
An ECA Engine for Deploying Heterogeneous

Component Languages in the Semantic Web

Erik Behrends, Oliver Fritzen, Wolfgang May, and Daniel Schubert

Institut für Informatik, Universität Göttingen
{behrends, fritzen, may, dschuber}@informatik.uni-goettingen.de

Abstract. We describe a generic ECA service for implementing behav-
ior using heterogeneous languages in the Semantic Web. The module
details and implements our recent work on an ontology and language
concept for a modular approach to ECA rules in the Semantic Web. The
ECA level provides generic functionality independent from the actual
languages and semantics of event detection, queries, and actions.

1 Introduction

In [MAA05b], we presented an ontology-based approach for specifying (reactive)
behavior of the Web and evolution of the Web that follows the Event-Condition-
Action (ECA) paradigm. The approach provides a modular framework for com-
posing languages for event detection, queries, conditions, and actions by sepa-
rating the ECA semantics from the underlying semantics of events, queries, and
actions. We deal with the heterogeneity of the components (i.e., event, query
and action languages) by associating every rule component with a language. The
language descriptions (as resource descriptions) provide pointers to appropriate
Web Services that implement the respective languages in a service-oriented ar-
chitecture. An accompanying proposal for a rule markup language has been given
in [MAA05a]. In the present paper, we describe a prototypical implementation
(in Java) of an ECA engine for this framework: Section 2 shortly reviews the un-
derlying ontology and language model of the general framework for ECA rules.
Section 3 describes the global semantics of the rules, focusing on the handling
of variables. Section 4 then describes the actual evaluation and communication
with the component language services and illustrates it by a running example.
Section 5 concludes the paper.

2 Language Heterogeneity: Rule Components and
Languages

For dealing with the different languages for events, queries and tests, and ac-
tions, we prefer a declarative approach with a clean, modular design as a “Normal
Form”: First detect just the dynamic part of a situation (event), then optionally
obtain additional information by queries (that can be stated using different lan-
guages), evaluate a boolean test, and, if “yes”, then actually do something – as

T. Grust et al. (Eds.): EDBT 2006 Workshops, LNCS 4254, pp. 887–898, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

888 E. Behrends et al.

Rule Model ECARule

Event
Component

Condition
Component

Action
Component

Query
Component

Test
Component

Event
Language

Query
Language

Test
Language

Action
Language

Languages Model
Language

URI

Processor

service

1 0..1
1..*

* 0,1

�

�

�
�

↓uses ↓uses ↓uses ↓uses

impl by

Event

dynamic

Condition

static

Action

dynamic
event query test action

collect test act

Fig. 1. ECA Rule Components and Languages (simplified from [MAA05a])

ECA Language :
<event/> <query/> <test/> <action/>

Event
Language

Query
Language

Test
Language

Action
Language

Application-Domain Language

Atomic Events Literals Atomic Actions

embeds
embeds embeds

embeds

embeds

embeds embeds

embeds

Fig. 2. Hierarchy of Languages (simplified from [MAA05a])

shown in Figure 1. Thus, every rule uses an event language, one or more query
languages, a test language, and one or more action languages for the respective
components. Rules and their components are objects of the Semantic Web, i.e.,
subject to a generic rule ontology as shown in the UML model. Every component
is associated with its language (seen as a resource), identified by a URI. With

An ECA Engine for Deploying Heterogeneous Component Languages 889

this URI, further information is associated that allows to address a suitable
Web Service that implements the language; details about the service-oriented
architecture can be found in [MAA05b].

The framework defines a hierarchical structure of language families (wrt. em-
bedding of language expressions) as shown in Figure 2: the ECA language embeds
event, query, test, and action languages. Rules combine one or more languages
of each of the families. In general, each such language consists of an application-
independent syntax and semantics (e.g., event algebras, query languages, boolean
tests, process algebras) which is then applied to a domain (e.g. travelling). The
domain ontologies define the static and dynamic notions of the application do-
main, i.e., predicates or literals (for queries and conditions), and events and
actions (e.g. events of delayed flights, actions of reserving tickets).

3 Semantics of ECA Rules and Variables

For classical deductive rules, there is a bottom-up evaluation where the body
is evaluated and produces a set of tuples of variable bindings. Then, the rule
head is “executed” by iterating over all bindings, for each binding instantiating
the structure described in the head (in some languages also executing actions
in the head). We define the semantics of ECA rules as close as possible to this
semantics, adapted to the temporal aspect of an event:

ON event AND additional knowledge, IF condition THEN DO something.

