entities.

4.2.1 Types
An EntityType describes the definition of an entity. An entity typically is a top-level
object with independent existence. An entity has a payload - zero or more properties
that describe the structure of the entity. Additionally, an entity type must define a key
– a set of properties whose values uniquely identify the entity instance within its
container. EntityTypes may derive from (or subtype) other entity types. EDM
supports a single inheritance model.

The properties of an entity may be simple or complex types. A SimpleType (or a
PrimitiveType) represents scalar (or atomic) types (e.g. integer, string), while a
ComplexType can be used to represent structured properties (e.g. an Address). A
ComplexType is composed of zero or more properties, which may themselves be
scalar or complex type properties.

A Relationship type is a specialized entity type that describes relationships
between two (or more) entity types. The EDM supports two kinds of Relationships.
Containment relationships model parent-child relationships (e.g. Order-Line), and are
binary relationships, while Associations model peer-to-peer relationships (Supplier-
Part). The key for a relationship type is usually, but not necessarily, the concatenated
keys of the entity types participating in the relationship. Relationships – especially
many-to-many relationships - may optionally include a payload.

EDM Schemas provide a grouping mechanism for types – types must be defined in
a schema.

In addition to the types above, the EDM supports transient types in the form of
RowTypes and CollectionTypes. These occur mostly in the context of query
operations (e.g., projections, joins). A RowType is an anonymous type that is
structurally similar to a ComplexType. A RowType’s structure depends on the
sequence of typed and named members that it is comprised of. A rowtype has no
identity and cannot be inherited from. Instances of the same row type are equivalent
if the corresponding members (in order) are respectively equivalent. Rows have no
behavior beyond their structure. A CollectionType represents a homogenous
collection of objects.

4.2.2 Primitive Types
The EDM is a data model, not a type system. The EDM defines shaping constructs
(entity types etc.), but the actual types (and their semantics) are defined by the hosting
environment. The EDM does define a set of abstract (or template) primitive types, and
a set of associated facets, that enable the abstract primitive types to represent
primitive types of the hosting environment (SqlServer databases, the CLR, etc.).
These abstract types are proxies for the real primitive types defined by the host, and
the semantics of operations over these types are entirely governed by the host.

560 J.A. Blakeley, S. Muralidhar, and A. Nori

4.2.3 Instances
Entity instances (or just entities) are logically contained within an EntitySet. An
EntitySet is a homogenoous collection of entities (i.e.) all entities in an EntitySet must
be of the same (or derived) EntityType. An entity instance must belong to exactly one
entity set. In a similar fashion, relationship instances are logically contained within a
RelationshipSet. The definition of a RelationshipSet scopes the relationship, that is, it
identifies the EntitySets that hold instances of the entity types that participate in the
relationship. SimpleTypes and ComplexTypes can only be instantiated as properties
of entity instances.

An EntityContainer is a logical grouping of EntitySets and RelationshipSets – akin
to how a Schema is a grouping mechanism for EDM types.

4.2.4 Examples
<?xml version="1.0"?>
<Schema Namespace="CNorthwindSchema"

xmlns="urn:schemas-microsoft-com:windows:storage">
<!—
Typical Entity definition, has identity (via the key) and some members
-->
 <EntityType Name="Product" Key="ProductID">
 <Property Name="ProductID" Type="System.Int32" />
 <Property Name="ProductName" Type="System.String" Size="max" />
 ...
 </EntityType>

<!—
A derived product
-->
 <EntityType Name="DiscontinuedProduct" BaseType="Product">
 <Property Name="DiscReason" Type="System.String" Size="max" />
 </EntityType>

<!—
A complex type defines structure but no identity. It can be used inline
in 0 or more Entity definitions
-->
 <ComplexType Name="CtAddress" >
 <Property Name="Address" Type="System.String" Size="max" />
 <Property Name="City" Type="System.String" Size="max" />
 <Property Name="PostalCode" Type="System.String" Size="max" />
 ...
 </ComplexType>
<!—
A Customer Entity
-->
 <EntityType Name="Customer" Key="CustomerID">

 <!— Address is a member which references a complextype -->
 <Property Name="Address" Type="CNorthwind.CtAddress" />
 <Property Name="CustomerID" Type="System.String" Size="max" />
 </EntityType>
<!—
An example of an association between Product [defined above] and
OrderDetails [not shown for sake of brevity]
-->
 <Association Name="Order_DetailsProducts">
 <End Name="Product" Type="Product" Multiplicity="1" />
 <End Name="Order_Details" Type="OrderDetail" Multiplicity="*" />
 </Association>

</Schema>

<!—
The Entity Container defines the logical encapsulation of
EntitySets (sets of (possibly) polymorphic instances of a type) and
AssociationSets (logical link tables for relating two or more entity instances)
-->
 <EntityContainer Name="CNorthwind">
 <Using Namespace="CNorthwindSchema" />

 <EntitySet Name="Products" EntityType="Product" />

 The ADO.NET Entity Framework: Making the Conceptual Level Real 561

 <EntitySet Name="Customers" EntityType="Customer" />
 <EntitySet Name="Order_Details" EntityType="OrderDetail" />
 <EntitySet Name="Orders" EntityType="Order" />

 <AssociationSet Name="Order_DetailsProductsSet"

 Association="Order_DetailsProducts">
 <End Name="Product" EntitySet="Products" />
 <End Name="Order_Details" EntitySet="Order_Details"/>
 </AssociationSet>

 </EntityContainer>

4.3 Entity Framework Architecture

This section briefly describes the architecture of the Entity Framework being built as
part of ADO.NET. The main functional components of the ADO.NET Entity
Framework (see Figure 4) are:

Data source-specific providers. The Entity Framework builds on the ADO.NET data
provider model. There are specific providers for several relational, non-relational, and
Web services sources.
Map provider. The Entity Framework includes a new data provider, the Map
provider. This provider houses the services implementing the mapping transformation
from conceptual to logical constructs. The Map provider is a value-based, outside-the-
store view runtime where data is accessed in terms of EDM entities and relationships
and queried/updated using an entity-based SQL language (eSQL). The Map provider
includoes the following services:

• EDpM/eSQL. The Map provider processes and exposes data in terms of the
EDM values. Queries and updates are formulated using eSQL. They are
processed through the query and update pipeline engines which incorporate
mapping transformations and knowledge about the specific capabilities of the
data sources.

• Mapping. View mapping, one of the key services of the Map provider, is the
subsystem that implements bidirectional (read and write) views that allow
applications to manipulate data in terms of entities and relationships rather than
rows and tables. The mapping from tables to entities is specified declaratively
through a mapping definition language.

• Store-specific bridge. The bridge component is a service that supports the query
execution capabilities of the query pipeline and coordinates the generation of
queries using provider specific syntax.

• Metadata services. The metadata service supports all metadata discovery
activities of the components running inside the Map provider. All metadata
associated with EDM concepts (entities, relationships, entitysets,
relationshipsets), store concepts (tables, columns, constraints), and mapping
concepts are exposed via metadata interfaces. The metadata services component
also serves as a link between the domain modeling tools which support model-
driven application design.

• Transactions. The Map provider integrates with the transactional capabilities of
the underlying stores.

• API. The API of the Map provider follows the ADO.NET provider model based
on Connection, Command, and DataReader objects. The Map provider accepts

562 J.A. Blakeley, S. Muralidhar, and A. Nori

commands in the form of eSQL text or canonical trees and produces DataReader
objects as results.

Occasionally Connected Components. The Entity Framework enhances the well
established disconnected programming model of the ADO.NET DataSet. In addition
to enhancing the programming experiences around the typed and un-typed DataSets,
the Entity Framework embraces the EDM to provide rich disconnected experiences
around cached collections of entities and entitysets.
Embedded Database. The Entity Framework encompasses the capabilities of a low-
memory footprint, embeddable database engine to enrich the services for applications
that need rich middle-tier caching and disconnected programming experiences.
Design and Metadata Tools. The Entity Frameowkr integrates with domain
designers to enable model-driven application development. The tools include EDM,
mapping, and query modelers.
Programming Layers. ADO.NET allows multiple programming layers to be plugged
onto the value-based entity data services layer exposed by the Map provider. The
object services component is one such programming layer that surfaces CLR objects.
There are multiple mechanisms by which a programming layer may interact with the
entity framework. One of the important mechanisms is LINQ expression trees.
Services. Rich SQL data services such as reporting, replication, business analysis will
be built on top of the Entity Framework.

Fig. 4. Entity Framework Architecture

4.4 Making the Conceptual Level Real

This section outlines how one may define a conceptual model and work against it. We
use a modified version of the Northwind database for familiarity.

 The ADO.NET Entity Framework: Making the Conceptual Level Real 563

4.4.1 Build the Conceptual Model
The first step is to define one’s conceptual model. The EDM allows you to describe
the model in terms of entities and relationships. The model may be defined explicitly
by hand writing the XML serialized form of the model as shown above. Alternately, a
graphical EDM designer tool may be used.

4.4.2 Apply the Mapping
After we define the EDM conceptual model, we identify a target store, and then map
the conceptual model to the target store’s logical schema model. As with the
conceptual EDM, one can hand write an explicit mapping or use a mapping tool. For
example, the Northwind store may stripe data across multiple tables (the vertical
partitioning strategy); however, applications would want to reason about the data as a
single entity without the need for joins or knowledge of the relational model. The
mapping layers isolate the application from knowledge of the store’s schemas.

4.4.3 Automatically Generated Classes

Categor ies

CategoryID int

CategoryName nvarchar(15)

Description nvarchar(MAX)

Column Name Data Type Allow Nulls

Customers

CustomerID nvarchar(5)

CompanyName nvarchar(40)

ContactName nvarchar(30)

ContactTitle nvarchar(30)

Address nvarchar(60)

City nvarchar(15)

Region nvarchar(15)

PostalCode nvarchar(10)

Country nvarchar(15)

Phone nvarchar(24)

Fax nvarchar(24)

Column Name Data Type Allow Nulls
Employees

EmployeeID int

LastName nvarchar(20)

FirstName nvarchar(10)

Title nvarchar(30)

Extension nvarchar(4)

Notes nvarchar(MAX)

ReportsTo int

Column Name Data Type Allow Nulls

Order Details

OrderID int

ProductID int

UnitPrice money

Quantity smallint

Discount real

OrderDetailsID uniqueidentifier

Column Name Data Type Allow Nulls

Orders

OrderID int

CustomerID nvarchar(5)

EmployeeID int

OrderDate datetime

RequiredDate datetime

ShippedDate datetime

ShipVia int

Freight money

ShipName nvarchar(40)

ShipAddress nvarchar(60)

ShipCity nvarchar(15)

ShipRegion nvarchar(15)

Column Name Data Type Allow N

Products

ProductID int

ProductName nvarchar(40)

SupplierID int

CategoryID int

QuantityPerUnit nvarchar(20)

UnitPrice money

UnitsInStock smallint

UnitsOnOrder smallint

ReorderLevel smallint

Discontinued bit

DiscontinuedReason nvarchar(255)

Column Name Data Type Allow Nulls

Shippers

ShipperID int

CompanyName nvarchar(40)

Phone nvarchar(24)

Column Name Data Type Allow Nulls

Suppliers

SupplierID int

CompanyName nvarchar(40)

ContactName nvarchar(30)

ContactTitle nvarchar(30)

Address nvarchar(60)

City nvarchar(15)

Region nvarchar(15)

PostalCode nvarchar(10)

Country nvarchar(15)

Phone nvarchar(24)

Fax nvarchar(24)

HomePage nvarchar(MAX)

Column Name Data Type Allow Nulls

PersonalInfo

EmployeeID int

TitleOfCourtesy nvarchar(25)

BirthDate datetime

HireDate datetime

HomePhone nvarchar(24)

Column Name Data Type Allow N

ContactInfo

EmployeeID int

Country nvarchar(15)

Address nvarchar(60)

City nvarchar(15)

Region nvarchar(15)

Column Name Data Type Allow N

Fig. 5. Entity Data Model for Northwind

Having the conceptual level is indeed sufficient for many applications as it

provides a domain model that is live within the context of a comfortable pattern
(ADO.NET commands, connections and data readers) and allows for late bound
scenarios. Many applications, however, prefer an object programming layer. This can
be facilitated through code generation driven from the EDM description. For

564 J.A. Blakeley, S. Muralidhar, and A. Nori

increased flexibility and data independence between the object and conceptual level, a
mapping may be defined between classes and the conceptual model. The mapping
between classes and the conceptual model is a straightforward member-wise mapping.
This enables applications built against these classes to be reused against other
versions of the conceptual model, provided a legal map can be defined.

4.4.4 Using Objects
One can interact with objects and perform regular Create, Read, Update and Delete
(CRUD) operations on the objects. The example below demonstrates the use of Lang-
uage Integrated Query (LINQ) to identify all orders that are newer than a given date

class DataAccess
{
 static void GetNewOrders(DateTime date) {
 using (NorthWindDB nw = new NorthWindDB ()) {
 var orders = from o in nw.Orders

where o.OrderDate > date
 select new { o.orderID, o.OrderDate,
 Total = o.OrderLines.Sum(
 l => l.Quantity);

 foreach (SalesOrder o in orders) {
 Console.WriteLine("{0:d}\t{1}\t{2}",
 o.OrderDate, o.OrderId, o.Total);
 }
 }
 }

4.4.5 Using Values
There are many ISVs, framework and data services developers who just prefer to
work against a .NET data provider; the MapProvider is intended for such usage
scenarios. The Map Provider has a connection and a command and returns a
DbDataReader when one invokes MapCommand.ExecuteReader(). An example of a
query using the MapCommand is as follows:

public void DoValueQueries(DateTime date)
{
//--- get a connection
using (MapConnection conn =

new MapConnectionFactory().GetMapConnection()){
 conn.Open();

MapCommand command = conn.CreateCommand();
 command.CommandText = @"select value e from Employees as e
 where e.HireDate > @HireDate";
 command.Parameters.Add(new MapParameter("HireDate",date));

DbDataReader reader = command.ExecuteReader();
while(reader.Read()){
//--- process record

 }
 }
}

5 Summary and Conclusion

Significant application and database technology trends require richer services at the
conceptual rather than at the logical schema level. The Entity Framework provides a

 The ADO.NET Entity Framework: Making the Conceptual Level Real 565

broad data platform with a rich and concrete conceptual schema to enable new
applications and data services. The data platform includes the following components:

1. Entity Framework. A value-based runtime that implements an extended
relational model - EDM - that embraces entities and relationships as first class
concepts, a query language for the EDM, and a comprehensive mapping
engine from the conceptual to the logical (relational) level.

2. Comprehensive programming model. We need programming model
innovations that bridge the gap between different data representations (XML,
relational, objects). In fact, by developing programming languages and APIs at
the conceptual level, we will be able to liberate the programmer from the
impedance mismatches that exist among different logical models. Program-
ming language extensions such as Linq [5] provide richer, declarative
programming models across different data representations.

3. Data services targeting the conceptual level. Examples include Synchro-
nization/Replication, Reporting, and Security.

4. Design-time tools. Data modeling tools today produce models that are largely
abstract. They are used sometimes to produce a logical or physical design for a
relational database implementation. We envision design-time tools that are
used to: (a) build EDM models, (b) map EDM models to logical (relational) as
well as other programming and presentation representations, and (c) semantics
tools where you may introduce synonyms, aliases, translation and other
semantic adornments for natural language and end user query.

References

1. Chen, P. The Entity-Relationship Model—toward a unified view of data, ACM Transactions
on Database Systems, Vol. 1, Issue 1, March 1976, pp. 9-36.

2. Unified Modeling Language. http://www.uml.org/.
3. Microsoft. The ADO.Net Entity Framework Overview. http://msdn.microsoft.com/ data/

default.aspx?pull=/library/en-us/dnvs05/html/ADONETEnFrmOvw.asp, June 2006.
4. Blakeley, J.A., Campbell, D., Gray, J., Muralidhar, S., Nori, A.. Next-Generation Data

Access: Making the Conceptual Level Real. http://msdn.microsoft.com/data/ default.
aspx?pull=/library/ en-us/dnvs05/ html/nxtgenda.asp, June 2006.

5. Microsoft. The Linq Project. http://msdn.microsoft.com/data/ref/linq/default.aspx.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, p. 566 , 2006.
© Springer-Verlag Berlin Heidelberg 2006

XMeta Repository and Services

Lee Scheffler

IBM Distinguished Engineer
Chief Architect, WebSphere Information Integration Services

IBM Corporation, 50 Washington Street, Westboro, MA 01581, USA
lscheff1@us.ibm.com

Abstract. The XMeta repository is an emerging industrial-strength model and
instance persistence, management, access, query, update, upgrade and mapping
facility based on EMF modelling technology. It is actively used as the
foundation of several commercial metadata intensive products within IBM as
well as several research efforts involving conceptual modeling. This talk
covers both the features of XMeta and its services, and some of its current uses.
It is expected that a version of XMeta will be made more widely available in
some external form in the future.

Keywords: EMF, metadata, repository.