Logical variables are used in the same way as in Logic Programming for com-
munication between the different components of a rule: the semantics of rules
is based on sets of tuples of (answer) variable bindings. In case that a variable
occurs more than once in a rule, it is handled as a join variable. While in Logic
Programming rules, variables must be bound by a positive literal in the body
to serve as join variables in the body and to be used in the head, in ECA rules
we have four components: A variable must be bound in the rule, in an “ear-
lier” (Event<Query<Test<Action) or at least the same component as where it
is used. Usage can be as a join variable in case of the Event, Query, or Test
component, or to execute (“derive”) an action in the Action component (that
corresponds to the rule head). Variables can be bound to values/literals, refer-
ences (URIs), XML or RDF fragments, or events (marked up as XML or RDF
fragments).

While the semantics of the ECA rules provides the infrastructure and global
semantics, the component languages provide the local semantics. For dealing
with heterogeneous languages, the ECA level does only minimally constrain the
component languages. Communication between the ECA engine and the Event,
Query, Test, and Action components is done by exchanging variable bindings.
Component languages use variables in two different ways: Logic Programming-
style languages match free variables, e.g. query languages like Datalog, F-Logic
[KL89], XPathLog [May04], or Xcerpt [BS02]; similar techniques can also be ap-
plied to design languages for the event component. Functional-style languages act
as functions over a database or an event stream, and some input/environment

890 E. Behrends et al.

variables. In the XML world, such languages return an XML fragment (e.g.
XQuery). In most classical approaches for event languages (e.g., as in SNOOP
[CKAK94]), the “result” of an expression is often considered to be the sequence
of detected events that “matched” the event expression in an event stream. Vari-
ables can be bound on the rule level for binding results of functional expressions
by borrowing from XSLT as <eca:variable name=“name”>content</eca:variable>

where content can be any expression whose value is then bound to the variable
(i.e., an event specification or a query). Similar constructs are recommended to
use in the component languages. We will focus here on the ECA level, keeping
the component expressions as simple as possible.

4 The ECA Engine

4.1 Architecture

The architecture is shown in Figure 3. The ECA engine controls the evaluation
of a rule, i.e., when to evaluate which rule component, and keeps the state
information during the evaluation. The communication with the autonomous
remote component language processors is done via the Generic Request Handler
(GRH), using an XML markup for requests and answers. Using the namespace
declaration of the components, the GRH determines an appropriate language
processor and sends the request and the relevant variable bindings to it in an
appropriate form. After receiving the answer, the obtained variable bindings are
communicated back to the ECA engine.

ECA Engine:
<rule>

<event xmlns:ev=“. . . ”/>. . . </event>

<query xmlns:ql=“. . . ”/>. . . </query>

<test xmlns:tst=“. . . ”/>. . . </test>

<action xmlns:act=“. . . ”/>. . . </action>

</rule>

Generic
Request
Handler

• •· · · Component Language Services· · · •

→
component,
input var.bdgs

←
resulting
var.bdgs

Fig. 3. Global Service-Oriented Architecture

This process is described below and illustrated by an exemplary ECA rule of
a car-rental company: when a customer books a flight, cars similar in size to his
own cars are offered at the given destination (see Figure 4).

4.2 Firing ECA Rules: The Event Component

Upon registration of a rule in the ECA engine, its event component is submitted
to the GRH. The GRH inspects the namespace of the event language and submits

An ECA Engine for Deploying Heterogeneous Component Languages 891

<eca:rule xmlns:eca=”http://www.semwebtech.org/06/eca-ml”>
<eca:event><!-- detect a booking by a person --></eca:event>
<eca:variable name=”OwnCar”>

<eca:query><!-- query the person’s cars --></eca:query>
</eca:variable>
<eca:variable name=”Class”>

<eca:query><!-- map the cars to the appropriate classes --></eca:query>
</eca:variable>
<eca:query>

<!-- query cars that are available at the destination. -->
</eca:query>
<eca:action><!-- inform the customer about suitable cars --></eca:action>

</eca:rule>

Fig. 4. Outline of the Sample Rule

the event component to an appropriate event detection service (see Figure 5).
In our simple example, the event component consists only of an atomic event
pattern. The event pattern is thus sent directly to an Atomic Event Matcher
that is aware of relevant events.