Part 1 - XMeta Repository and Services

This part of the talk covers the features and design of the XMeta repository and
services, including:

• EMF model development and maintenance
• Repository interfaces (query, access, concrete Java and reflective)
• Object-relational binding
• Model packages and model extension
• Repository services
• Import/export/backup/restore/upgrade
• Dynamic cross-model mapping
• Versioning, concurrency, identity, instance reconciliation
• Analysis services
• Future directions

Part 2 - Uses and Usage Models

This part of the talk surveys several current uses of these repository facilities, including:

• The WebSphere Information Integration Services product family including
data profiling, data integration, data quality enhancement, information
integration services

• The WebSphere enterprise services directory
• Several IBM current and anticipated research uses
• Usage issues and tradeoffs

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, p. 567, 2006.
© Springer-Verlag Berlin Heidelberg 2006

IBM Industry Models: Experience, Management and
Challenges

Pat G. O’Sullivan and Dan Wolfson

IBM Enterprise Master Data Management Solutions

Abstract. IBM's Industry Models for Banking and Insurance continue to evolve
to encompass our accumulated experience with our customers, the changing
needs of the industry, and the changing directions in technologies. With over 15
years of use, these models represent a wealth of information about the
information models, process models and integration models for these industries.
The models are in use today by more than 300 leading Banks and Insurance
companies, where they serve in a variety of capacities - from supporting Data
Consolidation initiatives and Business Process Re-Design to addressing Risk &
Compliance issues such as Anti-Money Laundering, Sarbanes-Oxley, or Basel II.

As successful as these models have been, technical challenges remain. Such
challenges include:

• the extension of the models to formally incorporate (and relate) additional
dimensions (ontologies, states, KPIs, rules, etc)

• how to establish both inter-model relationships as well as traceability (and
per-haps round-tripping) from models to runtime

• how to better identify and reuse common model snippets across domains
• how to facilitate better understanding of complex models
• automating the deployment of run-time artifacts based on models

While the IBM Industry Models represent a significant body of content, the
management of this content and more broadly the management of metadata are
also key concerns. In this talk, we will review the IBM Industry Models,
discuss how this work is evolving, the metadata management roadmap and
discuss some of these key ongoing technical challenges to be addressed by both
research and development communities.

Keywords: IBM Industry Models, Financial Industry, Metadata Management.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, p. 568 , 2006.
© Springer-Verlag Berlin Heidelberg 2006

Community Semantics for Ultra-Scale Information
Management

Scott Renner

Principal Engineer, Command and Control Center
The MITRE Corporation, 202 Burlington Road, Bedford, MA 01730, USA

sar@mitre.org

Abstract. The U.S. Department of Defense (DoD) presents an instance of an
ultra-scale information management problem: thousands of information
systems, millions of users, billions of dollars for procurement and operations.
Military organizations are often viewed as the ultimate in rigid hierarchical
control. In fact, authority over users and developers is widely distributed, and
centralized control is quite difficult – or even impossible, as many of the DoD
core functions involve an extended enterprise that includes completely
independent entities, such as allied military forces, for-profit corporations, and
non-governmental organizations. For this reason, information management
within the DoD must take place in an environment of limited autonomy, one in
which influence and negotiation are as necessary as top-down direction and
control.

This presentation examines the DoD’s information management problems in
the context of its transformation to network-centric warfare The key tenent of
NCW holds that “seamless” information sharing leads to increased combat
power. We examine several implications of the net-centric transformation and
show how each depends upon shared semantic understanding within
communities of interest. Opportunities for research and for commercial tool
development in the area of conceptual modeling will be apparent as we go
along.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 569 – 580, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Managing Data in High Throughput Laboratories: An
Experience Report from Proteomics*

Thodoros Topaloglou

Information Engineering, Department of Mechanical and Industrial Engineering,
University of Toronto, 5 King’s College Circle, Toronto, Ontario

thodoros@mie.utoronto.ca

Abstract. Scientific laboratories are rich in data management challenges. This
paper describes an end-to-end information management infrastructure for a high
throughput proteomics industrial laboratory. A unique feature of the platform is
a data and applications integration framework that is employed for the
integration of heterogeneous data, applications and processes across the entire
laboratory production workflow. We also define a reference architecture for
implementing similar solutions organized according to the laboratory data
lifecycle phases. Each phase is modeled by a set of workflows integrating
programs and databases in sequences of steps and associated communication
and data transfers. We discuss the issues associated with each phase, and
describe how these issues were approached in the proteomics implementation.

1 Introduction

A key problem in building systems to manage data and processes in biological
laboratories is the lack of a reference framework. A reference framework provides a
blueprint for the main system components and their functionality, methodologies for
modeling, building and testing such systems, and domain specific best practices that
include data standards for representation and data exchange that enhance interoper-
ability.

The majority of the relevant work on scientific data focuses on representation of
data results (MIAME [1], MAGE-ML [2], MIAPE [3]), infrastructures for data
analysis (myGRID [4]), integration of data from public databases (Alladin [5], SRS
[6]), and assembling and managing of large community databases (IMG [7], UCSC
Browser [78]). Management of experiment designs, protocols, protocol execution and
of laboratory data is less systematic and not well integrated with the result datasets.
This fragmented and bottom up approach to biological data management is rooted in
the organizational separation of data production from data consumption and the fact
that laboratory information management systems are tied to specific instrument
platforms. It is well documented [9, 10, 11] that the characteristics of samples,

* The proteomics experience section of this paper draws from the following manuscript: An

End-to-End Bioinformatics Platform for High Throughput Proteomics. T. Topaloglou, M.
Dharsee, M. Li, R.M. Ewing, Y.V. Bukhman, P. Chu, P. Economopoulos, S. Huynh, D. Lee,
A. Pasculescu, A.-M. Salter, H. Wang.

570 T. Topaloglou

experiment designs, and details of experiment execution, such as protocol parameter
values, are important in the interpretation or integration of experimental datasets.
Recognizing this, industrial and high throughput laboratories opt for an integrated
data management strategy that spans the entire data production life cycle; we call it
the top-down approach. The goal in top-down is to model and document both the
processes and the data starting from the requisition of an experimental study and up to
the publishing of analyzed results. It essentially captures the purpose, provenance, and
additional technical context metadata that enrich the generated data with additional
semantics.

The contributions of this paper are include (a) the description of an implemented,
end-to-end information management platform that is deployed in an industrial
laboratory, (b) the definition of a reference framework that can guide the development
of similar scientific data management solutions, (c) an account of the various types or
heterogeneity that is present in scientific data operations, (d) a summary of
comprehensive application and data integration strategy that we put together proven
to address these heterogeneities, (e) a report on productivity gains that were realized
using the system, and (f) experience drawn from this project and a list of ongoing
challenges in scientific data management.

2 Proteomics Data Management: Background

2.1 Proteomics 101

The goal of proteomics is to identify and characterize proteins in biological samples
[12]. In order to achieve this goal, proteomics combines three main components:
laboratory techniques for protein separation from biological samples, advanced
instrumentation for proteomics measurements, and computational tools for translating
measurements to biologically relevant entities. Currently, the de-facto proteomics
measurement platform is mass spectrometry [13]. Its ability to interrogate proteins in
complex biological samples makes proteomics a valuable discovery and diagnostics
tool for studying disease processes or the effects of drugs in biological systems.

Mass spectrometry based proteomics generates large volumes of complex data. As
laboratory techniques and instruments improve, and demand for higher throughput
experiments increases, the interpretation and management of proteomics data needs to
move to the next level. Before we explain what this means, we will provide a taste of
what proteomics data and analysis looks like.

A protein identification experiment starts with a laboratory phase where proteins
are separated from samples, using one of many techniques, and then are cleaved into
smaller fragments that are called peptides. Intuitively, a protein is a long string of
elements, and a peptide is a smaller substring. The peptide mix goes to the mass
spectrometer for mass analysis. Peptides are electrically charged and introduced to the
instrument in a slow flow. The mass spectrometer measures masses. By analogy, we
can think the mass spectrometer as a camera the periodically “takes pictures” of all
the peptides in view, sorted by weight – each picture is an MS spectrum. The
instrument can also select and zoom in at certain peptides and take a second picture of
its ion fragmentation pattern, i.e., its prefix and suffix substrings – this is an MS/MS

 Managing Data in High Throughput Laboratories 571

spectrum. MS/MS spectra can reveal the sequence string of a peptide. MS/MS
sequence assignment is assisted by programs called search engines. A search engine
takes as input a protein sequence database and MS/MS spectra, and produces as an
output sequence assignments. The search engine performs two operations: first, it
calculates theoretical spectra for the peptide substrings derived from the sequences in
the database, and second, it matches the MSMS spectra to the computed ones thus
producing sequence assignments. At a next step, the mapping of peptides to protein
sequences reveals the identity of the proteins present in the sample.

There are several ambiguities with respect to data meaning in the above described
process. First, the result of peptide assignment depends on the search engine used, and
there are many of them, and the input database including its size. Capture of
experimental provenance [13] is essential in order to be able to trust, repeat, or verify
the peptide sequence assignments. The same holds for all upstream processing steps.
Second, the different vendor instruments produce proprietary output formats and
measurements in non-matching scales. This introduces heterogeneity that is both
syntactic (the format) and semantic (the measurements). Third, the search engines
produce outputs that are also syntactically and semantically heterogeneous. Although
there are ongoing effort to define proteomic data standards (PSI [3], mzXML [15]),
these issues have to be dealt with by rigorous data and provenance modeling until
agreement on, and compliance with, the standards is achieved.