Fig. 5. Registration of the Event Component

The event detection service evaluates the event specification against the
stream of events. When an (atomic) event that matches the specification, e.g.,

<travel:booking person=“John Doe” from=“Munich” to=“Paris”/>

occurs, the detection of the event component pattern is signalled from the event
detection service to the GRH (containing the identification of the rule, the event
sequence that matched the pattern and the collected variable bindings). The
GRH forwards it to the ECA engine as shown in Fig. 6(1), using an XML markup
for answers and tuples of variable bindings. The arrival of the event detection
message marks the starting point of the rule evaluation at the ECA engine. The
ECA engine creates one or more instances of the rule with appropriate variable
bindings according to the number of answer elements in the message (Fig. 6(2)).

Languages for Composite Events. The event component can also use arbitrary
language for specifying composite events – as far as a service that actually does
the event detection is provided. In this case, the event component is of the form

892 E. Behrends et al.

Fig. 6. Detection of the Event Component

<eca:event xmlns:evt=“uri of the event language”>

<evt:operator> nested expression in the event language </evt:operator>

</eca:event>

and the component is then registered and processed at an appropriate service
associated with the language’s URI [MAA05b].

Possible languages here are e.g. an extension of SNOOP [CKAK94] with logi-
cal variables where a framework-aware service has been implemented in [Spa06]
(with input in XML markup), or XChange [BP05]. Both languages return the
event sequence as functional result and bind/use logical (join) variables.

4.3 The Query Components

The query components serve for obtaining static information from Web resources
based on the information contained in the event. The query component is very
similar to the evaluation of rule bodies in Logic Programming, extending the
set of tuples of variable bindings (and also probably restricting it via join condi-
tions). Since we also allow answers of functional query languages, the semantics
is adapted accordingly: when bound to a variable at the rule level, each answer
yields a separate variable binding.

In our example, at this time, the following facts are known: the name of the
person who booked the flight and the destination city (Fig. 6(2)). The name is
used to ask for the cars that this person owns at home. Note that here, the query
is stated as an “opaque” XQuery code fragment (against an XML document on
the Web) without markup. The query code together with the values of the input
variables is communicated to the GRH as shown in Figure 7.

An ECA Engine for Deploying Heterogeneous Component Languages 893

Fig. 7. Sending the First Query Component to the GRH: Own Cars

Languages for the Query Component. In contrast to the event component, many
query languages for SQL, XML and RDF data are around, and many Web nodes
already support interfaces for them. Thus, for current applications, opaque query
components where the query is just given as a string and submitted to such a
service (using e.g. HTTP, or calling a saxon-based [saxon] wrapper for XQuery)
are expected to be frequently used:

<eca:query>

<eca:opaque (language= “name of the language”|url= “URL of WebService)”>

query
</eca:opaque>

</eca:query>

4.4 The Generic Request Handler

The Generic Request Handler acts as a mediator for dealing with remote ser-
vices. It inspects the namespace declaration of the components (or the language
attribute in case of opaque fragments) for determining an appropriate language
processor and forwards the request to it in an appropriate form. For framework-
aware services, the incoming requests can just be forwarded. To integrate non-
framework-aware services, the GRH uses information about the communication
protocol and method in addition to the processor’s capabilities wrt. the handling
of variable bindings (cf. the second query discussed later).

The first query is forwarded together with the input variable bindings from
the GRH to a framework-aware wrapped Saxon [saxon] XQuery processor node.
The node evaluates the query and returns one <log:answer> for each result to
the GRH as shown in Figure 8(1). For such processors that return a functional
result (in an <log:result> element), the query component is surrounded by a

894 E. Behrends et al.

<eca:variable> element (as in our example, see Figure 4). The GRH extends the
input bindings with binding the functional result(s) to the given variable. It
generates an appropriate <log:answers> message and sends it back to the ECA
engine as shown in Figure 8(2) where it is then joined with the existing variable
bindings. Note that since John Doe owns two cars at home, a Golf and a Passat,
there are now two tuples of variable bindings (Figure 8(3)).