Another important point is that of data volume. A typical proteomics study results
in hundreds of acquisitions (experiments). An acquisition of a complex biological
sample using a high resolution instrument produces tens of megabytes of binary data
containing thousands mass spectra. Mass spectra and other associated experimental
information are saved in electronic storage including relational databases. Each
acquisition requires significant amounts of both relational and file storage space.
Production laboratories collect terabytes of data leading to a multitude of data
management and integration challenges. In research/discovery mode the bulk of these
data can be dropped, but in industrial/drug development context these data need to
remain accessible and not tampered according to regulatory requirements
(21CFRpart11 [16]).

2.2 Laboratory Data Lifecycle

The lifecycle of proteomics data involves the following discrete phases: sample
processing, data acquisition, data processing and biological interpretation.

2.2.1 Study Design / Sample Processing
Management of samples and sample processing steps is a tedious task. A laboratory
information management system (LIMS) is required to keep track of samples, study
structure, grouping of samples by disease state or treatment, and other auxiliary
sample parameters. Such parameters include but are not limited to sample donor
attributes, clinical tests, sample amount and concentration, and sample preparation
measurements. These attributes differ from study to study, requiring a database design
that enables schema evolution. Furthermore, complex biological samples are
fractionated in order to derive low complexity protein mixtures that are amenable to
mass analysis. Documentation of fractionation as well as replication information is

572 T. Topaloglou

important not only for interpretation but also for tracking experiments in the
laboratory pipeline. It is very common for a single sample in a study to result in tens
or hundreds of MS acquisitions, requiring the creation and maintenance of an
acquisition plan for tracking and logistics purposes.

2.2.2 Data Acquisition
Mass spectrometry acquisitions are performed and documented using vendor-supplied
software running on the computer that controls the mass spectrometer. Data files are
first saved on the local machine. There are several good reasons for not storing data
files on instrument attached computers including physical limitations and data
security requirements. Data files are therefore need to be copied to a centralized file
store using custom scripts, where their location is presumably recorded in a database.
Maintaining integrity and coordination between heterogeneous sources (file store and
databases) with administrative autonomy is not an easy problem. Furthermore,
acquisition protocol parameters such as instrument identifier, operator, settings, etc.
also need to be recorded in a database.

2.2.3 Data Processing
Spectral data are extracted from the raw data files and undergo analysis that follows
typically two workflows: identification and quantitation. In identification analysis
each MS/MS spectrum is searched against a protein sequence database with the help
of a search engine. The results of the search are reported as files but commonly are
parsed and loaded into some sort of an experiments database. Quantitation analysis
addresses the MS portion of the signal. Specialized applications perform recognition
and integration of peaks into tuples of the form <mass, time, intensity> that represent
peptides. The use of a relational store for proteomics data analyses has several
advantages, including the integration of separate analysis steps and scalability of data
processing. Conceptually, a join on <mass, time> between samples reports the
differentially expressed peptides between samples. A join on <mass, time> between
an identification and quantitation object reports the identities of the quantitated
peptides. This simplified example suppressed some interesting “entity-matching”
problems the solution of which involves deeper understanding of the scientific
semantics of the entities.

2.2.4 Analysis and Interpretation
One goal of proteomics is to determine which proteins are present in a sample based
on the (limited) peptide evidence collected in the experiment. If multiple acquisitions
are available, assignment of peptides to proteins is strengthened by pulling evidence
and clustering peptide hits across multiple acquisitions [17]. Visualization of the
peptide and protein clusters is very important for evaluating quality of the clusters. A
second goal is to translate peptide level measurements to protein level measurements,
report statistically significant differential proteins, and evaluate the biological
relevance of significant hits using available annotation and literature. The later
requires integration of experimental, analyzed, and bioinformatics annotation data.
Public databases are valuable resources of sequence and function based annotations.
Integration of annotation from public sources is a very well studied problem [5,6,7,8].
Yet, a decision that organizations face is to build yet another bioinformatics database

 Managing Data in High Throughput Laboratories 573

or access data directly from primary or integrated public data sources. Control over
versions, content data integrity, data security, reconciling the heterogeneity of public
sources, and the lack of a COTS solution, are some of the factors that influence this
decision. The challenges of building a bioinformatics database are outlined in [18]
and include heterogeneity, data granularity and redundancy of the public data sources.

2.3 Data and Workflow Management

The data management and bioinformatics platform for a laboratory has to satisfy two
major requirements: (a) enable high throughput data acquisition, and (b) facilitate
analysis, interpretation and dissemination of laboratory results. The applications and
databases needed to support each of these requirements are to a large extent different
[19]. Databases supporting data acquisition are designed to optimize update
performance. Databases in support of data analysis are tuned for rapid exploration of
massive datasets. In some cases, both requirements are present at the same time. In
the proteomics example, the database of experimental data is bulk-loaded
periodically, while at the same time it serves as the backend of spectral analysis
programs. However, after the completion of spectral analysis, it becomes a reference
warehouse of peptide and protein analyses and is extensively used for statistical
reporting and data mining.

The systems supporting the laboratory workflow are both distributed and vastly
heterogeneous. For example, mass spectrometry data files are acquired using vendor
supplied applications running on remote machines that controls the mass spectrometer
and then are copied to central file storage where an appropriate analysis workflow
extracts the MS/MS data, performs database searches, and parses the results in the
experiments database, and so on. Coordinating such data transfers, applications
invocations and analytical data processing workflows requires the deployment of a
comprehensive workflow management framework.

The metadata of laboratory data goes beyond the how, when and by whom the data
were collected. Each technology platform is associated with a deep body of technical
knowledge, explicit and implicit, which somehow needs to be captured in the
conceptual model of the data, in order to be meaningful. For instance, the
reproducibility of the measurement platform, availability and use of error models, or
quality control parameters that are used for normalization are important for enabling
reliable comparisons between experiments or methods. Even if the modeling
methodology exists, we lack guidelines for its consistent application thus producing
semantically heterogeneous data. Efforts such as MAGE-ML for microarray
experiments try to alleviate this issue, but the problem sometimes is that the model,
built by non-data modelers, has weak semantics and often introduce ambiguities
instead of removing them [20].

3 The Proteomics Data Management System: Experience Report

In this section we highlight the components of a proteomics data management and
bioinformatics platform intended for high-throughput and scalable proteomics
analysis. The design objective was to do everything close to the database server

574 T. Topaloglou

including data management, application and data integration, workflow management,
and implementation of proteomic analysis algorithms. The platform was developed at
MDS Proteomics / Protana (now Transition Therapeutics).

The data management system encompasses databases, file management, workflow
management, the database integration strategy, and data dissemination applications.

3.1 Databases

In the proteomics application there are three data spaces that need to be modeled: the
sample space, the protein space and the experiment (measurement) space. Each data
space is implemented as a separate database. The separation is driven by practical
considerations related to maintenance and control of data entry applications. In our
system, the three databases are the sample tracking database (SATS), the protein
index and annotations database (AIDA), and the repository for mass spectrometry
experiments and results (MSdb).. A fourth database, the analysis database, is
introduced in order to (a) streamline and improve efficiency of statistical analysis, and
(b) serve as persistent storage of statistical analysis results. The analysis database
heavily depends on the other three and is essentially a special purpose data
warehouse. All four databases form a federation which is viewed as a single database
to read-only, user-facing tools

SATS (Sample and Acquisition Tracking System) is the sample database and
backend of the sample tracking system. An important feature of SATS is that samples
are organized in studies that consist of groups of samples and each group represents a
treatment or disease condition. Studies belong to programs and programs are linked to
customers. The program tag is used to control access to samples and their
experimental results. In SATS, a sample can be transformed many times, producing
new samples. Transformations include splitting (fractionation) and merging (pooling).
Each sample keeps a reference to its root sample. Depending on the sample or study
type, the descriptive attributes of the sample may differ. Modeling these attributes as
(property, value) pairs solves the schema evolution problem. When a sample is
transferred to the lab for MS acquisition, an acquisition name is assigned to the
sample. The acquisition name serves as the join attribute between the sample, the
acquisition data file, and the acquisition record that is created in the experiments
database (MSdb).

MSdb is the database of MS experiments. In addition to metadata of experiments,
MSdb stores the results of the identification, quantitation and differential analyses, as
well as intermediate data generated by these processes. MSdb possesses properties of
an operational system and a warehouse system. After the completion of the spectral
analysis, a fraction of the MSdb data forms a conceptual matrix where one dimension
is defined by acquisitions and the other dimension by peptides. This representation is
the basis of statistical analysis and data mining and matches the structure analysis
database.

AIDA (Automated Integration of Datasets and Applications) integrates protein-
centric information from many internal and external sources and provides a uniform
view across protein-space. A central feature is the assignment of an institutional
protein-identifiers (PI) to all sequences. Each PI represents a unique combination of
protein sequence and species, so that identical sequences from a given species will be

 Managing Data in High Throughput Laboratories 575

grouped as a single PI (identical sequences are required to be identical in both
sequence and length). The PI has the following properties: (a) The PI is persistent,
i.e., the identity of a unique sequence, in a given species, will never change.
Oftentimes, a unique sequence changes identity or has multiple identities (e.g.
GenBank identifiers or GIs) in the public sources. Using a PI, a sequence is immune
from public ID changes, yet all these changing GIs are linked to the PI. If a GI based
database is used for protein searching, the comparison of identification results
becomes more difficult, since the same sequence may be referenced by multiple GIs.
(b) The PI maintains provenance of protein sequences, since any name changes of the
sequence in the public sources is recorded in the PI record. (c) The PI functions as the
cross-database link between AIDA, MSdb, and the analysis database.

AIDA is also a protein annotation system. Annotations are imported from public
sources or computed. An in-house developed ETL application, called the data feeder,
is responsible to maintain the database up to date. The data feeder selectively extracts
information from external data sources, it transforms it to local schema, performs the
necessary entity matching operations, and loads this information into AIDA. In
addition, each protein entry in AIDA has several fields that hold pre-computed
annotations that are calculated using a number of computational annotation tools,
such as sequence feature prediction programs. These pre-computed predictions are
stored in the database for rapid access.

The analysis database stores the results of statistical analyses. Since high-
throughput LC-MS technology enables simultaneous analysis of hundreds of proteins
represented by thousands of peptides, statistical analyses generate sizable datasets
consisting of average intensities, differential effects, p-values and summary statistics
on peptides and proteins. The structure of the results of these analyses is related to
the methods e.g., choice of statistical tests, and necessitates a database design with
built-in support for evolution. Finally, a dataset may be analyzed multiple times using
different methods or decisions. The analysis database enables the persistent storage
and provenance of statistical results by storing both the computed results of statistical
analyses and the information necessary to document and re-compute them, including
the input data, information about the software used in the analysis and various
procedural choices and settings.

3.2 Integration

There are both technical and non-technical reasons for maintaining several component
databases. For example, AIDA is a reference database with a complicated content
building and update policy, whereas SATS is a classic LIMS database. Then again,
useful scientific and operational queries often cross the boundaries of a single
component. A frequent multi-database query is to find all the extra-cellular proteins
that were identified with more than N peptide hits with Mascot score greater than K in
all studies done for a given customer M. Such a query requires access to AIDA for
sub-cellular localization, to the analysis database for protein and peptide hits, to
MSdb for peptide scores and linkage to acquisitions, and to SATS for connecting
acquisitions to the customer.

Multi-database queries are difficult both to specify and to compute [21]. In certain
cases we try to avoid such queries by reorganizing, summarizing and materializing

576 T. Topaloglou

study data in the analysis database. As everywhere else, our team has debated the
quick and dirty versus the elegant data access arguments – and there was no winner.
Some user applications opted to implement scripts as an alternative for processing
cross-database queries. Some others opted for federated queries assisted by the DB2
Information Integrator. The component databases are by design complementary and
have minimal overlap. The overlap is limited to common fields (foreign database
keys) that are used for cross-linking (joins). For example, the sample acquisition
name links SATS, MSdb and the analysis databases. The PI is the cross link between
AIDA, MSdb and analysis database, and so on.

Several data analysis programs run outside of the database. In production mode
these programs runs either one after the other or iterate over sets of similar inputs.
They may also contain side effects, i.e., update the databases or interact with users.
Such programs include raw data extraction utilities, implementations of spectral
analysis algorithms (not described here), and data viewers. For reasons of conceptual
simplicity, maintainability and scalability, these programs are wrapped in workflows
the execution of which was coordinated using a commercial workflow management
engine (www.turboworx.com). The result is a simplified process, as many steps are
now under the control of the workflow engine, resulting in better resource utilization
and overhead reduction.

3.3 Dissemination

The Discovery Portal (DP) is a web application and collaboration environment that
allows scientists to access information on proteins, maintain their projects, access
proteomics analysis applications, map proteins to scientific literature and explore

Fig. 1. The Discovery Portal showing the AIDA find, Protein list and Protein summary portlets

 Managing Data in High Throughput Laboratories 577

external databases. The Discovery Portal was designed to be the single point of access
for all internal and external applications and data in the bioinformatics area. It creates
a hub of information based on the family of databases mentioned earlier and provides
an access interface to them.

The Discovery Portal is built using the Jetspeed portal application builder with the
goal to enable aggregation of multiple Web applications is a single page as portlets,
and allows users to customize and personalize the content of the page. Important
portlets include the AIDA query, AIDA annotation (Fig. 1), custom reports, and a
literature mining portlet, among others. The Discovery Portal is easily extendable and
enables economic and rapid development of interfaces for bioinformatics applications
and data sources.

The portal supports a variety of ways to integrate applications. Specifically it
implements a container framework with standardized navigation features and style
sheets, and a specification of a general method for deploying applications inside the
framework. It also provides a common user authentication component for controlling
data access and ownership. The portal maintains a runtime data object holding the
data/information to be rendered, and a publisher/subscriber pattern to facilitate acting on
modifications to the data object. This allows for results (proteins) of an operation, to be
available for use in another application, making it really easy to run multiple
applications on the same data without copying, pasting and opening of new applications.

The Workspace is another key portlet that further aids user collaboration and
application interoperability. The motivating principle behind the Workspace is that
experiments and bioinformatics analyses produce lists of proteins that scientists may
want to store, share, modify or compare. Within the Portal, the scientific user can
create protein lists as workspace objects and open them in some other application or
promote them to the Portal’s runtime object. The Workspace facilitates both persistent
storage of user selected data and data exchange between portal applications. The latter
reduces the proliferation of disparate spreadsheets and promotes interoperability.
Workspace protein lists may also be associated with an open-ended set of attributes,
both user-defined and derived from underlying databases. An XML database is
employed to tackle the representation and storage of Workspace objects.

4 Discussion

Scientific laboratories are data rich environments that need advanced data modeling
and information management technologies, but primarily need an integrated data
management strategy that spans the entire data production life cycle. Traditional
database management systems and data integration methodologies help greatly but are
not enough to address the laboratory data lifecycle. Organizations support their needs
through point solutions based on conventional technology. Principled approaches to
scientific data management are still to come, although some promising proposals have
emerged recently [22, 23, 24]. These proposals emphasize data semantics, data
provenance, development of standards and better utilization of domain ontologies,
“best-effort” integration strategies, integration of powerful analysis tools into
databases, active data, notification, and workflows to enhance access to, and
interpretation of, data by multiple experts.

578 T. Topaloglou

Here we presented a particular problem instance of laboratory data management
and an experience report from implementing a solution for proteomics. We claim that
our problem requirements and solution can serve as a template for implementing
similar solutions for laboratories following a similar data lifecycle. An important part
of our solution is the integration of components through an underlying infrastructure
for data and workflow management, enabling us to connect otherwise disparate
information and processes, including sample preparation, mass spectrometry, protein
identification, spectral analysis, and biological interpretation. This integration is
proven beneficial in discovery studies. Our experience with the system shows the
following benefits. First, the time it takes to do data analysis has been significantly
reduced. Second, the size of the data analysis project has increased. Third, results
from intermediate analysis steps are available in well-designed databases and are
accessible through queries. Finally, the integrated and automated platform frees the
bioinformatics scientists from manual tasks, such as running software applications
and locating and connecting diverse data, and enables them to focus on data
exploration and method development.

The implementation of the data management and bioinformatics platform for
proteomics and high throughput laboratories in general, can not be completely
supported by commercial of-the-self (COTS) tools yet. The wide set of requirements,
and the fact that proteomics is a new scientific application that has not been
specifically addressed by the data management vendors, are two reasons that restrict
the availability of COTS tools. The commercial tools that we used in our work are
limited to tools of generic functionality such as a workflow management system and
data management systems, leaving plenty of application development and
customization work to be done “on site”. Emerging data standards are expected to
pave the ground for new tools for proteomics. MzXML and PSI/MIAPE have begun
to gain support of proteomics software vendors and are expected to simplify aspects
of proteomics software.

The proteomics data management system that we described has been successfully
deployed in production at Protana. Over a period of 12 months, the system processed
nearly 20,000 acquisitions that have undergone quantitation and/or identification
analysis. The performance and utility of the system have been tested in several
biomarker discovery studies where we realized significant throughput gains (20-50
fold improvement) over the non-automated and manual way of processing and
managing spectral data. In addition the end-to-end platform allowed for faster, more
comprehensive reporting and traceability of analysis results.