Fig. 8. Answer to the First Query Component: Own Cars

An ECA Engine for Deploying Heterogeneous Component Languages 895

Fig. 9. Evaluation of the 2nd Query against a Framework-Unaware Service

In the next query, another database is queried for the classes (sizes) of the
respective cars as shown in Figure 9(1). The <eca:opaque> element specifies to
contact an unwrapped, framework-unaware XQuery node (an eXist database) via
HTTP GET. Variables in the query string are replaced by their values and the

896 E. Behrends et al.

Fig. 10. Query Against Available Cars, Generating a <log:answers> Structure

query is submitted. In the example, the GRH executes the request for every tuple
of the input variable bindings, once for “Golf” and once for “Passat” (Fig. 9(2)),
and binds the results to the variable Class. The resulting variable bindings are
then sent as the content of an <log:answers> message back to the ECA engine
(Fig. 9(3)) where they are joined with the existing tuples (Fig. 9(4)).

Next, another query retrieves all cars that are available at the destination
city (see Figure 10). Here an XQuery engine is addressed directly with a query
that generates the required <log:answers> structure to “fake” a framework-aware
service. The available cars (of classes B and D) are compared to the classes of
the cars owned by the customer (B and C) as shown in Figure 11. The join
semantics (natural join over class) eliminates tuples containing a car either of
class “C” or of class “D”, and only those with class “B” remain.

4.5 The Test and Action Components

These two components follow the same principle. The test component (which
corresponds to the WHERE clause in SQL and is empty in our example) con-
tains a condition over the bound variables which discards those tuples that do
not satisfy the condition. In general, it is evaluated locally, using only simple
comparison predicates. The action component then is the one where actually
something is done: for each tuple of variable bindings, the action component is
executed, again via the GRH. This can include commands on the database level,
explicit message sending, or actions on the domain ontology level.

An ECA Engine for Deploying Heterogeneous Component Languages 897

Fig. 11. Evaluation of the Available Cars

5 Conclusion

The above ECA engine and Generic Request Handler implement the upper level
of the generic ECA framework proposed in [MAA05a, MAA05b]. They can be
used for combining arbitrary event detection, query and action languages and

898 E. Behrends et al.

respective engines. A variety of such engines, including sample domain services
are currently being developed.

Acknowledgements. This research has been funded by the European Com-
mission within the 6th Framework Programme project REWERSE, no. 506779.

References

[BP05] F. Bry and P.-L. Pătrânjan. Reactivity on the Web: Paradigms and Ap-
plications of the Language XChange. In ACM Symp. Applied Computing.
ACM, 2005.

[BS02] F. Bry and S. Schaffert. Towards a declarative query and transformation
language for XML and semistructured data: Simulation Unification. In
Intl. Conf. on Logic Programming (ICLP), Springer LNCS 2401, pp. 255–
270, 2002.

[CKAK94] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite
Events for Active Databases: Semantics, Contexts and Detection. VLDB,
1994.

[KL89] M. Kifer and G. Lausen. F-Logic: A higher-order language for reasoning
about objects, inheritance and scheme. In J. Clifford, B. Lindsay, and
D. Maier, editors, ACM Intl. Conference on Management of Data (SIG-
MOD), pp. 134–146, 1989.

[MAA05a] W. May, J. J. Alferes, and R. Amador. Active Rules in the Semantic
Web: Dealing with Language Heterogeneity. In Rule Markup Languages
(RuleML), Springer LNCS 3791, pp. 30–44, 2005.

[MAA05b] W. May, J. J. Alferes, and R. Amador. An Ontology- and Resources-
Based Approach to Evolution and Reactivity in the Semantic Web. In
Ontologies, Databases and Semantics (ODBASE), Springer LNCS 3761,
pp. 1553–1570, 2005.

[May04] W. May. XPath-Logic and XPathLog: A Logic-Programming Style XML
Data Manipulation Language. Theory and Practice of Logic Progr.,
4(3):239–287, 2004.

[saxon] Michael Kay. SAXON: an XSLT processor. http://saxon.sourceforge.
net/.

[Spa06] Sebastian Spautz. Automatenbasierte Detektion von Composite Events
gemäss SNOOP in XML-Umgebungen. Diplomarbeit, TU Clausthal (in
german), 2006.

http://saxon.sourceforge.net/
http://saxon.sourceforge.net/

	Introduction
	Language Heterogeneity: Rule Components and Languages
	Semantics of ECA Rules and Variables
	The ECA Engine
	Architecture
	Firing ECA Rules: The Event Component
	The Query Components
	The Generic Request Handler
	The Test and Action Components

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