Acknowledgements

I express my gratitude to my former colleagues at former MDS Proteomics/Protana
and MDS Denmark who contributed to the design and implementation of the
proteomics data management platform, especially to Soeren Schandorff, Soren
Larsen, Brian Ramsgaard, Peder Ruhoff, Moyez Dharsee, Yury Buckman, Rob
Ewing, Mike Li, Adel Shrufi, John Sulja, Panos Economopoulos, Sum Huynh, Derek
Lee, Adrian Pasculescu, Anne-Marie Salter, Huicheng Wang, Kevin Mok, and all
the members of the Scientific Computing team. Special thanks to Shane Climie,

 Managing Data in High Throughput Laboratories 579

Nancy Ng, Daniel Figeys and the scientists in MDSP/Protana for expressing the
requirements of the proteomics data management platform.

References

[1] Brazma A., P. Hingamp, et al. Minimum information about a microarray experiment
(MIAME)—toward standards for microarray data. Nature Genetics, vol 29, pp 365 - 371.
2001

[2] Spellman P, M. Miller, et al. Design and implementation of microarray gene expression
markup language (MAGE-ML)., Genome Biology, 3(9), 2002.

[3] Orchard S, Hermjakob H, Binz PA, Hoogland C, Taylor CF, Zhu W, Julian RK Jr,
Apweiler R. Further steps towards data standardisation: the Proteomic Standards
Initiative. Proteomics, 5(2):337-9. 2005.

[4] C. Goble, C. Wroe, R. Stevens, and the myGrid consortium. The myGrid Project:
Services, Architecture and Demonstrator. In Proc UK e-Science programme All Hands
Conference, pages 595-603, 2003

[5] U. Leser, F. Naumann. (Almost) Hands-Off Information Integration for the Life Sciences.
CIDR. 2005.

[6] T. Etzold, H. Harris, and S. Beaulah SRS: An Integration Platform for Databanks and
Analysis Tools in Bioinformatics. In Bioinformatics: Managing scientific data. Edited by
Z. Lacroix and T. Chrichlow. Morgan Kaufmann, 2003.

[7] Markowitz, V. M., Korzeniewski, F., Palaniappan, K., Szeto, E., Ivanova, N., and
Kyrpides, N. C. 2005. The integrated microbial genomes (IMG) system: a case study in
biological data management. VLDB 2005.

[8] Hsu, F., et al., The UCSC Proteome Browser. Nucleic Acids Res, vol. 33 (Database
issue): p. D454-8. 2005

[9] Boguski, M.S. and McIntosh, M.W. Biomedical informatics for proteomics. Nature 422,
233–237 (2003).

[10] David Searls. Data Integration challenges in drug discovery. Nature Reviews. Drug
Discovery, 2005. 4(1): p. 45-58

[11] V. Markowitz, J. Campbell, A. Chen, A. Kosky, K. Palaniapan, and T. Topaloglou.
Integration Challenges in Gene Expression Data Management. In Bioinformatics:
Managing Scientific Data, Edited by Z. Lacroix and T. Chrichlow. Morgan Kaufmann,
2003

[12] Tyers, M. and M. Mann, From genomics to proteomics. Nature, 2003. 422(6928): p. 193-7
[13] Aebersold. R. and M. Mann "Mass spectromentry-based proteomics." Nature 422: 198-

207, 2003.
[14] M. Greenwood, C. Goble, R. Stevens, J. Zhao, M. Addis, D. Marvin, L. Moreau, and T.

Oinn, "Provenance of e-Science Experiments --experience from Bioinformatics," in
Proceedings of the UK e-Science 2nd All Hands Meeting, 2003

[15] Pedrioli, P.G., J.K. Eng, et al., A common open representation of mass spectrometry data
and its application to proteomics research. Nature Biotechnology. 22(11): p. 1459-66,
2004.

[16] FDA. Guidance for Industry: Part 11, Electronic Records; Electronic Signatures: Scope
and Application. http://www.fda.gov/cder/guidance/index.htm, 2003.

[17] Yang, X., Dondeti, V., et al., DBParser: web-based software for shotgun proteomic data
analyses. J Proteome Research. 3(5): p. 1002-8, 2004

580 T. Topaloglou

[18] Topaloglou, T. Biological Data Management: Research, Practice and Opportunities.
VLDB, 2004.

[19] Markowitz, V. and T. Topaloglou Applying Data Warehouse Concepts to Gene
Expression Data Management. 2nd IEEE International Synposium in Bioinformatics and
Bioengineering (BIBE), 2001.

[20] L. N. Soldatova and R. D. King. Are the current ontologies in biology good ontologies?
Nature Biotechnology 23, 1095 - 1098 (2005)

[21] Topaloglou, T., A. Kosky, and V. Markowitz. Seamless Intergation of Biological
Applications within a Database Framework. ISMB, 1999.

[22] M. Franklin, A. Halevy, D. Maier. From Databases to Dataspaces: A new abstraction for
information management. SIGMOD Record 34(4). 2005

[23] J. Gray, D.T. Liu, M. Nieto-Santisteban, A. Szalay, D. DeWitt and G. Heber. Scientific
Data Management in the Coming Decade. SIGMOD Record 34(4). 2005.

[24] H. V. Jagadish and F. Olken. Database management for life sciences research. SIGMOD
Record 33(2), 2004

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 581 – 582, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Policy Models for Data Sharing

Ken Smith

Principal Database Scientist
The MITRE Corporation, Mail Stop H317

7515 Colshire Drive, McLean, Virginia 22102-7508
kps@mitre.org

Abstract. Data sharing has become an enabler of a diverse and important set of
activities in areas such as science, law enforcement, and commerce. Data
sharing scenarios frequently involve issues such as personal confidentiality,
data misinterpretation, the potential for malicious exploitation of shared data,
data with proprietary or first-use value, secret data, and governmental
regulation. For these reasons, the need to state and enforce data sharing policy
has grown increasingly significant. In this talk, we discuss models for data
sharing policy and their key concepts.

Keywords: Data sharing, policy model, access, community, agreement.

1 Introduction

Data sharing has recently come to the forefront as an enabler of a diverse and
important set of activities including the development of brain atlases, monitoring
disease outbreaks (whether naturally occurring or the result of bioterrorism), and
cooperative counter-narcotics efforts. In this talk, we first describe several motivating
examples which require widespread data sharing. For example, many human
populations have characteristic features of brain anatomy and patterns of brain
development. This is not only true for disease populations, but also for those
determined by demographic measures like handedness and gender. However, due to
high intersubject variability, these population-specific features and patterns may not
be visible in a given individual, and may only emerge when studying a large-N
composite brain atlas for that population. Since it may be beyond the resources of a
single laboratory to obtain a sufficiently large N, data sharing acts as an enabler of
this important type of neuroscientific research.

The topic of data sharing is also subject to the blind men and the elephant effect.
Data sharing draws on many fields, and each specialty involved can tend see it as an
extension of their own field, without seeing the full bigger picture. In the second part
of this talk, I will briefly provide an overview of five perspectives which make a
major contribution to data sharing. These include: delivery services, understanding
(e.g., annotation, integration), discovery, incentivization (i.e., the reward perspective),
and policy. Although our focus is policy, this places policy in its appropriate context.

Finally, I will conclude with a discussion of models for data sharing policy. In the
case of unrestricted access, policy does not play a large role in data sharing. However

582 K. Smith

many realistic data sharing scenarios require data owners to control access to shared
data. Shared information requiring special protection includes: confidential personal
information, information which may be misinterpreted, information which could be
maliciously exploited, secret or classified information, information subject to federal
or local regulation (e.g., HIPAA), and information with a proprietary or first-use
value (e.g., copyrighted songs, pre-publication scientific data). This confluence of the
need to share and the need to protect information requires well-designed policy
models and tools. Policy models must be human-interpretable so policies are easily
and correctly formulated, and tool-interpretable so policies can be automatically
enforced. It is also useful to provide gradations of data visibility, and to address
concepts such as obligation and policy evolution. We will present several such
models including community-based sharing [1], and data sharing agreements [2].

References

1. Smith, K., Jajodia, S., Swarup, V., Hoyt, J., Hamilton, G., Cornett, T., and Faatz, D.
Enabling the sharing of neuroimaging data through well-defined intermediate levels of
visibility. NeuroImage 22 (2004), 1646-1656.

2. Swarup, V., Seligman, L., and Rosenthal, A. Specifying Data Sharing Agreements,
Proceedings of Policy 2006: IEEE Workshop on Policies for Distributed Systems and
Networks, London, Ontario, June 2006

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, p. 583, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Protocol Analysis for Exploring the Role of Application
Domain in Conceptual Schema Understanding

Vijay Khatri and Iris Vessey

Indiana University, USA; UQ and QUT, Australia
vkhatri@indiana.edu, i.vessey@qut.edu.au

In keeping with prior research [1] that suggests that the objective of empirical
research in conceptual modeling is to understand the cognitive model created by
viewing conceptual schemas (e.g., ER diagrams), this research contributes to the
foundation for developing a cognitive model of conceptual modelers. The aspect on
which we focus in our research is the role of the application domain in conceptual
schema understanding.

Although Information Systems (IS) development can be viewed as application
domain problem solving using a software solution, research in the field of IS
development has investigated the role of the IS domain almost to the total exclusion
of the application domain. Additionally, most of the empirical research in conceptual
modeling has focused primarily on observing the effects of certain stimuli and has,
thereby, treated IS problem solving as a “black box.” Studies that address how
problem solving occurs focus on “opening up the black box” that lies between
problem-solving inputs and outputs; that is, they investigate what happens during
individual problem solving (isomorphic approach) rather than simply observing the
effects of certain stimuli averaged over a number of cases, as in traditional studies
(paramorphic approach). The most common approach to opening up the black box is
to examine the characteristics of the problem-solving process using protocol analysis.

Because both the theory and prior exploratory findings [2] suggest that application
domain knowledge is important on just those problem-solving tasks that require
transformation of knowledge in the conceptual schema, so-called schema-based
problem-solving tasks, we explored how problem solvers address such tasks by
examining participants’ problem-solving processes using protocol analysis.

We found that knowledge of the application and IS domains result in similar search
behavior: both familiarity with the application domain and high IS knowledge result
in more focused, that is, deeper search, while unfamiliarity with the application
domain and low IS knowledge result in broader, and therefore shallower search.

References

Gemino, A. and Wand, Y. “A Framework for Empirical Evaluation of Conceptual Modeling
Techniques,” Requirements Engineering, 9, 2004, pp. 248-260.

Khatri, V., Vessey, I., Ramesh, V., Clay, P., and Park, S.J., “Understanding Conceptual
Schemas: Exploring the Role of Application and IS Domain Knowledge,” Information
Systems Research, (17:1), March 2006, pp. 81-99.

Auto-completion of Underspecified SQL Queries

Terrence Mason1 and Ramon Lawrence2

1 University of Wisconsin-Stout, Menomonie, WI, USA
2 University of British Columbia Okanagan, Kelowna, BC, Canada

Formulating SQL queries involving joins is tedious, error-prone, and requires
in-depth schema knowledge. We demonstrate a modified version of SQL [2] that
does not require specification of table references and joins. The Schema-Free
SQL system can expresses queries not supported in keyword-based searches [1].
Unlike Universal Relation approaches, the system is scaleable to large schemas,
and it has built-in mechanisms for handling ambiguity and ranking interpreta-
tions for the user. The auto-completion feature is not intended to remove all of
the complexity in building SQL queries, just like auto-completion of code frag-
ments does not remove the challenges of programming. However, it does make
it easier to build SQL queries. Thus, the system provides a value-added feature
to SQL querying that increases its flexibility and usability with no sacrifice in
expressiveness or performance. The amount of the final SQL code that is auto-
completed depends on the number of joins and the complexity of the rest of the
SQL expression. The time to complete a query takes around 5 milliseconds [3].

This demonstration also illustrates the value of identifying semantically
equivalent join paths (shortcut joins) [3]. If not handled properly, a query with a
single unique interpretation may have multiple equivalent SQL interpretations.
Removing this false ambiguity results in fewer queries being identified as am-
biguous and reduces user confusion. In the demonstration we:

– Show pre-entered queries on the TPC-H schema and their auto-completion.
– Allow users to enter queries and have them completed by the system.
– Demonstrate how removal of shortcut joins greatly reduces the amount of

ambiguity and number of query interpretations. For TPC-H the number of
unambiguous queries is increased by a factor of three [3].

Overall, the contribution is a very usable system for auto-completion of SQL,
and a general technique (shortcut joins) for reducing query ambiguity that can
be also applied to other interfaces such as keyword search.

References

1. Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient IR-Style Keyword Search
over Relational Databases. VLDB (2003) 850–861

2. Mason, T., Lawrence, R.: INFER: A Relational Query Language Without the Com-
plexity of SQL. ACM CIKM (2005) 241–242

3. Mason, T., Wang, L., Lawrence, R.: AutoJoin: Providing Freedom from Specifying
Joins. ICEIS (2005) 31–38

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, p. 584, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, p. 585, 2006.
© Springer-Verlag Berlin Heidelberg 2006

iQL: A Query Language for the Instance-Based Data
Model

Jeffrey Parsons1 and Jianmin Su2

1
Faculty of Business Administration,
2 Department of Computer Science,

1,2
Memorial University of Newfoundland,

St. John’s, NL, Canada
{jeffreyp@mun.ca, jianmin@cs.mun.ca}

1 Summary

Unlike class-based models, such as the relational model and object-oriented models,
the instance-based data model (IBDM) [1] separates data stored about individual
things (instances) from how those instances are classified, resulting in a ‘two-layered’
approach (instance and class layers). In this poster and system demonstration, we
illustrate the use of iQL (instance-based query language) for the IBDM. This language
supports unique query capabilities that exploit the separation of data about instances
from their classification. The tool has been implemented in conjunction with a
prototype DBMS to support the IBDM [2]. The basic structure of an iQL query is:

Select < attribute and function list >
[from <class list>]
[sharing <mutual property condition list>]
[where < intrinsic property condition list>].

We show that iQL is compatible with SQL for class-based queries, and further
demonstrate its additional query capabilities. A prototype implementation of a DBMS
based on IBDM, including an implementation of iQL, has been developed [2], and
will be demonstrated at the conference.

Note two structural differences between iQL and SQL: (1) the from clause is
optional in iQL; (2) the sharing clause is new to iQL. These two differences give
iQL more powerful capabilities than SQL. In the instance-based model, it is possible
to query the whole instance layer to find which instances possess some properties
(e.g., to find which instances possess ‘age’, the iQL command is: Select age).

References

1. Parsons, J. and Y. Wand. 2000. Emancipating Instances from the Tyranny of Classes in
Information Modeling. ACM Transactions on Database Systems. 25, 2, 228-268.

2. Su, J. 2003. A Database Management System to Support the Instance-based Data Model:
Design, Implementation, and Evaluation. Master’s Thesis, Department of Computer
Science, Memorial University of Newfoundland.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, p. 586 , 2006.
© Springer-Verlag Berlin Heidelberg 2006

Designing Under the Influence of Speech Acts: A Strategy
for Composing Enterprise Integration Solutions

Karthikeyan Umapathy and Sandeep Purao

College of Information Sciences and Technology, Penn State University
{kumapathy, spurao}@ist.psu.edu

Designing enterprise-wide integration solutions remains a difficult task. Enterprise
Integration Patterns (EIP) [1] provide possible design solutions that may be used to
compose enterprise-wide integration solutions. Because of the multitude of platforms
on which legacy systems are implemented, these composed solutions must ensure
platform-independent implementation, e.g. with web services. A promising
mechanism that allows this path is conversation models [2] that may be used to
implement interactions among web services that represent different legacy systems.
For this translation to occur, though, EIPs must be converted into a representation that
is amenable to a conversation models.

For example, consider the pattern publish/ subscribe channel [1]. This pattern will
need to be defined in terms of speech acts [3] (e.g. informative). A precondition to
this informative message exchange would be an agreement on part of publishers to
publish such information. Further, the roles played may include: Publisher as Initiator
and Sender, and Subscribers as Receiver. A knowledge base that captures the EIPs
would, thus, need to capture all, the pre-conditions, the post-conditions, the roles, and
the speech acts that comprise the integration pattern.

We are developing a research prototype, IDAssist (Integration Designer Assistant),
which would include such a knowledge base, and present the designers with the
functionality to decide appropriate EIPs for their integration task. This research
prototype is being developed using JavaTM with an interface that allows drag and drop
capability using Java Swing. This interface would allow designers to develop business
process diagrams using BPMN [4] and guide them in identifying appropriate pattern
for each connections in the business processes. It contains knowledge base that stores
integration patterns in an XML specification, called Enterprise Integration Pattern
XML (eipXML). Outputs from the tool can be used to design enterprise integration
solutions based on EIPs and network of speech acts, converted into appropriate
conversation policy specifications [2] that govern interactions among web services.

References

1. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison-Wesley (2004)
2. Hanson, J.E., Nandi, P., Kumaran, S.: Conversation support for Business Process

Integration. IEEE International Enterprise Distributed Object Computing Conference
(EDOC) (2002) 65-74

3. Searle, J.R.: Speech acts: An essay in the philosophy of language. Cambridge University,
Cambridge, England (1969)

4. BPMN: Business Process Modeling Notation Specification. Vol. 2006. Object Management
Group, Inc. (OMG) (2006)

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, p. 587, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Geometry of Concepts

Olga Brazhnik

Center for Information Technology
National Institutes of Health,

10401 Fernwood Rd, Bethesda, MD 20897
brazhnik@nih.gov

Every study organizes data according to a specific conceptualization scheme, which is
defined by the purpose and method of exploration. Co-processing data from diverse
studies requires concept mapping. The model presented in this work places all ele-
ments of knowledge into a topological space. Conceptualization schemes subdivide
this space into subspaces of lower dimensionality where every element has well-
defined coordinates. Allocating semantics to the conceptualization scheme enables the
use of abstract mathematical approaches, such as category theory and geometry, for
concept and data mapping. Relative coordinates of concepts, models and data are
defined via morphisms that represent complex relationships among these elements.
Data models for implementing morphisms in a database are presented here. This work
provides a framework for data and knowledge integration illustrated with practical
examples. It addresses several important challenges in interdisciplinary data integra-
tion and ontology building, such as defining complex relationships and unambiguous
data interpretation. The geometrical interpretation enables visualization of the intan-
gible world of data and knowledge and facilitates interactive and meaningful discus-
sions of the subject.

Author Index

Abels, Sven 482
Akoka, Jacky 84
Andersson, Birger 482
Au Yeung, Ching-man 98
Ayala, Claudia 354

Backlund, Per 339
Bailey, James 182
Barone, Daniele 399
Batini, Carlo 399
Benslimane, Djamal 12
Bergholtz, Maria 482
Bhowmick, Sourav S. 196
Bienemann, Alexander 311
Biskup, Joachim 528
Biswas, Debmalya 155
Blakeley, José A. 552
Borgo, Stefano 112
Brazhnik, Olga 587
Burton-Jones, Andrew 544

Casteleyn, Sven 267
Chang, Kuiyu 168
Chen, Peter P. 1
Choi, Byron 228
Colombo, Enzo 451
Comyn-Wattiau, Isabelle 84
Conrad, Stefan 241
Costal, Dolors 513
Currim, Faiz 212
Currim, Sabah 212

De Troyer, Olga 267
Delcambre, Lois M.L. 126, 424, 548
Deng, Shuiguang 26
Dong, Ce 182
Dubois, Eric 482
Dyreson, Curtis 212

Edirisuriya, Ananda 482
España, Sergio 437

Faulkner, Stéphane 281
Franch, Xavier 354

Garasi, Manuel F. 399
Gemino, Andrew 544
Ghedira, Chirine 12
Gómez, Cristina 513
Gordijn, Jaap 482
Grégoire, Bertrand 482
Guizzardi, Giancarlo 112

Hahn, Axel 482
He, Bingsheng 228
He, Qi 168
Huang, Zhiqiu 371

Ilayperuma, Tharaka 482

Jeusfeld, Manfred A. 339
Johannesson, Paul 482
Jureta, Ivan J. 281

Khatri, Vijay 548, 583
Kühn, Harald 339

Lawrence, Ramon 584
Lechtenbörger, Jens 385
Leonardi, Erwin 196
Leung, Ho-fung 98
Li, Ying 26
Liao, Ning 40
Lim, Ee-Peng 168
Lin, Zi 228
Logan, Judith 424

Maamar, Zakaria 12
Maes, Ann 54
Maier, David 126
Masolo, Claudio 112
Mason, Terrence 584
Mazón, Jose-Norberto 385
Menzel, Ralf 528
Mrissa, Michael 12
Muralidhar, S. 552
Murthy, Sudarshan 126
Mylopoulos, John 296, 451

Ng, Wilfred 140
Nori, Anil 552

590 Author Index

O’Sullivan, Pat G. 567

Panach, José Ignacio 437
Parsons, Jeffrey 544, 585
Pastor, Óscar 437
Pederiva, Inés 437
Pérez de Laborda, Cristian 241
Plessers, Peter 267
Poels, Geert 54, 544
Purao, Sandeep 586

Queralt, Anna 497

Ralyté, Jolita 339
Ramesh, V. 544
Recker, Jan 68
Rector, Alan 255
Renner, Scott 568
Rittgen, Peter 468
Rolland, Colette 5
Rosemann, Michael 68

Santini, Simone 413
Scheffler, Lee 566
Schewe, Klaus-Dieter 311
Schmitt, Michael 482
Schobbens, Pierre-Yves 281
Seidenberg, Julian 255
Si-said Cherfi, Samira 84
Smith, Ken 581

Snodgrass, Richard T. 212
Su, Jianmin 585
Su, Ning 296

Teniente, Ernest 497
Terwilliger, James F. 424
Thalheim, Bernhard 311
Topaloglou, Thodoros 569
Trujillo, Juan 385

Umapathy, Karthikeyan 586
Urban, Susan D. 40

Veres, Csaba 325
Vessey, Iris 583
Vidyasankar, K. 155
Viscusi, Gianluigi 399

Wand, Yair 548
Wangler, Benkt 482
Weigand, Hans 482
Williams, Barbara 548
Wohed, Petia 68
Wolfson, Dan 567
Woo, Carson 548
Wu, Jian 26
Wu, Zhaohui 26

Xiao, Yang 40

Zhao, Xiaofei 371
Zhou, Mengchu 26
Zozulia, Mark 548

	Frontmatter
	Keynote Papers
	Suggested Research Directions for a New Frontier -- Active Conceptual Modeling
	From Conceptual Modeling to Requirements Engineering

	Web Services
	A Context Model for Semantic Mediation in Web Services Composition
	Modeling Service Compatibility with Pi-calculus for Choreography
	The DeltaGrid Abstract Execution Model: Service Composition and Process Interference Handling

	Quality in Conceptual Modeling
	Evaluating Quality of Conceptual Models Based on User Perceptions
	Representation Theory Versus Workflow Patterns -- The Case of BPMN
	Use Case Modeling and Refinement: A Quality-Based Approach

	Aspects of Conceptual Modeling
	Ontology with Likeliness and Typicality of Objects in Concepts
	In Defense of a Trope-Based Ontology for Conceptual Modeling: An Example with the Foundations of Attributes, Weak Entities and Datatypes
	Explicitly Representing Superimposed Information in a Conceptual Model

	Modeling Advanced Applications
	Preference Functional Dependencies for Managing Choices
	Modeling Visibility in Hierarchical Systems
	A Model for Anticipatory Event Detection

	XML
	A Framework for Integrating XML Transformations
	{\sc Oxone}: A Scalable Solution for Detecting Superior Quality Deltas on Ordered Large XML Documents
	Schema-Mediated Exchange of Temporal XML Data
	A Quantitative Summary of XML Structures

	Semantic Web
	Database to Semantic Web Mapping Using RDF Query Languages
	Representing Transitive Propagation in OWL
	On Generating Content and Structural Annotated Websites Using Conceptual Modeling

	Requirements Modeling
	A More Expressive Softgoal Conceptualization for Quality Requirements Analysis
	Conceptualizing the Co-evolution of Organizations and Information Systems: An Agent-Oriented Perspective
	Towards a Theory of Genericity Based on Government and Binding

	Aspects of Interoperability
	Concept Modeling by the Masses: Folksonomy Structure and Interoperability
	Method Chunks for Interoperability
	Domain Analysis for Supporting Commercial Off-the-Shelf Components Selection

	Metadata Management
	A Formal Framework for Reasoning on Metadata Based on CWM
	A Set of QVT Relations to Assure the Correctness of Data Warehouses by Using Multidimensional Normal Forms
	Design and Use of ER Repositories: Methodologies and Experiences in eGovernment Initiatives

	Human-Computer Interaction
	Notes for the Conceptual Design of Interfaces
	The User Interface Is the Conceptual Model
	Towards a Holistic Conceptual Modelling-Based Software Development Process

	Business Modeling
	A Multi-perspective Framework for Organizational Patterns
	Deriving Concepts for Modeling Business Actions
	Towards a Reference Ontology for Business Models

	Reasoning
	Reasoning on UML Class Diagrams with OCL Constraints
	On the Use of Association Redefinition in UML Class Diagrams
	Optimising Abstract Object-Oriented Database Schemas

	Panels
	Experimental Research on Conceptual Modeling: What Should We Be Doing and Why?
	Eliciting Data Semantics Via Top-Down and Bottom-Up Approaches: Challenges and Opportunities

	Industrial Track
	The ADO.NET Entity Framework: Making the Conceptual Level Real
	XMeta Repository and Services
	IBM Industry Models: Experience, Management and Challenges
	Community Semantics for Ultra-Scale Information Management
	Managing Data in High Throughput Laboratories: An Experience Report from Proteomics
	Policy Models for Data Sharing

	Demos and Posters
	Protocol Analysis for Exploring the Role of Application Domain in Conceptual Schema Understanding
	Auto-completion of Underspecified SQL Queries
	iQL: A Query Language for the Instance-Based Data Model
	Designing Under the Influence of Speech Acts: A Strategy for Composing Enterprise Integration Solutions
	Geometry of Concepts

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

